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INTRODUCTION

OYNCHROTRON radiation has been discussed in the
literature for many years, and the corresponding for-
mulas are extensively used, especially in astrophysics
(see, e.g., ll> 2 ]) . It is all the more surprising that new
aspects have been clarified in recent times in this
field. Moreover, it turned out that many articles con-
tain and make partial use of incorrect or inaccurate
formulas. This pertains to the radiation of particles
moving in a magnetic field not along a circle, but along
a helix (in other words, particles moving with a veloc-
ity v at an angle 6 * TT/2 to the magnetic field H). To
be specific, the formulas obtained in rather well known
papers,1-3"52 for the intensity of synchrotron radiation
of one electron moving at an angle 0 + Till are incor-
rectly interpreted and are simply speaking untrue. At
the same time, the expressions for the intensity of the
synchrotron radiation from an ensemble of particles,
used in radioastronomy (see C 1 '2 ]), are based precisely
on these formulas for the intensity of radiation of an
individual electron. Fortunately, this inaccuracy* of
the initial formulas does not come into play when deal-
ing with the radiation intensity of a system of electrons
situated in a fixed region (e.g., a supernova shell).
Therefore, all the applications of the formulas of the
synchrotron radiation theory in [ l»2 ] and in a few other
articles turned out to be correct. However, in the case
of synchrotron radiation from a cloud of relativistic
electrons exploding from a certain source and moving
likewise with relativistic velocity, the use of some of
the formulas contained in [ l ' 2 1 would lead to consider-
able errors .

The purpose of the present article is, first, to cast
light on this question of synchrotron radiation in the
case of helical motion, a question of both practical and
methodological significance. Second, we shall discuss
the problem of reabsorption of synchrotron radiation,

*This circumstance (the incorrectness or inaccuracy of certain ex-
pressions when 0 =£ 7r/2, was pointed out, in so far as we know, by others
(V. A. Razin, E. G. Mychelkin, G. B. Field, and J. Skargle). In addition a
number of articles contain correct general formulas for the radiation of
single particles [6 '7 ], but these formulas were not explicity employed ot
interpreted for the ultrarelativistic case.

which recently has been attracting much attention (es-
pecially in connection with discussions of radio emis-
sion from quasars).1-8"101 At the same time, in C1> 2]

this question was not discussed in sufficient detail. In
the present article we consider it advisable to include
also a section (6) devoted to the motion of particles in
a magnetic field in the presence of losses, and, simul-
taneously, with allowance for their interaction with the
source that produces the field (e.g., with a "solenoid").
We do not obtain here any unexpected results, but from
the methodological point of view the problem is of un-
disputed interest. It can possibly turn out to be also of
practical importance when dealing with radiation from
an ensemble of particles with sufficiently high energy
density.

1. ELEMENTARY ANALYSIS OF RADIATION OF A
CHARGE MOVING ALONG A HELIX

An ultrarelativistic electron moving in vacuum*
(this is essentially the only case of interest to us)
emits practically only in the direction of its instan-
taneous velocity or, more accurately, in a cone with
an apex angle

E » me*. (l.D

In the qualitative analysis that follows we assume,
where possible, that the radiation is needle-like, i.e.,
the angle $ is arbitrarily small. When an electron
moves in a constant and homogeneous magnetic field
of intensity H, its trajectory is, generally speaking,
helical and its velocity is vn = v cos 6 along the field
and vi = v sin 6 across the field (of course, the total
velocity is v = Vv̂  + Vj_). The revolution frequency WJJ
depends only on v and is equal to

eH -./, i>» eH me'
" me v c£ me a (1.2)

*For concreteness, we refer to electrons. Of course, all the expres-
sions presented below pertain to all particles with charge e and rest mass
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If the motion is along a circle (i.e., vn =0, Vx = v) then,
by virtue of the foregoing, the ultrarelativistic electron
radiates only in the plane of the orbit. An observer
(recording instrument) located in this plane will " s e e "
flashes of radiation at those instants when the electron
moves precisely in the direction of the observer (it is,
of course, necessary to take into account the delay due
to the propagation time of the radiation, which in the
case of vacuum is equal to r / c , where r is the dis-
tance from the electron to the observer). Obviously,
the flashes will repeat each period, or, in other words,
they will follow each other at intervals

_ 2« _ 2nmc E
(i>H ~~ eH me2

As shown in detail in c l ' 2 ] , under condition (1.1) the
characteristic duration of each flash is of the order of

and the observer records the field shown schematical-
ly in Fig. 1. It is clear that an expansion of this field
in a Fourier series leads to a spectrum consisting of
overtones of frequency WH- All the corresponding ex-
pressions given in [ I"5] for the field, intensity, and
other quantities are valid for this case and there is no
reason to discuss them here.* On the other hand, as
already mentioned, the formulas are incorrect for non-
circular motion when the longitudinal velocity v,.

FIG. 2.

= v cos 9*0, i.e., when 9 * it/2. The source of the er-
ror is seen particularly clearly from the initial ex-
pression (see, e.g., the article IS1) for the intensity of
the radiation field, which is written in the form

« = He ( | ft,,-'"*'). (1.3)

The point is that when vn *0, the radiation pulses fol-
low each other not at intervals T = 2TT/WH, but at inter-
vals T* that differ from T as a result of the Doppler
effect.

The time T* can be readily obtained in elementary
fashion by using Fig. 2. For a selected observer, the
flashes of radiation occur when the electron is situated
at the points A, B, C, ... (for simplicity we assume
here and below that the radiation is strictly needle-
like). In other words, it is precisely at these points
that the electron "looks" on the observer. The time
interval between the instants when the electron passes
through the points A and B is, of course, equal to the
period T = 2JT/WJJ. The distance between the points A
and B is vM r = vr cos 9 (6—angle between v and H),
and a pulse emitted at the point A will cover during
that time the path CT. It is clear from Fig. 2 that the
pulse emitted at the point B will reach the observer at
a time

\ c
(1.4)

after the first pulse, where on going over to the next-
to-the-last expression we took into account the fact
that the entire calculation is carried out for the limit-
ing case v —• c. We note that this picture, in which the
radiation reaches the observer in the form of indivi-
dual pulses, is suitable only if 9 »ip ~mc/E . Actually,
however, the expression

is general and it is connected neither with the assump-
tion that the radiation is "needle-like" nor with the
possibility of subdividing it into discrete pulses (in this
case V|| cos 9 is replaced by v|( cos 9'; see Sec. 3).

Thus, the radiation field of an ultrarelativistic elec-
tron consists in the wave zone of overtones of the fre-
quency

^" = ̂  = -M»- (1.5)

This circumstance in itself is not very significant, if it
is recognized that in the cases of interest to us the
overtones are not resolved and we are dealing with a
continuous spectrum. On the other hand, the estimate
given in [ 1 '21 for the pulse width

{ E ) '

*Radiation in the case of circular motion was considered in detail
inf" ] .

meaning also for the characteristic frequency o)m
~ I/At, is perfectly correct (here and below, Hx
= H sin 9). However, the change of the interval between
pulses affects not only the spectrum but also all the
characteristics of the radiation field, particularly its
intensity as recorded at the observation point. Indeed,
let the electron lose to the radiation during each revo-
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lution (within a time T = 2ir/cojj) a n energy AE = PT .
Then, by virtue of the foregoing, it is obvious that this
energy is reached by "observers" located on a certain
fixed sphere at a distance r from the electron within
a time T* and, consequently, the average observed ra-
diation power (the total energy flux) is

p« _ AE _ PT _ P ,, fiv

At first glance it may seem that this contradicts some-
how the energy conservation law. The electron loses
an energy P per unit time (the value of P is deter-
mined by a well known formula, for example, formula
(2.10) of C2] and formula (4.1) below. This entire ener-
gy goes over into radiation and it might seem that it
should be equal to the total flux of radiation through
the sphere under consideration. This indeed is the f re -
quent procedure—the radiation loss experienced by the
particle is calculated and is equated to the total radia-
tion flux. In the stationary case, for a radiator whose
center of gravity is fixed, it is of course possible to
proceed in this manner. In general, however, as is
well known, the work performed by a radiator per unit
time (the power loss P) is equal to the total energy
flux through a certain surface plus the change in the
field energy

\ 8.t~i

FIG. 3.

duced when a particle passes through a plate (Fig. 3).
For simplicity we assume that the medium is nondis -
persive. In other words, we confine ourselves to the
frequency region for which the dispersion is small, so
that the group velocity of the light is equal to the phase
velocity c/n. The energy lost to Cerenkov radiation in
the frequency region under consideration per unit path,
will be denoted by (dE/dx)c. The particle with velocity
v will pass through a plate of thickness d within a
time t = d/v, losing thereby an energy (dE/dx)cd. The
loss per unit time is

dV

in the volume enclosed by this surface. In the case of
interest to us, the region of space occupied by the ra-
diation and located between the moving electron and a
fixed surface in space, on which the observations are
performed, decreases ail the time. Therefore the en-
ergy contained in this region also decreases, and con-
sequently the power P* of the received radiation ex-
ceeds the power loss P. Yet, for example, in c41, on
going over to spectral quantities, they used the loss
power P. Such an approach, of course, can not lead to
correct results for the radiation intensity determined
at a certain fixed surface when account is taken of the
displacement of the radiator. At the same time, if the
radiating particles are in a fixed volume (e.g., in a
supernova shell) or, more accurately, if the distribu-
tion function of the radiating particles does not vary
with time, the radiation intensity of the ensemble of
particles coincides with the spectral loss power. This
conclusion is clear from the energy conservation law
and, of course, is confirmed by direct calculation (see
Sec. 4).

This is the gist of the matter. We propose that the
fact that this entire essentially elementary question
remained unexplained for so long a time justifies our
attempts to present a sufficiently detailed exposition
in the present article.

2. CERENKOV RADIATION OF A PARTICLE PASS-
ING THROUGH A PLATE (LAYER OF MATTER)

The foregoing remark, namely that the total radia-
tion flux of a moving or in general nonstationary
source does not coincide with the energy loss per unit
time, is, of course, quite general in character. By way
of illustration let us stop to discuss, besides synchro-
tron radiation, also the flux of Cerenkov radiation pro-

The particle starts radiating on entering the plate (at
the instant t = 0) and radiates during the entire time
t = d/v until it leaves the plate. The radiation in this
case is on the surface of a cone with apex angle u — 28,
where cos 0 = c/nv (we neglect dispersion). It is clear
from Fig. 3 that the light begins to emerge from the
plate at an instant t = d/v, and the flash terminates
when the point A (rear end of the cone, emitted at the
instant t = 0) will reach the point B. Obviously,

and

cose

Hence

cos 9

and the duration of the flash of Cerenkov radiation on
the surface PB is*

cosfl-c/n
B ' (2.1)

since d = vt and cos 9 = c/nv. Consequently, the total
flash radiation flux through the surface of the plate is

(dE/dx^d (2.2)
t tgs e tg*e

where P is the energy loss per unit time, neglecting

*The question of the duration of the Cerenkov flash, particularly,
as applied to Cerenkov counters, is considered in [12].
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reflection from the surface of the plate (coated optics).
Thus, the total flux, generally speaking, is not equal to
the energy loss per unit time and in this case depends
significantly on the orientation of the chosen surface.

3. SYNCHROTRON RADIATION OF AN INDIVIDUAL
PARTICLE MOVING AT AN ARBITRARY ANGLE
TO THE FIELD

We choose a system of coordinates in accordance
with Fig. 4 such that the axis e3 is directed along the
external magnetic field, H = He3. The particle with
charge e moves in the field H on the trajectory

~- { — e, cos aHt + e2 sin coHt} + e

= Px {ei sin aHt + e2 cos <oHt} + e,

(3.1)

Here /3 is the velocity of the particle in units of the
velocity of light c, /3(| and /3± are its projections in the
direction of the field and in the transverse direction,
and WH is given by (1.2). For a negatively charged
particle WJJ < 0, Fig. 4 shows the trajectory of a nega-
tively charged particle (say an electron).

At large distances from the particle, in the wave
zone, the Fourier components of the vector potential
and of the intensity of the electric field of the particle
are respectively equal to (see cl3:l, Sec. 66)

{o)l--2-kro(!)(dt,

where k is a unit vector in the radiation direction (in
the direction from the particle to the observer),
r = rk, and r is the distance between the observer and
the position of the electron at a certain fixed instant of
time; we assume that the vector k lies in the plane
(e2, e3) and makes an angle 9' with the direction of the
magnetic field, i.e., k = {0, k2, k3} = {0, sin 0'cos 9'}.
We recall that the angle between v and H is denoted 9
(see Fig. 4).

As follows from (3.2), the expression for %u con-
tains only the velocity component transverse to the ra -
diation direction

P, = p - k (pk) = e,Px sin (oHt + (e2k3—e3k2) (|3j_ k3cos wHt — $nk2).
(3.3)

It is convenient to introduce a triad of unit vectors
lj , 12, k such that

h = e3A-2 - e2k3, lj = [l2k] = - e,. (3.4)

The vector 12 is directed along the projection of H on
the plane perpendicular to the direction of the obser-
ver (the plane of the picture), i.e., along the vector
e3 - k(e3 • k).

From (3.2)-(3.4) we get

FIG. 4.

To calculate the integral (3.5), we note that the ar-
gument of the exponential in the integrand of (3.5) is
equal to (see (3.1))

at — — kr0 (t) = (1 — P, k3) at — z sin (oat.
where

Further, we use the formula

Jn(z)e-inaB\

(3.7)

(3.8)

(3.9)

where Jn(z) is a Bessel function of the first kind.
The integration with respect to t leads to the ap-

pearance of the functions:

Thus, the radiation has a discrete spectrum with fre-
quencies

1 — Pcos8cos6' ' (3.11)

In the ultrarelativistic case /3 — 1 and the radiation
is directed in practice along the instantaneous velocity
of the particle (see C13J, Sec. 72), i.e., the angle 9^9'
and

which agrees with (1.5).
The Fourier integral of the electric field of the

particle radiation reduces to the series

• = ^ » . e — • « - = « e ^ W - '• ( 3 - 1 2 )

w h e r e t h e a m p l i t u d e o f t h e n - t h h a r m o n i c o f t h e f i e l d

i s

where
P< (0 = — 'IPJ_ sin mH< — l

=kX [AuXkJ.

(3.6)
and

3 sinfl sin 0'

(3.13)

(3.14)" 1— p cos 0 cos 0' '

E x p r e s s i o n ( 3 . 1 2 ) - ( 3 . 1 4 ) d e t e r m i n e c o m p l e t e l y t h e
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radiation field produced at a certain sufficiently re -
mote point of space by a particle moving at an arbi-
trary angle to the magnetic field. It will be convenient
in what follows to use the "radiation polarization ten-
sor ," equal by definition to

w h e r e a , ( 3 = 1 , 2 , a n d t n a a r e t h e c o m p o n e n t s o f

t h e e l e c t r i c v e c t o r ( 3 . 1 3 ) . ' T h e e n e r g y f l u x d e n s i t y

a v e r a g e d o v e r t h e p e r i o d ( t h e P o y n t i n g v e c t o r ) i n t h e

n - t h h a r m o n i c i s

( » ) = ^ I S » I
2

- ( 3 . 1 6 )

For ultrarelativistic particles

and the principal role is assumed by radiation at high
3harmonics n

angle
£~3 » 1, concentrated within the small

(3.18)

The characteristic frequencies of the radiation (see
(1.5) or (3.11)) at (3 » 1 and 0 « 0 ' are

To go to the ultrarelativistic limit in (3.13), we can
use the approximate expression for Bessel functions
with large values of the index and argument (see cl4],
p. 979). This leads to the following expression for the
amplitude of the n-th harmonic of the electric field of
radiation from an ultrarelativistic electron*

+ V) K,,, (gn

(3.20)
where

In the second equation of (3.21) we changed over from
the number of the harmonic n to the frequency v (see
(3.19)) and used the notation

3wjfSin_6 __ E \ 2 (3.22)

In the region of high harmonics, the radiation spec-
trum is practically continuous and in place of the po-
larization tensor of the radiation at the n -th harmonic
(3.15) it is possible to introduce the "spectral density
of the polarization tensor":

P a B = P a B ( n ) - ^ = ( « ) • ( 3 . 2 3 )

" H e r e a n d t h r o u g h o u t w e s h a l l a s s u m e t h a t C O J J > 0 a n d , a c c o r d -

i n g l y , c j n > i n ( 3 . 1 2 ) . A c h a n g e i n t h e s i g n o f t h e c h a r g e e w i l l c o r r e -

s p o n d t o a t r a n s i t i o n t o t h e c o m p l e x - c o n j u g a t e a m p l i t u d e i n ( 3 . 1 3 ) , a s

i n s e e n f r o m ( 3 . 1 2 ) i f — c o n i s r e p l a c e d b y C J n . F o r e x a m p l e f o r a p o s i -

t i v e l y c h a r g e d p a r t i c l e ( p o s i t r o n ) , t h e a m p l i t u d e i s t h e c o m p l e x c o n j u -

g a t e o f ( 3 . 2 0 ) , c o r r e s p o n d i n g t o a n o p p o s i t e d i r e c t i o n o f t h e e l e c t r i c -

v e c t o r r o t a t i o n .

From this and from (3.15) and (3.20) we obtain the
spectral density of the radiation fluxes with two prin-
cipal polarization directions:

^ - ^ M - ^ ^ W l ^ H ^ + f ) 2 ^ ^ ) . (3-24)

r U r ) f r O + T r p U i T v ) , ( 3 . 2 5 )

w h e r e g v = g n ( s e e ( 3 . 2 1 ) ) .

W e n o t e h e r e t h a t f o r m u l a s ( 3 . 1 7 ) - ( 3 . 2 5 ) c a n b e

e a s i l y g e n e r a l i z e d t o i n c l u d e t h e c a s e w h e n t h e r a d i -

a t i n g p a r t i c l e i s i n a p l a s m a w h o s e r e f r a c t i v e i n d e x

c a n b e a s s u m e d e q u a l , w i t h g o o d a p p r o x i m a t i o n , t o

( 3 . 1 7 ) w h e r e w 0 = V 4 i r N o e
a

/ m a n d N o i s t h e p l a s m a e l e c t r o n

d e n s i t y . T h i s a p p r o x i m a t i o n i s v a l i d i f u > » w 0 a n d

w » W J J = e H / m c . U n d e r t h e s e c o n d i t i o n s , i t i s n e c e s -

s a r y t o r e p l a c e t h e q u a n t i t y £ i n f o r m u l a s ( 3 . 1 7 ) - ( 3 . 2 5 )

i n t h o s e p l a c e s w h e r e i t e n t e r s e x p l i c i t l y , b y

A s i s c l e a r f r o m t h e f o r e g o i n g , i t i s a s s u m e d h e r e t h a t

7 ] « 1 .

E x p r e s s i o n s ( 3 . 2 4 ) a n d ( 3 . 2 5 ) , a n d a c c o r d i n g l y t h e

S t o k e s p a r a m e t e r s o f t h e r a d i a t i o n o f a n i n d i v i d u a l

e l e c t r o n , d i f f e r f r o m t h o s e u s e d i n C 1 ~ 5 ] i n t h a t a f a c -

t o r s i n 2 0 a p p e a r s i n t h e d e n o m i n a t o r . I t i s p r e c i s e l y

i n t h i s r e s p e c t t h a t t h e e x p r e s s i o n s g i v e n i n t l ~ 5 3 f o r

t h e i n t e n s i t y a n d f o r t h e S t o k e s p a r a m e t e r s a r e i n c o r -

r e c t i f o n e d e a l s w i t h r a d i a t i o n o f a n i n d i v i d u a l p a r t i -

c l e o r a n e n s e m b l e o f p a r t i c l e s m o v i n g i n s p a c e .

O n t h e o t h e r h a n d , i f , a s i s c u s t o m a r y , w e a r e i n -

t e r e s t e d i n r a d i a t i o n f r o m p a r t i c l e s i n a f i x e d v o l u m e

i n s p a c e , t h e n i t i s n e c e s s a r y t o u s e t h e e x p r e s s i o n s o f

t l " 5 ] . W e n o w p r o c e e d t o c o n s i d e r t h i s q u e s t i o n .

4 . R A D I A T I O N O F A S Y S T E M O F P A R T I C L E S

I f w e c a l c u l a t e w i t h t h e a i d o f ( 3 . 2 4 ) a n d ( 3 . 2 5 ) t h e

t o t a l f l u x o f t h e e n e r g y r a d i a t e d t h r o u g h a f i x e d s u r -

f a c e , i . e . , w e c a l c u l a t e t h e i n t e g r a l o f t h e f l u x d e n s i t y

o v e r a l l f r e q u e n c i e s a n d a l l d i r e c t i o n s , t h e n i t t u r n s

o u t t o b e l a r g e r b y a f a c t o r 1 / s i n
2
 0 t h a n t h e w e l l -

k n o w n e x p r e s s i o n f o r t h e e n e r g y l o s s o f a n u l t r a r e l a -

t i v i s t i c p a r t i c l e

n „ dE

A s a l r e a d y i n d i c a t e d i n S e c . 1 , t h i s d i f f e r e n c e i s d u e

t o t h e n o n s t a t i o n a r y n a t u r e o f t h e r a d i a t i o n f i e l d ,

n a m e l y , t h e t o t a l e n e r g y f l u x t h r o u g h a f i x e d s u r f a c e

P * = < 6 p d S = P — — { % 2 + H 1 a y ( 4 2 )

«j at .] o n * -»•»«/

i s d e t e r m i n e d n o t o n l y b y t h e w o r k P p e r f o r m e d b y

t h e p a r t i c l e , b u t a l s o b y t h e c h a n g e i n t h e e n e r g y o f t h e

f i e l d i n a v o l u m e V b o u n d e d b y t h e s u r f a c e S . T h e

c h a n g e o f t h e e n e r g y o f t h e f i e l d i s c o n n e c t e d , o b v i -

o u s l y , w i t h t h e t r a n s l a t i o n a l m o t i o n o f t h e p a r t i c l e a n d

b e c o m e s a p p r e c i a b l e w h e n t h e v e l o c i t y o f t h e t r a n s l a -

t i o n a l m o t i o n o f t h e p a r t i c l e i s c o m p a r a b l e w i t h t h e v e -

l o c i t y o f l i g h t .
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FIG. 5.

Actually, this result is the consequence of the r e -
tardation due to the finite velocity of propagation of the
electromagnetic field. In fact, let us consider the radi-
ation of an individual electron crossing a volume ele-
ment r2drdfi at a distance r from the observer
(Fig. 5). The electron is in the volume element under
consideration during a time dt' = d r /v r , where v r is
the projection of the average velocity of the trans la -
tional motion of the particles vH in the direction of the
observer. Obviously, v r = v,| cos 6' = v cos 6 cos 9'.
If r(t) is the variable distance from the particle, then
the instant of observation t is connected with the in-
stant of radiation t ' by the relation t = t ' + r(t ')/c (we
are considering radiation in vacuum). Therefore the
radiation emitted by the electron within a time dt',
corresponding to a displacement dr, will be received
by the observer after a time

dt --- < (4.3)

It follows therefore that the energy radiated after a
time dt' and passing through a unit surface at the
point of observation after a time dt is equal to

where p"j, = p^1' + p'^' (see (3.24) and (3.25)), and pv is
given by

l - i - ) =pv (l —f (4.5)

As follows from (4.4), this quantity pj, has the mean-
ing of the energy flux density radiated by the electron
per unit time. It is easy to verify that the integral of
pu over all the frequencies and radiation directions
leads to a correct expression for the energy loss (i.e.,
in the ultrarelativistic case, to the expression (4.1)).

Thus, relation (4.5) establishes the connection be-
tween the observed flux p^ of the radiation and the
"power" pu radiated by the electron. Obviously, a
similar relation holds for all the components of the ra-
diation polarization tensor (see (3.15) and (3.23)):

(l -ycosecosfl'j . (4.6)

In the ultrarelativistic case (v =* c, 9 =a 9') we get
therefore

We shall now show that if we are dealing with radi-
ation of particles from a fixed volume, then it is neces-

sary to use precisely the quantity pap{v). Actually
this is clear already from (4.4), since the relation
(4.4) shows precisely that the energy received by the
observer from the trajectory segment dr is deter-
mined by the value of pv and by the time dt' = d r /v r
required for the electron to traverse this segment. Let
us consider this question in somewhat greater detail,
in order to obtain expressions for the intensity and
other Stokes parameters.

Assume that we are interested in the radiation in-
tensity of an ensemble of particles whose distribution
function is N(E, T, r, t). By definition, the quantity
N(E, T, r, t)dEdS2rdV is equal to the number of parti-
cles with energies in the interval E, E + dE and with
velocity directions within the limits of the solid angle
dS2T, contained at the instant t in a volume element
dV = r2drdl2.

The number of particles falling into the volume ele-
ment under consideration (see Fig. 5) is

vrN{E, T, r, 1~Y) dEdQxr*dQ;

here t is the instant of observation and t — r / c is the
instant of emission from a fixed point of space. Each
particle radiates from the volume element under con-
sideration an energy (see (4.4))

As a result, the total flux of the received radiation is

-fv = ̂ pvA
r(£, T, r, t-y)r*drdQdEdQr, (4.8)

and radiation intensity is

"35s (4.9)

Similar expressions hold, obviously, for all the com-
ponents of the tensor

< * » - • » • < " »

where I, Q, U, and V are the Stokes parameters of
the received radiation. Namely,

/as (v) = I Pas M N [E, T, r, t - f ) /•« dr dE dQT. (4,11)

For a stationary distribution function, under condi-
tions when N(E, T, r, t)= N(E, T, r) , expressions (4.8)-
(4.11) coincide with those given in c l ' 2 : and earlier
in [15J.

On the other hand, if we consider an ensemble
(cloud) of moving particles, then the observed inten-
sity Ij, (or the flux Fj,) is determined essentially by
the dependence of the distribution function on the time.
In particular, for an individual electron
N(E,T, r, t —r/c) ~ 5(r + vr(t —r/c)) and as a result
of integration with respect to r in (4.8) we obtain

(4.12)

as should be the case according to (3.24) and (3.25).
Let us assume now that we are dealing with a sta-

tionary "cloud" of particles moving as a unit with a
velocity V and a velocity projection Vr in the direc-
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tion of the observer. This means that in (X.9) we have
N(E,T,r,t) = N0(E,T,r -Vt ) .* The intensity of the r a -
diation from such a cloud is

where

, t,

i s t h e r a d i a t i o n p o w e r (the e n e r g y l o s t t o r a d i a t i o n p e r
u n i t t i m e ) .

5. REABSORPTION OF RADIATION OF
ULTRARELATIVISTIC PARTICLES

If t h e n u m b e r of t he r a d i a t i n g p a r t i c l e s a l o n g t h e
l ine of s i g h t i s su f f i c i en t ly l a r g e , t h e n a b s o r p t i o n a n d
s t i m u l a t e d e m i s s i o n of s y n c h r o t r o n r a d i a t i o n b y the
r e l a t i v i s t i c e l e c t r o n s t h e m s e l v e s c o m e s in to p l a y .
T h i s p r o c e s s i s u s u a l l y c a l l e d r e a b s o r p t i o n . R e a b -
s o r p t i o n c a n , in p r i n c i p l e , g r e a t l y c h a n g e t h e i n t e n s i t y
u n d e r t h e p o l a r i z a t i o n of t h e r a d i a t i o n . M o r e o v e r , u n -
d e r c e r t a i n cond i t i ons nega t i ve r e a b s o r p t i o n i s p o s s i -
b l e , i . e . , a n i n t e n s i f i c a t i o n of t h e r a d i a t i o n . [ 9 > 1 0 1 T h i s
m e a n s t h a t t h e s y s t e m of r a d i a t i n g e l e c t r o n s a c t s l ike
a m a s e r .

Zheleznyakov, 1 - 8 3 a s w e l l a s e a r l i e r i n v e s t i g a t o r s of
r e a b s o r p t i o n ( s e e c l » 2 : i a n d the l i t e r a t u r e c i t e d t h e r e i n )
u s e d for t h e r a d i a t i o n i n t e n s i t y of t he i nd iv idua l p a r t i -
c l e s e x p r e s s i o n s a v e r a g e d o v e r a l l t h e d i r e c t i o n s . T h e
c o n d i t i o n s fo r t h e a p p l i c a b i l i t y a n d t h e v e r y f e a s i b i l i t y
of s u c h a n a p p r o a c h a r e no t c l e a r b e f o r e h a n d . I t suf-
f i c e s t o s a y t h a t t he r a d i a t i o n h a s a f in i te a n g u l a r d i s -
t r i b u t i o n , a n d the p o l a r i z a t i o n p r o p e r t i e s of t h e r a d i a -
t i o n depend s i gn i f i c an t l y on t h e ang l e ip =6-9' b e -
t w e e n t h e d i r e c t i o n of t h e v e l o c i t y a n d t h e r a d i a t i o n d i -
r e c t i o n ( s ee (3.24) a n d (3 .25)) . T h e r e f o r e in t h e s t u d y
of r e a b s o r p t i o n , a n d s p e c i a l l y n e g a t i v e r e a b s o r p t i o n ,
w i t h a l l o w a n c e fo r t h e p o l a r i z a t i o n of t h e r a d i a t i o n , a
m o r e r i g o r o u s a n a l y s i s i s r e q u i r e d of t h e a n g u l a r a n d
p o l a r i z a t i o n p r o p e r t i e s of t h e c y c l o t r o n r a d i a t i o n . W e
p r e s e n t be low t h e c o r r e s p o n d i n g r e s u l t s for s y n c h r o -
t r o n r a d i a t i o n of u l t r a r e l a t i v i s t i c p a r t i c l e s .

T h e m o s t c o m p l e t e c h a r a c t e r i s t i c of t he r a d i a t i o n
i s t h e t e n s o r lap(y) ( s ee (4.10)) . W i t h i n t h e l i m i t s of
a p p l i c a b i l i t y of g e o m e t r i c a l o p t i c s , u n d e r s t a t i o n a r y
c o n d i t i o n s , t h e t e n s o r I a j3 c a n b e o b t a i n e d f r o m t h e
r a d i a t i o n t r a n s p o r t e q u a t i o n s , t he f o r m of w h i c h i s

ar
(5.1)

Here

t, (5.2)

i s t h e e m i s s i v i t y p e r u n i t v o l u m e , i . e . , t h e p o w e r of
t h e s p o n t a n e o u s r a d i a t i o n p e r un i t v o l u m e in a un i t
s o l i d ang le a n d a un i t f r e q u e n c y i n t e r v a l , Rfflj3CTT i s
t h e r e a b s o r p t i o n t e n s o r , w h i c h t a k e s in to a c c o u n t t h e
a b s o r p t i o n a n d t h e s t i m u l a t e d e m i s s i o n of t he r e l a t i v i s -

*For simplicity, we use here a velocity averaged over the period of
the motion, i.e., the velocity v||. In this connection, N(E, r, T, t) should
be taken to mean the average over the period, by virtue of which the
dependence of N on r reduces to a dependence on the angle 0 only.

tic electrons, and also the absorption and the change of
polarization in the medium, if the latter is present. In
the case when the radiating electrons are in a nonrela-
tivistic plasma, we assume that the refractive index is
n = 1 - o4 /2w2 and the condition 77 = V|2 + (uo/w)2 « 1
is satisfied (see (3.26)).

Calculation of the tensor Rafior was undertaken in
C7] for a medium with refractive index n = 1, but with
allowance for the Faraday rotation of the plane of po-
larization. In that paper, however, the probability of
spontaneous emission per unit volume was determined
incorrectly (and consequently the emissivity %a^\ see
(5.2)). Namely, it was calculated using not p ^ but
paj3 (see Sec. 4).

The tensor Rafjar w a s calculated for synchrotron
radiation of ultrarelativistic electrons in cl6]. In the
case of an isotropic distribution function* N(E, T, r)
= N(E, r), the components of the tensor R ^ g x , r e -
ferred to the axes \x and 12 (see (3.4)) are equal tot

#1112 = #2111 = #2212 = #2122 = — #1121 = — #1211 = — #2221 — #1222 —

-*M2i2 — **212i —"

(5.3)
The integrals with respect to dO = 2ff sin 6 de

as 2u sin 6 di/), contained in (5.3), are equal to
(i/i = 6 - 9'; only small ip are significant, by virtue of
which it is possible to put in the final expressions
8' = 6)

£ M £ ) ]

where
3 sin 8 a>K

An Tj3
(5.5)

*A11 that is actually needed is that when T changes the distribution
function N(E, T,r) change little in directions that are close to the obser-
vation direction k. Specifically, expressions (5.3) for R m l and R2222
remain approximately valid also for an anisotropic distribution func-
tion, if the condition dN/BĜ T}"2 N is satisfied. Compared with Rul l
and R2222, the coefficients Rm2 = R2ln = . . .. etc. are of the order of
magnitude of ?j(see (5.4) and (5.5) below), but depend significantly on
the degree of anisotropy of the distribution function. Therefore, for an
anisotropic distribution function, the expressions (5.3) can be used to
calculate the coefficients only if 9N/30^N. Under the conditions, it is
necessary to take N(E, r) in (5.3) to mean the function N(E, T, r) atr=k.

•f The tensor Ropar was calculated in [16] by the kinetic-equation
method. This can be done also by the method of Einstein coefficients
(see, in particular, [7 ]) . It is significant here that an electron moving in a
magnetic field with specified E and 0 radiates a wave with definite po-
larization (generally elliptical) in a given direction and at a given fre-
quency. The electron in question will absorb or intensify only waves
having the polarization that it can emit (this conclusion is particularly
clear from quantum theory, inasmuch as the probabilities of the spon-
taneous emission, absorption, and stimulated emission are proportional
to the square of the modulus of the same matrix element).
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and it is assumed that 8 » r\ and 8 » vr — r\ (when
n = 1, obviously 77 = £, and expression (5.5) coincides
with (3.22)).

In the integration with respect to the energy E in
(5.2) and (5.3), it is significant that for large values of
v/vc the expressions (5.4) are exponentially small. On
the other hand,

o • [•§-)

where
, 2nv (5.7)

Therefore in the integrals of (5.2) and (5.3) the only
significant energy region is Ei < E < E2, for which

\c(Et)
?? ' VC(,ES)?? ' ' ^ • ° ^ 2' ( 5 . 8 )

T h e b e h a v i o r of t h e e n e r g y s p e c t r u m of t h e e l e c t r o n s

o u t s i d e t h e i n t e g r a l ( 5 . 8 ) h a s l i t t l e e f f e c t o n t h e m a g n i -

t u d e of t h e i n t e g r a l s ( 5 . 2 ) a n d ( 5 . 3 ) . T h u s , if t h e e l e c -

t r o n s p e c t r u m i s s p e c i f i e d i n t h e e n e r g y i n t e r v a l

( E i , E 2 ) a n d t h e c o n d i t i o n s ( 5 . 8 ) a r e s a t i s f i e d , t h e n t h e

i n t e g r a t i o n w i t h r e s p e c t t o d E c a n b e e x t e n d e d t o t h e

e n t i r e e n e r g y i n t e r v a l .

W e n o t e t h a t t h e f i r s t o f t h e c o n d i t i o n s ( 5 . 8 ) i s i n

f a c t i n d e p e n d e n t of t h e p r e s e n c e of t h e p l a s m a . I n d e e d ,

An mcv
vc (£,) 3 sin I

f ^ - ) 2 f o r £ , « £ „ . (5.9)

To the contrary, the second condition of (5.8) depends
significantly on the plasma density:

-^dr f o r £ , » £ „ . (5.10)

The conditions under which it is possible to extend the
integration over the entire energy interval in a total
absence of plasma are indicated in C1»2].

We shall assume that in the energy interval Ei < E
< E2 the differential energy spectrum of the electrons
can be approximated by the function

) = ̂ i{^-Y^^-KeE-y. (5.11)
' me' \ E J in '

In the isotropic case, obviously, KeE"ydE is the den-
sity of the particles with energy in the interval
E, E + dE. Substituting (5.11) in (5.2) and (5.3) we ob-
tain, for example,

similarly

(5.12)

(5.13)

H e r e Safj(y + 1) i s t h e e m i s s i v i t y ( 5 . 2 ) c a l c u l a t e d f o r

t h e e m i s s i v i t y s p e c t r u m ( 5 . 1 1 ) w i t h e x p o n e n t y + 1 i n

l i e u of y.

T h u s , t h e r e a b s o r p t i o n - t e n s o r c o m p o n e n t s f o r a

s y s t e m of e l e c t r o n s w i t h a s p e c t r a l e x p o n e n t y a r e e x -

p r e s s e d i n t e r m s of t h e c o m p o n e n t s o f t h e e m i s s i v i t y

t e n s o r %a$ c o r r e s p o n d i n g t o t h e s p e c t r a l e x p o n e n t

y + i .

The transport equation (5.1) can be rewritten in a
more illustrative form, introducing in lieu of lap the
Stokes-parameter column:*

(5.14)

(5.15)

In this notation, Eq. (5.1) takes the form

^-^St-RuSi (i, / = 1,2, 3, 4),

where %-x are the Stokes parameters corresponding to
the emissivity tensor:

(5.16)

a n d t h e r e a b s o r p t i o n - c o e f f i c i e n t m a t r i x Rj j i s

•II X p O N

1 (I 0 (I

P o p. o ; • ( 5 < 1 7 )

^0 0 0

where

'X (Y) - 4 (*im - -ff222

) = 2(/?m2 ,= - ^

(Y 4-1),

r (Y + 1). (5.18)

T h e v a n i s h i n g o f g | j a n d o f c e r t a i n c o m p o n e n t s o f t h e

m a t r i x R y i s c o n n e c t e d w i t h t h e c h o i c e o f t h e c o o r d i -

n a t e s y s t e m . W e u s e d f o r m u l a s ( 5 . 1 2 ) a n d ( 5 . 1 3 ) t o o b -

t a i n t h e l a s t e x p r e s s i o n s i n ( 5 . 1 8 ) .

L e t u s e x a m i n e c e r t a i n c o n s e q u e n c e s o f t h e o b t a i n e d

r e l a t i o n s . A c a s e f r e q u e n t l y o f i n t e r e s t i s o n e i n w h i c h

t h e d i r e c t i o n s o f t h e m a g n e t i c f i e l d a r e m o r e o r l e s s

u n i f o r m l y d i s t r i b u t e d a l o n g t h e l i n e o f s i g h t . F o r s u c h

a r a n d o m f i e l d , t h e t r a n s p o r t e q u a t i o n c a n b e a v e r a g e d

o v e r t h e f i e l d o r i e n t a t i o n s . W e n o t e t h a t t h e t e n s o r s

t a p a n d Ra/3oT w e r e c a l c u l a t e d a b o v e i n a s p e c i a l

c o o r d i n a t e s y s t e m , i n w h i c h t h e p r o j e c t i o n o f t h e m a g -

n e t i c f i e l d o n t h e p l a n e o f t h e f i g u r e w a s d i r e c t e d a l o n g

t h e 1 2 a x i s . T o g o o v e r t o a c e r t a i n f i x e d c o o r d i n a t e

s y s t e m , i n w h i c h t h e d i r e c t i o n o f t h e m a g n e t i c f i e l d i s

a r b i t r a r y , i t i s n e c e s s a r y t o u s e t h e t e n s o r p r o p e r t i e s

o f t h e q u a n t i t i e s $ap a n d R a ( g a T .

B y a v e r a g i n g E q . ( 5 . 1 ) o v e r t h e f i e l d d i r e c t i o n s a n d

c h a n g i n g t o t h e f o r m ( 5 . 1 5 ) i t i s e a s y t o o b t a i n t h e f o l -

l o w i n g r e l a t i o n s ( t h e b a r d e n o t e s a v e r a g i n g o v e r t h e

f i e l d d i r e c t i o n s ' 1 7 3 ) :

* „ = » . . r= w'., -^ n y _ r ^ o ( 5 . 1 9 )

(5.20)

(5.21)

The quantities S; do not form a vector with respect to rotations of
the axes 1 and 2 in the plane of the figure. The law of transformation
of the Sj is determined by their connection (4.10) with the components
of the tensor 1^.
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The conditions (5.19) denote that the intrinsic radiation
is completely depolarized, as should be the case in the
absence of a preferred direction. In this case

where H^ H sin 6,

(£ = 1,2,3,4). (5.22)

If we are interested in the intrinsic radiation of a
certain finite volume, then Eqs. (5.15) with the param-
eters (5.22) must be solved with the boundary condi-
tions Si = 0 on the far boundary of the volume of the
source (integration of Eq. (5.15) must be carried out
along the line of sight from the far boundary to the
near boundary of the source). A solution for a homo-
geneous source is, obviously,

r ii n I7l\ r\ rr T7 n C\ 9^1
I — , ̂  ;\—e~^l, Q = U — V ~ 0 \*J*&O/

where I is the length of the source along the line of
sight.

When y > — 2, the reabsorption coefficient p. is a l-
ways positive, corresponding to absorption (this is
clear from (5.21)). If the optical thickness of the
source is large, i.e., Jxl » 1, then I = gj/jj. and the
radiation emerges only from a narrow layer of_thick-
ness on the order of 1/jX. The expression for 8j/jl
determines the maximum possible intensity in the
case of positive reabsorption (jl< 0).

The necessary condition for negative reabsorption
(Jl < 0) is y < —2. This condition, however, is not yet
sufficient. For example, negative reabsorption is in
general impossible in vacuum.1-9'181 This does not con-
tradict expression (5.21), since expression (5.21) for a
power-law electron spectrum is suitable in vacuum
only when y > l/3 (see e23). The conditions for the reali-
zation of negative reabsorption, for which the presence
of a plasma is necessary, are discussed in c9 '10]. In
the case of negative reabsorption (jl < 0) at an optical
thickness \y.\l » 1 the intensity of the radiation is

and can be arbitrarily large within the framework of
the linear theory when I — <*>.

We emphasize here that the simple form (5.15) with
the coefficients (5.22) is assumed by the transport
equation only in the case of a random field and a suf-
ficiently smooth distribution of the electrons over the
directions (cf. first footnote on p. 40, right column).

In other cases, the transport equation must be used
in the general form (5.1) or (5.15), even when only the
change of I, the total radiation intensity, is investi-
gated. Therefore the simple concept of a single reab-
sorption coefficient can be used only in the isotropic
case corresponding to the absence of polarization. In
this case, after performing the necessary calculations
of the coefficient jl (see (5.21)), it is easy to verify
that for electrons in vacuum (refractive index of the
medium n = 1)

= 4- \v. (0) sin 9 d6 = g (y) ̂ L
Y+2 Y+4 (5.24)

The values of ^ and X for the homogeneous field are
V+4
2 (5.25)

l~4~J

• r a
\ 12 ) l \ 12 (5.26)

We present a table of the values of the coefficients
g(y) and g(y):

V

!(V)

1

0.96
0.69

2

0.70
0.47

3

0.65
0.40

4

0.69
0.44

5

0.83
0 46

Expression (5.25) coincides with that obtained in m by
using the method of Einstein coefficients for the aver -
aged radiation. The field was assumed here homogene-
ous, and in this case the single quantity n(0) does not
suffice to describe the radiation transport (see (5.17)).

If the field in the source is homogeneous, then al-
lowance for the polarization of the radiation is import-
ant also for the total intensity. This is understandable,
since, in general, all the Stokes parameters vary along
the line of sight, and consequently it is necessary to
consider all the components of Eqs. (5.15)-(5.17). Un-
der the conditions of interest to us it is possible, how-
ever, to use the fact[15] that for an electron angular
distribution that does not change too rapidly we have
g y / g j ~ T) « 1 and consequently p/p. ~ n« 1. Putting
in (5.15)—(5.17) §y = 0 and p = 0, we obtain two inde-
pendent systems of equations

± l \ -

dr \Q) ~

dr \U

(5.27)

(5.28)

If we consider the intrinsic radiation of the source,
then we can assume that all Sj_ = 0 on its far bound-
ary. Integrating (5.27) with this boundary condition, we
obtain at the "exit" from the source

'^ 2(l (5.29)

(7 = 0, V = 0.

Equations (5.29) have a simple meaning. If we use in
lieu of the Stokes parameters I and Q the parameters
I(1> = i u = (%)(! + Q) and I(2) = 1^ = (V2)(I - Q) and
analogous parameters for the emissivity g(1)

= (§1 + § Q ) / 2 and S(2) = (g t - gQ)/2, then (5.29) r e -
duces to

' ' " - • j n T l l - ' - ' " ^ " ! . /<•• = - & ! - « - < » - « < ! . (5.30)

It follows therefore that radiation intensities with two
principal polarizations behave independently. For the
intensity IU ) corresponding to polarization transverse
to the field projection on the plane of the figure, the
reabsorption coefficient is /j.^ = ju. + X, and for radia-
tion with polarization along the field projection (inten-
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sity I<2)) the reabsorption coefficient is /u r( = fi - A
(see (5.18) and (5.25)). For a thin layer, when |ju± A|Z
« 1, we have

(

If the reabsorption is positive, i.e., ju + A. > /i — A
> 0 (or, which is the same, n > A > 0), we get from
(5.30) at sufficiently large optical thickness (fi — A)Z

1» 1

(5.32)

In particular, for electrons with a power-law spec-
trum in vacuum we have l(1)/i(2) = (3 y + 5) / (3 y + 8) < 1
(see (5.18) and (5.25)), i.e., the radiation becomes po-
larized along the magnetic field. In this case the de-
gree of polarization decreases:*

—in,
V-r 13 n0 - v-tY + 7/3

Such a result is connected with the fact that for syn-
chrotron radiation the emissivity S(1) (polarization
transverse to the field) is larger than g<2), meaning
that the inverse process, absorption, is stronger for
waves with polarization (electric vector) directed
across the field. In the case of negative reabsorption
the picture is different. Thus, if /j. + v < 0 and A * 0,
it follows from (5.29) that at sufficiently large /

I /"] I I /"(I) 1(2) I T Til) i 1(2) FT A (C OO\

i.e., the radiation is completely linearly polarized per-
pendicular to the projection of the magnetic field on the
picture plane. This is the result of the large intensifi-
cation of the polarization that predominates in the
spontaneous emission. A strong linear polarization
(a 75%) can serve as an indication of an appreciable
role of negative reabsorption for the given source.

Another factor of importance in negative reabsorp-
tion may also be the dependence of the coefficients
(5.18) on the angle between the line of sight and the
magnetic field. If the field in the sources is homogene-
ous (but not fully random), then the emission will be
predominantly intensified in those directions in which
H is maximal, i.e., in the directions transverse to the
field. Therefore, at a large optical thickness, individ-
ual regions of the inhomogeneous source will have an
anomalously bright appearance. In other words, the
spatial fluctuations of the intensity in the source should
increase strongly.

Let us discuss, finally, the possibility of appearance
of a noticeable elliptical or circular polarization. If
we disregard the highly anisotropic electron velocity
distribution or the possible role of Faraday rotation of
the source, then there is no elliptic polarization, accu-
rate to terms of order 77.:15] Under cosmic conditions,
the existence of sharply anisotropic electron-velocity
distributions for a long time, such as would take place
for a particle beam, has low probability.cl9] Neverthe-
less, it is still possible as a sporadic phenomenon, and
can also be quasistationary in a sufficiently strong
magnetic field (not too dense a particle beam moving

along the magnetic field). Even easier to realize are
apparently conditions in which it is necessary to take
into account the Faraday rotation of the plane of polar-
ization or, more accurately, regard the plasma as
magnetoactive (the plasma was hitherto regarded as
isotropic, by virtue of which it was characterized by a
single refractive index n). The propagation and emis-
sion of waves in a magnetoactive plasma differs, as is
well known, in having a large variety of different possi-
bilities (see [20:l and the literature cited there). An
analysis of the positive and negative reabsorption of
synchrotron radiation in the case of highly anisotropic
velocity distribution functions of the radiating elec-
trons, and with allowance for the anisotropy (magneto-
activity) relative to the cold "parent" plasma in which
the radiating relativistic particles move, is of great
interest and should serve as a subject of further r e -
search (see [ 1 7 ' 2 1 J ) .

6. MAGNETIC-FIELD VARIATION CONNECTED
WITH SYNCHROTRON RADIATION (LOSSES)

In considering the radiation of a charged particle
moving in a magnetic field, and also when taking into
account the loss or gain of energy by this particle as
the result of any other mechanism, the magnetic field
is usually assumed specified. It is quite obvious that
such a formulation of the problem has a limited appli-
cability. Indeed, a particle moving in a magnetic field
produces its own magnetic field H u which weakens the
external field Ho (diamagnetic effect). The field ^ de-
pends on the particle energy E and, specifically, de-
creases with decrease of this energy,
E = mc2 /Vl-v2 /c2 .

When the energy loss is taken into account, the field
Hx decreases, but it can lead to a change not only of
the total field H = Ho + H^ but also of the field Ho (we
have in mind mutual induction; see below). As a result
of the change of the magnetic field, an induced electric
field t is produced, and can in turn change the particle
energy. In this connection, the question was even
raised recently whether the particle can "draw" en-
ergy from the field and by the same token lose not only
its kinetic energy E^ = E — me2, but also a larger en-

ergy [22] As will be shown below, such a conclusion is
incorrect, but nevertheless the energy relations of a
particle moving in a magnetic field, with allowance for
the loss (or gain) of energy, is of undisputed interest,
and will therefore be discussed now. A particle with
charge e and mass m moving in a homogeneous mag-
netic field* Ho has a magnetic moment

( tf I ')»2iJ I ~~/7 ) • V*̂"
11 0 / »In \ fl i\ I

In fact, the frequency of revolution of the particle in
the magnetic field is

\e\H0

We recently learned that this result is contained in [23].

Actually, we mean the magnetic induction Bo. However, with the
exception of the last part of the present section, we deal only with
vacuum, and will not distinguish, where permissible, between H and B.
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and the radius of the projection of the orbit on the plane
perpendicular to Ho is

Finally, the magnetic moment is

whence we arrive at (6.1) where vj_ is the projection
of the velocity V on the plane perpendicular to the field
Ho. The sign in (6.1) can be chosen already from gen-
eral considerations, since it is known that a gas of
charged particles is diamagnetic (if the spin is disre-
garded). If the number of particles is large and they
move independently, then their moments are simply
summed. The proper field of all the particles is in this
case small compared with the external field Ho (this
field is produced by sources located outside the region
under consideration), provided 4TTNJU. « Ho, where
fi = | JLX I and N is the concentration of the particles
(moments). More accurately, if we are dealing with
particles having different values of p., then the role of
N/j. is assumed by the total moment per unit volume,
i.e., by the magnetization M. The aforementioned in-
equality 4irM « Ho, in terms of the theory of magnets
obviously denotes that B = Ho + 4TTM =* Ho (which ex-
plains also the appearance of the factor 4w in this in-
equality).

Taking (6.1) into account, we arrive consequently at
the condition for the weakness of the diamagnetic ef-
fect, in the form

i>», EN HI (6.2)

where the bar denotes averaging over the energy
spectrum. In an isotropic distribution of the ultrarela-
tivistic particles (for concreteness we have in mind
cosmic rays) with respect to their velocity directions

condition (6.2) can be written in the form

(6.3)

where the value of the particle mass m plays no role.
Thus, in order for the influence of the relativistic

particles themselves on the magnetic field to be weak,
their energy density should be small compared with
the density of the magnetic energy. Yet in cosmic rays,
rays, in a number of cases, [1>19] we have

U>CJ.~WM- (6.4)

Under these conditions the relativistic particles, ob-
viously, already influence the field, but the field can
still, generally speaking, remain sufficiently strong
(in the sense that the field in the medium is of the
same order as the external field Ho). On the other
hand, if

»«.>«« = § - , (6#5)

then the dynamic effect could lead to complete screen-
ing of the field, to instability, etc. Further develop-

ment of these concepts will make it possible, one might
think, to obtain additional arguments in favor of rela-
tion (6.4) or, more accurately, the relation w c # r .
< WM, against the possibility of realizing the condition
(6.5). Without stopping to discuss this interesting
problem in greater detail (see cl9] in this connection),
we consider below another case of one particle, the
properties and state of which are described by the
values

er, m, £ = :
me* a n d V

for concreteness we shall assume that the external
field Ho is homogeneous and is produced in a suffi-
ciently long solenoid (Fig. 6). The current flowing in
the solenoid winding, per unit length of solenoid, is

where j is the current density in the "winding" (if
screening is disregarded, i = jd, where d is the thick-
ness of the "winding"). We assume that the particle
trajectory is located entirely in the solenoid, and is
located sufficiently far from its walls. The volume of
the solenoid is V = TrroL, L » r0.

The equation of motion of the particle is

(6.6)

where f is a certain "friction force," which leads to
energy loss. After multiplying by the velocity v we
get

- s - = egv-P, £ = — = = = , P=Iv. (6.7)

Of course, if acceleration takes place and not losses,
then P < 0; the radiative friction force, obviously, is
included in the expression for f.

We denote the density of the current producing the
field by j ; the current connected with the particle un-
der consideration is not included here, and its density
is ev6(r — re(t)). Then the Poynting theorem, which
follows from the field equations, should be written in
the form

andor, after integrating over a certain volume V
taken as (6.7) into account, in the form

FIG. 6.
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where the Poynting vector

is integrated over the surface bounding the volume V
(obviously n is the outward normal to this surface).

Expressions (6.6)-(6.9) have, of course, a general
character, but we shall apply them to the case of a
field in a solenoid (in the absence the particle H = Ho
= const). Inside the solenoid the total field is H = Ho
+ Hi, where Hx is the field produced by the particle in
question itself. For simplicity we assume the particle
to move along a circle. At a sufficiently large distance
r » r u from the particle trajectory, its field averaged
over the period is equivalent to the field of the mag-
netic moment (6.1) with v^ = v. Consequently, far from
the particle we have

H, = rot rot SL , (6.10)

where the value of /i(t') must be taken at the instant
t ' = t - r / c (see l"\ Sec. 72).

We now assume that the distance r from the wind-
ing of the solenoid to the particle is much smaller than
the "wavelength" X = C/T, where T is the characteris-
tic time of variation of the moment due to the losses
(djn/dt= jj.~ H/T). In this case, i.e., neglecting retar-
dation, /i(t') = /x(t) and

We now use relation (6.9), choosing as the integration
surface the internal surface of the cylindrical "wind-
ing." The fields Hi and 'Sl are small quantities com-
pared with Ho, and we can therefore put

(6.12)
By virtue of (6.11), and also recognizing that in

this case ny. = n/1 = 0, we get

S~-£-[*H0] = - - {ii (Hor) - r 0iHo)}, (6.13)

since

Further, also by virtue of (6.11),

(6.14)

Let us assume that the field Ho is maintained con-
stant, regardless of the changes produced in the mo-
ment ix of the particle by the losses. This can be
done, of course, only at the expense of work done by
external emf sources ("batteries") connected in the
circuit of the winding. Under such conditions, taking
(6.12)-(6.14) into account and assuming that Ho
= const, Eq. (6.9) takes the form*

The integration surface is chosen such that the sources of the field
Ho are outside the surface, by virtue of which / jSdv = 0 (see (6.9)). In
order to clarify the conditions under which the energy

dE
dt E=: (6.15)

i.e., we obtain the customarily employed equation for
the particle energy in the presence of losses. Of
course, this result is directly clear from (6.7), inas-
much as when Ho = const the electric field t = 0.
However, the foregoing analysis shows what happens
to the magnetic field and to the magnetic energy. The
total energy of the field in the volume V (in the sole -
noid) is, according to (6.1), (6.12), and (6.14)

5 ! > * - & r + - & $ H l ( t o = £ r + lai. = . £ K - « . (6.16)

where we put v = v^ (motion along a circle). As the
particle loses energy, the moment [i= \\i\ decreases,
and the total magnetic energy increases, since /z-H0 < 0.
This increase is at the expense of the energy flux en-
tering into the solenoid. At the end of the process (the
particle has lost its energy and its moment is fi = 0)
the field Ho, by assumption, remains unchanged, and
the "bat ter ies" lost an energy

(6.17)

where the argument t = 0 indicates the initial values
of /i, v, and E. More interesting is a somewhat dif-
ferent formulation of the problem, in which the field
Ho is not assumed specified,[22] but the "winding" of
the solenoid is closed and is made up of a current of
electrons which experience no resistance (i.e., the
electrons describe circles with radius r0, filling a
thin layer of thickness d; see Fig. 6). Since in a cos-
mic plasma the conductivity of the medium is very
large, such a case has certain features close to real-
ity. However, one must not overestimate the degree of
this closeness, since under cosmic conditions it would
be necessary to assume that the entire medium inside
the solenoid is also conducting. In addition, we assume
for simplicity that the "winding" does not distort the
field of the particle, i.e., the field of the moment /i.
This means that the "winding" should be sufficiently
thin (d « 6, where 5 = i is the depth of pen-
etration of the field into the "winding" t). Under the
conditions discussed, we place the surface bounding
the volume considered in (6.9) outside the winding.
Here Ho = 0 and in the approximation (6.12) the energy
flux S = 0. On the other hand, expression (6.14) r e -
mains practically unchanged if we neglect screening.
As a net result Eq. (6.9) takes the form

/Hf /8>rdv can be neglected, we present the appropriate estimate. It is
easy to see that

where H, ~ M/rfj is a certain average field of the moment fx on the
particle orbit. Obviously, the condition

takes the form H] "̂  Ho or

For a free electron gas e = 1 - 4ire2 No /mcj2, and when e < 0 and
e| > i the field attenuates like
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(6.18)

where J j Sdv is taken over the volume of the "wind-
ing." Obviously

where

K = '•

w h e r e t h e s i g n o f % i s d e t e r m i n e d , f o r e x a m p l e , b y t h e

L e n z r u l e ( t o c o n s e r v e t h e f l u x t h r o u g h t h e c o n t o u r

w h e n d H , / d t > 0 , t h e f o r c e e E i n c r e a s e s t h e v e l o c i t y

v i ) . S u b s t i t u t i n g t h e o b t a i n e d f i e l d % i n ( 6 . 7 ) w e g e t

dE

~df ( 6 . 2 2 )

w h e r e w e p u t V j _ = v b y v i r t u e o f t h e f a c t t h a t w e a r e

c o n s i d e r i n g o n l y t h e m o t i o n o f a p a r t i c l e a l o n g a c i r -

c l e . S u b t r a c t i n g ( 6 . 2 2 ) f r o m ( 6 . 2 0 ) w e h a v e

i s t h e k i n e t i c e n e r g y o f t h e o r d e r e d m o t i o n o f t h e e l e c -

t r o n s i n t h e " w i n d i n g , " r e s p o n s i b l e f o r t h e c r e a t i o n o f

t h e f i e l d H o ( 2 j r r o d L i s t h e v o l u m e o f t h e " w i n d i n g , "

a n d N o i s t h e c o n c e n t r a t i o n o f t h e e l e c t r o n s , w h i c h a r e

a s s u m e d t o b e n o n r e l a t i v i s t i c ) . A s a l r e a d y i n d i c a t e d ,

t h e c u r r e n t d e n s i t y i s

~d~~ ind

a n d , o n t h e o t h e r h a n d , 3 = e N o u . H e n c e

*»*.

a n d

T h e f a c t o r

( 6 . 1 9 )

2xu o d)

c a n b e m a d e m u c h s m a l l e r t h a n u n i t y , i f t h e a s s u m e d

c o n d i t i o n

i s s a t i s f i e d , o w i n g t o t h e i n c r e a s e o f t h e r a d i u s r 0 o f

t h e s o l e n o i d . U n d e r s i m i l a r c o n d i t i o n s , i . e . , w h e n

2 6 2 / r o d « 1 , t o w h i c h w e c o n f i n e o u r s e l v e s , t h e t e r m

J j g d v i n ( 6 . 1 8 ) w o u l d m e a n i n t r o d u c t i o n o f a s m a l l

c o r r e c t i o n t o t h e t e r m - r r ( T T ^ V ) . A s a r e s u l t w e a r -
d t v o / r '

r i v e a t t h e e q u a t i o n

( 6 . 2 0 )

w h i c h w a s e m p l o y e d w i t h o u t c o m m e n t a r y i n [ 2 2 3 . B e -

s i d e s E q . ( 6 . 2 0 ) , i t i s n e c e s s a r y , i n o r d e r t o s o l v e t h e

p r o b l e m , t o m a k e u s e o f ( 6 . 7 ) , e x p r e s s i n g t h e f i e l d t

i n t e r m s o f d H o / d t . T h e l a t t e r c a n b e r e a d i l y d o n e ,

s i n c e t h e f i e l d % i s s i m p l y t h e i n d u c t i o n f i e l d a n d c o n -

s e q u e n t l y

o r o n t h e p a r t i c l e t r a j e c t o r y ( w h e r e r =

= m v j _ c / I e I H O V 1 - v 2 / c 2 ) w e h a v e

F i n a l l y ,

rHdHa

~Tc dt '

r ± . s r

2 dt

2 y i - t i / t i

T h e i n t e g r a l o f t h i s e q u a t i o n i s

( 6 . 2 3 )

( 6 . 2 4 )

W h e r e W o a n d F o a r e t h e v a l u e s o f W a n d F a t

t = 0 . A f t e r t h e p a r t i c l e h a s l o s t e n e r g y , F = F ( ° ° ) = 0

a n d a c c o r d i n g t o ( 6 . 2 4 ) W ( ° ° ) - W ( 0 ) ^ - F o , s i n c e

F t / W o « 1 ; t h u s , t h e c h a n g e o f e n e r g y o f t h e e x t e r n a l

f i e l d i s

( 6 . 2 5 )

I n t e g r a t i n g ( 6 . 2 0 ) , w h i c h c a n b e w r i t t e n i n t h e f o r m

a n d t a k i n g ( 6 . 2 5 ) i n t o a c c o u n t , w e c a n r e a d i l y s e e

t h a t t h e t o t a l l o s s i s

s i n c e E ( ° ° ) = F ( ° ° ) = 0 . T h u s , i n t h i s c a s e , t o o , t h e p a r -

t i c l e l o s e s o n l y i t s o w n e n e r g y E ( 0 ) ; t h e s a m e , o f

c o u r s e , f o l l o w s f r o m ( 6 . 2 2 ) , ( 6 . 2 4 ) , a n d ( 6 . 2 5 ) , i f t h e

c a l c u l a t i o n i s p e r f o r m e d o n l y a c c u r a t e t o t e r m s o f o r -

d e r F o , b u t n o t F J ^ / W , , ( t h i s i s p r e c i s e l y t h e a c c u r a c y

e m p l o y e d i n ( 6 . 2 5 ) ) .

T h e m e a n i n g o f t h e r e l a t i o n ( 6 . 2 5 ) , w h e r e t h e e q u a l -

i t y

f o l l o w s f r o m ( 6 . 1 ) w i t h v j _ = v , i s p e r f e c t l y c l e a r i f t h e

s t a t e m e n t s m a d e i n c o n n e c t i o n w i t h f o r m u l a s ( 6 . 1 6 ) a n d

( 6 . 1 7 ) a r e r e c a l l e d . N a m e l y , t h e t o t a l e n e r g y o f t h e

m a g n e t i c f i e l d i n t h e s o l e n o i d i s

J 8 n 8n

( 6 . 2 1 )

( s e e ( 6 . 1 6 ) ) . F u r t h e r , b y a s s u m p t i o n , f i . ( ° ° ) H 0 ( ° ° )

= F ( ° ° ) = 0 , a n d r e l a t i o n ( 6 . 2 5 ) i s t h e r e f o r e s i m p l y t h e

c o n d i t i o n f o r t h e c o n s e r v a t i o n o f t h e t o t a l m a g n e t i c e n -

e r g y . H e r e , h o w e v e r , t h e f i e l d H = H o + H x i t s e l f

c h a n g e s a n d b e c o m e s r e d i s t r i b u t e d , n a m e l y , t h e f i e l d

H j d e c r e a s e s w i t h d e c r e a s i n g a b s o l u t e v a l u e o f t h e m o -

m e n t \i; i n o r d e r f o r t h e t o t a l m a g n e t i c e n e r g y t o b e

c o n s e r v e d i t i s t h e r e f o r e n e c e s s a r y t h a t t h e h o m o g e n e -

o u s f i e l d H o a l s o d e c r e a s e , s i n c e t h e f i e l d H x i s d i -

r e c t e d o p p o s i t e t o t h e f i e l d H o ( d i a m a g n e t i c e f f e c t ) .
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Thus, the situation turns out to be quite trivial in
final analysis: everything reduces to a calculation of
the diamagnetic effect that takes place when the
charged particles move in the magnetic field, and to
the use of the energy conservation law (the Poynting
theorem). In both problems under consideration (con-
stant field Ho and solenoid with "short-circuited
winding") the particle loses only its own energy and
cannot "d raw" energy from the magnetic field!

To complete the picture and, principally, bearing in
mind the possibility of generalization to the more com-
plicated case of an ensemble of radiating particles, let
us consider the question considered in the present sec-
tion from the microscopic point of view. To this end,
we introduce, besides the field intensity, the magnetic
moment per unit volume M and the magnetic induc-
tion B = H + 4;rM

If N is the particle concentration, then the magnetic
moment per unit volume is M = N/i, where the mag-
netic moment of one particle (6.1) is written in the
form

This expression differs from (6.1) only in that the
field H,, is replaced by the average macroscopic field,
i.e., by the induction B (for simplicity we do not dis-
tinguish between B and Bo). We now take into account
the constancy of the quantity k = p2 /B (the adiabatic
invariant) under slow variations of the field, and con-
fine ourselves to the case of ultrarelativistic particle
(E » me2), executing circular motion, when E 2 ^c 2 p 2

= kc2B and

n^ (6.26)

Let us calculate the energy (just as in (6.28)) of a
system consisting of a field and particles, assuming
that the external field and the distribution of the parti-
cles N are homogeneous in this case. Then

-A-
in (6.27)

To calculate the last term in (6.27) we use the expres-
sion

hence

M rfB = - d (N Ykc^B) = d (2MB).

As a result we get

U = 4 2MB. (6.28)

The energy of the particles per unit volume is, by vir-
tue of (6.26), NE = 2N/iiB = -2M-B. Thus, the energy
density (6.28) consists simply of the energy density of
the " t r u e " average field B2/8JT and the particle en-
ergy density NE.

With the aid of the relation B = H + 4jrM, expression
(6.28) can be also rewritten in the form

FIG. 7.

U = ~—MH — 6nM*.
8JI

(6.29)

The last term in (6.29) is proportional to the density
of the magnetic energy of the currents connected with
the particles, and if 6TTM « H or NE « B3/87r (see
(6.3)), this term can be omitted. Thus, in the weak-
magnetization approximation used in l221 and above,
we obtain

NE = — 2MH. (6.30)

The energy density of the system consisting of the
field and particles is expressed in precisely the form
U = H2/8TT = M-H + NE in [ 2 2 : and (6.20).

Let us consider now the change of the energy of the
system as a result of the deceleration of the particles
due to radiation or other losses under two somewhat
different conditions.

Let the external field be maintained constant (first
formulation of the problem). Such a situation can be
realized, for example, if a layer of relativistic plasma
is contained by an external field (Fig. 7). In this case,
by virtue of the continuity of the tangential components
of H, we have He = Hj = H, where the indices e and i
pertain to the quantities on the external and internal
sides of the separation boundary.

The energy of the system in the initial state is equal
to

= | -M(0)H(0) .

Assume that as a result of the losses the kinetic energy
of the particles in the final state is zero, and accord-
ingly M(°°) = 0. Then in the final state we have

and the change of energy is

A£/ = £/(oo)-£/(0)=M(0)H(0)=—j (6.31)

In this case the total change of the energy of the sys-
tem consists of the energy NE(0) lost by the particle,
and the work done by the external currents NE (0)/2
= -M(0) • H(0), which maintain the field constant in the
volume under consideration.

Let us consider now the second case, when the sys-
tem is contained in a superconducting solenoid, so that
the electric field on the boundaries of the volume is
£ = 0. This case is closer to the problem considered
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in [221 and above for a short-circuited solenoid "wind-
ing." Under these conditions the total magnetic flux is
jBndci = const, and consequently B = const if the
cross section is constant and the field is homogeneous.

Therefore, by virtue of (6.28), the total change of
the energy of the system after the particles lose their
energy is (obviously, M(°°) = 0)

(6.32)

i.e., it is exactly equal to the energy lost by the parti-
cles.

Obviously, the results (6.31) and (6.32) are in full
agreement with the deductions made above (see, in
particular, (6.17) and (6.25)).
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