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MeLOST experimental investigations of the interaction
of neutrons with nuclei contained in molecules refer to
the region of relatively low energies En of the neu-
trons, less than say one eV ("slow" neutrons). The
reason for this is primarily the relative simplicity of
obtaining a beam of slow (i.e., thermal) monoener-
getic neutrons, and the ease of counting scattered
neutrons having low velocities (for example, by time
of flight). This also is why most theoretical work has
been on thermal neutrons. Nevertheless, the region
of higher neutron energies, for example energies of
one eV and above, (we shall call such neutrons fast) is
of no less interest than the thermal region, for the
following reasons: 1) the analysis of molecular prop-
erties from the spectra of scattered fast neutrons is
very much simpler and therefore enables one to ex-
plain many fine features of molecular structure that
are practically impossible to decipher in the spectra
of slow neutrons. We note that these considerations
were the basis of the proposal of V. I. Gol'danskii in
1956 of the method of molecular "neutronoscopy,"
i.e., the investigation of properties of molecules from
the spectra of scattered fast neutrons; 2) in the scat-
tering by molecules of fast neutrons having an energy
of the order of the chemical binding, a variety of
chemical transformations are possible whose investi-
gation is of intrinsic interest for radiation chemistry
and biology.

A systematic presentation of the theory of scatter-
ing of fast neutrons by molecules, based mainly
on is the main purpose of this survey.

In doing this we have limited ourselves to that
class of problem which is related to the study of
spectra of neutrons scattered by molecules, and have
not included phenomena of chemical transformation
under the influence of neutrons (whose theory is
given in our paper ^ ), which require the use of
methods of radiation chemistry for their investigation.

Since for many nuclei the scattering amplitudes for
fast neutrons are strongly energy dependent (in par-
ticular, show resonances) the theory is given right
from the start for the general case of variable am-
plitudes for neutron-nucleus scattering.

The survey also presents the theory of scattering
of slow neutrons by molecules, insofar as it can be
formulated using a classical description of the mole-
cular rotation, so that one can use the mass tensor
method and replace integration over the rotation

variables by an average over molecular orientations
in the formulas for the neutron scattering cross sec-
tion (Chap. II). Our development of this theory, which
is widely used by experimenters, but has not been
covered well in the survey literature, is based mainly
on [10-1. However, the effective mass approximation
used in "• is subjected to a critical examination,
which shows that in many cases it leads to serious
errors; a procedure is described for computing scat-
tering cross sections by a rigorous averaging over
molecular orientations.

The content of the monograph is more completely
described in terms of the following classification of
the processes of scattering of neutrons by chemically
bound nuclei as they depend on the nature of the neu-
tron-nucleus interaction and the energy of the neu-
trons.

The neutron-nucleus interaction can be character-
ized by an effective time of collision of the neutron
with the nucleus. If the scattering of the neutron is
potential scattering, the effective time of scattering
is A/v (A is the amplitude for neutron-nucleus po-
tential scattering, v is the neutron velocity). The
fact that this quantity is very much smaller than the
period of vibration of atoms in a molecule l/w
= K/AEy (where AEy is the difference in energy of
vibrational levels in the molecule), is the essential
reason why the pseudopotential method of Fermi ^
is applicable. This method enables one formally to
compute the cross section for scattering of neutrons
by chemically bound nuclei using matrix elements of
the Born type, even though the neutron-nucleus inter-
action is not weak. The method of the pseudopotential
in its usual formulation becomes invalid for the case
of varying (in particular, resonant) scattering ampli-
tudes F(En) for the neutron-nucleus system.
Nevertheless, if this dependence is sufficiently
smooth, or the resonance is sufficiently broad, so
that the effective time of the neutron-nucleus inter-
action Rd(ln F)/dEn ~ K/T (where T is the reso-
nance width) is small compared to the period l/u> of
the molecular vibrations:*

*This condition is satisfied in the overwhelming majority of
cases, since the widths of resonances usually exceed 0.1 eV, while
the separations of vibrational levels for sufficiently heavy nuclei,
which are the only ones for which resonance phenomena can occur,
do not exceed hundredths of an eV.
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(1)

the scattering of neutrons by chemically bound nuclei
can be treated in the impulse approximation, which
enables one to picture the process in a relatively
simple form which is a kind of generalization of the
pseudopotential approximation of Fermi. We note that
in the case of (1), if the additional condition
V EmAEv/F ^ 1 is satisfied, taking account of the en-
ergy dependence F(E n) is important, despite the
large resonance width, and leads to the appearance
of qualitatively new phenomena, similar to the Dop-
pler effect, that are associated with the intramolecu-
lar motions of the nuclei. ( The quantity
Em = 4mmyEn/(m^ + m)2 represents the maximum
energy that can be transferred from the neutron to
the nucleus at rest; m is the neutron mass, and m^
the mass of the nucleus.) In addition to the effective
time for the neutron-nucleus interaction, another im-
portant characteristic of the interaction of neutrons
with chemically bound nuclei is the effective time for
transfer of energy from the neutron to a nucleus of
a molecule of mass mv, which according to the un-
certainty relation for the energy is of the order of
fi/R (where R = (t\n2/2mv is the recoil energy, and
RK = K ( k - k') is the momentum transferred to the
nucleus, i.e.,

R = £L ( 2 - 2kk' cos

Rk and Rk' are the neutron momenta before and after
scattering, i? is the angle of scattering of the neutron
in the laboratory coordinate system). On the other
hand it is meaningful to introduce several times for
changes of the state of the molecule: the time for
change in orientation of the molecule R/A E r (where
AE r is the distance between rotational levels of the
molecule) and the time for a significant change of
separation of nuclei R/AEV. In the region of low
(subthermal) neutron energies, the time R/R for
transfer of energy R to the nucleus is comparable
with or less than the time for change of molecular
orientation R/AEr, and in this case the theoretical
treatment is extremely complicated (cf. in particular
the papers of Zemach and Glauber/11'12-' and
also ~ ), since it requires numerical computations
for each individual molecule.

If the neutron energy is sufficiently high, so that
the condition

R C AET ' W

is satisfied, one can assume that the molecule does
not change its orientation during the time of transfer
of energy to the nucleus. This means that the rotation
of the nucleus can be treated classically, i.e., one can
use the approximation of a classical rotator with
simultaneously given angular momentum and orienta-
tion. This greatly simplifies all the computations and
enables one to write the formulas for the scattering

cross section in a universal form, valid for molecules
of any type.

Within the framework of condition (2), the processes
of interaction of neutrons with nuclei in molecules
can be divided into two regions: a) the slow neutron
region, where the condition

1n
~R

(3)

is satisfied, i.e., the time for transfer to the nucleus
of the energy R is greater than, or of the order of,
the period of atomic vibration l/a;, so that the dis-
tance between the atoms in the molecule can change
significantly during the time of the collision, so that
the vibration of the atoms during the scattering ap-
pears as a quantum mechanical effect. Chapter II is
devoted to the description of phenomena that occur
when conditions (2) and (3) are satisfied, so that the
molecular rotation is treated classically and the
molecular vibration quantum mechanically; b) the
region of fast neutrons, where the condition

is satisfied, i.e., the time for transfer of energy from
the neutron to the nucleus is much smaller than the
period of molecular vibrations. Together with condi-
tions (2) and (3), this means that all the effective
times characterizing the interaction of the neutron
with the nucleus are small compared with the effec-
tive time for the change of state of the molecule. Con-
sequently, under these conditions the scattering nu-
cleus behaves as if it were free at the time of colli-
sion with the neutron, and the molecular binding mani-
fests itself only through the spread in momentum de-
termined by the wave function of the initial state of
the molecule. Naturally the total cross section for
scattering of neutrons with these energies is close to
the cross section for free nuclei, so that these meas-
urements can give no useful information about molec-
ular properties. The features of the molecular struc-
ture do, however, have a strong effect on the double
differential cross sections for scattering of fast neu-
trons, d2a/dedo, which give the probability for scat-
tering of a neutron by the molecule into the solid
angle do with a given energy change e. Here the
theoretical description of the various features of
molecular structure that appear in the formulas for
d cr/dedo, and the unraveling of molecular properties
from the spectra of scattered fast neutrons (i.e.,
from the measured values of d2cr/dedo) is incompar-
ably simpler than for slow neutrons, since it reduces
simply to a correct treatment of the momentum dis-
tributions in the scattering nuclei, which can be re-
garded as free. On the basis of these arguments we
believe that fast neutrons, despite difficulties in
getting and recording them, are much more attractive
for investigations of molecular properties than slow
neutrons. The theory of the scattering of fast neutrons
is presented in Chapter III. As already mentioned, in-
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eluding the energy dependence of the neutron-nucleus
scattering amplitude, as is done in this survey, re-
quires the use of the impulse approximation. For this
reason Chapter I, preceding the main body of the
survey, gives the essentials of this method. The
presentation is based on , in a form convenient for
treating the scattering of neutrons by chemically
bound nuclei.

I. THE IMPULSE APPROXIMATION METHOD AS
APPLIED TO SCATTERING OF NEUTRONS BY
CHEMICALLY BOUND NUCLEI

1. Cross Sections for Molecular Transitions under
ithe Influence of Neutrons, in the Impulse Approxi-
mation.

The impulse approximation in scattering theory,
which was first introduced in'-24"2 , is based on a
series of assumptions. The main assumption is that
one requires that the time of interaction of the inci-
dent particle with one of the particles making up the
scattering system be small. In the case of the scat-
tering of neutrons by chemically bound nuclei this
condition coincides with the condition (1) in the intro-
duction. Let us enumerate the main assumptions of
the impulse approximation method in this case,
starting from the Schroedinger equation for the neu-
tron-molecule system:

// 'f = EiW, H' = K-{-U + F, (1.1)

where K is the kinetic energy operator for the system
of N atoms making up the molecule and for the neu-
tron, U ( r1( . . . , rjvf) is the interaction potential of
the atoms in the molecule, V is the potential for the
interaction of the neutron with the nuclei in the mole-
cule, which is a sum of the potentials for the interac-
tion of the neutron with each of the nuclei in the

N
molecule V = YJ V^ ( r — r^) (where r is the radius

vector of the neutron and rv are the radii vectors of
the nuclei). The potentials Vv can be complex, so
Eq. (1.1) takes account of the possible capture of the
neutron by a nucleus. Obviously, writing the Schrb-
dinger equation in the form (1.1) assumes that the
molecule is in its ground electronic state, which does
not change as a result of the collision with the neu-
tron. (The interaction between different electronic
states can be important only if the corresponding en-
ergy terms overlap.) We note that Eq. (1.1) is
written in the laboratory system of coordinates, to
which we shall refer all our arguments, i.e., in (1.1)
Ei is equal to the sum of the kinetic energy of the
neutron and the total energy of the molecule in the
laboratory coordinate system.

We shall make use of the apparatus of the formal

theory of scattering,1-28^ according to which (1.1) can
be rewritten in the form*

where *j is the wave function describing the transi-
tion from the initial state $i = <Pi ( Tj, . . . , rjj) e r

(we shall assume that the final state is fixed: <i>f
= <Pi( r4, . . . , rN) e i k ' r ) , and <pi and </>f are the wave
functions of the molecule in the initial and final states.
The neutron wave vectors k, k', before and after
scattering, satisfy energy conservation

t = Et, i.e. sl + *. = (1.3)

( ej and ef are the energies of the molecule before
and after scattering of the neutron). Using (1.2) one
can write the double differential cross section for
scattering of the neutron by the nucleus into an ele-
ment of solid angle do, accompanied by a transfer
to the molecule of energy

and its transition to some final state cp f in the form

(1.4)

where
de do

T,t =

*' ' -£-T I r«/P «(* + *!-•

/, r<D,) = \ O/rOi rfr rfr,... drN,

and T is the operator defined by the equation

T = FQ+ = V + V (Ei - H' + it])"1 V,

where rl, ..., rjsf are the coordinates of the nuclei
in the molecule and r is the coordinate of the neu-
tron.

The impulse approximation consists in replacing
N

the operator T by the operator T(o> = £) tp, where
v=i

tv is defined by the expression

tv = F v (EK - K - Vv + ir|)-i Fv , (1.5)

and Ej£ is the kinetic energy of all the atoms in the
molecule (characterized by a definite set of momenta
P (Pi. • • •. PN) and of the neutron. As is easily seen,
T is the leading term in a certain operator expan-
sion, for which the correction characterizing the in-
fluence of the molecular binding on the scattering of
the neutron has the form

tv. (1.6)

We go over to the momentum representation for the
molecular wave functions:

*For convenience we shall use the system of units in which
Planck's constant"}! is unity, and the Boltzmann constant is also
one.
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Pf = (2n) 2

3N
2

Then the contribution to the matrix element Tjf as-
sociated with the operator tu can be written in the
form

t!J = (<Dy, tv, Of) = ^ cpf (p') Xk i ( P ) dV dp' dr dli---drN

(1.7)

Integration over the variables p ' and r and some
elementary transformations (cf. ) gives the follow-
ing expression:

tij _ 2ii_ f yfF(k'v, kv)e
iXrv(p; fir, . .. rfr,v, (1.8)

where

• mvk —mpv , , mvk'—m(x + pv) n q*
^ nlv -\-m mv -\- in

In the special case when Fv depends weakly on p^,
we have

*V = —- Fv(\tvn, kv0) V cp*et>trv(p; f/rj . .. drx, (1.10)

where k,,o and k^0 differ from kp and kv in having
Pv = 0. If the changes in the neutron-nucleus scatter-
ing are potential, i.e., if the F,, are independent of
energy, (1.10) coincides with the pseudopotential
method. The quantity F^ appearing in (1.8) coincides
with the elastic scattering amplitude only if | k,, |
= | ky |. However, in the special case of s-scattering,
if the condition k[,d[, « 1 is satisfied (where d,, is
the effective radius of the potential V^), w ĥich will
always be the case for us, we can set e"1 *v'P = 1 in
(1.9). Consequently, Fu is actually independent of
kv, and thus this quantity (up to terms of order
( k'v d )̂ ) coincides with the amplitude for elastic
scattering corresponding to the relative momentum
k,, of neutron and nucleus. In other words, in the case
of potential neutron-nucleus scattering we shall have
(cf.[29], p. 478)

• 1

Av(l + î 4vA'v), Av —— = const, (1.11)go~l

while in the case of resonant neutron-nucleus scat-
tering (cf.[29], p. 513)

1
i? = ^ 7 " (1.12)

Using the definition of the operator tv in (1.5) and
the usual definition of the operator ( EK — K + irj )-1,
one can also easily find the correction associated
with the operator lvv of (1.6) which characterizes the
effect of the chemical binding. For the most import-
ant case of a potential U ( r t , . . . , r^) of the oscil-

lator type the matrix element tj/j, can be written in
the form

(1.13)

P I /
where :r » ~

easily explain in the conditions for validity of the
impulse approximation and also, for the special case
of potential scattering, obtain the corrections to the
Fermi pseudopotential approximation. These correc-
tions have been studied in^0"34-1, where, however
they were obtained in a much more complicated form
than that given by (1.13). It is easy to see from (1.10)
and (1.13) that the ratio t ^ / t j , is of the same order
of magnitude, in general, as the quantity u3,,d In
Fy/dE, i.e., in the special case of neutron-nucleus
potential scattering, kvu5v/\v, while for the case of
resonance scatteringit is Zov/T (where ZJV is the
mean vibrational energy of the v-the atom, and \v is
the relative velocity of the neutron and nucleus). This
is in agreement with condition (1) given in the intro-
duction. Using the matrix element (1.13), one can
easily find these corrections explicitly.

It is also easy to get the corrections to formula
(1.10), taking account of the dependence of the ampli-
tude Fv on pv. To do this we expand F,, in a series
in powers of pj,. In the lowest approximation we have

Then from (1.11) we conclude that the correction to
(1.10) when we take account of the dependence of the
amplitude F^ on the momenta of the bound atoms is

mv-\-m
\ (P) dp. (1.14)

This expression is of order pp d In F,/dk,, (where
pj, is the characteristic momentum of an atom in the
molecule, l/pj, is the amplitude of vibration of the
atoms in the molecule), i.e., is of order A^p" in the
case of potential scattering and of order V 'EjnZol,/T
in the case of resonant scattering. It is obvious that
for sufficiently high neutron energies the quantity
VEma3j,/r cannot be small. This means that in such
cases one cannot use the approximation (1.10) but
must use the general formula (1.8) which includes
phenomena similar to the Doppler effect that are
associated with intramolecular vibrations.

2. Representation of the Cross Sections for Scattering
and Absorption of Neutrons as Averages over the
Initial State of the Molecule.

In experiments on the scattering of neutrons by a
molecule one does not measure the cross section for
a transition of the molecule to some definite final
state (1.4), but rather the cross section for scattering
of the neutron that corresponds to a transition of the
molecule to any of the energetically admissible states.
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Using the expression (1.8) for the matrix elements for
transition of the molecule to definite final states, and
the fact that the wave functions of the final states form
a complete set, one easily gets a convenient expres-
sion for the cross section that is actually measured
experimentally, which is the sum of the cross, sections
d aif/dedo for transitions to all energetically allowed
final states. According to (1.8)

d2a k' xi VI ™2 /„ /_/\ n* - i x
rferfo

Using the completeness relation for the system of
functions <Pf, £ / <Pf (P')<Pi (P) = 6 (P - p ' ) . the rela-

tions

(H is the Hamiltonian of the molecule) and the inte-
gral representation for the delta function, we find

de do

m (2.1)

Formula (2.1) is the analog of the familiar Zemach-
Glauber formula derived'-11-' for the case of F,,
= const. Thus, the double differential cross section
for scattering of neutrons can be written as an aver-
age over the initial state of the molecule of a set of
operators determined by the Hamiltonian of the mole-
cule and the amplitudes for two-particle scattering.
The fact that the wave functions cpf of the final states
of the molecule do not appear explicitly in (2.1) is
of particular importance in treating the scattering of
fast neutrons, which is accompanied by a large en-
ergy transfer, so that these wave functions are very
complicated and cannot be found practically in ex-
plicit form. Expression (2.1) can be somewhat s im-
plified by using the fact that in a classical description
of the rotation of the molecule (which we shall always
use) the interference terms, which correspond to
v ^ v', are usually unimportant. So for our purposes
we may set v = v' in (2.1).

We make the further transformation

pv+x, . . . , pN) =

T _ *Pv (2.2)

this comes from the familiar commutation rules for
the operators pv and rv (cf.[

one to get the relation e~1K'vv p
i

p. 46), which allow
g p^ e1K'rv = pv + K (and

consequently, e" iK ' r i ; HeJK'IV = H,,). Then we can
write the operator % in (2.1) in the form

We shall make extensive use of (2.3).* Since all the
formulas we shall give for the cross sections for
scattering of neutrons by molecules are made up ad-
ditively from the cross sections for scattering by in-
dividual nuclei, we shall from now on refer all our
arguments to an individual nucleus. This means, in
particular, that we are not concerned with the spin
dependence of the amplitudes F,, (which is taken into
account by a trivial summation over spin projections
of the quantities | F,, |2 in the final formulas).

By integrating the cross section dV/dedo given
by (2)1) and (2.3) over angles one can obtain the cross
section dcr/de for energy transfer, which is of great
interest for the theory of neutron moderation, while
by integrating dcr/de over the energy transfer e
using the conservation law (1.3) one gets the total
scattering cross section a ( En).

In addition to the cross sections d2a/dedo de-
scribed above, for applications to heavy nuclei one is
very much interested in the cross section for absorp-
tion of neutrons a r ( En). In the impulse approxima-
tion the chemical binding manifests itself in the ab-
sorption of neutrons mainly through the Doppler ef-
fect associated with motion of the nuclei in the mole-
cule, so the expression for crr( En) can be obtained
in a simple and general form in this case.

The cross section for absorption of neutrons by
the y-the nucleus can be written in the general case
in terms of the flux of neutrons incident on this nu-
cleus, in the form

r = 4-lim Q2 \ (2.4)

% = Q+O; « 2 J wv \ Xkp<P; (p) dp =
V

we easily find using (2.4)

where

<Jr0> = 7 T l i m Q

ffiv p-t-0

where the quantities p and kv are defined in Section
1. Using the expression for the total wave function
$i obtained in the impulse approximation (cf. (1.5)):

kv (e) eik'R^up<P< (P) dp

(2.5)

- | s o |

is the cross section for absorption of the neutron by
a free nucleus having momentum p,,. In the special
case of resonant Breit-Wigner absorption

*As is easily shown, the operators Fv and e l H v t can be regarded
as commuting to an accuracy sufficient for all our further calcula-
tions.
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r _ r r (2.6)

Thus, in the impulse approximation the cross section
for absorption is simply the average over the initial
state of the molecule cpj (p) of the cross section for
two-particle absorption of the neutron by the free
nucleus a(

r
0) (p,,). The correction to this approxima-

tion (analogous to the correction t^p) is of order
c3p/T and, consequently, the simple formula (2.5) is
valid when we satisfy the condition uv « r, which,
as already pointed out, is satisfied in most cases.

If the condition tov « T is violated, investigation
of the resonance absorption requires the use of the
general formalism of the theory of resonance absorp-
tion (cf., for example, ), according to which, for an
isolated resonance, the total cross section for re-
moval of neutrons from the beam, at = crr + ffe> c a n

be written, using the optical theorem, in the form
at = (47r/k)Im A, where A is the amplitude for
forward resonant scattering, which, according to
has the form

A = -2k K ' {En~E°^r)'(<?» eiHSe-il%)dt, (2.7)
o

where Hp = H (p t , . . ., pp + k, . . ., PN ) • Formula
(2.7) is analogous to formula (2.1) for the double dif-
ferential cross section for potential scattering of
neutrons (i.e., with F,, = const) if we set

E = E ' = £ , - S 0 - y r and x = k.

But this analogy is not complete: because e' is com-
plex the calculations based on (2.7) lead in general to
much more complicated formulas than those found
for the double differential cross sections for potential
scattering.

We shall therefore limit ourselves to investigat-
ing formula (2.5), which follows from the impulse ap-
proximation, whose advantage (aside from simplicity)
is that it is valid for an arbitrary (and not just Breit-
Wigner) energy dependence of the amplitude for two-
particle neutron-nucleus scattering.

We note that in all the expressions for d2a/dedo
given above we must average u r not only over the
momentum distribution in <pj (p) but also take a
statistical average (which we shall denote by the
symbol ( . . . }*p) over the vibration-rotation states
of the molecule, which we shall assume to be dis-
tributed according to the equilibrium, i.e., Boltzmann,
law. In principle, one could avoid this assumption,
which is violated in some cases that are of great in-
terest (when there are chemical reactions in a ma-
terial irradiated with neutrons).

Further simplifications of the general formulas
given here for the scattering cross section are based

on special transformations of the operator
giHyt g-1"^ which for small energy transfers e are
based on certain special assumptions about the wave
functions of the initial and final states of the mole-
cule, while in the case of large energy transfers they
depend on expansions of this operator in powers of
the Hamiltonian H of the molecule.

II. SCATTERING OF SLOW NEUTRONS

3. General Formulas for Slow Neutron Scattering
Cross Sections with Classical Treatment of
the Molecule.

As already mentioned, for sufficiently low energies
of the incident neutrons, satisfying the condition
VEmw/r « 1 (cf. Chap. I, Sec. 1), the neutron-nu-
cleus scattering amplitude may be assumed to be
independent of the momenta of the atoms; in this
case in the fundamental formula (2.1) for d2a/dedo
the operator % simplifies as follows:

e-'dt, (3.1)

and the further treatment can be done as for Yv

= const. For the same reasons the absorption cross
section given by the general formula (2.5) coincides
with the cross section for absorption by a free nu-
cleus if the neutron resonance Eo lies at low ener-
gies. In the following we investigate the scattering
cross sections d2a/dedo, da/de and da/do for the
case where the operator £ is given by (3.1).

In carrying out specific computations using this
formula, the character of the excitation of the mole-
cules is extremely important. For moderate energy
transfers e, much lower than the chemical binding
energy D, one can use simplifications based on the
properties of the internal motion of the molecule. By
this we mean the requirement (usually well satisfied)
of low velocities of the nuclei as compared to the
electrons, and furthermore, the requirement of ab-
sence of crossings of the ground electronic term with
other electronic terms in the classically accessible
region of the nuclear motion.

Another type of simplification is based on the
properties of the motions of the nuclei in the mole-
cule, namely on the assumption that vibrational, ro-
tational and translational motions of the nuclei are
independent. This assumption allows us to represent
the operators vv, pv and the molecular Hamiltonian
H as a sum of independent terms, and the wave func-
tions as products of factors corresponding to the vari-
ous independent degrees of freedom of the molecule,
i.e.,

rv .-= Ro + bv + uv, ~ = Vm+ [Qbv] -f uv,
u u • u i u V , , , (3 21*

*In addition t o ^ . . . ^ we shall use the symbol (•••), denoting both
a quantum mechanical and a statistical average. *[fib,J = Q >
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Here Ro, Vm, Ht, are the co-

ordinates, velocity, energy operator and wave func-
tion for translational motion of the molecule
('/'translation is normalized to unit volume V), by is
the coordinate of the atom relative to the center of
gravity of the molecule, ft is the angular velocity,
Hr and # r are the energy operator and wave function
for the molecular rotation; u,,, u^, Hv and ij)v are
the vector displacement of the atom from its equili-
brium position, its velocity, the energy operator and
wave function for the vibrational motion of the mole-
cule.

A necessary condition for independence of rotation
and vibrations of the molecule, i.e., the condition for
validity of (3.2), is the inequality

AE\, AE'T « AEV, (3.3)

where AEr, AE r are the average separations of
rotational levels in the initial and final states of the
molecule, respectively. If B is the separation of the
ground and first excited rotational levels, AEr ~ VBT.
After transfer to the molecule of an energy e exceed-
ing T, the average distance between levels becomes
of the order of VBe. Thus, condition (3.3) may be
violated at high temperatures or for high energy
transfers. One therefore usually assumes in compu-
tations that

(3.4)^ S '•="*- B

In accordance with condition (2) of the Introduction
we also require that

e » AET. (3.5)

For most molecules AEr is usually some thousandths
of an eV, i.e., two orders of magnitude smaller than
the separation of vibrational levels. Thus both at
normal and low temperatures, but for energies of the
incident neutron large compared to AEr, when con-
dition (3.5) holds, high angular momenta are excited
in the ground state in the scattering, and these can be
described quasiclassically. These arguments are the
basis for the mass tensor approximation, which per-
mits a very great simplification of all cross section
calculations both at high and low temperatures. This
approximation has been used in a whole series of
papers, [10'35~39:l mainly applied to the scattering of
neutrons by rigid molecules. By the term "scatter-
ing by rigid molecules" we mean the situation where
the vibrational motion of the molecule does not man-
ifest itself in the collision. We shall begin our dis-
cussion with a treatment of this simplest case.

As one knows, the rotational part of the Hamilton-
ian of a rigid molecule can be written in the following
form:

H = TT 1-/ 1L, l"J.O)

where I is the moment of inertia of the molecule, L
is the angular momentum vector.

In the case of a rigid molecule, the expression for
the transformed Hamiltonian H,, in (3.1) is

Hv = H + i [bvx] /-i [bvx] + y LZ-'fbvX] + i [bvx] r*L.

The probability for a rotational transition is given by
the expression

oo

= ~ \ e-iE( 0|3r [ e
iHv'e-iHt | t|)r> dt. (3.7)

Under the condition e » AE r the noncommutativity
of the operators plays no role; thus the probability
(3.7) can be taken equal to

2n
(3.8)

We have introduced a new tensor R^ according to the
equation

[bvx]/-1[bvx]=xflv>« (3.9)

where the vector L F 1 = I.
The tensor Rj,, having the dimensions of inverse

mass, characterizes the motion of the atom in a
rigid molecule, its principal components (RJ,1', R^2))
are related to the components of the inertia tensor
Ii and the position of the scattering atom relative to
the principal axes of the molecule, b^i, as follows:

- 47,7,6;,

where

(3.10)

= /, ±73, 7(3±) = 7f ±/2 , i = l, 2, 3.

The component RJ,3\ corresponding to motion of the
atom along the line joining this atom to the center of
gravity of the molecule, is always equal to zero, i.e.,
R"' = 0. If the temperature is not high ( T ~ AE r),
the internal motion of the molecule plays no part,
since in this case KR^K » IRV K, and the second
term in the exponent in (3.8) need not be taken into
account. In other words, for T ~ AE r and KR^K
» AEr, the scattering is described by the simple
formula

e —y xi?vx))>a- (3.11)

This result is especially easy to see if the rotation
of the molecule is described the spherical rotator
functions YLM. In this case we have from (3.8)

L

-±xRvx^)YLMdQ, (3.12)
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but, since

2 •
M=-L

«Y,M =
2L + 1

4xi

we immediately get formula (3.11). The bracket
( . . .)Q denotes an average over molecular orienta-
tions, which, as shown in^38^, gives rise to complete
elliptic integrals.

Zemach and Glauber [ l l>12] have also calculated
corrections to formula (3.11) (for the cases of the
simplest rotators—spherical and linear). Volkin ^
has made similar calculations for rotators of arbi-
trary type.

The corrections depend on the specific rotational
state of the molecule and are of order AErAR^K.

For high temperatures T » AEr, the treatment
given above becomes invalid because the second
term in the exponent in (3.8) cannot be regarded as
small compared to the first. But in this case one can
use the fact that at sufficiently high temperatures the
important states of the molecule are those with large
angular momenta L, whose wave functions are de-
scribed by the quasi-classical approximation. Using
the fact that in the quasiclassical approximation all
the operators appearing in (3.8) commute (cf.[ ,
p. 49), we write the quantum mechanical average in
(3.8) as follows:

(K is the projection of the angular momentum L on
some selected axis). Since in the general case of an

* _ 2L + 1

K
asymmetric rotator, 4TT

(cf.[38]), in

complete analogy with (3.12), for the case of high
temperatures, if we explicitly write the average over
the rotational states, including the factor
exp( -Z2/2T), we get

' = ^r \ '"'

r= \ e-'2l2Td\.

_dQ

(3.13)

Integration over dZ in (3.13) gives the following ex-
pression:

(3.14)

The validity of the quasiclassical approximation is
determined by the two conditions:

AET, T > \Et. (3.15)

Nevertheless the region of validity of (3.14) is ac-
tually much greater, since for T — 0 formula (3.14)
goes over into (3.11) and, consequently, at any tem-
perature it gives correctly the main features of the

process of scattering of neutrons by molecules.*
This is related to the fact that at low temperatures
the thermal motion is unimportant.

Having at our disposal a simple method for handling
rotational transitions of the molecule, it is now no
longer difficult to make detailed calculations of the
scattering of slow neutrons in the general case, when
the cross section is given by formula (3.1), which, in
accordance with the assumption that the $ used above
in deriving (3.14) is quasiclassical, can be written in
the form

dido 2it ' v

where

W (t) = (WtWtWv)a,

Wr coincides with (3.14),
X2

i.e.,

—Y-^- \ e-il*W(t)dt, (3.16)

After further integrations over Vm in (3.17) and over
t in (3.16) we arrive at the following expression for
the cross section for the process:

_ I

de do ' v

X exp — —

where m^1 =

e —— xmv

= ">•

Vv(ev)\ (3.18)

where 1 is the unit tensor.

The quantity nij, is the mass tensor for the atom in
the molecule, e' is the energy transferred to the ro-
tation-vibration degrees of freedom of the molecule,
ev is the energy going into vibrational excitation of
the molecule. The total energy transferred by the
neutron is e = e' + ev. The calculation of the factor

)=2^ \ e-iH(> dt

is done in the harmonic approximation. To do this we
expand the vector for the vibrational displacement of
the atom in normal coordinates:

Uv=S49i. (3.20)
i

where C\, is the amplitude vector which describes the
intensity with which the atom participates in vibra-
tions of the particular type.

*It should, however, be mentioned that the corrections to formula
(3.11) that depend on the temperature are given incorrectly by for-
mula (3.14) in the region T < AEr.
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The determination of the quantities Cj> requires,
in general, a knowledge of all the elements of the
force constant matrix for the molecule, F ^ ' , which
are the coefficients in the expansion of the potential
in internal valence coordinates-.

2V = (3.21)

In the case of diatomic and linear triatomic molecules,
to determine them it is sufficient to use the normali-
zation relation

2 (cvn)2 + n"iv1n = — (3.22)
i

(where n is an arbitrary unit vector), which states
the invariance of the kinetic energy when written in
normal and natural coordinates. From (3.22) for a
diatomic molecule we get, for example,

. ,2 1 M — mv

where M is the mass of the molecule.
For the case of the water molecule, for which the

force constants have been calculated theoretically, ®l*
the geometry of the vibrations is shown in Fig. 1. One
can approximately combine the vibrations with fre-
quencies Wj = 0.466 eV and W3 = 0.446 eV and as -
sume that the amplitude vector Cj^ that character-
izes them is directed along the line joining the hy-
drogen atom to the center of gravity of the molecule.
One can also assume that the vector Cj | \ cor re-
sponding to the deformation vibration with frequency
oj2 = 0.20 eV, is perpendicular to this direction. Ac-
cording to this model the force constants and the
vector amplitudes corresponding to these types of
oscillation are uniquely related to their frequencies,
namely,

= 0.945 - i - ,
mil '

= 0.463 (3.23)

We note that a similar model can be used for studying
a number of other molecules, for example H2S and
D2O. In calculations with formulas (3.19) and (3.20)
one usually uses second quantization for the coordi-
nate operators and some general theorems about
oscillators. These calculations are given in detail in
a number of papers and monographs.'•11<41'42'43] The
result for Wv( ev) can be written in the form

(3.24)*

where Im is the Bessel function of imaginary argu-
ment.

4. Scattering of Neutrons with Energies Less than the
Energy for Excitation of Molecular Vibrations.

For most molecules the scattering of thermal
energy neutrons leads only to rotational excitation,
where the chemical binding appears either not at all
or only through the zero point vibrations of the mole-
cule. The formula describing this case of scattering
has the form

X exp —
(4.1)

(4.2)

is the Debye-Waller factor. For rigid molecules,
when e T ~ 1, the problem reduces, as already
stated, to the scattering by a free particle with a
mass having tensor properties. This approximation,
which is called the mass tensor approximation, was
first introduced by Sachs and Teller and used to
find total scattering cross sections.

The result of Sachs and Teller is obtained by
double integration of formula (4.1) (with e T = 1)
over energy and angle. A single integration of (4.1)
over angles gives the cross section for energy t rans-
fer dcr/de. This cross section is used in direct cal-
culations of slowing down and thermalization of neu-
trons. Formula (4.1) also has intrinsic importance,
since it describes the double differential cross sec-
tion, which is of paramount interest from the point of
view of experimental studies of molecular properties.
We shall convert this expression to a form suitable
for numerical computation. In the diagonal represen-
tation of the tensor m'J we have for the quantity

xmjx = x2 (T-J sin2 9 cos2 <p + r2 sin2 9 sin2 tp + r3 cos2 9), (4.3)

where the symbols rj, fy, r3 denote the components
of the tensor rn'pj The component r3 corresponds
to transfer of momentum directed along the vector
joining the scattering atom with the center of gravity
of the molecule ( 8 is the angle between this direction
and the vector K); thus r3 = l/M, where M is the

FIG. 1. Geometry of vibrations of the water molecule. *cth = coth, sh = sinh.
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Values of components of the tensor in,,1 the effective mass
for atoms of hydrogen in certain molecules (in units of m,

the mass of the hydrogen atom)

Molecule

CH4
NII3
11,0

Component of tensor m

0.438
0.604
1
0.39

J"2

0.438
0.436
0.535
0.151

r.

0.0625
0.05',)
0.0555
0.036

Effective mass

according
to Kogen

3.20
2.72
1.85
5.2

according to
Krieger and

Nelkin

3.41)
2.85
2.06
5.81

mass of the molecule. The components of the tensor
in^1 are given in the Table for a number of molecules.

For any diatomic molecule, rl = r2 = l/mi,(y = 1,2),
for linear and spherical molecules, r t = r2 = I^b2,
+ l/M (bj, is the distance of the atom from the center
of gravity of the molecule). The third tensor com-
ponent r3, equal to l/M, is usually much smaller then
than the first two for light atoms. In such cases one
may therefore regard only two components of the
tensor m]} as different from zero. There is, how-
ever, a class of molecules and molecular groups
(molecules CH3I, NH4Br, the groups CH3, NH4, H3O

+;
which enter into the structure of more complex mole-
cules, etc), characterizable by a single axis of rota-
tion to which there corresponds a small moment of
inertia; for these we may consider that only one of
the components of m"̂ ,1 is different from zero; it is
rj = I^b2, (where I is the moment of inertia and bv

the distance from the special axis). The spectrum of
the scattered neutrons depends essentially on the r e -
lation between the components of the tensor m~p .
Using (4.3), we get the formula

d& do
(4.4)

For rigid molecules (i.e., for W T = 0),

* , e)
2.T \'r*(r2-r3) I i

::(x- XV.,) (y- xV3)]-V2 exp I - w — - \dx dy

—+77) (4.5)

The region of integration is determined by the in-
equalities

x, y>v.2r3, - ^ r - r - ^ O 2 -

Formula (4.5) is valid for rigid molecules of any type.
When we include the zero point vibrations in the

integrand of (4.5) we get an additional factor depend-
ing on the shape and vibration frequency of the mole-
cule. For molecules like H2O and H2S this factor
has the form

T = exp \ - I H " - ^ - - ^ J (4.6)

Formula (4.5) for d2a/dedo and the resulting
formulas for the cross sections dcr/de and a ( En)
are quite complicated for practical use. For this
reason the different approximations obtainable from
(4.1) are of great value.

In recent years, within the framework of the
classical approximation for a rotator, there has been
extensive use of the effective mass method, the e s -
sence of which is the following. In considering rota-
tional transitions of the molecule, we introduce for
each of its atoms, in place of the mass tensor mu, an
effective mass M ^ depending on the rotational prop-
erties of the molecule, but independent of the orienta-
tion of the molecule relative to K.

The introduction of an effective mass is obviously
equivalent to an approximate averaging of (4.1) over
molecular orientations, which gives rise to the so-
called monatomic gas approximation. The formulas
in this approximation for the cross sections
d2a/dedo and da/de have the form

' rf2(jY \ m o n
fleilo'J iiv k KlnTY? J L 2rx2

rfa
"tie ' p dp '

^ r {erf (Qp - lp0) ± erf (6p 4- tpQ)

(4.7)

(4.8)

In formula (4.8), p0 and p are expressed in units of
v2MT; the upper sign is for p0 >p, the lower for
Po < P; o>oo = 4TT|FJ , | 2 m/M2,,

(0) (0) x

„ Mv -i-m , M v — in t 2 f ,, ,y = —/-^-TS=-""' S = — A , erfz = — ^ \ e-'-dt,
2 \ Mv m 2 V 71/V'HI V .1 <J

Vs (4.9)

When /3 » 1, i.e., when En » T, we get from (4.9)

(4.10)
There are two ways of choosing the effective mass,
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proposed respectively by Kogen and Krieger and
Nelkin.' According to Kogen's definition the effec-
tive mass is

[Myt^inmMjj (4.11)

(n is an arbitrary unit vector). Such a choice for
M^o) in many cases does not give good agreement
with the rigorous formula of Sachs and Teller ^' for
the total cross section, which is obtained directly
from the fundamental formula (4.1) by integration
over de and do and which, when En » T and
= 0, has the following simple form:

a , bT (4.12)

where

a=((l+iWn)-2>Q, 1 = 1 ^n (1

Because of this Krieger and Nelkin'10 propose
that one choose the effective mass by an adjustment
method, taking as the effective mass in formulas
(4.7), (4.8) and (4.10) not (4.11), but another quantity
M,,, which is defined so that formula (4.10) coincides
with (4.12). Comparing (4.10) with (4.12) we find

(4.13)

where

As we see from the table, the effective masses M0,
differ considerably.

The effect of the zero point vibrations on neutron
scattering can also be taken into account by introduc-
ing into (4.1) an average over molecular orientations
of the Debye-Waller factor:

{WT)a = ^ ? t l l i ^ = x»v. (4 • 14)

Then, as can be shown by simple transformations, to
include the zero point vibrations in formula (4.1) it
is sufficient to replacejhe temperature T and the
mass M,, by T' and M'p:

T'=t,T, M'V = Z,MV, (4.15)

and add a factor e~pe to formula (4.7) and a factor
2 2

eP(P - Po) in formula (4.8). Here

Experimental measurements of total scattering
cross sections, made by the method of thermal neu-
tron spectroscopy are in good agreement with the
Krieger-Nelkin theory for most molecules/44'45

These include experiments for methane CH4

(Melkonian[46]), ethylene C2H4 (Melkonian,[4e] Janik
et al.[47]), ammonia NH3 (Janik et al,[48] Rush et
al [49]), for the molecules O2, CO2, N2 and CF4

(Melkonian,t461 Fermi and Marshall'5'1). Small devi-
ations from the theory were observed for the ethylene

molecule (they were, however, attributed to the un-
certainty in the frequencies of the bending vibrations)
and the H2S molecule. More significant differences
(in the range of 20—30%) were found for the water
molecule. Even though the experiments on water
are considered doubtful by various authors,'4 the
observed deviations from experiment serve as an in-
dication that the Krieger-Nelkin model is not always
applicable even for getting the total scattering cross
section. This is not an accident. The principal de-
fect of the effective mass method (independent of how
one chooses the mass) is the incorrect averaging of
the scattering effect over molecular orientations,
which manifests itself most clearly when the com-
ponents of the mass tensor m.v are very different,
since in this case the quantity nm ,̂1 n appearing in
(4.1) changes considerably with a change in orienta-
tion of the molecule. As we see from the Table,
among the molecules enumerated this situation is
most clearly shown for the H2O molecule (similarly
for H2S).

Figure 2 shows curves obtained by the Krieger-
Nelkin method (curve 1) and by an exact averaging
over the molecular orientations (curve 2). As we see
from Fig. 2, the difference between these curves
when En < T is about 10 . Curve 2 lies closer to the
experimental points, but there is still not com-
plete agreement with it. Thus the discrepancy be-
tween theory and experiment that was pointed out
in'43' is only partially eliminated by the more
exact computations. It should be mentioned that the
experiments described in'43'44-' contain a small
systematic er ror / which apparently explains the
incomplete agreement of our exact computations with
the results. It seems to us that the effect noted for
the example of H2O (the difference between the total
cross section and the Krieger-Nelkin result) may be

ISO
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FIG. 2. Energy dependence of total cross section for scattering
of neutrons by hydrogen atoms in the water molecule, computed per
atom of hydrogen. Curve 1 is obtained by the Krieger-Nelkin
method, [43] curve 2 is obtained by rigorous averaging over molecu-
lar orientations in formula (4.1); x - experimental points of Hein-
loth.H
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typical for molecules with a sufficiently large differ-
ence in the components rj and r2 of the mass tensor
my1.

When applied to the differential scattering charac-
teristics, such as dcr/de, da/do, and d2a/dedo, the
defects of the effective mass method appear even
more clearly. This can be seen by a simple compari-
son of formulas (4.7) and (4.8) with the formulas ob-
tained by rigorous averaging over molecular orienta-
tions, i.e., with formula (4.4) and the formulas for
dcr/de that follow from it.

We may assert that in general the effective mass
method cannot give the correct result for the cross
section dV/dedo. This follows in particular from a
comparison of (4.7) with (4.4) as T ^ 0. From (4.7)
it follows that the scattering cross section in this
case is proportional to a delta function whose argu-
ment is e - K2/2M(J,°\ whereas the true cross section,
as we see from (3.11) is "smeared out" over the
whole region e < x2r1/2. When En ~ T, (3.11) and
(4.7) approach one another to some extent, but for-
mula (4.7) is quantitatively accurate only when the
the components of m~J are almost equal. The ques-
tion of the validity of the Krieger-Nelkin approxima-
tion for the cross section d2cr/dedo is discussed in
the paper of McMurry et al for the example of
the methane and propane molecules and OH. They
show that this method gives a fair result for the
methane and propane molecules (for CH4 the error
seems to be no more than 10%). But for OH the ap-
proximation is much cruder.

The cross sections dcr/de and dcr/do are less
sensitive to the procedure of averaging over molecu-
lar orientations. Figure 3 shows curves of dcr/dp
computed with the Krieger-Nelkin formula (4.8) and
by rigorous averaging over molecular orientations
using formula (4.1) (curve 2) for the water molecule
H2O, i.e., for a molecule with markedly different
components of the mass tensor. The resulting errors
in the determination of the cross section dcr/de by
the effective mass method are about 10—20%. Similar
conclusions hold for a number of other molecules
(cf. ) . This method can therefore not be used for
determining the cross sections dcr/de and da/do if
one requires very high accuracy of the results.

Among the molecular properties that it would be
desirable to study experimentally are: the waveform
of the molecular vibrations, which is unknown for
most molecules, certain features of the internal
structure of molecules (Fermi resonance, bending
vibrations, hindered rotation), features related to the
presence of more than one equilibrium position, and
also molecular interactions in liquids and crystals.

The molecular vibrations have only a slight effect
on the scattering of thermal neutrons. The effects
associated with them are contained in the function
WT (cf. (4.2), (4.1)), which, in the energy region
e < to treated here should be less than unity, since in

FIG. 3. Cross section dcr/dp (p = ̂ (En - 0/T), for scattering
of neutrons by the hydrogen atoms in the water molecule, for differ-
ent incident neutron energies En = pj/2m. Curve 1 is obtained from
formula (4.8); curve 2 is gotten by a rigorous averaging over molec-
ular orientations in formula (4.1). p0 and p are expressed in units
of V2mT\

order of magnitude W T ~ e/w. Thus, among the class
of problems discussed in this Section are included
only the features of the motion of molecular groups
and the effect of the aggregate state of the material.

The simplest experiments are those that measure
the total scattering cross section and angular distr i-
bution of the scattered neutrons. We have already
spoken about experiments for simple gaseous mole-
cules. But there is undoubtedly great interest in
measurements for molecules in the liquid and solid
states. Such measurements have been carried out,
for example, for water (Melkonian,[4e] Heinloth [50-1),
liquid amonia NH3 (Wanic [ 5 2 ] ) , for the HCOOH mole-
cule and benzene in the liquid state (Heinloth [ 5 0 ] ) , and
also for the molecular groups NH3I and NH3Br in
polycrystalline materials. [55 ] The most interesting
of these experiments are those done on the tempera-
ture dependence of cross sections near a phase tran-
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sition of the first kind. °' At these points one sees
a sharp discontinuous change in cross section which
indicates a marked change in the character of the
intermolecular interactions at the phase transition.

More useful information about molecular proper-
ties comes from experiments on the double differen-
tial cross sections d2a/dedo. Such measurements
have been made very recently, and are still few in
number. These include the experiments of Randolf
et al on gaseous methane and a series of papers
on water. ~ On the basis of experiments on neu-
tron scattering by water, Larsson and Dahlborg [eo-'
have calculated the spectra of quasiphonons assuming
a quasicrystalline structure for the liquid. These
spectra seem to be strongly temperature dependent.

There have recently been studies (made through
measurements of the cross sections d2cr/dedo) of
the dynamics of molecular groups like CH3, NH4, and
H3O

+ in different molecules and different molecular
media. From the special features of these cross
sections (presence or absence of peaks, kinks) the
authors of draw definite conclusions about the
degree of freedom of rotation of individual groups of
atoms. We emphasize that the list of experimental
papers given here is by no means complete. An ex-
haustive list (to 1&64) is given by Janik in a survey
contained in the collection ^ .

5. Scattering of Neutrons Accompanied by Vibrational
Excitation of the Molecule.

The general formula describing this case of scat-
tering has the form (3.18), where Wv( ev) i s given by
(3.24). This formula can be simplified in the follow-
ing two important cases.

For a molecule with a large moment of inertia, so
that Ib^2 » (where b,, is the distance of the atom
from the center of gravity of the molecule) rotational
transitions are unimportant and the problem reduces
to the case of scattering of the neutrons by a system
of independent harmonic oscillators, i.e.,

m2 V_,rxf i ,, (5.1)
dedo '

Wv is given by (3.24).
A special case of (5.1) is the model of an isotropic

or anisotropic oscillator, which was already studied
in the first papers of Fermi [23] and others.[30>3l] If
the inequality Ibj,2 » m^ is not satisfied, the pro-
cesses of vibrational and rotational excitation of
molecules occur simultaneously. One must therefore
treat them together. We consider this case for co,
c » T. This condition, which is quite typical for most
molecules, permits us to neglect the thermal motion
of the molecules. In this case we find from (3.18)

de. do

The simplest recipe for further simplification of the
calculations is to introduce averages of quantities
over molecular orientations:

W r 1 - « n ) s , \M\\ = <(nc*)2)a
(n is an arbitrary unit vector). Such an approach was
proposed by Nelkin for calculating excitations of
vibrations of molecules of water (taking account of
the thermal motion). One can then obtain the cross
section dcr/de and the total cross section for vibra-
tion excitation ani> . . ., n\> from (5.2) in analytic
form. The behavior of the cross section an as a
function of incident neutron energy is characterized
by the following law: as the energy is increased,

cr(En) increases (starting from En ~ ———CJ
X

reaches a maximum at approximately the value

mv

and then falls off smoothly to zero as En— °°.
The errors associated with the use of this pro-

cedure are significant even for finding total cross
sections for vibration excitation. Such an approach is
therefore not applicable for analyzing experiments on
neutron scattering. The fact that the cross section
for scattering of neutrons by water, calculated using
this method, is in fair agreement with experiment •
in no way contradicts this statement, since in the
total cross section one does not observe individual
transitions, but rather a collection of them, and fur-
thermore, in the region studied ( En < 1 eV) these
transitions still do not play an important role.*

In contrast to the case for the thermal region, the
vibrational characteristics of the molecule (frequency
and vibration shape) are directly manifested in the
scattering cross sections in the region of excitation
of vibrational transitions. But the analysis of the
cross sections on the basis of formulas (3.18) and
(5.2) is very complicated, since each individual
molecule requires involved numerical computations,
or more precisely, a whole series of such computa-
tions.!

Thus the spectroscopy of slow neutrons (energies
En < 1 eV) has limited possibilities as a method for
experimental investigation of vibrational character-
istics of molecules.

As we shall see, a much simpler connection with

l~2^T J /a
(5.2)

*Some simplifications are also possible in the classical treat-
ment of individual types of molecular excitation (McMurry ["]),
namely those for which we have the inequality (K • c^)2 » GJJ. But
this is a very strict condition, since for vibrations with low fre-
quencies the coefficients (cJ)2 are usually small.

tin this connection we note that the scheme for numerical compu-
tation of cross sections for vibrational excitation was suggested by
Massey [36] even before the appearance of the general formalism of
the theory presented here.
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the vibrational characteristics is established from
spectra of scattering of fast neutrons.

m. SCATTERING OF FAST NEUTRONS

6. Approximation by Free Particles with a Momentum
Spread.

As already indicated, for large energy transfers
the interaction time of neutron and nucleus is small
compared to the period of vibration of the molecule
and, consequently, under these conditions the chem-
ical binding can appear only kinematically, through
the momentum spread of the atoms in the molecule.
The smallness of the time for energy transfer can
be formulated mathematically in two ways. The first
of these, developed in '66' , consists of the following.
In accordance with the assumption of small time for
energy transfer, the operator e u e~ of (2.3) is
expanded in powers of t, and only the leading terms
in the expansion are kept. The expansion
form

[67] has the

y W-

, Lv\).

[42]

(6.1)

As has already been noted, L4^J formula (6.1) can-
not be used for finding the double differential cross
section, defined by (2.1) and (2.3), because when we
substitute (6.1) in (2.3) singularities appear (the
delta function 6(e — R,,) and its derivatives). Thus
the expressions given by (6.1) and (2.3) for the
double differential cross section can be used only as
an intermediate formula for calculating the total
scattering cross section a ( E n ) . In lowest approxi-
mation, keeping only the first term of the series (6.1),
we find

= \ \ cv0 (Pv) <p'i (P) «P/

where = 4ir \F

(6.2)

2 is the cross section for scatter-
ing of the neutron by a free nucleus with momentum
pv. The formula (6.2) for the scattering cross section
obviously has the same meaning as (2.5) for the ab-
sorption cross section,—in both cases we are dealing
with an average of the cross section for neutron-
nucleus interaction over the initial state of the mole-
cule.

A consistent derivation of the formulas for the
double differential cross section under these condi-
tions can be given by expanding the operator
eiH^t e-iHt no£ m p O w e r s of t but in powers of the
molecular Hamiltonian H, i.e., roughly speaking, in
the reciprocal of the period for molecular vibration
(which, we recall is here assumed to be large com-
pared to the effective time for energy transfer). This
expansion, including all terms of first order in H,
has the form[3'76]

+ ~ | [ # , L v ] , LvJ(»03 + . . . } .

Substituting this expression in (2.3) and integrating
over t, we find

+ {\Fv{Vv)?h(e-Rv-Lv))),

where h denotes the operator

h (z) = -L 6i2> (z) [//, Lv] — i - 6'3» (z) [[H, Lv], Lv

. .. + ( - l ) s / r 6 s ( z ) - [ . . .[II,LV]. . .Lv],Lv] +

(6.3)

The first term in (6.3) has a clear physical meaning:
the double differential cross section for scattering of
a neutron by a chemically bound nucleus is the result
of averaging the differential cross section for scat-
tering of a neutron by a free nucleus, | F,, {pv) |

2,
over the momentum spread which the nucleus has in
the molecule. (The energy and momentum conserva-
tion in the collision are taken into account through the
argument (e - Rp — L.p) of the delta function.) It is
natural to call the resulting expression the approxi-
mation by a free particle with a momentum spread.
The second term in (6.3) characterizes the finite
nature of the time for energy transfer. Including it
greatly improves the accuracy of the approximation
in some cases.

We note that, according to (6.3), averaging over the
momentum spread is equivalent to introducing some
effective momentum appearing in the collision, de-
termined by the relation e - Rv — Lv = 0, i.e., having
order of magnitude p,, = V mp ( e - R^ )/V R,,. It then
follows that in cases of large energy transfer all the
estimates made earlier concerning the role of binding
in the scattering and of the role of the variability of
the amplitudes F^ (cf. Sec. 1) must be modified as
follows. The correction to (1.13) to take account of
the finite time for interaction of neutron and nucleus
is equal in order of magnitude to

mv dE
s — ifv

the correction for the finite time of energy transfer
(second term in (6.3)) is approximately Vp^/R^m^
~ £ V uSy/Rj,, while the correction for variability of
the amplitude (1.14) is

dE

It is easy to see that all these corrections are small
for scattering angles close to the angle £0 corre-
sponding to collision of the neutron with a nucleus
initially at rest, and given by the relation e =RV(JQ).
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They increase with increasing | •& — i^01, since then
the factor £ increases. One may then say that the
conditions for validity of all formulas derived on the
basis of (6.3) become worse for large deviations of
i? from t?0. This fact is, however, unimportant, since,
as we shall see, for large | •& — x9-01 the cross section
d2cr/dedo is exponentially small.

7. The Case of Potential Neutron-nucleus Scattering

a) General formulas for the double differential
cross sections. For not too heavy nuclei, the neu-
tron-nucleus scattering in the energy region con-
sidered here is potential scattering, and consequently
the amplitudes Fj, may be taken to be constant. Thus
this case deserves special treatment.

So we set ¥v = const and consider the leading
term in (6.3). We shall again determine the wave
function of the initial state from formula (3.2), but
without the assumption that !/>v necessarily corre-
sponds to a system of independent harmonic oscil-
lators. The quantum mechanical average in (6.3)
can now be written as

*6 (8 — Rv —

where RQ is the radius vector to the center of inertia
of the molecule, u is the set of vibrational coordi-
nates, and il is the set of angles determining the
orientation of the molecule. The further arguments
are similar to those made in deriving formulas (3.13)
and (3.17). Assuming that the temperature is suffi-
ciently high so that we can use the quasiclassical
picture for ipr, we reduce the matrix element (7.1) to
fil>*8 (e - R(, - L^)^vdu(dn/47r), i.e., we are left
only with the integration over u and the averaging
over molecular orientations. We write the velocity
of the y-th atom in the molecule as vv = Vm + ft by
+ Up. (cf. (3.2)). The delta function appearing in
(6.3) can then be written in the form

(7.2)

6(e—i? v—L v)=

X.8(n — Rv-Et-ET-Ev)dEtdEtdEv.

Thus,

(8(z-Rv~Lv)) = <'[ Wt(Et)WT(Er)Wv(Ev)

X 8(e — Rv — Et — Et—Ev)dEtdErdEv)a;

the factors W^WrWv contain an average over the
translational, rotational, and vibrational degrees of
freedom:

27V>

Wr = J 6 (Et-x, [Qbv]) rfL =

a2
r = 2TxRvx, A"r = ^ e 2T dL

(7.3)

(7.4)

(R,, is the mass tensor introduced earlier in Sec. 3),

It then follows that
(e-Bv-£v)2

(Ev)dE,

(7

\

'K
.5)

(6 (e-J?v-Lv)> =

b) The case of harmonic vibrations. Further
specification of (7.5) requires the use of assumptions
about the nature of the vibrational motions. If the
vibrations of all the atoms are harmonic in the ground
and excited states, then one may assume (cf. Sec. 3)
that

II
i—1

where qj, Pj are the normal coordinates and momenta,
s is the number of vibrational degrees of freedom,
and consequently

where

X exp / —
a; cth -^-

is the Bloch distribution of the momenta of a har-
monic oscillator.

We thus find that

Substituting these definitions in (7.5) and integrating
s ,-•.

over dEv = n dEv we finally get

de do
lk'

k \yjta2

( E - R V ) 2

, (7.6)

^ r - 2Txm?x. (7.6')

where

Introducing the unit vector n = K/K, we can write the
quantity a2 in the form

a2 = 2Rv<ov (n), co (n) = mv [ 2 « n ) 2 «>i c t h

i

m;1n] .

We note that when T » ajj(i = 1 s) , w v (n ) = 2T.
The unit vector n, which takes on an arbitrary direc-
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tion in space, determines the orientation of the mole-
cule. Thus, averaging over orientations of the mole-
cule is equivalent to integrating over the components
of the vector n.

It should be noted that formula (7.6), derived on
the assumption that the temperature is sufficiently
high, is actually also valid for low temperatures,
lower than the rotational energies. The reason is that
at low temperatures the rotation of the molecule plays
no part in the neutron scattering, i.e., for T —• 0 we
can simply set a\ = a\ = 0 in (7.6'). The only excep-
tion in this respect is the case of diatomic molecules,
for which, as T —• 0 a special anomaly appears (cf.
below).

Formula (7.6) is also easily modified for the case
where the rotations and translational motion of the
molecules are not free, as assumed in its derivation,
but are frozen (this situation occurs in liquids and
molecular crystals). If we assume that the frozen
rotation and translational motion are characterized
by harmonic oscillations, then, repeating the argu-
ments given earlier, we obtain the earlier expression
for d2<j/dedo, i.e., formula (7.6), with the one differ-
ence that OL\ now has the form a^ = a^ cth (a;t/2T)
x nRpK, where wt is the frequency of the orienta-
tional vibrations, while a\ =un cth (wn/2T) K2/M,
where wn is the frequency of the translational vibra-
tions. When wt >y T, a\ =LO%KRVK, while for wt y> T
we get the earlier expression (7.4) for a\ (and sim-
ilarly for a\). We also note that the corrections to
formula (7.6) associated with the operator h(e — R^
—-Ly) in (6.3) also have a relatively simple form in
the case where the vibrations in the molecule are
completely harmonic. Their detailed computation is
given inL .

Let us discuss formula (7.6) in more detail. Let
us introduce a system of coordinates with its center
on the v-\h atom, in which the quantity uv (n) given
by (7.6), which is a quadratic function of the projec-
tions of the unit vector, has a canonical form (i.e., if
we write the projections as cos 0, sin 6 sin cp, sin 0
cos <p, where & and <p are spherical angles, then in
the general case

co = com cos2 e + to12' sin2 9 sin2 q> + w(3) sin2 9 cos2 cp,

1/9

\

( 1 ) .(3)where u u l , ojli>, wli" are complicated functions of
the components of the amplitude vectors and the
components of the mass tensor). The result of inte-
grating in (7.6) over dS2 = sin 8 d6 dcp can be ex-
pressed in terms of a universal function (p2 , p, q):

\2 k'
de.do /(p2, p, ?),

P = - ? = • (7.7)

(where it is assumed that ,<2) u/3>), where

i

l
V(l-p)(i-qt)

V(P-?)(*-!)

A' (
V (i-P)(i-qt)J
/ (i—p)(l — qt)\
' (p-q) (t-\)J'

K( x) is the complete elliptic integral of the first
kind.

In the case of linear molecules there are only two
preferred directions in the molecule—along and
perpendicular to the molecular axis. Thus, in this

a/2) sin20. For diatomic mole-
have the meaning

2 !i2 T, co<2), = 2T.

c a s e &)„ =oj= o j ( 1 ) cos2e
cules the quantities w(1\

co<t>2 = ^ L w c t h - ^ -

Correspondingly, for linear molecules the function f
in (7.7) is replaced by

p\ P) =
l

V2(i-p)
\-JLL=dt, P=- (7.8)

For p = 0 (scattering at the angle i?o corresponding
to scattering of the neutron by a nucleus at rest) the
function f ( 0, p) has a maximum equal to

iln} as
(7.9)

in the case of diatomic molecules, at sufficiently low
temperatures

mt, 2 2T

Consequently the scattering cross section at angle t?0

may reach large values as T —* 0:

1 ,_ / co M
~2T m, '

Pl, 2 ^

<ie do . 1*1, 2 "V 2nRu 2<>>a'
In i

(7.10)

The anomaly mentioned occurs in the region of angles

of order
mu> , 1

- p i n -
1/2

Formula (7.10)

becomes invalid for very low temperatures, lower
than the rotational energies. On the other hand, in
liquids the inclusion of frozen rotation by the same
method as in Sec. 7a leads to replacing the argument
of the logarithm in formula (7.10) by w/wt. where
o>t is the frequency of orientational vibrations. An
example of a calculation of the angular distribution of
neutrons scattered by the hydrogen atoms of the water
molecule, done using formula (7.6)* is shown in Fig.
4. We note that the spread in angle is quite large,
i.e., is easily observable, and depends strongly on
the temperature.

The differential cross section (7.6) for scattering

*The graph in Fig. 4 was constructed to include the correction
h(e - R^ - Lv) in (6.3).
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FIG. 4. Angular distribution of cross section dV/de do for scat-
tering of fast neutrons by hydrogen atoms of the water molecule for
two different temperatures. The cross section is computed using

k ' / 1
(7.6) and is given in units of 4 | Fy |2 -r\
neutron energy.

En is the initial

of fast neutrons contains the most important proper-
ties of the molecule: the frequencies u>i of the mole-
cule and the amplitude vectors cj,, which are directly
related to the force constants (cf. Sec. 3). We shall
discuss the question of possible determination of the
components of the amplitude vectors from the spec-
trum of scattered fast neutrons (assuming that the
frequencies of the molecule and its geometry are
given) for the general case of a molecule consisting
of N different atoms. The experiment enables one to
determine the spectra for scattering of the neutron
from each individual atom, since the angles which
correspond to maxima of the angular distributions of
the scattered neutrons, and are given by relations
e = Rj, (i?0) depend critically on the mass of the scat-
tering atoms and are therefore well separated. Using
formula (7.7) we can, from the spectra of scattered
neutrons, determine for each atom the quantities
o;(1>, o/2), OJ<3>, i.e., we can get 3N relations con-
necting the components of the amplitude vectors, of
which there are 3Ns. Considering that the components
of the amplitude vectors are connected by the relations
(3.22) and the relations that follow from conservation
of momentum and angular momentum (cf. Sec. 3
and[40] p. 11), the number of which, in general, is 3N
+ 6 s, we arrive at the conclusion that the use of the
additional relations among the components of the
amplitude vectors that are obtained from neutron
measurements is sufficient for a complete determina-
tion of all the components of the amplitude vectors
and, consequently, of the complete set of force con-
stants for the general case of a triatomic molecule.
For more complex molecules one must make meas-
urements at several temperatures corresponding es-
sentially to the different values of w'1', a>(2), and a/3'.
The use of molecular symmetry elements usually
greatly simplifies the analysis. For example, for
linear triatomic molecules XjX2X3 it is sufficient to

FIG. 5. Geometry of vibrations of linear triatomic molecules.

measure the maximum of the angular distribution
(for a given energy transfer e) described by formula
(7.9), in order to determine the values of the three
force constants F1( F2, F3 characterizing respec-
tively the longitudinal vibrations along the bonds XjX2

and X2X3 and the interaction of these two vibrations
(Fig. 5). Assuming that w(2) is known (it is the
uniquely determinable frequency of transverse vibra-
tions) one can from the measured d2a (i>o)/dedo for
scattering by one of the atoms (for example, Xj) find
the frequency o;(1) by means of the formula (7.6):

to(1> = (o4 cth ~- [c^1']2 + co2 cth -~- [cjs>]2,

where coit w2, Cj1 ', C'2' are the frequencies of longi-
tudinal vibrations and the amplitude vectors corre-
sponding to the two types of longitudinal vibrations.
Now, using (3.22),

1 1
1 1 mi M

and the relations following from momentum conserva-
tion ( [40] p. 23),

c[v - m2cf - m3c'3
v = 0, f - m3cf = 0,

we find C\u, C?\ c y \ C\", C\v, C\", and from
them, by using (3.21), we get the force constants. A
good example of this type of molecule is OCS, for
which the force constants F t, F2, F3 are unknown. In
the case of a molecule of the type X^Xj (for exam-
ple, CO2) the analysis is even simpler, but in this
case there are only two force constants for longitud-
inal vibrations, which are uniquely determined by the
longitudinal frequencies. It should be emphasized that
at present there is no general experimental method
for determining molecular force constants, and they
are usually found by incomplete theoretical calcula-
tions, or from molecular frequencies by using the
crude valence force approximation ( , p. 174). The
development of methods for determining them by
means of neutron spectroscopy would therefore be of
great importance for quantum chemistry.

c) Effects of anharmonicity of intramolecular
vibrations. In certain cases that are of great inter-
est the vibrations of the atom corresponding to one
or more degrees of freedom are strongly anharmonic.
This is the case, in particular, for NH3 and PH3,
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characterized by an inversion doubling of levels. In
such molecules the vibration of the N or P atom
relative to the H3 plane occurs in a complicated
potential obtained by superposing two parabolas
separated by a potential barrier, whose height in the
case of NH3 is D = 2076 cm"1 (cf. Fig. 8.4 of [ 4 0 ]) . At
low temperatures T « D the vibrations of the N
atom are harmonic and the cross section for scatter-
ing of neutrons by the N atom is given by our earlier
formula (7.6). On the other hand, at temperatures of
the order of thousands of degrees the N atom car-
ries out a complicated motion, shifting from one
equilibrium position to the other. Approximately,
such an intramolecular motion of the atoms can be
described by using a simplified model, according to
which one of the normal vibrations of the N atom
(perpendicular to the H plane) occurs in this complex
potential, while the other normal vibrations remain
harmonic.

Another example of partially harmonic intramolec-
ular vibrations is the freezing in of the rotation of
groups of atoms within the molecule. The simplest
example of this phenomenon occurs for the CH3OH
molecule (cf. ). In this molecule the H atom of
the hydroxyl group moves relative to the CO bond in
a complex potential having three minima. If the tem-
perature is low, we may assume that the H atom of
the hydroxyl group vibrates harmonically near one of
the three equilibrium positions. But if the tempera-
ture is sufficiently high (of the order of several
thousand °C), this atom performs a complicated
periodic motion, rotating around the CO bond. Under
these conditions we may again use a simplified model
in which all the vibrations are taken to be harmonic,
except for the one in which the H atom of the hy-
droxyl group moves in the plane perpendicular to the
CO bond. It is easy to get a formula for d2cr/dedo for
these molecular models which are characterized by
one anharmonic degree of freedom.

Repeating the arguments used in deriving (7.3),
and assuming that one degree of freedom (the j-th) is
anharmonic, we get a formula that includes both the
cases discussed:

X

where

coj cth ( -?i

(the prime means that the j-th term of the sum is
omitted)

= Q <?UVJ) 8 ( 4 — *

j) is the momentum distribution corresponding to
the motion in the j-th ("anharmonic") coordinate.

Formula (7.11) can be used for determining the char-
acteristics of the anharmonic potentials discussed
above from the spectra of scattered fast neutrons.

Anharmonicity of the intramolecular vibrations
also manifests itself in the peculiar phenomenon of
Fermi resonance, which lifts the degeneracy of two
neighboring vibrational energy states of a polyatomic
molecule to which there correspond harmonic vibra-
tional wave functions ifil and ip2. The lifting of the
degeneracy gives a mixture of these states ip1 = aipi
+ hip2, ip" =bip1 — a4>2, where a and b are parameters
determined by the anharmonicity. The calculation *•
of the cross section for scattering of fast neutrons
taking account of Fermi resonances reduces to r e -
placing 4>i, 02 by ip', ip" in the summation (Sec. 7a)
over vibrational states of the molecule, and leads to
the appearance in formula (7.6), which can be written
in the form

2 k'

of an additional term AW,

- = \F,

[6]

dedo

As one can show,1

\w

i.e.,

in order of magnitude,
• E l Ei

W -(1- )e

where Ej is the excitation energy of the molecule
corresponding to the unsplit vibrational level. The
presence of the additional term AW leads to the ap-
pearance of an easily observable asymmetry in the
angular distribution of scattered neutrons with r e -
spect to the angle i?o, as given by e = R^ (•&). In the
case of Fermi resonance for the CO2 molecule
(lifting of degeneracy of the 100 and 020 levels), the
estimates [6] show that for T ~ Ej = 0.16 eV, AW/W
~ 0.1, i.e., the effect is surely observable.

d) Cross section for energy transfer. In connec-
with the important part of the energy transfer cross
section da/de in the theory of neutron moderation,
we study its behavior in the region of high initial neu-
tron energies. On the basis of (7.6), integrating over
all scattering angles, we find, to within exponentially
small quantities,

—r-= -ir^- u>{e). w(e) = —-< 1 -f erf a —. -')]>.-
(7.12)

<7-u) where

2 ~\/mtov (n)

the quantity w ( e ) has the meaning of the probability
for transfer of energy e to the nucleus. In the
special case of scattering by a hydrogen atom,

An interesting feature of this last formula is that the
probability w appearing in it is independent of the
initial neutron energy En .
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Formulas (7.12) and (7.13) can be simplified con-
siderably by replacing the averages over molecular
orientations by the averaged quantity Zov

= I ix>v (n) ——. As the results of an exact averaging

over molecular orientations show for the case of
neutron scattering by the hydrogen atoms in the water
molecule, this procedure does not lead to serious
errors, i.e., in all cases one can use formulas (7.12)
and (7.13), simplified by introducing the average quan-
tity up in this way. Then the formulas acquire a
clear physical meaning. According to (7.12) the prob-
ability for energy transfer is w ( e ) = 1 if the final
neutron energy En = k'2/2m exceeds the minimum
energy S2En that it would have on the basis of the
conservation laws after scattering by a free nucleus
of mass mv at rest. On the other hand, when En

< S2En the probability for energy transfer is expo-
nentially small. The width of the region in which the
smearing of the step function with w (e ) =1 for En

> 62En, w = 0 for E n< 62En occurs is given, ac-
cording to (7.12), by a quantity of order of magnitude
yfWmuJ (in energy units).

We note that formulas (7.12) and (7.13) are not
valid for quasielastic scattering of fast neutrons, i.e.,
for e ~ Zjv, since in that case the approximation by a
free particle having a momentum spread is invalid
(cf. Sec. 6). In this case we can, however, use the
general formula (4.1), which is also valid, as follows
from its derivation, for describing the scattering of
fast neutrons accompanied by small energy transfers.

(k + k' )2

Assuming that the auxiliary condition —

» 4T(mp> • nm^1 n)"1 is satisfied, by integrating
formula (4.1) over angle one can obtain a cross sec-
tion dcr/de valid for e < wv:

CTV0 , > , ,

where

(the minus sign refers to processes in which the neu-
tron loses energy, the plus to those in which it gains
energy in collision with the molecule). Just as in
formulas (7.12) and (7.14), we can replace the aver-
aging in (7.14) over molecular orientations by intro-
ducing averaged quantities

Figures 6 and 7 show graphs of the dependence of
w(En), constructed using formulas (7.12)— (7.14),
for the case of scattering of neutrons by H and D
atoms in the H2O and D2O molecules. As we see
from the graphs, the region of quasielastic scattering
e ~ wv is characterized by a "spike," which is re-
lated to the fact that for small energy transfers the

7.0

0 7 2 3 4 5 S 7

FIG. 6. Probability of energy loss w(En), En = K'72m, for scat-
tering of neutrons by H atoms in H2O. Computations for
En - En » 53 done using formula (7.13) and those for En - En < 53
using formula (7.14). En is expressed in units of 53.

nucleus does not behave as if it were free and the
scattering of the neutron is markedly affected by the
chemical binding and the inertia of the molecule.

8. Case of Variable Amplitudes for Neutron-nucleus
Scattering

a) Absorption cross section. One can write the
general formula (2.5) for the absorption cross sec-
tion in a more detailed form, assuming, as usual, that
the wave function for the initial state of the molecule
is given by the adiabatic approximation <Pi = #t^r$v-
We write the cross section for absorption of a neu-
tron by a free nucleus, which depends on the energy
of relative motion of the neutron and nucleus, for
mv » m,

E =
2mv mv-\-m

as follows:

En — kvv,

r-£vU(£t-kVm),

6 (Et - k [Qbv]) 6 (Ev~ kuv) dEtransdETdEv.

Arguing in the same way as in the derivation of (7.6),
we have

(7.14) or = ( j WtWrWKv°r

X dEt dET dEv\ (8.2)

where the factors Wt, Wr, Wv differ from those de-
fined earlier in (7.3) and (7.4) in having K replaced
by k. If we assume that all the molecular vibrations
are harmonic, (8.1) can be written as follows:

7.0

FIG. 7. Probability of energy loss w(En) for scattering of neu-
trons by D atoms in D2O. Curve 1 corresponds to En = 9eV. Curve
2 is for En = 9w (where £3 is the effective "frequency" of vibra-
tion of the D atom in D2O, equal to 0.14 eV at T = 300°K. In both
cases the energy scale is expressed in units of S3.
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, (8.3)

where

and w (n) is defined in (7.6). In the special case of
resonant Breit-Wigner scattering, when <7r

0) is given
by formula (2.6), we have from (8.3)

do.

dy , z = 2 ^

(8.4)

If in (8.4) we replace the average over orientations
by introducing the average quantity

'4-to'2'+ a>'3»
3

then

(8.5)

(where w/2 » T when T » wi) and, consequently,
the resonant absorption of the neutron by a nucleus
contained in a molecule is described by the same
formula as in the case of the thermal Doppler effect
on free nuclei, with the one difference that (8.5) con-
tains, not the thermal energy T, but the effective
quantity o3/2, which takes account of the momentum
spread of the nuclei which is associated simultane-
ously with the vibrational, translational and rota-
tional motion of the molecule.

As the results of numerical computations show,
replacing the rigorous averaging in (8.4) by introduc-
ing the averaged quantity uv is possible only if the
effective frequencies u'11, a/2 ' , w(3> do not differ too
markedly, namely if

ffl(2) (0(3) I

ft)(l) ' (0<lf ^ T '

In the opposite case one must carry out the rigorous
averaging over molecular orientations, which leads
to formulas considerably different from those for the
thermal Doppler effect. In the most interesting case
of | = r /A < 1, when the function ij) ( i, x ) can be
written as the asymptotic expression

we find from the angular integration in (8.4)

°r = ^ p r ^ V* Id (P2. P, 9).

CO'3 ' (8.6)

where the function f (p2 , p, q) is defined by formula
(7.7).

We give the results of a specific calculation on the
example of resonance absorption of neutrons by Cl
atoms in the CC14 molecule. In this case we may
assume that vibrations of the Cl atoms occur only
along the C-Cl bond and perpendicular to it. Using
the frequencies of vibration and force constants for
the C-Cl and Cl -Cl bonds taken from [70], we get for
the effective frequency of vibration along the C-Cl
bond (in eV)

a><" = 0.0153 cth ( ° ^ ) + 0.0466 cth f ° - » + 0.46r

and for the effective frequency of vibration along the
Cl-Cl bond (in eV)

-=2.7-10-3cth 1.62-10-^cth T -

-i-1.3271. (8.8)

Using (8.7) and (8.8) we get at 300°K, u><0 = 0.055 eV,
w<2) = 0.078 eV, i.e., Z3 = 0.063 eV and w/2T = 1.1.
Thus, in this case the energy dependence of the ab-
sorption cross section as given by (8.5) agrees
closely with the analogous dependence for the thermal
Doppler effect. On the other hand, when T = 100°K,
o;(1> = 0.066 eV, ton) = 0.027 eV, i.e., w = 0.04 eV
and Z3/2T = 2.3. Thus, at low temperatures the dif-
ference from the thermal Doppler effect is very great.
One may expect the molecular bonds to show up more
clearly at room temperature in the case of the mole-
cules NOC1 and CH3C1, for which u ~ 0.1 eV at
300°K.

Formulas (8.5) and (8.6) may find application to
analysis of results of measurements of parameters
of nuclear resonances for nuclei contained in a
molecule. At the same time it should be mentioned
that measurement of the energy dependence crr( En)
(in those cases where it is sufficiently clear) can be
used for determining some of the characteristics of
molecules. One should be guided by the arguments
that molecular properties manifest themselves sig-
nificantly in neutron absorption when the parameter
F/v 2 ( m/my ) E0o; is small (where Eo is the reso-
nance energy). This is the situation, for example, in
the case of the chlorine nucleus (resonance with
parameters Eo = 400 eV, T = 0.06 eV [ 7 l ]) and the
iron nucleus (resonance with parameters Eo = 200 eV,
F = 0.6 eVL ). Thus we may hope that observation
of the energy dependence of the cross section for
resonant absorption of neutrons by iron nuclei may be
used, in particular, for studying biological objects of
interest, for example hemin, which is contained in
hemoglobin, and which contains iron.

It should also be noted that in some cases, when
the vibrational motion of the resonantly absorbing
nucleus is strongly anharmonic, the dependence of the
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neutron absorption cross section should show a
peculiar behavior. Such is the case, for example, for
the AsCl3 molecule, in which the As nucleus (having
a convenient resonance with parameters Eo = 47 eV,
F = 0.34 eV ) can occupy two equilibrium positions,
as does N in NH3.

b) Neutron scattering cross sections. It follows
from (6.2) that the formula for the total cross section
for resonant scattering of neutrons should differ from
(8.4) only in the replacement of the factor F e F r / F 2

by F e /F2 (i.e., the whole derivation of a) remains
valid also for the scattering cross sections). It is
also of interest to discuss the regularities associated
with the double differential cross section for resonant
scattering of neutrons, since one can obtain additional
information about molecular structure by measuring
them. When all the vibrations of the molecule are
harmonic, we easily find, using (6.3),

" ^ r = <l^v(Pv)|26(e-Jffv-Lv)>£2
dedo

where

r2 | X)
1 = e 2flv<°v<n>\ , (8 .9)

2 TV?
4

mv-\-m

In the general case the angular distributions of the
scattered neutrons described by (8.9) are character-
ized (for a given energy transfer e ) by having two
maxima, of which one is determined by the condition
x = 0, and the other by the condition e = R,,. In scat-
tering into the backward hemisphere one may usually
take | » 1, and then on the basis of (8.9) we arrive
at the conclusion that in this case

de,do
<e-Hv)!

X((2jl/?v(Ov(n))~1/2e 2H (8.10)

we recall that formulas (8.9) and (8.10) are valid un-
der the conditions F, e » 3 . When the energy trans-
fer is low, e ~ a; and F » w, the cross sections for
resonant scattering are described by the formulas
found inCl4].*
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