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INTRODUCTION

a) Scope

J.HE interest in problems involving the theory of non-
linear interaction of electromagnetic waves in a
plasma and of nonlinear effects in a plasma dates back
quite a while ( s e e ' - 1 ' ) . Only recently, however, has
the theory of nonlinear-interaction effects been per-
sistently pursued and developed to the extent of de-
riving clear-cut physical notions concerning the
mechanisms of such an interaction. This development
is connected with attempts at solving a number of
problems in turbulent-plasma physics, strongly stim-
ulated by the rapidly developing experimental r e -
search. We must limit from the very outset the scope
of the nonlinear physical effects that will be con-
sidered in the present review. We confine ourselves
to nonlinear effects arising in a plasma in the ab-
sence of collisions. This means that we consider only
sufficiently rapid nonlinear interactions, occurring
within times much shorter than the collision time
Tcoll- ^ large number of problems involving non-
linear effects, in which collisions play a significant
role, and in particular the dependence of the effective
number of collisions on the electromagnetic fields,
etc., is considered in the review by V. L. Ginzburg
and A. V. Gurevich^ . We confine ourselves hence-
forth to the interaction between waves having random
phases. This means that the characteristic time dur-
ing which the nonlinear interaction sets in is much
longer than the characteristic time in which the wave
phase changes. In the general case it is expedient to
speak not of the characteristic phase-change time,
but more accurately the characteristic field correla-
tion time TC . Thus, we shall assume that the time of
the nonlinear interaction of the waves satisfies the
inequalities

Tc< T < TcoU. (1)

Another essential limitation is the assumption of weak
nonlinearity. To this end it is necessary, in general,
that the wave energy in the plasma not exceed a cer-
tain value W m a x , determined by the possibility of
expanding the nonlinear interaction in terms of the
amplitudes of the interacting waves. In the weak-
nonlinearity approximation we must consider the in-
teraction of linear oscillations and plasma waves,

interest attaches to weakly-damped waves, since such
waves can be easily excited and the energy contained
in them may be high. The intensity of strongly-
damped waves is quite small and its order of magni-
tude is the same as of the thermal-fluctuation inten-
sity. An essential assumption restricting the number
of problems to be discussed further is that the energy
of the interaction waves be much larger than the en-
ergy of the equilibrium fluctuations W j . If W is the
wave energy density per cm3, then the required condi-
tions are

WT « W « Wa (2)

It must be emphasized that W m a x is frequently
quite high, and the weak-nonlinearity approximation
describes the wave interaction in a wide range of
values of the intensity W.

If W » Wx then, as a rule, the interaction between
particles via the waves, and also the nonlinear inter-
action between the waves themselves, prevails over
pair collisions. It is precisely under these conditions
that the collective processes in the plasma begin to
play the dominating role. Usually the plasma is called
turbulent when W » W-p, and weakly turbulent when
W « W m a x . We confine ourselves here to an analysis
of the results obtained on wave interaction in a weakly
turbulent plasma. It is appropriate to dwell here
briefly on the history of research in the theory of
nonlinear effects. As already noted, nonlinear effects
for transverse waves in a plasma were considered
relatively long ago in connection with ratio wave
propagation"" . The first to raise the question of
nonlinear interaction of Langmuir oscillations was
Sturrock'-21 , and the problem of interaction between
Langmuir and transverse waves was raised by Ginz-
burg and Zheleznyakov1-65-1. Further development of
the theory was by Drummond and Pines [22-1 and
Shapiro^23-'*. A specially important role was played
by investigations of the quasilinear approxima-
tion [22-24,44,92-95]̂  a i tho ugh these questions do not
pertain directly to the problem of nonlinear interac-
tion. In the quasilinear approach, account is taken
only of the reaction of the generated oscillations on
the object of generation (say, the beam particles).

whose spectra are well known (see [4-6] x Particular

*Closely related to nonlinear-interaction problems is research
on the scattering of electromagnetic waves by a plasma, carried
out by I. A. Akhiezer, A. I. Akhiezer, and A. G. Sitenko [M]
(see ["]), by Rosenbluth and Rostocker ["], and by Salpeter [80].
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These effects are similar to those well known as
quantum-generator saturation effects ^ . The first
to attempt an investigation of nonlinear effects
proper in a plasma, within the framework of the
kinetic approach, were Kadomtsev and Petviashvilr
(see , Karpman , Galeev, Karpman, and Sag-
deev [2% Camac [29] (see [ 3 0 ]), Rudakov, Vedenov, et
a l [4i,99]; Akhiezer, Daneliya, and Tsintsadze [31>85],
and others t32], and by Gailitis and Tsytovich [18~20].
Many problems in the theory of nonlinear effects was
considered by Silin'-71 , who used the correlation-
function method developed by Bogolyubov *• . Although
the l a t t e r method i s s t r i c t ly speaking m o r e consis tant
and p e r m i t s allowance to be made for pa i r -co l l i s ion
effects, the g r e a t e r complexity of the mathemat ica l
formal i sm does not pe rmi t i t s extensive u s e for v a r i -
ous nonlinear in teract ions , with the exception of the
case considered in • , that of pa r t i c l e s interact ing
in accord with Coulomb's law. In the investigation of
m o r e complicated in teract ions ^ it becomes n e c e s -
s a r y to use the usual formal i sm of per turbat ion theory,
s imi l a r to that in [ 2 6 ] . It must perhaps be noted that
the per turbat ion theory formal i sm [26>28] is quite
cumber some . I ts complexity has led to numerous
e r r o r s in the calculat ions p resen ted in the original
papers , and in the determinat ion of the l imi t s of a p -
plicabil i ty of the r e s u l t s . Somet imes no such l imi t s
a r e indicated at a l l . A la rge number of p rob lems in -
volving nonlinear interact ion was investigated by u s -
ing the kinetic equation for p lasmons , with account
taken of induced sca t te r ing p r o c e s s e s (Gailit is and
Tsytovich Cl8»20], Kovrizhnykh and Tsytovich [ 1 9 ] ,
Tsytovich'-183 '15-', Kovrizhnykh ^1S\ and Liperovski i
and Tsytovich [ 7 4 ] ( see [ 9 7 ' 9 8 ^)) . With this method it is
possible not only to p re sen t a s imple in terpre ta t ion
in the language of probabil i ty theory, using d iagram
techniques, and to revea l cer ta in inaccurac ies , but
a lso to investigate in s imple manner p rob lems which
appear complicated when per turbat ion theory is used,
such a s the interact ion between longitudinal and
t r a n s v e r s e waves '-19 , interact ion of waves in a m a g -
netoactive anisotropic p lasma (Tsytovich and
Shvar t sbu rg [ 3 5 ] ) , re la t iv is t ic effects C l 8 ] , and
others '-3 5 '3 4 ' . It has become c l e a r recent ly , for e x -
ample, that nonl inear effects play a very important
role in the analysis of p rob lems involved in the
origin of cosmic r a y s (Ginzburg^ ,
Tsytovich'-14 '37 '39-'), when re la t iv i s t ic effects can no
longer be d i s regarded .

Before we proceed to a detailed exposition of the
mate r ia l , we must make a few r e m a r k s concerning
the var ie ty of fields of application and p rocedures for
calculating nonl inear effects.

b) Nonlinear Effects and P l a s m a Phys ics

We must point out f i rs t that the theory of nonlinear
effects can be extensively used in the analys is of
p la sma instabi l i t ies (for a review of p l a sma ins tab i l -

i t ies see [7-1). Frequently the development of the in-
stabil i ty leads to the occur rence of intense random
turbulent osci l la t ions . The nonlinear effects d e t e r -
mine the amplitudes of the osci l lat ions and c o n s e -
quently the physical p r o c e s s e s a r i s ing in the turbulent
s ta tes of the p lasma . The extent to which an analysis
of the nonlinear effects is essent ia l can be seen from
the following simple example. Let us consider the
well known p lasma instabil i ty that se t s in when beams
interact with a p l a sma . The generat ion of Langmuir
osci l lat ions by the par t ic le beam is under cer ta in
conditions perfectly analogous to the generat ion of
waves in sys tems with so-cal led negative t e m p e r a -
t u r e . In this case the mechanism producing the r a d i a -
tion may be Cerenkov excitation of the Langmuir wave
by the beam par t i c le , and the " i n v e r s e populat ion" i s
connected with the p resence of the par t ic le beam. As
a rule, the generated osci l la t ions have he re phase
veloci t ies on the o rde r of the beam velocity. If the
nonlinear effects can diver t the osci l lat ions from that
region of the phase velocity, in which they can be
generated by the beam, with sufficient speed, then
cascade- l ike development of the st imulated emiss ion

p r o c e s s e s cease s and the instabil i ty is stabil ized [36]

Thus, th is effect makes the re la t iv is t ic beams
stable [39], a factor having important consequences for
the as t rophys ics of cosmic r a y s .

This example i l lu s t r a t e s the genera l p r e m i s e that
only the investigation of nonlinear effects can d e t e r -
mine the p rac t i ca l significance of var ious p l a sma
ins tabi l i t ies . The nonlinear effects can a lso d e t e r -
mine the efficiency with which p la sma is heated by
different methods. Thus, if the heating i s accom-
panied by intense p l a sma osci l lat ions, then the non-
l inear conversion of these oscil lat ions into t r a n s -
v e r s e waves leaving the p lasma can se rve a s an ad-
ditional source of p l a sma cooling'-31 . Closely re la ted
to the problem of p lasma confinement is the question
of p l a sma diffusion. In the p resence of intense osc i l -
lations in the plasma, the p lasma diffusion is con-
nected not with pa i r col l is ions of the pa r t i c l e s , but
pr incipal ly with " c o l l i s i o n s " between pa r t i c l e s and
osci l la t ions . Such a diffusion is frequently called
anomalous '-16 . The nonlinear effects that l imit the
oscil lat ion ampli tudes de te rmine by the same token
the so-cal led anomalous diffusion. As a rule, the
anomalous diffusion is de te rmined by the long-wave
osci l la t ions . The nonlinear wave conversion that leads
to the Langmuir oscil lat ions from other types of waves
i s therefore of in te res t for p lasma confinement
p r o b l e m s .

The nonlinear effects a lso play an important role
when the p l a sma is acted on by external f ields. Fo r
example, if the p lasma i s in a sufficiently s t rong
constant e lec t r ic field E > E J J , where E Q
~ e ^ Q g / v r p g is the so-cal led D r e i c e r field, then the
pa i r coll is ions a r e unable to d iss ipa te the energy a c -
quired by the e lectron on the mean free path, and s o -
called runaway e lec t rons a r e produced . The a p -
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pearance of the runaway electrons results in plasma
instability, and oscillations are generated; then the
principal role is taken not by the pair collisions, but
the "coll isions" between the runaway electrons and
the plasma oscillations, which lead to anomalous
plasma resistance, much higher than the usual r e -
sistance due to pair collisions £62,89,59,ioi]_

If a weak electromagnetic wave is incident on a
plasma in which oscillations are excited, then this
wave becomes scattered by the oscillations and can
yield valuable information on the oscillation spectra
and intensities and on other plasma parameters,
particularly its temperature, density, etc. 5>19> .
Recently there has been extensive development of
experimental research in which nonlinear effects are
used for plasma diagnostics [75'76>78'83>84] This method
will apparently be most important in the investigation
of cosmic-plasma turbulence . Definite progress
has by now been made also in experimental investiga-
tions of turbulent plasma '-62 . Notice should be taken
here first of investigation of two-stream plasma in-
stabilities, particularly the observed high efficiency
of interaction between the plasma and the beams
(Fainberg et al. [8], Nezlin1-91, Alekseff and Neidigh[10],
Zavoiskii ' •1 1 '6 2 J) , the investigation of anomalous t u r -
bulent diffusion [ I2 '16-', and the nonlinear coupling b e -
tween high-frequency and low-frequency p lasma o s -
ci l lat ions . Many p rob lems in the turbulence of
labora tory p l a sma were considered in the review ,
and the investigation of as t rophys ica l p rob lems in -
volving turbulent p l a sma and c o s m i c - r a y acce lera t ion
is the subject of the reviews [13 '86>87]. Finally, g rea t
in t e r e s t has been evinced in p rob lems of in teract ion
between intense e lec t romagnet ic waves and a p lasma,
pa r t i cu la r ly high-frequency fields, l a s e r s ' - 9 8 ' 9 0 , and
shock waves [94-100].

c) Problems Involved in Procedures for Calculating
Nonlinear Effects

Nonlinear effects give rise to coupling between
different plasma waves, different oscillation modes,
whose number in the plasma are quite large, and
therefore the original articles deal as a rule with
only some particular types of interaction. At the
same time, it is necessary to cover more or less
fully all types of interaction in order to be able to
obtain a general picture that permits evaluation of
the relative roles of the different interactions and
the possibility of their different applications. The
difficulties in the proper interpretation of the new
important results obtained recently are connected in
part with the very complicated mathematical formal-
ism used in the original research. The purpose of
this review is to describe the principal results ob-
tained in this field in a simple form, which admits
of a lucid physical interpretation. Our exposition is
based on the coupling between the spontaneous and
induced processes, which is familiar to a large circle

of r e a d e r s at l eas t a s a r e su l t of the vigorous develop-
ment of the physics of quantum gene ra to r s and amp l i -
f i e r s . In fact, nonl inear effects in a p l a sma can be
re la ted to a number of induced p r o c e s s e s s imi l a r to
those known in nonlinear op t ics ' - 1 7 ' 9 1 . Thus, s t imu-
lated Raman scat ter ing, which i s well known in non-
l inear optics, is produced also in a p lasma. In a
p la sma such p r o c e s s e s a r e usually cal led " d e c a y s . "
It is advantageous to i l lus t ra te here , by means of a
s imple example, how nonlinear decay interact ions ,
which a r e obtained in s imples t fashion from the coup-
ling between spontaneous and induced t rans i t ions , can
be investigated by Bloembergen ' s method^ 9 1 , which
is widely used in nonlinear opt ics . This example will
a lso d isc lose c lear ly the l imi ts of applicabili ty of the
cus tomar i ly employed approach. The main quantity
usually involved in B loembergen ' s method is the
nonlinear polar izat ion P or the nonlinear cu r ren t
j = 9 P / 9 t which is connected with it . As shown in '-19 ,
in the case of high frequency waves such a nonlinear
cu r r en t produces in the p lasma an interact ion between
the t r a n s v e r s e and longitudinal p lasma waves (but not
between the t r a n s v e r s e waves themse lves ) . The dy-
namics of this interact ion i s de te rmined by Maxwel l ' s
equations with account taken of the indicated nonlineai
cu r r en t ( j ( 1 > and j < 2 ) a r e respect ively the l inear and
nonlinear c u r r e n t s of the p l a sma) ( c = 1):

rotrotE + - ^ = - 4 J T - ( J ' 1 ) + j(2)),

^ Ek*- <*>) J

ik1dk26(co-co1-co2)6(k —k! —k2). (3)*

It is s imples t to find a solution of (3) by the Bogolyu-
bov-van der Pol method'-102 , namely, it i s known that
in the l inear approximation the solution of (3) c o r r e -
sponds for an isotropic p lasma to independent p ropa -
gation of longitudinal and t r a n s v e r s e waves:

E \ (4)

Taking the weak nonlineari ty descr ibed by j into
account, we can seek a solution of (3) in the form (4)
assuming the amplitudes of the longitudinal waves
E£ and of the t r a n s v e r s e waves E ^ to be slowly v a r y -
ing functions of the coordinates of the t ime (com-
pared with l / k and l /w ). Then substitution of (4) in
(3) in the s imples t case , when the ampli tudes depend
only on the t ime, leads to the equations

(5)
(6)

dt ime i CO' (kj) co' (k2)

dt 2co' (ki) ^>

X

me co' (k2) (co' (k))2

) & o ( is — Jij •^2)1

*rot = curl.
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dt

where

2al (k2)

and

(7)

k.. and ek2 are unit vectors of the polariza-
tion of the transverse waves, and Aai = a) ( k)
— or ( kj) + ur ( k2) is the frequency detuning, which
characterizes the so-called phase synchronism of the
interacting waves. If the interacting-wave phases are
not random, then intense interaction can be expected
only if the sign of the nonlinear interaction does not
change appreciably during the characteristic interac-
tion time T, i.e., AciiT « 1. If furthermore the inter-
acting waves are almost monochromatic (i.e., Ek
= E6 ( k — kg)), then we easily obtain from the system
(5)—(7) Bloembergen's algebraic equations (see
(see 103<1 ), which describe the mutual pumping of
energy from the transverse to the longitudinal waves
and back, the characteristic time of such pumping, as
seen directly from (5) and (6), being proportional to
the first power of the effective wave amplitude. Other
results are obtained for random waves, when
(EkE£'} = | Ek 126 (k - k ' ) . We note that in order for
the wave to be regarded as random it is necessary
that the width 6a> of its spectrum satisfy the condi-
tion 6WT » 1, and consequently AWT » 1. Thus, the
interaction between the random wave corresponds to
a limiting case which is just the opposite of the phase-
synchronism condition. The fact that exp (iAwt)
reverses sign many times during the interaction
time has no particular significance in this case,
since the random amplitude Ek varies even more
rapidly. We can now obtain from the system
(5)—(7) an equation for the mean-square values
| Ek|2, multiplying, for example, each of the equa-
tions by E £ . Account must be taken of the fact that
the mean values of the cubes of the fields (EkEkjE^)
do not vanish and can be expressed with the aid of
nonlinear equations in terms of (EkEk1Ek2Ek3), and
the latter can be expressed in first approximation in

2 2terms of (EfcEkj) <Ek2Ek3), i.e., | E k | 2 | E k ' | 2 . Let
us write out, for example, the equation obtained for

4 2

J * = J a*(k!,

j k2) corresponds to the probability obtained
int193 for the stimulated Raman scattering of t rans-
verse waves by the generated longitudinal waves. We
shall also see that the simple probability considera-
tions and the coupling between the spontaneous and
induced processes leads directly to equations of type
(8). To calculate the probabilities, on the other hand,
there is not need at all to derive the complete equa-

tion (8), and it is sufficient to use its limiting ex-
pression (for example as N^~* 0), and all the calcu-
lations become exceedingly simple. It must also be
noted that inasmuch as a statistical description is
used for the interaction of the random waves, the
nonlinear mutual pumping (8), unlike the Bloembergen
approximation[91>103-1, may be irreversible. Finally,
the characteristic time intervals of nonlinear pump-
ing (8) turn out to be already inversely proportional
to the square of the wave amplitudes. Simple consid-
erations connected with the probabilities were used
in . This method makes it possible to treat simply
and in intuitive physical form the complicated prob-
lems of nonlinear interaction. We shall follow the
procedure of[l , which was subsequently developed
further in Cl9'20'15'36>73].

It should be noted that the approach used below is
perfectly analogous to that extensively used in solid-
state theory '-40 , and therefore allows us to consider
from a unified point of view effects of nonlinear in-
teraction of waves in the so-called solid-state
plasma'-41, interest in which has greatly increased
recently in connection with new experimental ad-
vances. We note that the diagram method in the
theory of turbulence of liquids was used first in ^"
for a system of weakly interacting particles, such as
a plasma, by Gailitis and Tsytovich[18a-', and for a
strongly turbulent plasma by Mikhailovskii ^ . We
shall use below diagram representations for the
simplest processes, so as to clarify the elementary
processes on which the nonlinear interaction is based.

The review contains two chapters. The first is
devoted to the general theory of wave interaction in
spatially dispersive media, and the second to non-
linear interaction of waves in an isotropic plasma.

I. GENERAL THEORY OF WAVE INTERACTION IN
SPATIALLY DISPERSIVE MEDIA

1. Concept of Number of Waves. Connection between
Spontaneous and Induced Processes

As already noted, we shall consider the interaction
of linear waves. In an arbitrary homogeneous aniso-
tropic medium, Maxwell's equation, as is well
known'•4~6, are satisfied by solutions corresponding
to plane waves ~ exp[—iwt + ik- r ] only for a definite
relation between u> and k, corresponding to different
modes a (normal waves) of the oscillations of the
medium. The total electromagnetic field is a super-
position of fields of different normal modes

E = 2 Eka (oa(-k) = - <oa(k).

Here Ek(j is the amplitude of wave <r, which depends
on k. It is convenient to introduce the unit vectors of
polarization'-4'5^

akoajo = 1,
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whose different components are connected by relations
determined from Maxwell's equations

(/c2Sy — kikj — G}%£ij{<oa, k))aiko = 0, (1.1)

where e i i (w, k) is the dielectric tensor.
A very convenient concept is that of the dielectric

constant for a specified normal wave a, defined by

8" (o>, k) = e;j (to, k) ataiakaj - \- -^ (kajo) (kak0). (1.2)

Multiplying (1.1) by a*^, we easily obtain

/c2 = co2
0(k)s°(coa(k), k),

i.e., aj(j ( k) satisfies the dispersion equation

k"1 = co2e° (co, k),

Let us consider first the transparency region,
neglecting the anti-hermitian part of e^, and also
neglecting the imaginary part of the frequency (j>a.

2In this case characterizes the intensity of
the wave a. From the quantum point of view, this
intensity is the sum of the energy of the individual
quanta (elementary excitations). The energy per cm3

of the field of the quanta a is equal to the energy of
each individual quantum fic%, multiplied by the num-
ber of quanta Nj£dk/(27r)3, where NjJ is the density
of the number of quanta per unit phase volume
(V = 1 cm3),

(1.3)

On the other hand, the energy of the electromagnetic
field is given by the classical expression

B (co, k) -

in } "Si
— tx

k E ( c o , k )

8n ' Oi(ca, k) = e;;£,-(to, k),

(1.4)*

B y c o m p a r i n g ( 1 . 3 ) w i t h ( 1 . 4 ) w e c a n o b t a i n t h e c o n -

n e c t i o n b e t w e e n N £ a n d | E j l ( 7 | 2 . W e n o t e t h a t w a v e s

w i t h r a n d o m p h a s e s a r e c h a r a c t e r i z e d b y m e a n -

s q u a r e c o m b i n a t i o n s o f t h e f i e l d s E j ^ g - j '

T h e l a s t r e l a t i o n e n a b l e s u s t o f i n d t h e m e a n v a l u e o f

t h e e l e c t r o m a g n e t i c - f i e l d e n e r g y d e n s i t y b y u s i n g r e -

l a t i o n s ( 1 . 3 ) a n d ( 1 . 4 ) :

8 J I •*— } u>a (k ) V dco / o ) = i . ) a
o

F r o m a c o m p a r i s o n w i t h ( 1 . 3 ) w e h a v e

( 1 . 6 )

do)

F o r e x a m p l e , f o r l o n g i t u d i n a l w a v e s w e g e t b y v i r t u e

o f e l = 0

! E k | 2 = ~ A ' k ( * j ' . ( 1 - 8 )

B y i n t r o d u c i n g t h e n u m b e r o f q u a n t a N ^ w e c a n

o b t a i n i n s i m p l e f a s h i o n t h e c o n n e c t i o n b e t w e e n t h e

s p o n t a n e o u s a n d i n d u c e d p r o c e s s e s .

L e t u s c o n s i d e r a s i m p l e s t t w o - l e v e l s y s t e m w i t h

E 2 > E j . W e d e n o t e b y u 2 i , w 1 2 , a n d w 2 1 t h e r e s p e c -

t i v e p e r s e c o n d p r o b a b i l i t i e s o f t h e s p o n t a n e o u s

t r a n s i t i o n f r o m E o t o E , , t h e i n d u c e d t r a n s i t i o n f r o m

E t t o E 2 , a n d t h e i n d u c e d t r a n s i t i o n f r o m E 2 t o E j .

F r o m t h e d e t a i l e d - b a l a n c i n g p r i n c i p l e , w h i c h s t a t e s

t h a t t h e d i r e c t a n d i n v e r s e t r a n s i t i o n s a r e e q u a l i n

n u m b e r , w e h a v e N 2 ( u 1 2 + w 1 2 ) = N j W ^ , w h e r e N 2

a n d N t a r e t h e n u m b e r s o f p a r t i c l e s a t t h e l e v e l s E 2

a n d E j . U n d e r e q u i l i b r i u m c o n d i t i o n s w e h a v e N j 2

N j / N 2 = e x p ( R w 2 1 / T ) , w h e r e R c o 2 1 = E 2 - E t . O n t h e

o t h e r h a n d , t h e p r o b a b i l i t y o f t h e i n d u c e d t r a n s i t i o n i s

p r o p o r t i o n a l t o | E ? | 2 , o r , i n o t h e r w o r d s , w 1 2

= w 1 2 N J j , a n d w 2 1 = w 2 1 N ^ . I t f o l l o w s f r o m t h i s t h a t

• ( 1 . 9 )
i e x p - s r ' e x p — 1

T h e s e c o n d e q u a l i t y i n ( 1 . 9 ) i s w r i t t e n o u t b e c a u s e

N £ s h o u l d s a t i s f y t h e B o s e - E i n s t e i n d i s t r i b u t i o n u n -

d e r e q u i l i b r i u m c o n d i t i o n s ' - 4 7 ^ . S i n c e ( 1 . 9 ) s h o u l d h o l d

t r u e f o r a l l t e m p e r a t u r e s T , w e h a v e w 1 2 = w 2 1 , a n d

u 1 2 = w 2 1 . C o n s e q u e n t l y t h e t o t a l e m i s s i o n p r o b a b i l i t y

( b o t h s p o n t a n e o u s a n d i n d u c e d ) i s e q u a l t o

-NZ) ( 1 - 1 0 )

a n d t h e a b s o r p t i o n p r o b a b i l i t y i s

( 1 . 1 1 )

i . e . , t o o b t a i n t h e e m i s s i o n p r o b a b i l i t y i t i s n e c e s s a r y

t o m u l t i p l y t h e s p o n t a n e o u s - e m i s s i o n p r o b a b i l i t y b y

N £ + 1 , a n d t o o b t a i n t h e a b s o r p t i o n p r o b a b i l i t y , b y

N g . T h i s s t a t e m e n t i s w e l l k n o w n i n q u a n t u m e l e c -

t r o d y n a m i c s ' a n d i n s o l i d - s t a t e t h e o r y ' - , a n d

f o l l o w s f r o m g e n e r a l c o n s i d e r a t i o n s o f t h e t h e o r y o f

r a d i a t i o n i n t h e p r e s e n c e o f m e d i a ( G i n z b u r g ' - 5 ,

W a t s o n a n d J a u c h ^ 5 1 - 1 , R y a z a n o v [ 5 2 ] , T s y t o v i c h [ 5 3 - ' ) .

W e s h o u l d p e r h a p s m a k e h e r e o n e m o r e r e m a r k

c o n c e r n i n g t h e a l l o w a n c e f o r a b s o r p t i o n o r b u i l d u p o f

o s c i l l a t i o n s . T h e p o i n t i s t h a t i n a n u n s t a b l e m e d i u m

w i t h y = I m u>a > 0 t h e q u e s t i o n o f s p o n t a n e o u s e m i s -

s i o n i s m u c h m o r e c o m p l i c a t e d ' - 5 4 . H o w e v e r , b y

v i r t u e o f t h e r a p i d g r o w t h o f t h e o s c i l l a t i o n i n t e n s i t y ,

t h e i n d u c e d p r o c e s s e s b e c o m e d e c i s i v e . W h e r e a s i n

t h e a b s e n c e o f d a m p i n g o r b u i l d u p t h e e n e r g y c o n -

s e r v a t i o n l a w g i v e s

— C02l) ( 1 . 1 2 )

( 1 . 7 ) w e g e t o n t h e o t h e r h a n d

* [ k E ] s

wit =W2lNkan,{i0 _ ^ ) a + . . r ( 1 . 1 3 )

W h e n w 2 1 — aiC T a r e o f t h e s a m e o r d e r a s y ] j , ( 1 . 1 3 )

a n d ( 1 . 1 2 ) g i v e i n f a c t t h e s a m e r e s u l t . I t i s i m p o r -

t a n t t h a t ( 1 . 1 3 ) c a n b e u s e d f a r f r o m r e s o n a n c e . T h e n
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FIG. 1 FIG. 2

the probability of the induced process turns out to be
-yĵ /wg. times smaller. The interaction between non-
resonant particles and waves, as shown in '-16 , can
play an important role.

2. Emission, Scattering, and Decays

When the intensity of the oscillations (quanta) is
large, the induced processes begin to dominate
(N£ » 1 ) . Under these conditions, the factor N?
corresponds in the probability to both the absorbed*
and the emitted quantum. In the case of weak turbu-
lence, as already noted, we are dealing with the first
terms of the expansion of the interaction in terms of
N£ or | Efco-12. By virtue of the foregoing, the ex-
pansion in powers of | E^a | corresponds to expan-
sion in terms of the number of the quanta participat-
ing in the process. The simplest process corre-
sponds to participation of one quantum. It is shown
graphically in Fig. 1. The next-order process is one
in which two quanta participate. This is either emis-
sion and absorption of two quanta, or else emission
of one quantum and absorption of another, which
corresponds to scattering (Fig. 2). Finally, any wave
moving in a medium produces polarization, and the
waves can become scattered by this polarization, as
shown schematically in Fig. 3. We must stipulate here
that in any case it is impossible to divide the pro-
cesses into the types shown in Figs. 2 and 3. The
reason is that a particle participating in the process
of Fig. 2 can be any one of the particles of the
medium, including the particle that produces the
polarization current that causes the nonlinear inter-
action of Fig. 3. For brevity we shall call the pro-
cesses of Fig. 1 emission, those of Fig. 2 scattering,
and those of Fig. 3 decay. The cross-hatched ele-
ments in Figs. 1—3 can be quite complicated in solids.
In an ordinary laboratory gas plasma, owing to the
weakness of interaction between the individual part i-

cles, these elements can be obtained in the first or-
ders of perturbation theory. Let us write down the
energy and momentum conservation laws for these
processes. For Fig. 1, if the particle (or quasiparti-
cle) is characterized by an energy spectrum £p, then

(2.1)

(2.2)

For small Rk we get the Cerenkov condition

cok = kv,

where v = 8ep /8p. For Fig. 2:
8 e + 'iC0i<~?iQ)k' o r (k — = fflk —cok-. (2.3)

Finally, for Fig. 3:

o)k = (oj_k» + fflk". (2.4)

If k" « k and a =a', then (2.4) yields k - v | r = wff,
where Vgr = da>a/dk. There is a striking analogy be-
tween the decay and Cerenkov processes. In the de-
cay process the role of the particle is assumed,
roughly speaking, by one of the waves.

3. Kinetic Equation for Waves

1. It is easiest to obtain the kinetic equations de-
scribing the change in the number of waves N^ from
simple balance considerations. We introduce the
scattering probability w^c r(p, k, k'), which describes
the transformation of a wave a with momentum k
into a wave a' with momentum k' by scattering from
a particle a with momentum p, as well as the wave
decay probability u£^ ' (k , k', k" ) describing the
transformation of a wave CT with momentum k into a
wave a' with momentum k' and a wave a" with mo-
mentum k". We write first the expression for the
change in the number of quanta N^ per unit time as a
result of scattering. The probability of adsorption of
k and emission of k', taking induced processes into
account, is equal to w ^ ' ^ ^ N ? , + 1 ) . We take ac-
count here of the fact, demonstrated above, that each
emitted wave gives rise to a factor N^ + 1 and each
absorbed wave to Njj. To find 9N£/9t we take ac-
count of the fact that the scattering can occur from
particles having different momenta, and we multiply
the probability by the particle distribution function
fp and integrate with respect to p:

S ,a' jti-a /7\ra' , A\ ta dp dk' /q i\

WaaNk ( A V + l ) / p ?2^37>5^j3 • W - 1 )

I n t h e p r o c e s s ( 3 . 1 ) , t h e p a r t i c l e g o e s o v e r f r o m t h e

s t a t e w i t h m o m e n t u m p i n t o a s t a t e w i t h m o m e n t u m

p + fik — R k ' . T h e i n v e r s e p r o c e s s i s d e s c r i b e d , b y

v i r t u e of t h e d e t a i l e d - b a l a n c i n g p r i n c i p l e , b y t h e s a m e

p r o b a b i l i t y

+ 1)N°k
rfp ( 3 .2 )

FIG. 3
From (3.1) and (3.2) we obtain the total scattering-
induced change in the number of quanta
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,,,°' nia'«WVk' -wc' — /p J
dp dk'

(2jtj» (2n)3

dpdk' ,a dp dk'/p (3.3)

The first term of (3.3) describes induced scattering,
which is significant in the case of intense turbulence,
when the N£ are large. By virtue of K | k - k'
we have for the induced scattering

«

Equally useful is an expression for the scattering
produced when the Ng are small and corresponding
to the limit when only spontaneous scattering is sig-
nificant

dt̂  = 2< r d p d k ' (3.5)

The nonlinear interaction connected with the decay
processes is also described by an expression which
is quadratic in the number of quanta. The decrease
in the number of quanta N£ due to the absorption of
waves CT and emission of waves a' and a" is

1) dk' dk" (3.6)

while the increase of N̂  due to the inverse process
is

It' dk"•(K A7a" (3.7)

We find there fore that the t e r m s ( Ng) 3 drop out of
the overa l l express ion . Neglecting in te rac t ions that
a r e l inear in Nj£, we obtain an equation descr ib ing
the nonlinear effects (see (8)),

J V-) %±~ • (3•a
k; - N°kN°k. -

We note that spontaneous decay corresponds to
N£^ 0. We note also that the equation for N?,' is ob-
tained in the same manner as (3.8), but it is neces-
sary to integrate (sum) over k' and k" and, in addi-
tion, it is necessary to reverse the signs in the ex-
pressions similar to (3.6) and (3.7):

dk'dk" (3.9)
2. Let us stop to discuss the conservation laws

that hold for nonlinear wave interactions. There are
conservation laws that result from the conservation
laws governing the elementary acts (2.3) and (2.4).
Introducing the energy of the quanta of species a:

Wa = -3 ;,<o (3.10)
multiplying (3.8) and (3.9) by coa and c%', and then
integrating with respect to the corresponding k, we
can readily verify by virtue of (2.4) that

(3.11)

This conservation law shows that for decay procesbes
the energy can only go over from certain modes to
others. In exactly the same way we can verify the
validity of the momentum conservation law

'Z. (3.12)

There are also, however, other conservation laws.
Thus, the total numbers of the quanta of species cr
and a' are conserved:

(A -4- A ) — 0 N — \ Nk . w* -L'j)

The validity of (3.13) can be readily verified directly
from (3.8) and (3.9). In exactly the same way,
d(NCT + Na )/dt = 0. In induced-scattering processes,
the total number of quanta is conserved if the scat-
tered quanta are of the same species as the scattering
ones, i.e., a =<r'. Indeed, integrating (3.4) with re-
spect to k and taking into account the asymmetry of
the right-hand side with respect to substitution of k'
for k, we have

~Na = 0. (3.14)

It is also easy to see that the sum of the energies of
the particles and of the waves is conserved in induced-
scattering processes; this can be readily verified by
using besides (3.4) the equation for the change in the
distribution function of the scattering particles

dt dpt
 li dpj ' I} J *' v ' " (2JI)6

(3.15)
Equation (3.15) is obtained in similar fashion from
balance considerations. In this case the energy con-
servation law takes the form

d
It

(3.16)
Let us examine the consequences of the foregoing
conservation laws. First, in induced scattering of
Langmuir waves into Langmuir waves, the total en-
ergy of the waves cannot change appreciably. Indeed,
the energy of the Langmuir waves depends weakly on
k, and the change in the total energy is small by
virtue of the conservation of N'. Second, in the decay
of waves of high frequency o><j into waves of low fre-
quency <j}fj", which is possible only when accompanied
by production of another high-frequency wave boa>,
uifj » wCT', the total number of high-frequency quanta
is conserved (see (3.13)). This also leads to the con-
clusion that the total energy of the Langmuir waves
cannot change noticeably when Langmuir waves decay
into low-frequency ones.

3. We note here the analogy between decay pro-
cesses in high-frequency waves and Cerenkov effects
for charged particles '-19 . Indeed, even the diagram
of the decay of a wave <r with transformation into a
wave of the same species <J and emission of a wave
<j' (Fig. 4a) is similar to the Cerenkov diagram (Fig.
4b). From simple balance considerations we can
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a)
FIG. 4

B'
I

b)
p'

cr is replaced by the final state, which for Fig. 5a is
k - k', i.e., the probability of the process of the first
diagram of Fig. 5b is ug ' ( k + k', k ' ) . Therefore

dt J

write down an expression for the change in the num-
ber of quanta, connected with the induced Cerenkov
effect. If w Ĵ is the Cerenkov-radiation probability,
then

at
Jp_

"(2n)3

It is assumed in (3.17) that the number of particles
fp corresponds to absence of degeneracy. Therefore
formulas similar to (3.17) can be obtained for Fig.
4b only for small NCT (more accurately, Na « N a ' ) .
Then

dt
o"<j/i.rCF »ra > dk dk"

Ua (A'k — iVk+(k"-k))-(2n)«
(3.18)

Recognizing that k — k" = k' by virtue of the momen-
tum conservation law and assuming that k' « k
(small recoil), we obtain a formula which is per-
fectly analogous to the Cerenkov formula (3.17):

dt
—
(2JI)3

(3.19)

We note that neglect of the terms ( N a )2, which en-
abled us to obtain (3.18) for waves of high frequencies
uff « % ' , has frequently little effect on the accu-
racy . The analogy with the Cerenkov effect can be
naturally extended also to radiating waves cr. The
equation for the change in the particle distribution
function due to the Cerenkov effect is

A,=

(3.20)

'. (3.21)

The first term of (3.20) describes the diffusion of the
particles in the field of the oscillation and the induced
effects of Cerenkov absorption and emission of waves.
The second term corresponds to spontaneous pro-
cesses. (Equation (3.20), together with (3.17), de-
scribes the so-called quasilinear approximation' .)

We shall show that similar equations hold in wave
decay with small N*7 < Na and small recoil. We
note that in this case Eq. (3.8) will not suffice, since
it does not describe all the processes but only those
shown in Fig. 5a (the direction of the arrows indicates
emission or absorption), but not in Fig. 5b. If
cr" * cr these processes correspond to other possible
decays, whose probabilities are not expressed directly
in terms of u%'a". On the other hand, if a" =<j, these
probabilities can be expressed in terms of u£ , namely
the first diagram of Fig. 5b differs from the first dia-
gram of Fig. 5a in that the initial state of the plasmon

In the case of small recoil we obtain equations ana-
logous to (3.20):

dt - dk, U%1 (3.23)

. dk'(3.17) />»«= \u°' (k, k') klk-Nt " A? = \u% (k, k') k] " . (3.24)

We note that decay processes correspond to induced
Raman scattering of waves by waves.

We note that processes similar to induced scatter-
ing of waves by particles correspond to four-plasmon
decays. In this case processes are possible in which
two waves are transformed into two waves and one
wave into three waves, as well as all the inverse
processes. By way of an example we write down the
equation for the scattering of one quantum by another.
Let ugg' ( k, k', kj, kj) be the probability of absorp-
tion of k, k' and emission of kj, k{. If the number of
quanta NCT' « N a , we readily obtain for the case of
weak recoil an equation similar to (3.4):

-JVZ \ • ( k , k ' , k 1 ) .

— C i,aa'
j o - — \ «OO'

(3.25)

Let us examine now the possible qualitative conse-
quences of the nonlinear effects. By virtue of the
analogy between the decays into a single wave and the
Cerenkov effect, it is clear that the decay processes
can initiate instabilities that lead to wave generation.
Scattering by plasma particles and by waves (i.e., the
four-plasmon processes considered above) do not lead
to a change in the total number of quanta. We shall
show that in the case of scattering by equilibrium
particles and waves, a nonlinear redistribution in the
spectrum takes place, towards the lower-frequency
oscillations. Assuming that fp in (3.4) depends only
on the absolute value of the energy, we get

dp = V

and recognizing that (k — k') v = u)7 —
of the conservation laws, we obtain

OJZI by virtue

If 3f/8e < 0, as is the case for equilibrium Maxwell-
ian distribution, then, according to (3.26), the waves
having lower frequencies build up. This is true both
for like waves cr =cr' and for energy transfer from
one type of wave into another. If f is isotropic and
df/de > 0 in a definite energy region, then it must be



N O N L I N E A R E F F E C T S IN A P L A S M A 813

g' s' s'
I

s s e

a) b)

FIG. 5

borne in mind that there always exists also a region
3f/a e < 0, by virtue of f — 0 and e — °°. Thus, the
question of the direction of the energy transfer is
determined by which of these two regions plays the
principal role in the scattering. The situation here
differs somewhat, in spite of some similarity, from
the situation that obtains in the case of the linear ap-
proximation, when damping takes place for any iso-
tropic f[56'57].

Transfer towards higher frequencies occurs in the
presence of directed particle beams (this result was
first obtained for Langmuir waves inL33J). Indeed,
assuming that f = f ( E ), where E = (p - po)2/2m, we
obtain Eq. (3.26) in which (cofc - u f )(df/de) is r e -
placed by ( u k - w f - ( k - k') • v0) (df/d E ), and
consequently the energy transfer is towards larger
k • Vo when (k — k') • v0 > wk — wk'-

A perfectly similar situation arises in the scatter-
ing, described by the decay interaction (3.25), of os-
cillations <J' by other oscillations cr. For example,
we can speak of the scattering of Langmuir waves by
high-frequency transverse waves. The presence of
beams of high-frequency waves can lead to energy
transfer towards higher frequencies and to linear
absorption of Langmuir waves.

4. Nonlinear Plasma Current and Probability of
Decay Processes

1. The equations written out above constitute ex-
pansions in the number of quanta, N£, or in | Ekcr I2.
the squared field amplitudes. Therefore the probabil-
ities of different processes can be obtained if one
knows the expansion of the nonlinear plasma current
in the field amplitudes. If Eji( k = {k, u>}) is the
Fourier component of the electric field, then in the
linear approximation j^P = crjj ( k) Ej^j. In the E2 ap-
proximation

Ihi -- Sin (k, kit (4.1)

dXm = dk,, dk2& (k — k, — fc2), dk = dk dco, 6 (k) = 5 (o>)6 (k), (4.2)

and in the E3 approximation

dXi

dk" k± dk2 dkzb (k — kt — k2 —

(4.3)

(4.4)

The presence of 6 functions in (4.1) and (4.3) does
not express any conservation laws, but is a conse-
quence of the Fourier expansion. From the causality
principle and the reality requirement we obtain (just
as for the linear current ) a number of relations
for the components ujj, SjjZ. and Enim .

We note that the foregoing relations hold for weak
stationary and homogeneous media. The concrete
values of the components CTIJ, S^JZ , and Sijfoi can be
obtained by using various equations describing the
medium. It should be noted perhaps that although we
are interested in the waves in the transparency
region, it is nevertheless quite important in a number
of cases to make allowance in the equations for the
nonlinear current for absorption and, in particular,
for collisions in the equations describing the plasma.
This is connected with the fact that the nonlinear
current may describe the interactions in those cases
when one of the waves is virtual and consequently, it
may turn out to be in the absorption region. Indeed,
the nonlinear current (4.1) describes the vertex shown
in Fig. 3, while (4.3) describes the vertex in Fig. 6.
Each of these vertices can be included in the scatter-
ing effects (Fig. 7). This gives rise to a virtual line,
whose frequencies and wave numbers lie most fre-
quently outside the transparency region. In the case
when the virtual line falls in the transparency region,
the process represented by the diagrams of Fig. 7
breaks up into two independent processes, namely, a
quantum is emitted first, and then decays (for a proof
see [ 6 0 ] ) . Scattering corresponding to Fig. 7 is best

FIG. 6

V

P e p '
a)

P'

FIG. 7
b)
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t h e e x p r e s s i o n

P Iii
a

a)

P'

FIG 8

/

b)

called nonlinear scattering, to distinguish it from the
ordinary Compton scattering shown in Fig. 8.

2. By way of illustration we present the calculation
of the nonlinear current for two models: a) Isotropic
electron plasma described by the hydrodynamic equa-
tions ( c = 1)

o . L (4.5)

This system of equations can be readily rewritten in
terms of Fourier components ( k = {k, OJ }):

, d%™,
mei<£>

The sought quantity j ^ takes the form

( 4 . 7 )

T h e u n p e r t u r b e d p l a s m a d e n s i t y i s n 0 ; n ^ = n o < 5 ( k ) .

E l e m e n t a r y e x p a n s i o n i n t e r m s o f E j j l e a d s t o

( 4 -

(k2+k3)2
C02 + C03 COj

^21 k2s ~i~ k3s *\ ( 4 9 )

o ) 2 o ) 2 -\ 0)3 y

b ) I s o t r o p i c e l e c t r o n p l a s m a d e s c r i b e d b y a k i n e t i c

s e l f - c o n s i s t e n t e q u a t i o n . E x p a n d i n g f i n t e r m s E ^ ,

we obtain the equations for the Fourier components

- t (vEs).

(4.10)

= . J F f c l i^ .8X*, Fft = Eft ( i -

This yields for the current

d p

(of 2—k2v (o2 J dpi

(4.11)

The hydrodynamic approximation (4.8) can be easily
obtained from (4.11) by expanding in the parameter
k • v/o).

3. The probabilities of the decay processes can be
obtained directly from the nonlinear plasma current.
To this end we use the correspondence principle.
Namely, we consider the equations that describe the
decay processes in the limit when the number of
emitted quanta is small. From (3.8) with Nk~" 0 we
can easily obtain the intensity of radiation from a
unit volume of the plasma

h <0oiV£ dk . „

On the other hand, the intensity Q a can be determined
as the emission energy of the nonlinear current ex-
cited in the plasma by the waves cr' and or". The

• < 2 >
( 4 . 6 ) e m i s s i o n e n e r g y o f t h e c u r r e n t j i n t h e p l a s m a i s

t h e w o r k d o n e b y t h e f o r c e s o f t h e f i e l d , p r o d u c e d b y

t h e c u r r e n t , o n t h e c u r r e n t i t s e l f

= - \ j ( r , t) E ( r , t) dr.
V

( 4 . 1 3 )

E x p r e s s i n g E i n t e r m s o f j b y m e a n s o f M a x w e l l ' s

e q u a t i o n w i t h a l l o w a n c e f o r t h e l i n e a r p a r t o f t h e

p l a s m a c u r r e n t

( A 2 6 , y — ft.ft, - c o 2 e , _ , ) Ehj = 4nitDjkl, ( 4 . 1 4 )

w e o b t a i n a n e x p r e s s i o n f o r Q C T i n t e r m s o f t h e

p l a s m a c u r r e n t

n a (Zn)t> f , , . n | I a < " 0 k I2

~W~ ] a K l f f l I r d . . , _ < A • ( 4 . 1 5 )

O m i t t i n g t h e d e t a i l s o f t h e c a l c u l a t i o n s ( s e e L l 8 > 3 5 ] w e

p o i n t o u t t h a t i f w e u s e t h e n o n l i n e a r c u r r e n t ( 4 , 1 )

a n d a v e r a g e o v e r t h e p h a s e s , t h e n w e c a n o b t a i n f r o m

( 4 . 1 3 ) a n e x p r e s s i o n s u c h a s ( 4 . 1 2 ) . C o m p a r i s o n o f

( 4 . 1 5 ) , ( 4 . 1 2 ) , a n d ( 1 . 7 ) e n a b l e s u s t o f i n d a n e x p r e s -

s i o n f o r t h e p r o b a b i l i t y u j a :

u%°''(ft, A ; ' , r ) - = 1 6 ( 2 n ) ' 6 ( k - k ' - k " )

da J o *

X \Saa.a..(<*l% c o r k ' , wfk'X (^-

W e c a n o b t a i n i n s i m i l a r f a s h i o n t h e p r o b a b i l i t i e s o f

f o u r - p l a s m o n d e c a y i n t e r a c t i o n s
[ 9 8 ]
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°"c" (k, k\ k", fe"')-=

X 6 (k —k' —k"—k'")

X 2-ao <r"o»
(4.17)

By way of illustration let us find the decay proba-
bility for three longitudinal waves when a^ = k/k.
From (4.11) it follows that

1 f, d \ , dp ( 4 l g

The expression for Sm is particularly simple in the
case of one-dimensional plasmons, when the direc-
tions of all three plasmons coincide. Symmetrizing

with respect to 1 and 2, we obtain
dp

- kv) (Wi —

df dP (4.19)
dp (2n)i

2 —k2v) dp (2n)i

For a plasma in which all particles are nonrelativis-
tic, expression (4.19) together with (4.15) gives the
result obtained in [62] and [30]

5. Nonlinear and Compton Scattering and Their
Interference

Let us consider the nonlinear scattering repre-
sented by the diagram in Fig. 7a. To find the scatter-
ing probability we shall assume one of the N£ to be
small when the scattering is spontaneous and is de-
scribed by (3.5), and the radiation intensity of the
wave <J is equal to

Qa -=2 (5.1)

The radiation intensity is a linear function of the
number of waves, and consequently the current gen-
erating it is a linear function of the wave field. It is
obvious that to obtain such a current, which describes
the nonlinear scattering, it is necessary to place in
one of the vertices the field produced by the charge.
We denote the field produced by the charge by E^.
Since we are interested in a current which is linear
both in the wave field and in the charge field, we get
from (4.1)

dX (5.2)

The role of the current j ^ s . can be visualized as
follows: The field Eg of the charge produces around
the charge a polarization screening charge, and the
field of the waves E^ causes this screening charge
to oscillate. The radiation produced as a result is
indeed the one corresponding to the nonlinear scatter-
ing. Integrating over the 6 -functions contained in
d\ (2 ), we can readily represent (5.2) in the form

where

= [SlU(k, k-klt
( 5"4 )

Relation (5.4) is quite important, since it makes it
possible to calculate the nonlinear scattering from the
known nonlinear current. We call attention to the fact
that in (5.4) are contained the values of the compon-
ents S from the difference frequencies w — o>' and
difference wave vectors k — k', which can be quite
small for two mutually interacting waves of even very
high frequencies, so that the collisions must be taken
into account in a number of cases.

We note that the field E^ which enters in (5.4)
must be assumed to correspond to a charge moving
in the plasma uniformly and in a straight line,* since
allowance for the perturbation produced in the motion
of the charge by the wave would lead in (5.3) to ex-
pressions of higher order in the wave amplitude. The
field EQ is therefore determined by Maxwell's equa-
tions (4.14), where j = jQ is the current produced by
a uniformly and linearly moving charge

Denoting the inverse Maxwellian operator by IIjj

(5.5)

we get

— kv). (5.6)

In view of the fact that the charge motion can be r e -
garded as uniform and linear when nonlinear scatter-
ing is considered, the effect of the nonlinear scatter-
ing can be interpreted as radiation produced when a
uniformly moving charge passes through inhomo-
geneities produced by the waves in the plasma density
and in its polarization. Such radiation is similar to
transition radiation in periodic structures ^63-' and to
radiation produced in media whose properties vary
periodically in time and in space ^ . However, non-
linear scattering is not the only type of scattering,
namely, besides moving uniformly the scattering
charge executes small oscillation in the field of the
wave and produces a current whose magnitude is
proportional to the wave field E ?,

S"S (fe> fcO^dMfa-Wi-fk- k,)v). (5.7)

This current produces radiation corresponding to the
ordinary Compton scattering. It must be especially
emphasized that in calculating the radiation intensity
it is necessary first to add both expressions (5.7) and
(5.3), and then square in accord with (4.14), i.e., it is
necessary to take into account the interference of
both types of scattering. In quantum language this
means simply that it is necessary to sum the matrix
elements and not the probabilities. The total scatter-
ing probability can be assumed to be equal to the sum
of the probabilities of the two indicated effects [65^

*For the sake of simplicity we assume no external magnetic
field. For similar calculations in external magnetic fields see[!5].
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only as an estimate.* It should be noted that fre-
quently (see below) the matrix elements of two scat-
tering processes have opposite signs and strongly
cancel each other. Therefore, in many cases it is
impossible to get any idea concerning the order of
magnitude of the nonlinear interaction of the wave
without allowance for interference. The reason why
the amplitudes of two types of scattering have differ-
ent signs can be intuitively understood from the fact
that the charge responsible for the nonlinear scatter-
ing is screening and has a sign opposite that of the
trial charge. To find the scattering probability it is
necessary to follow a simple procedure in which the
total current is substituted in (5.3), averaged over
the phases, and the result compared with (5.1). As a
result we have

u&(p, k, k') = 4(2n)'

x|A00,(fc, k')\\

— 0)2E° IB, k)̂ ) ), k')

We note that nonlinear scattering for high frequencies
frequently takes place on the screening electrons of
the plasma. Therefore Compton scattering by ions,
which is inversely proportional to the square of the
ion mass, turns out to be negligibly small. In this
case the interference disappears, and the scattering
by the ions may exceed by many times the scattering
by electrons. The foregoing physical interpretation
of the high efficiency of scattering by ions was made
i n ' - 1 8 . The large role played by the ions in the
scattering of transverse waves into transverse ones
was made evident relatively long ago . It should
be noted here that the large role of ions in nonlinear
effects is due also to the small value of the quantity
df/dp which enters in (3.4).

H. NONLINEAR INTERACTION OF WAVES IN AN
ISOTROPIC PLASMA

Introduction. Waves of isotropic plasma. There
are numerous well known different types of isotropic-
plasma oscillations [4~7]. We summarize here the
principal data concerning the dispersion properties
of such waves.

a) Transverse waves are described by a spectrum
a;* = V k2 + wjje and have phase velocities vp^ exceed-
ing the speed of light:

Their group velocity is smaller than the speed of
light

*Such estimates were first carried out in t65] for effects in-
volving the transformation of longitudinal waves into transverse
ones. We shall explain later the condition under which one of the
processes dominates and interference is insignificant, thus de-
termining the region of applicability of the estimates of ["].

I da
V& = l[k=- 0 < l 4 r < t .

The dispersion properties of transverse waves are
affected little by spatial dispersion[70-1. The spectra
of a relativistic plasma, with allowance for quantum
effects, were determined in1-105-1. The wave damping
is usually due to collisions. The damping decrement

_ Im e'o)2

Re
is of the order of da

' Vcoll-

where t'coll *s the collision frequency.
b) Langmuir waves have a spectrum w" - woe

+ ( % k2v2pe/o;oe. The phase velocities lie in the in-
terval vpe < Vph < °°, and the group velocities in the
interval 0 < Vgr < v^e. Waves with vph < vpe are
strongly damped by Landau absorption; the order of
magnitude of absorption due to collision is yColl-
The spectra of the waves in a relativistic and quantum
plasma are discussed in'-105-'.

c) Ion-sound oscillations have a spectrum[72-'

When k « qjoe/vxp g Ape, the spectrum is sonic,
w s = kvs, v s = Vme/m!VTe. whereas when k »
the wave frequency is close to wOi. The phase veloc-
ities of the waves lie in the interval vyj < v^ < vg,
and the group velocities lie in the interval

The absorption due to the Landau damping by the
electrons is of the order of

fnme kv.

The spectra of the possible waves are shown
schematically in Fig. 9. Our task is to compare the
different types of nonlinear interactions between the
indicated three types of plasma waves.

6. Induced Scattering of Langmuir Waves by Plasma
Electrons with Transformation into Langmuir
Waves

tui^kc

FIG. 9
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1. For the purpose of illustration we present in
this section a consistent derivation of the nonlinear
interaction of Langmuir waves in accordance with the
general theory developed above. In the subsequent
sections we present only the result of a similar cal-
culation and pay principal attention to an analysis and
comparison of the different nonlinear interactions.

We consider first Compton scattering. The oscil-
lations of the charge in the wave field that determines
the Compton scattering are described by the equation
(c = 1)

(6.1)
Considering only terms of first order in the field
intensity E ,̂ we get as a solution of (6.1)

e~\f \^-~v% i" e»(kvo—eo)fdk,. (6.2)

The part of the current which is linear in the field
and which is due to the charge oscillations is

dk.

X
(co - kv0)

2

,) — (kv0—to) (fiI8— ̂ "o

(6.3)

Comparing (6.3) with (5.7) we can readily obtain the
value of Ajj, which determines the Compton scatter-
ing

The Compton scattering of longitudinal waves is de-
termined from

r^0][(kk1)-(kv)(kiY)]A,; =A,j kk. — kv)2 (2JX)3
(6.5)

To find the nonlinear interaction we make use of (5.4),
in which we substitute the expression (5.6) for the
charge field and the nonlinear current (4.11).

We note that the inverse Maxwellian operator ITjj
which enters in (5.4),

1 , l,k; m.j-k.kj -j (g ^
B1 (a< k) A2 —co26l (co, k) i

describes in an isotropic plasma two types of non-
linear scattering, namely the first term (6.6), which
contains the Green's function of the longitudinal field
( e and e* are the longitudinal and transverse die-
lectric constants) describes the process of scattering
via a virtual longitudinal wave, while the second term,
via a virtual transverse wave. We obtain

n.s ie2coA;;-° =

x

to—kv'
1 f~ d

[ V ' W I ^=0., —(k-k,)P ^"dp7

i.1 „ d ^ l

a ~= / l[ _ (k-kt)v' N a , (k-kt) (av')
P V CO—COj J r CO —«! '

(6.7)

k- k,
(k- (co-co,, k- (k —k,)2 —(co -co,)2 e'(co -c —kt)

(6.8)
The total scattering cross section is determined

by the quantity | A|J-S- + A^-s- |2 and, consequently
takes the form [18b '20]

where

(6.9)

••[(*• iJ cok— cokj — (k

•y 4it«2 y dp'
—< kkt .. cot — k

r 7 ( a =-, ,
V V 9p J

(6.10)

I n t h e r i g h t s i d e o f ( 6 . 1 0 ) , a c c o u n t i s t a k e n o f t h e

f a c t t h a t t h e n o n l i n e a r s c a t t e r i n g d e s c r i b e d b y t h e

s e c o n d t e r m of ( 6 . 1 0 ) c a n b e p r o d u c e d b o t h b y t h e

e l e c t r o n s a n d b y t h e i o n s o f t h e p l a s m a . I n t h e c a s e

of t h e L a n g m u i r w a v e s , i n w h i c h w e a r e n o t i n t e r -

e s t e d , a n i m p o r t a n t r o l e i s p l a y e d o n l y b y t h e n o n -

l i n e a r s c a t t e r i n g i n w h i c h t h e n o n l i n e a r e l e m e n t i s

d e t e r m i n e d b y t h e e l e c t r o n s . W e w r i t e o u t h e r e a l s o

t h e e q u a t i o n d e s c r i b i n g t h e n o n l i n e a r i n t e r a c t i o n o f

t h e L a n g m u i r w a v e s

\ < (2n)3 dp E_ (6.11)
)J •

2. We now proceed to an analysis of Eqs. (6.10) —
(6.11). It must be noted first that the thermal parti-
cles of the plasma take part in the scattering of the
Langmuir waves. Indeed, in order for the scattering
to be possible it is necessary that the velocity of the
scattering particle satisfy the law of energy conser-
vation in each individual scattering act

co - (o, = 4
coOe

- *i) = (k - k') v

or for the projection of the velocity v on k — k4 we
have

ill VTe
The remaining two velocity projections can be arbi-
trary. The use of these inequalities together with
kv « w and kjv « mi allows us to obtain the approx-
imate form of the nonlinear interaction, which con-
tains only the value of the dielectric constant as a
function of the arguments u> - wi and k - kt A very
important factor here is the translation of the two
types of scattering, brought about by the fact that the
nonlinear scattering (by the screening charge) com-
pletely cancels out, in the first approximation in
k-v/w, the Compton scattering. Indeed, let us con-
sider a plasma of nonrelativistic temperatures, when
v « 1, and let us take into account only the scattering
via a virtual longitudinal wave. We then have
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1 • —
2 ( k v ) ^

; •

( k k , )

k k i

W

e j ( < o — o > l F k — k j ) — 1 i

e ' ( c o — c o , , k — k , ) c o 2 m e

( 6 . 1 2 )

= e | + e | - 1 , e e a n d e j a r e r e s p e c t i v e l y t h e e l e c -

t r o n i c a n d i o n i c p a r t s o f t h e p l a s m a p e r m i t t i v i t y . ' I n

t h e f i r s t t e r m o f ( 6 . 1 2 ) , w h i c h d e s c r i b e s t h e C o m p t o n

s c a t t e r i n g , w e t o o k i n t o a c c o u n t i n f i r s t a p p r o x i m a -

t i o n t h e s m a l l c o r r e c t i o n ~ k - v / w , c o n n e c t e d w i t h t h e

D o p p l e r c h a n g e i n t h e f r e q u e n c y a s s e n s e d b y t h e

s c a t t e r i n g c h a r g e . T h i s i s n e c e s s a r y b e c a u s e t h e

n o n l i n e a r s c a t t e r i n g c a n c e l s t h e C o m p t o n s c a t t e r i n g

a l m o s t c o m p l e t e l y . T h e D o p p l e r e f f e c t i n t h e C o m p t o n

s c a t t e r i n g d e t e r m i n e s t h e s c a t t e r i n g e f f e c t i n a n

e l e c t r o n p l a s m a ( n i j — °° ) :

e j ( ( o — (i),, k — k j ) ~ el (co — <o,, k — k , ) > 1 ,

. (
A/J |m.->oo =

2 ( k k , ) ( k v )

ft f t " * C 0 * / 7 Z a

( 6 . 1 3 )

A s a r e s u l t , s u b s t i t u t i n g ( 6 . 1 3 ) i n ( 6 . 1 1 ) , w e f i n d

t h a t t h e n o n l i n e a r i n t e r a c t i o n i n s c a t t e r i n g b y t h e r m a l

p l a s m a e l e c t r o n s ( m j — 0 0 ) i s o f t h e f o r m

dNl
k [ k k i P ( 6

T h i s f o r m o f t h e n o n l i n e a r i n t e r a c t i o n w a s f i r s t o b -

t a i n e d i n ' . W e m u s t n o t e t h e c h a r a c t e r i s t i c f e a -

t u r e s o f s u c h a n i n t e r a c t i o n : a ) t h e v a n i s h i n g o f i n -

t e r a c t i o n o f w a v e s w i t h m u t u a l l y p e r p e n d i c u l a r a n d

p a r a l l e l d i r e c t i o n s ; b ) t h e t r a n s f e r o f e n e r g y i n t h e

d i r e c t i o n o f l o w e r w a v e n u m b e r s ( l o w e r f r e q u e n c i e s ) ,

w h i c h f o l l o w s f r o m t h e g e n e r a l r e l a t i o n s . T h e l a t t e r

s i g n i f i e s t h a t i f t h e w a v e d i s t r i b u t i o n i s s u c h t h a t t h e y

a r e f o r e x a m p l e , c o n c e n t r a t e d a b o u t k = k 0 , t h e n t h e

n o n l i n e a r e f f e c t s l e a d t o t h e g e n e r a t i o n o f w a v e s w i t h

k < k 0 a n d t o a d e c r e a s e o f t h e w a v e s w i t h k ~ k , ) . I t

i s c l e a r h e r e t h a t i f t h e " b a r e " w a v e s w i t h k < k 0 a r e

p r e s e n t a t a l l a n g l e s , t h e n t h e w a v e s t h a t g r o w w i l l b e

t h o s e h a v i n g d i r e c t i o n s d i f f e r e n t f r o m t h e i n i t i a l

s p e c t r u m , i . e . , t h e e n e r g y - t r a n s f e r p r o c e s s i s a c -

c o m p a n i e d b y i s o t r o p i z a t i o n o f t h e p l a s m a - w a v e d i s -

t r i b u t i o n . T h e c h a r a c t e r i s t i c t i m e s o f t h e i n d i c a t e d

e n e r g y - t r a n s f e r a n d i s o t r o p i z a t i o n p r o c e s s e s t u r n

o u t t o b e d i f f e r e n t , d e p e n d i n g o n t h e c h a r a c t e r i s t i c

w a v e n u m b e r o f t h e w a v e s i n t o w h i c h t h e e n e r g y i s

t r a n s f e r r e d . I f k i s o f t h e o r d e r o f k 0 a n d | k — k j |

i s o f t h e o r d e r o f k 0 a n d t h e a n g l e b e t w e e n k a n d k j

i s o f t h e o r d e r o f u n i t y , t h e n t h e c h a r a c t e r i s t i c t i m e

i s o f t h e o r d e r O f [ 3 3 ' 2 o : l

w i vTe

ph

( 6 . 1 4 ' )

w h e r e W ^ i s t h e e n e r g y o f t h e i n i t i a l o s c i l l a t i o n s p e r

c m 3 . T h e c h a r a c t e r i s t i c e n e r g y - t r a n s f e r t i m e c a n

r e a c h r e l a t i v e l y l a r g e v a l u e s , m u c h h i g h e r t h a n t h e

f r e q u e n c y o f t h e C o u l o m b c o l l i s i o n s o f t h e p a r t i c l e s .

T h e c h a r a c t e r i s t i c t i m e o f e n e r g y t r a n s f e r i n t o o s -

c i l l a t i o n s w h o s e w a v e l e n g t h s a r e m u c h l a r g e r t h a n

t h e w a v e l e n g t h s o f t h e i n i t i a l o s c i l l a t i o n s

«Te
B Y

" e " T e V " p h > V v ^ J ' p h ' * '

i s l a r g e r t h a n T b y a f a c t o r ( V p h / v p n ) 2 » 1 . T h i s

s h o w s t h a t t h e e n e r g y t r a n s f e r s h o u l d b e r e a l i z e d i n

a " r e l a y " f a s h i o n , o r , r o u g h l y s p e a k i n g , t h e m e a n

v a l u e o f V p n i n c r e a s e s l i n e a r l y w i t h t i m e . T h i s c a n

b e d e r i v e d m o r e r i g o r o u s l y b y s o l v i n g t h e i n t e g r a l

e q u a t i o n ( 6 . 1 4 ) ( s e e ' - 7 3 - ' ) . I t m u s t a l s o b e n o t e d t h a t

t h e v a n i s h i n g o f t h e i n t e r a c t i o n w h e n k I I k j a n d

k 1 k j i s t h e c o n s e q u e n c e o f t h e a p p r o x i m a t e c h a r a c -

t e r o f ( 6 . 1 4 ) . T h e i n t e r a c t i o n o f t h e k I I k j a n d

k 1 k j w a v e s i s m u c h w e a k e r , s i n c e i t i s d e s c r i b e d b y

t h e t e r m s o f n e x t h i g h e r o r d e r i n t h e s m a l l p a r a m e -

t e r ( v T e / v p h ) 2 - N a t u r a l l y , i t i s m e a n i n g f u l t o t a k e

a c c o u n t o f s u c h e f f e c t s o n l y i n t h e c a s e o f s t r i c t l y

p a r a l l e l o r s t r i c t l y p e r p e n d i c u l a r w a v e v e c t o r s . W e

t h e n h a v e f o r a n e l e c t r o n i c p l a s m a ( m i — ° ° )

t M t [ 2 1 , 2 6 , 2 3 , 3 3 ]

' " " l l ( 6 . i 5 )

, — k | n ( a O e m e

a n d f o r k 1 k j t h e i n t e r a c t i o n d i f f e r s f r o m ( 6 . 1 5 ) b y

t h e f a c t o r l / 9 [ 3 3 ] . T h e c h a r a c t e r i s t i c e n e r g y - t r a n s -

f e r t i m e i s s h o r t e r t h a n ( 6 . 1 4 ) b y a p p r o x i m a t e l y

v i j / v n t i m e s . T h e c o n d i t i o n u n d e r w h i c h t h e v e c -

t o r s f o r w h i c h t h e i n t e r a c t i o n i s d e s c r i b e d b y ( 6 . 1 5 )

a r e p a r a l l e l i s o f t h e f o r m 0 « 0 O = V T e / v p h > w h e r e

6 i s t h e a n g l e b e t w e e n k a n d kt, o r t h e d i f f e r e n c e

b e t w e e n t h e a n g l e a n d T T / 2 . S i n c e t h e i n t e r a c t i o n b e -

t w e e n o n e - d i m e n s i o n a l s p e c t r a i s r e l a t i v e l y w e a k , a

m o r e p r o b a b l e p r o c e s s f o r o n e - d i m e n s i o n a l s p e c t r a

i s i s o t r o p i z a t i o n w i t h t r a n s f e r o f t h e w a v e s i n t o t h e

a n g l e r e g i o n 6 > &0-

I t m u s t b e e m p h a s i z e d , h o w e v e r , t h a t i n t h e c a s e s

o f p r a c t i c a l i n t e r e s t a l l o w a n c e f o r t h e i o n i c p a r t o f

t h e d i e l e c t r i c c o n s t a n t i n t h e n o n l i n e a r s c a t t e r i n g c a n

b e i m p o r t a n t a n d c a n l i m i t n o t i c e a b l y t h e p o s s i b i l i t y

o f u s i n g ( 6 . 1 4 ) . I n d e e d , r e c o g n i z i n g t h a t e = e e + e j

- 1 , w e g e t f r o m ( 6 . 1 2 )

+ e j

i _ k k .

k k .

/ 2 ( k v ) e\(e> — k —

e'(o> — o>j, k — k 4 )

( 6 . 1 6 )

I t m u s t b e e m p h a s i z e d t h a t t h e f o r e g o i n g c o r r e c t i o n s

d o n o t d e s c r i b e t h e s c a t t e r i n g b y t h e i o n s , a n d w e a r e

r e f e r r i n g o n l y t o e f f e c t s o f s c a t t e r i n g b y a s c r e e n i n g

c h a r g e p r o d u c e d b y t h e e l e c t r o n s a n d i o n s . T h e i o n s

a f f e c t t h e s c r e e n i n g o n l y b e c a u s e t h e C o m p t o n a n d

n o n l i n e a r s c a t t e r i n g c a n c e l e a c h o t h e r i n t h e f i r s t

a p p r o x i m a t i o n . L e t u s e s t i m a t e t h e c o n d i t i o n s u n d e r

w h i c h t h e i n f l u e n c e o f t h e i o n s o n t h e s c r e e n i n g o f

t h e s c a t t e r i n g b y e l e c t r o n s b e g i n s t o d o m i n a t e o v e r

t h e D o p p l e r c o r r e c t i o n s t o t h e C o m p t o n s c a t t e r i n g . I t

s h o u l d b e n o t e d t h a t s u c h a n e s t i m a t e i s b e s t m a d e

u n d e r c o n d i t i o n s w h e n t h e s c a t t e r i n g b y i o n s i s i m -

p o s s i b l e o r , a s w i l l f o l l o w f r o m t h e r e s u l t s o f t h e

n e x t s e c t i o n , u n d e r c o n d i t i o n s w h e n s c a t t e r i n g b y

i o n s i s p o s s i b l e a n d t h e s c a t t e r i n g b y e l e c t r o n s w h i c h

i s c o n s i d e r e d h e r e i s a s a r u l e a s m a l l e f f e c t . F o r

s c a t t e r i n g b y t h e i o n s t o b e p o s s i b l e i t i s n e c e s s a r y
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that the velocity of the ion which participates in the
scattering, vj = (w - ^i)/\ k - kt |, be smaller than
v-^i (otherwise the number of scattering ions is ex-
ponentially small for a Maxwellian distribution).
Thus, under the conditions w - OJ, » | k - kj | v T i and
co - oj] « |k - kt| vTe we have

(CO —CO,)2

For k4 ~ k and |k - kt| ~ k, the order of magnitude

of ej is (me/mi)(vph/v'Te)4> and when

<€

the order of magnitude of e. is i.e.,

and the first term of (6.16) is of the order of
v-j-g/vpij. Thus, the ions greatly influence the
scattering even when

1/3

Recognizing in addition that v p n /vrp e » 1, we see
that for a hydrogen plasma with m j / m e ~ 2 x io3 the
results of (6.14) are applicable in the narrow region
1 <<; v ph / y Te <K 1Q- For a plasma of a heavy gas,
such as a cesium plasma, the limits of applicability
of the results of ^ are wider. If we neglect the
Doppler corrections in (6.15), then under the condi-
tions

'2-Y'<4. vTe
the nonlinear interaction is described by the approx-
imate formula [36]

X (k-kQ<
|k-k4

1/2
and when Vpn/vrpe » ( m i / m e ) v we have

Nkl
8 (2n)6/2 nme»Ts k - k, | A\

(6.18)

The role of the ions in the screening of the scatter-
ing by the electrons was clarified in '-36 , where the
nonlinear interaction (6.17) was obtained for a one-
dimensional spectrum ( k II kj), and in the non-
onedimensional case in [73] It should be noted that the
interaction (6.18), unlike (6.14), depends little on the
angles of the interacting waves when 6 ~ 1.

The order of magnitude of the characteristic time
under conditions of (6.18) and when k — kj is of the
order k is

"Te

which is much larger (by a factor ( Vp^/v-j-g )2) than
(6.14). We call attention to the fact that polarization
effects of the ions are especially important when

one-dimensional spectra are considered. The general
expression for the nonlinear interaction of one-
dimensional spectra, an expression suitable also for
waves whose phase velocity can be of the same order
as or larger than the velocity of light, was obtained

h

kl l8(2n)5/2 \k — kv\nmevTe

1 — e'(co — co,, ft —ft,) | 3/c/c,
e1 (co — co,, k — ft,) (k — ft,)2 e' (co — co,, ft — ft,)

(6.19)
We note that the result (6.15) follows from (6.19) for
waves having nonrelativistic phase velocities only
when

>/4
"Te

« ^-l-

For waves whose phase velocities are close to the
velocity of light, the nonlinear interaction can be de-
termined by a formula that differs from (6.15) by a
numerical coefficient 17/9 (see ) only at very high
plasma temperatures

If one of the latter inequalities is not satisfied, the
nonlinear interaction of one-dimensional waves has
the same order of magnitude as that of non-one-
dimensional waves (6.18). We note that in (6.19) we
took into account only the nonlinear scattering via a
virtual longitudinal wave, just as in all the preceding
formulas. Scattering via a virtual transverse wave in
the one-dimensional case is strictly forbidden, and
(6.19) describes the interaction of arbitrary one-
dimensional spectra.

7. Nonlinear Scattering via Virtual Transverse Waves

Going over to the analysis of nonlinear scattering
via a virtual transverse wave, it should be noted that
the important role of such a nonlinear interaction was
discussed for the first time for scattering of longitud-
inal waves into transverse ones in " . The role of
scattering via a virtual transverse wave for non-
linear interaction of Langmuir waves with one
another was pointed out in'-34 . However, the role of
such an interaction was overestimated there because
the effects connected with this scattering were com-
pared with formula (6.14), which is not valid in the
region of large phase velocities, at which scattering
via a virtual transverse wave may come into play (as
a rule, this is v p h » 1). Under these conditions,
scattering via a longitudinal wave is described by the
interaction (6.18), which was not taken into account
in L34 . The polarization effects of the ions can also
affect the scattering via a virtual transverse wave'-15-'.
We therefore present the results '-15 , which describes
all three types of interaction (Compton scattering,
scattering via a longitudinal wave, and scattering via
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a t r a n s v e r s e wave), obtained in the approximation
when no account is taken of weak in terac t ions c o r r e -
sponding to one-dimensional spec t ra (of the type
(6.19))

~W 1 8(2n) /a | k - k j | nmevTe

^ (e'(co_, k_)- l )2(kk, ) - f t l< ,

Ik-I2

fci —coie((a>_, k_)
e{ (co_, k_)

> , 0> =(!)-! , k_ = k —k,

The term containing the denominator kl
— oi2e (a)_, k_) takes into account the contribution of
the scattering via a virtual transverse wave. We can
also see from the foregoing expression that scatter-
ing via a virtual transverse wave is possible only for
waves whose wave vectors are not strictly parallel.
Let us therefore ascertain when scattering via a
transverse wave will be the decisive one, assuming
that the angle between k and kt is of the order of
unity. The sum of the Doppler correction to the Comp-
ton scattering and nonlinear scattering via a t rans-
verse wave is determined, in accordance with (7.1),
by the square of the modulus of the quantity

A = -
kl — 2(k]k) (k^~coie{(o>_,k_))

kl — »ie* (<o_, k)
(7.2)

A large value of A is possible only because of the
small denominators (7.2). If kj and k are of the
same order of magnitude, then the order of magnitude
of | k_ | when

is equal to k, whereas w ~ 3kAkv^,e/ojoe, with Ak
= | kj | — | k| can, generally speaking, be a rather
small quantity. Further, since scattering by ions is
disregarded, we have a>_ » | k . |v-pj or

k
o_, K_

"Te

—
—k)2

Ah

ewith the first term of e corresponding to the contri-
bution of the ions, and the second to the contribution
of the electrons. If

k 9m, (7.3)

then the main contribution to e* is made by the elec-
trons. We can then obtain the approximate form of
the nonlinear interaction, in the particular cases
1{2 » a j

2et(co_ j jj_)( which is equivalent under our
conditions to Ak/k « l/vphvxe- K the conditions
Ak/k » l/vphV-pg and (7.3) are satisfied, we obtain
an interaction in the form indicated in '-34-' (the very
important condition (7 3), as well as a number of
conditions that follow, was not indicated in '•34-'),

aK , P 2 coOe [kk,
"ivk \ "3 \'/a (k2[kk,]' |k-k, |3

I

ilJti^fi (7.4)
nmevTe k1k\

It was assumed in (7.4) that vp^ » 1 for only under
these conditions can sca t t e r ing via a longitudinal wave
take place. Indeed, the cha rac t e r i s t i c t ime of the
spec t ra l energy t r ans fe r (7.4) i s of the o r d e r of

1 k Wl VTe ..
Ak nmev%,e

(7 •!» On the other hand, in sca t te r ing via a longitudinal
wave with ej i .e. ,

k " ,Te

we have the es t imate

1 / k y /• me \ i / "phN3 W

F r o m t h e c o m p a r i s o n w e o b t a i n t h e c o n d i t i o n s u n d e r

w h i c h ( 7 . 4 ) p r e d o m i n a t e s

Ak "ph me

k •*" v\e

B y v i r t u e A k / k < 1 w e h a v e

9m,

vTe

and by v i r tue of

we obtain from Ak /k < 1 that Vpn » l / v x

T h i s c o n d i t i o n s h o w s t h a t t h e i n t e r a c t i o n ( 7 . 4 ) c a n b e

d e c i s i v e o n l y i n a p l a s m a w i t h v e r y h i g h e l e c t r o n

t e m p e r a t u r e s ( > 1 0 0 k e V f o r a h y d r o g e n p l a s m a ) , a n d

fu r the rmore « v T e . If t h e i n e q u a l i t y

Ak
~k~ 9m,

h o l d s , t h e n t h e i n t e r a c t i o n v i a t h e l o n g i t u d i n a l w a v e

i s o f t h e o r d e r o f

_1 J±k_ VTe W
T e k i ph nr e

a n d t h e c o n d i t i o n u n d e r w h i c h t h e s c a t t e r i n g v i a t h e

t r a n s v e r s e w a v e p r e d o m i n a t e s t a k e s t h e f o r m Cl5-1

A k « k. T h e c o n d i t i o n o n t h e e l e c t r o n t e m p e r a t u r e

c a n a g a i n a r i s e i f w e t a k e a c c o u n t o f t h e f a c t t h a t b y

v i r t u e A k < k a n d

k * 9vTemt

we get v ph « v T e ( 9 m j / m e ) and by vi r tue vpjj
» l / v x e w e have v x e

 >>:> ( m e / 9 m i ) 1 / 2 . It mus t be
borne in mind here that each of the foregoing inequali-
t i e s should be satisfied at leas t with a marg in of 2 o r
3 o r d e r s of magnitude, something which is hardly
poss ib le for a hydrogen p lasma at nonre la t iv is t ic
t e m p e r a t u r e s .
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Scattering via a virtual transverse wave under the
conditions

».vTe
corresponds to the following result'-34 , which is de-
rivable from (7.1):

reA'kl rfk.
(7 5)

The characteristic energy-transfer time is
1/T « W o e(Ak/k)(WZ /nT e) v T e v p h . From a compari-
son with scattering via a longitudinal wave we obtain
the condition under which scattering via a transverse
wave predominates vph >;> l /vpe- On the other hand,
from a comparison of (7.3) with

A/c l'ph me

we get Vph < « ( 9mi/me)1 / '2 , which together with
v p n » l / v T e yields vTe

 >>> (m e / 9mi ) 1 / 2 (the in-
equality with a margin of 2—3 orders of magnitude).
Comparison of (7.5) with scattering via a longitudinal
wave at

gives the condition under which scattering via a
transverse wave dominates

Ak J L

From Ak/k < 1 and Vph » 1 it follows that pe
» (m e /9mj) 1 / 3 . In addition, from the inequalities
preceding (7.5) it follows that

9m, V/j

which is a stringent condition for a hydrogen plasma.
The foregoipg analysis shows that the particular forms
of the interactions (7.4) and (7.5), obtained in'-34, have
narrow regions of applicability, at least for light
gases. We now discuss the particular forms, which
follow from (10.1), of the nonlinear interaction con-
nected with scattering via a virtual transverse wave,
in the case when the ions determine the polarization
effects, i.e., when

k ^ vTe 9m,

If at the same time v p n » ( m i / m e ) 1 / 2 and Ak/k
< Vph/v-pg, then the nonlinear interaction takes the
form

(7.6)

The characteristic time of the nonlinear interaction
is of the order

1 Wl V1e Ak m\

"ph k ml

An analysis shows that the interaction (7.6) cannot
dominate over scattering via a longitudinal wave. On

the other hand, if 1 « vph « (mi /m e ) 1 / 2 , then the
interaction takes the form (7.5), and upon comparison
with scattering via a longitudinal wave w,e get v p n

» l/vTe. i.e., VTe >>y (m e /m i ) 1 / 2 . The foregoing
analysis shows that allowance for the ions in the
screening of the scattering via the transverse wave
can relax somewhat the conditions required for the
nonlinear interaction to be determined by scattering
via a virtual transverse wave, especially for heavy
gases with large mj: the interaction can be described
by (7.5) if the derived inequalities are satisfied.

8. Induced Scattering of Langmuir Waves by Ions

In order for the plasma ions to be able to scatter
Langmuir waves, it is necessary to satisfy the in-
equality

< — — . (8.1)

This inequality is the consequence of the conservation
of energy during scattering. When Ak ~ k it reduces
to [36]

(8.2)

For a nonisothermal plasma with strongly heated
electrons T e » Tj we can always indicate small
values of Tj such that conditions (8.1) and (8.2) are
not satisfied, and the scattering by the ions does not
play any role. However, even when Tj ~ T e the waves
with large phase velocities (for (8.2), Vp^/v-pe
~ (Sini/ ine)^2) and small Ak/k (see (8.1)) will e s -
sentially interact in scattering by ions.

The point is that induced scattering by ions, if it
is allowed by conservation laws, usually exceeds
scattering by electrons. There are two reasons for
this. The first was indicated in [ l 8 a ] , namely: The
probability of scattering of high-frequency waves by
the ions is quite large because the Compton scatter-
ing is small, owing to the small mass of ions, and
cannot cancel out the nonlinear scattering determined
by m e . The second reason for the large role of non-
linear effects in scattering by ions is that when (8.1)
and (8.2) are satisfied the number of ions capable of
scattering the waves is larger by a factor of VTe/vTi
than the number of the scattering electrons.

In accord with the foregoing, the scattering by the
ions is purely nonlinear and is determined by the
second term of (6.12), which by virtue of (8.1), (8.2),
u>. « | k_ | vxi, and vpi << v-j-g takes the form

A
A" -

I 4 l i J
ffl'm,

The nonlinear interaction is described by the
formula [33'34'36'28-15]

dNl \! I 3 a>oeTe
8 nmevriTt -k , |

The order of magnitude of the characteristic energy-
transfer time is



822 V. N. T S Y T O V I C H

Ak W v-TeVTeTe ( A
Tx

by ions

In comparing the nonlinear interaction (8.3) with the
nonlinear scattering by electrons, we must take into
account the fact that the latter takes under conditions
(8.1) and (8.2) the form [36]

^ )"(kk,)2

1 I" ̂  Y' 8 (2n)5/a I k - k, | k*k\nmevTe
( 8 •4)

The characteristic time of this interaction exceeds
(8.3) when T e / T i « m i / m e . In this case the scatter-
ing by the ions dominates under these conditions over
the nonlinear interaction connected with the Doppler
corrections to the Compton scattering via the elec-
trons (6.14), subject to satisfaction of the criterion

_ 3
! E ! L » f ^ y v i + i o f ^ *. ( 8- 5 )

"re \mi J V Ti J \?i J
which is satisfied automatically when T e » Tj and
T e « Tj( m i / m e ) by virtue of Vph >:> v-pe. In the case
when T e « T ,̂ the foregoing condition does not im-
pose any limitations only when Tj « T e ( mi/nig)1^3.
On the other hand, at large values of Tj, the interac-
tion of waves with small Vph close to v^e may not
be determined by the scattering by ions. It must be
borne in mind here that for waves with Ak ~ k at
Tj » T e , (8.5) and (8.2) are incompatible, so that we
can speak of small Ak when (8.1) is not violated.

So far we have been dealing with comparison of the
spectral energy redistribution of the electron and ion
energies at identical Ak. However, it is advantageous
to carry out the comparison in a different manner,
namely, by considering such Ako ~ k for which scat-
tering by ions is impossible, assuming that (8.2) is
violated. But then " re lay" scattering by ions is still
possible. In each step Ak « Ak0 and satisfies the
condition (8.1). Such a scattering should be compared
with the degree to which a single energy transfer by
electrons is allowed. It follows from (8.1) that even
for small Tj there are such small Ak for which the
nonlinear interaction is determined by the ions. How-
ever, the characteristic time of the spectral energy
redistribution increases with decreasing Ak which
are allowed by inequality (8.1):

T ~ 3 nTeT,

This time corresponds to energy transfer at Ak
« Akg, the transfer when Ak is of the order of Ak0

being larger by a factor Ako/Ak, i.e., its order of
magnitude is

When

W "T,"phAk0Te

€

this time should be compared with (6.14), thus pro-
viding a criterion for the predominance of scattering

"Te
(8.6)

A similar criterion for

"Te \me

IS

"Te *
(8.7)

Attention should also be called to the fact that in the
case of one-dimensional spectra, if all the interacting
waves have identical directions, the criterion for the
possibility of scattering by ions is (8.2). Then the
characteristic energy transfer time

1 W' "^e T<> ( \ i Te\~2 (8 8)

does not increase with decreasing Ak. On the other
hand, the process analogous to "relay like" transfer
at small Ak occurs in the one-dimensional case in
such a way that during each stage there is a reversal
in the direction of the waves ^ .

9. Stimulated Scattering of Ion-sound Waves

The interaction of ion-sound waves greatly differs
from the interaction of Langmuir waves. First, the
phase velocities of the waves are bounded from above
by the quantity vs = v j e ( m e / m j ) " 2 , and transfer to
smaller w brings the oscillation energy into the
region where the absorption due to collisions becomes
all the more significant. Therefore such an energy
transfer can serve as a mechanism for absorbing the
oscillations generated as a result of the plasma in-
stabilities. Second, the appreciable dependence of the
oscillation frequency on the wave number in the
acoustic part of the branch causes the transfer
process itself, in which the number of quanta is con-
served, to be accompanied, unlike the case of Lang-
muir waves, by an appreciable decrease in the energy
of the ion-sound oscillations. Third, the principal role
in the scattering is played only by the plasma ions,
and on the acoustic part of the branch the transfer can
have only a "relay-l ike" character, in other words, it
can be approximately described by differential equa-
tions (transfer to wave-number values that are close
in modulus). The latter follows directly from the law
of energy conservation during scattering

(A; — ft') vs --= (ft — ft') vTl y ^ <\k — k'\vTl,

In the case of small angles 0 between the interacting
waves, Ak should be especially small

At the same time, for short-wave ion-sound oscilla-
tions k2\|-)e » 1, the frequencies of which are close
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to ci)Oi. the interact ion can have an in tegral c h a r a c t e r

( t ransfer at Ak of the o rde r of k ) . This follows from

the form of the spec t rum of such osci l la t ions . Thus,

when

/
f~ &k

1 -k'|i>rt

and Ak i s of the o rde r of k, th is i s poss ible if

and if

—

the t r a n s f e r can a l w a y s be i n t e g r a l .
The d i f f erent ia l f o r m of the n o n l i n e a r i n t e r a c t i o n

f o r the a c o u s t i c par t of the s p e c t r u m w a s f i r s t o b -
ta ined i n [ 2 6 ] and s u b s e q u e n t l y in [ 6 1 ' 7 4 : i . It f o l l ows f r o m
the f o r e g o i n g that the e n e r g y t r a n s f e r has an i n t e g r a l
c h a r a c t e r wi th r e s p e c t t o the a n g l e s , a s w a s m o s t
c l e a r l y d e m o n s t r a t e d in . At the s a m e t i m e , i t
m u s t be s p e c i a l l y e m p h a s i z e d that the d i f f erent ia l
f o r m of the n o n l i n e a r i n t e r a c t i o n i s a p p r o x i m a t e .
T h i s c a n b e s e e n a l r e a d y f r o m the fac t that the r e -
sul tant equat ions of the non l inear i n t e r a c t i o n beg in to
depend on the boundary cond i t ions in the w a v e - n u m b e r
s p a c e and c a n a c c o r d i n g l y b e mul t ip ly va lued L 6 1 J

A c t u a l l y the d i f f erent ia l c h a r a c t e r of the equat ions i s
p o s s i b l e only in a l i m i t e d r e g i o n of w a v e n u m b e r s ,
and out s ide t h i s r e g i o n the e n e r g y t r a n s f e r i s i n t e g r a l
and, rough ly speaking , d e t e r m i n e s the only boundary
condi t ion c o n n e c t e d wi th the d i s t r i b u t i o n of the o s c i l -
l a t i o n s in the r e g i o n of the i n t e g r a l t r a n s f e r of the
o s c i l l a t i o n s .

S i n c e the p h a s e v e l o c i t i e s of the i o n - s o u n d o s c i l l a -
t i o n s e x c e e d the a v e r a g e t h e r m a l v e l o c i t y of the i o n s ,
t h e i r s c a t t e r i n g by the i o n s i s quite s i m i l a r t o s c a t -
t e r i n g of L a n g m u i r w a v e s b y e l e c t r o n s . T o obtain the
s c a t t e r i n g probabi l i ty w e can t h e r e f o r e s i m p l y u s e
(6 .9 ) , tak ing in the non l inear s c a t t e r i n g account of
only the ion contr ibut ion

o>2

(kk,)
kk.

ei (<•)-. k-) 1 1
. k_) co2 m,

<kkt) 2 (kv) 1
kk. (O2 m,

We have r e t a i n e d h e r e only the D o p p l e r c o r r e c t i o n s
t o the Compton s c a t t e r i n g , the o r d e r of wh ich i s
k v r i / w , i . e . , v x i / v s ~ ( T i / T e ) 1 / 2 in the a c o u s t i c
par t of the s p e c t r u m and v T i / v p n » ( T i / T e ) 1 / 2 in
the r e g i o n of the ion o s c i l l a t i o n s . When VTi « v -p e

the o r d e r of magni tude of the n e g l e c t e d c o r r e c t i o n s
i s ( T j / T e ) 1 / 2 . In the a c o u s t i c p a r t of the s p e c t r u m
the probabi l i ty i s propor t iona l to 6 (w_ )( w_
» | k_ | v ^ ) , s o that part of the D o p p l e r effect , due
to the mot ion of the i o n s a long k — kj, i s i n s i g n i f i -

c a n t * . At the s a m e t i m e , in the r e g i o n of ion o s c i l l a -
t i o n s the p a r a l l e l c o m p o n e n t of the D o p p l e r e f fect i s
a l s o ins ign i f i cant by v i r t u e of u> « | k . | v T j . Thus ,
the s c a t t e r i n g probabi l i ty i s d e s c r i b e d by the a p p r o x -
i m a t e e x p r e s s i o n

, — k . y ) .

The probabi l i ty (9.1) e n a b l e s u s to obtain r e a d i l y f r o m
(6.11) an e x p r e s s i o n for the n o n l i n e a r i n t e r a c t i o n for
the e n t i r e r e g i o n of e x i s t e n c e of the i o n - s o u n d o s c i l -
l a t ions

dt
(9.2)

In the acoust ic pa r t of the spect rum, using

we get from (9.2) the resul t t 2 e : l (see 8,74]

which is equivalent to the differential form

r, sin2 29

(9.3)

(9.4)

6 i s the angle b e t w e e n k and kj, and df t j i s the s o l i d
a ng l e of kj . When 9 « 1 the l a s t equation g o e s o v e r
into Eq. (4) of ^6 . It m u s t be e m p h a s i z e d that in the
r e g i o n of s m a l l a n g l e s , w h e r e (9.4) t e n d s to z e r o , and
also in the region 8 —• IT/2, the next t e r m s of the ex -

pansion in the p a r a m e t e r T j / T e become significant.

With th is , (9.4) i s valid only if 9 » T i / T e
[ 7 4 : l . The

cha rac t e r i s t i c t r ans fe r t ime for (9.4) with 9 ~ 1 is

of the o rde r of

i_ Ws k Tt
_
X ~ Ws nTe ^ F ? 7 •

We m u s t e m p h a s i z e the fact that the analyt ic p r o p e r -
t i e s of the a p p r o x i m a t e k e r n e l of the i n t e g r a l equat ion
(9.3) d i f fer g r e a t l y f r o m the p r o p e r t i e s of the m o r e
e x a c t k e r n e l (9 .2) , and that t h i s m u s t b e taken into
account when s o l v i n g the equat ions ( s e e ) . In the
s p e c t r a l r e g i o n c o r r e s p o n d i n g to ion o s c i l l a t i o n s ,

and the interact ion tu rns out to be s imi la r to that

cha rac te r i zed by the nonlinear interact ion of the

Langmuir waves

(kk_)(vk_) kk_ „
- — r L ^ ( 0 - - p 7 " >

by virtue of 8(OJ) More rigorously, the nonlinear interaction makes
no contribution, owing to the fact that the integrand is odd in v .
The result is proportional to the next term in the expansion of
8{o)_ - k_v), namely, S'(c<i). However, the contribution made to the
coefficient preceding the S-function by the parallel velocity com-
ponent is OĴ S (&J_), which is rigorously equal to zero.
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dt
IVs

ks
dk'

(2jt)
5/2 (9.5)

The corrections to the nonlinear scattering, due to
the polarization effects of the electrons, are quite
small *.

10. Nonlinear Interaction of Langmuir and Ion-sound
Waves

a) Decay processes. Interest in these interactions
is due to the fact that experimental research results
are available for the interaction between high-fre-
quency and low-frequency waves . The principal
role in such interactions is apparently played by de-
cay interactions. It must be emphasized that in an
isotropic plasma the decay processes of waves of
the same type, such as sss, III, and ttt, are for-
bidden by the laws of energy and momentum conser-
vation in each individual decay act, which can be
readily seen directly from the dispersion properties
of these waves. It is also easy to understand that the
processes of coalescence of two ion-sound waves into
a Langmuir wave are also forbidden, because the sum
of the energies of two ion-sound waves does not ex-
ceed 2a; oi, and the frequency of the Langmuir waves
is larger than a)oi. This leaves only one decay pro-
cess describing the interaction between Langmuir
and ion-sound waves, corresponding to emission or
absorption of an ion-sound wave by a Langmuir wave.

An analysis shows that the main contribution
to the nonlinear current, which determines the fore-
going decay, is made by the electrons. Recognizing
that the average thermal velocity of the electrons is
much larger than the phase velocity of the ion-sound
waves, we obtain from (4.14) and (4.11) C74a."b]^

6 , _ k , _ ( 1 0 1 )

Here kj, kj, wf, and wj are the wave vectors and
frequencies of the Langmuir waves, while k s and
w s are those of the ion-sound waves. In those cases
when the momentum of the radiation of the s-wave is
small compared with the momentum of the Langmur
wave, the conservation laws during the decay are

*Scattering by electrons must frequently be regarded as small.
This can be readily understood by recognizing that the ion-sound
oscillations interact with the electrons in the first linear approxi-
mation, and therefore the nonlinear effects are corrections. In ad-
dition, under conditions when the quasilinear effects are strong
it is in general impossible to assume that the electron distribu-
tion is Maxwellian. By decreasing dte/dp, to which the nonlinear
interaction is proportional, the quasilinear effects decrease the
scattering by the electrons.

tSee also [T6'Me], where the probability of the process dif-
fers from that in [74a."b] by the factor

perfectly analogous to the Cerenkov conditions
k s • v g r = o)s. It must be noted, incidentally, that fre-
quently k s can become comparable with k in decays,
and it is necessary to use the exact conservation laws.
They lead to the conclusion that s-wave emission is
not always possible. Indeed, denoting by d+ the angle
between the initial Z-wave and the radiated s-wave,
we have

2 I *{ I
ko =

3vT

From - 1 < cos 6 < 1 and | k s | > 0 it follows that
I kjZ | > k0, i.e.,

de"

(10.2)

It must be noted that the maximum momentum which
can be obtained by the radiated s-wave is 2 | kf | when
kf » ko, and since k4 « l A r j e , it; follows that
(ks)max <K l/^De> i>e-> a wave in the acoustic part of
the spectrum is emitted in the decay. For one-
dimensional decay, the equality | k s | + 2kg = 2 | kf | is
satisfied, and when kf » k0 we have kg =* 2kf. This
shows that as a result of emission of the sound wave,
the direction of the propagation of the Langmuir wave
is reversed. When kt < 3ko (kj > k0), only a single
one-dimensional decay is possible, when kj < 5ko a
double decay is possible, etc. The total number of
decays is therefore finite and amounts to approxi-
mately V m j / m e . This circumstance can be readily
understood by recognizing that the energy of the
Langmuir waves decreases in the decays, i.e., k de-
creases and the phase velocity of the waves increases.
The end result is an increase in the phase velocities
of the I -waves to 3 v p e ^ m i / r n e - ^ should be noted
that if the Langmuir waves have narrow spectra, the
emission of the sound waves may lead to formation of
a Langmuir satellite spectrum that does not overlap
the initial spectrum. This is possible if the width of
the Langmuir wave spectrum is Au ' < u)s. For a
one-dimensional spectrum this reduces to

which yields Ak' < 2k0 when k » kj. It must be em-
phasized that the number of Langmuir waves is con-
served both in decay and in coalescence. Therefore
the decay processes lead only to an energy redistr i-
bution in the Langmuir-wave spectrum, i.e., to the
same effects as the induced scattering considered
above. Such an energy transfer does not occur in de-
cay without limit, as in the case of the induced scat-
ter ingj_butis limited by the maximum phase velocity

The direction of the energy transfer
depends in the case considered here on the ratio of
the intensities of the ion-sound waves to the Langmuir
waves. This can be readily understood by recognizing
that the absorption of the ion-sound oscillations lead
to a decrease in the phase velocities, while emission
leads to an increase. It is clear, for example, that
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FIG. 10

when the ion-sound waves have high energy, the ab-
sorption will predominate and the transfer will be
towards smaller values of v p n . Let us illustrate this
by means of a simple example. Assume, for example,
that we have a one-dimensional narrow spectrum of
Langmuir waves which has only one non-decaying
satellite spectrum (ko < kj < 3k0) (see above). The
waves of the first packet can emit a sound wave and
become transformed into the waves of the second
packet. On the other hand, the waves of the second
packet can only absorb sound waves (Fig. 10)* Let
us assume that at the initial instant of time the entire
energy of the Langmuir waves was concentrated in
the waves of the first packet. Then emission of sound
waves is induced, i.e., the waves subsequently emitted
are initiated by the previously emitted waves. Such a
system is analogous to a two-level system with nega-
tive temperature, which is considered in the theory of
quantum generators. When a noticeable number of
waves of the second packet appears, absorption is
produced, and becomes equal to the emission when
the intensities of the first and the second packets be-
come comparable in order of magnitude t . This
means that the number of waves of the first packet
has decreased by an amount on the order of the initial
number of waves; the number of emitted waves is of
the same order. Since the energy of each of the
s-quanta is smaller than the energy of the I -quanta
by a factor of o;s/a;0e, the total energy Ws of the
generated s-quanta amounts to

W (0,
/>̂  —1_

Ml ®0e '
where W^ is the energy of the I -quanta. In the pro-
cess under consideration, the number of quanta of
the second packet increases, i.e., the phase velocities
increase. This has been the result of the fact that at
the initial instant of time Ws was small. What will
occur if Ws is large? It is clear that if Ws is
smaller than w'w s /ujO e , then the picture will change

little. On the other hand, if in the initial state the
number of quanta of the second packet exceeds the
number of quanta of the first, then absorption of s-
waves and transfer to the first packet takes place.
For the transfer to be appreciable it is necessary
that Ws exceed W^ws/wOe. It is easy to estimate the
characteristic time of the transfer process for both
cases. In the first we can assume the intensity of the
first packet to be specified, that of the second to be
small, that of the sound waves to be small, and the
characteristic time TX can be assumed equal to the
growth time of the waves of the second packet

In the second case, when intense sound waves are
present, we can regard the intensity of the sound
waves as specified, and the characteristic time T2

can be assumed equal to the decrement time of the
intensity of the waves of the second packet*

dNki »rl f ATi Is dkidk.
at

It is easy to compare the foregoing characteristic
times t

Ti Wco1

If the energy of the sound waves exceeds \
then the second of the considered processes is faster
by a factor WswOe/W u>s. An estimate for Tj is
given by

1 *0 W k\m- (10.3)
ki cos ( &k[

It follows from (10.3) that when k, » k0 the highest
probability is possessed by emission of an s-plasmon
almost perpendicularly to the momentum of the
Z-plasmon. By virtue of (10.2) it is advantageous to
compare the time (10.3) with the characteristic time
(6.14) of the energy transfer in scattering by electrons.
This comparison shows that the time of appearance
of one satellite can be smaller than the time of the
induced scattering. However, it is also advantageous
to know what kind of a redistribution with respect to
phase velocities of the Z-waves is brought about by
the decays. The scattering (6.14) is effective for en-
ergy transfer at Ak* of the order of k', whereas in
the case of energy transfer given by (10.3), all that
changes in first approximation for the one-dimensional
case is the fact that the direction of k is reversed;
when the process is repeated, an Z-wave is emitted,
travelling in the initial direction but having a momen-
tum smaller by 2k0. Therefore for energy transfer at

•Sound waves can be absorbed also by the first packet, but as
a rale these waves have other lengths and propagation directions.

tA more accurate calculation [74a] shows that this occurs
when the intensity of the second packet is approximately three
times larger than the intensity of the first packet.

•Calculation [7<a] shows that the characteristic energy-trans-
fer times differ from those estimated by a logarithmic factor which
depends on the initial intensity.

tThe last of the given order-of-magmtude estimates follows
from the fact that the phase volumes of the s- and /-waves are
approximately equal, Ak2 — 2Ak .
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Ak ~ k with k' » k0 it is necessary to have
~ kV2k0 decays. Since the energy w ' is redistr i-
buted in this case among kV2k0 packets, the charac-
teristic transfer time is approximately k v 2k times
larger than (10.3). Yet it follows from (10.3) that a
more probable process is emission of an s-plasmon
at a large angle, when the momentum transfer ks,
and consequently also the scattering angle of the
Z-plasmon, is small. The picture of the decays will
therefore be in general non-uniform. With this, the
s-plasmon can already be emitted and absorbed by
waves of the same packet, and the resultant s-plasmon
generation effects will be differential. Such a genera-
tion will be quite similar to Cerenkov generation,

dlYkl dkl

= \« ! ' dkj j (2tt)3 (10.4)

The approximation (10.4) is suitable only when k s

« kg, kf > kg, and k s < (k ' /k 0 ) Ak'. If the Z-wave
packet has an angle aperture A0 ~ 1, then

-~eo0e
(10.5)

which is k s /kg times smaller than (10.3). However,
the transfer time decreases with increasing kg; more
probable is emission having the maximum k s allowed
by the given approximation, i.e., of the order of kg.
Thus, if we are considering energy transfer with Ak'
of the order of k , of a spectrum of width Ak' ~ k' ,
then (10.5) yields ( k s ~ kg/3):

1 w' (1^
3m,

(10.6)

and for the maximum permissible (10.5) small Ak we
have

1 Wl ^phf_me y/2
7 ~ Woe nTe vTe K3mJ '

We note that the efficiency of energy transfer in this
case, unlike in scattering by electrons, increases
with increasing phase velocities of the waves. The
transfer (10.6) dominates over scattering by electrons
when

"ph. 3m, "Nl/4
me )

Thus, when T e >> Tj and for specially narrow packets
(small Ak), the transfer of theZ-waves as a result of
decays into s-waves can become decisive.

It is clear further that in the case of a large level
of turbulence of the ion-sound waves the absorption
of the latter leads to a decrease in the phase veloci-
ties of the Langmuir waves. Absorption of sound
waves by Langmuir waves, in analogy with emission,
is not always allowed by the conservation laws. Thus,
the Langmuir waves cannot absorb ion oscillations
w s - a>Oi, since the momentum of the latter greatly
exceeds l A r j e and the Langmuir wave resulting from
the absorption would have Vph <<: v-pe» which is im-
possible. Absorption of sound waves is possible only

if 2(kg - kf) < k s < (k0 + kl), if kf < k0. When kf
> kg, the region where only absorption is permissible
is 2(kf - k0) < k s < 2(k0 + kf). When k s < 2(k* - k0),
both absorption and emission are possible. An analy-
sis L has shown that in the case of isotropic acoustic
turbulence, in a wide range of spectral distribution of
the oscillations, induced emission of sound waves can
predominate when k s < 2(kj — k0), in other words,
transfer of Z-waves takes place in the direction of
larger v ^ . When kj » kg, the region where only ab-
sorption is possible is quite narrow, and in order for
absorption to predominate it is necessary that the
greater part of the sound-oscillation energy be con-
centrated in this region. The transfer processes oc-
curring in the nonlinear interaction will rapidly take
the s-oscillations out of this region. With increasing
kf, the relative width of the indicated region increases,
but the absolute width remains equal to 2k0 at kf
< k0. When kf > kg, the absolute width of the region
decreases with decreasing kf, and consequently the
energy AWS, which determines the intensity of the
Z -wave transfer, also decreases in this region.

b) Scattering processes. We now proceed to con-
sider the scattering processes in which the Z-wave is
transformed into an s-wave. An example of such a
process is absorption of an Z-wave by a plasma part i-
cle, with emission of an s-wave, or emission of two
waves (Z or s) and, naturally, the inverse processes.
These processes, unlike all those considered above,
lead to a change in the number of the Z -waves, and
consequently it is expedient to regard them as r e -
sponsible for the effects of " t r u e " nonlinear absorp-
tion.

The energy and momentum conservation laws
readily allow us to establish that the interaction be-
tween the Z-waves and the sound waves (w s = k s • Vg)
is exponentially small in a plasma in which there are
no particle beams. Indeed, it follows from

co1 ± 0)' = (k! ± ks) v

that the projection of the velocity on ks is

>

with

i.e., the particles which can participate in this scat-
tering should have a velocity much higher than the
mean thermal velocity of the electrons. In the region
of ion oscillations, k s » k' and

^ T » TT > Vr"
i.e., the ions cannot participate in the scattering. By
virtue of wg e /k s « v-pe, the scattering is determined
by the electrons when u s — woi.

Thus, whereas decay interactions are allowed only
for the acoustic part of the ion-sound oscillations,
scattering by electrons is possible only for the region
of ion oscillations, and both processes supplement
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each other in this respect. The probability of scat-
tering, w_, or of emission of two waves, w+,
leads to the following expression for the nonlinear
absorption of waves in a Maxwellian plasma:

dt
Ns

kse>0la>0e

(2JX)5/2 nmev\e kk. 1 *„
(10.7)

T h e c h a r a c t e r i s t i c d e c r e m e n t c a n b e e s t i m a t e d f r o m

t h e f o r m u l a

11
• t

1W
nTe ksl

where Ws is the energy of the ionic oscillations. The
maximum decrement corresponds to k s of the order
of l/Af)p. and the minimum one is smaller by a fac-
tor VTi /T e .

Attention should be called to the fact that the sign
of (10.7) can reverse if the plasma contains electron
beams of low velocity v « v-je- T n e latter is essen-
tial for many astrophysical applications. The change
in the number of ion-sound waves in this process
turns out to be:

rfk
5/2

3 /coi •<L. ( 1 0 . 8 )
at - « j * ( 2 n )

A t t e n t i o n s h o u l d b e c a l l e d t o t h e d e p e n d e n c e o f t h e

s i g n o f t h e e f f e c t ( 1 0 . 8 ) ( g e n e r a t i o n o r a b s o r p t i o n ) o n

t h e m u t u a l o r i e n t a t i o n o f k a n d k s ( w h e t h e r k a n d

k s , f o r e x a m p l e , a r e p a r a l l e l o r a n t i p a r a l l e l ) . S u c h

a p o s s i b i l i t y , w i t h t h e s i g n o f ( 1 0 . 7 ) u n c h a n g e d , i s

c o n n e c t e d w i t h t h e f a c t t h a t i n t h i s p r o c e s s p a r t o f

t h e e n e r g y a n d o f t h e m o m e n t u m o f t h e w a v e s i s t a k e n

u p b y t h e p l a s m a p a r t i c l e s .

1 1 . N o n l i n e a r I n t e r a c t i o n o f T r a n s v e r s e W a v e s

T h e n o n l i n e a r i n t e r a c t i o n o f t r a n s v e r s e w a v e s o f

l o w e r o r d e r i n t e r m s o f w a v e e n e r g y i s d e s c r i b e d b y

s c a t t e r i n g b y t h e p l a s m a e l e c t r o n s a n d i o n s . A l t h o u g h

s c a t t e r i n g o f t r a n s v e r s e w a v e s i n a p l a s m a h a s b e e n

d i s c u s s e d m a n y t i m e s a n d i n d e t a i l ~ , t h e e f f e c t s

o f s t i m u l a t e d s c a t t e r i n g h a v e m a n y s p e c i f i c f e a t u r e s ,

w h i c h w e s h a l l n o w d i s c u s s . A l t h o u g h s t i m u l a t e d

s c a t t e r i n g i s d e t e r m i n e d b y t h e s a m e c r o s s s e c t i o n s ,

n e v e r t h e l e s s t h e r e s u l t a n t e f f e c t s a r e , o n t h e o n e

h a n d , p r o p o r t i o n a l n o t t o t h e p a r t i c l e d i s t r i b u t i o n

f u n c t i o n , a s f o r s p o n t a n e o u s s c a t t e r i n g , b u t t o t h e d e -

r i v a t i v e o f t h e m o m e n t u m d i s t r i b u t i o n f u n c t i o n ; o n t h e

o t h e r h a n d , u n l i k e s p o n t a n e o u s s c a t t e r i n g , s t i m u l a t e d

s c a t t e r i n g o c c u r s o n l y i n t h o s e r e a c t i o n s i n w h i c h

t h e r e i s i n t e n s e t r a n s v e r s e r a d i a t i o n t o i n i t i a t e t h e

s t i m u l a t e d t r a n s i t i o n s . B y v i r t u e o f v l n > 1 , t h e

c o r r e c t i o n s c o n n e c t e d w i t h t h e D o p p l e r e f f e c t i n

s c a t t e r i n g a r e i n t h i s c a s e o f t h e o r d e r o f ( k v / w )

< v j e <<c !> i - e - > n ° t l a r g e r t h a n t h e r e l a t i v i s t i c c o r -

r e c t i o n s t o t h e t h e r m a l m o t i o n , a n d c a n b e d i s r e -

g a r d e d . T h u s , t h e C o m p t o n s c a t t e r i n g i s d e s c r i b e d

b y ( s e e ( 6 . 4 ) )

A c . s

w h e r e e ^ a r e t h e u n i t v e c t o r s o f t h e p o l a r i z a t i o n o f

t h e t w o i n t e r a c t i n g t r a n s v e r s e w a v e s . N o n l i n e a r

s c a t t e r i n g w i t h

co_ < I k_ I i> r a ( c o - = < B ' — v>[, k_ = k ! — k < )

i s d e t e r m i n e d f o r s c a t t e r i n g v i a a l o n g i t u d i n a l w a v e

b y
c . s iC2 f > . , k _ ) - l ( e ^ e ^ )

w h i c h d i f f e r s f r o m t h e c o r r e s p o n d i n g e x p r e s s i o n f o r

t h e l o n g i t u d i n a l w a v e s i n t h e d i r e c t i o n s o f t h e v e c t o r s

e t . A v e r a g i n g o v e r t h e p o l a r i z a t i o n s y i e l d s

I t i s e a s y t o o b t a i n a n e x p r e s s i o n f o r t h e p r o b a b i l i t y

o f s c a t t e r i n g b y e l e c t r o n s [ 7 3 ] ; t h i s l e a d s t o t h e f o l -

l o w i n g e x p r e s s i o n f o r t h e n o n l i n e a r i n t e r a c t i o n :

a A

dt
L = M \ < -

e1 (ci>_, k_)' 8 ( 2 n ) 5 / 2 | k _ | vTea*a[nTe

T h e m a x i m u m e n e r g y t r a n s f e r o f t h e t r a n s v e r s e

w a v e s i s c h a r a c t e r i z e d b y a t i m e

, W / (On. A3 Ad)
| k _ I

I n t h e c a s e w h e n OJ_ « | k _ | v - p j , t h e w a v e s i n t e r a c t i o n

i s d e t e r m i n e d o n l y b y t h e n o n l i n e a r s c a t t e r i n g b y i o n s

at J

T h e c h a r a c t e r i s t i c t i m e o f t h e p r o c e s s ( 1 1 . 2 ) i s

s m a l l e r u n d e r t h e s e c o n d i t i o n s t h a n ( 1 1 . 1 ) w h e n T e

< T ^ m ^ / m e . I t s h o u l d b e n o t e d t h a t t h e c o n d i t i o n

o j - « | k _ | V r p a c a n b e s a t i s f i e d f o r l a r g e f r e q u e n c i e s

co » o j o e , w h e r e t h i s c o n d i t i o n i n d i c a t e s t h a t t h e i n -

t e r a c t i o n i n q u e s t i o n d e s c r i b e s e n e r g y t r a n s f e r w i t h

s m a l l A w 1 , A W V W * « A f l v T a • W h e n A 0 ~ 1 , t h e t i m e

o f t r a n s f e r w i t h A w * o f t h e o r d e r o f w * i s l a r g e r t h a n

( 1 1 . 1 ) o r ( 1 1 . 2 ) b y a p p r o x i m a t e l y l / v T a t i m e s . W h e n

t h e i n v e r s e i n e q u a l i t i e s w _ » | k _ \ v ^ a a r e s a t i s f i e d

i t i s n e c e s s a r y t o u s e t h e h y d r o d y n a m i c a p p r o x i m a t i o n

( 4 . 8 ) f o r t h e n o n l i n e a r c u r r e n t d e s c r i b e d i n t h e n o n -

l i n e a r s c a t t e r i n g ; t h e f i r s t a n d l a s t t e r m s o f ( 4 . 8 )

m a k e n o c o n t r i b u t i o n , o w i n g t o ( e { ^ - k ) = 0 , w h i l e t h e

s e c o n d t e r m i s d i r e c t e d a l o n g k — k j a n d c o n s e -

q u e n t l y o n l y s c a t t e r i n g v i a a l o n g i t u d i n a l w a v e i s

p o s s i b l e i n t h i s a p p r o x i m a t i o n , s c a t t e r i n g v i a a t r a n s -

v e r s e w a v e b e i n g i m p o s s i b l e . T h i s p o i n t s i m m e d i -

a t e l y t o a c r i t e r i o n t h a t e s t a b l i s h e s w h e n t h e n o n -

l i n e a r s c a t t e r i n g b e c o m e s a n e g l i g i b l y s m a l l e f f e c t .

I n t h i s c a s e

•< 1

1 —
C02

niaa> (In)3

w h e n w _ = w * — u ^ » W o e - N a t u r a l l y , a t l e a s t o n e o f

t h e i n t e r a c t i n g w a v e s s h o u l d b e o f h i g h f r e q u e n c y ,

a) » U j g . T h e r e f o r e w h e n w _ » LO^Q t h e s c a t t e r i n g
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can be regarded as Compton scattering. Under these
conditions the energy transfer becomes differential
and is determined by the value of A^-s- written out
above *

dNJ ̂  a^NJ P t / Jkkj)!
dt 8(2ji)2nmc J kl V. A2*!

(k-k,)2 g,
coco, v

(11.3)

The characteristic energy-transfer time is estimated
at

<of Aa>t •

The differential character of the energy transfer
(11.3), just as in the case of the sound oscillations,
serves as an approximate expression for the energy
transfer under conditions when the physically in-
finitesimally small Aw satisfies the requirement
Aw » woe f . From a comparison of (11.3) and (11.1)
we readily see that when Ad ~ 1 the "relay type"
transfer by an amount Aw of the order of w, in which
each stage is by a small amount Aw satisfying
w_ « | k_ | v-p, it is more effective by a factor l / v j e
than "relay type" transfer in which each Aw sat is-
fies the inequality w_ » | k_ | Vipe and Aw » Woe-

We now consider scattering by electrons via a
virtual transverse wave. Such a process can be sig-
nificant when w_ « k_ vya for long-wave transverse
waves, whose frequencies differ little from wOe .
From (5.4) we can obtain in this case

dN IV*.
dt ~~ 8(2JI)5/2 J nmevTe\k-\k2kl \kl—o>le'(co_, k_)

If we neglect the contribution of the ions in €*•( w_, k_),
then (11.4) goes over into the result obtained in .
The characteristic energy-transfer time in scattering
through an angle 6 of the order of unity can be esti-
mated from (11.4) in two limiting cases. If ki
» | w2ct(w_, k_) I, i.e., for k_ of the order of k, if
w_ — kAk/w8e, and the inequalities

**€toT!_; C0oi «*«<%,

are satisfied, we get the estimate

W>
-®ot

Afc C00e
k kvTe

*Actually, the first approximation, proportional to
S(&) — a),), makes no contribution in the nonlinear equations, and
only the term corresponding to the expansion of the 8-function
in terms of (k — kt) • v/(o) — cjj), namely (k - kt) • \8\co — <J,),
is important. This raises the question of the role of the Doppler
corrections, which have the same order of magnitude in the prob-
ability as the terms that are included. Calculation with the aid
of (6.4) shows that for an isotropic particle distribution they are in-
significant (they are proportional to (<o — <u')5(<y — &>'). -» 0).

tWe note in this connection that scattering by ions, for ex-
ample, cannot be represented analytically in differential form
even approximately.

On the other hand, if Ak « vT ewo i*, then the charac-
teristic time of scattering via a longitudinal wave is
of the order of

W Ak
k kvTe

(00

Consequently the scattering via a transverse wave can
predominate only when k « woeVTe> which by virtue
of the inequality woi « k « woe is possible only when
v Te >;>> ( m e / m i ) 1 / Z - Thus, scattering via a t rans-
verse wave is possible only under conditions of very
high plasma temperatures t . If ki « | w^ e* |, but
I e | l >;> I efl, i.e., Ak » k 2 vp e /w 0 e and Ak
» ( m e / m j ) wOeVTe> then the characteristic time of
transfer via a transverse wave is

l W

In this case the scattering via a transverse wave
predominates only when Ak « kvipe, which is com-
patible with the previously written inequalities when

~ <^oe"Te <k< a0e"Te-

Finally, when k2_ « | w2e*| and | c* | « | e t | , i.e.,
!f"Te < hk < ^- O0evTe Or*« C00i,(00e mi

the characteristic energy-transfer time is estimated
at

1 W' k* Akntj
~ ** nmec* a°e (Ol. mevTe(HOe '

and is smaller than that for scattering via a longitud-
inal wave only when

, .. 1 / mf \ 1/2
vTe V »*i J

which is compatible with the inequalities written out
above only if v T e »> ( mg /mi )^ 2 .

12. Nonlinear Interaction of Transverse and Langmuir
Waves

The interaction of transverse and Langmuir waves
in a plasma plays a special role. The point is that,
as a rule, the Langmuir waves are most effectively
excited in a plasma under certain conditions. This
occurs, for example, in important applications in
which a beam passes through a plasma, and in other
methods of plasma turbulization. At the same time,
longitudinal oscillations cannot exist outside the
plasma. The nonlinear interactions convert the
Langmuir oscillations into transverse ones, which

*The region Ak » vTe<u0 but Ak « k2vTe/&)Qe is quite nar-
row, since the inequalities a>2

Qe » k2 » &Jol&)Oe are also required.
tThe conclusion in [3~4] that scattering via a transverse wave

always dominates if Ak/k « kvTe/<uQe is inaccurate, since no at-
tention was paid in ["] to the role of the ions in the screened scat-
tering via a longitudinal wave (see (11.1)) and no account was
taken of the ions in the screening of the scattering via the trans-
verse wave.
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a r e usual ly easy to observe . The question of conver -
sion of longitudinal waves into t r a n s v e r s e ones b e -
comes par t i cu la r ly acute in as t rophys ica l problems,
where the main information i s obtained in the form of
radiat ion. The question of conversion of longitudinal
waves into t r a n s v e r s e ones by spontaneous sca t te r ing
was f i rs t considered by Ginzburg and Zheleznyakov
in . We analyze here in detai l the conversion due
to induced scat ter ing, with allowance for the disc losed
effects of compensation of Compton and nonlinear
scat ter ing , the ro le of the ions in the screening of the
sca t te r ing by e lec t rons , sca t te r ing by ions, and s c a t -
t e r ing via a vir tual t r a n s v e r s e wave.

a) Interact ion effects in st imulated sca t te r ing by
p la sma pa r t i c l e s . It is easy to see that in sca t te r ing
by p l a s m a pa r t i c l e s the Langmuir waves can become
t rans formed into t r a n s v e r s e ones, whose frequencies
a r e c lose to the e lec t r ic p l a sma frequency. This fol-
lows d i rec t ly from the conservat ion of energy during
sca t te r ing

u< — a>1 = (k' — k') v = 4 ^ - - i - ( £ i^ - 2 .

Eq. (12.1) leads to the resu l t of[20]:*

3<V,'._ Nl r> iVLm.dk,

Energy is transferred always in the direction of lower
frequencies. In the presence of intense Langmuir oscil-
lations and of weak transverse oscillations, the princi-
pal role is played by transfer into transverse waves,
where by virtue of w1 < <d- we get kt < cooe V3(vj>e/Vpn).
On the other hand, in the case of intense transverse
waves with frequencies cu ~ a;Oe> plasma waves can be-
come excited with phase velocities satisfying the in-
equality

"Ph . 2 (a1 — coOi,) -i1 's
)

A general expression for the scattering probability
was obtained in , and a general formula for the
nonlinear interaction in^ . Neglecting scattering via
a virtual transverse wave, we have

imenvi (2jt)5/21 k^ |

| k\k\ L! e< (co_, k_)

•Mki 2v\r (k2k_)

(k,k2)
2};

(12.1)

k2) — co'(k,).

The first term of (12.1) describes the polarization
effect connected with scattering by a screening cloud.
Just as for Langmuir waves, the ions play a very im-
portant role in such a screening. The remaining
terms of (12.1) describe the Doppler corrections to
the Compton sca t te r ing . When mj —• °° and k* « k

dt AmenvTe J (2ix"|5/2 | k t ,5 Af

X (k\kl - AiKkzf) + lk\k\ ( k , k 2 ) 2 } .
( 1 2 . 2 )

F r o m ( 1 2 . 2 ) w e g e t t h e f o l l o w i n g e s t i m a t e f o r t h e

c h a r a c t e r i s t i c c o n v e r s i o n t i m e

By vir tue of

we have

)_ < klvTe « <o0<!
 v^-

W

i .e. , it i s much longer than the t ime of nonlinear in-
te rac t ion of the longitudinal waves . Conversion from
t r a n s v e r s e waves into longitudinal ones is c h a r a c t e r -
ized by a t ime

W ( c o _ ~ | k — 1

which exceeds the t ime of nonlinear interact ion of the
t r a n s v e r s e waves . The contribution of the ions to the
polar izat ion (12.1) comes into play for the I — t
t ransformat ion when

1/3 >'/3

In making this es t imate it was assumed that k2 i s of
the o rde r of kjv^e. The same c r i t e r ion is obtained if
such an assumption i s made for the t — l t r a n s f o r m a -
tion.

Thus, the polarizat ion effects due to ions become
noticeable for in teract ions between t r a n s v e r s e and
longitudinal waves at much lower phase veloci t ies
v l n than in the interact ion of Langmuir waves

( v ^ n / v x e > ( taii/nig)^3). Therefore (12.2) is valid
only in a p lasma with ei ther very heavy ions or a high
electron t e m p e r a t u r e . A second consequence of the
foregoing inequali t ies is that the region of appl icabi l -
i ty of the formulas corresponding to | ^ e | » | e? | i s
b roader than for II in teract ions , namely, if

*A formula for k l > k ' w a s obta ined in [ " ] . Such a refinement

g i v e s only negl ig ib ly smal l co r rec t ions to (12.2) at nonre la t iv i s -

t i c p l a sma t empera tu res v T e « 1, if one t a l k s of convers ion of

longi tudina l w a v e s into t r a n s v e r s e ones with k ' < k \ / 3 v T e , whi le

for genera t ion of p lasma w a v e s by t r a n s v e r s e ones , by vir tue of

k ' > k V 3 v _ and o>' - a>1 =- W/2&j r i = < k l - 1 v T e ' we have
k' « <^OevTe, which is possible only for generation of plasma
waves whose phase velocity is much larger than the speed of
light, when, as a rule, screening by ions is significant (the first
term of (12.1)).
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and we neglect (12.2), we get

k_ |3 vTe [k,k2p
dt n)

6/2
(12.3)

From (12.3) with kj ~ kjVTe we get for the charac-
teristic time of the Z — t transformation

nTe vTe

Comparison of (12.3) with the cha rac t e r i s t i c i n t e r a c -
tion of longitudinal waves in the region Vph/v^g
« ( m j / m g ) 1 / 3 shows that (12.3) can r each a value of
the o rde r of the t ime of conversion of the longitudinal
waves only at the border l ine of the applicabili ty of
(6.14) and in the region of applicabili ty of (6.17), i .e . ,
when v p n / v x e

 >:> ( n i j / m e ) • W n e n the inequality
/ ^ 2

v p h / v Te >:> is satisfied, the Z —• t con-p
version is described by the formula

SF - "** } ttRi' kl imenvTa (2it)5/2 | k_

with a characteristic time (for k2 ~

(12.4)

which cor responds to the o rde r of magnitude of the
nonlinear interact ion (6.18) of Langmuir waves . We
thus r each the important conclusion that , approxi -
mately, when

t h e n o n l i n e a r c o n v e r s i o n o f L a n g m u i r w a v e s i n t o

t r a n s v e r s e w a v e s i s o f t h e s a m e o r d e r a s t h e n o n -

l i n e a r c o n v e r s i o n o f L a n g m u i r w a v e s i n t o e a c h o t h e r .

T h i s c o n v e r s i o n l e a d s t o a r e l a t i v e l y i n t e n s e e m e r -

g e n c e o f t r a n s v e r s e r a d i a t i o n f r o m a t u r b u l e n t p l a s m a

a t f r e q u e n c i e s l a r g e r t h a n a > o e . I t m u s t b e b o r n e i n

m i n d h e r e t h a t t h e h i g h e r t h e p h a s e v e l o c i t y o f t h e

e x c i t i n g L a n g m u i r w a v e s , t h e s m a l l e r t h e r e f r a c t i v e

i n d i c e s f o r t h e g e n e r a t e d t r a n s v e r s e w a v e s .

L e t u s c o n s i d e r n o w t h e e f f e c t s o f n o n l i n e a r i n t e r -

a c t i o n v i a a v i r t u a l t r a n s v e r s e w a v e . A c c o r d i n g t o *•

w e o b t a i n w h e n ( k • k j ) w j j e » 2 ( k • k t ) w 2 e e :

SN' . ? . a . .

I k - I (2n)6 '

( k - k i ) * } .
(12.5)

tIn the pa r t i cu la r case when the ro le of the ions in e
i s negligibly smal l , (12.5) gives the r e su l t of[34]. When

o r
f f m,

and kj ~ kjv-pg, the cha rac t e r i s t i c t ime (12.5) cannot
exceed (6.18), and when l / v - r e « v p h « v T e ( m i / m e ) .
i .e. , in the re la t ively na r row interval of phase ve loc i -
t i e s of the waves, in the ca se when the e lec t ron t e m -
p e r a t u r e of the p l a sma i s sufficiently high v-pe

» ( m e / m i ) 1 / / 2 , the nonlinear sca t te r ing via a vi r tual
t r a n s v e r s e wave can r each the same o r d e r a s s c a t -
t e r ing via a longitudinal wave.

As a rule , at la rge phase veloci t ies , when s c a t t e r -
ing via a t r a n s v e r s e wave i s possible , the sca t te r ing
by ions becomes predominant . Under the conditions
w. « | k_ |VTJ , the nonlinear sca t t e r ing by ions is
descr ibed by the formula'-15 '34-'*

N>
o_re [k,k2p

-=£• ) | k_AmPnuTe i
- t - • - \ i , J

( 1 2 . 6 )

U n d e r t h e c o n d i t i o n s o f I - ' t c o n v e r s i o n , w h e n

k 2 « k l f a n d w h e n w _ ~ k \ v L / o ) o e , w e o b t a i n a s a n

e s t i m a t e o f t h e c h a r a c t e r i s t i c t i m e o f t h e p r o c e s s

1 W V T e T e

" ^ ™ » e n T p vphvTi T
1 i

I t

T h e c o n d i t i o n < x > _ « | k _ | v r p j c o r r e s p o n d s t o v ' ^

» V r p g / v - p j . A s s e e n f r o m ( 1 2 . 6 ) , i n o r d e r f o r s c a t -

t e r i n g b y i o n s t o p r e d o m i n a t e , i t i s n e c e s s a r y t o

s a t i s f y i n a d d i t i o n t h e i n e q u a l i t y

m e ~ T \ V "

b ) N o n l i n e a r i n t e r a c t i o n i n t h e d e c a y o f a t r a n s -

v e r s e w a v e i n t o a L a n g m u i r a n d i o n - s o u n d w a v e . T h e

d e c a y a n d c o a l e s c e n c e p r o c e s s e s t + s - * ^ Z , a n d

t — Z + s a r e c l o s e s t t o t h o s e c o n s i d e r e d a b o v e , s i n c e

t h e y g i v e r i s e t o a n i n t e r a c t i o n o f t r a n s v e r s e w a v e s

w i t h f r e q u e n c i e s c l o s e t o w o e . T h e f i r s t o f t h e s e

p r o c e s s e s p l a y s a r o l e i n t h e l - ~ t c o n v e r s i o n a n d

t h e o t h e r i n t h e t - ~ I c o n v e r s i o n . T h e i n d i c a t e d c o n -

v e r s i o n p r o c e s s w a s c o n s i d e r e d i n ( f o r t h e p r o b a -

b i l i t i e s s e e a l s o ' - 7 3 0 - ' ) . B y v i r t u e o f u s > 0 i t f o l l o w s

f r o m t h e e n e r g y c o n s e r v a t i o n l a w f o r Z — t + s t h a t

k
l
 < v 3 v - p e k

f
 « k , a n d s i n c e k

4
 « l A . £ ) e , w e g e t

k s « l / A p g a n d o n l y t h e s o n i c o s c i l l a t i o n L O S = k s v s

c a n o c c u r . F r o m ( k * )
2

 > 0 i t f o l l o w s t h a t d e c a y i s

p o s s i b l e o n l y i f

i . e . , k > 2 k o L e t u s c o n s i d e r t h e i n i t i a l s t a g e o f t h e

d e c a y , w h e n t h e n u m b e r s N a n d N s a r e s m a l l , a n d

t h e c h a r a c t e r i s t i c t i m e o f t - w a v e g e n e r a t i o n c a n b e

e s t i m a t e d f r o m

) u A X ) W o ^ 7 ^ ' ( 1 2 7

H e r e A k < k i s t h e w i d t h o f t h e Z - w a v e s p e c t r u m a n d

U T
S

 i s t h e d e c a y p r o b a b i l i t y . C o n v e r s i o n o f t h e w a v e s

i n t o t r a n s v e r s e o n e s i s m o s t e f f e c t i v e w h e n k ' ~ 2 k 0 ,

i . e . , a t t h e l i m i t p e r m i s s i b l e b y t h e c o n s e r v a t i o n l a w s ,

w h e r e t h e i n d i c a t e d c o n v e r s i o n c a n g r e a t l y e x c e e d t h e

n o n l i n e a r s c a t t e r i n g b y e l e c t r o n s ( 1 2 . 4 ) , b u t c o n v e r -

* T h i s formula t a k e s i n t o a c c o u n t o n l y n o n l i n e a r s c a t t e r i n g ,

s i n c e t h e C o m p t o n s c a t t e r i n g i s n e g l i g i b l y s m a l l and i s a n a l o g -

o u s to II s c a t t e r i n g .
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sion by the ions can become comparable with (12.7).
Let us consider further a process in which a trans-

verse wave with frequency close to a;oe decays into a
Langmuir and ion-sound wave. With this, k > v3k'vrpe.
If we assume that k*- « k , then we have for the mo-
mentum of the excited Z-wave

and the characteristic time of generation of the I -
waves is of the order

1 <M ' ^ ? is . < ( rfk< rfks ̂  TV'
f/i di J ' k

 (2JX)6 nmec2 ( (12.8)

An estimate of the intensity of generation of I -waves
for the p r o c e s s t + s—• I can be obtained from

W'WS
(o0e > A'; AA:' < A.'. )

(12.9)

At a considerable low-frequency sonic turbulence,
(12.9) co r responds to m o r e effective generation of I
waves than (12.8). F o r (12.9), however, the growth of
W^ i s not exponential a s for (12.8).

c) Generation of t r a n s v e r s e waves upon c o a l e s -
cence of Langmuir waves and of Langmuir and ion-
sound waves . We consider he re two p r o c e s s e s , I + s
— t and I +1 — t These p r o c e s s e s occur in a t u rbu -
lent p l a sma and the i r intensi ty i s propor t ional to the
turbulence energy. The p r o c e s s I + s —• t can se rve
as a source of t r a n s v e r s e waves in a p lasma in which
both I- and s -waves a r e excited, and i t s es t imate is

at nT,
(12.10)

The coa lescence p r o c e s s I +1 — t leads to gene ra -
tion of t r a n s v e r s e waves whose frequencies a r e c lose
to 2o>oe. The probabil i ty of this p r o c e s s can be
readi ly obtained from the hydrodynamic nonlinear
cu r ren t ( 4 . 8 ) [ 3 i a ]

Umml
(12.11)

In the case of a small number N*, the change in the
number of longitudinal waves due to the decay is of
the form[34]

dt
;-*;>« 6 ( 3 -

Since the sum of | k

k\k\

COOt /
and | k21

(12.12)

i s of the o rde r ofSince the sum of | kj | and | k21 i s of the o rde r of
a)Oe, we find for Vph » 1 that k\ - kj! is of the o rde r

f j d [ k k iVkfcij j Aof wjje. and [ k t x k2 and the c h a r a c -
t e r i s t i c decrement t ime due to the p r o c e s s (12.22) is
es t imated at

1 H' 4

When Vph ~ 1, this es t imate co r responds to that ob-
tained in [34]. The t ime (12.12) i s smal l compared with
the cha rac t e r i s t i c t ime of conversion due to s c a t t e r -

ing and to the decays considered above. It mus t be
borne in mind that it leads to an effect that can be
reg i s t e red experimental ly, namely p la sma radiat ion
at the frequency 2a>oe. The possibi l i ty of th is spon-
taneous radiat ion of a turbulent p l a sma was pointed
out in . (See concerning as t rophysica l appl ica-
t ions to emiss ion from the sun.) When N^ is small ,
we can es t imate the power of the t r a n s v e r s e waves
generated a s a r e su l t of the p r o c e s s I +Z—• t

(12.13)dW \Vl
 TJ,[

dt nmec*

for the most effective case Vpn — 1.
d) Nonlinear in teract ions of t r a n s v e r s e and Lang-

m u i r waves in st imulated sca t te r ing by supe r the rma l
p l a sma pa r t i c l e s . This question i s of in t e res t b e -
cause a turbulent p l a sma i s cha rac t e r i zed by the p r e s -
ence of super the rmal pa r t i c l e s in the dis t r ibut ion
t a i l s . The appearance of such pa r t i c l e s i s due to the
acce lera t ing mechan i sms that come into play when the
pa r t i c l e s in te rac t with the p lasma turbulent pu l s a -
tions ^ . Accelera ted pa r t i c l e s a r e observed expe r i -
mentally in a lmost any turbulent p l a sma . Beams
of charged pa r t i c l e s in teract ing with a p l a sma a r e
likewise natural sys tems containing supe r the rma l
pa r t i c l e s . We confine ourse lves he re to the analysis
of effects of nonlinear interact ion for i sot ropical ly
distr ibuted super the rmal p a r t i c l e s * . It should be
noted that as a rule the number of supe r the rma l p a r -
t i c les is smal l . The i r contribution to effects that
occur with t he rma l pa r t i c l e s i s s m a l l t . The i n t e r -
action of t r a n s v e r s e and Langmuir waves sca t t e red
by supe r the rma l par t i c les , on the other hand, leads
to new quali tat ive effects - possible nonlinear i n t e r -
action for high-frequency t r a n s v e r s e waves, OJ*
» w o e (so far, the frequencies of the waves p a r t i c i -
pating in the interact ion were of the o r d e r of a> o e ) .

In o rde r to prove the foregoing statement, it i s
sufficient to consider the energy conservat ion laws

since we get
Ik'

• > 4-»
lOOe <»0e

The scattering of transverse waves into longitudinal
ones by superthermal particles is remarkable also
because the main contribution is made by nonlinear
scattering via a virtual transverse wave, unlike scat-
tering by thermal scattering, when scattering via a

*An analysis of nonlinear effects in the presence of particle
beams is beyond the scope of the present review. The qualitative
estimates of the efficienty of nonlinear interactions, however, are
the same for isotropically and amsotropically disturbed superther-
mal particlê .

tThis is the case, for example, for the interaction of Langmuir
waves with each other (calculation of the scattering cross sections
for superthermal resonant particles and corrections for Cerenkov
radiation are given in[18b]).
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transverse wave can be significant only under excep-
tional conditions when very stringent requirements
are satisfied (this was discussed in detail above). The
cross section of I —- t scattering for superthermal
particles and for ur » u>Oe can be readily obtained
from the general expressions given above :

((k1k2)-|k8|(k,v))

Ik
(12.14)

The second term /3 describes nonlinear scattering
via a virtual transverse wave. (12.14) was first ob-
tained for w' » a>oe in" by using an intuitive ana-
logy between nonlinear scattering and transition radi-
ation from density inhomogeneities produced by the
plasma wave. This calculation of '-18a is closely re-
lated to papers in which transition radiation in a
medium with periodic structure is considered^63' .
In this case the pl'asma wave produces an alternating
electron concentration, and consequently modulates
the dielectric constant in space and in time

( . O)0e JO0e_ _6n_ ^ | __ _O)0e_ ^e-iat+ikr_
8 0)2 CO2 « 0)2

Such an intuitive interpretation is permissible only by
virtue of w* » woe (see[l8b]). An analysis of (12.14)
(see ^ ) shows that scattering via a virtual trans-
verse wave cancels out in first approximation the
Compton scattering if v£n « 1 and v « 1; for Vpn
~ 1, the cancellation disappears if at the same time
v « 1; for relativistic particles with v-» 1 the prin-
cipal role is played only by Compton scattering. A
detailed numerical analysis of the spontaneous scat-
tering produced in scattering of fast particles by iso-
tropically distributed plasma waves is contained in'-18.
Here we consider nonlinear effects arising at suffi-
ciently high transverse-wave intensity and w « wOe>
when induced scattering plays an important role. It is
easy to find that the induced scattering of transverse
waves leads for isotropically distributed thermal
particles to additional absorption of the transverse
waves
get

'-1 For »
p

o>oe,
 vph

<<c v « 1 we

4 (2JI)*

X

rfk,

}• (12.15)
where nj is the total number of superthermal parti-
cles capable of participating in the scattering

The characteristic decrement y for such nonlinear
absorption is estimated at

1 W
Y ' T ~~ Tifiin c

It is possible to find in similar fashion the change in
the number of longitudinal waves. This can be ac-
companied by buildup of longitudinal waves [19a .̂

e) Decays of transverse waves into transverse and
Langmuir waves. This type of interaction is also pos-
sible for transverse high-frequency waves w* » cooe-
It is easy to understand that in these processes the
total number of transverse waves is conserved, and
consequently the process under consideration leads
to a redistribution of the t-waves over the spectrum.
The probability of such a process was obtained i

X6(a>{-(»j-ci)')6(ki-k{-k'). (12>16)

This process is similar in structure to I — a +1 de-
cay and many of the facts revealed for this decay can
be qualitatively extended to the t-~t+l decay.

It is significant that this decay can likewise not
proceed without limit, since the decay results into two
waves whose frequencies are larger than woe. Con-
sequently, the frequency of the decaying wave should
be larger than 2woe. This imposes an upper limit
v^ < 2/V3 on the possible phase velocities of the
t-wave during such a conversion. It is essential that
the decay processes convert the transverse waves in
that frequency region where the induced scattering is
not effective. The result of this conversion are plasma
waves, which were investigated in detail in Li5,74C3,38J_
The energy generated by the plasma waves will be of
the same order as the energy of the initial transverse
waves, i.e., the transverse waves become noticeably
dissipated in the plasma as a result of the nonlinear
processes if the frequencies or are decreased during
the conversion by an amount of the order of w . In
the case of narrow t-wave spectra (Aw* « wOe), the
conversion leads to the appearance of satellites. The
characteristic conversion time for one satellite at '•98^
A0* « (wne/w1)372 is of the order of

«0

— ~ -£ (o0e —-, j .
X z Ao) nMec*

For a broad wave spectrum Aw' » u>oe, the estimated
characteristic generation time is

. * \ 2 Tf*£
1 Jt / U>oe \ V* /-in ini
— — ~7~ *̂0e ( J 2"- s-L̂ .-1-O

In analogy with the Z—- s +1 decay, in this case the
conversion at high Z-wave energy proceeds in a
direction such as to increase the frequency of the
transverse waves.
13. Nonlinear Interaction of Transverse and Ion-sound

Waves
There are two types of interactions of t- and s-

waves.
a) Stimulated scattering of transverse waves by

electrons with transformation into ion-sound waves.
This interaction leads to absorption of the transverse
waves and is in many respects analogous to the ab-



N O N L I N E A R E F F E C T S IN A PLASMA 833

sorption of I -waves in 1-* s scattering. If w*
« | k s | v T e and w* » cooe, which corresponds to the
conversion of transverse waves into ionic oscillations
ois ~ oj0i, then the probability of the scattering process
takes the form

°! k 1

and the nonlinear absorption i s descr ibed by the
formula

V / 2

_ _ °" / Woe
dl 2 J 2 (2jl) "o^e^Te | ks | Vfe \ Q(
b) Decay of t r a n s v e r s e waves into ion-sound

waves, descr ibed by the probabil i ty

KA^-

(l-i - ^ ( ^ ) 6 K - ( o 5 - ( o s ) 6 ( k ' 1 - k ' a - k s ) . (13.2)

An analysis shows that a multiple-step decay, in
which the transverse wave first decays into a Langmuir
wave, after which the Langmuir waves decay into ion-
sound waves ^7 is more probable than direct decay
of the transverse waves into sonic waves.

CONCLUSIONS
A few words should be said in conclusion concern-

ing unsolved problems in the theory of nonlinear in-
teraction. The solution of the system of nonlinear
equations is quite complicated even in the simplest
case, but one should hope that it is precisely the
solution of such problems which will lead to important
information on the stationary-turbulence spectra.
Notice should be taken of the papers [21>61'85], which
are the first to attempt to solve such problems.
Another problem, no less important, is the role of
nonlinear effects in the development of two-stream
instability. Notice should be taken here of *• , where
it is shown that the nonlinear effects can lead to a
suppression of two-stream instability. Further, no
less important is the question of radiation from a
turbulent plasma, which is produced when longitudinal
waves are converted into transverse ones, and which
can serve as the source of energy loss and plasma
cooling'-31. On the other hand, various energy con-
versions can transfer the oscillations to the region
of absorption and by the same token raise the plasma
temperature. This is particularly important for a
plasma situated in magnetic fields'-3 . An investiga-
tion of these questions can present the picture of the
dynamics of a turbulent plasma. Therefore an inves-
tigation of nonlinearities of a magnetoactive plasma
is of considerable interest. At the present time we
cannot regard the investigation of these problems as
complete.

Nonlinear effects exert a great influence on the
spectra of the particles accelerated in a turbulent
plasma, on the isotropizat ion of cosmic rays'•38>39-',
the generat ion of turbulence in cosmic p lasma by
gravi tat ional instability, e tc .

Finally, nonlinear effects of p lasma inhomogenei-
t i e s de te rmine the part icle-diffusion p r o c e s s e s ,
knowledge of which is essent ia l for the problem of
p lasma containment.

Note added in proof In Ch II we considered nonlinear interac-
tions of waves scattered by plasma particles whose distribution is
Maxwellian The general equations of Ch I take also into account
the reciprocal influence of the stimulated scattering on the particle
distribution function, which may reduce the nonlinear interaction of
the intense waves in a plasma with small ratio v/o>Qe (y — average
frequency of electron-electron collisions) For a one-dimensional
interaction of Langmuir waves, in accordance with the estimates
of A. S Chikhachev and the author, the decrease is by a factor
rf2 only if rj > 1
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