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A
1. Introduction

characteristic feature of metals is their high
conductivity, which is due to the very large density
of carriers—conduction electrons. Because of this,
it has been believed for a long time that low-frequency
electromagnetic excitations cannot propagate in met-
als. The reasons were thought to be as follows:

The electromagnetic field in a metal is determined
by Maxwell's equations

rot H = - 1 dE
(1.1)'

Here E is the high-frequency electric field vector,
H the magnetic field intensity, j the current density
vector, and c the speed of light. Let us eliminate the
magnetic field from (1.1). Then for a monochromatic
plane wave in an unbounded metal

E(r, t)~exp{i(kr — u>t)]

Maxwell's equations become

(1.2)

(1.3)

Here k is the wave vector, w the wave frequency, and
a(w, k) the Fourier component of the high-frequency
conductivity.

At high frequencies (to » kv) the spatial dispersion
plays no role and u does not depend on k:

(1.4)
m (v— ia) '

where e is the absolute value of the electron charge,
m the effective mass, n the conduction-electron den-
sity, and v the frequency of their collisions with the
scatter ers .

Substituting (1.4) in (1.3) and assuming E l k we can
readily obtain a dispersion equation for the electromag-
netic waves

4jrne2

to, (1.5)

where w0 is the plasma frequency of the metal.
It is obvious that this equation has no real solutions

when to < QOQ. In other words, for frequencies on lower
than the plasma frequency w0 the effective dielectric
constant is negative and there are no natural electro-
magnetic oscillations in the metal (the external wave
is totally reflected).

1016 sec"1.For typical metals w0 ~ 10ID sec"1. We, on the
other hand, are interested in radio-frequency electro-
magnetic waves. Their frequencies satisfy the condi-
tion

0) <C 0)0 . (1.6)

We can therefore neglect in Maxwell's equations the
displacement current wE/47ri compared with the con-
duction current CTE. Then (1.3) goes over into

:-—s—(XE. U-O

*iot = curl.

At room temperatures the frequency v of the colli-
sions between the conduction electrons and the scatter -
ers is of the order of 1013 sec"1. If w « v the conduc-
tivity of the metal cr (1.4) is real. This means that the
electric field in the metal leads to the appearance of a
large dissipative conduction current. The solutions of
the dispersion equation

ZcV = i • in(oa (1.8)

are in this case complex, and again there are no natu-
ral electromagnetic oscillations. On the other hand,
the external electromagnetic wave incident on the sur-
face of the metal attenuates within a distance of the
order of 10"3—10"5 cm from the surface. This is known
as the skin effect (see, e.g., ^^).

At low temperatures the conduction-electron mean
free path I in pure metals reaches values of the order
of a centimeter. Therefore in the case of not too low
frequencies w the spatial dispersion becomes appre-
ciable (kZ » 1). The conductivity of the metal is then
real but depends on the value of the wave vector k.
The main contribution to a is made in this case by
those electrons on the Fermi surface, for which the
condition

kv = o), (1.9)

where v is the electron velocity, is satisfied. These
electrons move in phase with the wave, interact most
strongly with itL231 and cause absorption of the elec-
tromagnetic wave. This damping mechanism is known
in the literature as Landau damping. Because of this
mechanism, the electromagnetic waves cannot propa-
gate in the metal in this case. The external wave pen-
etrates only to a depth of the order of 10"4—10"5 cm.
Inasmuch as the depth of penetration of the field is in
this case small compared with the carrier mean free
path (kZ » 1), this phenomenon is called the anoma-
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lous skin effect. Its theory was developed by Reuter
and Sondheimer'-3J.

Thus, no undamped electromagnetic waves exist in
metals in the absence of a constant magnetic field.

Konstantinov and Perel''- , and also Agrain'-5-',
were the first to call attention to the fact that the radio
wave can penetrate inside the metal if there exists a
strong constant magnetic field H directed along the
normal to the surface of the crystal. In the magnetic
field, the conductivity a is a tensor whose elements
are essentially of differing natures. If the conduction-
electron spectrum is isotropic, then it follows from
symmetry considerations that when k II H II Oz

axz = ozx — oyz = ozlJ = 0. (1.10)

Therefore the propagation of the electromagnetic wave
is determined only by the transverse elements of the
conduction tensor.

In strong electromagnetic fields H, satisfying the
inequalities

j v — i"co I < Q,

kR < 1,

(1.11)

(1.12)

(where £2 = eH/mc is the cyclotron frequency of the
carriers and R = v/tt is the Larmor radius), the spa-
tial dispersion does not affect the transverse conduc-
tivity even when kZ » 1, since there is no spatial dis-
persion in the xy plane when the vectors k and H are
parallel.

In the case of one group of carriers, the transverse
elements of the tensor cra^ take the M

&xu — ®ux —

ne 2 (v— JO))

(1.13)

(1.14)

It is obvious that the nondissipative Hall conductivity
(Txy is much larger than the hermitian part of the con-
ductivity Re CTxx, which determines the absorption of
the electromagnetic field.

For circularly-polarized quantities

E± = Ex±iEu (1.15)

Maxwell's equations take the form

(/c2 ip 4n(oc-20±) E± = 0, cr± = axy ± iaxx. (1.16)

Substituting (1.13) and (1.14) in (1.16) we can easily
find the spectrum of the electromagnetic waves'-4-':

(1.17)

A positively polarized wave has a negative effective
dielectric constant. Consequently, this wave has an
imaginary wave vector and attenuates over a length
equal to the wavelength. The effective dielectric con-
stant of a negatively polarized wave is positive, and
this wave is weakly damped. Its relative damping is
equal to v/Q and decreases with increasing magnetic

field. It is called a helical electromagnetic wave
(helicon). Excitations of this type with kZ « 1 are
well known in the case of a magnetoactive p lasma^J .
Low frequency helicons in metals with kZ « 1 were
investigated also in L7.83.

Buchsbaum and G a l t ^ have shown that Alfven elec-
tromagnetic waves can propagate in bismuth in the di-
rection of a constant magnetic field H. The bismuth
contains electrons and holes with equal densities
(nj = n2). Consequently, the Hall conductivity (7™ is
equal to zero. On the other hand, each diagonal ele-
ment of the transverse conductivity is a sum of two
terms similar to (1.14) when conditions (1.11) and
(1.12) are satisfied, i.e.,

" H = <Jyy = n (m4 + m2) c
2H'2 (v — to)), (1.18)

The subscripts 1 and 2 pertain to electrons and holes,
respectively.

Substituting (1.18) in (1.17) we can readily show
that if

to > (1.20)

there exist in the metal two weakly-damped waves
with a spectrum given by the formula'-9-'

~

where
, -1 /2

(1.21)

(1.22)

is the carrier Alfven velocity.
It must be emphasized that the results of Konstan-

tinov and Perel' ^ , as well as those of Buchsbaum and
Galt1^, are valid only if the vectors k and H are par-
allel and are directed along a high-order symmetry
axis (particular case—isotropic carrier dispersion).
If the vectors k and H are not parallel or if their di-
rection does not coincide with that of a crystal sym-
metry axis, then the spatial dispersion becomes appre-
ciable and Landau damping sets in. The situation then
becomes more complicated, and the possible existence
of weakly-damped waves is no longer obvious.

A number of recent experimental and theoretical in-
vestigations have shown that various electromagnetic
waves exist in metals at low temperatures and in the
presence of a magnetic field. In addition to the vari-
ous waves with wavelengths much larger than the di-
mensions of the electron orbits (kR « 1), short waves
with lengths that are small compared with the charac-
teristic orbit dimensions (kR » 1) can propagate in the
metals. In this review we summarize the results of all
these investigations.*

From the point of view of modern solid-state theory,
the electromagnetic waves are collective oscillations of

*Some results on long-wave excitations are given in Vedenov's
review ["].
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the electron-hole plasma of the metal. They constitute
the electromagnetic branch of Bose-type long-wave
excitations. The general cause of these excitation is
the fact that the motion of the electrons in the plane
perpendicular to the magnetic field H is finite. Rota-
tion of the electrons in the magnetic field leads to a
strong decrease of the dissipative currents. As a re-
sult, the antihermitian part of the conductivity tensor
may turn out to be large compared with the dissipative
hermitian part. Then the antihermitial part of the con-
ductivity (the dielectric constant) determines the spec-
trum of the natural electromagnetic oscillations in the
metal, and the Hermitian part characterizes the damp-
ing. The smallness of the latter ensures the relatively
weak damping of the waves.

It follows from general considerations that the dis-
persion law oj(k) of the electromagnetic waves is de-
termined only by the properties of the electron-energy
spectrum, i.e., by the shape and topology of the Fermi
surface. In the first approximation, the relaxation time
does not enter the dispersion law and can influence only
the damping of the waves. Since the lengths of all the
electromagnetic waves are large compared with the
interatomic distances, the phase volume of these waves
is small. They therefore make no noticeable contribu-
tion to the thermodynamics, but exert a strong influence
on the high-frequency properties of the metals. The
presence of undamped electromagnetic waves leads to
anomalous transparency of the metal and to a number
of new resonance effects.

2. General Formulation of the Problem.
Dispersion Equation.

As noted in the introduction, in the low-frequency
case (Eq. (1.6)) we can neglect the displacement cur-
rent, and Maxwell's equations for a plane monochro-
matic wave in an unbounded metal take the form (1.7).
The operator a in these equations is the conductivity
tensor aaa (k, u, H) and takes into account the spatial
and temporal dispersion, as well as the dependence on
the constant electromagnetic field H. From (1.7) fol-
lows the relation

= 0, (2.1)

which is identically equal to the condition for electric
quasineutrality of the metal, p ' = 0, where p ' is the
uncompensated volume density of the charge. The r e -
peated vector indices a and /3 in (2.1) imply sum-
mation.

We choose a coordinate frame xyz such that the z
axis is parallel to the magnetic field H and the x axis
is transverse to k and H. We shall also need the
frame xrjf, in which the f axis is parallel to the vec-
tor k. The angle between the vectors k and H is 4 :

** = 0, ky == k sin <P, kz = kcos<&. (2.2)

The spectrum, damping, and polarization of the

natural oscillations of the field are determined from
the homogeneous system (1.7). The dispersion equa-
tion is obtained by equating to determinant of this sys-
tem to zero. It can be written in the form

where

(2.3)

(2.4)

is a "renormalized" two-dimensional conductivity
tensor.

The elements of the tensor aan should be obtained
with the aid of the kinetic equation for the electronic
distribution function

^}/>, p,
(2.5)

Here p is the electron quasimomentum and I(F) the
collision operator.

We seek the solution of (2.5) in the form

P, O = /o(e)- P. dtp '

where

(2.6)

(2.7)

is the Fermi distribution function, e = e(p) is the en-
ergy of an electron with quasimomentum p, ep is the
Fermi energy, and T is the temperature in energy
units.

In the approximation linear in E, the function \
satisfies the equation

kv-ffl) + v + fi-^-}x = eEv, (2.8)

in the derivation of which from (2.5) we took into ac-
count the fact that, according to Lifshitz, Azbel', and
Kaganov^11^,

dp J dx '

Here T = fit is the dimensionless time of motion
(phase) of the electron on the orbit in the magnetic
field, fi = eH/mc is the cyclotron frequency,

is the effective mass, and S(e, pz ) is the area of the
intersection of the equal-energy surface e(p) = e with
the plane pz = const. We have taken the collision in-
tegral in the form

(2.9)

*[vH] H.
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Equation (2.8) has a solution periodic in T, with
period 2TT, in the form

The conduction-current density is given by

2e
(2nh)3 <2-n>

where R is Planck's constant divided by 27r. Making
the following change of integration variables in (2.11):

oo Pzmax(e) 2JI

\jd
3p... = \jde § m(e, pjdp^dr... , (2.12)

0 -Pzmax(e) °

we obtain the following formula for the conductivity
tensor:

de-p*- \
dEF J

aaP(k, to, H) = - ^

»(s, ftU%TWo(8i p z ) T) f d T '^ ( e ? p z ; T')X Q(e, pz

(2.13)

The dependence of the conductivity tensor aao
(2.13) on k, OJ, and H is much more complicated, and
the dispersion equation cannot be solved in general
form. We shall investigate later the asymptotic ex-
pressions for the conductivity tensor (2.13) in different
limiting cases.

I. LONG WAVES (kR « 1)

3. Helicons (Isotropic Case)

a) Weak spatial dispersion. We consider first the
simplest case of low frequencies and strong magnetic
field, when the spatial dispersion plays no role, i.e.,

fa«v«!J. (3.1)

When these inequalities are satisfied, the temporal
dispersion is also negligible (OJ « v). Therefore the
conductivity tensor of a metal with spherical Fermi
surface will take the form^11] (in the xyz coordinate
frame)

(I -*
Zr 0

0 -^Q
v J

(3.2)

After simple transformations, the two-dimensional
tensor of transverse conductivity crap is reduced to
the form

H cos ©
Qcosfl)

1\

- 1

Qcos®/
(3.3)

Formula (3.3) holds true for all values of the angle
*, except a small vicinity of * = TT/2 (cot2 * » v2/Q2).
Substituting (3.3) in the dispersion equation (2.3) we
obtain the spectrum and damping of the electromagnetic
waves in this wase. Just as in the case when k is par-
allel to H, one solution has an imaginary wave vector.
The second solution gives a weakly-damped wave

inne

v
" Q cos <D

(3.4)

(3.5)

The spectrum of the wave is determined by the nondis-
sipative Hall conductivity, and its damping by the dis-
sipative one (vxx + ̂ yy)- Using Maxwell's equations
(1.7), we can easily show that the electric-field vector
in the wave is elliptically polarized in a plane perpen-
dicular to the magnetic field H:

Ey = iEx sec O, Ez = 0. (3.6)

The part of the field E which is transverse to the
wave vector k is circularly polarized. This is why
the wave (3.4) —(3.6) is called a helicon. The existence
of these waves in a magnetoactive plasma was discov-
ered by Ginzburg^ and Piddington (helicons in the
ionosphere are known as "whistlers"). The possibil-
ity of their propagation in metals was indicated by
Konstantinov and Perel' M an(j by Agrain M.

The existence of the undamped helicon (3.4) in the
limit as v —• 0 is due to the fact that the Hall current

JH = -^ - [EH] (3.7)

is orthogonal to the electric field E. Consequently, the
Joule loss, i.e., the wave damping, vanishes when
V-—0.

For typical metals with electron density on the or-
der of unity per atom at low temperatures, when v
~ 109 sec , the conditions (3.1) are well satisfied in
fields H £ 103 Oe at frequencies CJ £ 102 sec"1.

b) Strong spatial dispersion. At higher frequencies,
the length of the electromagnetic wave becomes
smaller than the mean free path of the electrons, and
the spatial dispersion begins to play an important role.
In the limiting case

v — ito kv < Q (3.8)

there appears Cerenkov absorption of the wave by the
electrons moving in phase with the wave (Landau
damping). The asymptotic behavior of the elements of
the conduction tensor differs significantly in this case
from (3.2). According to ^a^, the expression for oap
takes the form
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(a, p=x, y, 2)

tgO \

1

- t g O

V— 1(0

(3.9)

The difference from the case (3.2) consists primarily
in the change of the magnitude and direction of the
high-frequency Hall current

(3.10)

which now is perpendicular to the vectors k and £,
Further, owing to the strong spatial inhomogeneity of
the wave field in the H direction, the longitudinal con-
ductivity crzz decreases by a factor | k z v / ( ^ - i w ) | 2 .
Finally, the third difference from (3.2) lies in the ap-
pearance of Cerenkov absorption of the wave. The
electrons for which the condition

kv = co (3.11)

is satisfied move on the average in phase with the
wave and interact with it most effectively (the bar
over v in (3.11) denotes averaging over the period of
revolution of the electron in the magnetic field). The
change in the momentum of the electrons under the
influence of the wave causes them to drift transversely
to the vectors k and H, i.e., in the direction of the x
axis. As a result, the Hermitian part of the conduc-
tivity a x x acquires an additional component

8 H (3.12)'

The magnitude of this component is of the order of
(70(kR)2, where

"~ mkv

is the conductivity connected with the Landau damping
in the absence of a magnetic field. Such a decrease of
the Landau damping is explained by the fact that the
rotation of the electrons in the magnetic field does not
allow them to move strictly in phase with the wave.
The electric field acts on the electron in opposite di-
rections when the electron is on opposite sides of the
orbit. However, owing to the small phase shift, the
values of the field £ within the span of the orbit dif-
fer by an amount on the order of kR « 1. The net
action of the electric field on different sections of
orbit cancel out accurate to terms of the order of
(kR)2. So large a decrease in the Cerenkov absorption
causes the dissipative conductivity <rxx, which deter-
mines the damping of the wave, to be much smaller
than the nondissipative Hall conductivity, which char-
acterizes the spectrum. This indeed makes it pos-

sible for a weakly damped wave to propagate under
the conditions of the strong spatial dispersion (3.8).

It follows from the asymptotic formulas (3.9) that
°x£ = 0 an°l ^xx = (Txx. The expressions for the ele-
ments <jXr] an(3 o>)7j, as shown by calculation, are de-
termined as before by (3.3). Therefore the spectrum
and the polarization of a helicon do not change, and its
damping r now takes the form'-12-'

= •£ sec <D + ~ kR sin2 O. (3.13)

We emphasize that the Landau damping depends
strongly on the angle between the vectors k and H
and vanishes when * = 0. In transverse propagation,
* = TT/2, (COS * & v/Q,), there are no helicons.

Thus, the region of existence of the helicon is de-
termined by the conditions

w, v, kv <c (3.14)

its spectrum and polarization are determined by (3.4)
and (3.6) regardless of the ratio of the wavelength
2vr/k and the electron mean free path I = v/v. The
case of strong spatial dispersion (3.8) differs from
(3.1) in the appearance of Landau damping.

Expressing k in terms of w, we can rewrite the
most stringent condition kR « 1 in the form

!«-5- (3.15)

It follows from this that the maximum frequency of the
helicon increases like the cube of the magnetic field.

4. Magnetohydrodynamic Waves (Isotropic Case)

We shall investigate whether electromagnetic waves
can propagate in metals with equal electron and hole
densities (nt = n2 = n). Several different cases can be
realized here.

a) Weak spatial dispersion. We consider first the
simplest limiting case of strong magnetic field, when
the following conditions are satisfied:

kvs Qs = l, 2). (4.1)

*tg = tan.

In this case spatial dispersion plays no role, and in
the general expression (2.13) for the conduction tensor
we can put k = 0. Because the compensation condition
n4 = n2 is satisfied, the Hall conductivity is equal to
zero and the tensor oan is diagonal. The elements of
the transverse conductivity are determined by formu-
las (1.18) and (1.19), while the longitudinal conductivity

alt=Y ,ne2 . x (4.2)
zz ZJ ms(vs—!(o) v*'"/

has the same form as in the absence of a magnetic
field.

In our case, the conductivity tensor has a rather
simple form, and we can use Maxwell's equations (1.7)
directly to determine the spectrum of the natural elec-
tromagnetic oscillations. Since the longitudinal con-
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ductivity az z is much larger than the transverse one,
we can put Ez = 0 in (1.7). Substituting (1.18) in (1.7)
we obtain

(4.3)

where v a is determined by formula (1.22).
These equations show that two weakly damped elec-

tromagnetic waves exist in the metal when v « co. The
electric field is directed along the x axis in one of the
waves and along the y axis in the other.

The spectrum and damping of the first wave are de-
termined by (1.21), while the dispersion law of the
second wave is of the form'-12-'

= l, 2). (4.7)

o> = kzva — i^y- (4.4)

The wave (4.4) with phase velocity v a cos * is
similar to the Alfven wave in a plasma. On the other
hand, the wave (1.21) in which the electric field is
transverse to the vectors k and H (along the x axis)
is the analog of the fast magnetic-sound wave. It must
be emphasized that waves (1.21) and (4.4) can propa-
gate in metals only when v « co, i.e., under conditions
directly opposite to those prevailing in magnetohydro-
dynamics:

co « v , Q (4.5)

However, in spite of the difference in the conditions
for the existence of waves in metals and in magneto-
hydrodynamics, in view of the similarity of their spec-
tra we shall call waves (1.21) and (4.4) magnetohydro-
dynamic* They are sometimes also called magneto-
plasma waves.

Besides the Alfven and fast magnetic-sound wave,
there is also a slow magnetic-sound wave in magneto-
hydrodynamics. In the case of a strong magnetic field,
when the Alfven velocity is much larger than the speed
of sound, the phase velocity of this wave is of the or-
der of that of sound. Owing to the Fermi statistics of
the carriers, the role of the speed of sound in an elec-
tron-hole plasma of a metal can be assumed only by
the Fermi velocity. Therefore in the considered lim-
iting case kvs « co this wave does not exist (in the
case (4.1) the asymptotic value of the conductivity ten-
sor cannot be used to investigate the spectrum of this
wave).

Expressing the wave vector k with the aid of (4.4)
in terms of co, we rewrite conditions (4.1) and (1.20),
which determine the region of existence of the weakly-
damped waves (1.21) and (4.4), in the form

v s «w«Q s , (4.6)

*There is a full analogy here with ordinary plasma, in which
magnetohydrodynamic waves exist when v -> 0 (see, e.g., Sec. 14
of[6]).

In the case of transverse propagation, * = TT/2, there
is no Alfven wave.

In ordinary metals (n ~ 1O22 cm"3) condition (4.7)
can be satisfied only in very strong magnetic fields —
of the order of several million Oe. In bismuth n
~ 1017 cm"3 and condition (4.7) is already satisfied
when H £ 103 Oe. The first to indicate that Alfven
waves can propagate in bismuth when k II H were
Buchsbaum and Gal t M .

b) Strong spatial dispersion. Let us consider the
possible propagation of magnetohydrodynamic waves
in metals with nj = n2 in the case of not too strong
magnetic field, satisfying the conditions:

kvs

In a plasma with

(4.8)

(4.9)

(4.10)

(w0 is the speed of sound), magnetic-sound waves have
the following spectrum:

to- = kva, (4.11)

where the plus and minus pertain to fast and slow
waves respectively.

Inasmuch as the role of the speed of sound in a de-
generate electron-hole plasma of a metal can be played
only by the Fermi velocity, the fast magnetic-sound
wave does not satisfy conditions (4.9) (co ~ kv for this
wave). The asymptotic expressions for <rap can there-
fore yield in the case (4.8) and (4.9) only the Alfven
and the slow magnetic-sound waves.

The asymptotic expression for the electronic part
of the tensor aap in the case (4.9) is of the form (3.9).
The expression for the hole part of the conductivity
tensor can be obtained from (3.9) by replacing the
electronic characteristics by hole ones.

Since the off-diagonal elements of the electronic
and hole parts differ only in sign, the summary tensor
dap remains diagonal in the xyz coordinate frame.
We emphasize that the vanishing (or smallness) of all
the off-diagonal elements of the conductivity tensor is
the consequence of the compensation condition nt = n2

and of the isotropy of the carrier dispersion. It
will be shown later that in the case (4.9) a^a is diag-
onal also for an arbitrary carrier dispersion law if
the magnetic field H is parallel to the symmetry axis
of the crystal.

Owing to condition (2.1) and the diagonality of the
conductivity tensor, the z component of the electric
field in the Alfven wave is negligibly small:

Ez

The spectrum of this wave is therefore determined by
(4.4) as before.
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The element ffxx is real when $ ~ 1, owing to the
spatial dispersion (crxx is connected with the Landau
damping). Therefore the second wave, the electric
field in which is polarized along the x axis, is rapidly
damped in the case of (4.8) and (4.9). When * = 0
there is no Landau damping, and the spectrum of the
slow magnetic-sound wave coincides with the spectrum
of the Alfven wave:

co_ = kva.

To determine whether a wave similar to the fast
magnetic-sound wave of magnetohydrodynamics exists
in a metal in the case of (4.8) and (4.9), it is necessary
to have an expression for the conductivity tensor when

| kzv | (4.12)

We note that when | kzv | > co strong Landau damp-
ing sets in and hinders the wave propagation.

In the case of (4.12) the dispersion equation for a
wave polarized along the x axis is extremely compli-
cated and cannot be solved analytically. It can be ana-
lyzed with relative ease in the particular case when
the effective masses of the electrons and holes are
equal, mj = m2 '-

13-'. Then the electron and hole parts
of the off-diagonal elements cr^ and <rxz differ only
in sign, as a result of which

= Gxz = 0. (4.13)

Therefore the spectrum of the fast magnetic-sound
wave is determined only by the element axx:

&sc2 = 4juaHTxx (co, k, H) . (4.14)

An asymptotic expression for crxx can be obtained
easily from the general formula (2.13):

(«>, k, H) = ^

T

dt' cos T ' exp i -p- (v — JCO + ikzv cos 0) ( T ' — T)

+ ikyR sin 9 (cos x — cos x')\ (4.15)

We have used here a polar system of coordinates with
polar axis along H (vx = v cos r sin 9, etc.). Expand-
ing the integrand in (4.15) in powers of the small pa-
rameter kyR, we represent crxx in the form

(4.16)

In the limiting case (4.9) under consideration, a.(0)
xxcharacterizes the transverse conductivity of the metal

in the absence of spatial dispersion:

oSS—^r(v-to). (4.17)

The term linear in kvR vanishes, and the main term
of the asymptotic expression <T£X IS given by

dQ sins 9
v — ia> + ikzvcos6 " (4.18)

o

Elementary calculation yields for crxx the expression

(4.19)

We can rewrite the dispersion equation (4.14) in the
form

"a V
v COS CD J (4.20)

Inasmuch as the left-hand side of (4.20) contains
functions that depend only on u and $, and since
va « v, (4.20) reduces to

axx(u, O) = 0. (4.21)

Analysis shows that for all values of *, including
narrow regions near * = 0 and * = 7r/2, there is one
almost-real root |u | > 1. In other words, the spec-
trum and the damping of the fast wave are determined
by the formulaE13J

co+ = A (cp) j kz\ v — iv, ^ (O)>1. (4.22)

The possible propagation of an electromagnetic
wave with spectrum of the type (4.22) is due to the
Fermi statistics of the current carriers and is a spe-
cific feature of the metal. In a Boltzmann plasma no
such wave could propagate, for in the case (4.12) there
would always be some electrons moving in phase with
the wave and leading to strong Landau damping.

Thus, a weakly-damped electromagnetic wave with
spectrum (4.22) exists in the metal in the case of equal
masses and under conditions of strong spatial disper-
sion (4.12). In the case of unequal masses, m4 * m2,
the off-diagonal element of the conductivity a^z dif-
fers from zero. With this, the "renormalization" (2.4)
of crxx becomes important. Each of the elements 0xx»
°xz> o r "zz i-s n o w a s u m °f two terms of a single
type, but with different m and v. Therefore the dis-
persion equation (4.21) cannot be investigated as read-
ily in this case as when m4 = m2. It is obvious from
physical considerations, however, that there should
exist a certain region of values of the angle * in
which (4.21) has a solution of the type (4.22).

5. Electromagnetic Waves in the Vicinity of
Cyclotron Resonance

The collective motion of the electrons in the mag-
netic field, which is characterized by the cyclotron
frequency £1, leads to the existence of electromagnetic
waves in the vicinity of the cyclotron resonances OJ
~ £2S. We assume in this section that the magnetic
field is sufficiently strong, and the carrier density is
relatively small, so that condition (4.7) is satisfied.
It is easy to satisfy this condition, which ensures the
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absence of Landau damping, in metals of the bismuth

type.
Following L14J, we consider a simplified model, in

which the carrier dispersion law is isotropic and the
effective mass m2 of the holes is larger than the elec-
tron mass mj. The conclusions drawn for this model
remain qualitatively in force in the general case, too.
Many of the results presented in this section have
analogs in the theory of a nondegenerate plasma.
Nonetheless we deem it expedient to formulate the
corresponding deductions for an electron-hole plasma
in a metal.

It is quite obvious that at small values of kR the
spatial dispersion begins to play a role only in the
immediate vicinity of cyclotron resonance, when

l^s^J-< |M?I « 1 . (5.1)

and the electric field is elliptically polarized. For-
mula (5.6) is valid if

the resultant Landau damping makes wave propagation
impossible.

In the isotropic model assumed by us, the nonvan-
ishing elements of the tensor <rap axe determined by
the formulas

CTvv — GJIJI —
Plnec

^T^T=p[TTH
nec f I 1

O y x - — G x y - H l , _ (5.2)

a+iv.
J

(5.4)

In the limit of a strong magnetic field 1/3(1 « |/321
« 1 formula (5.4) yields the spectrum and damping
for the fast magnetic-sound and Alfven waves. The
values of the frequency w, at which the wave vector
k becomes infinite (when vs —- 0), are the limiting
frequencies for the electromagnetic wave of the given
type (resonance). If cos2 4 » m 1 /m 2 , these fre-
quencies are determined by the formulas

co+= Qj cos ct>, co_ = Q2. (5.5)

The frequency OJ+ is the end point of the spectrum of
the magnetic-sound wave, and w_ that of the Alfven
wave. As u approaches fi2, the spectrum and the po-
larization of the Alfven wave change appreciably. In
the vicinity of the hole cyclotron resonance the spec-
trum takes the form

, „ Qf co 1 + cos2 CD
Q2 —co 2cos2U> (5.6)

Q 2 — (5.7)

Expressing k in terms of a> from (5.6), we can re-
write these inequalities in the form

They differ from the corresponding expressions for
aap in the static case in that ^ s is replaced by ^ s -iw,
and are valid when

Substituting (5.2) in the dispersion equation (2.3) we
can readily represent its solution in the form

1.

In the region of weaker fields, where

Q2 < ca < Q,,

(5.8)

(5.9)

the holes can be regarded as immobile and their con-
tribution to the conductivity neglected (in analogy with
the situation in a plasma, where the role of the holes
is played by the ions). In this case there is no Alfven
wave, and the magnetic-sound wave is transformed
into the helicon characteristic of metals with different
electron and hole densities. The polarization of this
wave is characterized by formulas (3.6), and its spec-
trum and damping are

Q. cos <

1 +
(5.10)

Far from the end-point frequency Oj cos <i>, the value
of (kc/u)0)

2 is much smaller than unity, the spectrum
of the wave is quadratic and coincides with (3.4). Near
the end point of the spectrum, the wave vector in-
creases rapidly. Figure 1 shows the dependence of
the refractive index kc/w of both waves on the mag-
netic field.

In the case of strictly transverse propagation
(cos * —• 0 ) the spectrum of the fast magnetic-sound
wave terminates at the frequency of the "hybrid" res-
onance fih = (fii^2)

1//2- A s w ~~ fihi the value of k
increases sharply:

This formula is valid if

1 —
7

(5.11)

(5.12)

In the immediate vicinity of the "hybrid" resonance it

FIG. 1. Refractive index vs. magnetic field for Alfven ( —) and
magnetic-sound waves ( + ).
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is already necessary to take spatial dispersion into
account.

6. Arbitrary Conduction-electron Dispersion.
Electric Conductivity Tensor.

We now proceed to study the influence of the aniso-
tropy of the Fermi surface on the properties of elec-
tromagnetic waves in metals. We shall show that al-
lowance for anisotropy leads to a number of new dis-
tinctive features.

Thus, the damping and polarization of a helicon in
a metal with a singly-connected Fermi surface depends
on H in an entirely different manner than in the case of
a multiply connected one. The complicated character
of the electron dispersion in metals with nj = n2 can
leads to a vanishing of the magnetohydrodynamic waves
in that region of magnetic fields, where the Alfven
velocity is much lower than the Fermi velocity of the
carriers. Under certain conditions waves with a quad-
ratic spectrum may propagate in the metal with n4 = n2

The length of this wave depends on the orientation of
the magnetic field H, but does not depend on its mag-
nitude. The electric field in this wave is directed par-
allel to H.

In the presence of several groups of carriers (mul-
tiply-connected Fermi surface) the summary conduc-
tivity tensor is the sum of expressions (2.13) for the
different groups. The conduction-electron dispersion
is assumed arbitrary, but it is assumed that the elec-
tron trajectories in momentum space are closed. It
must be emphasized that in the case of open trajecto-
ries the elements of the conductivity tensor is of the
same order of magnitude as in the presence of a mag-
netic field. This should lead to the vanishing of the
electromagnetic waves (see also ^). The following
asymptotic expression for the Fourier component
of the current density was obtained in the case of
strong spatial dispersion (3.8) in1-15-1:

wz = a>/kz, wa = ik\Qa (a = x, y), (6.4)

Qx = -^f(Py — Py), Qu=—~°ij(Px — Px)- (6.5)

The bar denotes averaging over T for e = ep and
pz = const. The values of all quantities in (6.3) and
(6.4) must be taken at values of pz satisfying the
condition

k, <o, H)

Nee

Here

IV--

(6.1)

(6.2)

V4 is the total volume bounded by the Fermi surface,
inside of which the states with e < ep are located
(electrons, m > 0); V2 is the volume containing the
states with e > e F (holes, m < 0)^10^. The symbol 2
denotes summation over the different carrier groups.

The quantity C is determined by the formula

(6.3)

where ju = (8vz/3pz) has the dimension and order
of magnitude of the effective mass of the electron. The
components of the complex "velocity" vector w are

z (eF, PZ) = J^ (6.6)

The asterisk in (6.1) denotes complex conjugation, and

dn
(6.7)

The two-dimensional tensor

iz (a, p = x, y) (6.8)

characterizes the transverse conductivity of the metal
in the limit of a homogeneous high-frequency field
(k—0).

The first term in (6.1) is the high-frequency Hall
current. As in the isotropic case, if the spatial dis-
persion is strong this current is orthogonal to the
vectors k and H. The second term describes Ceren-
kov absorption of the wave by the electrons, which
move, in the mean, in phase with the wave. However,
unlike the isotropic case, this part of the current den-
sity is directed not transverse to the vectors k and H,
but along the vector w.

If the magnetic field H is directed along an axis of
symmetry higher than the twofold axis, or if the car-
rier dispersion is isotropic, then

•0, wv = 0, (6.9)

i.e., the tensor saa is diagonal, and the dissipative
current connected with the Landau damping is almost
perpendicular to the vectors k and H. Formula (6.1)
for j corresponds in this case to expression (3.9).

As noted at the end of Sec. 4, the case of metals of
the bismuth type actually corresponds to weak spatial
dispersion (4.6) and (4.7). The dependence of aap on
k can then be neglected, and there is no Landau damp-
ing, since the phase velocity of the wave exceeds the
carrier velocity. The expression for <rap{u>, H) is
obtained from the well known asymptotic expression
for the electric conductivity tensor '-11-' by making the
simple substitution v — v - iw. When N = 0 we have

(6.10).=•^2. -

The dimensionless matrices aĵ P depend on the form
of the Fermi surface and on the orientation of the
magnetic field relative to the crystallographic axes.
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If the vector H is parallel to an axis of symmetry
higher than twofold, then all the off-diagonal elements
of the matrices a"/3 vanish.

7. Helicons (Anisotropic Case)

The anisotropy of the electron dispersion does not
exert a strong influence on the characteristics of a
helicon in the low-frequency case (3.1). Its spectrum
and polarization remain the same as in an isotropic
metal. All that changes is the expression for the wave
damping. However, the order-of-magnitude estimate
T ~ p/ti remains valid in this case, too'-8-'.

The situation is different in the region of strong
spatial dispersion (3.8). The topology and the shape
of the Fermi surface may strongly influence the damp-
ing and polarization of the helicon. It is quite evident
that in this case we can neglect in (6.1) the small cur-
rent sE. Relation (2.1) allows us to express the lon-
gitudinal electric field kE/k in terms of the transverse
part Ej_ = E-k (kE) /k 2 :

k E _ s0 (kh) (hE±) + IC (kw) (w*E , )
" P ~ = i^TjEhp-r-ICkwj* • (7.1)

where h = H/H is a unit vector in the direction of the
constant magnetic field.

Using (7.1) and (1.7), we can easily write down the
dispersion equation for the determination of the spec-
trum and damping of the helicon:

. 4JUO

'
l | — s i n 2 ® i ZCwxw

"}• (7.2)

In the derivation of (7.2) we have neglected terms of
order kR and o>/kzv in comparison with those written
out. It is seen from this equation that the spectrum of
a helicon coincides, apart from small terms, with
(3.4). The damping of the wave, on the other hand,
which is determined by the right-hand side of (7.2),
is in general different. Let us consider several dif-
ferent cases.

a) Let the vector H be parallel to a high-order
symmetry axis. Then Wy = 0, the last term in the
right-hand side of (7.2) vanishes, and the relative
wave damping is

r = w 2J C I • kR sin2 <P. (7.3)

From (7.1) it follows, on the other hand, that E- H « 0,
i.e., the vector of the electric field E rotates in a
plane perpendicular to the constant magnetic field H.
This case thus corresponds fully to that considered
in Sec. 3.

b) Let us consider further the case of a singly-
connected but non-isotropic Fermi surface, when the
sums of the form SCwawo reduce to a single term.
It is then convenient to reduce (7.2) to the form

ijuoNe
"c/ckH (7.4)

where

2<o
~kz

vzpxy + (vuPy sin <D - vzPv cos <D)2]-z=0, (7.5)

X8 (kzvz) (7.6)

The value of y is of the order of kR, and | ~ kzZ(kvR)2.
At low frequencies, w « v, the change in the spectrum
of the wave is much lower than the relative damping,
which is determined by the formula

akRy (7.7)

where a and b are positive dimensionless quantities
of the order of unity, and a depends in a complicated
manner on the angle 4 .

Formula (7.7) shows that in the case in question the
dependence of the wave damping on the value of H is
nonmonotonic. In a relatively weak magnetic field with
£ » 1 , the damping increases with the field: r ~ (klkR)'1.
With further increase in H, the value of F reaches a
maximum, after which it decreases monotonically:
F « akR. Figure 2 shows the relative damping as a
function of H. The dashed line shows the damping of
the helicon in the case of isotropic electron dispersion.

The polarization of the wave also exhibits a peculiar
variation. The transverse part of the electric field E_L
has a circular rotation, as before. The longitudinal
component, on the other hand, is determined by the
conditions

Ew = 0 (£»
EH = 0 (£<

(kH) (Ew) + (kw) (EH) = 0 (?=
(7.8)

i.e., the vector E rotates in weak magnetic fields in a
plane perpendicular to the direction of the dissipative
current w.

H

FIG. 2. Schematic plot of the relative damping of a helicon vs.
the magnetic field.
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A similar nonmonotonic behavior is shown by the
damping of a helicon at higher frequencies w » v. The
maximum of r shifts with this towards weaker fields.

In the case of a large number of carrier groups,
the damping r ~ kR decreases monotonically with in-
creasing H. However, the polarization of the helicon
varies like (7.8). At relatively low values of H, the
electric field E rotates in a plane orthogonal to the
vector SC(k«w)w*.

The physical nature of the noted singularities of the
helicon in the case of a complicated carrier dispersion
law consists in the ability of this wave to interact with
the longitudinal wave. The dispersion equation for the
longitudinal wave is in this case

s0 cos2 O + 2 C | w\ | sin2 0 = 0. (7.9)

It has no real solutions, i.e., the longitudinal wave at-
tenuates along its length. Nonetheless, when the
lengths of the helical and longitudinal waves become
of the same order of magnitude, the damping and po-
larization of the helical wave change appreciably. In-
asmuch as the longitudinal wave attenuates rapidly,
the resonance is smeared. These singularities of the
helical wave exist only in metals with anisotropic
carrier dispersion, when wy * 0.

8. Magnetohydrodynamic Waves
(Arbitrary Carrier Dispersion)

It was shown in Sec. 4 that in metals with equal
electron and hole densities there exist electromagnetic
waves of the magnetohydrodynamic type with linear
spectrum and plane polarization. In strong magnetic
fields, when the Alfven velocity va is large compared
with the Fermi carrier velocity, the spatial dispersion
plays no role. In this case two waves can propagate
in the metal, Alfven and fast magnetic-sound. Their
phase velocities are of the order of va.

In the region of weaker magnetic field, when v a « v ,
a fast wave can propagate in the metal, with a velocity
somewhat higher than the Fermi velocity, as well as
an Alfven wave with velocity va cos *. In this case
the spatial dispersion leads to rapid damping of the
waves whose phase velocities are small compared
with the Fermi velocity. On the other hand, the pos-
sibility of propagation of a low-velocity Alfven wave
is attributed to the fact that in the isotropic case the
dissipative electron and hole currents, which are con-
nected with the Landau damping, are perpendicular to
k and H, i.e., they are parallel, and there is one di-
rection of the electric field in the xy plane for which
these currents vanish (y axis). For this direction,
the imaginary part of the conductivity is negative, and
when a; » v it is large compared with the real part;
this is what makes possible the propagation of an
Alfven wave whose electric field is polarized along
the y axis.

In this section we consider the influence of the

anisotropy of the carrier dispersion on the character
of the electromagnetic waves in metals with nt = n2.
We consider first the case of not too strong magnetic
fields, when there is strong spatial dispersion, and
then proceed to investigate the inverse limiting case
v « va.

a) Strong spatial dispersion. The necessary con-
dition for the existence of weakly damped electromag-
netic waves is, as usual, the smallness of the hermit -
ian (dissipative) part of the conductivity of the metal
compared with the anti-hermitian part. In the case of
strong spatial dispersion, the asymptotic behavior of
the current density is determined by formula (6.1), in
which we must put N = 0. The dissipative part of the
conductivity, which is connected with the Landau damp-
ing is much larger than the nondissipative part. There-
fore the possibility of propagation of magnetohydrody-
namic waves is connected with the vanishing of the
Landau damping for some electric-field directions in
the xy plane. In other words, in these directions the
projections of the velocities wj and w2 should vanish.
In the general case, when the magnetic field makes an
angle with the symmetry axis, this is impossible and
consequently there are no magnetohydrodynamic waves
in an anisotropic metal.

If the vector H is directed along a symmetry axis
of high order, then when k II H

and two linearly polarized magnetohydrodynamic
waves with identical spectra are present in the metal.
On the other hand, when the vectors k and H are not
parallel we have wjy = wv2 = 0 and there exists one
(Alfven) wave, whose electric field is polarized along
the y axis.

The Alfven wave cannot propagate in the general
case because the electron and hole dissipative cur-
rents connected with the Landau damping are not par-
allel to each other. Therefore there are no electric
field directions in the xy plane for which there is no
Landau damping. However, the presence of large dis-
sipative conductivity in the entire xy plane makes it
possible for an entirely new electromagnetic wave to
propagate in the metal. In fact, in certain ranges of
magnetic-field values, the transverse conductivity
SCwawo may turn out to be large compared with the
longitudinal conductivity s0 (Eq. (6.7)), and the cou-
pling between them may be weak. Since the imaginary
part of s0 is negative and large compared with the
real part when u » v, a wave can propagate in the
metal, with an electric field polarized along the con-
stant magnetic field ("ordinary" wave). The spec-
trum of this wave is determined by the dispersion
equation

^ e 2 = (8.1)

Using expression (6.7) for s0, we can easily obtain
the solution of (4.1) £15^
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co (k) = | kakz I crD, (8.2) where

where

dn -1/2 (8.3)

is the Debye-Huckel screening radius in the degenerate
plasma of the metal. It must be noted that the spectrum
of this wave does not depend on the magnitude of the
magnetic field H, but depends on its direction. This
wave does not appear when k 1 H and when k II H.

For the existence of the wave (8.2) we must have

I ff«» = x, y).

These conditions can be rewritten with the aid of
(6.3) —(6.7) in the form

(8.4)

C<1- ( 8 . 5 )

Expressing k in terms of w (Eq. (8.2)) and substituting
in (8.5), we obtain the inequalities

3/2
(8.6)

which determine, together with the condition w » v,
the region of existence of the weakly damped wave
(8.2).

The damping of the wave (8.2) is determined by the
scattering of the conduction electrons and its weak
coupling with the damped transverse waves. If condi-
tions (1.20) and (8.6) are satisfied, the relative damp-
ing of this wave is small compared with unity.

Thus, under conditions of strong spatial dispersion,
the anisotropy of the Fermi surface leads to the van-
ishing of the Alfven wave and to the appearance of an
entirely new longitudinal wave with a quadratic spec-
trum; this wave does not depend on the magnetic field
H. The possibility of existence of such a wave is a
specific feature of metals.

b) Weak spatial dispersion. We now investigate the
influence of the anisotropy of the carr ier dispersion on
the character of propagation of the electromagnetic
waves in the limiting case of a strong magnetic field,
(5.7), when the spatial dispersion does not play any
role and the asymptotic behavior of uap is character-
ized by formula (6.10).

The hermitian part of the conductivity tensor (6.10)
determines the electromagnetic-wave damping due to
the carrier scattering. When v « w, this part is small
compared with the antihermitian part, which determines
the spectrum. Neglecting carr ier scattering, which
gives a relative wave damping of the order of v/u, we
write the tensor crag in the form

H

~ira'
(8.7)

ell
('"l - r mz) c

and the quantities {a} are connected in obvious
fashion with the matrix elements a ^ 5 in (6.10). The
elements of the two-dimensional tensor aap (Eq. (3.4))
can be easily expressed in terms of the matrix ele-
ments (8.7):

(J a =

J ec2d>

(8.8)

(8.9)

We have assumed in the calculation that cos * » co/U.
The solution of the dispers ion equation (2.3) yields

two waves with a l inear spec t rum "-12J

(8.10)

The electric field in these waves is linearly polarized.
The polarization x' and r\' coincide with the principal
axes of the symmetrical real tensor A a ^. If the mag-
netic field is directed along an axis of high symmetry,
then all the off-diagonal elements of the matrix a.ap
are equal to zero. In this case the wave with phase
velocity v_ is transformed into the Alfven wave (4.4),
and the wave with velocity v+ into the fast magnetic-
sound wave with spectrum (1.21).

In the particular case when k II y (cos * « co/Cl)
the "renormalized" conductivity tensor aao becomes

«12«23 '
; \

(8.11)
nee

313 +

"2

A wave similar to the Alfven wave is missing in this
case, and the velocity of the fast wave v+ is given by
the formula

1 1

l^aV

The electric field in the wave is polarized along the
x axis.

9. Excitation of Electromagnetic Waves in
a Metal by an External Field.

Surface Impedance.

We have investigated so far the spectrum, damp-
ing, and polarization of electromagnetic waves in an
unbounded metal. We consider now the excitation of
these waves by an external electromagnetic field and
their influence on the high-frequency characteristics
of the metal. One of the main characteristics of this
type is the surface-impedance tensor ZQ,^, which r e -
lates the components of the total current J in the
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metal with the tangential components of the electric
field on its surface:

$a(0) = ZafJe (a, p = z, r]). (9-1)

We shall use in this system a coordinate system xrjf
whose f axis coincides with the inward normal to the
surface, since the wave inside the metal always propa-
gates perpendicularly to its surface, owing to the large
value of the refractive index.

To find ZQJO it is necessary to solve Maxwell's
equations

x, r\), = 0. (9.2)

The prime denotes differentiation with respect to J.
From (9.2) follows a relation

, cH'a (0)

which allows us to represent the impedance tensor in
the form

(9.3)

The real part of the tensor Zaa determines the ab-
sorption of the energy from the external wave

<?=£- 0* (9.4)

where S^ is the electric field vector of the incident
wave. The diagonal elements of the tensor XQ,^ char-
acterize the phase shift upon reflection (change in the
frequency of the resonant circuit), and the off-diagonal
ones characterize the degree of ellipticity.

In those cases when the electric field is circularly
polarized in the X77 plane (helicon), it is natural to
introduce in place of the tensor Zap (9.3) the imped-
ance tensor for circularly polarized waves

n±=nx±my. (9.5)
The elements of this tensor are defined by the formulas

g±(0) = Z ± / ± + ZVT (9.6)

and are connected with the elements of Za(g by the
relations

± )±iZxn, Z' = \(ZXX-Z^). (9.7)

It is convenient to solve Maxwell's equations (9.2)
in the Fourier representation. Continuing formally the
field f a ( f ) in even fashion to the region f < 0 outside
the metal, we seek this field in the form

^a {I) = ~ \ dk Ea(k) cos kl. (9.8)
o

The equations for the Fourier components are alge-
braic ;

Av 4JU(O
-ffop(k, co,

a£P(k, co, H)£p(k)=0,

(a=* .

(9.9)

the wave vector is parallel to the f axis.
We neglect the variation of the conductivity operator

due to the collisions of the electrons with the surface
of the metal. In the case of small kR, allowance for
the surface effects resul ts in small corrections to the
real part of the impedance l-16^. These corrections are
due to the absorption of the energy of the incident wave
due to the inelastic (diffuse) scattering of the electrons
from the boundary of the metal. If weakly damped
waves are excited in the volume of the metal, the s u r -
face effects play likewise no noticeable role'-12-'.

After eliminating the longitudinal component Ef
from (9.9), we get

= - 2 g i ( 0 ) (a, p =

where

>op (k) = A26afs - (9.11)

and CTQ,̂  is determined by formula (2.4).
The solution of (9.10), using (9.8), leads to the fol-

lowing expressions for the field and for the impedance
tensor ^1^

(0), W(0), (9.12)

Tali (C) = - 4 " S dk (Z)~1)«ecos k^- (9.13)

1The elements of the tensor (D )ap are connected
with DQjg by the relations

^k2 — 4iti'coc"2an,| —4jtJcoc"2crT|X

,—4mcoc~2(TvTi k2 — 4nia>c~2o.
(9.14)

D = /c4 — (

— inimc~2k2 (axx (9.15)

We now proceed to obtain explicit expressions for the
field distribution and the surface impedance when
waves of different types are excited by an external
electromagnetic field.

a) Excitation of a helicon. Let a circularly polar-
ized external electromagnetic wave be incident on the
surface of the metal. At a fixed frequency co the d i s -
persion equation of the helical wave can be written in
the form

H)\, ftj = AnwNe
cH cos 0

(9.16)

and the values of the relative damping of the wave,
F(k,H) are determined for different cases by (3.5),
(3.13), and (7.7).

Using formulas (9.5), (9.8), and (9.12) —(9.16), we
obtain for the circularly polarized quantities T±( J)

f m _ 2 f dk cos kt

(9.17)
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(9.18)

These functions describe the distribution of the
right- and left-rotating field components in the vol-
ume of the metal. We see that the function T- ( f),
unlike T+(J), attenuates quite slowly with increasing
£. The impedance for this wave

(i>H cos O

inNee (9.19)

is almost real, corresponding to penetration of the
wave (9.17) inside the metal. The small imaginary
part X- ~ R-F is due to the damping of the wave.

The wave (9.18) with opposite rotation of the polar-
ization vector has an imaginary wave vector iko, i.e.,
it experiences total reflection. Consequently the im-
pedance Z+ is pure imaginary:

Z+=~iZ*_.

The intermingling of the circularly polarized waves
with different rotation directions is characterized by
the elements Z' and is small when F « 1.

b) Excitation of waves of the magnetohydrodynamic
type. As shown in Sees. 4, 5, and 8, in metals with iden-
tical electron and hole densities (n4 = n2) there can
propagate different electromagnetic waves. Their rela-
tive damping is small and its order of magnitude in
most cases is v/u. When suitable conditions are satis-
fied, the external field excites these waves in the metal.
The electromagnetic field inside the metal represents
a weakly damped plane wave of the type exp (ik' f — k" f),
where k" ~ k'y/oj « k'. At distances f that are
smaller than l/k", the wave damping can be neglected.

In the calculation of the surface impedance we ne-
glect the small wave damping and represent the factor
1/D in (9.14) in the form

D (9.20)

where D' = Re D and P is the principal-value symbol.
In the case of a strong magnetic field, when the

spatial dispersion plays no role (See Sec. 8,b), the
impedance tensor is

' = inv+c 2, r,' = 4nv-c~2, (9.21)

and the axes x' and r\' coincide with the principal
axes of the real tensor Aao (8.9). The electric field
in the Alfven and magnetic-sound waves is polarized
in these directions. The impedance is independent of
the frequency because the phase velocities v+ and v_
do not depend on w.

In the case of strong spatial dispersion v a « v and
$ ~ 1, the spectrum of the fast magnetic-sound wave
is given by (4.22). The impedance-tensor element cor-
responding to this wave is

= ^ (1 - i ± ) J da 6 {1 - 4 tg« OF (u)

where F(u) denotes the function in the square brack-
ets in (4.19). When tan * is of the order of unity, the
integral in (9.22) is likewise of the order of unity.

If the magnetic field H is directed along a high-
symmetry axis, then an Alfven wave with spectrum
(4.4) can propagate when v a « v. The impedance cor-
responding to its excitation is

m = 4ni>ac-2 cos O (9.23)

and is (v/v a) » 1 times larger than Zxx.- This shows
that the fast wave (4.22) is excited by an external field
with relatively lower amplitude than the Alfven wave.

If the values of w and H satisfy the conditions (8.6)
and (1.20) and if $ ~ 1, then the external field excited
in an anisotropic metal a wave with spectrum (8.2).
Then

inim dk in
•(9.24)

c) Excitation of electromagnetic waves in a plate.
Maxwell's equations in a plate of thickness d ( —d/2
< t < d/2) admit of two types of solution: 1) electric
field symmetric and magnetic field antisymmetric, and
2) electric field antisymmetric and magnetic field sym-
metric, Following the paper of Bass, Blank, and Ka-
g a n o v ^ , we denote the solutions of the first type by
the index s and those of the second by the index a.
If there is no electromagnetic field outside the plate,
then the plate acts as a resonator and consequently the
wave vector k takes on discrete values. The eigen-
functions and eigenvalues are

{I) = £ S (0) cos

, (a) 2nn

(9.25)

(9.26)

( 9 . 2 2 )

The connection between the frequency and the wave
vector kn is determined by the dispersion law a>
= w(k).

If the plate is situated in an external field of fre-
quency co, then waves (9.25) and (9.26) will be excited
in it. If the plate is at an antinode of the electric field
in the resonator, then the distribution of the electric
field in it is symmetric. The antisymmetric case is
realized in an antinode of the magnetic field. When a
weakly damped wave with given polarization is excited
we have

(9.27)*

*ctg s cot.
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The relation

k = k' (a>) + ik" (to) (9.28)

in (9.27) is determined from the inverse of the disper-
sion equation. It follows from (9.27) that in the limit
as k* — 0 the impedance of the plate becomes infinite
when kd = 27rn for case s, and when kd = 27r(n + %)
for case a.

In the general case, both symmetrical and antisym-
metrical electric fields are excited in the plate. Near
resonance, a sharp change takes place in the real and
imaginary parts of the impedance:

4nco
' __ ]

d J

(*-?)• '
(9.29)

In order for the resonance curve to be sufficiently
"sharp," the plate thickness must be small compared
with attenuation length of the wave

d<-}pr- (9-30)

The maximum values of the real and imaginary parts
of the impedance are of the order of wd/c2Fn2 and de-
crease with the number like l/n2. The excitation of
helicons in the plate under conditions of weak spatial
dispersion is considered in ^ , and a similar analysis
for magnetohydrodynamic waves is given in L J .

10. Experimental Observation of
Electromagnetic Waves in Metals

Several recent experimental papers are devoted to
the observation of weakly damped electromagnetic
waves in metals in a strong magnetic field. The heli-
cons (3.4) — (3.5) were detected by Bowers and co-
workers'-18-' by observing standing waves in single-
crystal sodium plates. Low-frequency helicons were
subsequently observed by a number of workers'-19"22-'
in many other metals (Ag, Au, Cu, Pb, Al, In, etc).
In all these investigations, the helicons were revealed
by resonances in the impedance of a plate (9.29) or a
rectangular bar. In the latter case the sample was a
cavity resonator, in which all three components of the
wave vector are "quantized":

/Ca = -r2L • (10.1)

When (10.1) is substituted in the spectrum (3.4), the
latter yields a set of frequencies w(nlt n2, n3), which
are observed on curves similar to those shown in
Fig. 3. Observation of helicons in K, Na, In, Al, and
Si at T = 4.2°K was reported in m . In [233 there
were observed high-frequency helicons with u
~ 1011 sec"1 in degenerate InSb at nitrogen and room
temperatures. In all these experiments, the spatial
and temporal dispersions were negligible (very low
frequencies in the case of the metals and low electron
density in the case of InSb).

700 900 1100 1300
Frequency, cps

1500

FIG. 3. Impedance vs. frequency in sodium (H = 27.4 kOe; the
figure is taken from[21].

Magnetohydrodynamic waves were observed for the
first time under conditions of weak spatial dispersion,
kv « u>, by Aubrey and Chambers'-24-'. They observed
a sharp linear rise in the real part of the surface im-
pedance of bismuth in fields H > 3 kOe at w ~ 6
x 1010 sec"1. The magnetic field was parallel to the
sample surface. The impedance increase was due to
excitation of a fast magnetic-sound wave (8.12).

Buchsbaum and Gait have shown ̂  that Alfven
waves, with phase velocities VJJ2 = va, were observed
in the earlier investigation of Gait et al.'-25-', devoted
to cyclotron resonance in bismuth in a magnetic field
perpendicular to the surface of the metal (k II H). In
bismuth samples with unequal electron and hole den-
sities (ni * n2), they observed helicons. This appar-
ently was the first observation of helicons in metals.

Khaikin, Edel'man, and Mina^26"28^ investigated in
detail the Alfven and fast magnetic-sound waves (8.10)
and (8.12) by observing standing waves in a bismuth
plate. Figure 4 shows one of the recorded plate-im-
pedance oscillations as a function of the reciprocal
magnetic field. In the case of a linear dependence of
the phase velocity Vph = w/k on H, the oscillations
are periodic in l/H. The oscillation period is deter-
mined from the condition

The curve shows two systems of resonances, due to
two different waves. It was shown in C26~28] that one
of the waves (Alfven) vanishes when * —• 7r/2, that the
wave damping is due to carrier scattering; that their
phase velocities depend on the frequency, and that vp n

is proportional to the magnetic field H- KirschL29^
observed Alfven waves in bismuth in a magnetic field
perpendicular to the sample surface. Williams E30^
studied the fast magnetic-sound wave (8.12) in a field
parallel to the surface (H 1 k). Smith et al. ^31^ re-
ported observation of the same wave up to the "hybrid
resonance" (5.11). The experiments of C26>31] revealed
a change in the period of the plate-impedance oscilla-
tions, due to the change in the wave spectrum on ap-
proaching cyclotron resonance (5.6) and (5.10).
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log(T(H)/T(0)), dB R(H)/R(O)
0.85

, Off1

FIG. 4. Plot of the surface impedance of bismuth, demonstrat-
ing simultaneous excitation of Alfven and fast magnetic-sound
waves. Smaller period—Alfven wave, larger period-magnetic-sound
wave. On the top is indicated the arrangement of the vectors of the
field H and of the axes C3 and C2 in a plane perpendicular to the
sample surface, which is represented by the heavy line. On the
right is shown part of the curve with larger magnification. The fig-
ure is borrowed from[26].

The results of all these experiments are in good
agreement with the theory, and also with the model of
the Fermi surface in bismuth ^28^. It is reported in '-32-'
that transparency of a bismuth plate thicker than lmm
was observed in experiments on the passage of elec-
tromagnetic waves.

The reason for so large a number of papers devoted

to undamped waves in bismuth is that the case of weak
spatial dispersion va » v is easy to realize in bismuth,
owing to the low carrier density (nt = n2 ~ 1017 cm"3).
In this field region, the length va /w of the magneto-
hydrodynamic waves is large enough, and the length
Va/c within which the waves are damped is much
larger than the carrier mean free path I = v/v.

The fields required to realize the case of weak
spatial dispersion in typical metals with carrier den-
sities of the order of one per atom are very strong,
H > 106 Oe. In weaker fields, an important role is as-
sumed by Landau damping. To observe waves of the
type (4.2) and (8.2), whose spectrum is independent of
H, it is necessary to vary the frequency w or the in-
clination of the magnetic field relative to the sample.
There are so far no published reports of such waves
in metals.

Table I contains a summary of all weakly-damped
waves whose length is large compared with the Lar-
mor radius.

H. SHORT WAVES (kR » 1)

11. Qualitative Considerations

We have considered so far electromagnetic waves of
great length (kR « 1). The possibility of propagation
of excitations with a wavelength small compared with
the electron orbits is much more complicated. The
reason is that in this wavelength region a particularly

Table I

Name of wave [

L. Helicon

2. Magnetohydrodynamic
wave

3. Alfven wave

4. Fast magnetic-
sound wave

5. Alfven wave

6. Fast wave

7. Slow wave with
quadratic spectrum

Existence conditions

v, to, kv < H

a) Weak spatial
dispersion

b) Strong spatial
dispersion

V COS ©

', n/2

Spectrum Relative damping Polarization

0>W=7

=kva cos©

cH cos ©

End point
of spec-
trum

(m4 < m2)
Q. cos © +

o = /ci;0 cos t>

<n = kvA (©) cos©
A (©) > 1

co = k2crD sin © cos ©

16

v/2co

v/2co

v/2co

v/co

iEy cos ©

< Ex

E||[[kH]H]

E || [kH]

E||[[kH]H]

E || [kH]

E| |H

Remark

In the case of a singly-
connected anisotropic
Fermi surface, the
damping and polariza-
tion of the wave
change strongly with
change in H (see Sec.
7)

In the case of an anis-
otropic Fermi surface,
the spectrum and
polarization of the
waves are given in
Sec. 8.

Exists if the direction
of the vector H coin-
cides with a sym-
metry axis higher
than twofold

Exists only if the di-
rection of the vector
H does not coincide
with a symmetry
axis
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important role is played by Cerenkov absorption of the
wave by electrons and the main part of the conductivity
of the metal is dissipative. Therefore weakly-damped
waves can exist only in those special cases when the
Cerenkov absorption vanishes for certain directions
of the vectors k and E. We shall consider these spe-
cial cases below.

In a magnetic field, the Cerenkov absorption is due
to electrons that move, in the mean, in phase with the
wave and for which the following relations are satis-
fied:

kzvz = w + NQ, N = 0, ± 1 , ± 2 , . . . (11.1)

If the wave vector k is exactly perpendicular to the
magnetic field H (kz = 0) and w * NO, then condition
(11.1) is not satisfied for any of the electrons, and
there is no Landau damping. With this, waves much
shorter than the characteristic Larmor radius can
exist near cyclotron resonance. The propagation of
these waves will be considered in Sec. 16.

On the other hand, if the angle between the vectors
k and H differs from ir/2 and if u « Q, then relation
(11.1) is satisfied for many groups of electrons:

JV~ ftzfl>l. (11.2)

In this case the Cerenkov absorption is strong, and the
electromagnetic waves cannot propagate in general.
However, under certain conditions the Landau damping
can experience sharp oscillations, depending on the
relation between the wavelength and the diameter of
the electron orbit. The physical nature of these oscil-
lations is essentially the same as in the case of "geo-
metric resonance" in the absorption of ultrasound'-33-'.
The occurrence of these oscillations is due to the fact
that the electron interacts most effectively with the
electromagnetic field on those sections of its orbit,
where it moves along the equal-phase planes of the
wave. In the case of a convex electron orbit, the latter
has two such sections (in the vicinity of the points A
and B, see Fig. 5). On the other hand, when the elec-
tron moves between these sections, it is acted upon by
rapidly oscillating field of the wave, which does not
change its average energy. Therefore the energy ab-
sorbed by the electrons depends on the phase differ-
ence of the wave field at the points A and B, where
they move in opposite directions. If the orbit diameter
subtends an odd number half-waves, then the action of
the wave on the electron is the same in sections A and
B. The absorption is then maximal. On the other hand,

\—F

where

A'
/

\

X

)

FIG. 5

if the number of half-waves subtended by the diameter
is even, then the wave field acts in these sections in
opposite directions, and there is no absorption.

When kzR » 1, there is always a group of electrons
whose contribution to the absorption is large. This re-
sults in a relatively small amplitude of the oscillations
when kR is varied. On the other hand, if kzR is small,
then the condition (11.1) is satisfied only when N = 0.
In this case the "geometric resonance" oscillations

are large'-34-', and the Cerenkov absorption vanishes
at the minima. It was shown in t12>35^ that for definite
values of the vector k the dissipative conductivity be-
comes so small, and that the main role is assumed by
the Hall conductivity. It then becomes possible for
electromagnetic waves to propagate with discrete
wave-vector and frequency spectra. We shall now
consider them in greater detail.

12. Asymptotic Behavior of the
Conductivity Tensor

To investigate the properties of waves with a dis-
crete spectrum in the case of large kR, it is neces-
sary to find the asymptotic form of the tensor
arap(k,u,R). We assume that the angle * between
the vectors k and H is close to TT/2:

<P = -^—O < 1. (12.1)

At the same time we assume that the spatial inhomo-
geneity of the field wave along H is strong. In other
words, we are interested in the asymptotic behavior
of the tensor (2.13) when the following conditions are
satisfied:

Iv-i'coj «/czj;«Q <fo. (12.2)

An asymptotic expression for the conductivity tensor
was obtained in ^363 for the case of an isotropic quad-
ratic dispersion of the conduction electrons. In the
coordinate system x, TJ, f it is of the form

v— ia
(nkR) i/2

+ ~k^G

-G

v—i
kzv

V—!CD

TIT"

kv

2kzR kv

(12.3)

(12.4)
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(12.5)
It is possible to show with the aid of these formulas
that, owing to the smallness of the angle cp, the dis-
tinction between the axes r] and z, and also £ and -y ,
can be neglected. In addition, it follows from (12.3)
that the longitudinal part of the field Ej is much larger
than the transverse one:

(GEX + EZ). (12.6)

However, in spite of this, the "renormalization" (2.4)
does not play an important role and

oap = oap (a, P = z, (12.7)

It follows from (12.4) and (12.5) that the asymptotic
behavior of the elements <rao depends on the magni-
tude of the parameter

(12.8)
kzv

If

we have'-36-'

\v>\€i (12.9)

°-=2>Sir[1-sin(2^)

axz = — azx = -
2mkzv (nkR)3'2

— w |/"it cos (2kR) ] ;

[cos(2ftfl—£

(12.10)

(12.11)

Re crxx is responsible for the dissipation of the wave
energy. It is a sharply oscillating function of kR,
taking on minimum values at

kR = an=(n+~)n, n = 0, 1, 2, . . . (12.12)

These oscillations of Re u ^ are due to the fact that
the main role in the absorption is played by the elec-
trons that move, in the mean, in phase with the wave.
The velocity of these electrons in the direction of the
magnetic field is

|(O-Mv|

and the scatter of their orbit diameters is

— 1 / 1 k \^R-\siR V —!0)

k,v

(12.13)

(12.14)

Thus, condition (12.9) is sufficient to make the scatter
of the diameters of these effective electrons small
compared with the length of the electromagnetic wave.
Therefore in the case (12.9) all the effective electrons
are under identical conditions relative to the wave,
and <7Xx oscillates sharply when kR changes.

In the inverse limiting case
> 1 (12.15)

there is a large scatter of the orbit diameters of the
effective electrons over the wavelength. Owing to the
averaging of their contributions, the amplitude of the
oscillations cr^ and CTXZ is strongly decreased:

(JM =xx 2mkzvkR

sin 2kR ~

(12.16)

(12.17)
2mkzv (nkR) '2 ^w

13. Low-frequency Waves with
Discrete Spectrum

We consider first the case of low frequencies w « v,
and assume that condition (12.9) is satisfied. We com-
pare the minimum value of crxx with CTXZ. When kR
= an we have

2v (13.1)

If this ratio is small, i.e., if the angle ip satisfies the
conditions

1
1 (13.2)

then the nondissipative conductivity crxz is much
larger than the dissipative terms o i
other words, at wave-vector values
larger than the dissipative terms o™in and CTZZ. In

* » = J (13.3)

the effective dielectric constant of the electron gas be-
comes real. Therefore waves with a discrete spectrum
can propagate in the metal. The permissible values of
k, for which the Landau damping vanishes, are deter-
mined by (13.3). The corresponding frequencies wn

are obtained from the dispersion equation (2.3). Taking
(12.7) into account and putting k = kn, we obtain

klc*
4n |0j«(fcn)l

The relative damping of the wave

(13.5)

is minimal when kR = an and increases sharply when
| kR = an | increases. The width in that region of k-
space in which a weakly-damped wave exists is given
by

If the inequality v « q>Q is violated, even the minimum
value of the relative damping r n becomes larger than
or of the order of unity, and the wave attenuates rapidly.

Substituting the wave spectrum (13.4) into Maxwell's
equations (1.7), we can easily show that the transverse
part of the electric field of the wave is circularly po-
larized: Ex as iEz. On the other hand, the magnitude



498 E. A. KANER and V. G. SKOBOV

of the longitudinal field Ey should be determined from
(12.6).

The region of existence of the wave is determined
by the conditions (13.2) and the inequality wn « v. For
typical metals (n ~ 1022 cm""3, m ~ 10~27g) they are
satisfied in fields H ^ 103 Oe at angles (p on the order
of one degree and mean free paths v/v on the order of
several millimeters.

14. High-frequency Waves with Discrete
and Continuous Spectrum

In the region of high frequencies o> » v, the ele-
ment (rxx has (12.10) at the minima of the oscillations
an appreciable imaginary part proportional to w. It
was shown in ^35^ that the expressions for wn and r n

differ in this case from (13.4) and (13.5) in that they
contain an additional factor l /pn , where

(14.1)

kR = 6W = = 0, 1,2,

The polarization of the transverse part of the electric
field of the wave is elliptical:

Ex = iQnEz. (14.2)

Let us consider the variation of the properties of this
wave when the magnetic field H changes.

a) In the region of weak fields, when the second
term in the right-hand side of (14.1) is small com-
pared with unity, we have p n — 1. Then the spectrum,
the damping, and the polarization of the high-frequency
wave remain the same as for the low-frequency wave
(see Sec. 13).

b) In the region of stronger fields, when

QS>1, (14.3)

we

V l va til.

Tn (k) = -~ [v + cpQ (2jian)
1/2 sin2 (kR-

/i A A \

(14.4)

(14.5)The transverse part of the electric field in the wave is
polarized along the x axis. Its spectrum and damping
are determined by the value of cr*̂ 111. The existence
of such a wave is due to the fact that when kR = an we
have

Re o™n <g — ImOjj. (14.6)

c) In the case u> » v, the real part of the element
crzz (see (12.3)) is small compared with its imaginary
part, which is negative. This should lead to the exis-
tence of a weakly-dampled wave. However, owing to
the noticeable magnitude of the off-diagonal element
axz there is, in general, a rather strong coupling with
the second wave, which attenuates rapidly. Since the
element ax z (12.11) is a rapidly oscillating function of
kR when | w | « 1, it follows that when

the coupling of the wave weakens, and the term with
CTXZ in the dispersion equation can be neglected. With
this, the dispersion equation splits into two, one of
which determines the damped wave (when k = /3^/R
the element ax x is real). The second wave,

k%c* = 4ni<oazz (kN, <o), (14.8)

gives a weakly damped wave with a discrete spectrum
and linear polar izat ion^:

2 "\V« va

Ex = 0, Ez = 2<fPNEy. (14.10)

In addition to the conditions (12.2) and WJJ » v, the ex-
istence of this wave calls for satisfaction of the in-
equality

I off" I*
(14.11)

which ensures strong coupling of the waves when
k * kj<f. The most stringent of these conditions can
be represented in the form

cpQ
(14.12)

d) Finally, if in addition to the conditions (12.2) and
«N » v the inequality

<P«£ (14.13)

is satisfied, then the degree of wave coupling is weak
(inequality (14.11) is reversed). Equation (14.8) be-
comes valid also for kR * f3^, and the spectrum of
the wave turns from discrete to continuous E12 :̂

(14.14)

For a wave with spectrum (14.14) to exist, it is nec-
essary to satisfy the conditions (1.20) and (14.13) and
the inequalities

«ca (14.15)

which are obtained from (12.2) by expressing k in
terms of a> with the aid of (14.14).

The foregoing analysis of the possibilities of prop-
agation of weakly damped waves is based on the use
of expressions (12.3) for the elements of the conduc-
tivity tensor. These asymptotic formulas were ob-
tained for a singly-connected spherical Fermi surface.
It is quite obvious that the character of the asymptotic
behavior of the tensor <ra^, and in particular the de-
duced presence of sharp oscillations of the elements
axx and axz, remains in force also in the case of a
nonspherical but convex Fermi surface. The differ-
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ence lies in the fact that in (12.10) and (12.11) the a r -
guments of the oscillating functions will contain not
2kR but kD, where D is the diameter of the central
section of the Fermi surface along the k x H direc-
tion. In addition, the dissipative current connected
with the Landau damping will be directed along the
electron velocity 9e(p)/9p at the point p«H = 0 on
the Fermi surface e(p) = ep.

From the considerations presented in Sec. 11 it
follows that in the case of a multiply connected or
non-convex Fermi surface the amplitude of the con-
ductivity oscillations will be small. In this case, in-
deed, there is not one but several groups of "effec-
tive" electrons, moving on the average in phase with
the wave and satisfying the condition kzvz = w. There-
fore crxx will be the sum of expressions of the type
(12.10) for many groups:

a, (i-sin kDj). (14.16)

This quantity cannot vanish for any real value of the
wave vector.* Therefore there are no waves with dis-
crete spectrum in the case of a multiply connected or
non-convex Fermi surface. Only the wave (14.14) with
continuous spectrum can propagate in the metal, if all
the dissipative currents from different groups of "ef-
fective" electrons are collinear. Thus, the predicted
waves with discrete spectrum can be observed only in
metals with a convex Fermi surface. This require-
ment is satisfied by alkaline metals.

15. Excitation of Waves with Discrete Spectrum.
New Resonance Effect

An external wave incident on the surface of a metal
gives r ise to the skin effect. The highly inhomogeneous
distribution of the electromagnetic field at the surface
of the metal can be represented as a superposition of
plane waves with different values of k. Owing to the
small depth of the skin layer, there are always some
waves satisfying the condition kR = an. Resonant ex-
citation of the natural oscillations will occur whenever
the frequency u> of the external wave coincides with
one of the natural frequencies wn. If the frequency w
is fixed, then waves with discrete spectrum are excited
at magnetic-field values H = Hn for which wn(H) = w.

By way of an example, we can consider the excita-
tion of a wave with spectrum (14.4), in which the t rans-
verse part of the electric field is polarized along the
x axis. For this wave, the resonant values of the mag-
netic field are

Let us find first the field $x(£) at large distances

*An exception is the case when the diameters of the central
sections of different carrier groups have a rational ratio. Then the
spectrum of the weakly-damped waves is more "rarefied."

from the metal surface J = 0.
terized by the function

This field is charac-

dkk5/i cos kl

0 K ' - — 1 — -

(15.2)

where kn = a n / R , and the expression for T(k) is de-
termined by formula (14.5), in which wn must be r e -
placed by w. We introduce the "detuning" from reso-
nance

~9~Hn~^ ( I ^ K 1 ) (15.3)

and a new integration variable r = (k/k )1//2. In the
region of resonance (A— 0) the main contribution to
Txx( £) i s made by a small vicinity of the pole of the
integrand near the point T = 1 on the complex T plane.
Therefore we can represent T x x ( f ) approximately in
the form

dx T« [exp {ikn

«*» }
exp ( - i

where

(15.4)

(15.5)

In the first term of (15.4) we swing the contour of in-
tegration towards the line arg T = ir/4, and in the sec-
ond to the line arg T = — TT/4. AS a result we obtain
the sum of the residues and the integrals along the
lines arg T = ±7r/4. For large f, the main contribu-
tion to Txx( J) is made by the first residue at the
point

(15.6)

In the vicinity of the resonance, where F(A) « 1, we
obtain

(15.7)

This means that at large distances from the surface
the field is a plane monochromatic wave of length

2nR 2nRn n _ p H
^n — - ^ IT )tin

(15.8)

having a small damping proportional to F(A). Fur-
ther, from (15.2) with J = 0 and A— 0 we obtain the
resonant values of the surface impedance:

16it 1—ictd —

They increase slowly with increasing n:
I / o

O

(15.9)

(15.10)

This increase in the resonant values of Z with de-
creasing magnetic field is due to the increase in the
wavelength (15.8) of the natural electromagnetic os-
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dilations. The ratio of the width of the resonant maxi-
mum to the distance between neighboring maxima has
the same order of magnitude as the relative width of
the region in k-space in which the wave attenuates
weakly.

Far from resonance, when F(A) » 1, the expres-
sion for Txx(0) can be written in the form

1 —sin(2fcfl)]'

where

(15.11)

(15.12)

is the effective depth of penetration of the electromag-
netic field into the metal. The value of Txx(0) was
calculated for this case in I-36^
have

When 6ejf « R we

z (non.es)

where y(x) is the Euler gamma function.
Thus, narrow maxima, corresponding to resonant

excitation of natural oscillations with spectrum (14.4),
are superimposed on the smooth dependence of the
impedance on the magnetic field (15.13). The ratio of
the resonant value of the impedance Z ^ to the non-
resonant value (15.13) is

(nonres) «nOef(

Figure 6 shows schematically the dependence of the
impedance on the reciprocal of the magnetic field.

The dependence of Zan on H has a similar char-
acter also when other weakly-damped waves with dis-
crete spectrum are excited.

16. Electromagnetic Waves in the Vicinity
of Cyclotron Resonances

With the exception of Sec. 5, we have considered
waves with frequencies much lower than the carrier
cyclotron frequency fi. It was noted in Sec. 5 that
near cyclotron resonance an important role is played
by spatial dispersion and the Cerenkov absorption as-
sociated with it. The results of Sec. 5 pertain to met-
als with low carrier density (such as bismuth). These
metals are characterized by a small value of the pa-
rameter ai0R/c = v/va, which determines the role
played by the spatial dispersion. For typical metals,
the actual situation is reversed,

1, (16.1)

where the length of the electromagnetic wave turns out
to be much smaller than the diameter of the electron

"is

FIG. 6. Impedance vs. reciprocal magnetic field upon excita-
tion of a wave with discrete spectrum (14.4).

orbits (kR » 1). Therefore cyclotron resonance in
such metals is possible only in a magnetic field that
is strictly parallel to the surface E37 .̂ With this, the
wave vector k is orthogonal to the vector H. It was
noted in Sec. 11 that in this case, when u> * Nft, there
are no electrons that move, in the mean, in phase with
the wave. Consequently there is no Cerenkov absorp-
tion. Mathematically this is manifest by the fact that
the spatial dispersion does not influence the form of
the factors

(co — QN + iv)~\ (16.2)

which describe the effect of the resonant interaction of
the electrons with the electromagnetic field.

The wave-energy dissipation in the case of strictly
transverse propagation k 1 H is the due only to the
carrier scattering, which is characterized by the col-
lision frequency v. Therefore in the case when

I co — NQ > v (16.3)

we can neglect v on (16.2), and the dielectric constant
e of the conductor turns out to be real. Its sign is de-
termined by the sign of the difference co — Nfi. Thus,
on one side of the resonance we have e < 0, and the
wave experiences total reflection. On the other side
of the resonance the dielectric constant e is positive,
and in accordance with the general point of view ex-
pressed in the introduction, weakly-damped waves can
propagate in the m e t a l ^ . This is indeed the cause
of the sharp asymmetry of the resonance surface-im-
pedance curves at cyclotron resonance E37^.

We confine ourselves for simplicity to examination
of an isotropic electron dispersion law. It follows
from the general expression (2.13) that in the case
under consideration (k II y, H II z) the elements a,
°yz» °xz> a nd Ozx vanish identically. Expanding

exp [ikR (cos % — cos T')]

zy>

in a double Fourier series in the variables T and in
r ' and integrating with respect to them, we obtain'-14-'

— JN(x)J'N(x)"-
[ku -sin9

o
[JN(x)p cos" Q/

(16.4)
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where x = kR sin 9 and the prime denotes the deriva-
tive of the Bessel function J N (x ) with respect to x.

The arguments of the oscillating functions in the
asymptotic expression, JJSJ(X) and J N ( X ) , differ by
7r/2 when x » 1. Therefore a |y is smaller by a fac-
tor kR than the product CTxx°yy a n d t n e tensor aap
is practically diagonal. Its elements are given by
the formulas t14 3

ne2 . / co + i'v
r— Ctg It —!r

mkv B V " (16.5)

It follows from them that the dispersion equations for
both transverse waves are identical and are not con-
nected with each other

(16.7)

The wave whose electric vector is polarized along the
field H is called in magnetoactive-plasma theory M
the ordinary wave. The second transverse wave, in
which E II x, is called extraordinary. We use the
same terminology.

Near the cyclotron resonances, when

•v<cATQ-w«Q, (16-8)

both waves are weakly damped. Their spectrum and
damping are

•Imo) = v. (16.10)

Similar results were obtained by Demidov -̂38^ for a
nondegenerate plasma. Since the frequency o> is al-
most fixed by the condition (16.8) near resonance, it
is more convenient to solve the dispersion equation
(16.9) with respect to k:

It follows from (16.11) that the frequencies Nfi are
limiting (resonant) frequencies. The condition kR » 1
is automatically satisfied near resonance in the case
(16.1)

Inequalities (16.8) ensure smallness of the disper-
sion and damping of the ordinary and extraordinary
waves. Figure 7 shows schematically the dependence
of Re WN on k (solid lines).

Besides the transverse waves, a third, longitudinal
wave should exist near the cyclotron resonances E14^.
The electric field in it is potential and polarized along
the wave vector k. Unlike the case of small kR, when
the spectrum of the longitudinal wave has a large "gap"
w0, this spectrum shifts towards much frequencies Nfi
much smaller than w0 when kR is large. Similar lon-
gitudinal waves can exist also in a dense high-tempera-

Tablell

Waves

1. Low-frequency
wave with dis-
crete spectrum

High-frequency
waves with dis-
crete spectrum

2. Wave (13.4)

3. Wave (14.4)

4. High-frequency
wave with con-
tinuous spec-
trum

Waves near cy-
clotron reson-
ances

5. Ordinary wave

6. Extraordinary
wave

7. Longitudinal
wave

Existence condition

CO « V <C CpQ <C Q/CEn,

V « COJV, <p <€ o-j} C 1

( ~~~ I N "£ QjV

to M <$c cpQ

/' CO /& f Vn(£) /&

v < lA'Q —co [ « Q,

CO<JVQ

co<A'Q

Wave spectrum

/ 8n N Va

f ^ \ V2 Va 5/
®N ~ ( — ) — (pQR/'!

/ 2 y/s

f "a \ V2
\ " J

^r 3 /cooi? ,2~]

aN = NQx

L *4 (kR) \ c J J

CO V = IV Q ( 1 -]—^r~.—jr- )

Relative damping

Xsin2(/cfl — an)

X sin2 (kR — aB ) l

4epQsin2(ftfl — pw)~|
1 J t ( l - s in2p i v ) J

v/2co

v/cojy.

Polarization

Ey = Ez/2(faN

Ex = Ey = 0, E|[H

Ez = Ey = 0, E||[kH]

£x=£2 = 0, E || k

Remark

Exists in a metal with
with singly-con-
nected and convex
Fermi surface

Ditto

Ditto
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FIG. 7. Dispersion of weakly damped ordinary and extraor-
dinary waves (solid curves) and of the longitudinal wave (dashed
curves) in the vicinity of cyclotron resonances.

ture plasma when inequalities (16.8) and (16.1) are
satisfied (v must be replaced by (2T/m)^2).

The T longitudinal waves can propagate because of
their weak coupling to the transverse ones:

\oiy\<\axxa,JV\. (16.12)

Their spectrum and damping are determined by the
dispersion equation

iniayy(ft, H,
- = 0.

Upon satisfaction of the condition

v<(w- iV

the dispersion equation yields

Im co= —v.

(16.13)

(16.14)

(16.15)

Unlike the transverse waves, the dispersion of the lon-
gitudinal waves is anomalous, i.e., their frequency de-
creases with increasing k. The spectrum of the lon-
gitudinal wave is shown by the dashed lines of Fig. 7.

An essential condition for the existence of all three
waves is strict perpendicularity of the vectors k and
H:

|<o-ATQ|.k,v (16.16)

If inequality (16.16) is violated, large Cerenkov absorp-
tion appears. The cyclotron resonance is then
"smeared out" and the weakly damped waves vanish.

To conclude the section, we present Table II, listing
the characteristics of weakly damped waves whose
length is much smaller than the Larmor radius.
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