
538.12

ЛЕКЦИОННЫЕ ДЕМОНСТРАЦИИ С ИМПУЛЬСНЫМИ МАГНИТНЫМИ ПОЛЯМИ

Если вокруг тела с электропроводностью о достаточно быстро создать магнитное поле, последнее диффундирует в тело за малое время t лишь на некоторую глубину скин-слоя $l = c\sqrt{t/4\pi\sigma}$. В результате возникновения градиента поля на тело будет действовать магнитное давление $p_m = -\sqrt{H^2/8\pi}$. Это явление используется в плазменных ускорителях, для магнитного сжатия плазмы (пинч прямого тока, тэта-пинч). Для качественной демонстрации упомянутых магнитогидродинамических эффектов весьма удобно пользоваться металлическими проводниками, механические и электрические характеристики которых выбраны соответствующим образом.

Ниже приводятся описания демонстраций по радиальному обжатию металлической трубки импульсным магнитным полем, а также некоторых эффектов, связанных

с захватом поля трубкой. Импульсное поле создавалось при разряде конденсаторной батареи на соленоид, внутрь которого предварительно вставлялась трубка. Эксперименты первоначально проводились с трубками Ø70-80 мм, спаянными из медной

фольги толщиной 0,15 мм. Однако более содержательными оказались опыты с дюр-

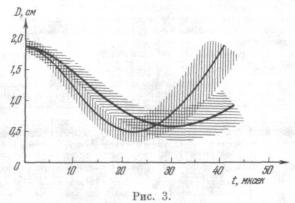


Рис. 2.

параметрах скин-слой и толщина стенки оказываются величинами одного порядка; варьируя толщину стенки либо электропроводность, можно выделить или ослабить эффекты, связанные с диффузией магнитного поля. Если скин-слой меньше толщины стенки, то преобладает эффект чисто внешнего давления. Обжатие цилиндра происходит с характерными складками (рис. 2, а) благодаря потере устойчивости 1. Утоньшение стенки приводит к значительной диффузии магнитного поля в трубку. Когда поле внутри трубки достигнет своего максимального значения и начнет спадать, возникающие индукционные токи удерживают магнитное поле внутри трубки, так что в течение некоторого времени внутреннее поле превышает внешнее, что приводит к обратному разлету стенок. Фоторегистрированием с торца трубки было установлено, что вначале происходит радиальное сжатие стенок со скоростью 200-300 м/сек,

с последующим их разлетом. На рис. 2, 6 приведены фотографии трубок после разру шения, а на рис. 3-результаты обработки регистрограмм для толщин стенок 0,75 и 1 мм (горизонтальная штриховка) при начальном напряжении на конденсаторах 4,8 кв. Границы штриховки указывают приблизительно внутренние и внешние диаметры. Для подробного рассмотрения деформированных трубок удобно пользоваться эпидиаскопом.

Путем осциллографирования производной тока и соответствующих расчетов были определены параметры контура без трубки. Период затухающих колебаний

T=80 мксек (со вставленной трубкой — 75 мксек), полная индуктивность $L_0=0.38$ мкгн, индуктивность соленоида L=0.25 мкгн, емкость батареи 420 мк ϕ .

Амплитуда тока первого полупериода при начальном напряжении 4,8 KB конденсаторах $I_{\text{max}} = 130 \quad \kappa a$ соответствующее в центре соленоида H==100 кгс, максимальное магнитное давление $p_m \simeq 425 \ \kappa \Gamma / c M^2$. Давление, действующее на вставленную в соленоид трубку, должно значительно превышать указанную величину за счет эффекта концентрации поля в начальный момент в пространстве между соленоидом и трубкой.

На установке можно также проводить опыты по обжатию проводника с прямолинейным током. Вместо соленоида устанавливается короткозамкнутый отрезок коаксиальной линии. Шесть стержней, впаянных с концов во фланец, образуют внешний коаксиальный проводник Ø 70 мм (BII). Центральный проводник (ЦП) Ø 20 мм, подвергающийся обжатию, свернут из нескольких слоев медной фольги толщиной 0,1-0,15 мм; верхним концом он крепится к указанному выше фланцу, нижним - к центральному электроду разрядника (см. рис. 1, б и рис. 4 справа сверху). В этих опытах радиальное обжатие центрального проводника хорошо выражено лишь у мест крепления; в средней части провод-ника картина обычно сильно усложняется различными видами неустойчивостей, характерными для плазменных экспериментов.

Схема установки приведена на рис. 1, а. С — батарея конденсаторов типа ИМ5-150, R_1 —зарядное сопротивление, составлено из двух сопротивлений ПЭ-150 по 20 ком. Р — реле блокировочное с нормально замкну-

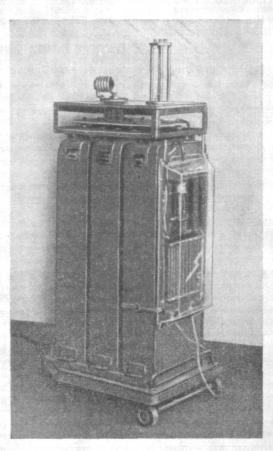


Рис. 4.

тыми контактами, переделано из реле типа КА путем разнесения контактной группы. R_2 — блокировочное сопротивление, состоит из двух параллельно включенных открытых спиралей по 40 ом из нихрома \varnothing 1 мм; конструкция отвечает требо-

ваниям необходимой надежности и возможности постоянного визуального контроля исправности R_2 . Детали R_1 , R_2 , P собраны на вертикальной панели, подвешенной на стенке конденсаторов и закрытой прозрачным колпаком из оргстекла (рис. 4). Ошиновка конденсаторов выполнена 4-мм латунными листами с прокладкой из вакумной резины толщиной 3 мм. Шины стянуты сквозными болтами с изолирующими шайбами. На шинах установлен коаксиальный разрядник KP, внешний проводник которого содержит ряд продольных щелей для предотвращения разрушения ударной волной, возникающей при разряде. Зазор между внутренними электродами \emptyset 30 мм может регулироваться путем перемещения верхнего электрода. Над ошиновкой установлен сварной ящик-каркас, облицованный сверху текстолитом, сбоку — оргстеклом. Ящик служит одновременно для крепления корпусов конденсаторов, для защиты высоковольтных электродов и в качестве столика.

Цельноточенный латунный соленоид содержит четыре витка сечением $0.7 \times 1.65 \text{ cm}^2$, шаг намотки 10 мм, внутренний диаметр 25 мм. К торцам соленоида принаяны диски с отверстием и разрезом, оканчивающиеся короткими изогнутыми лапками для крепления на разряднике. В межвитковые пространства вставлены текстолитовые шайбы, внутренний рабочий объем изолирован тонкостенной винипластовой трубкой. Соленоид обладает достаточной прочностью и в дополнительной защите витков не нуждается (лишь после 30-35 разрядов было обнаружено незначительное

раскручивание витков).

При экспериментах необходимо иметь в виду, что направление вдоль оси катушки является опасным, так как при сильно ассимметричном расположении трубки последняя может быть выброшена с большой скоростью.

Новосибирский государственный университет

Ф. Х. Байбулатов

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. М. А. Лаврентьев, А. Ю. Ишлинский, ДАН СССР 64, 779 (1949).