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JNoNLOCAL quantum field theory, which arose in
its initial form soon after the foundations of field
quantization were laid and the difficulties with diverg-
ences became obvious, has always been regarded as
one of the approaches in the theory of elementary
particles most lacking in consistency and most re-
mote from reality. This opinion has been based on
the many difficulties inherent in nonlocal theory,
along with the lack of any apparent points of contact
of the idea of nonlocality with experiment. Except for
a small number of enthusiasts for nonlocal theory,
people have mentioned it only when the difficulties
with the divergences of local theory have taken a
particularly sharp form (cf., e.g., ).

This situation has changed decidedly in the last
few years. First, we cannot fail to point out the ap-
pearance of a definite practical interest in nonlocal
theory, which is stimulated by experiments being
done and being planned to test the dispersion rela-
tions and to determine the limits of applicability of
quantum electrodynamics. In particular, there has
been wide discussion of the question as to whether the
form of the dispersion relations is changed when we
go over to a nonlocal theory; in other words, whether
an affirmative result of the test of these relations will
mean an actual proof of the local character of the in-
teraction of elementary particles. ~" Nonlocal theory
is used especially often—though in a rather imperfect
form—in the planning and in the processing of results
from experiments to test quantum electrodynam-
ics. t Finally, special attention is directed to
nonlocal theory by the very possibility that the re-
sults of these experiments may fail to agree with the
predictions of local theory (of course when all possi-
ble masking effects are taken into account).t

In parallel with the awakening interest in nonlocal
theory there has been a change in the estimation of
its inherent difficulties. It is now supposed that these

*Expanded text of a survey report at a session of the Nuclear
Physics Section of the Academy of Sciences of the U.S.S.R. (Nov-
ember, 1965).

t A comparison of the nonlocal correction to the matrix element
with the quantity characterizing the accuracy of the experiment
allows us to compare the effectiveness of various experiments, and
also to determine an upper limit on the elementary length from the
experimental data that are already available.

tThe first communications about this sort of disagreements to
appear in the literature [13'"1] are still in need of serious checking
and improvements in accuracy.

-142 (September, 1966)

difficulties are, at least predominantly, not matters
of principle, but that they arise because of a too
straightforward extension of the apparatus of local
field theory. The possibility of overcoming these
difficulties can be illustrated with models of nonlocal
theory which are internally selfconsistent and com-
patible with the principles of quantum field
theory. R~ The only problem not fully solved is
that of macroscopic causality. There is still no posi-
tive solution for it, though it is possible to refute the
direct arguments that have been given in the litera-
ture against the possibility of satisfying the conditions
in question (for details see Sees. 3 and 9).

This article contains a brief survey of the present
state of nonlocal field theory.

1. The local theory of elementary particles is
based on the following three fundamental postulates.
First, there is the relativistic postulate, which de-
fines geometrical and kinematical aspects of the de-
scription of elementary particles and their interac-
tions. Next, the quantum nature of elementary parti-
cles is postulated and a probabilistic interpretation
of the processes of interaction and interconversion
among them is formulated. The third postulate stands
somewhat apart—the postulate of the local (point)
character of the interaction.* Being borrowed from
the classical theory of point particles, in its simplest
formulation it requires that the field operators which
occur in a product in the operator for a physical
quantity be referred to the same point of space-time.
For example, the local action function for the inter-
action of electrons with the electromagnetic field is
written in the form

v il) ix\ A {x\ (1)

In a more general sense the postulate of locality
expresses the requirement of microscopic causality
(the cause event must always precede the effect
event). It must be pointed out, however, that it is
much inferior to the first two postulates in clarity of
physical content, and moreover shows a definite lack
of physical correspondence to them (for details see
Sec. 3). Therefore the locality postulate, being to a
large extent a formal requirement, is one of the most

*In the S-matrix method developed in recent years the postulate
of locality is replaced by the requirement of maximum analyticity
of the matrix elements.
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vulnerable of the assumptions forming the basis of
local elementary-particle theory.

The opinion is often expressed that the locality
postulate cannot be regarded as independent of the
relativistic postulate, since violation of locality is in
logical contradiction with relativistic kinematics.
The argument usually given for this point of view is
that renunciation of locality means (at least in non-
quantum theory) the appearance of signals faster than
light; this is regarded as in contradiction with the
kinematics of relativity theory.

Actually the requirement that there be no signals
faster than light follows not from relativistic kine-
matics, but from the additional condition of causality,
which is largely empirically based. In itself relativ-
istic kinematics contains no limitations on the speed
of a signal.* In this connection it is important to note
that there does not exist any reference system in
which the speed of an ultralight signal would be zero
(as is also true of the speed of a photon). Therefore
the speed of an inertial reference system, as involved
in the Lorentz transformation, is always less than
the speed of light.

We refer to the detailed discussion of this range
of questions in'-19 , and give here a relevant statement
by Einstein himself. In discussing the possible change
of the time order of events by Lorentz transforma-
tions when the events are connected by an ultralight
signal (w > c), Einstein formulates his conclusion
that there are no ultralight motions in the following
way: "Although from a purely logical point of view
this result does not, in my opinion, contain any con-
tradictions, it nevertheless so contradicts the nature
of all our experience that the impossibility of the
conjecture w > c seems sufficiently well estab-
lished." It is superfluous to say that Einstein could
have in mind only the macroscopic experience that
had been accumulated up to the beginning of our
century.

2. Under the general head of nonlocal field theory
there are quite a number of theoretical schemes,
which are very different in their initial ideas and in
the way they are realized. They are unified by the
common assumption that the divergence difficulties of
local theory indicate the faultiness of the third of the
postulates we have listed—the postulate of locality.t

The departure from the point character of the in-
teraction can be accomplished in various ways. We
here distinguish two main approaches. The first is
characterized by the bringing in of additional postu-
lates, which make the very concept of locality of the

*This is already evidenced by the very fact that is is possible
to give relativistic formulations of quite a number of nonlocal and
nonlinear schemes which lead to ultralight signals in the nonquan-
tutn case.

tAs is well known, the divergences of local theory are explicitly
connected with the equality of the arguments of the field operators
in the intersection Lagrangian.

interaction meaningless, in the same way as the con-
cept of a trajectory loses its meaning for a quantum-
mechanical object. This approach includes in particu-
lar theories which start from the impossibility of
giving an exact meaning to the concept of a field re-
ferred to a point of space-time; the corresponding
postulate is that field operators and coordinates do
not commute. ' Another possibility, connected
with the assumption that the very concept of a definite
point of space-time is without exact meaning (non-
commutation of the components of the coordinate
operator), leads to the theory of quantized space-
time. t23~26-' There are as yet no clear prospects for
such "physical" nonlocal theories, and they will not
be considered in this survey (for a rather complete
bibliography of papers on this question see'-2 ).

Over against the "physical" nonlocal theories
there are the phenomenological schemes in which the
departure from locality is made without bringing in
new physical ideas, and which are based as before on
the space-time ideas of the theory of relativity and
the probability ideas of quantum mechanics. The
models of such phenomenological nonlocal theories
are usually constructed by introducing into the local
expressions some prescribed functions of the coordi-
nates or of the momenta—form-factors. The simplest
way to introduce a form-factor is artificially to
"shift apart" the field operators—to refer them to
different space-time points. For example, the action
function (1) is replaced by the quantity

dxdydzF(x, y, z (2)

where F is the form-factor.
If the future consistent theory of elementary par-

ticles is indeed a nonlocal theory (and in favor of this
we have, besides the divergences, also the analysis
of the procedure for measuring coordinates), then it
is extremely likely that besides changes in the postu-
late of locality changes in the other two postulates
will also be required. Therefore phenomenological
nonlocal theory can primarily pretend only to be a
crude preliminary description of the nonlocal effects.
A virtue of this sort of theory, as of all phenomeno-
logy, lies in a certain generality, its independence of
the concrete realizations of the idea of nonlocality,
whose true content is still in the highest degree
mysterious. It is important that the typical difficul-
ties inherent in nonlocal theory are of rather general
character and are already manifested in a pheno-
menological theory. It is natural to conduct an analy-
sis of these difficulties and a search for ways to
overcome them in the framework of a general
phenomenological approach.

3. Denial of the locality of the interaction inevita-
bly leads to violation of the condition of microscopic
causality, which requires that there be no influence
of a point event in the future on an event which is al-
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ready past, and accordingly that there be no mutual
influence between events separated by a spacelike
interval. The simplest formulation of this condition
is

[<p (x), cp (y)]= 0, (zo-;/o)2<(x-y)2, (3)

where <p is the Heisenberg field operator (for
definiteness, of a Bose field).

It is essential to point out that the condition of
microscopic causality has no direct physical meaning
in relativistic quantum theory and is essentially no
more than a mathematical extrapolation of the classi-
cal causality condition. It suffices to note that the
very concept of a point event, which appears in the
formulation of the condition in question, is incom-
patible with relativistic quantum ideas.* In other
words, it is impossible even in imagination to realize
any experimental situation which would allow us to
establish a violation of causality in arbitrarily small
regions of space-time (on this point see ).

Therefore the impossibility of securing the condi-
tion of microscopic causality in a nonlocal theory
provides no physical arguments against such a theory
(to say nothing of the fact that in a future theory such
concepts as "earlier" and "later" and so on may
lose their simple meanings altogether). The only im-
portant thing is that there be no violations of causality
on a large scale in space and time, where causality
is in all cases verified by experience. The possibility
of satisfying this last condition (the condition of
macroscopic causality) in a nonlocal theory will be
discussed below.

At first glance the principle of macroscopic
causality is deprived of value by the fact that the
values of space and time intervals taken separately
are not relativistically invariant. Indeed, if we con-
fine the violation of causality to an invariant region

(x-yf | = | (:ro-!/o)2-(x-y) :i\ (4)

where I is some small length, then in directions close
to the light cone the spatial and temporal extents of
the acausal region, taken separately, are arbitrarily
large.

This fact has led a number of authors (cf.,
e.g., ~38> ) to introduce into nonlocal theory a
supplementary timelike vector P^, by means of which
one can "localize" the violation of causality. If, for
example, we replace (4) by the condition

\(x~y)*-
[(x-y,

ZPf,
(5)

then the quantities x0 — yo and x — y will also be
limited when taken separately. The vector P^ can

*It is well known that one cannot construct from particle states
on the mass surface and with the positive sign of the energy a wave
packet which is a point packet not only in the spatial but also in
the temporal sense.

be related either to empty space, to the vacuum, or
to the system of interacting particles itself. The
former case leads to a violation of relativity (the
reference system in which P = 0 is singled out) and
goes beyond the framework of the relativistic non-
local theories considered in this article.* In the latter
case P^ can be identified, for example, with the
energy-momentum vector of the system of particles.
Then, however, we encounter a strong violation of
macroscopic causality. In fact, the merely conceptual
inclusion in the composition of the system of any ad-
ditional particles, located at no matter how large
distances, changes the quantity P^, and thus changes
the nature of the interaction of the particles of the
original system. It is clear that such action at a dis-
tance is physically inadmissible.

Meanwhile, even without introducing an auxiliary
vector we can make the acausal influence we spoke of
in connection with Eq. (4) fall off rapidly enough as
we go away from the vertex of the light cone. It fol-
lows from a special analysis of this question'-32'33

that this decrease is exponential if certain conditions
imposed on the actual matrix element of a process in
the momentum representation are satisfied. Namely,
it is sufficient that the expression in question not
contain any singularities on the real axis with non-
Feynman (acausal) rules for avoiding them.t In ex-
planation we note that the appearance of a pole on the
real axis means that the matrix element, like an or-
dinary propagation function, is capable of describing
the transfer of an interaction over macroscopic dis-
tances and times.

4. The demarking of space-time into "small"
regions, where causality is violated, and "large"
regions, where it is satisfied, is impossible without
the appearance in the nonlocal theory of a new con-
stant of the dimension of length—an elementary length.
In phenomenological nonlocal theory the form-factor
must contain this quantity.

The elementary length I should become the third
fundamental physical constant, after the speed of
light c and the Planck constant K. The necessity of
its appearance in the theory of fundamental particles
is generally recognized, but we can as yet only guess
about the value of this constant.'-37-' t

It is interesting to put the three fundamental con-
stants c, R, and I in correspondence with the three
basic postulates of local theory, of which we spoke in
Sec. 1. Since the constants c and H are associated
with the first two postulates, which arose through

*Formally it is possible to preserve the corresponding group
properties if we assign to each reference system its own vector
P/j.-[36] Such a scheme, however, will differ rather strongly in its
conclusions from orthodox relativistic theory.

tSee also [30]; regarding a possible weaker form of this condi-
tion see below, Sec. 7.

tFrom experiments made to test quantum electrodynamics we
have the estimate / < 10"'4 cm.
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abandonment of the corresponding classical ideas, it
seems natural to suppose that the constant I must
appear when the third postulate, the postulate of
locality, is abandoned. It is this assumption that is
the basis of nonlocal field theory.

There is usually associated with the appearance of
the elementary length the hope for convergence of the
integrals that become infinite in local theory: it is
expected that these integrals will be automatically
"cut off" at a momentum value A. ~ fi/i. Therefore
nonlocal theory is often regarded as a method for
regularizing divergences. Such a regularization is
necessary for a consistent treatment of problems of
elementary-particle physics, in particular the physics
of weak and other nonrenormalizable interactions.

In reality "cutting off" of integrals in nonlocal
theory by no means always occurs. Although in this
theory the field operators are indeed referred to non-
coincident points of space-time, this leads to con-
vergence only for integrals with respect to the four-
dimensional squares of the momenta. There still re-
mains an integration over the (infinite) angular region
of the pseudoeuclidean momentum space. In local
theory this integration always leads to a finite result;
the presence of the Feynman rules for going around
singularities allows us to go over to a Euclidean
space, where there are clearly no angular divergences.
In nonlocal theory, however, there microscopic
causality is violated, the transition to Euclidean space
is impossible, and there is an extremely sharp ques-
tion of angular divergences^ (cf. Sec. 5).

5. The questions of macroscopic causality and
convergence which have already been touched on in
the preceding sections give some idea of the charac-
teristic difficulties inherent in nonlocal theory.

The difficulties of nonlocal theory, which have
often even led to the conclusion that it is completely
inconsistent, penetrate literally into all aspects of
the theory. Among them are questions connected with
relativistic invariance (ordering with respect to
time, the condition of mathematical compatibil-
ity • ) , questions relating to the quantum-mechan-
ical description (unitarity of the scattering matrix/40'41-'
definiteness of the metric'-42-'), questions of the con-
vergence of matrix elements, 32>43~ gauge invari-
ance (in electrodynamics),'46^ questions of macro-
scopic causality,'•32>33'4r~49] and a number of others.

At present there is every reason to believe that
these difficulties are not as serious as they had
usually been thought to be. One of the general rea-
sons for their appearance is that mutually equivalent
formulations of local theory have turned out to be
very different in regard to their nonlocal extensions
(the introduction of form-factors). The roots of most
of the difficulties are precisely in an unhappy choice
of the initial local formulation. Accordingly it has
been possible to overcome these difficulties owing to
a special choice of this formulation.

A detailed study of the causes for the appearance
of these difficulties [ l5"17^ has led to the finding of
ways to overcome them and construct examples of
noncontradictory nonlocal schemes; in Sec. 9 we
shall discuss the problem of macroscopic causality,
which still remains without a positive solution. It not
being possible to go into details on the various ques-
tions here, we shall give the examples in question in
Sees. 6—8.

It is important to point out that a version of non-
local theory which is discussed in the literature more
often than others—the introduction of a form-factor
into the vertex part of the Feynman diagram (cf.[2] ) —
is inconsistent. In the matrix elements in question
singularities appear at certain fixed values (which do
not go to infinity for I — 0) of the external momenta,
and the rules for passing around these points are
nonfeynman. These singularities are "vestiges"
remaining from the divergences of the local expres-
sion, and arise because for these values of the mo-
menta the form-factor ceases to "cut off" the
divergent integrals. As has already been indicated
in Sec. 3, such singularities lead to violation of
macroscopic causality, and it is their appearance
that led to the well known conclusion that it is impos-
sible to apply the principles of causality and unitarity
in nonlocal theory. The refutation of this conclusion^17-1

consisted precisely in the construction of a version
of nonlocal theory in which there are no such singu-
larities.

In addition to the difficulties with macroscopic
causality, there are angular divergences in the type
of nonlocal theory we have been discussing. They are
typical, in particular, of those matrix elements which
in a local nonrenormalizable theory diverged more
rapidly than logarithmically (cf. Sec. 4). Paradoxical
as it may be, the situation with divergences is here
even worse than in the case of a local renormaliza-
ble theory. If, for example, in the local theory the
main divergence of a polarization operator took the
form of an infinite constant, easily removable by a
mass renormalization, in the nonlocal case the cor-
responding expression converges for timelike values
of the boson momentum and diverges for spacelike
values. This fact was regarded earlier as a most
serious difficulty of nonlocal theory, and even insti-
gated a rejection of relativism.[so] This is too high a
price, however, for the convergence of matrix ele-
ments, the more so because in reality the choice of
a different way of constructing the nonlocal theory
suffices to get rid of the difficulties in question.

6. We shall give the simplest example of a non-
local theory free from the difficulties enumerated

d fil
above. Although we do not possess a proof that the
condition of macroscopic causality is satisfied in its
space-time sense, here a different condition is satis-
fied which can be expected to have nearly the same
meaning. Namely, the analytic properties of the
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matrix elements are exactly the same as in the local
theory, as long as the values of the energy, the mo-
mentum transfer, and so on do not exceed a limiting
value determined by the elementary length.

As was already emphasized in the preceeding
section, the introduction of a form-factor in the
vertex part does not lead to success. Let us try to
introduce it in the propagation function. For this
purpose it is convenient at an intermediate stage to
use states with an indefinite metric. Following the
method developed in';51'49-', we extend the Hilbert
space of the states, including besides the physical
in-states <pm states with negative norm xfn, corre-
sponding to the mass K. The complete in-field oper-
ator is written in the form

A2

By imposing the well known Pauli-Villars conditions
on the function C ( K2), we can easily assure that the
commutators and Green's functions of the operator
<pjn have no singularities on the light cone.

Let us now specialize the type of interaction, and
take the interaction Lagrangian for simplicity in the
form Lirl = g: (p\n: (g is the charge, and renormali-
zation terms are omitted). In the complete space the
scattering matrix S is local and is given by the
usual expression

i J d x L l n ( z ) ) . (6)

Differentiating it with respect to the charge, we ar-
rive at the equation

(7)

where L (x) = S+ T [ L in (x) SJ is the local Lagrangian
in the Heisenberg representation. It is easily seen
that it satisfies the equation

(8)

C52]with the initial condition L | g~o ~~ Lin (cf-C52] )• W e

emphasize that we are so far dealing with a purely
local theory including states with an indefinite metric.

To obtain the scattering matrix in the physical
space we introduce the operator of projection onto
this space, P,* and in analogy with (7) we define the
physical scattering matrix S by the equation

Integrating this equation with respect to the charge
and introducing the symbol Tg, which means that the
quantities to which it is prefixed are "antiordered"
with respect to charge (arranged in order of charges
increasing from left to right), we finally get

(9)

The replacement of ordering with respect to time by
ordering with respect to charge has a meaning in
principle in the nonlocal theory, since in this case
equations of the type of (6) are not relativistically in-
variant.^81

After the projection on the physical space the
states with negative norm drop out, but then the
theory becomes nonlocal. This can be seen from the
fact that the commutator of operators PL(x)P is

The scattering matrix (9) is relative to the mass
shell and describes the complete evolution of the
system in the interval — °° < t < °°. By bringing this
matrix beyond the limits of the mass shell in one
way or another, one can get an even more detailed
space-time description.15-' If, for example, we add a
small classical term to the operator (pm, then, by
introducing the current operator

we can easily get the Lagrange equations of the non-
local theory.

If, on the other hand, we put an upper limit on the
integration over x in (9) with a spacelike hypersur-
face <7, then, defining the interaction Hamiltonian by
the condition

#(*) = ( t>s (10)

we can arrive at the Hamiltonian description. It is
important that this Hamiltonian automatically satis-
fies the Bloch compatibility condition

[H (x), 1j J

*The quantity P : cpjn ... cpin : P is by definition equal to the
normal product of the physical operators, : cpin ... cpin : .

which is not the same as the condition of macroscopic
causality, [H(x), H(y)] =0 [cf. (3)], which is always
violated in nonlocal theory, if the Hamiltonian depends
explicitly on the surface a; and indeed this is the
case with the Hamiltonian (10). Hamiltonians which
do not depend on cr are of no use in nonlocal theory,
and this explains the lack of success of many earlier
attempts to construct such a theory.

7. Returning to the expression (9) for the scatter-
ing matrix, let us convince ourselves that it is free
from the difficulties enumerated earlier.

Its relativistic invariance follows directly from
its construction. It is a nontrivial point that the func-
tion d (x — y) is encountered only in combination with
the commutator of the local operator L(x), which
vanishes outside the light cone [cf. (8)J. Therefore no
Lorentz transformation can change the time ordering
of the operators that occur in (8) (cf.[38-1).

The unitarity of the matrix (9) in the physical
space is a consequence of the Hermitian character of
the operator PL(x)P. The indefinite metric is in-
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troduced only in the intermediate developments and
is eliminated from the final expression. An expres-
sion which is in a certain sense complementary to
(9) is

S = PTg exp (i \ ^- \ dx L (x) P,
0

which is (with unimportant changes) the expression
for the scattering matrix as regularized by the Pauli-
Villars method. This expression is local, but not
unitary.

As is well known, the divergences of the local
theory have their origin in the singularity of the re-
tarded Green's function. As can be seen from (8), in
our case this function appears always in regularized
form. The absence of angular divergences can also
be illustrated by noting that the Green's function of
the operator q>in, which in our case plays the role of
an effective form-factor, has the Feynman rules for
going around singularities. Therefore in the part of
the matrix element which is dangerous from the point
of view of divergences we can make the transition to
Euclidean space (see Sec. 4 and'-16-'). For the same
reasons the matrix elements of (9) will not contain
any singularities for fixed momenta, such as were
spoken of in Sec. 5.*

We shall not here go into narrower questions (con-
servation laws, dynamical variables, and so on),
which can be given positive solutions,16 nor into the
problem of macroscopic causality.

Although the matrix (9) is defined by extremely
simple and compact equations, there is a different,
though indeed very similar, version of nonlocal
theory which is more convenient for practical pur-
poses. We shall formulate directly a diagram tech-
nique corresponding to this version.

The real part of the matrix element is identical
with the real part of the local matrix element regu-
larized by the Pauli-Villars method. The imaginary
part, which is chosen according to the unitarity con-
dition, is obtained from the imaginary part of the
regularized matrix element by striking out all terms
that are of a threshold character in the auxiliary
masses K.t For example, in the diagram for the self
energy of the particle we must strike out terms of
the forms

2 _ 4 x 2 ) ( . . . ) ,
A* Al2

For both of these types of nonlocal theory the
analytic properties of the matrix elements are the

*At the same time, there appear in the theory "distant" cuts
(which recede to infinity for I -> 0) with nonfeynman rules for the
path. As is shown in ["'], by a suitable choice of the function
C(K2) we can nevertheless bring it about that the acausal influence
function falls off exponentially (cf. Sec. 3).

tThese terms describe the contribution of nonphysical interme-
diate states and violate unitarity.

same; these properties are the same as in the local
theory, as long as none of the kinematical invariants
of the process, the quantities s, t, etc., exceeds a
certain limiting value determined by the quantity
A2 ~ R2/Z2. When this condition is violated additional
singularities appear, which were not present in the
local theory (in the simplest diagrams, additional
"distant" cuts with non-Feynman rules for the paths).

In a corresponding way the dispersion relations at
energies less than the threshold energy differ from
the usual ones only in that the absorptive part is not
equal to the imaginary part (nor, in particular, for
forward scattering, to the total cross section) for
energies larger than the threshold value. With a
reasonable choice of the elementary length such dis-
persion relations are not in contradiction with exist-
ing experimental data (cf. the analogous analysis
n > ] ) .

8. In the construction of a nonlocal electrodynam-
ics there are additional difficulties associated with
gauge invariance.

The roots of these difficulties lie in the fact that
to secure gauge invariance the operators for the
momentum p and the potential A must appear in
physical quantities only in the form of the combina-
tion pjj, — eA^. Since the form-factor F(x — y) in-
troduces into the theory an additional dependence on
the momentum,* it must be accompanied by an addi-
tional function of the potential '-53-'

V

E (x, y) = exp [ ie

When this condition is taken into account the expres-
sion for the action function for electrons interacting
with the electromagnetic field is of the form [46]

- \ dxdy^(x)E(x, y)(ypx-m)F(x-y)Mp(y).

Here, however, there is such a strong nonlinearity
that additional divergences appear, caused precisely
by this nonlinearity (on this point see ^54>S5 )̂, This in
turn has led to much lack of confidence in the possi-
bility of constructing a gauge-invariant nonlocal elec-
trodynamics, and has even led to a discussion of the
question as to the experimental observation of the
emission of longitudinal and scalar photons at large
energies.

Recently it has been common practice to formulate
gauge-invariant local electrodynamics by directly re-
placing the quantity A^ in the expression
/ dx j ^ (x) A^ (x) by its transverse part A^ ^
[ A^ = ( k^kj/k2) Av ]. Then because of the conserva-
tion of the current ]„ the quantity A^ indeed gives no
contribution. Recently a number of papers have ap-
peared'-57~59J in which this method is carried over to

*The quantity JdyF(x — y) </<(y) can always be represented in
the form P(p) 4> 00, where P(p) is the Fourier transform of the func-
tion F(x — y).
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nonlocal electrodynamics. Here, however, because of
the explicit nonconservation of the nonlocal current
the quantity A^ does not drop out of the result.
Therefore the remaining singularity of A^ at k2 = 0
leads to violation either of macroscopic causality or
of unitarity, (depending on the choice of the rules for
the path around this singularity).

The construction of a nonlocal electrodynamics
satisfying the condition of gauge invariance is possi-
ble in the framework of the scheme expounded in the
previous sections. It suffices to set

^ i n — ^^ii, in/u, in?

Ain = ^ r i dv?C (x2) Al:, /in = ; ln + \ dM C (M) /ft
A2 A

(here the quantity e plays the role of the charge g in
the formulas of Sec. 6). It is important that the cur-
rent is regularized as a whole, and not the separate
operators ip, ip; this leads to the conservation of the
nonlocal current. In the diagram technique of the
version considered in Sec. 7, matters reduce to the
carrying out of the Pauli-Villars regularization for
entire electron path with a single auxiliary mass for
all the lines of the path (cf.[eo^).

The most conspicuous consequence of such a
theory, and one that is of interest from the point of
view of testing quantum electrodynamics, is the de-
cided difference between processes of the type of the
Compton effect and pair creation and annihilation and
processes of the type of the scattering of electrons
by electrons or positrons. In processes of the
first type there are no virtual photon lines in the
lowest order of perturbation theory, and according to
what has just been said a virtual electron line must
have the same mass as the free ends. Therefore the
corresponding matrix element differs from the local
expression only in higher orders of perturbation
theory (through radiative corrections). The situation
is different for processes of the second type, where
there is a virtual photon line and where the difference
appears in the lowest order of perturbation theory.
This fact can be regarded as an argument in favor of
the greater effectiveness of this type of scattering
processes from the point of view of testing quantum
electrodynamics. Of course, this argument is not
extremely convincing; it depends, in particular, on
the possibility of constructing other gauge-invariant
nonlocal schemes (cf. in this connection ^62>63J).

As is well known, in the development and planning
of experiments to test quantum electrodynamics dif-
ferent ways of introducing form-factors are used in
parallel—in the vertex part, in the propagation func-
tion, and so on. A consistent nonlocal electrodynam-
ics rejects some of these possibilities. For example,
for experiments to determine the anomalous magnetic
moment of the muon the only consistent way is to in-
troduce the form-factor in the photon propagator; this

gives a somewhat larger upper limit on the elementary
length than the other possibilities (cf. ^).

9. In conclusion we shall consider briefly the prob-
lem of macroscopic causality. The point is that a
nonlocal theory must not lead to experimentally ob-
servable consequences which contradict causality on
a large scale of space and time—appearance of a
scattered wave before the incident wave has got to
the scatterer, ultralight signals,* and so on.

At one time there were assertions that it is im-
possible to reconcile the conditions of macroscopic
causality and unitarity in a nonlocal theory. ' The
basis of that discussion was a criterion of macro-
scopic causality which used the concept of the scat-
tering matrix outside the mass shell, and in which
the interaction was localized in an artificial way in
a small space-time region (in this connection see
also ^). The very difficulty of understanding the
connection of this sort of approach with the descrip-
tion of actual conditions of a physical experiment
makes the conclusions not too convincing. Moreover,
it has been shown directly'-1^ that the conclusions

0£ L4TJ a r e ^ u e ^o a n unfortunate choice of the real
part of the matrix element considered there (see
also Sec. 5). As for'-49 , which contains a sufficiently
general treatment, it involves an essentially super-
fluous requirement that the scattering matrix be uni-
tary when taken beyond the limits of the mass shell
in the way indicated. Meanwhile, it is always possible
to add to a scattering matrix which is unitary on the
mass shell terms which vanish on the shell and are
such as to secure the validity of the condition of
macroscopic causality in the formal form in which it
was used in the papers in question.

The actual proof of the macroscopic causality
property of nonlocal theory is a very difficult ques-
tion and still far from a complete solution. Here it is
first of all necessary to convince ourselves that
there are no long-range acausal influences such as
we spoke of in Sec. 3. This in turn requires a study
of the analytic properties of the nonlocal matrix
elements, which in itself is a rather complicated
task. A study of this sort for the model of Sec. 6,
which led to affirmative results, was made for dia-
grams containing not more than four external lines.
The hope of an affirmative solution of this question
for diagrams of more complicated types is based in
the last analysis on the fact that as the elementary
length goes to zero the theory in question goes over
into the local theory, and consequently into a causal
theory, while the analytic properties of local theory
are recovered already for finite I (cf. beginning of
Sec. 6).

If the acausal influences in nonlocal theory are

*A special investigation of the possibility of the macroscopic
propagation of ultralight signals is contained in ["].
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actually of short range, the quantitative question
arises as to the permissible degree of their damping
with distance. The solution of this problem is very
much impeded by the fact that there is so far no
opposite criterion expressed in the language of ob-
servable quantities only and with proper correspond-
ence to the conditions of physical experiments (cf.
discussion in ). A very similar and also still un-
solved problem is that of deriving the analytic prop-
erties of local matrix elements from the physical
criterion of macroscopic causality. This problem has
recently been receiving more and more atten-

tion. [29,30,67-69]

If we take an optimistic view of the possibility of
satisfying the condition of macroscopic causality in
nonlocal theory—and no grounds can be perceived for
the opposite view—then we can evaluate nonlocal
theory as a consistent apparatus capable of competing
with local theory and free from the difficulties of the
latter.

Of course the answer to the main question, as to
how nature is actually constructed—in a local or in a
nonlocal way—can be given only by nature itself. The
deciding word in settling this question, the most im-
portant in the physics of elementary particles, be-
longs to experiment.
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