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I. INTRODUCTION

EVERAL years ago methods which had been de-
veloped in the theory of elementary particles began
to be very intensively applied to the study of systems
of strongly interacting particles, such as the elec-
trons in metals, liquid helium, or the atomic nucleus.

If, as in the case of nuclei, there are 100 or 200
particles in a system of strongly interacting particles,
it is clear that there is no hope of solving the prob-
lem exactly. Even the problem of three interacting
particles cannot be solved in general form.

In the case of the nucleus the interaction energy is
comparable with the kinetic energy of the particles,
and the interaction cannot be regarded as weak—i.e.,
perturbation theory cannot be applied.

If the system were like a gas, in which the part i-
cles interact rarely, then one could develop an ap-
proximate method of treatment in which only colli-
sions of pairs of particles are taken into account. In
the nucleus, however, the distances between particles
are of the same order as the range of the forces, and
several particles interact simultaneously.

Different approximate methods must be developed.
The idea of these methods is the same as in the dis-
persion theory of elementary particles, where con-
stants are introduced for the masses of the particles
and the characteristics of their interaction. We must
introduce constants characterizing the motion of the
neutrons and protons in the nucleus, and also con-
stants describing the interactions between the nu-
cleons when they are together in the nucleus. This
interaction is very different from that of two nu-
cleons in empty space.

For the infinite system such a program was car -
ried through in Landau's theory of the Fermi
liquid. We shall see below what sort of complica-
tions are brought in by the finite size of the nucleus.

After the introduction of suitable constants all
nuclear phenomena associated with low energies
(energies below 40 MeV) can be calculated. In other
words, having found the constants from some of the
phenomena, we can quantitatively explain all of the
other experimental facts of low-energy nuclear
physics. We are of course concerned with the deriva-
tion of quantitative relations. The approximate models

The nuclei are pure emerald.
But it may be the people are lying.
(A. S. Pushkin, The Legend of Tsar Saltan)

ordinarily used in the theory of the nucleus *-2'3' suf-
fice for the qualitative study of almost all nuclear
processes. We shall, by the way, present a number
of phenomena which cannot be correctly interpreted
without the rigorous approach.

A nucleus is a system of two types of Fermi par-
ticles—neutrons and protons—strongly interacting
with each other. Therefore before proceeding to the
examination of various nuclear processes it is useful
to elucidate the general physical properties of such
systems.

As a rigorous treatment shows, the low-lying ex-
cited states of Fermi systems are of a very simple
nature, even when the interaction is strong.

First, there are so-called one-particle states,
which are analogous to the excitations in an ideal
Fermi gas. Excited states of an ideal Fermi gas
correspond to the transition of a particle from a
state with an energy less than the Fermi limit to a
free state above the Fermi limit, or in other words
the appearance of a particle and a hole against the
background of the Fermi population of the states.

The excitations in a real Fermi system also cor-
respond to the appearance of particles and holes. In
particular, such quasiparticles, as they are called,
have a mass different from that of free particles. In
other words, the one-particle excitations in a real
Fermi system coincide with the excitations of an
ideal gas composed of quasiparticles with a Fermi
distribution in energy.

Physically these results are very natural. A par-
ticle moving in a medium sets into motion particles
adjacent to it. In weak excitations, when the energy
of the particle is close to the Fermi energy, the
nature of the distribution of particles brought into
motion does not depend very much on the state of the
particle under consideration. Therefore in all pro-
cesses associated with weak excitations the particle
and its environment behave as a stable formation,
which is called a quasiparticle. Since spin is con-
served, the spin of the whole conglomerate forming
the quasiparticle is the same as the spin of the part i-
cle. Consequently, when quasiparticles move as
whole structures they must obey the Pauli principle,
like any particle with spin V2. Accordingly in all
cases in which a small number of quasiparticles and
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quasiholes are involved they behave like excitations
in an ideal Fermi gas.

In an infinite system, to define the spectrum of
one-particle excitations it suffices to introduce one
undetermined constant—the effective mass of the
quasiparticles.

To characterize the one-particle excitations in a
finite system we must introduce, in addition to the
effective mass of the quasiparticles, the parameters
of the effective potential well in which the quasipar-
ticles move. For systems with short-range forces of
range TQ these parameters include the depth and
width of the well and the width of the layer (~ r0) in
which the density changes from its value inside the
system to the value zero.

Besides the one-particle excitations, there also
exist in a system of interacting particles so-called
collective excitations, which can be interpreted as
bound states of a quasiparticle and a quasihole.
Sound waves in an infinite system are an example of
such excitations. To define the spectrum of collective
excitations one must introduce an interaction between
the quasiparticles, which, as we shall see, is very
different from the interaction between two free part i-
cles.

For most physical applications (intensities of
transitions, magnetic and quadrupole moments, and
so on) it is necessary to know the changes that occur
in the system under the influence of an external field.
The theory shows that the problem of determining the
reaction of a system to an external field reduces to
the problem of the behavior in an external field of a
gas of interacting quasiparticles placed in a potential
well. Here it suffices to include only collisions be-
tween pairs of quasiparticles. Multiple collisions of
the particles are taken into account exactly in the
theory, but lead only to a change of the interaction
between the quasiparticles and a change of the
"charge" for the interaction of the quasiparticles
with the external field. In most cases one can find
the "charge" from general arguments (from the con-
servation laws for charge, energy, momentum, and
so on.)

There is a very simple and intuitive explanation of
these results. Let the system be acted on by a force
which is not very strong, so that the change of the
energy of each particle in the field is small in com-
parison with its kinetic energy. Then the state of the
system corresponds to the appearance of a few quasi-
particles and a few quasiholes against the background
of the Fermi distribution. The number of quasiparti-
cles that arise is a small fraction of the total number
of particles in the system. If the average distance
between the particles is of the order of the range of
the forces, the average distance between quasiparti-
cles will be much larger than the range of the inter-
action forces, and consequently the quasiparticles
form a gas—i.e., we can neglect cases in which three

or more quasiparticles collide simultaneously.
The interaction between quasiparticles is of the

same order of magnitude as that between particles,
but is very different. As we shall see, in some cases
an attraction can be replaced by a repulsion owing to
the effect of the other nucleons in the medium, which
are a great majority and are present along with the
two quasiparticles in question.

As for the "charge" of a quasiparticle in relation
to the external field, this "charge" describes the in-
teraction with the field of the conglomerate of part i-
cles which forms the quasiparticle. We assume that
an electric field, which acts only on the protons, is
applied to a nucleus. Since charge is conserved in the
interaction of a proton with the other particles of the
nucleus, the entire conglomerate forming a protonic
quasiparticle has the same charge as a proton. In
this case the charge of the quasiparticle is equal to
that of the particle. In the case of other external
fields, for example for a magnetic field, the interac-
tion of a quasiparticle with the field is different from
the corresponding quantity for a particle. A moving
neutron in vacuum interacts with a magnetic field
only owing to its intrinsic magnetic moment, whereas
a neutronic quasiparticle in its motion also brings
protons into motion, so that an electric current
arises and the interaction with a magnetic field is
changed. There is thus an orbital magnetism of
neutronic quasiparticles, i.e., a magnetism associated
with their orbital motions. In the absence of interac-
tions only the protons have orbital magnetism.

Accordingly, the method of quasiparticles as ap-
plied to the theory of the nucleus consists of the
following steps. First it is rigorously proved that
for weak excitations the nucleus can be regarded as
a gas of quasiparticles in a potential well. The inter-
action between the quasiparticles is characterized by
a few universal constants. This interaction is not
small and must be taken into account exactly. The
only approximation is that for weak excitations, when
the number of quasiparticles is small, only their
pairwise collisions are taken into account. For the
majority of observable nuclear phenomena one can
derive formulas which, as the result of the solution
of the equations with computing machines, can be
expressed in terms of the universal constants of the
theory.

The constants which define the interaction of the
quasiparticles, like the parameters of the potential
well, cannot be calculated without the assumption that
the interaction between the particles is small. For
the nucleus there are no grounds for such an assump-
tion. Therefore these constants must be found from
comparisons of the theory with experiment.

The comparison of the theory with experiment
shows that the effective mass of the quasiparticles is
close to the mass of the free nucleon, | (m* — m )/m |
~ 0.1—0.2. Therefore the parameters of the potential
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well, which can be found in the shell model on the
assumption m* = m, will not be changed very much
with a more rigorous analysis.

As we shall verify below, the interaction between
quasiparticles has a range of the order of r0.
Therefore for all phenomena associated with d is-
tances larger than r0, for example with distances of
the order of the radius of the nucleus, the interaction
can be treated as if it were a 6 function. The con-
stants for the S-function interaction differ little from
the analogous constants in infinite nuclear matter,
and are therefore the same for all nuclei except the
very lightest, to the same accuracy as the density of
the nuclei is constant throughout the Mendeleev
table, i.e., to the same accuracy as that with which
the formula for the nuclear radius R and the atomic

1/3
weight A (R = r0A ) is satisfied. Accordingly, the
interaction between quasiparticles is characterized
by universal constants. Furthermore in all formulas
that contain matrix elements of the interaction the
summation must be taken over all states of the quasi-
particles, and not only over the states in the last un-
filled shell. We emphasize this fact because in this
respect there is an important difference between the
consistent method of quasiparticles and an approach
frequently used.

In many papers on the theory of the nucleus only
the particles in the last unfilled shell are regarded
as the object of investigation. We shall see that such
a treatment is quite legitimate, but that then the
interaction between the quasiparticles can no longer
be regarded as universal and of <5-function form.

In fact, in such a treatment one must include in
the interaction between the quasiparticles, besides
a 6-function term, a term caused by the polarization
of the other particles in the nucleus, when one quasi-
particle excites the Fermi background and this exci-
tation is then passed on to the second quasiparticle.
This mechanism corresponds to an interaction be-
tween quasiparticles which is no longer local. The
theory allows us to express this nonlocal interaction
rigorously in terms of the constants of the universal
<5-function interaction. After this effective interac-
tion (consisting of two terms) is introduced, there
remains in the sums over states only a summation
over the states of the unfilled shell. Instead of this,
in papers on the theory of the nucleus one introduces
as the effective interaction between the quasiparticles
of the unfilled shell either a 6-function interaction,
or else (for the study of levels with angular momen-
tum 2) a so-called quadrupole-quadrupole interaction
(cf. ) with a constant determined from experiment.
With this way of introducing the interaction the con-
stants which define it are not universal, but change
from level to level. Moreover, such an interaction
leads to inexact results for the intensities of transi-
tions .

The matrix element for a one-particle transition

of a nucleon can be written formally in the form of
the product of the effective charge of the nucleon and
a matrix element calculated without including the in-
teraction. The effective charge can be expressed in
terms of the universal constants of the theory and
turns out to depend on the initial and final states of
the nucleon. Values of the amplitudes for one-parti-
cle electromagnetic transitions are obtained to ac-
curacy 20—30 percent.

For quadrupole transitions the effective charge
can also be calculated on the assumption of a quad-
rupole-quadrupole interaction. It then turns out that
the effective charge is independent of the nucleon
states and gives the amplitudes for one-particle
transitions with an error of the order of 100—200
percent. As compared with such a simplified ap-
proach the theory makes especially important
changes in the calculation of the intensities and fre-
quencies of collective transitions. It is found that
besides the 2+ levels which are obtained on the a s -
sumption of a quadrupole-quadrupole interaction it is
also possible to have 2+ and 0+ levels which vanish
when the interaction is chosen in that form.

A correct treatment of the interaction is also r e -
quired in problems associated with the change of dis-
tribution of the nucleons when a particle is added to
the nucleus. One such problem is the change of the
electric mean square radius of a nucleus when neu-
trons are added; this determines the isotope shift of
spectral lines in intermediate and heavy elements.

Finally, in many nuclear calculations it is a s -
sumed that the interaction between quasiparticles is
weak; this is completely impermissible. For exam-
ple, the magnetic moments of even-odd nuclei some-
times differ by a factor 2.5 from the moment of the
added nucleon. This difference is entirely due to the
interaction of the odd nucleon with the other nucleons
of the medium, and consequently the interaction can-
not be regarded as weak. All of these questions have
been treated in detail in ^'. Here we give only intui-
tive arguments which bring out the physical meaning
of the relations.

The most convenient way to derive the formulas
is the so-called Feynman diagram method. There-
fore we begin with an intuitive explanation of this
method.

II. FEYNMAN DIAGRAMS

1. The Graphical Representation of Processes

The method of Feynman diagrams is widely used
to derive various relations in the theory of elementary
particles. This same method is also used in the ap-
proach to the theory of the nucleus which we are to
discuss here.

We begin with the fact that the various physical
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processes which can happen to particles can be
represented with figures:

the motion of a light quantum is represented by a
dashed line

and that of a particle by a solid line

The graph

means that a charged particle, say an electron, has
emitted a light quantum. The solid line is drawn with
a sharp bend to show that the momentum of the elec-
tron is different after the emission of the photon.

Suppose there are two noninteracting particles

If they interact, one draws a picture like

If the interaction is accomplished by means of a light
quantum (this means that it is a Coulomb interaction),
one joins the lines with a dashed line:

If there are two nucleons and the interaction is ac-
complished with the exchange of a 7r meson, a wavy
line is drawn between the particle lines:

This graph shows that the two nucleons have inter-
acted with each other once. If they have interacted
twice, the drawing is:

The graph

represents a more complicated process: a nucleon
has emitted a ir meson, which then split up into a
nucleon and an antinucleon. These two particles were

then converted into a 7r meson again, and this was
absorbed by the second nucleon.

Still more complicated processes which occur with
particles can be represented analogously.

In order that these figures may have not only an
illustrative meaning but also a quantitative meaning,
we shall take each graph to mean the transition am-
plitude from one state at the initial time to another
state at the final time. The square of the transition
amplitude gives the probability of finding the final
state at the final time. For example, the graph given
above for the emission of a photon denotes the transi-
tion amplitude for a charged particle with momentum
p to go into a state with a photon of momentum q and
a particle of momentum p - q.

According to the superposition principle the total
transition amplitude, or, as it is usually called, the
Green's function, is the sum of all possible physically
different transition amplitudes. As an illustration of
the graphical method we shall derive the relation
connecting the scattering amplitude for two particles
with the interaction potential.

According to the superposition principle the scat-
tering amplitude is represented by a sum of graphs;

r =

The first graph represents an interaction between the
particles. The second corresponds to a double inter-
action of the particles. Between the acts of interac-
tion there is the transition amplitude for two nonin-
teracting particles.

We shall assign to the first graph the interaction
potential between the particles

and to the lines the Green's function, i.e., the transi-
tion amplitude G of a free particle. Then the second
graph is written

= UGGU,

since the transition amplitude of two free particles is
equal to the product of the Green's functions of the
separate particles. For the scattering amplitude we
get the series

T - U+UGGU + UGGUGGV + ...

The sum of the factors to the right of UGG in the
second and subsequent terms is again the series
which gives r . We get for r the equation

T = U + UGGT.

The function G which appears in this equation is
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easily found. If the * function of the particle at the
initial time is a superposition of different eigenfunc-
tions, the problem of finding G reduces to the prob-
lem of the spreading of a wave packet. If, on the
other hand, the particle is in a state with a definite
energy at the initial time, the transition amplitude
can be determined very simply. It is obvious that
the expression for F is a symbolic way of writing
the well known equation of quantum mechanics for the
scattering amplitude

r(Pi, P2) =
 t / (Pi —P2) Pi —P'); r (p', p2)

-r iY (2it)3

Comparing the two equations for F, we easily estab-
lish the exact correspondence between the graphical
and analytic expressions.

In an analogous way we can relate the Green's
function G of a particle in an external field to the
free-particle Green's function G. The Green's func-
tion G in the field is represented by a sum of partial
transition amplitudes

G —

+ . . . ,

where the point with the dashed line represents the
act of interaction with the external field:

i

Collecting all of the graphs that appear in G on the
right of V, we again get G. Accordingly,

G = G + GVG + GVGVG^r . .. = G + GVG.

Comparing the correction to G in first order in V in
perturbation theory

Ga) - GVG

with the known quantum-mechanical expression, we
readily perceive the sense in which the multiplica-
tions in the symbolic formula for G are to be under-
stood.

Accordingly, the idea of the graphical method is
to use simple examples to establish a correspondence
between elements of the graphs and analytic expres-
sions, after which one can learn to decipher arbitrary
graphs composed of these elements.

2. The Green's Function of the Quasiparticle

As was mentioned in the Introduction, a system of
strongly interacting particles behaves in many cases
like a gas of quasiparticles. Therefore the Green's
function which describes the behavior of the quasi-
particles differs little from the Green's function for
the case in which the system consists of a single
particle. Let us first consider this case.

-un

Let a system of eigenfunctions be defined by the
formula

lift, (r) - eSLq* (r), H = £ + U (/•).

where U ( r) is a potential well.
As we shall see below, in the case of the nucleus

the eigenfunctions and energies for the quasiparticles
are defined by these same equations, but with the
mass of the free particle replaced by an effective
mass m* and with a potential U( r) which is of the
form shown in the figure, where R is the radius of
the nucleus and r0 is the width of the "diffuse edge"—
the width of the region in which U changes from its
constant value inside to its value outside the nucleus.
Besides the potential shown in the figure, U includes
corrections associated with the Coulomb and spin-
orbit interactions between the particles.

We define the Green's function (the transition am-
plitude) by the relation

The transition amplitude Go allows us to express
the wave function *( r, t + T ) at the time t + r in
terms of *( r, t ) . In the energy representation we get

Since <p^ is an eigenfunction, transitions to other
states are impossible and C^ (t + T ) = e~ieX C^ ( t ) ;
that is,

The function G?, / (T ) is defined only for T > 0.
( T ) = 0 for T < 0.

We
set G

tLet us now find the Green's function of a quasi-
particle.

The transition amplitude from a state with one
quasiparticle X to a state with one quasiparticle x',
i.e., the Green's function G ^ ' ( T ) of a quasiparticle,
can be found easily by analogy with the Green's func-
tion of a single particle. For a single particle we had
in the X representation

(T) = 6,
0, x<0.

To find the Green's function of a quasiparticle we
need only replace the energy e? of the free particle
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by the energy ex of the quasiparticle and take the
Pauli principle into account—transitions to occupied
states must be excluded. Therefore a factor
(1 - n^) must be included in the Green's function of
the quasiparticle, where n^ = {\ is the number of
quasiparticles in the state A. Accordingly, we get

o,
T > 0 ,

T<0. (2.1)

Let us now find the expression for the transition
amplitude of a quasihole. Since the number of places
for holes in the level X is proportional to n^, in
analogy with the case of the quasiparticle we get

0,
T > 0 ,

T<0. (2.2)

Here e" is the energy of the hole, or, more exactly,
the difference of the energies of the system after and
before the appearance of the hole.

As follows from the definition of the Green's
function, the quantity G^( + 0) must become unity if
n^ = 0, and the quantity G^( + 0) must be unity for
n^ = 1. The expressions (2.1) and (2.2) satisfy these
conditions. Later we shall also verify with examples
the correctness of the expressions (2.1) and (2.2) for
cases with n^ ^ 0, 1 (for example, in the case of
pair correlation).

We shall use the following graphs for the quanti-
ties G^ (t4 - t2) and G" (t t - t2):

P- If i \ \i 1/ /O )̂

The minus sign in the second formula is adopted in
order to simplify the graphical description of the
processes of production of a particle and a hole in
an external field.

In many cases it is convenient to introduce a
Green's function G^ for the quasiparticle defined in
the following way:

G>. (T) =
T > 0 it, Xt, (2.4)

where

The change of the Green's function in an external
field can be represented more simply in terms of the
function G^ than in terms of the functions G^ and

Let us derive the expressions for the functions
G^(e ) , G^ (e ) , and G^(e), which are the Fourier
transforms with respect to T of (2.1), (2.2), and
(2.4). These expressions will be used often in what
follows. The Fourier representation G(e) is con-
nected with the function G ( T ) by the relation

j, (e) e-<«-^ , G*(e)= ^ Gx(x)ei"dx.

Using the expressions (2.1), (2.2), and (2.4), we
get

;t(e) = ( i - « o \ <ril!*V» d-r - i •
— EA + • Y

Gl (e) =- nk jj e - ^ V " dx=-i e_". + iy ,
(2.5)

where

An important property of the functions G^ ( e ) and
G^ ( e) follows from (2.5)—they have a pole at the
value of e corresponding to the energy of the quasi-
particle or quasihole, as the case may be.

3. Relation of the Green's Function to the Density
Matrix. Calculation of Averages

We note one further important property of the
Green's function, which we shall use in what follows.

Let us introduce the quantity

This quantity is called the density matrix and enables
us to calculate the average values of operators which
act on the quasiparticles. If there is no external
field GXX>(T) = G A ( r ) 6 A A ' and pxx> =nx6xx>. The
average value of an operator Q is given by

This same relation holds also when there are external
fields and G ^ ' * G^6^'—i.e.,

= 2 (0)

III. PAIR CORRELATION

1. The Influence of Nearby Levels on the Green's
Function of a Quasiparticle

If there is an excited state of the system with the
same integrals of the motion and with nearly the
same energy as a state with one quasiparticle, these
states become mixed, and the expression for the
Green's function of the quasiparticle is more com-
plicated.

To derive the Green's function of a quasiparticle
as affected by a competing state we write a graphical
equation, denoting by thin lines the Green's functions
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of quasiparticles as found without any transitions to
the competing state. We shall denote the exact
Green's function by a thick line. Then we get as the
equation for the Green's function Gs

Here a block describes the irreduci-

ble transition amplitude g from the state with one
quasiparticle to the competing state. By " i r reduci-
ble" amplitude we mean the amplitude containing no
parts connected by a straight or a wavy line (the
latter represents the Green's function of the com-
peting state). Besides the equation for Gg one must
also write the equation for the irreducible amplitude
g. The solution of this system of equations gives the
final energies and * functions of the states in ques-
tion.

To write the equations for g one must know the
structure of the competing states.

For example, in a nucleus with an odd quasipar-
ticle in the unfilled shell a state with two particles
and one hole often lies close to the energy of the
state with one quasiparticle. In some cases a com-
peting state may be a state with one quasiparticle
and a collective excitation.

We shall follow this effect through in detail for the
example of a so-called pair correlation, which we are
now going to consider.

2. Pair Correlation in Nuclei

In an infinite Fermi system two particles with op-
posite spins and momenta will in some cases be in a
bound state with an energy close to the Fermi limit,
or, as is usually said, these particles form a
"Cooper pa i r" . In this case there is a rearrangement
in the distribution of the particles near the Fermi
limit and an energy gap appears in the spectrum of
one-particle excitations. The result is that the sys-
tem becomes superfluid, or, in the case of charged
particles, superconducting. In the language of Green's
functions this means that a quasiparticle can go over
into a state of a quasihole plus a Cooper pair, or a
quasihole into a state of a quasiparticle minus a
Cooper pair. In other words, a state with one quasi-
particle against a background of N particles gets
mixed with a state with one quasihole against a back-
ground of N + 2 particles, and a state with one quasi-
hole gets mixed with a state with one quasiparticle
against a background of N — 2 particles.

There is an effect in nuclei reminiscent of the
Cooper pair correlation—two quasiparticles (two

(two neutrons or two protons) form a state with total
angular momentum equal to zero, so that the *
function of these particles is a superposition of one-
particle states, of the form

"¥ (ri, r2) = S Gv( —l)m(pvm(r,)(pv_m(r2),
TO

where m is the projection of the total angular mo-
mentum and v is the set of other quantum numbers.

We shall assume j — j coupling, which is known
to hold in all nuclei except the very lightest; that is,
we assume that the state of a quasiparticle is char-
acterized by the quantum numbers X = n, Z, j , m.

The existence of pair correlation means that there
is a transition amplitude from a state with one quasi-
particle to a state with one quasihole and a correla-
tion pair. In other words, there is a block A\ (ana-
logous to the block g of the preceeding section)

which takes a particle against the background of N
particles into a hole against the background of N + 2
particles, and there is an analogous block A7 which
takes a hole into a particle. We shall later write an
equation for A^ (e) from which it can be seen that
A^ ( e ) depends only weakly on e and can be replaced
by its value for e = ep:

A,, (e) (BF) =-. Ax

To simplify the formulas we shall neglect the dis-
tinction between the system-energy differences
E0(N + 2) - E0(N) for the addition of two particles
and Eo ( N) - Eo ( N - 2) for the subtraction of two
particles. Furthermore we shall set A+*(N)
= A" ( N + 2) ~ A" ( N). Then we can write the system
of equations for G*
equation for Gs

Ae

and G g in the form of a single

As Ae

or in analytical form

Here the energy e^ is measured from the Fermi
energy limit.

For the extension to the case in which there is an
external field it is more convenient to write this
equation in the form of two equations

— j[(e — E l ) ( ; s l + 4 A ] = 1, (E + e^)/?, = _ MGsX. (3.1)

The quantity F which we have introduced denotes the
total amplitude for the transition from the state with
the hole to that with the quasiparticle. The quantity
denoted by F is
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N N-2

As can easily be seen, our equations (together with
the equation for A which is written below) are in-
variant with respect to the transformation

Therefore when there are no external fields we can
choose the phase <p so that A' will be real, i.e.,

Using Eq. (3.1), we get

-iy
(3.2)

where
= A\ + f\, and
the state X,

is the energy of the quasiparticle, E2

is the number of quasiparticles in

. Ex -

We write Eq. (3.1) in the coordinate representa-
tion:

- H ) Gs (r, r', x) + A (r) F (r, r', x) = ifl ( r~ r') 6 (x),

f . d(iJL+H)F(T,i', x) = - A * (r) Gs (r, r \ x). (3.3)

The change of the relative sign of id/dr and H in the
second equation means that the second equation cor-
responds to reversed t ime . 4 When the equations are
written in the form (3.3) it is clear how to introduce
an external field. In the case of fields that are un-
changed when t is replaced by - t we must add to
the Hamiltonian H an effective field which acts on
the quasiparticles. In the case of fields that change
sign when t is replaced by — t (sach as a magnetic
field, for example) we must, as before, add to the H
in the first equation the effective field V, but in the
second equation, since a change of sign of H is a s -
sociated with time reversal, the quantity added to H
is TV(t) =V(—t) (see below). The connection be-
tween the effective field and the external field and
the equations for G and F in an external field will
be considered in what follows. These formulas must
be supplemented with an equation for the determina-
tion of A, which is not hard to derive by the graphical
method.'-4 We give the final result:

Au- = 2 (<Pl<PvY (r) c p i ^ ) Fuu (x) |T=0- (3.4)

y ( r) characterizes the interaction of two quasipar-
ticles with zero angular momentum.

IV. THE INTERACTION BETWEEN QUASIPARTICLES

1. The Mechanism of Interaction of Quasiparticles

The interaction between quasiparticles in a nu-
cleus is decidedly different from the interaction of

two nucleons in vacuum. In fact, the interaction be-
tween two nucleons in vacuum is brought about by the
exchange of one or more mesons, whereas inside
nuclear matter there is another possible mechanism
besides this one, namely the exchange of a particle
and a hole; in the graphs for the scattering amplitude
these two mechanisms are represented in the following
way:

r = + | j

Wavy lines denote meson Green's functions.
Accordingly, the additional interaction is an inter-

action owing to polarization of the medium. Besides
this, because of the Pauli principle even those graphs
of the interaction that are not connected with the
polarization are changed owing to the fact that some
of the states are occupied by other nucleons and are
not accessible to the interacting particles.

Finding the interaction in matter in terms of the
interaction of two nucleons in vacuum is a compli-
cated problem, since the influence of the medium
very strongly alters the vacuum interaction. This
problem is not considered here. The interaction be-
tween quasiparticles will be expressed in terms of a
few constants, which are not calculated but must be
found from a comparison of the theory with experi-
ment. These constants are the same for all nuclei to
the same accuracy as the density of the nuclear
matter is constant.

We shall show that the range of the interaction
forces between quasiparticles is approximately the
same as the range ro of the interaction potential in
vacuum. In fact, the density of the nucleus is deter-
mined by the condition that the distance between par-
ticles must be of the order of r0. Consequently, the
momentum at the Fermi limit, which is determined
by the density, is connected with ro by the relation
(fi =m = 1)

pFr0~ 1.

The depth of the effective potential well in which
the nuclear particles move is of the order

Accordingly, all quantities for nuclear matter,
and consequently also the range of the effective in-
teraction forces, are determined by the quantity r0,
which is the only quantity of the dimensions of length
which is characteristic for the vacuum interaction,
and also for the additional interaction caused by the
polarizability of the nuclear matter.

In many cases it is required to find the scattering
amplitude for small four-momentum transfer.

As we shall see, all problems associated with an
external field with frequency w small in comparison
with the Fermi limit energy e-p, and with wave
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vectors small in comparison with the momentum pp
at the Fermi limit, reduce to finding scattering am-
plitudes with small momentum transfers (k « p F ,
CJ « e p ) . In this case, to obtain a convenient equation
we must classify the graphs involved in r in the
following way. We segregate in a block ft all graphs
which do not contain parts connected by the two lines
of a quasiparticle and a quasihole. The graphs con-
tained in ft are:

The graphs struck out are those which by definition
are not included in the block ft. It will be shown that
for small momentum transfers these graphs essen-
tially depend on the states of the particles undergoing
scattering.

For small-momentum transfers all of the graphs
except those struck out correspond to 6 -function
contributions to the block ft. In fact, the first, third,
and fifth graphs describe the interaction of free nu-
cleons and therefore are characterized by the range
r0; the fourth graph depends only weakly on the mo-
mentum transfer, and consequently is also charac-
terized by the single quantity r0, the only one of the
dimensions of length which appears in the problem.
In general all graphs containing more than two lines
depend weakly on the momentum transfer, since in
the integrations over the four-momenta of internal
lines it is large momenta and energies that are im-
portant (p ~ pp, e ~ e p ) . When in the momentum
representation the region of appreciable variation
is ~ ep, pp, in the coordinate representation the
graph gives a function like a 6 function, with a spread
~r0 .

By means of the block 5' all of the graphs occur-
ring in F can be classified in the following way:
1) graphs which do not contain two lines in the
quasiparticle-quasihole channel (the block ft);
2) with the quasiparticle-quasihole channel there
first appears the block ft, then the two lines (quasi-
particle and quasihole), and afterwards the sum of
all graphs which take the quasiparticle and quasihole
into the new state (i.e., I).

The graphical equation for F is then

\

r = , (4.1)

(4.2)

Since the block ft does not contain the two lines, it is
of 6-function form with respect to the difference of
the times. According to (4.2) this is also true of F.
Therefore both Green's functions are taken for equal
times. Let the 4th component transferred in F be
u [ F ( t ) - r F e " l u ; t ] . Then the expression GG in
(4.2) is given by

GXl (ti — i) Gl2 (t — tt) e-™'i dtt = e-^' -^ ~~ ""

The equation obtained for F is
+ CO '

2 frfc 1ft1 Vk e ^ ^ « r i (4.3)

Since in the coordinate representation the block ft
is like a 6-function and is determined by a region of
radius r0 near the point in question, we shall call the
quantity ft the amplitude of the local interaction, or
simply the local interaction.

In the case in which pair correlation is important,
or in which there are levels near the Fermi surface
which compete with the one-particle states, the ex-
pression for G^ is more complicated and the equa-
tion for F is not of the simple form (4.3).

2. Local Interaction of Quasiparticles

As has already been stated, the effective local in-
teraction between quasiparticles will be characterized
by a few numbers.

Let us first consider uniform nuclear matter, and
then introduce corrections brought about by the
finiteness of the size of the nucleus. In the momen-
tum representation the amplitude of the local inter-
action depends on the two momenta p1; p2 and on the
momentum transfer q:

P/,

9 =

and the analytic form is

Since the block ft depends weakly on the momenta
(changes appreciably for changes of the momenta by
amounts 6p ~ pp, <5e ~ ep) , for small momentum
transfer we can set q = 0 (to accuracy ~k/pp,
co/ep ). Moreover, for the study of the amplitude F
near the Fermi surface it is sufficient to know ft for
I Pi I = I P2 I = PF a n d e i = e2 = e F- Therefore ft de-
pends only on the angle between the initial momenta
p4 and p2. Besides this the interaction between the
quasiparticles depends on the spins of the quasipar-
ticles and on the isotopic spin. Assuming isotopic
invariance, we get
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S = C{M-/'T1T2 + (g + £'T1T2)<j1a2}, (4.4)

where f, f', g, g' are functions of the angle between
Pi and p2, and T, a are the isotopic and spin
matrices.

We take the normalization factor C to be

n (r)

Then f, f', g, g' are dimensionless quantities of the
order 1.

We have not included in (4.4) terms of the form
(Piffi )(P20'2)> which arise as a relativistic correc-
tion and go to zero for small speeds of the particles.

By the way, since the speeds at the Fermi limit
are not very small in comparison with the speed of
light (v/c ~ V4), these terms can be important and
their size must be found from experiment. To begin
with, we shall try to make the comparison with ex-
periment on the assumption that such terms are
small.

The so-called tensor forces are proportional to
k2 and therefore are not included in (4.4), although of
course they have affected the numerical values of the
terms that have been included.

Let us expand 5 in a series of Legendre poly-
nomials depending on the cosine of the angle between
Pl and p2:

x _ P1P2 -> __ \ i (> p (x\ (4 g\
I

The numbers fy, f£, gj , g\ must be found from a
comparison between theory and experiment. We note
that this expansion has nothing in common with the
usual expansion of the scattering amplitude in par-
tial waves, in which the expansion uses functions Pj
of the angle of deflection, whereas in 9 the angle of
deflection has been set equal to zero (k = 0).

The comparison with experiment shows that in
nuclei the zeroth harmonics are most important in
the expansion (4.5); that is, the local interaction of
quasiparticles does not depend much on their veloci-
ties.

Let us now consider what complications are in-
troduced by the finite size of the nucleus. Immedi-
ately outside the nucleus the interaction between
nucleons changes sharply—only the direct interaction
mechanism remains. Still, however, the interaction
is very different from that of free nucleons, since the
* functions of the nucleons are distorted by reflec-
tion from the surface of the nucleus. To take into
account the transition from the interaction inside the
nucleus to that outside it one must assign some sort
of dependence S ( r ) . Since this transition occurs in
a thin layer of the order of r0) and the interaction is
always averaged over a range of values of r which
is larger than ro, the results do not depend very
strongly on the form of the function 3 ( r ) . We can
take, for example,

where B'exOin) i s t n e value outside (inside) the
nucleus. The interaction 5 e x can be expressed in
terms of the interaction of free particles.

The equation for the effective field in an infinite
system involves % for a momentum transfer q
equal to the four-vector of the external field. There-
fore in sufficiently homogeneous fields we can set
q = 0 in 5 (to accuracy ~ k/pj1, w /eF) .

In a finite system, even when the external field
V° is uniform the effective field V is not uniform,
but changes considerably in distances of the order of
R. Therefore we must have an expression for 5 for
k ~ l /R; along with this we can set w = 0 if
a; « ep. Since

A_ _L _1_
PF ~ PFR ~ -41/3 '

it is sufficient to take into account in F only terms
linear in k and neglect terms ~k2, and consequently
to neglect the tensor forces, which contain k2. The
most general expression linear in k, symmetric in
the indices of the particles, and unchanged when t is
replaced by —t is the following:

g s ' - i (O i + ff2)[(Pi —p2), k]-

Under the interchange 1 Z 2 the quantity k = pj
— P2 goes over into — k. The quantity K is different
for like and unlike nucleons. It can be shown that
K = V2(K

lm + KnP) determines the spin-orbit term in
the Hamiltonian of a single quasiparticle,

&U = V.
dn—dr

The interaction 3 ^ leads to a spin-orbit correc-
tion to the magnetic moments of nuclei.

In some cases the finite size of the system has a
still stronger effect on the magnitude of the essential
momentum transfer. Namely, in some cases there
is an important contribution from terms describing
the reflection of quasiparticles from the boundaries
of the sys t em.^ Since on reflection there is a
change of the order pp in the momentum of the
particle, the momentum transfer will be of this same
order. In such cases one further constant must be
introduced into the theory (cf. ^ ).

3. Interaction through the " C o r e "

As is well known, in many nuclear calculations an
effective interaction is introduced with different
constants for different cases. The form used most
often is the quadrupole-quadrupole interaction, which
in the \ representation is written in the following
way:

where Q
moment

i s ^ e m a t r i x element of the quadrupole
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Octupole-octupole and other interactions are
written analogously. All of these interactions have
played an important part in the qualitative systemati-
zation of the experimental data.

We shall see that all of these interactions are ap-
proximate ways of writing analogous interactions
which can be derived rigorously from the expression
for the scattering amplitude and can be expressed in
terms of the constants of the local interaction 3f.

For simplicity we neglect the pair correlation,
and find the effective interaction between particles
belonging to a single shell.

Let us write the equation for the scattering ampli-
tude in the form

r(v,, v2)-y(v1 , v2)4-2rv(vi, v')A(v')T(v', v2).
v'

Here v\ denotes the set of indices (Ai, \[) of the
particle before and after the collision, and v2

= (M> ^2) denotes the same for the second particle;
v' denotes the indices for the intermediate state.

Graphically we have

r

A"

The summation in this equation goes over all
states \' and \" such that one of them is above the
Fermi limit and the other below it, in accordance
with the value

We can make a renormalization of the equation for
F so that the summation will go only over the states
of the shell to which the particles undergoing scat-
tering belong, for example over only the states of the
last unfilled shell. In the renormalized equation a
nonlocal interaction ft' appears instead of the local
interaction 3f; ft' includes the part of the interaction
caused by the excitation of other shells (excitation of
the "co re" ) . In fact, let us introduce the quantity ft'
according to the formula

ft' = ft + ft'^ft = (i + & ft. (4.6)

The index 2 on the A shows that the summation goes
over all shells except the one to which the particles
undergoing scattering belong. Let us multiply the
equation

(4.7)

by the factor 1 + ft'A2 on the left. Then

Since the usual way of including the interaction in
nuclear calculations is to sum over only the states of
the last shell, the formulas must involve the compli-
cated quantity ft' instead of the simple local interac-
tion ft. This is the reason it is necessary to intro-
duce different constants for different processes.
Meanwhile, by Eq. (4.6), ft' can be expressed in
terms of the quantity ft, which is the same for all
nuclei (except the very lightest) and for all types of
transitions.

The quantity ft', like ft, cannot be put in the form
of a product of two factors:

(^,A2 I ft' I ^ 4 ) ¥= CQ^^Qx-At-

For example, the simplest form of ft is that with
neglect of velocity-dependent terms:

Here the index 1 means that the summation goes over
only the states of the shell we have singled out.

and this does not break up into factors.
In studying quadrupole excitations, for example,

it is necessary to form from the ingoing indices of
ft and ft' a superposition which has angular momen-
tum 2, and solve the corresponding equation for the
radial matrix elements.

The representation of ft' in the form of a product
distorts the radial dependence of this quantity and
can lead to considerable e r ro rs . The solution of
Eqs. (4.6) and (4.7) (after separating the angular
variables) with a computing machine is such a s im-
ple problem that it is pointless to introduce assump-
tions to simplify the interaction ft.

V. NUCLEI IN EXTERNAL FIELDS

Many properties of nuclei (static moments, t ransi-
tion probabilities, the energies of the first levels, and
so on) can be determined easily if one knows the
change of the density matrix of the quasiparticles in
an external field and its change when particles are
added to the system. As we have seen, the density
matrix is simply related to the Green's function
(page 290). The procedure for finding it is as follows.
One first determines the change of the Green's func-
tion in the effective field which arises in the system
under the influence of the external field. The effec-
tive field can in turn be expressed in terms of the
change of the density matrix. The result is that one
has a system of equations for the determination of
the effective field. Knowing the effective field, we
can easily find the change of G, and consequently the
change of the density matrix.

1. The Effective Field

Let us determine the change of the Green's func-
tion of a quasiparticle in an external field, at first
neglecting the* pair correlation. For simplicity we
confine ourselves to the first approximation in the
field treated as a perturbation. We shall take the
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interaction between the particles into account exactly.
We write down some graphs which appear in the
Green's function G of the quasiparticle in the field:

+ . . . =

= G + GVG .

Here a circle denotes direct interaction of the quasi-
particle with the external field V°

= eqV° ,

eq being the "charge" of the quasiparticle. As we
shall see, for some types of field e q ^ 1, which
means that the external field acting on the quasi-
particles is different from the external field applied
to the particles. For noninteracting particles we
have

Gn — = Gn + Gn V°Gn

Accordingly, the shaded triangle in (5.1) replaces the
point in this diagram and represents the effective
field V acting on a quasiparticle.

Let us derive the equation for the field V. Among
the graphs that appear in V there is one graph which
does not contain the interaction between the quasi-
particles ( eqV°). All the other graphs have the
following structure. If we move in the direction from
the base toward the vertex of the triangle, all graphs
begin with an interaction, after which there are two
lines of free motion, and then a set of graphs repre-
senting the effective field. We introduce the block %,
which does not contain any parts connected by two
lines. Then the effective field is determined by the
equation

V = eqV° + %GGV. (5.2)

Or graphically

V —

The first term in V describes the direct action of
the external field on the quasiparticle. The second
term gives the additional field which arises owing to
polarization of the medium, i.e., is brought about by

the action of the redistributed nucleons of the nu-
cleus.

In the X representation we get

2 [ U') A

where

As we have seen (page 293)

(5.4)

2. The Effective Charge of Quasiparticles in an
Unfilled Shell

For processes associated with transitions inside
the last unfilled shell, it is convenient to carry out a
renormalization of Eq. (5.3) in such a way that the
summation will go over only the states of the last
shell.

We break A up into two terms

is different from zero only when both states
lie outside the last shell, and (A-i)w' *s different
from zero when one or both states lie in the last
shell. Since in A2 both states are sufficiently far
from the Fermi surface, for them one can always
neglect the pair correlation and in general the influ-
ence of any states close to the Fermi surface. There-
fore A2 is given by the simple expression (5.4').

We write the equation for V in the symbolic form

In the third term we replace V by the right member
of this equation. Repeating this operation, we get

F = eq {1 + %

We denote the coefficient of AjV in curly brackets by
8 ' :

(5.5)

In the X representation we have

) ei-Tj+a. ( U ' I & ' I k*K)- (5.6)

The sign " on the sum means that neither X nor x'
lies in the last shell.

This is the equation for the effective interaction of
quasiparticles in the last shell.

We now denote by V' the quantity

} = eqV> + (5.6')
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In these notations the equation for V takes the
form

(5.7)

In Eq. (5.7) the summation goes over states, one or
both of which are in the last shell. The quantity At

in (5.7) must be determined with effects included of
the distortion of the Green's functions caused by the
influence of nearby levels. The quantity V can be
written formally as a product

The effective charge (eff)xx' depends on the states
A and A'.

3. The Effective Field in the Case of Pair Correlation

We first write the equation for V in such a form
that it is valid independent of the form of the Green's
functions of the quasiparticles. The second term in
the equation for V can always be represented in the
form

V— eqV° = %SG, (5.8)

where <5G is the change of the Green's function in the
field. In fact if we move from the direction of the
free ends of the lines, the graphs of V — eqV° begin
with the interaction, and if we separate off the block
5, which does not contain two lines, after this there
are graphs beginning and ending with a quasiparticle
and containing the external field—i.e., the change of
the Green's function in the field. In the special case
in which

we get the former expression for V. In the case of
pair correlation there is a more complicated expres-
sion for the determination of 6G.

We note that the expression (5.8) has a very intui-
tive meaning. Since 5 is of 6-function form in the
time, the factor SG(t], t2) in (5.8) is taken for equal
times. Let us agree to take <5G( t1; t2) at t2 = tj + 0.
Then, as we have seen in III. 3, the Green's function
G(t t, tt + 0) is equal to the density matrix

and therefore we can write the right member of (5.8)
in the form

I U') (5.8')

In this form the expression (5.8) acquires a simple
physical meaning—the additional field which arises
owing to the polarization of the medium is the matrix
product of the local interaction of the quasiparticles
and the change of the density matrix. In particular,
if 5 does not depend on the velocities and spins, i.e.,
if its form in the coordinate representation is

8 (r,, r2, r3, r4) = fto6 (r4 — r2) <5 (r, — r3) 6 (r3 — r4),

we get

But the quantity

is the change of the density of quasiparticles, and the
additional field in the coordinate representation is

V — eqVo = ^obn(r, t),

as must be the case for a 6-function interaction.
Accordingly, our problem is to find the change dp

of the density matrix in an external field, for the case
of pair correlation. To do so we find the change of G
in the external field. We have already stated in III.
2 how to introduce the effective field in the equations
for the functions G and F . We have only to make the
procedure somewhat more precise. The equations
(3.3) for G and F in the field now take the form

) G = iXF+i8(r — T')8 (t — t

(5.9)

The field V 1 in the equation for F is connected with
the field V = V (u>) e" i a j t by the relation [4]

VT {t) = ± V ( — w)e-«.

The plus sign corresponds to fields which are even
under the replacement of t by — t, and the minus
sign to fields which are odd.

We have here inserted the quantity A instead of
A, since the change of A in the field must also be
taken into account.

Accordingly, Eq. (5.9) must be supplemented with
an equation for the A in the field. In sufficiently
uniform fields the relation between A and F is the
same as before:

t). (5.10)

Equations (5.9) and (5.10) allow us to find G, F, and
A in fields which, while they are weak in comparison
with the energy at the Fermi limit, are comparable
with A and with the distance between the levels in the
nucleus:

A < V < eF.

For fields V ~ ejr all of the characteristics of the
quasiparticles are changed, and the theory becomes
too cumbersome to be worth studying.

In what follows we confine ourselves to the case
of weak fields, for which V « A. Then Eqs. (5.9) and
(5.10) can be expanded in powers of the field V. Con-
fining ourselves to the first term of the expansion
with respect to V, after simple algebraic steps we
get
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—F*VTF—

(5.11)
Here

= 6A = A —A, <2> = 8A* = A* — A*,

where d 1J and d can be expressed in terms of
<5F and SF* by means of (5.10).

Equations (5.9) and (5.10), together with (5.8'),
which expresses the effective field in terms of the
change of the density matrix, are a complete system
of equations for the determination of V and Sp.

Knowing V and Sp, one can, as we shall see, cal-
culate the probabilities and frequencies of transitions.

Let us write the change of the density matrix
symbolically in the form

Sp = AV.

On the other hand, we had for V:

Substituting V in the expression for Sp, we get an
equation for the change of the density matrix of the
quasiparticles in the field

In the A representation, for the case in which pair
correlation is unimportant, we can use the expres-
sion (5.4') for A. Then

- = (nk — nv) {eqV{v + 2 I 9 I

This equation coincides exactly with the kinetic
equation for the density matrix of a gas of particles
with the interaction 3 with the charge eq, which
equation can be derived very simply if we consider
a gas of noninteracting quasiparticles in the field
y_[4]

Accordingly in the case in which there is no pair
correlation the equation for the effective field can be
derived even without the Green's functions. In the
case in which pair correlation is important, no sim-
ple equation for p exists, and the derivation of equa-
tions for the effective field without the Green's func-
tions is an extremely cumbersome task.

4. The Change of the Density Matrix when the
Number of Particles is Changed

Let us now consider the change of the density
matrix which arises from a change of the number of
particles in the system. Suppose that along with this
there have been changes 6n^ in the occupation num-
bers of the quasiparticles. We shall show later how
the Sn^ are determined.

The expression for the change of the nondiagonal
part of the density matrix

if we take V to mean the effective field which has
arisen from the rearrangement of the occupation
numbers,

= 2 ' W , I 3-1 U') AxvV%v S (^21 31 U) flu*. (5.12)

Accordingly, if the 5n^ are known, we can find V and
the nondiagonal part of the density matrix. For the
change of the density matrix we have the inhomogene-
ous equation

(6PWa = h&Mx! + (1 — fixij.j) AXli2 2 (^21 % IM-') (&p)v%-
(5.13)

By means of the equation for the amplitude F we can
put Eqs. (5.12) and (5.13) in a different form.

We write (5.13) in the symbolic form

where

Let us compare this equation with the equation for
FSop

We see that

or in the A representation

By means of F we can write the equation for V in
the form

(l+AT)eqV<>. (5.15)

Similarly, Eq. (5.13) can be written in the form

Sp = 60p + A%bp = 60p -f 43-8cp + ^5^380p + . . . = ( 1 + - AT) 8cp.

(5.16)

We shall now see how to determine 60p, i.e., the
diagonal part of the change of the density matrix of
the quasiparticles. The effective field changes the
energy of the quasiparticles. In first order in V we
have

The new occupation numbers n^ are found from
the condition that the energy of the system be a mini-
mum. If the distance between levels near the Fermi
surface is large in comparison with the interaction
energy, the requirement that the energy be a mini-
mum reduces to the condition

f
. M = \ (5.17)

remains valid also in the absence of an external field,

I 0, ej.>(x,

where JX is the new chemical potential and is deter-
mined by the change of the total number of particles
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in the system

If the change of the energy e^. i-e-> VAA> i s s m a l l e r
than the distance to the nea r e s t level, the change of
the n^ consis ts of the added pa r t i c l e s going into the
nea re s t free p l ace s . If, on the other hand, the effec-
tive field V is so la rge that the levels in te r sec t , then
there is a m o r e complicated r e a r r a n g e m e n t of the
occupation numbers in accordance with the condition
(5.17). It is easy to see that when an odd par t ic le is
added to a filled shel l the field which a r i s e s is of the
o r d e r V ~ e p / A , which is s m a l l e r than the dis tance
to the nea r e s t level . Therefore in this case the added
par t ic le goes into the n e a r e s t level Ao, and the change
in the occupation numbers i s

Accordingly, as long as the re is no in te rsec t ion of the
levels , Sn i s de termined very s imply. If, however,
the levels in tersect , then Sn^ is de termined in the
following way. Having ass igned a definite r e a r r a n g e -
ment of the pa r t i c l e s among the levels , we mus t d e -
t e rmine <5p. Then from Sp we de te rmine V, and by
means of V we de te rmine the new energ ies e^. Then
the energy of the sys tem of quas ipar t i c les is ca lcu-
lated, with the interact ion g taken into account. This
so r t of calculation mus t be made for s eve ra l tes t
dis t r ibut ions n^. The distr ibution with the lowest
energy gives the new s ta te of the s y s t e m .

Accordingly, in fields which cause in tersec t ion of
levels the determinat ion of the <5n̂  with the i n t e r a c -
tion between quas ipar t i c les included is a complicated
problem, which mus t be solved special ly for each
concre te c a s e .

In the l imiting case of very s t rong fields the p r o b -
lem becomes s imple r again, s ince in this case many
levels a r e involved and the change of the density
mat r ix can be found by using the quas ic l a s s i ca l a p -
proximat ion .

5. The Calculation of Averages

Suppose it is requi red to calculate the change of
the average value of a quantity Q, for example the
quadrupole moment o r the magnetic moment, when
the number of pa r t i c l e s is changed o r the sys tem is
exci ted.

The quantity 6 ( Q) is given by

(Q) =

Here we have allowed for the fact that the charge of
a quas ipar t ic le with r e spec t to a field Q may be
different from the charge of the pa r t i c l e ( eq * 1 ) .
Using the formulas (5.15) and (5.16) given in the p r e -
ceding section, we can wr i te this express ion in a
m o r e convenient form

6Q - eqQ6p •-= egQ(l+ AT) 60p = V [Q] 60p,

V[Q] = eqQ + (5.18)

Here we have denoted by V [Q] the effective field
caused by the external field Q. Accordingly, the
change of the average value is given by the following
simple formula:

6Q — eq 2 Vkk[Q] brix- (5.19)

Let one pa r t i c le be added to a magic nucleus . Since
in this c a se there is no intersect ion of t e r m s , one
quas ipar t ic le is added to the nucleus in a s ta te Ao
above the filled levels of the magic nucleus . T h e r e -
fore 6ni, is given by

and in this case the change of the average value is
given by the diagonal ma t r ix e lement of the effective
field for the s ta te Ao

6. The Frequencies and Probabilities of Transitions

Let us wr i te the equation for V, as before, in
symbolic form

Here 6p = AV is the change of the density ma t r ix of
the quas ipar t ic les in the field. The eigenfrequency
u>s of any s ta te s is determined by the condition

The res idue of V at the pole sa t is f ies the equation

X (s )=S4sx
(s )- (5-20)

The solution of this equation de te rmines the e igen-
frequencies u>s and eigenfunctions X^ 'S we shall
see that the t ransi t ion probabi l i t ies can be expressed
in t e r m s of these quant i t ies . Since (5.20) de te rmines
X up to a constant factor, we s t i l l have to find the
normal izat ion of X- Substituting the express ion for
V nea r the pole in the equation for V, we get

Vr (co-Ws) = eqV> (CB-CB.) + 5 ^ - X (<">-<».) + UsV (CB-«B,),

or

Multiplying by xA and using (5.20), we get

Accordingly, x is normal ized in the following way:

S x ( v ) ^ X ( v ) = - e , 2 x ( v ) ^ ( v ) r > ( v ) , (5.21)
V

where v denotes the se t of indices A ^ -
We have s t i l l to exp res s the t rans i t ion probabil i ty
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in terms of the quantities x and A. The number of
transitions per unit time into the state s is given by
the well known formula

W0s=^2n\H'0s\
26((o—cos), as = Es — E0, (5.22)

where the perturbation operator H' is given by

The transition probability can be expressed simply
in terms of the average value of the perturbation over
the excited ground state

s — E0 + a>- ivJ

The transition probability is

W0s = 21m(H')s, (5.23)

where < H ' ) s is the term of (H') which corresponds
to the transition to the state s. But ( H'> can be
expressed in terms of the change 6p of the density
matrix of the quasiparticles in the field,

(H1) = q q

Introducing V near the pole, we find

H q a — as + iy
and then by (5.23)

WQS = 2neq 2 F° (v) 4 (v) x (v) 6 (o>-o (5.24)

Let us denote by p' the residue at the pole of the
density matrix in the field

Then from the normalization of x we get the normal-
ization for p '

and Wos can also be written in the form

(5.25)

(5.26)

7. The Conservation Laws and the Charges of
Quasiparticles for Various Fields

The conservation laws impose strong restrictions
on the charge e q of quasiparticles. The derivation of
the results given below is contained in ^ . We confine
ourselves to suggestive physical arguments.

Firs t let us consider the physical consequence
which arise from the requirement of gauge invariance.

The physical meaning of this requirement is as
follows. Let vector fields afn /8xi and dfp/dxi be
applied to neutrons and protons. As is well known,
such fields do not produce any physical changes in
the system. In particular, there is no polarization of
the medium, and the effective field acting on the

quasiparticles is the same as the external field.
It follows from this that in the case of a scalar

field acting on the protons the charges of the proton
and neutron quasiparticles are:

For a vector field there is a more complicated
expression, which we shall give below.

We can obtain further information on the charges
of quasiparticles by using the fact that in some fields
which are not merely fictitious there is no redistri-
bution of the particles, and consequently the effective
field is equal to the external field. For example, in
a uniform field which acts equally on the two types
of particles, the system vibrates as a whole without
any internal changes. From this condition we easily
find that

I Pa,

i.e.,

Similarly we conclude that the sum e§P + eqP = 1 for
any perturbation which commutes with the Hamilton-
ian and has only diagonal matrix elements in the A
representation, i.e., for perturbations of the form

H' = 2 o-i^xQt.%,

if the operator H' commutes with H.
In fact, it is not hard to see that such a perturba-

tion produces no polarization of the medium. We
shall call this kind of perturbation a diagonal pertur-
bation. Let us derive the expression for the effective
charge in the case of a perturbation of the form
Q3£ Since the charge e q is determined by the local
interaction of the particles, its value in the nucleus
differs little from the corresponding quantity in un-
bounded nuclear matter of the same density. Since
the spin-orbit interaction in nuclear matter is small,
the operator for the total spin of the system commutes
with the Hamiltonian. Moreover, in a sufficiently
large system the spin-orbit correction to the Hamil-
tonian of the quasiparticles is unimportant and can
be omitted. Then the functions are eigenfunctions of
the operator H'. Accordingly, the perturbation is
diagonal and

Let us write this condition in the form

The quantity £ s cannot be calculated and must be
found from experiment. This same quantity occurs
in the renormalization of the axial-vector /3-decay
constant in the nucleus. For allowed transitions the
interaction with the electron-neutrino field gives a
perturbation in the Hamiltonian of the nucleons which
is proportional to ( T X ± irv)c7z (Gamow-Teller transi-
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tions). Let us find the local charge of the quasiparti-
cles for this sort of external field.

We first consider the field TZ<TZ:

The inhomogeneous term (containing the external
field) in the equation for V is

eqV°\Tzaz\: zaz -= eq[a»\ crz — eq [a™] az

gpp
1

ev.p
<1

'I
enrt

q
Accordingly,

Owing to isotopic invariance the charge will be the
same for the field ( T X ± iry)az. For the field
TX ± iTy (Fermi transitions) we get (by first consid-
ering the field r z ) the value eq = 1.

We give a table of the values of the charges eq
for various fields.

Type of field

Scalar, / (2)

Vector, pa

Spinor, aa

Orbital, rXp

/S-decay, 1 x~' "'

'V

ePP

— 1

= 1

e'i

= 1

= 1

vneQ

= 1-

3
= "3

—s«

i

-2C

Charges

- = o

fnp 1
'! m*'

Since the charges eq are determined by the local
properties of the medium, these same expressions
are also valid when the fields in question are multi-
plied by smooth functions of the coordinates. For the
same reason the charge for the orbital field ( r x p)
is equal to that for the vector field (p a ).

VI. NUCLEAR MOMENTS

1. The Scheme for Calculating Nuclear Moments

The change of the energy of the nucleus in a static
external field, for example in the electric or mag-
netic field of the atomic electrons, is determined by
various moments. The change of energy in a uniform
magnetic field is determined by the dipole magnetic
moment of the nucleus, which is called simply the
magnetic moment. In cases in which nonuniformity of
a magnetic field is important, one must introduce
octupole magnetic moments. The interaction with the

electric field of the atomic electrons is in practice
determined by two moments—the mean square elec-
tric radius of the nucleus, which occurd in the for-
mula for the isotopic shift of atomic spectral lines,
and the quadrupole moment, which is found from
hyperfine structure. All of these quantities are ex-
pressed as averages of appropriate operators over
the ground state of the nucleus. The moment Q is
given by

As we have seen, the changes of averages when
the number of particles in the nucleus is changed can
be calculated in terms of the change dp of the
density matrix of the quasiparticles, or, still more
simply, by finding the effective field produced by the
external field Q (i.e., the addition of a term
H' = S Qn to the Hamiltonian) and determining the

n
change in the occupation numbers of the quasiparti-
cles which occurs in the change from one nucleus to
the other. The change of the moment Q is given by

- sP egsP<? = 2 I'A (6.1)

where eq is the charge of the quasiparticles in rela-
tion to the field Q. Since even-even nuclei have no
magnetic moments, to calculate the magnetic moment
of an even-odd or odd-even nucleus it suffices to find
the change of the density matrix when one particle is
added to an even-even nucleus. In the domain of
even-even nuclei the quadrupole moments are zero,
and therefore also for the calculation of the quadru-
pole moment of an adjacent nucleus it suffices to know
the change of the density matrix when one particle is
added.

Accordingly, the scheme for calculating static
moments is as follows.

One finds the effective field V [ Q ] corresponding
to the field Q. The field Q is the quantity r2P2(cos 6)
in the case of quadrupole moments, the quantity r2

in the case of the isotope shift, or, finally, the oper-
ator for the magnetic moment of one particle, when
one is finding the magnetic moment of a nucleus. One
next determines the change <5n̂  of the number of
quasiparticles in the level X when one particle is
added. After this Q is calculated by means of Eq.
(6.1).

In the simplest case of the addition of one particle
to a doubly magic nucleus we have

where Ao i s the state in which the odd quasiparticle
appears. In this case

Let us display the isotopic indices in these rela-
tions. Suppose that, as in the case of quadrupole
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moments and isotope shifts, the operator Q acts only
on protons. Then

SQ = SQV = = S ]

There is an analogous calculation for magnetic mo-
ments, with contributions from the operators for both
the proton and the neutron moments.

2. Magnetic Moments

The operator for the dipole magnetic moment of a
single nucleon can be written as the sum of two terms

where V^ 1 + T Z ) and V2( 1 ~ Tz^ a r e matrices cor-
responding to the proton and neutron states and the
total angular momentum is j =1 +Vi<J< where I is
the orbital angular momentum; yp and y n are the
proton and neutron gyromagnetic ratios.

It is necessary to find the effective field V [/n0]
corresponding to the operator n, and to calculate the
magnetic moment from the formula

Magnetic moments of higher multipole orders can
be calculated by an analogous procedure.

It turns out that the change of the orbital part of
the magnetic moment under the influence of the inter-
action between quasiparticles is small. The spin part,
however, changes by a large amount.

The paramagnetic susceptibility tensor of a nu-
cleus is determined by the constant g in the spin-
orbit interaction between the quasiparticles. In some
cases the susceptibility differs from 1 by a sizable
factor, and it takes its largest values at the periphery
of the nucleus. Moreover, the susceptibility depends
on the angle between the direction of the magnetic
field and the radius vector r . This fact gives a quan-
titative explanation of the so-called I -forbidden transi-
tions (see below). For a table of experimental and
calculated values of the magnetic moments and octu-
pole magnetic moments see^4'6'7-1. There is satisfac-
tory agreement with experiment.

3. Quadrupole Momenta and the Isotope Shift

In order to calculate quadrupole moments it is
necessary to find the effective field produced by an
external scalar field equal to V° = r2P2 ( cos d ). The
isotope shift is determined by a field V° = r2.

The change of the quadrupole moments and the
quantity ( r 2 ) have been calculated in'8-1. The equation
for the effective field was solved with computing
machines.

A comparison of the theory with experimental data
showed that in this case (unlike that of the calculation

of magnetic moments) it is necessary to take into ac-
count the dependence of the interaction on the radius
near the surface of the nucleus. The comparison with
experiment makes it possible to determine both in-
ternal and external values of the constants f0 and i'a,
and then to calculate the values of the quadrupole
moments and of the quantity 5 ( r 2 ) for a large num-
ber of elements. Although, as must be the case, the
values found for f0 and fj outside the nucleus are not
equal to the values for free nucleons (see below), they
are not very different from these values.

A table comparing the theoretical and experimental
values of 6<r2P2) and <5(r2) is given in1-4-1.

In all cases there is agreement with the experi-
mental values to within 30 to 40 percent (except for
light elements).

VII. ELECTROMAGNETIC AND J3-DECAY
TRANSITIONS

1. Dipole Excitations

We shall consider dipole transitions under the
action of y-rays of not very high frequency, u> « e-p.
For this case we can neglect the variation of the field
over the radius of the nucleus ( k2R2 « 1). To study
the excitation of the nucleus, and not its motion as a
whole, it is convenient to go over to the center-of-
mass system. There is then an inertial field in addi-
tion to the electric field acting on the protons, and the
perturbation of the Hamiltonian of the system is of
the form ( e = 1)

H' = E I — y r-——
p

The effective field which arises from the pertur-
bation H' satisfies the equations

yn £_
A

(7.1)

For the position of the maximum of the giant-reso-
nance curve we get

An analogous relation can be derived for the width
of the maximum [9,10]

where Fo is the width and u j is the position of the
maximum as found for a system of noninteracting
particles in a well with a diffuse edge. These results
are in satisfactory agreement with experiment.

Inclusion of the velocity dependence of the forces
between the quasiparticles changes the sum rule for
dipole transitions. The result is
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where fj and i{ a r e de te rmined by the f i rs t harmonic
of the expansion (4.5). Fo r ft = f{, which means that
there a r e no exchange forces , the sum rule is of the
usual form.

2. Quadrupole Transitions

There a r e many well studied quadrupole t r a n s i -
tions with sma l l frequencies ( u> ~ A ) . F o r these
t rans i t ions one mus t wr i te express ions which take
p a i r co r re la t ions into account.

F o r the study of quadrupole t rans i t ions we mus t
find the effective field caused by an ex terna l field of
frequency u) of the form

F° = r2P2 (cos 9) = Q.

The equation for the effective field is of the form

yv ( r) = vo (r) •

w h e r e <5nP(r ) a n d 6 n n ( r ) a r e t h e c h a n g e s of t he

d e n s i t i e s of p r o t o n s a n d n e u t r o n s in t h e f i e ld .

F o r t h e s t u d y of q u a d r u p o l e c o l l e c t i v e v i b r a t i o n s

i t i s c o m m o n p r a c t i c e t o u s e a s o - c a l l e d q u a d r u p o l e -

q u a d r u p o l e i n t e r a c t i o n of t h e f o r m

A\\' • F o r smal l frequencies the probabili ty of the
t rans i t ion from s ta te Ao to s ta te Ai is de termined by
the ma t r ix e lement V^o^ of the s ta t ic effective field,
which rep laces the quantity V^ ^ of the one-par t ic le
model in the formulas for the t rans i t ion .

F o r t rans i t ions with smal l frequencies there is
usually a s t rong effect of interact ion between config-
urat ions, which leads to additional r e s t r i c t ions on the
transitions.'-13^

The configuration interact ion is to be calculated by
the same scheme as used with the shell model, except
that we mus t take as the interact ion the effective in-
terac t ion (V in the las t shell , and it mus t be found
from the equation

where A' means that the sum is taken over all shel l s
except the las t .

4. /} Decay

As is well known, /3 t rans i t ions in nuclei (/3 decay,
K cap ture) a r e caused by the following per turbat ion:

/ ' = Gv + Ys) <tvd

The only r ea son for this choice of the in teract ion is
that with it Eq. (7.1) reduces to an a lgebra ic equation.

The interact ion ffQ leads to an effective field of
the form

i.e. , it is equivalent to the assumpt ion that the change
of densi ty in the field is

dn (r) = a (r) P2 (cos 9) = (cos 9).

This assumpt ion d i s to r t s the radia l dependence of
6n( r ) , and consequently a lso d i s to r t s the quantity
V — V°. The e r r o r is pa r t i cu la r ly l a rge in cases in
which s ta tes with l a rge angular momenta a r e i m p o r -
tant . The main contribution to V — V° is then from
values of r nea r the surface of the nucleus, where
fo( r ) and 6n( r ) va ry rapidly with r .

F o r a number of cases in which pa i r co r re la t ion is
unimportant the in tensi t ies of one-par t i c le quadrupole
t rans i t ions have been calculated in^11 . There is
sa t i s fac tory ag reement with the exper imenta l data .
The value for fo( r ) used in the solution is the same
as in the calculation of quadrupole moments and the
isotope shift.

3 . Magnetic Transitions

The intensi t ies of one-par t i c le of collective m a g -
netic t rans i t ions can be calculated by the same
scheme as is used for e l ec t r i c transitions.'-12-'

The only difference between the equations here
and those used for calculat ing magnet ic moments i s
that the frequency ui appear s in the denominator

w h e r e * = * + y 4 a n d * + , * a r e t h e o p e r a t o r s f o r

c r e a t i o n a n d a n n i h i l a t i o n of a n u c l e o n , w h i l e <p2 a n d

cpe a r e t h e n e u t r i n o a n d e l e c t r o n f u n c t i o n s . T h e f a c -

t o r C t i s t h e r a t i o of t he a x i a l - v e c t o r a n d v e c t o r i n -

t e r a c t i o n c o n s t a n t s :

C1 = - ^ = — 1 . 2 .

T + i s t he i s o t o p i c m a t r i x t h a t t a k e s a p r o t o n i n t o a
n e u t r o n :

. 0 1

Neglecting re la t iv is t ic cor rec t ions for the nucleons,
we get

MVyv (1 + ClY5) f = OHO^

where a = 1, 2, 3 .
In the A represen ta t ion we get

' = Gy 2
XI'

(7.2)

where j ^ = ( j 0 , j a ) i s the c u r r e n t densi ty of the light
p a r t i c l e s .

To obtain H' in the case of allowed t rans i t ions we
reg a rd j ^ ( r ) as independent of r (the Coulomb func-
tion of the e lec t ron i s replaced by its value at the
surface of the nuc l eus ) . In the c a s e of F e r m i t r a n s i -
tions the difference between the effective and external
fields is due only to the Coulomb cor rec t ions , s ince
when the Coulomb field is neglected the per turbat ion

produces no polar izat ion of the medium, owing to
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isotopic invariance, just as no polarization is pro-
duced by the perturbation

The equation for V [T+ ] shows that corrections ap-
pear only in second order in the ratio V Q / C ^ , where
V Q is the Coulomb field. Therefore the corrections
to the Fermi matrix element, as calculated on the
assumption of strict isotopic invariance, are negligi-
bly small (~ 0.3 percent).

In the case of Gamow-Teller transitions the equa-
tions for the effective field are very similar to those
for the effective field corresponding to the spin part
of the magnetic moment.

The charge of the quasiparticles for the field
T+ a+ is given by

In the sums over A. and X' one state refers to the
neutrons, the other to the protons. As in the case of
the spin part of the magnetic moment, the main terms
in the sums are those for which A. and X' differ only
in the sign of the projection of the spin along the
direction of the angular momentum j .

In the case of mirror nuclei the Gamow-Teller
matrix element can be expressed rigorously in terms
of the magnetic moment of the daughter or mother
nucleus in the ground state. Substitution of the ob-
served magnetic moments gives amplitudes for the
/3 transitions which agree with the observed values
within experimental er ror .

A calculation of the probabilities of allowed p
transitions with pair correlation taken into account
approximately is given in [14]. The same paper gives
a comparison of the theoretical and experimental
values of the probabilities for allowed transitions.

In all cases in which there is no configuration per-
turbation one gets satisfactory agreement of the ab-
solute transition probabilities with the experimental
values. The values taken for the spin-spin interaction
constant in this calculation are the same as in the
case of magnetic moments.

5. Z-forbidden Transitions

Among magnetic transitions and among allowed /J
transitions there are some in which there is a change
of the orbital angular momentum by two units.

Such I -forbidden transitions are impossible in the
one-particle model, since the matrix element of or or
CTT+ is equal to zero for transitions in which there is
a change of the orbital angular momentum.

The explanation of I -forbidden transitions is as
follows.

The transition probability depends on the matrix
element of the effective field, not the external field.
In the cases of either an external field a or an ex-
ternal field OT+ the effective field is of the form

The second term in this expression has matrix ele-
ments for states with values of the orbital angular
momentum differing by two units. The intensities
calculated in this way agree well with the experi-
mental probabilities of I -forbidden transitions.'-12-'

6. M Capture

In n capture, unlike /3 decay and K capture, the
momentum carried away by neutrinos is large, and
the energy imparted to the nucleus is of the order of
10 to 15 MeV. In the perturbing Hamiltonian the light-
particle current cannot be regarded as independent
of r . Moreover, one must supplement the perturba-
tion with the induced pseudoscalar interaction and
so-called weak magnetism. These terms make a
negligibly small contribution in the case of 0 decay,
but give a considerable correction for /i capture. In
other respects the calculations of the probability of
/x capture is made according to the same scheme as
the calculation of dipole or quadrupole transitions
with large excitation energies. The summation over
states in the equation for the effective field is carried
out in the quasiclassical approximation in'-15 . The
formula obtained for the dependence of the /^-capture
time on A and Z is in good agreement with experi-
ment. More exact numerical results are obtained
in '-16-' by solving the equation for the effective field
with a computer. A comparison of the theoretical and
experimental values of /x-capture times is given in
the latter paper.

CONCLUSION

The purpose of the approach to nuclear calcula-
tions which has been described is to formulate all of
the problems which have been semiquantitatively
solved with models in rigorous language and express
them in terms of universal constants of the theory.

A satisfactory correlation of the various phenom-
ena of nuclear physics has been obtained. As we have
seen, for this it is sufficient to introduce an interac-
tion between quasiparticles which is characterized by
constants f0, fj, go. go inside the nucleus and analo-
gous constants outside the nucleus.

To get more reliable results one must make the
interaction between quasiparticles more exact. A
more precise comparison of the theory with experi-
ment will also make it possible to find further har-
monics in the expansion of 3 in terms of the angle
between the initial momenta of the particles.

We shall list some problems which have not yet
been solved.

Let us begin with nuclear reactions.
For the treatment of reactions in which an inter-

mediate nucleus is formed it is not hard to reformu-
late existing calculations in the language of interact-
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ing quasiparticles, using the gas approximation for
the quasiparticles, as before.

More interesting results can be obtained from the
consideration of direct nuclear reactions. Direct
nuclear reactions have been studied in detail inL

by the method of separating off the singular parts of
the appropriate graphs. As in the approach given
here, one then has to introduce constants character-
izing the nonsingular parts of the graphs.

In the simplest cases these constants can be ex-
pressed in terms of the constants we have introduced
for the interaction between quasiparticles.

First, the elastic and inelastic scattering of nu-
cleons is described by the graphs for the scattering
amplitude which we have studied above,

,X

r =

Here Ai, A 2 are the initial and final states of the
nucleon undergoing scattering, and A and A' corre-
spond to a one-particle excitation.

Accordingly, this reaction can be expressed in
terms of the interaction constants which appear in OL

Furthermore the block

= Y > ~

which corresponds to scattering with production of
a collective excitation, is the residue at the corre-
sponding pole of the scattering amplitude, and conse-
quently can be expressed in terms of JV.

The reactions (yn) and (yp) also do not require
the introduction of any new constants.

For processes occurring near the Fermi surface,
reactions with production of deutrons or a particles
can be described with one additional constant.

In the case of a particles this same constant ap-
pears in an improved theory of a decay. In fact the
irreducible block which characterizes the formation
of an a particle from quasiparticles lying near the
Fermi surface is of 6-function type in the coordinate
representation and is characterized by a single con-
stant.

There are interesting effects connected with abrupt
changes of nuclear radius and shape on the addition
of particles.

As a small number of particles are added to a
magic nucleus, as long as the field of the added parti-
cles does not cause intersection of terms, a smooth
redistribution of the density occurs without change
of the radius of the nucleus. The density at the center
of the nucleus is larger than the average value corre-
sponding to the formula R = TQA1^3 . When the number

of added particles becomes large enough, the radius
or shape of the nucleus changes abruptly, and the
average value of the density is reestablished. This
effect could be observed in experiments like those
done by Hofstadter.

It is of great interest to make calculations with the
effective interaction 5 ' for all cases of mixing of
configurations, which leads to decided changes of
transition probabilities or static moments.

Useful information will also be given by calcula-
tions of dipole absorption of radiation, on the a s -
sumption that the initial reaction is a one-particle
excitation of the nucleus, which then gets redistribu-
ted over more complicated excitations. In this way
this example can be used to follow the mechanism of
initial reactions through to the end.

It is of great interest to calculate the constants
which appear in the so-called generalized model of
the nucleus.

Quite a number of problems are connected with the
interaction between a nucleus and a /J. meson which
is in the K shell, because in this case there is strong
electric and magnetic polarization of the nucleus.
The only problem of this sort that has been solved is
that of the isotopic shift in a muonic atom.'-18-'

It is particularly interesting to calculate effects
associated with the transition from the spherical
shape to a deformed shape. Among the excited states
of a spherical nucleus near the transition point there
is a deformed state, and a deformed nucleus in this
region has a spherical state among its excited states.
Moreover, the ground state is a superposition of
spherical and deformed states (fifty percent of each
at the transition point).

In deformed nuclei there is another mechanism of
interaction of the quasiparticles besides the local
interaction, namely the exchange of rotational excita-
tions of the nucleus. Inclusion of this mechanism will
also be an important test of the theory.

The calculation of interaction constants and con-
stants characterizing the potential well in terms of
the interaction of free nucleons presents very great
difficulties, and is not a problem of the theory dis-
cussed here.

Present approximate methods for solving this
problem start in one way or another from the a s -
sumption that the interaction is small or that the gas
approximation can be used, and there is no theoretical
basis for this.

If, however, the result of such calculations should
be to get correct results for those interaction con-
stants that are already known, then after such a
check one could place confidence in the calculations.
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