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1. INTRODUCTION

THE critical phenomena in various substances have
been investigated since the second half of the 19th cen-
tury. The nature of critical phenomena varies. At the
Curie point T¢ matter goes over from the paramagnetic
into the ferromagnetic (or antiferromagnetic) state.
Critical phenomena occur when matter goes over into
the ferroelectric state. In solids there occur also phase
transitions in which the crystal symmetry changes.
There are known cases when such transitions are in
general not accompanied by an abrupt change in the
specific volume and by release of heat, or when the
changes are very small (for example, on going from the
a to the 8 phase of quartz). Mention should also be
made of alloy ordering. The transition of liquid helium
into the superfluid state and the transition of certain
metals into the superconducting state are also second-
order phase transitions—there are no jumps of the
specific volume and no heat is released. From this
point of view, the critical point between a liquid and a
gas should also be regarded as a second order phase
transition, since it is precisely at this point that the
jumps of the density and of the entropy vanish, and the
difference between the liquid and gas disappears.

These phenomena, which at first glance seem so
different, have certain general features in common.

The first and the most common of them, is the anom-
aly of the specific heat. Second, we note the growth of
the ‘‘susceptibility’’ of the system to external action.
We have in mind the magnetic susceptibility x in the
case of a ferromagnet, the isothermal compressibility
kT in the case of the liquid-gas critical point, the quan-
tity (ac/au)p T in the case of the critical point of a two-
component sélution (c—concentration, p—chemical po-
tential), etc. In some cases (helium, guartz) the gener-
alized susceptibility has no simple physical meaning.

In almost all cases one can speak of the occurrence of

a long-range (a macroscopically nonvanishing correla-
tion between the elements of the system) below the tran-
sition point.

In some of the described cases, anomalous scattering
of light (the liquid-gas critical point) or scattering of
neutrons (ferromagnets) were observed near the transi-
tion point. This is evidence of an increase in the fluc-
tuations. The cause of the anomalous growth of the
fluctuations is clear: the ordered and disordered pha-
ses hardly differ from near the transition point.

We shall call all these phenomena critical. The
theory of critical phenomena, which dates back to Gibbs,
has predicted the thermodynamic properties near the
critical point on the basis of the simplest assumption
that it is possible to expand the thermodynamic potential
in powers of the deviations of the temperature and of
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the volume from the critical values (see, for exam-
ple, ™).

The main conclusions of the theory are as follows.
When V = V¢ the specific heat Cy experiences a finite
discontinuity. Near the critical point, the isotherms
are approximately described by the Van der Waals
equation. Consequently the liquid-gas coexistence curve
is of the form

TomT=AV—Ve)

The compressibility becomes infinite in accordance
with the law
by~ (T —Tc)™.

Ornstein and Zernike took into account the fluctua-
tions of the density within the framework of the same
basic assumptions, and this led to the well known den-
sity correlation function { n(r) n(r’))
~ exp|—k(r — r')}/Ir — r’], and made it possible to ex-
plain anomalous scattering of light (critical opales-
cence).

As more experimental facts were accumulated, it
became clear that the premises of the classical theory
are incorrect (at least sufficiently close to the critical
point). Voronel’ and co-workers have observed®® that
the specific heat Cy increases anomalously when the
critical point is approached. However, deviations from
the predictions of the classical theory were observed
even earlier in the behavior of the compressibility and
of the critical isotherm ®’,

A similar situation arose in the theory of second-
order phase transitions. A phenomenological theory was
first proposed by Weiss for ferromagnets. A more gen-
eral theory was constructed by Landau, who first pointed
out that these transitions are connected with changes of
symmetry. As in the theory of critical phenomena, the
classical theory of second-order phase transitions was
based on very simple mathematical assumptions, and
reduced physically to the theory of a homogeneous self-
consistant field, the magnitude of which is determined
from the condition that the thermodynamic potential has
a minimum. This theory holds with great accuracy for
phase transitions in superconductors and in certain
solids.

Let us see what the theory leads to in the case, for
example, of a ferromagnet. The specific heat experi-
ences a finite jump. The magnetic susceptibility be-
haves like (T — Tg)™' (the Curie law). The magnetic
moment below the transition point behaves like
(Tc — T)*”2, and therefore the following equation is
satisfied:

Toe—T =AM

By extending the theory in the spirit of Ornstein and
Zernike, we obtain for the correlation function of the
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moments a value proportional to exp[-kir — r'j}/|r — r'}.

We purposely emphasized the analogy between the
theories of Gibbs, Weiss, and Landau. This analogy is
perfectly natural, since any of these theories starts out
from a certain self-consistant field and presupposes
that the density of the thermodynamic potential can be
expanded in even powers of the field. It is usually suffi-
cient to retain terms of fourth order. The role of the
self-consistant field is played by V — V. in the Gibbs
theory, by the ‘‘effective’’ magnetic field Hgfr in the
Weiss theory, and by the order parameter 7 in the
Landau theory.

However, as a result of Onsager’s[" investigations,
which were devoted to a simple mathematical model
(a plane Ising lattice), it became clear that the physical
picture of the transition may not be so simple. In par-
ticular, it turned out that in this model the specific heat
behaved like —In{T — T¢|, and the magnetic moment is
M ~ (T — T)'/®. Numerical investigations of the three-
dimensional Ising model (see, for example,m) likewise
do not agree with the theory of the self-consistant field.

Further, the experiment of Buckinghem, Fairbank
and Kellers'®! has shown that the specific heat of helium
increases logarithmically in the most immediate vicin-
ity of the A point.

Different anomalies of the thermodynamic quantities
were observed in ferromagnets and antiferromagnets
(see 1), Thus, at least some of the experiments do not
agree with the self-consistant field theory.

It is remarkable that different phase transitions re~
veal similar features. For example, the specific heat
behaves like —1n|T — T/ (or, within the limits of ex-
perimental accuracy, like |T — T/ raised to a small
power) in all the ‘“anomalous’’ cases. Further, in
ferromagnetic transitions, the magnetic moment below
the transition point behaves like |T — TCIB with 8=~ 1/3
(seem). A similar behavior was found for the jump of
the density near the critical point'”.

The construction of a consistent macroscopic theory
of phase transitions turned out to be a difficult problem.
The reason for the difficulties lies in the fact that the
growing fluctuations interact strongly with one another
near the critical points. Even in the case of a weak
“‘bare’’ interaction between the particles (spins), the
effective interaction is strong near the transition point.
Inasmuch as the correlation radius becomes large com-
pared with the distance between the particles, many-
particle interactions are just as important as two-parti-
cle interactions. The theoretician can no longer use his
main weapon—perturbation theory. The general problem
of the phase transition is one of the last unsolved prob-
lems in the physics of condensed state. It is therefore
not surprisingly that it attracts the attention of the
physicists. At first glance the difficulties are purely
mathematical, since in principle the solution of the
problem is contained in the Gibbs statistics and in the
laws of classical or quantum mechanics.

It is appropriate to mention in this connection the
theory of turbulence, where a similar situation existed
at one time. It might seem at first glance that the en-
tire information is contained in the equations of hydro-
dynamics and heat conduction. However, it was neces-
sary to clarify first the simple physical picture of the
turbulent state (transfer of energy to vortices having

]

nearly equal scales, etc), and this made it possible for
Kolmogorov to construct a simple theory based on
dimensionality considerations.

This suggests the idea of a similar approach to the
theory of critical phenomena. Simple hypotheses were
advanced in a number of recent papers'®'?! concerning
the structure of matter in the region of the phase tran-
sition.*

2. CELL EQUIVALENCE HYPOTHESIS

The authors use the growth of the correlation radius
rc of the system near the critcial point (curve) and
mentally divide the system into a number of subsystems
(cells), each containing a large number of particles, but
each having a dimension smaller than or of the order of
rc. The simplest premises concerning the properties
of these systems lead to conclusions that a connection
exists between the different thermodynamic functions
near the transition point.

The first considerations of this type were advanced
by Buckinghemm. The model of the substance is not
made very specific in the subsequent considerations.
This may be a ‘‘lattice gas’’ (see, for example,""?), the
models of Ising or Heisenberg for magnets, an ordered
alloy, etc. For concreteness we shall speak of a lattice
gas. The method of ‘‘translating’’ from the language of
this model to the language of the model of magnets is
well known (see Sec. 5).

As already mentioned, Buckinghem divided the sys-
tem into cells of volume V. The interaction energy of
such cells is small compared with the energy of the
cells themselves (the surface of the cell is small com-
pared with the volume). But it is precisely this weak
surface effect which leads to singularities in the thermo-
dynamic quantities. Indeed, by ‘‘turning off’’ the inter-
action, we arrive at an aggregate of non-interacting
systems of finite volume. The thermodynamic functions
of the finite system have no singularities. Therefore
the phase transition in the system of volume V becomes
smeared out, as it were, over a temperature interval
AT(V). We shall henceforth measure the temperature
in units of T¢ and introduce the notation t(V)
= AT(V)/Ve. It is obvious that t{=) = 0. Turning on of
the interaction changes the entropy of the system ap-
preciably. According to Buckinghem’s simplified
scheme, on the equilibrium curve, when the interaction
is turned off, each cell can be filled with matter in the
first phase or else in the second phase. This yields an
entropy In 2 per cell or In 2/V per particle (V is meas-
ured in units of the cell volume). Turning on the inter-
action leads to a complete correlation between the
neighboring volumes and changes the entropy by an
amount —1n 2/V.

Turning on the interaction is equivalent to replacing
the volume V by an infinitely large volume. We can
therefore write for the per-particle entropy sy of the
volume V

Asy = 5 — sy = —1n 2/V. (1)

We now vary the temperature. We introduce the nota-

*The similarity hypothesis was first advanced in the theory of phase
transitions in {®].
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tion 7 = (T~ Tq)/Tg. Formula (1) is valid under the
assumption that t(V) < {7{ < 1 (7 < 0). Increasing 7,
we go over into the single-phase region, where all the
cells are filled in like fashion. In this region, Asy = 0.
Buckinghem’s main assumption is that the only charac-
teristic dimension of Asy as a function of 7 is t(V), and
that Asy/(7) can be written in the form

Bsy (1) = 5 () ~sv () =551 (15) » (2)

where f(x) is a universal function that takes on the val-
ues
f(—oo)=—1, f(+x)=0.
A quantitative description of the transition proposed
above can hardly be regarded as physically justified,
since fluctuations can exist in either the two-phase or

single-phase regions and can greatly change the entropy.

It therefore seems natural to employ the less restric-
tive assumption

As(t, V)==ti-2f (_tl) . (3)

The quantity As remains finite under all conditions.
Therefore o < 1. Differentiating (3) with respect to 7
for a specified V(t), we obtain

C (v, 0)—C (7, t) = const - {~f’ (%) , 4)

where C(7, t) is the specific heat per site in a cell of
volume V, situated in a thermostat with specified 7.
The relation between V and t{(V) is not established in
this theory.

When t = 0, the specific heat C(7, t) has no singulari-
ties as a function of 7. On the other hand, C(7, 0) has
by assumption a singularity. Consequently, as 7— 0
and for finite t the difference C(7, 0) — const - tf(n/t)
should remain finite and independent of 7. This is pos-
sible only if f'(x) has the asymptotic form

(x < 1) (5)

f (@) ~z=e
and
C (1, 0) ~ 1=, (6)

In the important particular case @ = 0 we get in lieu
of (4)

C(t, 0)—C (7, ) =const- f (—:~) .

At small values of 7 and at finite t, the quantity
C(1, t} is asymptotically independent of 7 only if

C(t, 0) ~—1In|1|. N

So far we have assumed that C(7, ) becomes infinite
when 7 — 0. Of course, the case when C has a finite
limit as 7 — 0 does not contradict (4). Thus, the condi-
tion o = 0 leads to a logarithmic divergence or to a
finite jump of the specific heat.

Buckinghem’s theory does not make it possible to
determine «, but leads to a certain law of corresponding
states. Buckinghem’s idea of the equivalence of cells of
different dimensions turned out to be quite fruitful. He
assumed that in a two-phase system the problem redu-
ces to the Ising model with a certain interaction energy
that depends on the dimension of the cell and on the
proximity to the transition point.

3. KADANOFF’'S SCALE TRANSFORMATIONS

These ideas were developed most fully by
Kadanoff™'’. Let us consider an ordered ferromagnet.
We break it up into cells, as already indicated.
Kadanoff’s main premise is that each cell possesses a
certain moment that interacts with the moments of the
neighboring cells, therefore following certain changes
in the values of 7 and of the reduced magnetic field
h = }J.BH/Tc, the cell problem becomes equivalent to
the problem of individual spins m,. (the models of Ising,
Heisenberg, etc.), where upg is the Bohr magneton. Let
the dimension of the cell be L and let the corresponding
values be 7(L) and h(L). Kadanoff’s second hypothesis—
the similarity law—states that

v(L) ~ L¥t, h(L)~ L. (8)

Here x and y are certain constants.

Let the magnet be located in a nonzero external field
{or at h = 0 below the transition point). When the field
is changed by dh, the free energy changes by an amount

dF =D dh (mey = 3 dh (L) (M ). 9)

The brackets {( ) denotes averaging over the Gibbs en-
semble. The first sum is taken over the lattice sites
and the second over the cells. Obviously

bl (me) = (my L2, (10)

r inside the cell
where d is the dimensionality of the space (in real space
d = 3, but it is convenient to check the obtained relations
with the exactly calculated plane Ising model). From
(8)—(10) we get

(M) = L% (m,). (11)

In accordance with the assumption made, we shall
regard (m) and (M) as similar functions of the argu-
ments 7 and h and 7(L) and h(L), respectively. The
validity of such a hypothesis may be in question. In fact,
in the Ising model, for example, m® = 1 but M® = 1, and
one might think that the different normalization condi-
tions will lead to different results. It is necessary to
consider more consistantly cells of different dimensions
L, and L;, such that 1 < L, and L, < r¢.

In such a formulation, the difference between m and
M disappears. On the other hand, the condition L > 1
does not prevent us from extrapolating the obtained
relations to cells of unit dimension.

Returning to (11), we obtain for the magnetization
{m) per particle

(my (t, hy= L=4+* (m) (zLY, hL%). (12)

The brackets denoting the averaging will henceforth be
omitted. The general solution of the functional equation
(12) takes the form

d—-x

m(t, k=1 ¥ @(1/h"%), (13)
where @(x) is an arbitrary function. We can point out
the asymptotic forms of ¢(x) when x> land x K< 1.
Large x correspond to weak magnetic fields. In this
case m =~ ( above the transition point and m depends
weakly on h below the transition point. Consequently,
@(+%°) = 0 and ¢(—=) = const # 0.

From (13) with 7 < 0 and h = 0 we obtain the depen-
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dence of the spontaneous moment on 7:

m(, 0 =(—7 p=272. (14)
In the opposite limiting case, corresponding to large

h, the moment m should not depend on 7. From this we

get the asymptotic behavior as x — 0, namely ¢(x)

~ x7P and when h 3> 77 the magnetization takes the

form

m (0, k) ~ kA, §=—"

7=z (15)

Let us turn to a calculation of the specific heat C.
We denote by F(7, h) the free energy per site. By defini-
tion, F(7(L), h(L)) is the free energy per cell of dimen-
sion L. Therefore

F(t(L), k(L)) =F (vL7, hL*) = L°F (, h). (16)
The general solution of (16) is
F (1, k) =t9f (z]h!z). (17)
Differentiating (17) twice we get
C (1, h) = 19§ (t/hvi%), a=2——%, (18)

where ¢(x) is an arbitrary function with the following
asymptotic values:

¢(Eo0)=09,

gz =ax|z|®

@<t (19)
where ¢. and a, are generally different constants. From
this we get the behavior of C(7, h):

-e (T hvi),

h—¢ (v € ho/%), g=a (20)

z "

C(t, h) ~

We see that the four quantities «, 8, 6, and €, which
can be determined experimentally, are expressed in
terms of exponents x and y. Therefore they are connec-
ted by the following two relations

(21)
(22)

at+prpd=2,
efd = 2a.

So far we have considered the states of a system
with nonzero moment. Above the Curie point (7 > 0) at
h = 0 the magnetic moments of the cells have a fluctuat-
ing character. This is true also for sufficiently small
nonvanishing h. In order to relate the exponents of the
singularities of the physical quantities (the critical
indices) in this region with x and y, it is necessary to
make one more fundamental assumption: the fluctuating
moments depend on the cell dimension L in the same
manner as the constant ones (formula (11)). This as-
sumption corresponds to a picture in which an
‘‘ordered’’ phase is established in a fluctuating manner
in a cell of dimension L. It is assumed that the depen-
dence of such a moment on L is described by formula
(12). The foregoing hypothesis makes it possible to ob-
tain information on the correlation function of the mo-
ments. We introduce

G (R, 7, h) = {mg, mp). (23)

from the equivalence of cells of different dimensions it
follows that for cells of dimension L the correlation
function {M,, MR) coincides identically with

G(R/L, TLY, hLX). On the other hand, from (11) we get

6 (&, wLh, hLY =206 (R, 1, k). (24)
The general solution of the functional equation (24) is
G (R, 7, k) = R—2=g (TRY, hRY), (25)

where g, 7) is an arbitrary function of its arguments.
From general considerations it is obvious that g, 0)
and g(0, ) are functions that decrease with increasing
arguments § and”n respectively.

The magnetic susceptibility can be obtained from the
relation

2 (v, k) =Y G(R, T, h). (26)
R
In limiting cases of small 7 and h we get from (25)
and (26)

d—2r

1T 0~ Ty, y= =, (27)

y

% (0, by ~h—H k:\‘%=2—-—;—l-. (27"

The exponents a and ¢ of the singularity of the
specific heat are the same on both sides of the phase-
transition point. This is obvious for the quantity e,
which corresponds to the asymptotic form for a strong
magnetic field. As to the quantity o, we can present
here the following reasoning. When the sign of 7 chan-
ges, € and 6 remain unchanged. But then it follows from
(21) and (22) that o and 8 also remain unchanged.

We introduce one more critical index v defined by
the relation

G(R, 0, 0) ~ R,
From (26)—(28) we get

(28)

Yy =hr=d-—nv.

A summary of the foregoing arguments is presented
in two tables. Table I contains the definitions of the
critical indices «, 8, v, 6, €, A, 4, and v. Their expres-
sions in terms of x and y and the four relations between
the six quantities o, 8, v, 6, u, and v are shown in
Table II. Some of these relations were obtained earlier
by Fisher, Sykes, et al.™®’ and by Widom™*’,

Table I. Definitions of critical indices

Correlation
function
G(R,0)

Correlation
radius
Ic

Specific heat Susceptibility

I % Magnetization m

|-~-|:]ti jef*

Table II. Critical indices expressed in terms of the con-
stants x and y. Relations (A)— (D) connect the indices
o, B, v,8, 1, and v,

o . ] ¥ I 8} ] e IS u l v
d d—z 2r—d z - z .
2— el s 1 2(d—
y ¥ I d—u 3 Yy Y @
(A o284+ y=2. (B) B8=-B- y. (O pd=2—a. (D) v (1-+8) --2d.
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The similarity relations are satisfied in the Gibbs-
Weiss-Landau theory of the homogeneous self-consis-
tent field. More accurately speaking, relations (A) and
(B) of Table II are satisfied. Inasmuch as the field is
assumed beforehand to be homogeneous, the quantities
4 and v, which determine the correlation radius and the
behavior of the correlation function, become meaning-
less. We present the values of the critical indices in the
aforementioned theories:

@0, B=1/2, y=-1, 5=3.

In the classical theories of the self-consistent field
it is possible to take into account the fluctuations by the
Ornstein- Zernike method. In the Landau theory with
ordering parameter 77, one introduces into the thermo-
dynamic potential a term proportional to the square of
the gradient of 1. In this case the density of the poten-
tial @(r, 7) takes the form

D (r, 1) ~ (V)? +agen? + by, (29)

where ag and bg are constants. By definition, &(r/L, 7(L))
is the thermodynamic potential of a cell of dimension L
at temperature 7. Therefore &(r/L, 7(L)) = deb(r, T)
(see (16)). However, &(r, 7) defined by relation (29)
cannot be transformed into Ld<1>(r, 7) by the homogene-
ous transformations n — 77L°, 7~ 7LY¥,and r — r/L.

In the classical theory, in which the fluctuations are
taken into account by the Ornstein-Zernike method, the
similarity conditions are not satisfied.

4. FREE ENERGY OF FLUCTUATIONS

It is useful to examine the results from a different
point of view™?’. The anomalies of the thermodynamic
behavior of the system are due to large scale fluctua-
tions that develop near the transition point. We visual-
ize the physical picture of such a state as follows. We
break up the entire small magnet into regions with
linear dimensions on the order of r¢. Inside each such
region, the local moments are correlated and the total
moment M over the region differs from zero. But the
moments of different regions can have, with equal
probability (or with nearly equal probability below the
transition point), opposite signs, so that the total mo-
ment averaged over the entire system is equal to zero.
The only quantity characterizing the interaction of the
fluctuations with the external magnetic field h is Mh.
It is therefore natural to assume that the free energy
F(7, h) is of the form

P (1, by =F (1, 0)+:Z—f(Mh). (30)
[

We have assumed that cells having the dimension r¢
do not interact, so that f(Mh) is the free energy of such
a cell. Putting M ~ 7P, we obtain the law of corre-
sponding states (in Kadanoff’s notation p = x/y = 2
- a- p).

The method of scale transformations leads to a
similar conclusion. Nothing prevents us from extra-
polating all the relations of the preceding section and
extending them up to cells of dimension L ~ r¢ (but not
larger!). But it is then clear that the interaction with
the magnetic field is determined by the moment of such
a cell (since the indeterminate scale L has disappeared).

Let us show briefly how to obtain the relations of the
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preceding section from (30). When 7 — 0, the function
F(7, h) should tend to a finite limit. To this end it is
necessary to have the function f() behave like £d/x at
large values of §. This means that F(h) — F(0) behaves
like h9/X ag 7 — 0. From this we get the connection be-
tween d and x (see Table II). In a weak field when 7> 0
we have F(h) - F(0) ~ h®. We conclude therefore, that

at small { we get £{f) ~ £2, leading to a relation between
v, X, and y.

In order to connect the critical indices y, 6, ¢, and
o, it is necessary to make an additional assumption: in
a magnetic field h # 0 the phase transition becomes
smeared out and F(7, h) becomes an analytic function
of 7. Indeed, when h = 0 we get a nonzero total moment,
and consequently, a long-range order in the arrange-
ment of the spins at any temperature. The phase transi-
tion vanishes, since the only feature distinguishing be-
tween the phases is the existence or absence of long-
range order.

The foregoing denotes that the function F(7, h) can be
expanded at small and finite h in a series of integer
powers of 7. The asymptotic form of {(§) should contain
at large § a term f; of { raised to the zero power. The
corresponding term in (30) should compensate for the
singularity in F(7, 0). This leads to a relation between
o and y.

The transition to the region 7 < 0 calls for analytic
continuation of the function f(§). For the Ising model,
Lee and Yang™®! proved that the free energy F is an
analytic function of z = e with a cut along the circle
|z} = 1, with the exception of a certain arc from z = e—iw
to z = e!”. When T — T¢ from above (1 — 0, 7> 0) we
get w — 0. Thus, when 7> 0 the function F(7, h) is
analytic in z ~ 1 within a circle of radius |elw — 1]. At
small values of 7 the convergence radius is approxi-
mately equal to w, and z — 1 = h. In the same approxi-
mation we can regard the cuts in the h plane as extend-
ing from +iw to £iw, It follows from (30) that w ~ 7P,
and f(¢) have cuts from iy to +i=.

The function radlf(Mh) — fo} is an analytic function
of 7 at small 7 and finite h. The transition from positive
to negative 7 denotes rotation in the §{ plane through an
angle £ mp from a point on the positive { semiaxis
(|1 >> 1). Such a rotation inevitably leads to a crossing
of the cut. Continuing the function {(§) in the second
sheet into the region of small £ | for the same value of
arg £, we fall into the region corresponding to 7 < 0 and
|T|P < h. Whereas in the first sheet the expansion of
f(£) began with £°, in the second sheet the expansion con-
tains a term proportional to £ (i.e., h). This follows
from the existence of a spontaneous moment at 7< 0
and h = 0. The value of the moment is obtained from
the well known function F(7, h), from which we get the
connection of p with o and 8.

Widom “°? obtained certain relations for the critical
indices of a liquid by applying the thermodynamic rela-
tions to a volume of the order of rd,. This idea was first
advanced by Pippard™®’, who proposed that in a region
of linear dimensions r¢ the fluctuation of the tempera-
ture A7 should be of the same order as 7 (the phase
transition becomes smeared out in a region of this size).
In conjunction with the ordinary thermodynamic formu-
las, this yields for the temperature fluctuation (see, for
example, ™)
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T2~ l/rg(", ,
which is equivalent to (C).

We shall apply Widom’s reasoning in modified form
to magnets. Like Pippard, Widom proposes the thermo-
dynamic relations hold that in a region of dimension
L ~ r¢ (naturally, only as far as order of magnitude
goes). In this case the contribution to the free energy
from a region of dimension r¢ can be written in the
form

AF =const-r§d1l12/2x. (31)
It is assumed that on the average one degree of free-

dom, connected with the large-scale fluctuation, is

alloted to a region of this size. Then AF ~ T(, and

from (31) we get relation (A) (see Table I). We then

determine the fluctuation moment m per particle:

m® ~ r5Y ~ |7|HY, In weak fields y ' ~ 77 ~ m®*Y/ HV,

It is assumed that the dependence of y on m remains

the same in a strong field. From this we get

S=1+2yipv. (32)

Relation (32) can be easily obtained from Table II.

5. LIQUID-GAS CRITICAL POINT

It is possible to apply the previously obtained results
to a liquid if, following Lee and Yang, we describe it by
means of the lattice model (see, for example,"”). The
particles can be located only at the sites of a regular
lattice. Each site is either occupied by a particle or is
vacant. We introduce the site occupation numbers ny,
which take on the values 0 and 1. It is assumed that the
energy of the system E can be written in the form

E=Z%TI,nmn.,

where I, decreases rapidly with increasing |r — r’|.
The total number of particles is N = Zn; and is con-
served, We can introduce a quantity conjugate to N,
namely the chemical potential ¢, and the density

p = {n.). By making the change of variable

ny = {0y + 1)/2, the problem of the lattice gas reduces
to the Ising model. The rules for the translation from
the language of the three-dimensional Ising model of the
magnet to the language of the lattice model of a gas-
liquid system are given in Table III. Near the critical
point we can introduce, just as for magnets, critical in-
dices whose connection with the physical quantities is
explained in Table IV, and use them to write down the
equation of state. The latter takes the form

g, (PP
P — Pc—scT =T12a—fg (~T-,,~C) , (33)
where p is the pressure, p the density, pc and p¢ their
values at the critical point, s¢ the specific entropy at the
critical point, and g(x) a certain function with the follow-
ing asymptotic values:

gz)~azt as z—0, g{z) ~2* as z—>0. (34)
In particular, the equation of the critical isotherm is
p—pc~ (p—pc)'. (35)

The specific heat C, can be obtained by using the
well known thermodynamic relation

ap 2
(5F).
. .
(%),
It follows from the equation of state (33) that the
quantity (dp/ dT)V remains finite at the critical point if
a + B < 1. Confining ourselves to this case, we obtain

the connection between the specific heat and the com-
pressibility near the critical point

Cp=Cy—T (36)

Cp—Cy =~ Tsh05 by (37)

The equation of the phase coexistence curve (h = 0 in
the case of a magnet) is

p—pe ~ 8. (38)

In the two-phase region, on approaching the critical
point, the surface tension decreases. Its value can be

Table III. Rules for translation from the Ising-model
language to the lattice-gas language

Ising model m

1 ~2
(3#m)

Lattice gas ‘ p—pc 1 kp

m — moment per site, X — magnetic susceptibility, p — density, pc = critical density, { — chemi-
cal potential, p — pressure, kT — isothermal compressibility.

£—=%e

Table IV. Connection between critical indices and the
quantities characterizing the liquid (lattice model)

I - Critical
Cy Compressibility| Density jump | gurface tension isotherm
kp Ap=pliq—Psol o =0
pmpel®| e | et B e <o
. _ P—pPc~
lo—pc [ 37P | lo—oc |%®] [p—pe ('™ ~Ap—pei®
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related to the critical indices. We shall therefore as-
sume, following Widom "°’, that the dimension of the
transitions region between the different phases is of the
order of ro. The dependence of the density of the coor-
dinate in such a system is shown in the figure. In the
transition region the additional free energy per unit vol-
ume is (see (31))

const-(p— pc)*/hr.

Multiplying this quantity by the thickness of the
transition layer, we obtained the energy per unit surface
area

0 ~rc (Ap)2lky. (39)
In particular, on the isochore p =pn we get
0~lﬂ2ﬁ+v—u N\T[(d—!)u' (40)

A real liquid, generally speaking, cannot be described
by the lattice model. Nonetheless, the relations between
the critical indices (Table II) can be obtained also in a
more general formulation (A. Z. Patashinskif "*7),

Let us consider a real liquid described by the quan-
tities p, p, and ¢ (the chemical potential). We assume
that fluctuations of the density p with large dimensions
~ re arise near the critical point. The deviation AN
of the number of particles from the mean value inside a
region of such dimensions plays the same role as the
fluctuation moment M of the magnet, and { ~ { plays
the role of the magnetic field. It must be kept in mind,
however, that the role of the free energy is played in
this case by the potential & = —pV, for it is precisely
this potential which changes by an amount —N d¢ when
the chemical potential changes by d{. Repeating the
reasoning of Sec. 2, we get

Q=00+ g (AN T—Lo)). (41)
rc

where Qo = Q(T, V, {¢) =-Vp(T, {c), and g(x) is a

certain function. We write out the connection between

the quantities p, 7, and ¢ near the critical point:

{—E&c=vc(p—pc)—sct. (42)

Formula (41) leads to the same relation between the
critical indices.

6. BOSE CONDENSATION OF HELIUM

Josephson™® extended the ideas of scale transforma-

tion to include the case of a second order phase transi-
tion in liquid helium*. Josephson chose as the ordering

*We present here Kadanoff’s derivation of the Josephson rela-
tion [2°].

parameter the wave function ¥, connected with the den-
sity of the condensate ng by the well known relation

g =¥ (43)
The superfluid part of the liquid can move with a veloc-
ity determined with the aid of the quantity

v
myets =k ¥ ’

£ (44)

where mye is the mass of the helium atom (it is under-
stood that the characteristic hydrodynamic dimensions
are large compared with the atomic dimensions).

The same velocity can be determined from the hy-
drodynamic relation

(45)

Js=PsVss

where jg is the flux and pg the density of the superfluid
part of the liquid. The free energy per unit volume of
the liquid helium, with allowance for the motion of the
superfluid component, takes the form

F(p, T, ¥)=Fo(p, T, |91} 5 pst. (46)
We assume that the liquid as a whole is stationary, and
the flux has a fluctuating character. We perform a scale
transformation, putting p = po. By definition,

F(7(L), ¥ (L)) is the free energy of a cell of dimension

L at a temperature 7. We therefore obtain

F(pC! t(L)v "P(L)):Ldp (Pey T, ¥)- (47)

It is quite likely that F, itself satisfies the scale-trans-
formation condition

ps{L) v5 (L) = L'psv}. (48)
But according to (44), vg goes over into Lvg under the
scale transformation. Consequently (see (48))

ps (L) = ps (tL¥) = L2p (7). (49)

From (49) we get

d—
Ps~T ¥ .

N

(50)

We recall that y is connected with the critical index of
the specific heat by the relation @ = 2 — d/y. In the case
of interest tous d = 3 and
2—-a
Ps ~ T3, (51)

For the A transition in He, the quantity @ was meas-
ured by Buckinghem, Fairbank, and Kellers®’ and found
to be equal to zero. Recently Clow and Reppy ', and
also Tyson and Douglass [22], measured pg near T and
fodnd that pg ~ (- T)2/3 % 0-008

Unfortunately, it is still impossible to obtain from
the available experimental data any information concern-
ing any other critical index. We therefore know nothing
about the behavior of n,. It is obvious that n, changes in
a different manner than pg. Otherwise the correlation
function (¥ (r)P(r')> would be the same as in the Landau
theory, something impossible in a small vicinity of the
A point.

At first glance both ny and pg can be used with equal
success as the ordering parameters. However, the real
long-range order is characterized by the quantity ¥
(or vnp ) corresponding to the critical index 8. In the
theory of scale transformations, as shown, the meas-
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Table V. Certain calculated and experimental data

Calculations [4’5'23] B Experiment
Heisenberg
2-Ising 3-Ising Pziio%_el Iron Nickel| Argon Xenon
(v <0
0—0.25
-3 0 A 0(:>>0) =023 <0.25%8 <0.228
(t>0)
—0.09—0.16
, 5/16  0.312 5
[§ 1/8 0.303—0. 308 0.440.22 0.352
Y 7/4 1.23—1.32 1.32—1.38 [ 1.334-0,428(1.37290.6+-0.230 1,340.23
] 15 5.20+0,15 4.228 4.4+0.48
v 1/4 1.059+0.006 | 1.08--0.04 ~1 81
B 1 0.6444-0.002

ured quantity pg is determined uniquely by the behavior
of the specific heat.

7. CALCULATED AND EXPERIMENTAL DATA

Table V gives a certain idea of the critical indices
obtained by numerical calculation for mathematical
models (with the exception of the plane Ising model)
and the data obtained from experiment for a number of
substances. The data are far from complete. It can be
verified that the relations between the critical indices
are satisfied sufficiently well.

8. CONCLUSION

It is natural to raise the following question: What is
the relation between the classical theory of the self-
consistent field and the theory of similarity of phase
transitions ? A full answer to this question can be ob-
tained only after constructing a microscopic theory. It
is possible, however, to find a criterion for the appli-
cability of the theory of the self-consistent field. V. L.
Ginzburg™? proposed the following criterion: The
theory of the self-consistent field is applicable if the
fluctuations of the ordering parameter in a region hav-
ing dimensions of the order of the correlation radius
are much smaller than its mean value. The parameters
of the theory are expressed in terms of the character-
istics of the given substance. If all the coefficients
(of (vn)?, 7% and 711 %) are of the order of the atomic
constants, then the Ginzburg condition can only be
72> 1. It is clear that the existence of a region in which
7 < 1 and the Ginzburg condition is satisfied nonethe-
less imposes certain conditions on the parameters of
the substance. Therefore for certain substances there
exists a region of applicability of the self-consistent
field theory, and for others it does not exist. The former
include superconductors (see also®®**!) quartz, and
ferroelectrics, and the latter include helium and iron.

Vaks, Larkin, and Pikin®®' constructed a micro-
scopic theory of ferroelectrics, in which there is a reg-
ion of applicability of the Landau theory. It turned out
to be sufficient to have the radius of the interaction for-
ces exceed the atomic constant. Another possibility,
first indicated by Anderson™®’ is that the long waves of
the optical branch in crystals become unstable at a cer-
tain temperature, and a unique Bose condensation of the
phonons occurs. The region of instability is assumed
small in this case (see®’ for details).

In all cases when the region of applicability of the

classical theory exists, there is another region, suffi-
ciently close to T, where it becomes inapplicable. It
can be assumed that the growth of the fluctuations in this
region leads to the similarity picture described in the
present review.

The question of whether all phase transitions can be
described by the same critical indices (in other words,
the role of the interaction in microscopic scales), has
not been resolved.
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