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Methodological Notes

HOW QUANTUM MECHANICS HELPS US UNDERSTAND CLASSICAL MECHANICS

P. PARADOKSOV

Usp. Fiz. Nauk 89, 707-709 (August, 1966)

J.HE paradoxical title of this note has not resulted
from a typesetter's error. Classical mechanics is, of
course, simpler than quantum mechanics as a whole,
and we have become accustomed to value the intuitive
classical explanations of quantum mechanical theories.
There are well-known general theorems asserting the
profound similarity between the motion of a quantum
mechanical wave packet and the classical motion of a
particle.

Classical mechanics sometimes enables us to un-
derstand even the quite special properties of quantum
systems. (The following two examples do not pertain
directly to the subject of this note and may be omitted
by the reader.) Closed orbits in a classical theory are
necessarily reflected in the properties of the corre-
sponding quantum system. Every trajectory is de-
scribable by a superposition of wave functions that
changes with time. A closed orbit, which is repeated
indefinitely without change, can occur only when de-
terminate relations exist between the energies asso-
ciated with the different wave functions. In quantum
mechanics there are two cases of central fields in
which the energy levels corresponding to different
orbital momenta are exactly degenerate. The first
case is the Coulomb potential, where for any given
value of n the levels with 0 < I < n - 1 are degener-
ate. The second case is the potential of a harmonic
oscillator, where degenerate levels have the energy

with identical parity and orbital momenta I = n,
I = n - 2, I = n - 4 , . . . I = 1 or 1 = 0. This quantum
mechanical property is associated with the fact that
in a Coulomb field and in the field of an harmonic os-
cillator classical mechanics derives closed trajecto-
ries, ellipses having one focus at the Coulomb force
center or at the point of oscillatory equilibrium, re-
spectively.

Not only are different magnitudes and directions
of the angular momentum (which is normal to the
plane of the corresponding orbit) assigned to the dif-
ferent orbits; different directions in the orbital plane
(i.e., directions of the semimajor axis) are also as-
signed. The same properties are possessed by the
superposed wave functions with identical energies and
different values of I. The degeneracy of these energy
levels is entailed by the properties of the classical
orbits.

The foregoing examples merely illustrate how clas-
sical mechanics helps us to understand quantum laws.
But where is the promised nontrivial assistance ren-
dered by quantum mechanics to classical mechanics?
A simple example is found in adiabatic invariance. Let
us consider the classical oscillator

where the elastic constant k varies slowly with time
[ k = k(t)]. This can be the case of a heavy pendulum
bob attached to a suspension of slowly varying length.
For any given value of k the frequency is a> = k/Vm~.
In quantum theory the energy assumes the values nfiw,
where the states are labeled with the integers n.*

Obviously, a slowly varying system in the n-th
quantum state remains in the n-th state; the number
n does not change. This is the statement of adiabatic
invariance in quantum mechanics, and holds true for
n = 0 or n = 1 in the case of a molecule, or for n
= 1030 (which is the order of magnitude of n for a
clock pendulum). Clearly, for a slow adiabatic change
of k, independently of the value of K or the specific
value of n, we have

£=: const -a).

The proof of this equation is more complicated in
classical mechanics. For any potential that is more
complex than k2x2/2 we can apply the same consider-
ations, except that the level number n must be ob-
tained differently. We shall confine ourselves to a
one-dimensional problem. The stationary wave func-
tions of a one-dimensional finite motion (oscillations)
are real. The wave function of the n-th state has n
nodes (vanishing points ).t This means that n half-
waves fit into the region where the oscillations occur.

The de Broglie wavelength of a particle is 27rK/p,
where p is the momentum (p = mv) and there are
p/27rh~ waves per centimeter. During the oscillations
the momentum does not remain constant. An integra-

*When the zero-point energy 1ia>/2 per degree of freedom is in-
cluded, the energy of a one-dimensional oscillator becomes
(n + l/2>ti&), and that of a three-dimensional oscillator becomes
(n + 3/2)'tf6j. This correction is not essential for our subsequent
discussion.

tWe note that this follows necessarily from the condition of
orthogonality between the n-th function and all preceding func-
tions - the (n-l)-st, (n-2)-nd etc. down to the zeroth function of
the ground state.
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tion is required to compute the number of waves fit-
ting between the two extreme points:

n (waves) = — ^ - p dx.

We require the number of nodes, i.e., the number of
half-waves, which is obviously twice as large. It is
customary not to merely multiply the integral by the
number 2, but rather to write the level number in the
form

where the integration is taken over a closed cycle. The
path goes from xt to x2 and returns from x2 to Xj, so
that the first integral is actually doubled. Thus the
classical adiabatic invariant for the case of a slowly
varying potential is the quantity (p p dx, since K and
n are constants.

I am fully aware that all of the foregoing discussion
is an enormous distortion of the historical development
of physics. Classical adiabatic invariants were known
long before the invention of quantum theory. In the
"old" quantum theory of Bohr and Sommerfeld (prior
to the work of Heisenberg and Schrodinger) classical
adiabatic invariants were utilized because their di-
mensions (momentum x length) were the same as
those of the Planck constant. Physicists of the older
generation do not approve of my pedagogical scheme.

It cannot be denied, however, that present-day pupils
and students know the Planck relation between energy
and frequency. They know about the existence of quan-
tum mechanics and about the de Broglie wavelength,
but they do not know (at least before reaching the third
or fourth year of the physics curriculum) about adia-
batic invariants.

Adiabatic invariance is important aside from oscil-
latory systems. The most important example is the
motion of a charged particle in a magnetic field; we
shall merely refer here to a clearly written and very
graphically presented article by Northrop and Teller
[Phys. Rev. 117, 215 (I960)].

We note also, for the benefit of better informed
readers, that quantum ideas improve our understand-
ing of the conditions for application and the exact ful-
fillment of adiabatic invariance. In the case of a har-
monic oscillator the influence that causes the time
dependence of the elastic constant is symmetric with
respect to the coordinate origin (x and - x are inter-
changeable). The parity of the functions clearly re-
mains unaffected; therefore the level number n can
vary only by the integers 2, 4 , . . . (n —» n ± 2 — n
± 4 , . . . ) .

It therefore becomes clear that the probability of
transitions, thus violating adiabatic invariance (which,
as already shown, is equivalent to n = const), depends
on the Fourier components of the frequency 2w in the
function k(t), since the system uses specific portions

of energy in the transitions n — n ± 2. The accuracy
of an invariant therefore depends on the precise form
of k(t). Parametric resonance is included here; if the
time dependent function k(t) is given by

k = i o | a cos (2o)t),

then transitions and energy pumping are especially
intense.

However, we must conclude this discussion of the
harmonic oscillator, lest this "popular" explanation
become more complicated than the standard classical
treatment.

The second most important case where quantum
mechanics is simpler than classical mechanics and
helps us to understand the latter consists in the con-
cepts of phase space and the Liouville theorem, which
are the basis of statistical physics. In quantum sta-
tistical physics we "simply" (in principle) count the
number of individual discrete quantum states: 1, 2, 3
etc. States of equal energy are equally probable; in
other cases their probabilities are proportional to
exp ( - En /kT). In scientific terms, within a bounded
space (a potential well) the eigenstates of the Hamil-
tonian form a denumerable set, unlike the continuum
of states considered in classical mechanics and clas-
sical statistical physics. This fact is responsible for
the fundamental simplicity of quantum statistics as
compared with classical statistics. It is therefore
useful to introduce quantum concepts in order to
achieve a better understanding of classical statistics.

The phase volume Vf of classical statistics is pro-
portional to the number of quantum states:

this equation pertains to a single particle in three-
dimensional space. The proof is derived most simply
for a potential well having the form of a parallelepiped
with the sides X, Y, and Z. Each level corresponds
to a whole number of half-waves, so that the allowed
values of the particle momentum are

each level corresponds to a point in momentum space
and it is easy, for example, to compute the number of
such points for the region

we thus obtain

JV= 4it
V7 * y

where pj/2m = E. We have considered that nx > 0,
nv > 0, and nz > 0; also, the absolute values of px, pv,
and pz were understood in the foregoing discussion.

The relation between a volume in phase space and
the number of states has now been derived. We need
only know, in addition, that at large values N is addi-
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tive,—that the number of levels in two potential wells
when added or even interconnected is N = Nj + N2.
Then, if the relation between N and Vf has been ob-
tained for a rectangular well, any functional dependence
U(r) of the potential energy on the coordinate r can be
constructed out of many rectangular wells. Conse-
quently the Liouville theorem has the simple intuitive
meaning that the number of states occupied by a sys-
tem is conserved during the motion of its particles.

As a special case of the theorem let us consider a
Fermi gas at absolute zero. N particles occupy N dif-
ferent quantum levels;* levels with E < Ef (the Fermi
energy) are occupied, while levels with E > Ef are
empty. When the system is acted on by any forces the
levels can be changed so that those occupied by the
particles are no longer the very lowest set. As an ex-
ample, let all momenta be increased by an identical
amount p0. As previously, the N particles will then
occupy a compact group of N levels, The entropy had
been and remains equal to zero.

Entropy is actually a measure of disorder. Neither
completely filled nor empty levels contribute to the

*We here neglect the fact that two particles having spin 1/2
can exist for each spatial level.

entropy. Contributions to the entropy come only from
levels that may or may not be occupied by particles,
in each case with a probability p such that 0 < p < 1.
It is not important in calculating the entropy to know
whether the very lowest energy levels are occupied.
Only the kind of distribution is important, that is, the
existence of either a sharp extreme distribution (rep-
resented by a region with p = 1 and another region
where p = 0 ; S = 0) or a diffuse distribution. When
there exists a region with 0 < p < 1, then S
= -kSp lnp > 0, where k is the Boltzmann constant.

Classical adiabatic invariance is related to the
adiabatic change of quantum levels. Particles then
remain on the same levels. This behavior of a quan-
tum system was found to be related, in turn, to the
thermodynamic concept of an adiabatic process, in
which entropy is conserved.

Quantum concepts thus enable us to couple and to
understand better the complex laws of both classical
mechanics and classical statistical physics.

Translated by I. Emin


