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1. VORTEX LINES IN SUPERFLUID HELIUM

the 1920's, when quantum mechanics was
created, both theoretical and experimental physics
have been divided into two more or less independent
parts—classical and quantum physics. It is customary
to consider that quantum mechanics, as the more
general form, is required for the description of
"microscopic," that is, atomic and nuclear, phenom-
ena, and that ordinary classical mechanics is com-
pletely adequate for the investigation of "macro-
scopic ' ' phenomena, especially for describing the
motions of large "macroscopic" quantities of matter.
This point of view is, of course extremely arbitrary.
Even the existence of stable macroscopic bodies is a
manifestation of quantum mechanical laws. Nothing
in classical mechanics could prevent electrons from
"falling into" atomic nuclei; only quantum mechanics
can explain why this does not actually occur. Never-
theless, the foregoing distinction is true in a narrower
sense. The Planck constant fi that characterizes
quantum processes does not appear in the equations
of motion of solids, gases, and liquids. This constant
can therefore be measured only in atomic experiments.

The behavior of some objects cannot be understood
even on a macroscopic scale, however, purely on the
basis of classical mechanics. This applies especially
to liquid helium, or, more accurately, to the two iso-
topes liquid He3 and liquid He4. These liquids are
absolutely unfreezable, since they remain liquids
down to the absolute zero temperature. This is a
specific quantum effect. According to classical
mechanics, at absolute zero all atomic motions cease
and all bodies must be solids.

It is therefore not surprising that the laws of mo-
tion of these liquids are inexplicable from a classical
point of view. Specifically, at a sufficiently low tem-
perature liquid He4 becomes a superfluid; this means
that it can then flow through fine capillaries as an
ideal liquid, manifesting absolutely no viscosity. We
find the properties of rotating superfluid helium to be
especially interesting. In this case its quantum
properties are revealed most directly, and the equa-
tions of motion of even large quantities of the liquid
contain Planck's constant explicitly. Therefore even
mechanical experiments with rotating superfluid
helium enable us to measure this quantum constant
in principle.

To understand the rotational properties of a super-

fluid let us consider a rotating cylinder filled with
such a liquid. If the liquid in the cylinder also rotates
about the axis of the cylinder, then the atoms of the
liquid perform a rotational motion. This motion is
quantized in accordance with the laws of quantum
mechanics. To elucidate the consequences of this fact
we shall use Bohr's semiclassical quantum rules,
according to which an atomic orbit of circumference
27rr (where r is the distance from the axis of rota-
tion) should be fitted by an integral number of de
Broglie wavelengths 27rR/Mv (where v is the velocity
and M is the mass of the atom). In other words, the
rotation of a liquid should satisfy the relations [1>2]

where n is an integer. Equation (1) determines the
distribution of velocity in a rotating superfluid, and
this distribution differs from that of velocity in an
ordinary liquid. The latter rotates as a unified whole
with the velocity distribution v = fir, where fi is the
angular velocity. The velocity increases without limit
as the axis is approached. [Of course, Eq. (1) is
meaningful only at distances much larger than atomic
distances.] A line in a liquid that is rotating about the
line in accordance with Eq. (1) is called a vortex line.
In our case the only vortex line is the axis of the
cylinder. If, however, a liquid performs other mo-
tions besides its rotation about the axis, this vortex
line can become bent, thus complicating the distribu-
tion of velocities. Near the line the distribution will
continue to be subject to (1), where r will mean the
distance from the vortex line. Vortex lines in super-
fluid helium are the only macroscopic quantum ob-
jects of their kind. Indeed, on the one hand, Planck's
constant appears explicitly in the basic Eq. (1), which
determines all properties of the vortex line. And on
the other hand a vortex line can be very long; in the
very simple example that we have selected the line is
as long as the cylinder.

A vortex line possesses energy that equals the
kinetic energy of the liquid's motion about the line.
It is evident that in a real liquid only vortex lines
with n = 1 will be formed. We shall henceforth con-
sider only such "unit" lines. The calculation of their
kinetic energy yields

1/2 R
A.2 R

-1/2 0 (2 )

where p is the density of the liquid, I is the length
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of the line, and R is the radius of the cylinder. The
quantity a is a certain distance, of atomic order of
magnitude, at which Eq. (1) becomes meaningless; a
must be introduced as the lower limit of integration
over r in (2). The magnitude of E is only slightly
dependent on the exact value of a.

Since finite energy is required for the production
of a vortex line, this can only occur at some finite
rotational velocity of the cylinder. It can be shown
that this "cr i t ica l" angular velocity of rotation is

MR*
In Rla. (3)

If the rotational velocity is smaller than ftcr, the
liquid will remain at rest even in a rotating cylinder.
When U > S2Cr a vortex line is generated in the cen-
ter of the cylinder and the aforedescribed rotational
pattern is found. If fl » Qcr many vortex lines are
formed in the cylinder. As a result the motion of the
liquid on the average resembles its rotation as a
whole, although the velocity increases in accordance
with (1) near each vortex line.

We note that when the rotating cylinder is a fine
capillary the angular velocity £2cr is very appreciable.
With R measured in centimeters we have

Q c r s e c - ^ l , 4 . 1 0 - * l Q ( f y - 8 > .

The time when a vortex line is formed in the cylinder
can be observed. Therefore ftCr i s the first example
of a macroscopic mechanical quantity whose definition
contains Planck's constant explicitly.

Experiments with vortex lines for the, in principle,
possible determination of Planck's constant by
mechanical measurements were performed in 1960 by
by the English physicist Vinen.[3] The vibrations of a
string placed along the axis of a cylinder filled with
superfluid helium were observed. Each vibration can
be represented as the sum of two oppositely polarized
circular motions (clockwise and counter-clockwise)
of a bent string. The sinusoidal shape of the string
has a wavelength that in the simplest case equals the
fundamental tone of a string twice as long. The rota-
tional frequency can be obtained by equating the
centrifugal force to the elastic force tending to r e -
turn the string to equilibrium. This elastic force is

k
JTr'

where r is the deviation of the string from the axis,
k is a characteristic constant of the string, and I is
the length of the strength. The frequency u>0 is then
defined by

-\-V-
I V v.

(4)

(with K representing the mass of the string per unit
of its length). When the string is immersed in a liquid
K must include the mass of liquid that is entrained by
the string. In a liquid at rest the clockwise and
counterclockwise frequencies of the string are, of

course, exactly equal; this is equivalent to a doubly
degenerate vibration.

In the rotating cylinder, when U > ficr the liquid
begins to rotate about the string according to (1). In
other words, a vortex line is created with its axis
along the string. The line vibrates together with the
string. Since the moving string now coincides with a
vortex line it will be acted on by an additional force
having the same nature as the lift force on an air-
craft wing, represented by the Joukowski formula

where n is a unit vector having the orientation of the
angular velocity, F = 27rrv = 27rfi/M is the circula-
tion round the string, and u is the velocity of motion
of the string. The magnitude of the force is

directed perpendicular to the string and to the direc-
tion of the latter 's motion. One can easily compre-
hend that for the oscillations where the direction of
string rotation coincides with that of the liquid, the
force is directed toward the axis; for the other oscil-
lation the force is directed away from the axis. In the
first case the force must be added to the elastic force
in the equation for the frequency. Substituting
u = co r, we have

, k , 2n%

We assume co = cog + Aco/2. If, as actually does oc-
cur, Ato « a>0, Eq. (6) yields approximately

. 2nh p
Aco « -^rr-1- •

(6)

(7)

The frequency of the other independent oscillation
decreases by the same amount; the frequency differ-
ence between the two oscillations is thus Aco.

We note that Eq. (7) contains, in addition to
Planck's constant, only certain parameters, charac-
terizing the liquid and the string, which can be meas-
ured in advance. The experiment consisted in meas-
uring the frequency difference Aw.

The experimental arrangement is shown in Fig. 1.
The string W was a beryllium bronze wire 5 cm long
and 2.54 x 10~3 cm in diameter. This wire was in-

w

FIG. 1.
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serted into a helium-filled cylinder C having a 4-mm
inside diameter. The apparatus was rotatable at rates
from 0.1 to 2 rpm. The natural vibrational frequency
of the wire was about w0 « 500/sec. The experiment
was performed at the temperature 1.3°K. The ap-
paratus was mounted between the poles of a magnet,
so that the wire was acted on by a field of
3 x io3 Gauss.

When an electric current flowed through the wire
it was deflected by the magnetic field. The initial
current pulse induced vibrations of the string. Vibra-
tions of the string in the magnetic field induced a
potential difference between its ends; this p.d. was
proportional to the velocity of the string's motion and
could therefore be used to study the vibrations. In the
absence of a vortex line and with equality of the two
circular frequencies the vibrational amplitude is
damped monotonically following the initial pulse. If
the frequencies differ beats are produced, and the
monotonic damping is modulated with the frequency
Aw. Under our experimental conditions the frequency
difference was about 0.45/sec. Figure 2 is a typical
recording of the string vibrations. We observe that
the initial decrease of amplitude is followed by an
increase; the occurrence of beats is thus manifest.

The experiments were not actually performed for
the purpose of determining ft, which is known with
extremely greater accuracy from ordinary "a tomic"
experiments, but rather to test the theory of vortex
lines. The results agreed well with the theoretical
predictions, and thus proved the theoretical possibil-
ity of determining Planck's constant in a purely
mechanical manner. The electromagnetic devices
comprised only a subsidiary portion of the apparatus.

The foregoing discussion omitted mention of cer-
tain secondary effects that interfered with the exper-
iments. First, the vortex line did not always coincide
with the string over its entire length. In such in-
stances the beat frequency did not agree with Eq. (7).
It also appeared that some beats existed in a nonro-
tating cylinder when no vortex line was present.
These beats are accounted for by the hypothesis that
the wire was not completely symmetrical and uniform
from a mechanical point of view. For example, some
segments of the wire could have been twisted. Such
"paras i t ic" beats had to be taken into account in
treating the experimental data.

FIG. 2.

Vinen's experiments were performed with straight
vortex lines parallel to the rotational axis of the
cylinder. As already mentioned, the lines may also
be curved or even closed to form vortex rings. The
formation of such rings in a rotating cylinder is en-
ergetically unfavored; they appear only in the flow of
helium along capillaries or in the motion of particles
in the helium. Rayfield and Reif[4-1 have studied
vortex rings formed around an ion moving in helium.
In these experiments the helium was irradiated by a
radioactive source and the resultant ions were ac-
celerated by an electric field. Below 0.6°K practically
the entire energy obtained by the ion from the field is
expended in the formation of a vortex ring moving
with the ion. The energy of the ring is given by (2)
with I replaced by the ring circumference 27rb
(where b is the radius of the ring) and with R r e -
placed by b. This formula shows that when we know
the energy, i.e. the potential difference through which
the ion has passed, we can calculate the ring radius
b. On the other hand, the radius determines the
velocity of motion of the ring:

i> = — In 6/ (8)

Since the velocity of a ring associated with an ion can
also be measured directly, all quantities in this rela-
tion are known. The equation can therefore also be
used for the experimental determination of ft. Even
when the uncertainty of the denominator a of the
logarithm is taken into account, ft can be determined
to within 30%; this is a fairly good result for such an
unusual method. The maximum ring radius b in
these experiments was ~10~4 cm. The rings were
thus completely macroscopic, having radii that were
many times larger than atomic separations in liquid
helium, which are of the order 4 x io~8 cm. [This
last quantity is taken as the value of a in (2) and (3)].

2. QUANTIZATION OF A MAGNETIC FLUX IN
SUPERCONDUCTORS

Another interesting class of macroscopic quantum
effects is associated with the properties of supercon-
ductors. Superconductivity has much in common with
superfluidity. We can attribute the absence of r e -
sistance in the superconducting state to the formation
of a superfluid liquid of electrons in a superconduct-
ing metal; this liquid flows through the metal without
friction. Let us consider a superconducting ring or
hollow cylinder. When a current is generated in such
a ring it will flow for an infinitely long time because
resistance is absent. However, it is found that the
current cannot be of arbitrary magnitude, because a
current round a ring or cylinder represents the
circular motion of electrons, which is quantized like
the rotational motion of helium atoms about a vortex
line. The quantization rules are different, a current
flowing through a conductor generates a magnetic
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field that alters the properties of the system.
We shall not here derive the quantization rules for

this case; the derivation has already been published
in the review article . The current-induced mag-
netic flux is quantized within the cylinder cavity:

Q = ff-ni?2 = 0o« = i ^ f t . (9)

Here * is the magnetic flux, H is the magnetic field
inside the cylinder, R is the inside radius of the
cylinder, e is the charge of an electron, and c is the
velocity of light. One quantum * 0 °f t n e magnetic flux
has the numerical value 2.06 x 10~T gauss-cm2.

Although *o has a very small value, the corre-
sponding magnetic field could be measured experi-
mentally. Deaver and Fairbank ^ used tin tubes
about 1 cm long with 1.5 x 10~3 cm inside diameter
as superconducting cylinders. Corresponding to a
magnetic flux of one quantum *0 the magnetic field
inside the tube would be about 0.1 gauss, which is
quite appreciable. (We recall that the earth's mag-
netic field is 0.5 gauss.) Small coils (having 10 000
turns each) positioned near the ends of the tube
measured the magnetic field generated by the tube.
During the measuring period the tube vibrated with
a 1-mm amplitude at 1000 cps along its axis; the emf
generated in the measuring coils was registered. The
instrument had been calibrated to give the field in the
tube directly from this emf. It was found that within
the experimental error limits the magnetic flux in-
side the tube actually varied only discontinuously in
accordance with Eq. (9). The experimenters esti-
mated the measurements to be 20% accurate. It can
be affirmed that Planck's constant may be measured
with similar accuracy by means of this completely
macroscopic, although not mechanical, procedure.

Doll and Nabaue r^ experimented with a lead tube
of 10~3-cm diameter and 0.6-mm length. In this case
a magnetic field of 0.25 gauss corresponded to a
single quantum of flux $0 . In these experiments the
magnetic moment of the tube was measured, or,
speaking more accurately, the perpendicular force
acting on the tube in the external magnetic field. The
tube, which had been formed by the deposition of lead
on a quartz fiber, was weighed using a torsion bal-
ance (Fig. 3). An alternating magnetic field Hx of

FIG. 3.

known magnitude was applied in the perpendicular
direction. This field produced an alternating moment
of force that set the system into vibration. The field
frequency was automatically set equal to the natural
vibrational frequency of the system. Knowing the
logarithmic decrement, which had been measured in
advance by observing the damping of free vibrations,
and having measured the vibrational amplitude in the
field, the moment of force was determined. The mag-
netic moment of the tube and the flux passing through
it were then calculated. The results confirmed Eq.
(9).
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