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INTRODUCTION it is 10"s per atom, their effective mass if of the order
___. of 0.1-0.001 of the electron mass, and the Fermi energy
W E consider in this review the properties of solid is several hundredths of an electron volt.
bismuth. Bismuth has been the subject of a large num- We shall not try to describe everything known con-
ber of experimental and theoretical papers. This is cerning bismuth* and will confine ourselves essentially
principally due to the fact that it is easiest to observe to those phenomena which have been quantitatively ex-
in bismuth the phenomena that are inherent in all met- plained. Thus, for example, we barely touch upon the
als. However, bismuth is frequently called a semimetal temperature dependence of the different kinetic coeffi-
since it occupies from the point of view of the electronic
properties, a position intermediate between a metal and *Reference to certain papers not mentioned here can be found in the
a semiconductor. The number of conduction electrons in review articles [';2 ].
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cients. An elucidation of this dependence calls for a de-
tailed analysis of the mechanism of interaction between
the electrons and thermal lattice vibrations. At the
same time, it is necessary to take into account the
small value of the degeneracy temperature (on the order
of 100°K), the increase of the number of carriers as a
result of the valence band,m (the forbidden gap is also
of the order of 100°K) and the transitions of the elec-
trons from one part of the Fermi surface to another (in-
tervalley transitions). No corresponding calculations
have been performed as yet. For this reason we are r e -
ferring here essentially to low temperatures. At such
temperatures the electrons in the bismuth constitute a
degenerate Fermi gas.

We do not consider here the important practical
question of the methods used to obtain pure bismuth.
These methods are common to all metals (see, for ex-
ample, lli). However, the requirements with respect to
the purity of the bismuth are more stringent. Inasmuch
as the number of conduction electrons in bismuth is
small, their number changes noticeably when a small
number of impurities is introduced. The state of the art
of obtaining pure metals is at present such that experi-
menters in different countries have samples which
hardly differ in their properties.

I. SPACE LATTICE

The space lattice of bismuth is of the rhombohedral
system with two atoms per cell. It can be obtained from
the primitive cubic lattice by small displacements of
the atoms. We denote the periods of the primitive cubic
lattice by aj (Fig. 1). We separate two face-centered
sublattices with periods

In the figure the atoms of one of the sublattices are
marked by crosses. We now displace the two sublattices
relative to each other along the space diagonal of the
cube a? + a° + a°. The symmetry of the lattice is re -
duced—it becomes rhombohedral. But the most import-
ant fact is that there are now two atoms per unit cell.
In order to obtain the bismuth lattice, it remains to
stretch each sublattice slightly along the same diagonal.
The angle between the vectors ai and &2, which together
with a3 (they are shown by solid lines) are the periods
of the bismuth lattice, turns out to be 57° 19'.[4] In a
cubicolattice this angle is 60°. The value of â  is
4.73 A. The point symmetry group of the bismuth lattice

FIG. 2. First Brillouin zone.

D3(j includes a sixfold mirror-rotation axis, usually
called the trigonal axis and denoted C3, three twofold
axes, (binary axis C2) perpendicular to the trigonal axis,
and three symmetry planes perpendicular to the binary
axis (bisector planes). The origin is usually placed at
the inversion center—on the trigonal axis halfway be-
tween the two atoms of the cell, whose coordinates with
respect to the translational periods are (u, u, u) and
(ii, ii, ii). In bismuth u = 0.234 and in a cube u = 0.25. It
can be noted that it is possible to obtain the lattices of
arsenic and antimony in the same manner.

II. DOUBLING OF THE PERIOD

We shall henceforth frequently use the concepts of
band theory. In band theory the interaction of each elec-
tron with the remaining ones is replaced by a certain
average field. This field has the periodicity of the space
lattice. The wave functions of the electron, the well-
known Bloch functions

are numbered by integer indices—the number of the
band n—and by a continuous three-dimensional index
—the quasimomentum k(kx, ky, kz) (see, for example,
:5 : |). The functions unk are periodic in r with a lat-
tice period a .̂ The Bloch functions with k and
k + 2jrb have the same translational properties if
b*ai = r, where r is an integer. We can therefore as -
sume that the vectors k lie within a certain bounded
region. The choice of this region is not unique. Thus,
for example, it is possible to construct a parallele-
piped of the vectors 2jrbi defined in the following
manner:

a,a2a3 a,a2a3
b, = -

a,a2a3

(2)*

This parallelepiped is called the unit cell of the recip-
rocal lattice. The term "first Brillouin zone" is more
frequently used. In order to obtain it it is necessary to
take the vectors 2irbi and — 2irbi, and also all possible
sums of these vectors, and draw a perpendicular plane
through the middle of each of these vectors. The smal-
lest polyhedron bounded by these planes is the first
Brillouin zone. Figure 2 shows the first Brillouin zone
of bismuth.

The energy levels of the electrons En(k) depend on
the quantum numbers n and k, with £n(k) = en(k + 2b).

FIG. 1. Space lattice. *[a2a3] =a2 Xa3.
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In a crystal, just as in an atom, the spin is not a "good"
quantum number, owing to the presence of the spin-
orbit coupling. However, in a crystal with an inversion
center in the absence of a magnetic field all the levels
are doubly degenerate/6-1 just as the levels of the free
electrons are spin-degenerate. The corresponding
quantum number is called for brevity spin, as before
(a deeper justification can be found in the transforma-
tion properties of the wave functions, which can be de-
scribed, as before, with the aid of Pauli matrices).

At zero temperature, all the levels, up to the Fermi
level, are occupied, and there can be only one electron
in each state, by virtue of the Pauli principle. An ex-
ceedingly important role in the theory of metals is
played by the Fermi surface, defined by the equation
e(k) = ep-

The main difficulty of the band theory is that the in-
teraction of the electrons cannot be described in terms
of an average field. The concept of individual quasipar-
ticles can therefore be used to describe only weakly ex-
cited states that include quasiparticles located in the
immediate vicinity of the Fermi surface (the word
"quasiparticles" is used to emphasize that the corre-
sponding excitations are quite remotely reminiscent of
the initial particles, in this case the electrons). Inas-
much as the lifetime of an electron located far (in en-
ergy) from the Fermi surface, is comparable with R/e
the very classification of the levels used in the band
theory loses its meaning. However, the intensity of the
interaction of the electrons with one another and with
the lattice oscillations (phonons) depends in significant
fashion on the dielectric constant. As shown by experi-
ment1-7-1 and confirmed by calculation[8J, the dielectric
constant of bismuth is quite large in the frequency and
wave-vector region under consideration. This makes it
possible to regard the electron interaction as small not
only near the Fermi surface but in several bands closest
to the conduction band, up to energies on the order of
several electron volts.

We now turn to the deformation with the aid of which
the bismuth lattice can be obtained from the primitive
cubic lattice. In the latter, there is one atom unit cell.
Each bismuth atom has an odd number of electrons
which in this case cannot occupy fully a certain number
of the bands, since each band contains an even number
of places (it is known that the number of places in the
band per cell, with allowance for the double spin degen-
eracy, is two). Thus, for example, if the bands do not
overlap, then half of the places in the conduction band
remain empty. Cubic bismuth would certainly be a typi-
cal metal. Since the deformation makes the number of
electrons per unit cell even, the substance can in prin-
ciple become a dielectric. If some band contains a cer-
tain number of electrons, then an equal number of places
should become free in another band—holes appear in the
latter. The transition of a good metal into a dielectric
or a poor metal can be easily understood by using a
one-dimensional model. We consider a linear chain of
atoms situated at different distances a from one an-
other. The unit cell of the reciprocal lattice has a di-
mension 2ir/a.. If each atom has an odd number of elec-
trons, then half of the places from —ff/2a to fl72a will
be occupied in the case of the spectrum shown dashed
in Fig. 3. Let us double the translation period, shifting

FIG. 3. Splitting of
band upon doubling of the
period of a one-dimensional
lattice.

\
\

/

\
/

/

/

-fa

slightly every other atom to the right. The size of the
reciprocal lattice cell will be decreased by one-half and
the energy band will split. Using the property e(k)
= e(k + 2nb) we can transfer the upper band to within the
limits of the new cell (Fig. 3, solid line). As a result
of the deformation the lower band turns out to be fully
occupied, and the other one is free, and we get a dielec-
tric.

In the one-dimensional example, the Fermi surface
is actually a point, and an infinitesimally small defor-
mation can transform the metal into a dielectric. In the
three-dimensional case, the transition into a dielectric
should be accompanied by a significant change in the
area of the Fermi surface. It is clear that a small de-
formation, generally speaking, cannot change this sur-
face greatly. However, as shown in t9:l, the energy spec-
trum of bismuth has the following singularity: A slight
displacement from the Fermi level of real bismuth
along the energy variable e results in an equal-energy
surface whose dimensions are in any case of the order
of the dimensions of the reciprocal lattice. This cir-
cumstance explains the presence of metallic modifica-
tions of solid bismuth. Figure 4, which is taken from
C1O:| (see also £ U J) shows the phase diagram. The phases
II and III exhibit typical metallic properties. In particu-
lar, they reveal superconductivity.1-12'13J Unfortunately,
the crystal structure of all phases except ordinary bis-
muth I is unknown. Phase I is a state which is stable
under normal conditions and in which the bismuth is al-
most a dielectric. It has been established that with the
aid of relatively small pressures it is possible to change
the number of carriers in it.cl4:l Under these conditions,
when the bismuth lattice comes close to primitive cubic,
that is, when y ~ 10.25 - u| — 0, the metallic state is
apparently stable. At the point y = 0 itself, the " d i -
electric" phase becomes absolutely unstable.
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FIG. 5. Dependence of the
thermodynamic potentials of
the "dielectric" (1) and metallic
(2) phases on the deformation
• y [ 9 ] .

If w e c o n s i d e r t h e t h e r m o d y n a m i c p o t e n t i a l s o f t h e

" d i e l e c t r i c " p h a s e I a n d of t h e m e t a l l i c p h a s e ( p h a s e II

o r III) a s f u n c t i o n s of t h e d e f o r m a t i o n y , t h e n t h e c o r r e -

s p o n d i n g c u r v e s s h o u l d h a v e t h e f o r m s h o w n i n F i g . 5 .

I n t 9 ] i t i s s h o w n t h a t t h e t h e r m o d y n a m i c p o t e n t i a l of

p h a s e I i s d e t e r m i n e d b y t h e e x p r e s s i o n

(t>(1) = O 0 + ay* — XY2 In P'Y

w i t h p o s i t i v e a, x , a n d p. S o m e f i n i t e d e f o r m a t i o n o c -

c u r s s p o n t a n e o u s l y if t h e m i n i m u m of * ( * ' l i e s b e l o w

t h e e n e r g y of t h e m e t a l l i c p h a s e a t y = 0 .

III. E L E C T R O N E N E R G Y S P E C T R U M

1. E x p a n s i o n N e a r E x t r e m u m

T h e f i r s t t o i n v e s t i g a t e t h e s p e c t r u m of b i s m u t h i n -

t e n s i v e l y w a s S c h o e n b e r g . 1 - 1 5 1 H e i n v e s t i g a t e d t h e o s c i l -

l a t i o n s of t h e m a g n e t i c m o m e n t of b i s m u t h a t t e m p e r a -

t u r e s of l i q u i d h e l i u m ( t h e d e H a a s - v a n A l p h e n e f f e c t ) .

U s i n g t h e c a l c u l a t i o n s of L a n d a u 1 - 1 6 1 a n d of B l a c k m a n , [ 1 7 ]

S h o e n b e r g f o u n d t h a t t h e F e r m i s u r f a c e c a n b e r e g a r d e d

a s c o n s i s t i n g of t h r e e u n c o n n e c t e d e l l i p s o i d s w h i c h g o

o v e r o n e i n t o t h e o t h e r b y r o t a t i o n a r o u n d t h e t r i g o n a l

a x i s . E a c h e l l i p s o i d i s s l i g h t l y i n c l i n e d , a p p r o x i m a t e l y

6 ° , t o t h e b a s a l p l a n e ( t h e p l a n e p e r p e n d i c u l a r t o t h e

t r i g o n a l a x i s ) a n d i s s t r o n g l y e l o n g a t e d i n o n e d i r e c t i o n ,

b e i n g a p p r o x i m a t e l y a n e l l i p s o i d o f r e v o l u t i o n a r o u n d

t h i s d i r e c t i o n . T h e r a t i o of t h e l a r g e s t a n d s m a l l e s t

a x e s i s a p p r o x i m a t e l y 1 5 . T h e e l l i p s o i d c a n b e d e -

s c r i b e d b y t h e e q u a t i o n

P* + asyPl + 2ayzpypz + <*MPI) « pap/2mo, (3)

w h i c h r e p r e s e n t s s i m p l y a n e x p a n s i o n of t h e f u n c t i o n

e ( k ) i n p o w e r s of p = ft (k — k i ) n e a r t h e m i n i m u m . T h e

x a x i s i s h e r e t h e b i n a r y a x i s , t h e z a x i s t h e t r i g o n a l

a x i s , a n d m o i s t h e m a s s of t h e f r e e e l e c t r o n . T h e s y m -

m e t r i c a l t e n s o r a ^ c a n b e r e d u c e d t o t h e p r i n c i p a l

a x e s b y r o t a t i n g t h e c o o r d i n a t e s y s t e m i n t h e ( y , z )

p l a n e . T h e p r i n c i p a l a x e s of t h e e l l i p s o i d a r e c u s t o m -

a r i l y d e n o t e d b y t h e i n d i c e s 1, 2 a n d 3 ( w i t h r e s p e c t of

p r o j e c t i o n s p i , p2 a n d p 3 ) ; t h e a x i s 1 c o i n c i d e s w i t h t h e

b i n a r y a x i s Cz, t h e a x i s 2 i s t a k e n t o b e t h e d i r e c t i o n of

e l o n g a t i o n , a n d t h e a x i s 3 i s p e r p e n d i c u l a r t o 1 a n d 2 .

I t w a s s u b s e q u e n t l y e s t a b l i s h e d t h a t t h e s u r f a c e (3)

a c t u a l l y c o r r e s p o n d s t o e l e c t r o n s , t h a t i s , t h e e n e r g y

i n s i d e t h e e l l i p s o i d i s s m a l l e r t h a n o n t h e F e r m i s u r -

f a c e . F r o m t h e o r e t i c a l c o n s i d e r a t i o n s 1 9 1 ( s e e a l s o [ 1 8 3 )

i t f o l l o w s t h a t t h e c e n t e r s of t h e e l l i p s o i d s a r e l o c a t e d

a t p o i n t s of t y p e L . I t w a s o b s e r v e d , h o w e v e r , t h a t t h e

s h a p e o f t h e F e r m i s u r f a c e o f t h e e l e c t r o n s d i f f e r s

f r o m e l l i p s o i d a l / 1 9 ' 2 0 - 1 a n d t h e e x t r e m a l c y c l o t r o n

m a s s e s a n d m a s s e s a t t h e l i m i t i n g p o i n t s d o n o t c o i n -

c i d e n o t i c e a b l y , 1 - 2 0 1 w h e r e a s a c c o r d i n g t o f o r m u l a (3 )

t h e c y c l o t r o n m a s s s h o u l d n o t d e p e n d o n t h e p r o j e c t i o n

of t h e m o m e n t u m o n t h e d i r e c t i o n of t h e m a g n e t i c f i e l d .

FIG. 6. Diagram of bands near the Fermi level ti.

I n a d d i t i o n , i t b e c a m e k n o w n 1 - 2 0 1 t h a t n e a r t h e m i n i m u m

of t h e c o n d u c t i o n b a n d t h e r e i s a v a l e n c e b a n d a t a d i s -

t a n c e of t h e o r d e r o f t h e F e r m i e n e r g y r e c k o n e d f r o m

t h e b o t t o m of t h e b a n d . F o r t h i s r e a s o n , t h e e ( p ) d e -

p e n d e n c e f o r e n e r g i e s o n t h e o r d e r of £ p c a n n o t b e

q u a d r a t i c . I n t h i s e n e r g y r e g i o n t h e e x p a n s i o n (3) i s n o t

v a l i d a n d t o d e t e r m i n e t h e f o r m of e ( p ) i t i s n e c e s s a r y

t o t a k e i n t o a c c o u n t b o t h b a n d s . T h e t w o - b a n d m o d e l

w a s i n v e s t i g a t e d t h e o r e t i c a l l y i n c 2 2 ) 2 3 ; 2 4 ^ T h e p u r p o s e

of : 9 ] w a s t o c l a r i f y t h e o r i g i n of t h e n a r r o w g a p a n d t o

r e l a t e t h e s i n g u l a r i t i e s of t h e s p a c e l a t t i c e w i t h t h e

c h a r a c t e r of t h e e n e r g y s p e c t r u m . T h e s e p a p e r s w i l l b e

d i s c u s s e d i n d e t a i l l a t e r . W e m e r e l y n o t e h e r e t h a t t h e

e l e c t r o n s a n d h o l e s a p p e a r i n b i s m u t h i n a c o n s i s t e n t

m a n n e r . l 9 } T h e c o n s i s t e n c y i s m a n i f e s t n o t s o m u c h i n

t h e q u a l i t y of t h e n u m b e r of e l e c t r o n s a n d h o l e s ( t h i s

e q u a l i t y i s t h e c o n s e q u e n c e of e l e c t r o n e u t r a l i t y ) , a s i n

t h e f a c t t h a t t h e i r s p e c t r a a r e v e r y s i m i l a r .

T h e h o l e p a r t of t h e F e r m i s u r f a c e w a s o b s e r v e d i n
[ 2 5 ] . T h i s s u r f a c e c a n b e a p p r o x i m a t e d b y a n e l l i p s o i d

of r e v o l u t i o n w i t h p r i n c i p a l a x i s a l o n g t h e t r i g o n a l a x i s :

(4)

I n t h e e x p e r i m e n t of C 2 6 : i , a s m a l l d e v i a t i o n of t h e h o l e

s p e c t r u m f r o m q u a d r a t i c w a s o b s e r v e d . T h e c e n t e r of

t h e s u r f a c e (4) i s l o c a t e d a t p o i n t s of t h e t y p e T . c 9 ' 1 8 J

T h u s t h e f i r s t B r i l l o u i n z o n e h a s o n e h o l e s e c t i o n a n d

t h r e e e l e c t r o n s e c t i o n s of t h e F e r m i s u r f a c e . T h e l e v e l

s c h e m e i s s h o w n i n F i g . 6 . T h e f i g u r e d o e s n o t s h o w t h e

f a r z o n e s ( s e e lZ11) f o r w h i c h t h e r e i s s t i l l n o r e l i a b l e

e x p e r i m e n t a l d a t a .

A h y p o t h e s i s i s s o m e t i m e s a d v a n c e d t h a t o t h e r

g r o u p s of c a r r i e r s a r e p r e s e n t i n b i s m u t h . T h e p o s s i -

b i l i t y of d o u b l i n g of t h e n u m b e r of e l e c t r o n a n d h o l e e l -

l i p s o i d s i s a l s o d i s c u s s e d . T h i s i s u s u a l l y s t i m u l a t e d

b y s o m e d i s c r e p a n c y b e t w e e n c e r t a i n e x p e r i m e n t a l d a t a

a n d t h e d e s c r i b e d m o d e l . H o w e v e r , t h e r e a s o n s f o r t h e

d i s c r e p a n c i e s , w h i c h w e s h a l l c o n s i d e r l a t e r , l i e a p -

p a r e n t l y i n t h e i n t e r p r e t a t i o n of t h e e x p e r i m e n t .

2 . T h e T w o - b a n d M o d e l

E x p e r i m e n t s r e v e a l e d t 2 1 ] t h a t t h e r e i s a v a l e n c e b a n d

a t t h e p o i n t L , a t a s m a l l d i s t a n c e e g f r o m t h e m i n i -

m u m of t h e c o n d u c t i o n b a n d . T h e a p p e a r a n c e of a n a r -

r o w g a p i s c l o s e l y c o n n e c t e d w i t h t h e s m a l l d e v i a t i o n of

t h e b i s m u t h l a t t i c e f r o m p r i m i t i v e c u b i c . : 9 ] T h i s c i r -

c u m s t a n c e m a k e s i t p o s s i b l e t o e s t i m a t e t h e o r d e r of

m a g n i t u d e of t h e e f f e c t i v e m a s s a t t h e b o t t o m of t h e

c o n d u c t i o n b a n d . N e a r t h e b o t t o m i t s e l f , t h e e x p a n s i o n

(3) i s v a l i d . F o r v a l u e s o f e l a r g e r t h a n e g , t h e t ( p )

d e p e n d e n c e s h o u l d g o o v e r i n t o t h e c o r r e s p o n d i n g d e -
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pendence for the undeformed lattice, which can be ap-
proximated by the linear relation

8 (P) = Vp, (5)

where v is of the order of the ordinary electron veloci-
ties, that is, 10s cm/sec. Intermediate between (3) and
(5) is p ~Eg/v. Comparing (3) with (5) we obtain the
order of magnitude of the effective mass:

*s mola ~ (6)

Of course, this is a rather rough estimate, since it does
not take into account the crystal anisotropy. However,
the main law is correctly represented: small masses,
as a rule, are connected with small energy gaps.

The two-band model was investigated independently
of the singularities of the space lattice in [32"24J. For
an analysis of the spectrum near a certain point ki, in
which there are several closely lying bands, it is con-
venient to use the effective-mass method, which is
widely used in semiconductor theory. t28] The field act-
ing on the electron is described by the Hamiltonian

[crVf/jp, (7)

where p = —ifiV is the momentum operator and U is a
periodic potential that takes into account in a self-
consistent manner the influence of the remaining elec-
trons. The last term of (7), which contains the Pauli
matrices a, is the spin-orbit coupling energy. The
wave function is expanded in terms of the functions
X nk = [exp (ik • r)] unk- (xnkj = fexP < iki ' r)J unki(r) a r e

the eigenfunctions of the Hamiltonian and correspond to
the point ki):

i()(r) = 2^i>A/lB(k)Xnk(r). (8)
n

If r bands are close at the point kj, and the remaining
bands can be taken into account by perturbation theory,
then we obtain for the determination of An(k) the follow-
ing system of equations:

S ( "S1 ' j,} Am (k) = eAn (k). (9)

The role of the perturbation is played here by V = p •
where

is the velocity operator, p = K (k — kj), the matrix ele-
ments are taken in terms of the functions Xnk- > an<^ En

is the energy at p = 0. It is practically impossible to
calculate V n m , and it becomes necessary to use sym-
metry considerations. The operator in the left side of
(9) in front of Am(k) is usually called the effective
Hamiltonian.

We are interested in the case of two close spin-
degenerate bands. If the symmetry of the point ki is
sufficiently high, then the functions xnk- c a n differ also

in parity. In bismuth, the conduction and valence bands
have apparently different parities. Then the effective
Hamiltonian, accurate to terms of first order in V/£p,
can be written in the form122'24J

se- 0)' (10)

and the matrix elements themselves are 2 x 2 matrices.
Thus, I is a unit matrix and

t u\
«• r)' (11)

where t = (01|v|al) and u = <01|v|a2). The indices 1
and 2 designate functions pertaining to different spin
projections, and 0 and a designate the valence and the
conduction bands. The relations

<a2|v|02) = t, <al|v|02)=-u

are the consequence of invariance to time reversal. The
energy in (10) is reckoned from the bottom of the con-
duction band, and Eg = Ea — £0.

The spectrum e(p) is obtained by solving the equa-
tion

| J ? - e / | = 0. (12)

The corresponding calculation is best carried out in
general form. The matrix Hx is expanded in terms of
four linearly-independent matrices aT

 a n ^ I:

and the coefficient preceding the unit matrix turns out
to be equal to zero if the basis functions are suitably
chosen. The vectors W(r) are expressed in terms of
u and t:

W(l) = Imu, W(2)=Reu, W(3) = Imt.

In accordance with (t), the four-element column An(k)
is best written in the form

with cpu and (p\ each containing two elements. Equa-
tions (12) take the form

Obtaining cf>i from the second equation and substituting
it in the first, we get

-LHtBtfu^ *(1+*/%)<[>*. (13)

We can now reduce the e(p) dependence to the form[29]

3
l (14)

where

(15)

Although the e(p) dependence (14) is not quadratic,
the surfaces e = const have the form of an ellipsoid,
just as the equal-energy surfaces of (3). It is possible
to measure in experiment directly the area of the inter-
section S(E, pz) of the surface e(p) = £ = const with a
certain plane p z = const and the cyclotron mass

wherein in the former case p z corresponds to an ex-
tremum of S(e, pz) and in the latter to an extremum of
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3S(e, pz)/3E. For the spectra (13) and (14), the ratio
S/m does not depend on the direction of the normal to
the secant plane. According to the experimental data
the ratio S(e, pz)/2irm(e, pz) = 0.0176 eV and does not
depend on the direction of the normal within the limits
of errors. We shall return later to a comparison of the
ellipsoidal model with experiment.

In accordance with the estimate (6), the denominator
of (15) contains a small gap Cg. Experiment has shown
however, that only two out of the three principal values
of the tensor a^ are large, and the third, a22, is of the
order of unity. The cause of the anisotropy of the elec-
tron Fermi surface is at present regarded as acciden-
tal.* It is necessary to take into account the second-
order terms in V/ep, at least for directions closed to
the elongation of the ellipsoid. For the central part of
the ellipsoid, the approximation (14) can be regarded as
sufficiently good.

The second-order terms were considered in c23],
where the following equation was obtained for the elec-
trons;

= O. (16)

We have introduced here the notation

n_ P2 „ y <oi| vII»P><»P|v|op.

I (al| v|np)(np| v |al).

At the very bottom of the conduction band, the spectrum
(16) is quadratic:

If we consider values of p such that Q, Q + R « Eg and
|pt|2 + | p - u | 2 ~ e g , then Eq. (16) leads to the model (14).
To explain the existing anisotropy of the Fermi surface
it is necessary to assume that the coefficient preceding
p2 in |pt |2 + |p• u|2 is small. It can be assumed that the
dependence of e on p2 is determined primarily by Q
and R. Then the spectrum takes the form

It is quite difficult to compare Eqs. (16) and (17) with
experiment. No definite conclusions can be drawn with
respect to this matter at present.

3. Deformation Theory

We proceed to describe the concepts developed in [9].
To obtain the energy spectrum, the lattice considered in
l9Z was infinitesimally close to a cubic one, and was
then deformed into the true lattice of bismuth. In order
that the change of the spectrum occur without a phase
transition, the "dielectric" phase (see p. 3) is con-

*The opinion is advanced in [83 ] that the very existence of bismuth
as a semimetal is possibly due to the anisotropy of its electron spectrum.
Using a simple model as an example, it is shown in [83 ] that an isotropic
semimetal should go over into a dielectric as a result of the attraction be-
tween the electrons and the holes. However, this instability takes place
only at very low carrier densities. As noted by Mott [84 ], an isotropic
semimetal is stable if the condition n'/^ > 0.25me2/h2e0 (the condition
for the absence of bound states) is satisfied, where e0 is the dielectric
constant and m is the reduced mass of the electron and the hole.

sidered throughout, although this is not the equilibrium
phase at small deformations.

The deformation will be effective if it leads to a
lifting of the degeneracy (a similar instability of mole-
cules was considered by Jahn and Teller). We have al-
ready seen, with the one-dimensional model as an ex-
ample, that the bands split at the points 77/2a and
— ir/2a, which corresponded prior to the deformation to
one value of the energy. If the equality of the energies
is not accidental also in the three-dimensional case,
then such points should enter in a single star, that is,
they should satisfy the condition

G»k = k', (18)

where G° is a certain symmetry transformation of the
initial cubic lattice. In the one-dimensional case, k goes
over into k' upon inversion. One more condition relat-
ing the vectors k and k' can be obtained by recognizing
that there are new translation periods a^ in the de-
formed lattice. Indeed, for the splitting of the bands it
is necessary that the following matrix elements be dif-
ferent from zero

where ^ ' ( r ) and (/^(r) are the wave functions in the un-
deformed lattice, and V(r) is the perturbation describing
the deformation. V(r) is periodic and has periods a .̂
Since these periods are sums of elementary vectors of
the cubic lattice, we can use the translation properties
of the wave functions (1). Following translation through
the vector aj, the matrix element Vuyk is multiplied by
exp [i(k - k') • ai], and on the other hand the integral
over the entire volume should not change upon transla-
tion of the coordinates. Therefore,

k -k ' = 2nb,

where b is some vector of the reciprocal lattice vec -
tor (2) and, of course, differs from the reciprocal-
lattice vectors of the initial cube. We note that this con-
dition is also satisfied in the one-dimensional model.
Combining both conditions, we obtain an equation for
determining the vectors k:

G°k —k = 2nb.

Taking for G° the inversion operation, we obtain eight
vectors within the limits of the first Brillouin zone:

ka = nba, k8 '=-k a (a = 1,2, 3),
k o ^ b j + b j + b,), ki l )=-ko.

These points lie on the boundaries of the zone.
We note that in the free-electron model the band

splitting also takes place on the boundaries of the Bril-
louin zone.c30:! The first six points are of type L and the
last two of type T. All constitute a single star in the ini-
tial lattice and are pairwise equivalent in the deformed
lattice. Prior to the deformation, the small group of
each vector was C3y. After the deformation, the star
turns out to be reducible. The vector k0 goes over into
itself under all transformations of the symmetry group
of bismuth, since ko and minus — ko are now equivalent.
Its small group is D3(j = C3VCi. Another star is made
up of the vectors k a and k^J'. Since only one sixfold
mirror-rotation axis remains in the crystal, leading to
the transformations ki — —1&3 — k2 — — kj — k3 — —k2, it
follows that k a now has the less symmetrical small
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group C ^ . For the point L (see Fig. 2) it is obtained
by adding inversion to one of the cube symmetry planes
0$ remaining in the deformed lattice.

When determining the e(p) dependence near the points
under consideration, we assume that the deformation is
small. Since the spin-orbit coupling is much smaller
than the ordinary atomic energies, it can be reasonably
accounted for by perturbation theory. Therefore, we
choose as the zeroth-approximation functions the prod-
ucts of the spinors <Pp (p = 1, 2) by the functions
ipa(ki), which transform in accordance with the ordi-
nary representations of the small group C3V of the vec-
tor ki (i = 1, 2, 3). If the deformation is sufficiently
small, then the electron and hole bands originate in the
same bands of the initial lattice. Therefore e(p) should
have minima at L and a maximum at T. The one-
dimensional representations of the group C3V do not
satisfy this requirement. This leaves the two-dimen-
sional representation.t31;l To obtain the spectrum prior
to the deformation, it is sufficient to choose as the basis
the four functions (ppipa(ki). It is then necessary to take
the deformation into account. The procedure for doing
so is known from semiconductor theory.[32] The only
singularity in the case of bismuth is that the points kj
and —ki become equivalent upon deformation, and the
corresponding basis functions should be unified. The
rank of the effective Hamiltonian is then doubled. To
determine e(p) it is necessary to diagonalize an 8 x 8
matrix. However, owing to the double degeneracy, the
problem reduces to a determination of the eigenvalues
of a 4 x 4 matrix:

— ap.
Y

— apz —

The basis functions are indicated at the left and at the
top, and p± = py ± ipx. The matrix corresponding to the
second spin projection is obtained by reversing the sign
of the constant A, which characterizes the spin-orbit
coupling. The parameters a and b, which have the or-
der of magnitude of ordinary electron velocities, and
also A, are the same for all points kj. The remaining
parameters and the directions of the coordinate axes at
each point are different. For the point L, the z axis
(the direction FL in Fig. 7) lies in the <?$ plane and
makes an angle cos"1 1/3 with the trigonal axis, the x
axis is the binary axis, and y, 6, /3, and f are propor-
tional to the deformation, y and 6 being connected only
with the displacement of the sub lattices. For the point

r
SID2' g-cm/sec

Bisect

FIG. 7. Section of electron Fermi surface in the bisector plane f2 7 ].

T, the z axis is the trigonal axis, the x axis the binary
axis, y0 = - 3 y, f0 = -3f, and 60 = p0 = 0.

Thus, the spectrum near the point L is given by the
equation

xj + 2x\ (D + x2x3) + (x\ + B) (x2
3 3 -C = Q. (19)

For brevity, we have introduced here the notation:
A = yL — E\, B = y%—et, D = Y+y_ — e+e_ + A2,
C = 2A2(Y+Y-+ <=+<=_)-A4, Y± = Y±6, e ± = e ± p - / ,

xt = bpx, x2,3 ~ b

Equation (19) can be quickly solved with respect to e.
Different experimentally-observed quantities such as
the areas of the sections, the cyclotron masses, the den-
sity of states, are expressed by rather complicated in-
tegrals. They are given in [27]. In Eq. (9) account was
taken of four close bands. If only two are particularly
close, e0 and e a , then for values E ~£jr ~ e a the free
term in (19), namely C - AB= -(e -Ei)(c - E O ) ( E - E a )
x (e — £4)* can be written in the form C — AB « £i£4
x (e — £O)(E — £a). For those sections of the Fermi sur-
face which are not too close to the direction of elonga-
tion, it is possible to omit from (19) the fourth-order
terms in p, and A, B, D can be taken on the bottom of
the band Ea. In this case we obtain an equation of the
type (14). A singularity of the surface (19) is that when
£ is sufficiently large, it ceases to be closed. For such
values of £, the values of p can be sufficiently large
and it is necessary to take into account in the matrix
(18) terms of higher order in p. It is impossible to as -
certain whether the surface (19) remains open in this
case.

The spectrum near T is of the form

e = /„ + (bp±)* ±
(20)

The hole part of the Fermi surface is a figure of revo-
lution. Its symmetry turns out to be higher than the
symmetry of the point T. The reason is that small
terms of higher order in p x and py were not taken into
account in (18).

If (20) is expanded in powers of the square root of p
and second-order terms retained, then expression (4)
is obtained. However, experiment120' ^ revealed a dif-
ference between the extremal cyclotron masses and the
masses at the limiting points. In the case when the mag-
netic field is perpendicular to the trigonal axis, the ex-
tremal mass (on the central section) is given by the
formula

— A
nab ch l|>[tf (?*) +(ctri i|>-l) £(<?»)],

where

*= [ l

K(q2) and E(q2) are the complete elliptic integrals of the
first and second kind, and the mass at the limiting point
is

= e* • , / " V Q A

« ' ' v S — e ^ — V n A

(we assume a, b, ya, A>0, omitting for brevity the abso
lute value sign). If the deviation of the spectrum (20)

*) 6j<eo<ea<e4-values ofe at
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from quadratic is not large (e — y0 -A.), then

"X. !"" ~"*X. exti __ 8 / A .\ /JVo_ , J J_\
^~TZZ 8 VVn-e H e To 3J"X,

For a magnetic field directed along the trigonal axis,
the dependence of the mass on pn is determined by the
expression

"»„=—£- 1 +

We note that in either case the mass at the limiting
point is larger (in absolute magnitude) than the mass on
the central section.

The parameters of (19) and (20) were determined in
c27] by comparing the calculated and measured values of
the cyclotron masses and the cross-section areas. In
addition, we needed the value of the gap eg . Unfortun-
ately, eg was not measured directly in the experiments.
In lzl>33i, the two-band model (14) was used to deter-
mine the gap. Since the two-band model can be regarded
as sufficiently good for magnetic-field directions close
to the direction of the elongation, the value of the gap
apparently differs from that obtained in c21>33]. Thus,
we obtained in t27] | a | = 0.390 xlO8 cm/sec, | b | = 1.068
xlO8 cm/sec, \&\ = 0.1242 eV, |y| = 0.1635 eV, | 6 |
= 0.0853 eV, | 0 | = 0.0516 eV, f = -0.0973 eV, and
e = —0.0875 eV. The value of e given here corresponds
to the Fermi level.

For holes, the agreement between the values calcu-
lated from these data and the observed ones turned out
to be good. At the point T the distance from the maxi-
mum of the hole band to the other bands turned out to be
much larger than the Fermi energy measured from the
top of the band. Therefore the hole spectrum for ener-
gies on the order of the Fermi energy is quite close to
quadratic. The hole density turned out to be equal to
3.15 xlO17 cm"3. For electrons the situation is more
complicated. Their Fermi surface differs from an el-
lipsoid. Figure 7 shows the intersection of the bisector
plane and the electron part of the Fermi surface in the
vicinity of the point L (see Fig. 2). To be able to com-
pare Figs. 2 and 7 directly we assume that a < 0 and
b, y, A, 6 > 0. The direction FL shown in Fig. 7 makes
an angle cos"1 1/3 with the trigonal axis. This direc-
tion is very close to the line actually joining the points
r and L. We shall reckon the angles from the trigonal
axis towards the line FX. An acute angle is taken to be
positive. The smallest central section corresponds to
an angle —83° 15' between the trigonal axis and the se-
cant plane. The experimentally measured1203 value is
-83° 40' ± 15'. Regardless of the choice of the system
of coordinates, the direction of the elongation of the
"ellipsoid" lies between the bisector axis and the di-
rection of FL. We note that in c27] it was impossible to
choose the parameters of (19) and (20) such as to obtain
approximately 84° for this angle (in this case the ellip-
soid is also inclined 6° to the basal plane, but its bisec-
tor axis and the direction of FL were on the same side
of the elongation direction). The calculated electron
density per ellipsoid is ng1' = 1.15 x 1017 cm"3. The
small difference between the number of holes and the
total electron density Sng1' can be attributed to the lim-
ited accuracy of the theory. It must be stated that for
directions corresponding to large cross sections and

large cyclotron masses, different small combinations of
the parameters play an important role. Strictly speak-
ing, in this case it would be necessary to take into ac-
count in (18) terms of higher order in the deformation.
Such an allowance would have little effect on the values
of the parameters but would greatly complicate the
comparison with experiment.

IV. ELECTRON SPECTRUM IN A CONSTANT
MAGNETIC FIELD

The greater part of the information concerning the
spectrum of bismuth was obtained with the aid of con-
stant magnetic fields. The influence of the field on the
spectrum can be taken into account by making in the
Hamiltonian (8) the substitution p —- P = p — eA/c and
adding — jzoffH where A is the vector potential of the
field H and )i0 is the Bohr magneton. In the effective-
mass theory it is shown that a similar change takes
place also in the effective Hamiltonian. As a rule, the
eigenvalues of the operator obtained in this manner can
not be determined.

1. Classical Limit

If the magnetic field is sufficiently weak, then the
motion of the electrons and holes can be considered on
the basis of the classical equations of motion:

p = -[vH], i = y = ~ . (21)

The equations of (21) are valid for an arbitrary e(p) de-
pendence. With the aid of (21) it is possible to obtain
the important conservation laws e = v p = 0, p z = 0
(the axis is chosen along the direction of the magnetic
field). This means that the trajectory of the electron in
momentum space is determined by the intersection of
the surface e(p) = e = const and the plane p z = const.
Depending on the character of the e(p) spectrum, the
trajectories can be closed or open. In the former case
knowing the e(p) dependence, it is possible to calculate
the area S (e, pz) bounded by the trajectory and calcu-
late the frequency of revolution along the trajectory

where
Q--=eHlcm(e,pt),

l os

is the cyclotron mass. For a free electron m(£, pz) co-
incides with its mass m0. On the bottom or on the top
of the bands (3) and (4) the mass does not depend on e
or p z but depends on the orientation of the magnetic
field:

m—m tdet a-?io"1)i,l'~1/2 (22)

where X is a unit vector in the direction of the field.
In the two-band model S(e, pz) ~ E(e) — ap| . There-
fore the cyclotron mass does not depend on p z but de-
pends on e:

m(e, pz) = mE' (e) — m(l + 2e/e ), (23)

where m is the mass at the bottom of the band as
e — 0. The dependence of m(e, pz) on Sjjj is given by
formula (22), in which ctfa should be replaced by
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In coordinate space, the projection of the trajectory
on the plane perpendicular to \ is obtained from the
trajectory in the p-space by rotation through an angle
IT/2 and by a change of scale. In particular, the diam-
eters of the trajectories in the r - and p-spaces are
connected by the relation

ell

2. Two-band Model and Extremum of Band

(24)

The spectrum of the electrons in a magnetic field
can be obtained in the approximation linear in V by
making in (10) the substitution

Repeating the calculations shown in page 5 we arrive
at Eq. (13), in which

f / / 1 f f f = ^ ( W l " » ) - | i , y H G ( r ) a , . ( 2 5 )

Here

Gk(r) ^ ~ ^ i c<i(r)e;ik,

a n d t h e q u a n t i t i e s C j j ( r ) a r e c o n n e c t e d w i t h t h e p r e v i -

o u s l y i n t r o d u c e d W i ( p ) b y t h e r e l a t i o n

w h e r e e ^ i s a u n i t a n t i s y m m e t r i c a l t e n s o r . T h e e i g e n -

v a l u e s of t h e o p e r a t o r ( 2 5 ) w e r e o b t a i n e d i n [ 2 2 ] :

£ (1 + e/E.,) --= Ui (r -f 1/2 ± 1/2) -rPl,'2mz. ( 2 6 )

T h e f r e q u e n c y ft i s d e t e r m i n e d b y t h e c y c l o t r o n

m a s s o n t h e b o t t o m of t h e b a n d , £2 = e H / r h c . T h e c o n -

n e c t i o n b e t w e e n t h e m a s s a n d t h e i n v e r s e t e n s o r a " 1

i s g i v e n b y a f o r m u l a s i m i l a r t o ( 2 2 ) , a n d

I t i s s e e n f r o m ( 2 6 ) t h a t t h e d i s t a n c e b e t w e e n t h e l e v -

e l s w i t h v a l u e s o f r d i f f e r i n g b y u n i t y i s t h e s a m e a s

t h e d i s t a n c e b e t w e e n t h e l e v e l s w i t h d i f f e r e n t s p i n , c o r -

r e s p o n d i n g t o t h e ± s i g n s . B e c a u s e of t h i s , a l l t h e l e v e l s

e x c e p t t h e l o w e s t o n e i n t h e c o n d u c t i o n b a n d a n d t h e

h i g h e s t o n e i n t h e v a l e n c e b a n d , f o r w h i c h r = 0 , t u r n

o u t t o b e d o u b l y d e g e n e r a t e . I n c l u s i o n of t h e t e r m s o f

s e c o n d o r d e r i n V i n t h e e f f e c t i v e H a m i l t o n i a n c 3 4 : l

g r e a t l y c o m p l i c a t e s t h e f o r m of t h e s p e c t r u m , s i n c e 16

n e w p a r a m e t e r s a p p e a r . S o l a r g e a n u m b e r o f u n k n o w n s

c a n a p p a r e n t l y n o t b e d e t e r m i n e d e x p e r i m e n t a l l y .

T h e s i t u a t i o n s i m p l i f i e s n e a r t h e v e r y b o t t o m of t h e

b a n d . I n t h i s c a s e

(27)

T h e m a s s e s m a n d m z a r e e x p r e s s e d i n t e r m s o f a

b y m e a n s of t h e s a m e f o r m u l a s ( 2 2 ) a n d ( 2 2 ' ) , b u t a c -

c o u n t i s t a k e n of a l l t h e b a n d s , i n c l u d i n g t h e r e m o t e

o n e s , i n t h e c a l c u l a t i o n of a a n d of t h e g - f a c t o r . T h e

f o l l o w i n g e x p r e s s i o n i s o b t a i n e d f o r t h e g - f a c t o r : C 2 2 : i

(28)

In place of the g-factor, it is more convenient to use
the effective g-factor, characterizing the ratio of the
spin splitting to the cyclotron-splitting:

, B + M - e - ( r )
J e + ( r ) —e+(r —1

(29)

F o r t h e s p e c t r u m ( 2 6 ) , j u s t a s f o r t h e f r e e e l e c t r o n ,

g = 2 . N e a r t h e b o t t o m of t h e b a n d ( 2 7 ) g = g m / m 0 .

I n a s m u c h a s f o r e l e c t r o n s t h e F e r m i e n e r g y i s of t h e

s a m e o r d e r a s t h e g a p E g , f o r m u l a ( 2 7 ) c a n b e u s e d

o n l y f o r h o l e s .

3 . Q u a s i c l a s s i c a l Q u a n t i z a t i o n

S o m e g e n e r a l i n f o r m a t i o n c o n c e r n i n g t h e r a t h e r c o m -

p l i c a t e d s p e c t r u m of e l e c t r o n s i n a m a g n e t i c f i e l d c a n b e

o b t a i n e d f o r l a r g e q u a n t u m n u m b e r s w i t h t h e a i d of q u a -

s i c l a s s i c a l q u a n t i z a t i o n . A c c u r a t e t o t e r m s of o r d e r

1 / r , t h e s p e c t r u m i s g i v e n b y t h e r e l a t i o n

ehll
S (e, pz) ± -%-g (E, pz) =- 2n (r + 1/2) + O(llr). (30)

The form of the principal terms of the expansion (30)
(the first term on the left and 27rr on the right) is de -
termined by the commutation relations satisfied by the
operators p a in the magnetic field.L351 In the next
higher order in r"1 there appears in (30) besides ir (on
the right) also a g-factor which takes into account the
spin splitting of the levels in the magnetic field/36-1 In
the derivation of (30) it is assumed that the classical
trajectory of the electron in p-space has no self-
intersections, and the probability of jumping from one
trajectory to another (magnetic breakdown) is small.
The function g(£, pz) is expressed by the integral over
the trajectory:

The matrix element is taken here over the normalized
eigenfunctions of the effective Hamiltonian in the ab-
sence of a magnetic field, and

"9 Up
The function g(eF , 0) was calculated in C36] for both

electrons and holes using the spectrum parameters ob-
tained in lZ11. The dependence of g(£jr, 0) on the field
direction is shown for holes in Fig. 8a, and for elec-
trons in Fig. 8b. The dashed lines in the same figure
show the variation of g(£p, 0). Actually g(ep, 0) does
not vanish. At the corresponding directions of the mag-
netic field, it is necessary to take into account the
term — |UoaH, which was omitted from the calculation.
This leads to a splitting of the dashed and solid curves
by a small distance of the order of m/mo.

From (30), with accuracy of the order of r"1, we
obtain the distance between the cyclotron and a spin
levels:

Q = e+ (r) — e+ (r—1) =- e" (r) - e~ (r — 1) •-= etiHIcm (e, pz),

Qc =- e* (r) - e" (r) =-• Qg (e, pz)/2.

B e s i d e s t h e e f f e c t i v e g - f a c t o r , o n e i n t r o d u c e s t h e

" s p i n " m a s s

where G is a certain symmetrical tensor.
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FIG. 8. a) dependence of the hole g-factor on the direction of the
magnetic field. The angle 6 is measured from the trigonal axis [36 ].
b) dependence of the electron g-factor on the direction of the magnetic
field. The directions of the bisector and trigonal axes are shown by the
arrows. The angle is measured from the "former" trigonal axis [36 ].

in the approximation (26) m s = m. This relation is also
satisfied quite well in the deformation model in a wide
interval of magnetic-field directions (see Fig. 8).

The g-factor can be determined experimentally by
observing paramagnetic or combined resonance. How-
ever, neither has been observed in bismuth so far. In-
dividual communications published at times were not
confirmed in later investigations.

V. SPECIFIC HEAT

The most precise measurements of the specific heat
at low temperatures were made by Strelkov and Kalin-
kinaC37] in the interval 0.3-4.4° K and by Phillips :38] at
0.1-2°K. The temperature dependence of the specific
heat in this region should be described by the relation

c ----- c,r ! -f c,r3 + C3T.

The first term (which was not observed in c37]) is con-
nected with the quadrupole levels of the nucleus in the
inhomogeneous crystal-lattice electric field. The coef-
ficient c3 in the term linear in the temperature is de-
termined by the density of the states on the Fermi sur-
face:

it'fc' dn

The cubic term describes the contribution of the pho-
nons, and the coefficient c2 can be described in terms
of the Debye temperature 6:

According to the data of c37: 6 = 118.5°K, and according
to [38: 9 = 120.4° K. The density of states is listed in
Table I, which also indicates the density of states ob-
tained in the ellipsoidal approximation using the exper-
imental data of I19>2O3. It is easy to verify that the

Table I. Density of states on the Fermi surface.

dn/dc. 10l» eV'cm"3 80*) 25**) 2.5e+3.7h***) 3.51e+3.75h*'**)

The indices "e" and "h" denote the contributions of the electrons and holes,
respectively.

*•) Measured in [x\
•**) Calculated in the ellipsoidal approximation using the data of [ ' 1

**•*) Calculated in ["J [ ' 1

E(e) dependence (see (14)) is immaterial here if one
uses the experimentally determined extremal cross sec-
tions and cyclotron masses. In this sense, (3) and (14)
lead to the same result. The contribution of one ellip-
soid (electron or hole) is equal to

dn<l

where m and S are the cyclotron mass and the area of
the central section at the same direction of the mag-
netic field, and nU ) is the number of electrons or holes
in one ellipsoid (with allowance for the spin degeneracy):

Apparently the principal cause of the discrepancies in
Table I lies in the smallness of the electronic contribu-
tion, which does not exceed 15% of the total specific heat
in the investigated temperature interval. Therefore the
inaccuracies in the determination of the temperature,
sample defects, and the presence of the quadrupole term
unaccounted for in c37: can lead to a large error. An-
other possible cause of the difference between the meas-
ured density of states and the calculated one is con-
nected with allowance for the Fermi-liquid interaction.
However, as already noted, in bismuth this interaction
must be regarded as small.

VI. MAGNETIC SUSCEPTIBILITY

Let us consider first the constant field-independent
part of the susceptibility

.. _ dMi

In the case of rhombohedral symmetry the symmetrical
tensor has two independent components, XH and Xi (the
polar axis is taken to be the trigonal axis of the crystal).
Bismuth is diamagnetic—both components XH an<l X i
are negative. A noticeable anisotropy of the susceptibil-
ity, that is , the difference between Xn and \ j_> w a s °b~
served already in the earlier investigations. A small
amount of impurities changes the susceptibility strong-
ly. The temperature dependence of x<\ and Xi in the in-
terval 14-400°K was measured in c . At helium tem-
peratures xi = -1.7 x 10"6 and XH = -1.2 x 10"e.

The question of the magnetic susceptibility is one of
the most difficult ones in the theory. The gas of free
electrons is paramagnetic, since the diamagnetic part
of the susceptibility amounts to % of the paramagnetic
part. One might assume that the diamagnetism of crys-
talling bismuth is due to the internal shells of the ions.
However, this assumption is contradicted by measure-
ments of x in samples with small amounts of impuri-
ties. Another argument in favor of the connection be-
tween the susceptibility and the crystal structure was
advanced by Jones.130-1 He called attention to the fact
that the susceptibility of molten bismuth is only
— 0.08 x 10~6. In the same paper, Jones attempted to
explain the large value of the susceptibility on the basis
of the Landau-PeierIs formula, which describes the
susceptibility of electrons in the conduction band in
analogy with free electrons. This attempt was not suc-
cessful—the calculated value (using modern values of
the spectral parameters) is much smaller than the ex-
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perimental one. The sign of the change of (xx - X I I ) / X I
following addition of small amounts of lead impurities
acting as acceptors1-40-1 is also incorrect. On the other
hand, since the spin splitting of the levels is close to
the cyclotron splitting, the conduction electrons should
lead to paramagnetism, just like the free electrons. The
main difficulty is connected here with the impossibility
of obtaining a general expression for the levels in a
magnetic field. Since a weak field is sufficient for the
calculation of x, one could hope to use the quasiclassi-
cal expression (30) (the necessary allowance for the
term of order H2 in the left side of (30) entails no dif-
ficulty). However, the expression obtained in this case
for x is determined by levels with r ~ 1, for which the
quasiclassical theory is not applicable as a rule. How-
ever, the quasiclassical calculationc35J leads to one im-
portant result: contributions to the constant part of the
susceptibility are made not only by the electrons on the
Fermi surface, but also by the deep electrons, including
those in the valence band. The order of the effective
mass of the valence-band electrons is roughly speaking
the same as that of the conduction electrons (see the
estimate (6)) but their number is much larger. This
circumstance was taken into consideration by Adams'-41-1

even before the publication of c36]. His result agrees
qualitatively with experiment.1-42' 40:l

VH. QUANTUM OSCILLATIONS OF THE
SUSCEPTIBILITY AND OF OTHER
THERMODYNAMIC AND KINETIC QUANTITIES

The nonmonotonic dependence of the magnetic mo-
ment of the bismuth crystal on the magnitude of the
magnetic field was observed by de Haas and van
Alphen.[43:l A detailed investigation of the de Haas-
van Alphen effect in bismuth was made by Schoenberg
The origin of the oscillations is connected with the suc-
cessive coincidence of the Fermi level with the levels
(30) corresponding to different r and to a certain pre-
ferred value of p z . Inasmuch as the corresponding val-
ues of r turn out to be large, it is possible to use qua-
siclassical quantization. The expression for the oscil-
lating part of the thermodynamic potential, obtained by
Lifshitz and Kosevich/35] is of the form

00 (— l)rcos|—~—JI/4 I cos (jiz-g/2)VI ^ ehH : )

[15]

2\'kT I
l

•vs y

d'S
= sh (2n

. ( 3 D

The quantities S, m, —3-, and g, which depend on e
9pz

and p z , are taken here at e = e F and at the value of p z

for which S has a maximum as a function of p z (in the
case of a minimum, the sign in front of TT/4 in the argu-
ment of the cosine is reversed). Since the Fermi sur-
face can have several extremal sections, it is neces-
sary to sum in (31) over these sections. Formula (31)
is valid when c-p » kT and cS/eKH » 1. It does not
take into account the level broadening due to collisions.
It is shown in £44>45] that electron scattering by impuri-
ties leads to an additional factor exp ( — irzr/iiT) in (31),
where T is the collision time.

The main reason why the de Haas -van Alphen effect
became a powerful method for studying the Fermi sur-
face is that the observation of the oscillations makes it
possible to determine, with high degree of accuracy, the

V \

A

/
Y

73

FIG. 9. The de Haas-van Alphen effect. The lower curve shows the
dependence of the numbers of the maxima and minima on H"1 f8 ].

area S of the extremal section. In experiment, as a
rule, one measures the torque J = —dF/dip that twists
the sample, and the magnetic field can usually be ro -
tated in a plane perpendicular to the suspension of the
sample, making it possible to measure the extremal
sections at different positions of the secant surface
(ifi— angle between the direction of the field H and a
certain fixed direction in the plane perpendicular to the
suspension). A formula for J is obtained from (31) by
replacing cos (rcS/eRH - ff/4) by sin (rcS/eKH - TJ/4),
and by multiplying by -(rc/efiH) dS/dtp (in the differen-
tiation with respect to ip it is sufficient to differentiate
the larger quantity cS/efiH). One usually records the
dependence of J on H"1 at a given field direction
(Fig. 9). This dependence is oscillating with a period
A(H-1) = eK/cS. The period of the oscillations is ob-
tained by the plotting on the graph the values of H^a x(n)
corresponding to the maxima or minima. The period
can be determined from the slope of the linear section.
This procedure is sufficiently simple for those magnetic
field orientations at which the oscillations from differ-
ent ellipsoids can be distinctly separated. The oscilla-
tion amplitude changes when the temperatures change,
making it possible to determine the cyclotron mass on
the extremal sections. However, these measurements
call for a vigorous separation of the harmonics and their
accuracy is low compared with the cyclotron resonance.

With the aid of the de Haas-van Alphen effect it is
possible to draw certain conclusions concerning the
magnitude of gfep* Pz)' I n particular, the first har-
monic (with r = 1) is not observed in the case g(£ir,pz)
= 1, and the series (31) begins with r = 2. The factor
with the g-factor (31) is the result of summation over
two spin directions. However, the splitting itself is usu-
ally observed only in a sufficiently strong magnetic
field, where the quasiclassical expression (31) is not
valid.

The conditions for observation are favorable at those
field directions for which the sections S are small. On
such sections the cyclotron mass is also small and
therefore the amplitude of the oscillations is relatively
large. Oscillations on large sections are much more
difficult to observe. One of the two principal major sec-
tions of the electron ellipsoid was measured only r e -
cently/193 and the other one, in the (y, z) plane has not
yet been measured. The reason for these difficulties
lies both in the large mass and in the condition dS/dtf>
= 0 for those directions for which the cross section has
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an extremum (as a function of the angle if). The accu-
racy with which the large cross section is determined
becomes worse as a result of one more specific cir-
cumstance. In the derivation of (31) it was assumed
that the change of the chemical potential in a magnetic
field can be neglected. In the case cS/eKH » 1, this as -
sumption is perfectly valid. However, to determine the
largest electronic cross section the field must be di-
rected along the binary axis. Then the areas of the sec-
tions of the two other electron ellipsoids will be smaller
by approximately a factor of 10. In order for the ampli-
tude for the oscillations on the large section to be ob-
servable, the magnetic field must be chosen such that
the ratio cS/efiH for small cross sections be of the or-
der of unity. Therefore, the chemical potential deter-
mined from the condition of the equality of the total
number of electrons to the number of holes cannot be
regarded as constant. The "spilling" of electrons from
one ellipsoid to the other, and also into the hole band/46 '
483 leads to a variable period of the oscillations (see
Fig. 9).

Figure 10cl9;l shows the angle of dependence of the
cross sections for the three principal crystal planes.
The points not lying on the curves constructed in ac-
cordance with the ellipsoidal model can be attributed to
higher harmonics or regarded as the consequence of the
spilling (crosses). We present the values of the princi-
pal sections: t19 '483

holes:
H along the trigonal axis:

S3 = (6.75 ± 0.25) X10"42 (g-cm/sec)2,
H perpendicular to the trigonal axis:

Si « S2 « (20.5 ± 1) x 10"42 (g-cm/sec)2;

electrons:

H along the binary axis:
51 = (19 ± 1) X10'42 (g-cm/sec)\

H along the elongation direction:
52 = (1.34 ± 0.05) xlO"42 (g-cm/sec)2.

With the aid of these data it is possible to estimate the
densities njj of the holes and n^ of the electrons (per
ellipsoid), approximating their Fermi surfaces by ellip-
soids. The unmeasured principal electronic section S3
is obtained by assuming that the ratio S/m does not de-
pend on the direction, and by using the corresponding
value of the cyclotron mass.C2°3 We get nh = 2.76
x 10" cm'3 and n^11 = 0.99 x 1017 cm"3. It is difficult to
estimate the error in this case, but the agreement be-
tween the number of holes and electrons (under the con-
dition that there are three electron ellipsoids per hole
ellipsoid) is surprisingly good. An opinion was advanced
in cl9] that the plane drawn through the axes 1 and 2 is
not a symmetry plane of the electronic section of the
Fermi surface, since the S( if) dependence cannot be
sufficiently well reconciled with the ellipsoidal model
in the entire angle interval.

Oscillations of the type (31) should be experienced by
all thermodynamic quantities. Oscillations of the tem-
perature of a thermally-insulated sample were observed
in [49]. With increasing magnetic field, the oscillations
took the form of peaks, and the last observed peak was
split. When the magnetic field was directed along the

sirs,

FIG. 10. Polar diagrams of the areas of the extremal sections in the
planes perpendicular to the direction of the magnetic field [19 ]. A)
(H)-in the trigonal-bisector plane C3C,. Curves 1 and 2 illustrate the
possible anisotropy of the hole part of the Fermi surface in the planes
C3C2 and C3Ci; curves 3, 4 and 3 ', 4' are constructed in accordance
with the ellipsoidal model with different principal sections. B) H is in
the trigonal-binary plane C3C2: 1-holes, 2 and 3-electrons, 4, 5, 6-ob-
served second and third harmonics of the fundamental frequency. C) H
is in the basal plane 0^2: 1 and 2-electrons. The arrows indicate the di-
rections of the field at which the frequency doubles as a result of the
spin splitting of the Landau levels.

binary axis, the split peak corresponded to a field of
15 kOe, and the difference between the two components
of the peak was much smaller than the distance to the
nearest unsplit peak. The authors of [49] attributed this
splitting to spin-splitting of the levels and used the for-
mula

If we assume that both components corresponded to dif-
ferent r that differ by unity, we obtain for the g-factor
the value 1.84. This figure pertains to those two ellip-
soids for which the indicated axis is not a symmetry
axis.

Oscillations having the same nature as the de Haas-
van Alphen effect were observed also in kinematic phe-
nomena. Oscillations of the resistance were first ob-
served by Shubnikov and de Haas.t50^ The earlier in-
vestigations consisted essentially of observations of the
phenomenon itself. A single-crystal sample was placed
in a magnetic field. Direct current was made to flow in
a direction perpendicular to the field through the sam-
ple. At low temperatures in fields on the order 10 kOe,
oscillations appeared against the background of smooth
variation of the resistance. It became clear subsequent-
ly that the Hall coefficient and the longitudinal resist-
ance also oscillate (at coinciding field and current di-
rections). The experimental procedure was also im-
proved. Modulation of the constant field, amounting in
magnitude to several Oe, made it possible to employ a
sensitive electronic measurement scheme, wherein the
first or second derivative of a definite component of the
resistance tensor with respect to the magnetic field
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were measured. The results of the measurement are
presented in the form of a plot of the resistance or of
the corresponding derivative against the magnetic field
(the field itself increases smoothly during the measure-
ment from zero to a certain maximum value).

The theoretical interpretation of the Shubnikov-de
Haas effect is quite complicated. For this reason, the
reduction of the experimental data consists only of de-
termining the period of the oscillations, that is, the ex-
tremal sections of the Fermi surface. The procedure
is the same as in the de Haas-van Alphen effect. It is
surprising that in spite of the obvious advantages of its
observation, the Shubnikov-de Haas effect was not suc-
cessful in yielding additional information. In particular,
the major sections of the electronic surface were not
measured. Incidentally, Lerner^1^ reported existence
of "heavy" electrons and "heavy" holes. He meas-
ured dR/dH with the aid of a modulation procedure and
observed on the H^^Cn) plot small linear sections,
which he connected with the heavy carriers.

A detailed analysis of the data obtained with the aid
of the Shubnikov-de Haas effect is contained.l52] Using
the ellipsoidal model, its authors constructed for cer-
tain magnetic field directions a plot of Hj^ax(n) with
allowance for all four ellipsoids—three electronic and
one hole. The maxima which cannot be distinguished as
a result of temperature and relaxation broadening were
combined. It turned out that it is actually possible to
separate linear sections on the curve, and this is what
suggested to Lerner the idea of the existence of heavy
carriers. The same paper t52] analyzes also the oscil-
lation of the chemical potential with variation of the
magnetic field, a fact likewise not taken into account
by Lerner. Nor was the existence of heavy carriers
supported by the data of l53:.

So far we referred to oscillations of the dc resist-
ance. If alternating current is excited in the metal, then
the properties of the sample are described by its sur-
face impedance. However, in the case of bismuth the
corresponding values of the magnetic field turned out to
be so large, that the presence of the skin layer has es -
sentially no effect on the character of the phenomenon.
It was investigated in detail in [47] at a frequency 5 Mhz
with the aid of an NMR spectrometer. The interpreta-
tion of the results was greatly facilitated in this case by
the fact that the amplitude of the oscillations from the
different sections of the Fermi surface depends on the
direction of the high-frequency currents. The method
has fairly high sensitivity. However, even here it was
impossible to trace the entire angular dependence of the
extremal section of the electron ellipsoid. The polar
diagram S{ip) of the hole ellipsoid is shown in Fig. 11.
The arrows denote the directions in which the amplitude
of the oscillation is decreased sharply, and something
that looked like a doubling of the period is observed at
ip = 73°. (Doubling of the frequency of both the hole and
electron oscillations at definite field directions was ob-
served earlier in :19].) A unique method was used in
L3S]. The conductivity of a "sandwich" made of a bis-
muth plate, a dielectric layer, and an aluminum foil was
measured at 100 kHz. Rather strong magnetic fields
were used, up to 88 kOe. The data reduction was by
means of formula (27) for holes and formula (26) for
electrons, and the g-factor of the electrons was as -

TZO1 Sff"

750 30"

FIG. 11. Anisotropy of extremal sections in the CjC3 plane, o-holes;
•-electrons; A-holes in the C2C3 plane [47 ].

sumed to be different from 2. From the theoretical
point of view, this assumption is not justified. The dif-
ference between the g-factor and 2 is connected with a l -
lowance for other bands within a framework of the two-
band model. However, the cyclotron masses also change
in this case. l 3 n From the methodological point of view,
the work in :33:l is of definite interest. The state density
was calculated with a computer in the approximation of
(26) and (27). The dependence of the peak position on
the field direction was traced by assuming that the
peaks of the state density correspond to resistance
minima. Best agreement between the calculated and
experimental values was obtained by choosing the spec-
trum parameters. The main difficulty consisted in de-
termining the quantum numbers corresponding to the
peaks. We present a few values obtained in C33J:
e g = 0.0153 eV, E^e>= 0.0276 eV, Eo = 0.0385 eV,
ne = nn = 2.75 x 1017 cm"3. The g-factor of the holes is
discussed in [19'33'52> 53J. The first harmonic of the hole
oscillations was not seen in c53] when at an angle 70°
or 85° between the direction of the magnetic field and
the trigonal axis; the corresponding values of c52:l are
67.5° and 85.5°. As already noted, this can be attributed
to the equality of the g-factor to an odd number in the
corresponding directions. If it is assumed that the g-
factor decreases monotonically, being small when H1C3,
then g70o = 3 and g85° = 1. According to these data, it
is possible to estimate with the aid of (26) the g-factor
for H II C3. The value obtained is close to 4. The fact
that the g-factor of the holes is much larger than 2 is
extremely surprising. It contradicts the theory of i36}.
According to l22\ g = 2 at the top of the hole band if
there is only one close band (at a distance smaller than
or of the order of the spin-orbit energy). Inclusion of
more remote bands, and also of the spin of the free
electron, leads to small corrections. It is not clear how
to eliminate this contradiction between theory and ex-
periment. The decisive result will be obtained by ex-
periments in a very strong magnetic field. When g = 2,
all the levels except one last one are doubly degenerate,
and when g = 4 the last two levels are non-degenerate.
Violation of the quasiclassical conditions in the strong
field is not an obstacle in this case, for if the theory of
:36:l is valid, then the quasiclassical results will coin-
cide with the exact one when H II C3.
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Vni. ELECTRIC CONDUCTIVITY

The classical theory of electric conductivity is con-
structed on the basis of a compatible solution of the
Maxwell equations and of the kinetic equations

l + v j L + Q J L + ( i L ) c o i = _ e ¥ g * . (32)

Here f0 is the equilibrium distribution function, and f
is a small non-equilibrium addition proportional to the
electric field S. The term Q,(di/dip) takes into account
the constant magnetic field. The influence of the alter-
nating magnetic field connected with the field % can be
neglected in most cases. Equation (32) linearized in
terms of the field g is valid if g is sufficiently weak.
From (32) we can express f in terms of t and then de-
termine the current

after which Maxwell's equations can be used to deter-
mine the field. Besides purely technical difficulties en-
countered in this case, there are two fundamental diffi-
culties, namely determination of the form of the collision
integral (3f/9t)coi and the question of the boundary con-
ditions in (32). In the calculation of (9f/9t)co^ is is cus-
tomary to use some model of the scattering mechanism.
It is sometimes possible to prove in general form :54]

the validity of introducing a collision time T (p):

(I) =J_
\ at ;Coi T(p) •

Special interest attaches, however, to those cases when
the collisions do not play an important role.

1. Static Conductivity in a Constant Magnetic Field

If we disregard the surface effect,c55] which exists
also in the case of direct current in a strong magnetic
field, then the electric field and the current are con-
nected by the local relation j ^ = a^(H)gjj. In the exper-
iment one measures the resistivity tensor p ^ = a j^ .
The form of pik(H) in a strong field (Sir » 1) can be ob-
tained without any assumptions regarding the scattering
mechanism.:56] In the case of closed trajectories

pal>~H\ paz~f>za~H, p2l ~ H° ~ const. (33)

The z axis is chosen here along the magnetic field and
a, /3 = x, y. The proportionality coefficients in (33) de-
pend on the orientation of the magnetic field relative to
the crystal axes.

The resistance of bismuth in a strong magnetic field
was measured many times. The dependence on the mag-
netic field agrees with (33). In one of the latest investi-
gations1-573 it was found that paa ~ H1-86. In the same
paper, an attempt is made to compare the results of the
measurements with a calculation in which the scattering
of the electrons by phonons is described with the aid of
deformation potential. Several simplifications are made
in the calculation, but these simplifying assumptions are
not well founded. The agreement between such a theory
and experiment is qualitative.

Although in the case of weak fields (UT « 1) the col-
lisions play a decisive role and it is impossible to cal-
culate the resistance in general form, it is possible to

use a phenomenological expansion in powers of the pro-
jections of the magnetic field

= Ph + Pu. kHk + ptj, klHkHi + 0 (H°). (34)

The symmetry of the coefficients of this expansion is
determined by the symmetry of the lattice:1581 the ten-
sors p?i and p« k have two independent components
each, while py j ^ have eight components. Thus, gal-
vanomagnetic phenomena in bismuth in a weak magnetic
field are described by 12 parameters.

Thorough measurements in weak fields at helium
temperatures are reported in C593. All 12 components
were measured at 4.2° K. If it is assumed that the col-
lision time is isotropic,[60] that is, dependent only on
the energy, then it is easy to obtain from the kinetic
equation (32), in the ellipsoidal approximation, the r e -
lation

; = o<>{g+ ("'"«:)• l[jH]}, (35)

between the current density and the electric and mag-
netic fields. Here n(1) is the number of carriers of any
particular ellipsoid (electron or hole) and cr^
= n(1>e2Tajjj/m0. Summarizing the contributions of all
the ellipsoids and expanding the resistance in powers of
H, we can express the components of the tensor (34) in
terms of the mobilities n = eTa/m0 of the electrons
and holes and their densities. By comparison with ex-
periment, Zitter :59] determined four components of the
electron mobility tensor, (in a coordinate system fixed
in the crystal), two components of the hole mobility, and
the total number of electrons, which was found to agree
with the total number of holes, 2.5 x 1017 cm'3 (± 10%).
Returning then to T and using the values of the recipro-
cal mass tensor determined in l3Bi, Zitter obtained T1

= 2.2 x 10"10 sec, and T2 = 1.9 x 10'10 sec, and T3 = 1.6
x 10~10 sec for the principal values of the electron mo-
bility tensor, and Ti = 4.3 x 10~10 and T2 = T3

= 5 x 10"10 sec for the holes. We see now that the aniso-
tropy of T does not exceed 15% and this justifies the ini-
tial assumption. The values of the tensor (34) calculated
from these components agree quite well with the meas-
ured values.

2. Conductivity in the Absence of a Constant
Magnetic Field

For a sufficiently pure sample and for low tempera-
tures, the frequency interval can be divided into three
essentially different regions:

(a) w » vwn/c— high frequency normal skin effect;
(b) vcoh/c » (c/vTwn)

2/T—anomalous skin effect;
(c) (c/vTo|n)

2/T » <A>— low frequency normal skin
effect.
In regions (a) and (c) the electric field (g ~ exp [i (k- r
— tot)] and the current are related by the local connec-
tion Ji(w) = a^iu)) fy^oo), and the dependence of the con-
ductivity on the wave vector (spatial dispersion) is not
significant. The expression for a^(w) in the region (a)
is obtained from (32):

The integration is carried out here over the Fermi sur-
face. Besides a^, one frequently introduces the die lee-
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trie constant

where

* « F

e,h = 4 i r i a i S / o ) = —

dS (37)

The symmetrical tensor (w^)^ in the expression for e ^
plays the role of the square of the plasma frequency.*
The frequency-independent contribution Ej^ in e ^ can
be neglected in this frequency region, but the region of
applicability of (36) is actually determined by the condi-
tion w « u)n£.g1/2. The tensor (wj^ik n a s two independent
components. The order of magnitude of wn is
3 x 10" sec"1, and e0 ~ 100. In the region (c) the fre-
quency dependence of the conductivity becomes negligi-
ble. The principal role is played here by scattering
processes. The order of magnitude of a is obtained
from (36) by making the substitution i/w — T. The
boundaries of the normal skin effect are determined by
comparing the values of kv and u> for the high fre-
quency region and of kv and T" 1 for the low-frequency
region (see (32)). The value of k, determined with the
aid of Maxwell's equations, is of the order of (2v
(2ntrw)1/2/c.

Regions (a) and (b) do not overlap for pure samples
and low temperatures: I = VT » c/wn. In this case there
appears a region in which the spatial dispersion is sig-
nificant. The current density at any given point of space
is determined here by the value of the field in the en-
tire vicinity of this point. The properties of the metals
are best described in terms of the surface impedance,
which connects the tangential projections (relative to
the surface) of the alternating electric and magnetic
fields on the surface of the metal:

S v \y) •

( T h e d e r i v a t i v e s a r e e x p r e s s e d i n t e r m s o f t h e m a g n e t i c

f i e l d o n t h e s u r f a c e . ) T h e r e a l a n d t h e i m a g i n a r y p a r t s

o f t h e i m p e d a n c e Z ^ = R ^ j , + i X ^ j , c a n b e m e a s u r e d

d i r e c t l y . T o c a l c u l a t e Z ^ j , i t i s n e c e s s a r y t o k n o w t h e

c o n d i t i o n s f o r t h e r e f l e c t i o n o f t h e e l e c t r o n s f r o m t h e

s u r f a c e o f t h e m e t a l . A d i s t i n c t i o n i s m a d e b e t w e e n

d i f f u s e a n d s p e c u l a r r e f l e c t i o n s , t A s i m p l e e x p r e s s i o n

f o r t h e i m p e d a n c e e x i s t s t 6 2 ] i n t h e l i m i t o f t h e h i g h l y

a n o m a l o u s s k i n e f f e c t , k v » | u> + i / r | . I n t h i s c a s e "R^p

a n d X j i x v a r e s i m u l t a n e o u s l y r e d u c e d t o t h e p r i n c i p a l

a x e s

( 3 8 )

w h e r e t h e q u a n t i t y

* T o a v o i d m i s u n d e r s t a n d i n g s w e n o t e t h a t t h e p r o p a g a t i o n o f a f i e l d

i n a m e t a l i s p o s s i b l e a t f r e q u e n c i e s co > c < J n / \ / ^ a r > d n o t u > u n .

t i t i s q u i t e f r e q u e n t l y a s s u m e d t h a t t h e r e f l e c t i o n i n b i s m u t h i s

s p e c u l a r , o n t h e b a s i s o f t h e f a c t t h a t t h e w a v e l e n g t h o f t h e e l e c t r o n

o r t h e h o l e i s m u c h l a r g e r t h a n t h e c h a r a c t e r i s t i c i n h o m o g e n e i t i e s o f

t h e s u r f a c e . B u t s i g h t i s l o s t i n t h i s c a s e o f t h e i n t e r v a l l e y t r a n s i t i o n s ,

w h i c h a r e a c c o m p a n i e d b y a l a r g e ( o f t h e o r d e r o f a t o m i c ) c h a n g e o f t h e

m o m e n t u m .

i s d e t e r m i n e d b y t h e c h a r a c t e r i s t i c s o f t h e e l e c t r o n

s p e c t r u m . T h e i n t e g r a t i o n i n B ^ j , i s a l o n g a l i n e l y i n g

o n t h e F e r m i s u r f a c e a n d o n w h i c h t h e n o r m a l p r o j e c -

t i o n ( w i t h r e s p e c t t o t h e m e t a l s u r f a c e ) o f t h e e l e c t r o n s

i s z e r o ; n i s a u n i t v e c t o r i n t h e v e l o c i t y d i r e c t i o n ,

K(<p) i s t h e G a u s s i a n c u r v a t u r e o f t h e F e r m i s u r f a c e ,

p = 8 / 9 f o r s p e c u l a r r e f l e c t i o n , a n d p = 1 f o r d i f f u s e d

r e f l e c t i o n . T h e d e p t h o f t h e s k i n l a y e r c a n b e e x p r e s s e d

i n t h i s c a s e i n t e r m s o f t h e i m p e d a n c e 6

3 V y 1 / 3

T h e s u r f a c e i m p e d a n c e o f b i s m u t h w a s m e a s u r e d i n

C 6 3 J a t 2 3 . 5 G H z a n d i n : f H ] a t 9 G H z . T h e s e m e a s u r e -

m e n t s d o n o t a g r e e i f t h e d i f f e r e n c e i n t h e f r e q u e n c y i s

a c c o u n t e d f o r w i t h t h e a i d o f ( 3 8 ) . A n e s t i m a t e o f t h e

t o t a l a r e a o f t h e F e r m i s u r f a c e w a s m a d e i n l 6 i ] o n t h e

b a s i s o f t h e e x p e r i m e n t a l d a t a . A s s u m i n g s p e c u l a r r e -

f l e c t i o n , i t t u r n e d o u t t o b e ( 1 7 . 6 ± 5 . 1 ) x 1 0 1 3 c m " 2 ; i f

t h e r e f l e c t i o n i s a s s u m e d d i f f u s e , t h e n t h e v a l u e i s

( 2 5 . 0 ± 7 . 3 ) x 1 0 1 3 c m ' 2 . T h i s a g r e e s w i t h t h e e s t i m a t e

o n t h e b a s i s o f t h e e l l i p s o i d a l m o d e l , S = ( 3 X 4 . 2 + 5 . 6 )

x 1 0 1 3 c m " 2 = 1 8 . 2 x 1 0 1 3 c m " 2 . A c c o r d i n g t o m o r e a c -

c u r a t e d a t a , c l 9 J S = ( 3 x 4 . 8 + 6 . 6 ) x 1 0 1 3 c m " 2

= 2 1 x 1 0 1 3 c m " 2 . T o r e c o n c i l e t h e d a t a w i t h t h e r e s u l t s

o f m e a s u r e m e n t s d e H a a s - v a n A l p h e n e f f e c t , i t w a s

n e c e s s a r y i n C 6 3 J t o d o u b l e t h e n u m b e r o f t h e e l l i p s o i d s .

A m o r e l i k e l y e x p l a n a t i o n o f t h e n o t e d c o n t r a d i c t i o n s i s

f o u n d i n i 6 ' t l : f o r m u l a ( 3 0 ) i s a p p a r e n t l y n o t v a l i d a t t h e

f r e q u e n c y u s e d i n I 6 3 ] , a n d i t i s n e c e s s a r y t o t a k e i n t o

a c c o u n t t h e f i n i t e m e a n f r e e p a t h o f t h e c a r r i e r s .

3 . C y c l o t r o n R e s o n a n c e

T h e c h a r a c t e r o f t h e d e p e n d e n c e o f t h e s u r f a c e i m -

p e d a n c e o n t h e c o n s t a n t m a g n e t i c f i e l d i n t h e c e n t i m e t e r

b a n d i s s h o w n i n F i g . 1 2 , w h i c h i s t a k e n f r o m C 6 5 J . T h e

q u a n t u m o s c i l l a t i o n s ( Q . O . ) w e r e a l r e a d y d i s c u s s e d .

T h e m a g n e t o p l a s m a o s c i l l a t i o n s ( M . O . ) a r e c o n n e c t e d

F I G . 1 2 . S u r f a c e i m p e d a n c e ( l o g a r i t h m i c d e r i v a t i v e o f t h e i m a g i n a r y

p a r t ) o f a b i s m u t h p l a c e [ 6 5 ] . M a g n e t i c f i e l d ; b i n a r y a n d t r i g o n a l a x e s

l i e i n t h e p l a n e o f t h e s u r f a c e o f t h e s a m p l e .
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Table II. Cyclotron masses m/m0

Electrons

H II Ci

0.009+10%
0,0078

0,0091+0.0009
0,0081±0.0001

H||C,

0.13±10%
0.119

0.14+0,02
0.120+0.003
0.137±0.0O3

•fcH, 03=5=6°*)

0.11+0.01
0.086±0,002
0,117^0.004

*) Maximum value of mass in the plane HIC2
**) Extremal masses

***) Limiting masses

Holes

H I I C s

0,068+10%
0.04

0.067+0.007
0.063+0.001
0.064+.0.003

HIC3

0.25±10%
0.15

0.226±0.02
0,203+0,004 •*)
0.21O±0.O04»**)
0,220+_0,002***)

61
64
67
20
20
2«

with standing magnetoplasma waves. They will be con-
sidered in the next subsection. We turn now to cyclo-
tron resonance (C.R.). Cyclotron resonance yielded the
most complete and the most accurate information on the
Fermi surface in bismuth. It was possible to trace with
its aid the dependence of the masses on the direction of
the magnetic field in all the angle regions under consid-
eration. The observations are usually carried out in the
centimeter band, using a sample that serves as part of
a resonator. The constant magnetic field is varied and
one measures the Q or the shift of the natural frequen-
cy, which are respectively proportional to the real or to
the imaginary parts of the impedance.

Cyclotron resonance in a magnetic field perpendicu-
lar to the surface was observed in c611. Figure 13,
which is taken from t61], shows the dependence of the
absorption coefficient on the intensity of the magnetic
field. The use of a circularly-polarized high frequency
field has made it possible to distinguish between three
types of carrier. An exact determination of the values
of the magnetic field corresponding to resonance (they
are indicated by arrows in Fig. 13) is quite difficult.
In the ideal case (COT — °°), one group of carriers) the
absorption appears when SI a co. Inasmuch as bismuth
has four groups of carriers, and COT ranged from 3 to
30 in this experiment, the resonant field was determined
by extrapolation, and its value was then made more pre-
cise by using a theory in which T was assumed to be
isotropic and the spectrum was assumed to be quad-
ratic. The corresponding theoretical curve is shown
also in Fig. 13. Among the disadvantages of the method
is that it cannot be used to measure the angular depend-
ence of the masses, since each field direction calls for
a specially grown sample. The values of the cyclotron
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FIG. 13. Cyclotron resonance in a perpendicular field.
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masses obtained in C61] and in other investigations of
cyclotron resonance are listed in Table II.

Cyclotron resonance in a parallel field was predicted
theoretically by AzbeF and Kaner.[54] To be able to ob-
serve it, it is necessary, first, to satisfy the conditions
for the anomalous skin effect and second, to have the
diameter of the trajectory larger than the skin layer.
In this case, an electron interacts with the external
electromagnetic field as it moves along the trajectory
only in a narrow surface layer. Since the time of the
complete revolution can span an arbitrary number of
periods of the operating field, the impedance oscillates
as a function of the constant magnetic field. The reso-
nance occurs at co = rB. In the general case, the cyclo-
tron mass m(e, pz), which determines the cyclotron
frequency Q,, depends on e and p z . Since the only elec-
trons capable of absorbing energy are those located on
the Fermi surface, the value of e is determined by the
Fermi level ep. As to the dependence on p z , in the
presence of a continuous spectrum of resonant frequen-
cies, resonance is observed only on the boundaries of
the spectrum, that is, at the extremal and limiting
masses. The latter correspond to the limits of the ad-
missible interval of p z . The requirement with respect
to Sir is less stringent here—oscillations are observed
when OT <, 1. It is convenient to record experimentally
the dependence on H"1 of the real or imaginary part of
the impedance, or of their derivatives with respect to H,
since the distance between the two succeeding minima
(or maxima)

does not depend on the magnetic field (Fig. 14). The
change of the polarization of the alternating surface
currents relative to the direction of the constant mag-
netic field makes it possible to distinguish between the
extremal (j 1H) and limiting masses (j HH).:2°3 No
comparison with the theoryC54] has been made so far,
and the analysis is usually confined to a determination
of the masses.*

Cyclotron resonance in a parallel field was investi-
gated in :64) 2 0 '6 7 ] . Figure 15 shows the angular depend-
ence of the extremal and limiting cyclotron masses. As
a rule, the experimental points fit quite well the curves
plotted in accordance with the ellipsoidal model. In t67]

an attempt was made to determine the deviations from
the ellipsoidal model by means of the angular depend-
ence of the masses. Although this deviation did not ex-

*See [66} concerning the cyclotron-resonance line shape.
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x~' ax/eft

W 21/ 30 /y-,'kOe
FIG. 14. Cyclotron resonance in parallel field [20].

ceed the experimental error, the author of :67:l favored
the model of C23]. However, the deviation of the values
measured in [67] from the ellipsoidal model is more
likely connected with an inaccurate determination of the
tensor afe. The most reliable proof of the deviation of
the electron spectrum from the ellipsoidal form (14)
was obtained in c20] and is shown in Fig. 15. This is
shown, first, by the difference between the extremal
masses and the limiting masses, and second, by the de-
viation of the symmetry of the curve from that corre-
sponding to an ellipse (see also Fig. 10). From the
measured values of the cyclotron masses it is possible
to determine the tensor a^/E'. To this end it is con-
venient to use the formulas

which connect the values of the tensor a^ at the prin-
cipal axes of the ellipsoid with the principal values of
the cyclotron masses. According to the data of :20], in
the case when the magnetic field is perpendicular to the
binary axis and to the direction of elongation of the el-
lipsoid, the extremal value of the mass is m3 e = (0.086
± 0.002)m0 and the mass at the limiting point is m3 i
= (0.117 ± 0.004)mo. In the case of m2 it is possible to
take the value for H lying in the bisector direction,
since the inclination of the ellipsoid, 6° 20', does not
come into play here. No difference between the extre-
mal and the limiting masses is observed for this direc-
tion. Thus, we get

a'jE' ~-172, cfjE' =0.785, aeJE' = 88.5,
«',/£'= 145, a'jE' = 0.505, a'jE' = 105.

The values designated " e " and "I " were calculated
respectively from the extremal and limiting masses.
The difference between them can serve as a measure
of the deviation of the Fermi surface of ellipsoidal. On
the crystal axes we have

JE' =172,
E' = 1.78,

= +9.G1, 5£/£' = 87.4,
-= +11.4, SL/£' = 104.

There is some confusion in the literature concerning
the sign of <5VZ. To be specific, it is necessary to indi-
cate the direction of the trigonal axis which is taken to
be positive. A positive value of a v z corresponds to the
choice of the coordinates shown in Fig. 7.

F,
FIG. 15. Polar diagram of the dependence of the extremal and limit-

ing cyclotron masses on the direction of the magnetic field H [20]. A) H
is in the C2 C\ plane; B') H is in the plane perpendicular to the direction
of the elongation of one of the electron "ellipsoids"; C) H is in the Ci C2
plane. The masses of the electrons on the central section—o, at the limit-
ing point-*. Hole masses on the central section-A, at the limiting point-
K The curves were plotted in the ellipsoid approximation from the prin-
cipal values of the masses.

4. Magnetoplasma Waves

Inasmuch as the transverse components of the r e -
sistance increase with the magnetic field, the depth of
penetration of the alternating field into the metal also
increases. Because of this, when u < £1 there can prop-
agate in bismuth electromagnetic waves that attenuate
weakly if an » 1, something which is possible in the
absence of the magnetic field only when on > o^Eo^2. It
is simplest to explain the properties of these waves in
the limiting case of strong magnetic fields SI » u>nv/c.
The form of the conductivity tensor can be obtained
here without making any assumptions concerning the
spectrum of the electrons, and the spatial dispersion is
insignificant.[68] If the direction of the constant mag-
netic field is chosen to be along the z axis, then

1

" a J [

(p,.~i
(Px-l
- (Px

;>2>

-p )(p«~

a

a-
P«)<

= P
-P

;

• - - x ,

--- y ,

• - x ,

dPz } ~Vz(Pi, —
(39)

The bar denotes averaging over the trajectories, and
the integration with respect to p z is over the Fermi
surface. We then use Maxwell's equations

j - i £ r I* ram.

in which we neglect the displacement current. Assuming
that fi « o)neo1/2, we find that two electromagnetic
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Table III. Velocities of magnetoplasma waves

H
H
H
H

C2, k
c2, k
C,, k|
C,, k|

c3

t-3

s-waves (42), uH-
Expeliment *)68'26

1.85
2.3
2.0
6.0

, l04cm/sec-Oe
Theory ••)«

It
2,2h6.7h

P- waves (41), uH-i/oo
Experiment 68'M

2.6
5.55

s8, 10< cm/sec-Oe
Theory «8

2.7e

6.7h

*) Measurement error approximately 20%
**) Calculated with the ellipsoidal model, "e" (*'h")-the main contribution is made by

electrons (holes).

waves can propagate in the metal. The connection be-
tween the frequency and the wave vector in each wave
is linear:

o> == ku ± (H). (40)

The phase velocities of the waves u±(H) are propor-
tional to the constant magnetic field and depend on its
orientation, and also on the direction of propagation
relative to the crystallographic axes. In order of mag-
nitude, u ~ cfi/u>n. In the general case, both waves are
excited in a coupled fashion. For each wave, the pro-
jection of the electric wave parallel to the constant field
is smaller by a factor w/Q, than the two other projec-
tions. If k i H one of the waves cannot propagate. If the
angle 6 between k and H is close to a right angle (the
region of applicability of the written equations below is
actually broader, since for most orientations the off-
diagonal components of (39) are small), then the spec-
trum of the waves is given for the formulas:

kV =- 4itiu> | det a |/(aBBaz2 + o2
B!), (41)

(Ac cos 9)2 =. 4iti« (avy -f orjz/o,j). (42)

In this case the electric field in the wave (41) is di-
rected predominantly perpendicular to k and H, and in
the wave (42) it lies in a direction perpendicular to H
in the plane of k and H. The attenuation of the waves
as a result of collisions of electrons and holes can be
taken into account qualitatively by adding i/2r in the
spectrum (40). Since the complex refractive index kc/w
is proportional to H"1, the absorption of energy in the
bulk metal increases in proportion to H (see Fig. 14).
In a thin plate, standing waves are produced. Their ob-
servation makes it possible to determine the velocities
u± and to compare them with the calculated values.
Such a comparison was made in c68:l (see also :69>70])
for different propagation directions. The components of
the conductivity tensor (39) were calculated in the ellip-
soidal model from the measured values of the masses
and cross sections (Table III).

With decreasing magnetic field, at a specified fre-
quency, the wave vector of the wave increases, and when
Q, =3 wnv/c it becomes necessary to take the spatial dis-
persion into account. One of the most interesting is the
question of the limiting value of the magnetic field, be -
low which the propagation of the waves is impossible.
The damping mechanism is analogous to the well-known
Landau damping for the case of a plasma: intensive en-
ergy transfer from the wave to the electrons occurs
when the phase velocity of the wave coincides with the
drift velocity of the electrons. Since the electrons drift in
the direction of the magnetic field and the wave velocity
decreases with decreasing field, the projection of the
phase velocity of the wave on the direction of the field

coincides at a certain value of the magnetic field with
the maximum possible electron velocity projection
vz m a x . As a rule vz m a x is the velocity at the limit-
ing point of the Fermi surface. The condition
w = kzvz max determines the limiting value of the mag-
netic field.

It is possible to distinguish in an experiment between
the Landau damping1-26-1 and the damping due to cyclotron
resonance.[69' 26J The latter turns out to be shifted as a
result of the Doppler effect.

Electron drift causes cyclotron resonance in the field
of the wave to occur aX a frequency a; satisfying the
condition Q, = co — k zv z . Since the resonance condition
is satisfied in the entire interval of the velocity projec-
tions, from vz m i n to vz m a x , the waves cannot propa-
gate in the corresponding interval of magnetic field val-
ues. In the experiment, owing the large anisotropy of
the Fermi surface, it is possible to separate the con-
tributions made to the conductivity by the electrons and
the holes, and to observe all types of damping. By
measuring the frequency, the limiting values of the
field, and the wave vector of the wave (from the stand-
ing waves in a thin plate) it is possible to determine the
velocity on the Fermi surface, and also the cyclotron
mass at the limiting point. In C26:i they obtained vp
= (2.35 ± 0.15) x 107 cm/sec and m l i m = (0.220
± 0.002)m0 for holes at HlC 3 , and v F = (1.13 ± 0.05)
x 10a cm/sec for electrons at H II C2. We note that the
cyclotron mass of the holes at the limiting point differs
from the mass on the central section at the same mag-
netic field direction, m e x p = (0.203 ± 0.004)m0,

c20] thus
evidencing a certain deviation of the hole spectrum
from quadratic. This difference agrees quantitatively
with the theoryc9] (see the estimate on page 7).
There is neither Landau damping nor damping due to
the cyclotron resonance when kxH. This case was in-
vestigated experimentally in C71]. If k i H , as already
noted, one wave can propagate, and its electric field lies
in a plane perpendicular to the constant magnetic field.
For the same reason, the absorption coefficient in-
creases with the magnetic field only in the case of a po-
larization £ lH. The absorption coefficient measured in
c71:i was compared with a theory in which the electron
spectrum was assumed to be quadratic, the relaxation
time was assumed isotropic, and no account was taken
of spatial dispersion. The most doubtful is the latter
assumption, since k — °° at the limits of the region of
the wave existence. On the whole, the agreement with
the theory is satisfactory. The limit of the wave exist-
ing at large values of H lies at the frequency of the so-
called hybrid electron-hole resonance. In weaker mag-
netic fields, we have k2 < 0, corresponding to strong
damping of the wave. With further decrease of H, k2
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vanishes. This is the "dielectric anomaly." Subse-
quently k2 increases and tends to °° on approaching the
electron-electron hybrid resonance, after which it r e -
verses sign. Wave propagation in the field interval be-
tween the electron-electron hybrid resonance and the
dielectric anomaly was observed in t721.

5. Optical Properties in the Infrared Region

The dielectric constant of bismuth in the optical fre-
quency region was investigated in [S) on the basis of the
theory of [ 9 ] . For frequencies higher than oinv/c, the
spatial dispersion is negligible and

Ree i 4 =,e? 4 —^-. (43)

The value of (wj^ik is given by (37), and the frequency-
independent part of £ ^ is determined by the virtual
transitions of the electrons between close bands and can
be expressed in terms of the spectrum parameters (19)
and (20). A weakly damped electromagnetic wave can
propagate in the region where Re E^ is positive. The
wave damping is determined by the electron mean free
path, that is, by the electron and electron-phonon scat-
tering. The corresponding Im E ^ is smaller than
Re eik by a factor CUT , where r ~Ke°/y. The wave
propagating on the surface of the metal is absorbed in
the metal within a distance

k V&h ~ 1°"3 cm.

At higher frequencies, one more absorption mechanism
comes into play, namely, direct transitions of the elec-
trons from the valence band eo(p) into the conduction
band £a(p) with absorption of a photon. Since the photon
momentum is small compared with the electron momen-
tum, the electron momentum is conserved. The corre-
sponding absorption limit is determined by the lowest
frequency for which

fia> =--eo (p) — eo(p). (44)

In the two-band model (14) Kwmjn = £g + 2EJT. In this
case the condition (44) is satisfied at u> = k>mjn for all
p lying on the Fermi surface, and Im £jk changes
jumpwise. In the general case, the contribution made to
Im e^k by the interband transitions increases smoothly,
starting with w m m . However, for the central part of
the Fermi surface, the approximation (14) is good
enough, therefore the growth of Im Ej^ is rapid and the
condition ficomin = £g + 2EJP determines satisfactorily
the limiting value of the frequency. At large o> the be-
havior of ImEjjj depends on the peculiarities of the
band structure.

Figure 16, which is taken from c'31, shows the trans-
mission coefficient for a plate of 4 x 10 ~3 cm thick as a
function of the wavelength Ao in vacuum. The start of
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FIG. 16. Coefficient of
transmission in the infrared
region along the binary axis
of a bismuth plate [73 ].
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FIG. 17. Dielectric constant in the infrared region [7 ]. The figure
shows an expression for eyy (in the ellipsoidal approximation) deter-
mined essentially by electrons. By dl and a2 we mean here aXx and
aVy (3)oraXx/E'anda-yy/E'(14).

the transparency at 65 /i and its growth at 55 ii are ap-
parently connected with the vanishing of Re £ z z and
Re £yy. Starting with these frequencies, waves can
propagate in which the electric field is directed along
the trigonal and bisector axes, respectively. The con-
nection between the frequency and the wave vector in-
side the plate is given by the relations

The frequencies corresponding to the dielectric anoma-
lies can be determined also from the minima of reflec-
tion of the radiation of the surface of a bulky sample.[74:l

To be sure, the positions of the minima are determined
by the condition (ck/w)2 = 1, but owing to the small value
of Eik the values obtained are close: Ao = 53.6-53.5 \i
for Re £ z z and Ao = 63.3-63.2 fi for Re Exx-173 In m

there were observed standing waves in a plate of thick-
ness 14.7 ii, making it possible to measure the k(w)
dependence for a wave propagating in the direction of
the trigonal axis, and to calculate £yy and (w^)yy
(Fig. 17). The abrupt drop of the transparency at Ao
~ 20 ii (see Fig. 16) is due to the beginning of direct
electron transitions.

Oscillations of the reflection coefficient in a mag-
netic field were observed in IZ1J. To explain this phe-
nomenon, the authors of C21: considered the transitions
of the electron from the valence band to the conduction
band within the framework of the model (26). If we as-
sume the selection rules Ar = 0 and Am = ± 1 for the
spin quantum number (the reflection coefficient was
measured at almost normal incidence in a magnetic
field perpendicular to the surface), then we obtain for
the frequency of the observed photon the expression

to -= ~ [ei (r + 1) 4 14 + 4egr/1«j"2. (45)

25 31/ JS 40 tS

At a specified frequency, the condition (45) determines
the values of the magnetic field (corresponding to the
integer values of r) at which the reflection coefficient
has maxima. Analyzing the dependence of the resonance
frequencies (45) on the magnetic field, it is possible to
obtain Eg and Eg/rii. This procedure was used to deter-
mine the gap Eg = 0.015 ± 0.002 eV and the values of
the cyclotron masses m on the bottom of the band at
magnetic-field directions parallel to the binary and bi-
sector axes. From these values, and also from the
cyclotron masses on the Fermi surface (determined in
c61]) the Fermi energy, reckoned from the bottom of the
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conduction band, was found with the aid of (23) to be
cjr = 0.025 ± 0.005 eV. This value yields Eg + 2eF

= 0.065 eV (19 jx) for the limit of the direct transitions,
which agrees with the value given in [73:l.

IX. MEASUREMENT OF THE FERMI MOMENTA
IN EXPERIMENTS WITH ULTRASOUND AND BY
DETERMINING THE CUTOFF OF THE
CYCLOTRON RESONANCE

The Fermi momenta in bismuth were determined by
two methods: by studying the absorption of ultrasound1-75'
76:i, and with the aid of cyclotron resonance.1-773 These
measurements are based on formula (20), which con-
nects the diameters of the trajectories in the r - and p -
spaces. In the former case, the comparison standard is
the wavelength of sound. In measurements of the mag-
netic field, different numbers of waves are spanned by
the diameter of the orbit, and this leads to oscillations
of the absorption ("geometric resonance"). By using
cyclotron resonance (in a parallel field), the diameter
of the orbit is compared with the thickness of the sam-
ple. No cyclotron resonance is observed in fields in
which the orbit is not fully contained in the sample. In
both cases it is necessary to have Q.T » 1 for the obser-
vations. We present the principal dimensions of the el-
lipsoids measured by the above methods:

electrons.
P, = (5.4±0.15) 10"22 g-cm/sec/7 7 3

(5.5±0.2)-l0-2i g-cm/sec,"63

p,i = (76 ±3-10-**) g-cm/sec, [ 7 6 ]

holes.

py = (13.8 + 0.5)-10'22 g-cm/sec.C76]

All these values agree with those calculated in :273, al-
though only p, was used to determine the parameters
of the theory. t9]

We note also an investigation1-783 in which ultrasound
was used, and which reports the giant oscillations of ul-
trasound absorption first considered in :793.

X. TUNNEL EFFECT

A study of the tunnel effect makes it possible to de-
termine the position of the singularities in the state
density. In interpreting the experimental data of c8°3,
they took into account the singularities at the bottom or
top of the bands, although this does not exhaust all the
possibilities. The numbers given in C80:i do not agree
with the data of [ a l '3 3 3 . This contradiction is eliminated
if account is taken of the singularities noted in t9] and
called there "open surface." In spite of the fact that
there can be no real open surface when account is taken
of the higher-order terms in p, nevertheless the rapid
variation of the density of states near the corresponding
values of e should remain in force. In this connection,
it becomes unnecessary to assume1-803 the existence of
a narrow gap (of width on the order of the Fermi en-
ergy) near the hole maximum.

XI. PHONON SPECTRUM

The elastic properties of a bismuth crystal are de-
scribed by six elastic moduli (see, for example, : 5 ] ) .

They were determined from measurements from the
speed of sound.c81] A sufficiently complete investiga-
tion of the phonon-spectrum of bismuth was carried out
with the aid of slow neutrons.1-823 It is curious that at
the point of the type T, on the boundary of the Brillouin
zone, the gaps between the acoustic and optical branches
are quite large, on the order of the Debye frequency.
At the same time, repeating the reasoning used in con-
nection with the electron spectrum on page 3, we can
arrive at the conclusion that these gaps should be small.
Actually, the realignment of the electron spectrum due
to the deformation leads to a renormalization of the
phonon spectrum; this renormalization is large for fre-
quencies on the order of the new Fermi energy (the De-
bye frequency and the Fermi energy in bismuth are of
the same order).

Thus, summarizing on the foregoing, we note that
the properties of bismuth are essentially correctly ex-
plained by modern theory of metals. At the same time,
the information at our disposal can, of course, not be
regarded as exhaustive. There is no doubt that in the
future the study of phenomena in strong magnetic fields,
started by Kapitza more than forty years ago, will con-
tinue, as will the investigations of the specific heat and
the mechanism of the impurity influence. The number of
different applications of bismuth in practice will also
increase.
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