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1. INTRODUCTION

J. HERE is a continually broadening range of applica-
tions of quantum mechanics to problems of modern
physics, chemistry, and technology. Moreover, with
the construction of fast electronic computers the prob-
lem of finding the most effective algorithms for solving
quantum-mechanical problems has become urgent.
Therefore it is of interest to a wide circle of special-
ists to become acquainted with a new approach to the
formulation and solution of problems in quantum mech-
anics, which differs from the standard method of solu-
tion of the Schrodinger equation. This approach has
been intensively developed in recent years (1963—1966)
and has not yet been reflected in textbooks or mono-
graphs. All of the material is contained in a-number
of journal articles.t1"42-' The present article is a brief
review* of the main equations and results derived in
the new method, which is called the phase-function
method.

The mathematical foundation of the method is a fact
well known in the theory of differential equations, that
a linear homogeneous equation of the second order,
such as the Schrodinger equation, can be reduced to a
nonlinear equation of the first order—the Riccati equa-
tion. The physical content of this approach is that a
function which satisfies the Riccati equation (a phase
function) has at each point the meaning of the phase
shift (in comparison with the case of free motion) of

*This review includes papers published up to May, 1966.

the wave function for scattering by the potential cut off
at that point. Accordingly, the problem reduces to the
direct determination of the desired scattering phase
shift. At the same time it turns out that a knowledge
of the phase function is sufficient for the complete de-
termination of the wave function. One can also intro-
duce functions corresponding to other observable
quantities, such as, for example, the partial scattering
amplitudes, whose poles correspond to the energies of
bound states. The phase-function method* (PFM),
originally developed for the case of scattering by a
spherically symmetrical potential, was subsequently
extended to more general cases: scattering in the field
of noncentral forces, many-channel scattering, rela-
tivistic equations, and so on. Evidently any problem of
quantum mechanics, whether of scattering or of bound
states, can be formulated and solved in terms of phase
functions.

Advantages of the new method are:
1) The intuitive physical meaning of the phase func-

tion, which at each point is the phase of the scattering
by the corresponding part of the potential; this enables
us in the process of the solution to see the effect of the
action of different regions of the potential.

*This term, which reflects the functional character of the im-
portant quantity, seems to us preferable to the expression "phase
method" which is sometimes used. At the same time it must be
pointed out that the term PFM is a very restricted one, because the
method in question is applied not only to the calculation of phase
shifts, but also to the calculation of other scattering parameters,
for example the scattering length, and also of the energies of bound
states.
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2) The monotonic, not oscillating, character of the
PF, which allows us to make numerical calculations
with great accuracy and makes it easier to estimate
the er ror of a computation.

3) The fact that the equation studied is a first-order
equation, albeit a nonlinear one. On one hand this de-
creases the number of operations (and consequently
also the time) in calculations with electronic compu-
ters , and on the other hand it makes it possible to use
a number of known results of the theory of differential
equations.

4) As is shown in the present article, the PFM
leads to the construction of new algorithms for the ex-
act calculation of various scattering parameters (pha-
ses, scattering lengths, effective radii, and so on) and
of the energies of bound states, and also to new ap-
proximate methods of calculation.

5. The PFM allows us to derive well known general
theorems in a simple way: the analytical properties of
scattering amplitudes, the number of bound states in
the field of a given potential, and so on.

The material to be expounded falls into several
sections. In Sec. 2 we derive the equations for the
phase functions corresponding to nonrelativistic and
relativistic potential scattering, and describe a new
method for calculating the energies of bound states.
The important case of low-energy scattering and the
calculation of such parameters as the scattering
length, the effective radius, etc., are considered in
Sec. 3. Section 4 contains an exposition of approximate
methods of solving the equations for the PF. In Sec. 5
we analyze in the framework of the PFM some general
questions of the theory of potential scattering. In the
concluding section there is a brief discussion of the
possibilities of further development and application of
the phase-function method.

We shall make frequent use of the following nota-
tion* for the Riccati-Bessel functions of real and im-
aginary argument and the Riccati-Hankel functions:

n (x) s

h (x) =

ft,(x)= Vr~ K, + ,,?(x)=-?r-ilrih(,i)(ix). (i-1)

hY\x)^

(1.2)

J' + i'2 {X)' n'(X) =

~Il + 1/Z (x) = ( - 0'+' h (**).

~Kl + i/2 (x)=\il r<A|" (ix),

^ Hil
+\/2 (x) = /, (x) -f int (x),

These functions can be expressed in a simple way in
terms of trigonometric and monomial functions, for
example

no(x) = —cosx.
1 i

jt(x)-- — sin i — cosz, nt (x) = cosx — sins.

For I > 1 the functions jj(x) and n^(x) can be obtained
from (1.2) by means of the recurrence relations

?|= — zi(x) — zi-i(x), = 1, 2,3. . . . (1.3)

We note also the behavior of j;(x) and nj(x) for large
and small values of the argument:

— _ ) n.i(x)—> — cos ( x—«- ) , x—> oo,
2 J \ *• /

( 1 . 4 )

( 1 . 5 )

2 . T H E E Q U A T I O N S F O R T H E P H A S E F U N C T I O N S

In t h i s s e c t i o n w e g i v e t h e e x a c t e q u a t i o n s f o r t h e

p h a s e f u n c t i o n s , w h i c h a r e v e r y c o n v e n i e n t i n p r a c t i c a l

n u m e r i c a l c o m p u t a t i o n s . T h e m o s t i m p o r t a n t c a s e s

o f p o t e n t i a l s c a t t e r i n g a r e c o n s i d e r e d .

2 . 1 C e n t r a l P o t e n t i a l

L e t u s c o n s i d e r t h e c a s e o f e l a s t i c s c a t t e r i n g b y a

c e n t r a l p o t e n t i a l , o r t h e s o m e w h a t m o r e g e n e r a l c a s e

o f e l a s t i c s c a t t e r i n g b y a n a r b i t r a r y p o t e n t i a l w h i c h

d o e s n o t l e a d t o m i x i n g o f p a r t i a l w a v e s w i t h d i f f e r e n t

o r b i t a l a n g u l a r m o m e n t a I, i . e . , t h e c a s e o f a o n e -

c h a n n e l r e a c t i o n . T h e n t h e S c h r o d i n g e r e q u a t i o n f o r

t h e r a d i a l w a v e f u n c t i o n u ^ ( r ) i s o f t h e f o r m *

, = 0 . ( 2 . 1 )

The functions jj(kr) and n^(kr) are two independent
solutions of the free equation (2.1) (V = 0).

We introduce two new functions <5 (̂r) and Aj(r) by
setting

Ul (r)=A, (r) [cos 6, (r) j , (Ar)-sin 6, (r) in (kr)\. (2.2)

This expression (2.2) still does not allow us to deter-
mine both new functions uniquely.

We require in addition that the derivative of the
wave function at each point be given by

u\ (r) = At (r) [cos 6, (r) j \ (kr)sin 6t (r) n\ (kr)\. (2.3)

This is equivalent to a supplementary condition for
and <5 j(r):

A\ [cos biji — sin biiii] — b\A, [sin d,j, + cos 5;re;] = 0. (2.4)

The conditions (2.3), (2.4) are obvious for r -» °° if we
desire that at large distances, where V(r) -* 0, the
functions 6 j(r) and A;(r) approach constant values,
namely the scattering phase shift and the normaliza-

*The symbols j/(x) and n;(x) are often used to denote spherical
Bessel functions, which differ from the definitions (1.1) by a factor
x"1. To simplify the form of the expressions we have decided to
avoid the more complicated notations.

*Here and everywhere in what follows, unless explicitly stated,
we set"h = 2m = 1. Primes indicate differentiations with respect
to r.
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tion constant of the wave function. The meaning of
these same conditions for finite values of r can be
explained in the following way. We assume that the
potential has a finite range R, so that V(r) = 0 for
r > R. Then in the region r > R the functions 5 j(r) and
A;(r) must also take constant values 5j(R) and Aj(R),
corresponding to the phase shift and normalization of
the wave function for scattering by the potential V(r)
cut off to zero at the point r = R. Then it is easy to
see that the relation (2.3) corresponds to the condition
of continuity of the derivative of the wave function at
the point r = R. Consequently the supplementary con-
dition (2.4) imposed on 5 j(r) and A^(r) corresponds to
a definite choice of the physical meaning of these func-
tions.

It follows from (2.1), (2.2), and (2.4) that the func-
tions <5j(r) and A^(r) satisfy first-order equations.
Furthermore the equation for 6 jr(r) turns out to be in-
dependent of A^(r):

6J (r) -~= —i- V (r)[cos 6, (r)jt (AT) —sin 6, (r) n, (kr)\\ 6, (0) = 0.

(2.5)

As was noted above and as follows directly from (2.2)
and (2.5), the value of the function 5 ;(r) at any point
r = R is the phase shift for the scattering at the poten-
tial V(r) 0(R - r) cut off at this point. Therefore the
initial condition 6j(0) = 0 corresponds to the actual
absence of any potential if R = 0 (Fig. 1); the function
6 j(r) is called the phase function (PF).

FIG. 1. Nature of the behavior of the phase function for an at-
tractive potential.

Equation (2.5) has been derived in papers by
Drukarev, [2] Bergmann,[3:l Olsson,[4] Kynch,[5]

Spruch, t?] and Calogero.[8:i The equation for the PF
takes an especially simple form for 1 = 0:

60(0)=0. (2.6)

The equation for the function Aj(r), which is naturally
called the amplitude function, is linear:

A'i = r- A{V [COS 6//;— Sin 6/ft;] [sin 6;/; + COS 6;W(] (2.7)

and when the solution of (2.5) is known it can be in te -
gra ted in explicit form

A,(r) = exp | - i ^ dr'V(r') [cos 6, (r') j , (kr1)

— sin8i(r')«i(Ar')] [sin 6; (/•')/, (Ar')-r cos 6( (r ' )n, (Ar')]j .

(2.8)

Here the normalizat ion assumed for the amplitude
function is A^(r0) = 1, where r0 is as yet an a r b i t r a r y
point.

Because of the singular behavior of the functions
nj(kr) for I > 0, in p rac t i ca l c a s e s Eq. (2.5) must be
integrated from a point r = e > 0. The initial condition
for the P F is then de termined by the behavior of the
potential at smal l d is tances and can be obtained d i -
rec t ly from Eq. (2.5) when it is wri t ten in in tegral form

= - i \ V ? dr'.

(2.9)

There are three possible cases. In the first the poten-
tial is nonsingular or weakly singular, i.e.,

Then, using (1.5) we can eas i ly verify that

(2.10)

p^jjiji \ V(r)r^dr, e - , 0 . (2.11)
o

For example, for

we have

p > - 2 , s > 0 ,

)h

.= min(s, 2, 2 + p).

(2.12)

(2.13)

The var ious cor rec t ion t e r m s a r i s e from the c o r r e c -
t ions to the potential (m = s), f rom the expansion of
the function j ;(kr) (m = 2), and from inclusion of the
t e r m 5 ^(r)n^(kr) (m = 2 + p). In the case of a nonsingu-
l a r o r weakly s ingular potential the normal izat ion of
the amplitude function is ent i re ly a r b i t r a r y . In pa r t i cu -
l a r , we can set r0 = 0 in (2.8), so that Aj(0) = 1.

The second poss ible ca se is that of a strongly singu-
l a r repuls ive potential

rW(r) - > + oo, r-*0.

It is not hard to verify that in this case

(2.14)

The f i rs t t e r m in (2.15) is the phase shift in the sca t -
t e r ing by a ha rd sphere of rad ius e (ke « 1). This
co r re sponds to the fact that at the very smal les t d i s -
tances the potential b a r r i e r becomes very l a rge . In
this c a se the amplitude function can be normal ized to
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unity only for finite r0. For r — 0 the function Aj(r)
becomes exponentially small:

- J dr'Vil2(r')] , r —> 0. (2.16)

A special case of a strongly singular potential is a
hard repulsive core of finite radius r0:

F(r)=-j- 0 < r < r 0 . (2.17)

The initial condition at r = r0 for the phase function is
then given by the relat ion

' n < / - ^ r 0 . (2.18)

(2.19)

The amplitude function is discontinuous

A,(r) = 0, 0<r<r0,

The third case is the intermediate one:

r2V (r)—> const = p > —(i+1/2)2, r—>0. (2.20)

The r e s t r i c t ion on the quantity /3 a r i s e s from the con-
dition that the re be no falling into the center for an
at t rac t ive potential (/S < 0). The analys is then shows
that for r — 0

a ' ( r ) - ^ - 9 ' ( 2 J = S ^ T T i ) r ! ' Mr)-* c o n s t - r ~ ^ . (2.21)

Here we u s e the notation

?i = l-f- 2p 28
40

(2.22)

In spite of the fact that the amplitude function Aj(r) is
singular in the case of an attractive potential, the
restriction /S > — (I + 1/2)2 assures that the square of
the wave function (2.2) is integrable.

Accordingly, the problem of determining the scat-
tering phase shift for a potential V(r) reduces to the
integration of Eq. (2.5) and the finding of the asymp-
totic value of the PF, 6 j(°°).

The main advantages of this approach have already
been pointed out in the introduction. We here add only
that by starting from (2.5) we can also get new equa-
tions for such quantities as, for example, the tangent
of the phase shift, tj(r) = tan 6;(r):

ti(r)=-^V(r)\n(kr)-tl(r)nt{kr)\\ /, (0) • - 0. (2.23)

or for the par t ia l sca t te r ing amplitude f j(r)

f' W = ~TV W [>> <*r) + i f l W h<" (*rM*' U ( 0 ) = °" ( 2 ' 2 4 )

or for the S-matrix element S; = e2i<51 = 1 + 2ifj:

Si(r)= -±-V(r)lh\«(kr) + Sl(r)htP(kr)i%. S,(0) = t. (2.25)

Equation (2.23), unlike (2.5), can be used for numerical
computations only under the condition 6 j(r) < IT/2 in

the ent i re range of integrat ion. If a resonance is p o s -
sible in the sca t te r ing by any of the sequence of cut-off
potentials V(r) 0(R —r) — i.e. , if S;(R) = ir/2—we can
change over in the region r ~ R to an equation analog-
ous to (2.23) for the inverse quantity, namely for the
function cot 5 j ( r ) . In pape r s by F r a n c h e t t i , ^ Calo-
gero, [ 8- ' Dashen,^5-1 and Calogero and Ravenhall [ 1 8 ]

other vers ions of the basic equation (2.5) a r e given.
It has so far been tacit ly a s sumed that the potential

V(r) falls off m o r e rapidly than O(r"J) for r — « .
Equation (2.5) can be eas i ly extended, however, to the
case in which the re is a Coulomb interact ion: V(r)
+ 2kr?/r. As has been shown by Olsson.f4^ Kynch,[5^
Babikov, [ 1 7 ] Kalogero and Ravenhal l , f l 8 ] and Tie tz , [ 3 3 ]

for this case one must in all express ions , beginning
with (2.2), c a r r y out a replacement of the Rica t t i -
Besse l functions by Coulomb functions:

The equation for the P F then takes the form

r- Tl)F'

+ sind,(r, r))G,(kr, (0, T]) = 0.

(2.26)

(2.27)

We note that the asymptotic form of the wave function
is now

~ + ai-^6l\ r~>oo, (2.28)

where <TJ = a rg F(l + 1 + irj), is the phase shift for pure
Coulomb sca t te r ing .

As an i l lustrat ion of the behavior of the P F there
a r e shown in Fig. 2, taken fromJ8-', five cu rves , which
a r e the solutions of Eq. (2.6) for a rec tangular well of
depth V(r) = - Vo = — 9 and rad ius R = 2 for five values
of k. As can be seen from the figure, for sufficiently
smal l k the re a r e sharp changes of the value of <50(r, k)
nea r the points r 4 = TT/6 and r2 = TT/2, which a r e the
radi i of the potential well at which it i s possible for a
bound s ta te to appear with ze ro binding energy. It is
not hard to der ive from (2.6) the following es t imate of
the interval A r j around the point r j in which an in-

FIG. 2. The phase function for a rectangular potential well, for
various values of k.
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crease of the phase by the amount v occurs for small k: The desired system of equations is then^17'26]
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(2.29)

In the limiting case k = 0, for any I and for an arbi-
trary potential, the PF becomes a step function (N is
the number of bound states with angular momentum I):

This relation (2.30) is the well known Levinson
theorem.

2.2 Tensor Potential. Many-channel Scattering

The PFM can be extended to the case of a noncen-
tral tensor interaction and many-channel inelastic
scattering. An important case of a two-channel reac-
tion is the elastic scattering interaction of two parti-
cles having spin V2 (for example, nucleons), when the
tensor interaction is taken into account. In the triplet
spin state the tensor forces Tj(r) mix the partial waves
which for a given total angular momentum J of the sys-
tem correspond to different orbital angular momenta
L = J T 1. The equations for the corresponding radial
wave functions Uj(r) and Wj(r) are coupled:

) -Vj, -Tjiij = 0. (2.31)

The coupling of the equations (2.31) decidedly com-
plicates the calculation of the scattering parameters,
which are now two phase shifts and a mixing parame-
ter. The point is that for small r one of the two
linearly independent solutions of the system (2.31) is
very much larger than the other. Therefore it is diffi-
cult to "extract" the slowly increasing solution against
the background of the first solution. The PFM enables
us to derive for three functions which correspond to
the three scattering parameters a simple system of
first-order equations which is free from this disadvan-
tage. It is well known that a different parametrization
of the scattering matrix is possible with a tensor poten-
tial. The equations of the PFM for various representa-
tions of the parameters have been derived in papers by
Kynch,[5] Babikov,[17'26] and Cox and Perlmutter. [34 ]

Here we shall consider only the equations for the
functions <5jj_i(r), Sj^j + itr), and"ej(r), which corre-
spond to the Stapp parametrization, that most used in
nuclear physics. As in the case of the central poten-
tial, these functions have the meaning of the scattering
parameters for potentials Vj j _ j(r), Vj j + 1(r), and
Tj(r), cut off at the point r .

It is convenient to introduce an abbreviated notation
by setting

Pj, L (r) = cos 6J; L (r) fL (kr) — sin 6.,, L (r) nL (AT), 1

Qj,L{r) = sinSj, L(r) jL(kr)-J-cos6".,, L(r) nL(kr). )
(2.32)

5J,J-I=- — z=- [VJ. j-i(cos4eJ/
)j,j_1— sin4<

k cos 2c,j

— Vj, J+I Sin2 Ej COS2 Bj (PjtJ + i —Qj.j+l)

— 2Tj sin Ej cos Ej (COS2 eJ/
J
Ji J-I<?J, j+,

J,J+IQJ,J-I)U 6 .7,J-I(O)-O,

(2.30) 6V -=- [Vj, J+i (cos4

Z6
— sin4

k COS Z6j

— Vj, J-I sin2 Ej cos2 £j (Pjt j_ i — Q}t j_t)

— 27*,, sin 7j cos ~t} (cos2 6JPJ) J+1Qj, j _ ,
— s i n 2 ! ^ , j.tQj, J+1)], dj, J+1 (0): = 0,

(2.33)

— Kr, j+i sine., cos t-jP,, J+1QJ,J+1}, ejr(O) = O.

These equations are a generalization of (2.5). It is
easy to see that when the tensor potential is turned off
(Tj = 0) the mixing parameter becomes identically
zero (Tj = 0) and the system (2.33) breaks up into two
independent equations for the partial waves with
L = J — 1 and L = J + 1. A Coulomb potential can be
included by using the substitution (2.26) in the equa-
tions. Systems of equations analogous to (2.33) can be
derived^26] for the parametric functions in other
representations, for example the Blatt-Biedenharn and
McHale-Thaler representations.

The values of the phase functions for small r are
determined by the behavior of the potentials for r -•• 0,
and can be found directly from an analysis of the equa-
tions (2.33). Let us consider some of the most impor-
tant cases. Suppose that for r — 0

'',, J-i (r) -» Vj, J_,I*, F7, m (r) -> Fj. j + ,rp,

Tj(r)-~>Tjrv, p > - 2 . (2.34)

Then

6j, j + l (r)—> —77
V^J+1i2J+3r2J+5+j. (2.35)

r0/i.2J+lr2J+3+p

(27 —1)!! (27 + 3)!! '
For repulsive singular potentials

r2Vj,j^(r)->+oo, r*Vj,J+1(r)~, + co, r—>0, (2.36)

we have
(krf

(27-1)!! (27-3)!!

(kr)2J+3 k2J+l
(27 + 3)!! (27 — 3)!! (27 + 1)!!

f , , , ,,2J Tj(r')
\ dr V ) 1/1/2 , /. T,1/2 , ,.
J VJ, J-l (r ' V J, J+l(r )

r
: exp { - ^ dr"{Vj/2j-< (r") rVy2

J+i (/•")]} .

(2.37)
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Accordingly, the mixing parameter is exponentially
small. For a hard core of finite radius r0

0-<r<r0 ,

0 < r (2.38)

e, (r) - 0, 0 < r < r 0 . J

To take a Coulomb potential into account one must
make the replacement (2.26) in all these expressions.

As an example we show in Fig. 3 the results of in-
tegrating (2.33) for the phase shifts of 3P2 and 3F2 and
the mixing parameter 72 for nucleon-nucleon scatter-
ing with the well known Hamada-Johnston potential
with a hard core (r0 = 0.343). The solid and dashed
curves correspond to energy values E = 320 MeV
(k = 2.78) and E = 180 MeV (k = 2.08). Because of the
short range of the potential all of the functions quickly
take their constant asymptotic values. The sharp
breaks in the curves for ~52 4(r) correspond to the
change of sign of the potential V J J _ t(r) at the point
r = r0.

The PFM for more general cases of many-channel
scattering, including inelastic scattering, has been de-
veloped in papers by Kynch,[5] ZemachJ20-1 Dega-
sperisj24-1 and CoxJ35-1 The various parametric func-
tions are found by solving a system of V2n(n + 1) non-
linear first-order equations of the form of (2.33); here
n is the number of channels. The amplitude functions
satisfy a system of n linear equations; unlike the equa-
tion for the case of a central potential, these cannot be
integrated in quadratures. Accordingly, in the many-
channel case the problem of finding the scattering
parameters reduces to the solution of a Cauchy prob-
lem with initial conditions, which is much more con-
venient than solving a system of Schrodinger equations
and constructing from the solutions linear combina-
tions which satisfy given boundary conditions.

Sometimes one includes besides the elastic-scatter-
ing channel only one reaction channel which describes

FIG. 3. Phase shifts and mixing parameter for nucleon-nucleon
scattering in the 3P2 and ZF2 states for the Hamada-Johnston po-
tential, as functions of x = f%r.

all of the inelastic scattering and absorption. In the
so-called optical model inclusion of the inelastic-
scattering channel corresponds to a complex term
added to the potential in the elastic-scattering channel.
The parameters that describe the scattering in this
case are the S-matrix elements or scattering coeffi-
cients Sj . By means of Eq. (2.25) the PFM can be used
easily in the optical model of nuclear reactions J28^
This eliminates all of the problems associated with
the normalization of the wave functions, which cause
difficulties in the standard methods of calculating
cross sections in the optical model. We also point out
that owing to the simple and intuitive physical meaning
of the phase functions it is very convenient to use the
PFM to study such a problem as, for example, the sur-
face or volume character of the absorption in a
nucleus. Moreover, one can obtain additional informa-
tion in the process of integrating the equations for the
phase functions.

In the problems considered above, in which the
angular variables can be completely separated, one
uses a representation diagonal in the angular momen-
tum. In the general case of a noncentral potential
V(r, 6, <p), however, an expansion is partial waves is
useless, although the total scattering amplitude f(6>, <p)
exists. So far no equation equivalent to the equation
(2.5) for the PF has been obtained for this case. The
equation for the function fr(0, cp) given in[7^ and used
in[21^ is incorrect owing to the use of an incorrect
wave function.

2.3 Velocity-dependent Potential. Scattering of Rela-
tivistic Particles

In a number of problems of nuclear and atomic
physics one has to deal with an effective potential de-
pending on the velocity:

± p*]. (2.39)

The Schrodinger equation for the radial wave function
is then of the form

(2.40)
According to the PFM we can obtain the following

equations for the phase and amplitude functions defined
by the relations (2.2) and (2.3):

(i+W)6\= —L

(2.41)

Ai(ro) = i. (2.42)

Along with the notations (2.32) we have here used the
expression

Rt (r) = cos 6, (r) /; (AT) - sin 6, (r) n\ (kr). (2.43)
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The solution of the l inear equation (2.42) can be ex-
p r e s s e d in quadra tu res , in a form like (2.8). As before,
the initial conditions in concre te p rob lems must be
found from Eq. (2.41) by means of a s e r i e s expansion.
Equation (2.41) was derived by McKellar and May,[39^
who a lso cons idered potentials of the form pW(r)p.
They showed that in this c a se the study of the phase
function i s useful in compar ing the effects of the action
of var ious velocity-dependent potent ia ls .

In a paper by Calogero^19-1 the PFM was extended to
the case of a nonlocal cent ra l potential . Here the P F
sat is f ies an integro-different ial equation whose solu-
tion can be found by an i te ra t ive method.

The potential sca t te r ing of re la t iv i s t ic pa r t i c l e s
can also be t r ea t ed with the PFM. For charged p a r t i -
c les with zero spin the re la t iv i s t ic Schrodinger equa-
tion is (fi = 1)

Aij, 4- [(E — e<p)2<r2 — (me2 -j- F)2 c~-\ \p = 0. (2.44)

Here e<p(r) and V(r) a r e respec t ive ly the e lec t ros ta t i c
and the s tat ic s c a l a r potent ials . It can be shown that
if the potentials a r e spher ica l ly symmet r i c the equa-
tions for the phase and amplitude functions a r e given
by (2.5) and (2.8) if in these equations we set

(2.45)

If the potential Veff(r) contains a t e r m which falls
off l ike O(r~') for r — °°, we must sepa ra te out from it
an effective Coulomb interact ion corresponding to this
t e r m and r e w r i t e the equations in t e r m s of the Coulomb
functions [Eq. (2.26)].

The extension of the PFM to the Dirac equation has
been made in pape r s by Kynch,'-5-' Calogero,^10-' and
Calogero and Ravenhall.^18-' These authors considered
the sca t t e r ing of a Dirac par t ic le by a cent ra l e l e c t r o -
s ta t i c* potential eq>(r). If t he re is a lso a stat ic s ca l a r
potential the Dirac equation is of the form (R = c = 1)

[E — 0. (2.46)

Owing to the sp in-orb i t coupling, for a given total
angular momentum j the re a r e two poss ible values
I = j ± 1/2 of the orbital angular momentum; for ex-
ample for j = 1/2 the re a r e s ta tes Si / 2 and Pi/2- Ac-
cordingly the sca t te r ing of the j - t h par t ia l wave is
descr ibed by two phase shifts 6t± j / 2 . Using the nota-
t ions (2.32), we can wr i te the equations for the phase
and amplitude functions in the form

&i ± 1/2 (r) = - A,-i [F (r) + ecp (r)] P'f ± 1 / 2 , , ± ) / 2 (r)

(2.47)

*We emphasize that, contrary to the abstract of [10], the results
derived in that paper are really for an electrostatic potential, not a
true scalar potential.

-\-X\ dr' [V ( / • ' ) - «p (/•')] Pjj ± 1/2, j =F 1,2 I

(2.48)

2 j .

Here A = [ ( E - m ) / ( E + m ) ] l / 2 , k = (E2 - m 2 ) 1 / 2 , so that
in the nonrela t iv is t ic l imit A = k / 2 m and these equa-
tions go over into (2.5) and (2.8). In the u l t r a r e l a t i v i s -
tic case A = 1.

Equations (2.47) and (2.48) a r e valid for potentials
which fall off sufficiently rapidly at infinity. If t he re
is an unscreened Coulomb potential , one must proceed
in a way analogous to that descr ibed above for the
sca t te r ing of a s ca l a r pa r t i c l e .

2.4 The Energ ies of Bound States

Although the P F M is obviously best fitted for s c a t -
t e r ing p rob lems , Kynch'-5-' and Calogero^8-' have shown
that the problem of eigenvalues can also be formulated
in the framework of this method.

For bound s ta tes k = i/c (K > 0) and the asymptotic
form of the solution of the Schrodinger equation (2.1)
is

Ui(r) ^ const •[<>->"• — ( — l)lSTi (oo, x)e*r], r-^-oc. (2.49)

T h e r e f o r e a n e c e s s a r y c o n d i t i o n for t h e v a n i s h i n g of

t h e w a v e func t ion a t l a r g e d i s t a n c e s and t h e r i g h t

a s y m p t o t i c b e h a v i o r i s t h a t t h e S - m a t r i x e l e m e n t

Sj (°° , K) = Sj (°° , i/c) h a v e a p o l e a t a d e f i n i t e v a l u e of K,

s o t h a t

• 0 , ( 2 . 5 0 )

T h e c o n d i t i o n ( 2 . 5 0 ) i s t h e b a s i s o f t h e t r e a t m e n t o f

b o u n d - s t a t e p r o b l e m s b y t h e P F M . T h e r e a l f u n c t i o n

S J ( K , r ) s a t i s f i e s a r e a l e q u a t i o n w h i c h f o l l o w s f r o m

( 2 . 2 5 ) ,

S i ( x , r ) = ( - 1 ) ' i - F ( r ) { h ( x r ) + * = ^ - X [§, ( x , r) - 1 ] kt ( * r ) } '

Si(0, x ) = l . ( 2 . 5 1 )

I t c a n b e s e e n f r o m ( 2 . 5 1 ) t h a t i n t h e c a s e o f a b o u n d

s ta te , for r — °°, when kj(«:r) — {•n/2)e~KT,

r) 2x (2.52)

Accordingly, the condition (2.50) is in fact satisfied.

Using Eq. (2.51) and the analogous equation for the
inverse quantity S^(«:, r ) , one can de te rmine by
numer ica l methods the energ ies E n = — K^ of the bound
s ta tes in a given potential . Let us consider a potential
of finite range R. The requ i red values Kn a r e those
for which S^(R. «n) = 0. Figure 4, taken from [ 8^,
shows the behavior for var ious values of K of the func-
t ions YJ(K, r) and Y ^ V , r ) , which a r e simply re la ted
to SJ (K, r ) ,

: (x, r) ki (w)Y,(x,r) = - (2.53)
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rt-jt/6

FIG. 4. The functions Y0(K, r) and YO'(K, r) for a rectangular
potential well, for various values of K.

for S scattering (1 = 0) by a rectangular well of depth
Vo = 9 and radius R = 2. The points of intersection of
the curves of Y0~V, r) with the axis of abscissas
correspond to poles of the S matrix and show the
widths of the well for which there is a level E = — K2.
For K = 0 this occurs at the points ri = 7r/6 and r2 = ir/2
(see Fig. 2). As can be seen from Fig. 4, in a well of
width R = 2 there are two bound states, the first with
an energy a little larger than —2.25 (K ~ 1.5) and the
second with an energy a little smaller than —6.25
(K ~ 2.5). An analogous argument can be carried out
for an arbitrary potential V(r), by cutting it off at
sufficiently large distances. As can be seen from
Fig. 4, with increase of r the intervals between the
points r j at which Yo

-1
 IT^K), K] = 0 become larger.

Therefore the accuracy of the determination of the
bound-state energies also increases.

This method can also be used to determine the
parameters of a potential which has bound states with
given binding energies.

3. LOW-ENERGY SCATTERING

We present exact equations for the calculation of
parameters of low-energy scattering such as the scat-
tering length, the effective radius, and so on.

3.1 Short-range Central Potential

Suppose V(r) is a short-range potential, i.e., sup-
pose it decreases at least exponentially for r — °°.
Then, as is well known, the scattering phase shift
6 j(k), and consequently also tan 5j(k), are odd func-
tions of k which are regular at the point k = 0. In this
case the quantity k"1 tan 6j(k) can be expanded in a
power series in k2, whose first coefficients completely
determine the scattering at low energies. A PFM for
the calculation of these coefficients has been given in
papers by Kynch/5-' Levy and Keller, t11^ and
Dashen.[12]

Representing the function tan Sj(r, k) in the form of
a series

V k^aln(r) (3.1)

and using the well known expansions of the functions
j^(kr) and nj(kr), we can get from (2.23) a system of
recurrence equations for the coefficients a^n(r). The
first equation is nonlinear, and all of the rest are
linear; for example,

27
= 0>

0. (3.2)
In the case 1 = 0 the equations take a particularly
simple form:

dais~-V(r — 0-oof, am(Q) = 0, \

aoi ---- — 2V (r — a00) aOi—r2V (a00— - j raoo4-y r2 V »oi (0) =-= 0,

ao2= —2V(r — aoo)aO2-\-V [all --2r2acoa014-y r*aoi

1r~3raoo —15 r°a°0 ~i~45 J ' aii2(U) = 0.

(3.3)

The initial conditions for Eqs. (3.2), (3.3) in the case
of singular potentials can be easily found from the con-
ditions (2.13), (2.15), (2.18), and (2.21). The functions
aon are connected in a simple way with the parameters
of the effective-range theory—the scattering length &$,
the effective range r e , the shape parameter P, and so
on, which are defined by the expansion

k ctg So . - - ~ + 4- rek*

It is not hard to verify that

-Prfa + Oik*). (3-4)

(3.5)
J - lUJ laS , (r)-aQ0{r)am(r)\.

For finite values of r the relations (3.5) define the
functions ao(r), r e ( r ) , and P(r) which correspond to
the scattering parameters for the cut-off potential
V(r') 0 ( r - r ' ) .

I W

t-— /•„
a, -100

(2*4-1)!! (21 — 1)!!

-ojs

-iff

FIG. 5. Solutions of Eqs. (3.3) and the parameters a0, re, Ps for
singlet 'So neutron-proton scattering with the Hamada-Johnston po-
tential, as functions of x = ^^r. The dashed curves show the scat-
tering length, effective range, and shape parameter for 'So proton-
proton scattering.
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The equations (3.3) are very convenient for numer-
ical calculations. As an example, in Fig. 5 the solid
lines show the solutions of (3.3) and the calculated^27]

parametric functions ao(r), r e ( r ) , P(r) for JS0 neutron-
proton scattering with the Hamada-Johnston potential.
It can be seen from the figure that the effective range
r e goes to infinity at the point where the scattering
length ao(r) is zero.

The calculation of the scattering length for a veloc-
ity-dependent potential has been considered by
KcKellar and May.[39]

3.2 Long-range Central Potential

In the case of a long-range potential, for example
one decreasing according to a power law, the phase
function <5j(r, k) is no longer analytic at the point
k = 0; it has logarithmic and fractional-power singu-
larities. Therefore the expansion (3.1) takes a more
complicated form, including terms of the types k m In k
and k m / n . The PFM for the determination of the co-
efficients in this case has been developed by Levy and
Keller.f11-' They treated potentials having the asymp-
totic form O(r~ v) with v > 3. The extremely important
case of a short-range potential together with a
Coulomb potential, for which <5j(k) has an essential
singularity for k = 0, has been treated infl7~27].

The parameters for low-energy S scattering are
then defined by the expansion

t2J-i

(3.6)
Here R = R2/2mz1z2e2, rj = (2kR)"1, and h(rj) is a known
function. As is shown in^17'27^, for the calculation of
the parameters ap, rp, Pp it is necessary to solve a
system of equations analogous to (3.3). For example,
the equation that holds for the scattering length ap(r)
is

flp(r) ,V{r)\rLi{rlR)-ap(r)H(rlR)f, ap(0) = 0. (3.7)

The notations here are: Lj(r/R) = (r/R)1 /2I1[2(r/R)1 /2] )

H^r/R) = 2(r/R) l / 2K1[2(r/R) l / 2], where Ij(x) and Kj(x)
are the Bessel functions of imaginary argument. The
results of calculat ions '^ of ap(r), r p ( r ) , and Pp(r) for
'So proton-proton scattering with the Hamada-Johnston
potential are shown as dashed curves in Fig. 5. The
calculations showed that the PFM, which allows us to
take the Coulomb interaction into account exactly in
nuclear scattering, is very convenient for numerical
calculations.

3.3 Tensor Potential

The exact theory of the effective range for scatter-
ing by a tensor potential has been developed in the
PFM in[26'27^. In the case of a short-range potential
the expansions used are

" k)'^ ~ 27-1!! 27-3 H ^ ^ " ^ " ^
77 = 0

A.2J+1

6/,/+,(/-, * ) = -

y k*nBJn (/•), (3.8)J

'" n=0
k2J+3

(27 H 3)!! (27 + 1)!!
X1 Z-2"/° /r\

J

From Eq. (2.33) there follow systems of coupled
equations for each value of n. In particular, the equa-
tions for the first (n = 0) coefficients of the expansions
(3.8) are

1
"(27-1) (27 + 3)'

'+ ' -\-(2J~3) Vj^ijjor-W.

(3.9)

In this case the scattering length for the 3S4 state is
the quantity A1;0(r). The relations (3.5) connect the
other parameters for low-energy 3S1 scattering with
the other coefficients Ajn(r).

3.4 Regularization of the Equations in the Presence of
Bound States

All of the equations given above for the coefficients
of the low-energy expansions of the scattering phase
shifts are valid only if the potential does not contain
any bound states. Otherwise at some point r1( at which
the potential V(r) 6 (rt - r) has a level with zero bind-
ing energy, the first coefficient a/0(rj) and all the
other a^n(r1) become infinite. For 1 = 0 this corre-
sponds to the well known fact that the scattering length
is unbounded for resonance scattering at a level with
zero binding energy.

In such cases it is necessary to reformulate Eqs.
(3.2), (3.3), (3.7), and (3.9) in such a way that all of the
quantities contained in them become finite. The first
nonlinear equation is regularized if we set[5>12] a;0(r)
= tan oti(r). The equation for the function aj(r) is

a-'i (r) = j^pf V (r) [r'+1 COS a,,(r) — /-' sin a, (r)]2, a, (0) = 0.

(3.10)
For a tensor potential the regularization of (3.9) is
achieved in an analogous way.t17'26]

The linear equations for the other coefficients
ajn(r) in the case of a central potential, and the equa-
tions for the coefficients Ajn(r), Bjn(r), Cjn(r) in the
case of a tensor potential, can be regularized by
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separating off the divergent terms J17'27^ In particular,
this can be achieved by defining new functions which
are the coefficients of negative powers of cos a^(r).
For example, setting a ^ r ) = /301(r)cos~2a0(r), we get
an equation for the determination of j301(r) which con-
tains no divergent terms

Poi = —2f501F(rcos a0 — sina0) (cos a0 -(- r sin a0)

—5- rW (r2cos2a0 — 4r sina0cosa0 + 3sin2a0),
(3.11)

Poi(O)-O.
The effective range is then re(r) = 2/301(r)/sin2a0(r).
The equations for the case of a tensor potential can
be regularized in an analogous way.

It is simplest, however, to use along with the sys-
tem of equations for the functions a;n(r) a system for
the inverse quantities b , (r) = a"",1 (r), which can be
obtained easily from (3.21?, (3.3). "in the range of r
where |a;0(r) | > 1, one is to change over to the inte-
gration of the system of equations for the functions
bjn(r) , and conversely, where |bjo(r)| > 1 one can r e -
turn to the first system.

4. APPROXIMATE METHODS

The phase-function method enables us to obtain
besides the well known approximate methods a number
of new approximate formulas for the calculation of
phase shifts and other scattering parameters.

4.1 The Born and Modified-Born Approximations

As is well known, the Born approximation is appli-
cable when tg 5 j(k) « 1. Therefore it is convenient to
start with Eq. (2.23). Neglecting terms containing
tg <5j(r, k) in the right member, we get the first term
of the Born series

tg fii
r

r, k)= - i \ V(r')j?(kr')dr'. (4.1)

Substituting the value (4.1) in the right member of
(2.23), we can find the next term of the Born approxi-
mation. Repeating this procedure, we get the whole
perturbation-theory series.

We can, however, perform a partial summation of
the perturbation-theory series if in (2.23) we keep the
term linear in tg Sj(r) and solve the resulting equa-
tion exactly. We then get [8]

tgfli(»-)=—r \ dr'V (r') jf (kr')
0
r

X exp {-§• ^ dr'V (r') /, (kr") n, (kr") j .
(4.2)

The expression (4.2) is the first term of the modified-
Born approximation. Substituting (4.2) in the term in
(2.23) which is quadratic in tg 6j(r), and again solving
a linear equation, we can get a new modified-pertur-
bation-theory series.

Analogous approximate formulas are obtained for
the partial scattering amplitude and the element of the

S matrix if we start from Eqs. (2.24) and (2.25). A
very detailed treatment of Sj(r) with this sort of
method has been made by Klar, Kriiger, and
FluggeJ41-421

In the case of low-energy scattering the respective
values given by the Born and modified-Born approxi-
mations for the scattering length defined by the first
equation in (3.3) are[12]

= j V(r')r'*dr' (4.3)

a,(r)^ \ dr'V (r')r'* exp [ - 2 JJ r"V(r')dr"\ . (4.4)
6 ' r'

It is natural to suppose that the modified-perturbation-
theory series will give a better approximation to the
phase shift or the scattering length than the ordinary
Born expansion, and will converge faster. This can be
verified by means of Fig. 6, which shows the behavior
of the exact solution for ao(r) and of the approximate
solutions obtained from (4.3) and (4.4), for the case
of the potential barrier V(r) = 0(2 - r). [12] The con-
clusion is the same if we compare the expansions of
the expressions (4.3) and (4.4) with the expansion in
terms of the coupling strength.[42] A number of ap-
proximate formulas for the special case of a singular
potential have been derived by CalogeroJ22'36^1 Calo-
gero and Cassandro,^ and Dombey/37-1 It is not hard
to make an analogous treatment for the more compli-
cated cases in which there is a Coulomb potential or
tensor forces, and for the case of relativistic scatter-
ing.

Instead of the basic functions j;(kr) and n^(kr)
corresponding to free motion or the functions F;(kr, rj)
Gj(kr, 17) for the Coulomb potential, we may obviously
choose any other system of functions corresponding to
some part V,(r) of the potential. The approximate
calculation of scattering phase shifts by using the re-
maining part V(r) - Vt(r) of the potential then corre-
sponds to the well known method of distorted waves in
the theory of nuclear scattering.

Finally, let us consider the limiting case of large
energies. In the nonrelativistic case this means

FIG. 6. The exact solution of Eq. (3.3) for the scattering length
for a rectangular barrier, and the approximate solutions correspond-
ing to Eqs. (4.3) and (4.4).
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k — °°. It is not hard to see, by using the asymptotic
expressions (1.4) for the Riccati-Bessel functions,
that

a,(oo)

_ _ " \ V(r)dr->0. (4.5)

In the ultrarelativistic case, both for the scattering
of bosons described by the Klein-Gordon equation
(2.44) and for the scattering of Dirac particles, Eq.
(2.47), a scalar potential makes a vanishingly small
contribution (4.5) to the phase shift, as compared with
a finite contribution from the fourth component of the
vector potential, in particular, from the electrostatic
potential (Z = j ± 1/2)

oo
— -j~ ^ e<f(r)dr, k-

(4.6)

The result (4.6) is due to the fact that the effective
interaction (2.45) of a relativistic particle with the
vector potential increases in proportion to the energy.

Equations (4.5) and (4.6) are of course valid only
for nonsingular potentials. In other cases one must
deal separately with a range of distances r & 1/k near
the origin, where the expansions (1.5) are legitimate.
Then it can be shown^22^ that the phase shift increases
with the energy, but not faster than the first power of
k. In the case of large energies one can also start
from the modified Born approximation for the func-
tions S;(r, k), sum all of the partial amplitudes, and
obtain an analytic expressionf42^ for the total scatter-
ing amplitude f( 9).

4.2 The Quasiclassical Approximation

It has been shown in a paper by Dashen'-15-' that the
PFM can be used to derive well known formulas of the
quasiclassical approximation, under the condition

(4.7)E -V(r)€ I-

It is interesting to study the behavior of the phase
shift 81 of a given partial wave as a function of R for
R — 0. Let us consider the case 1 = 0. We separate
out the dependence on R explicitly and set 2m = E = 1.
Then Eq. (2.6) takes the form

6'0(r, ^ ) = - l F ( 7 - ) s i n 2 [ ^ + 6 0 ( r , fc)]-|8o(0, h) =0.(4.8)

We note that the phases, which are odd functions of
k = fi"1, are odd functions of R . Accordingly the phase
shift <50(r, R) can be looked for in the form of the ex-
pansion

60 (r, T>) =-- (r) -f fia, (r) + (4.9)

It can then be shown that for a potential regular at the
point r = 0 the first two coefficients are given by

a0 (oo) --- - 1 \v(r)dr, (4.10)

v (Q)
[2- r (0)]- exp —

V(0)
i-V(0) . (4.11)

The expansion (4.9) is not the quasiclassical ex-
pansion, since the quantity fixed is I, and not the angu-
lar momentum KZ, which has a classical limit. It is
of interest from the mathematical point of view. The
expression (4.11) shows that the coefficients of the ex-
pansion of the phase shift in powers of the parameter
R contain essential singularities with respect to the
strength of the interaction. A similar result can be
proved for the expansions of the phase shifts for I > 0.

4.3 Variational Methods

As has been shown by Spruch,[7] Calogero,[8 'M3>16:l

and Tietz,'-38^ new variational principles for the scat-
tering phase shifts can be formulated in the framework
of the PFM. In particular, it is found that the tangent
of the phase shift is the stationary value of a func-
tional[9]

tg 6, (k) ^ Stat i- || drV (r) [j, (AT) - y , (r) nt (AT)]2

(4.12)X exp [A \dr'V (r1) m (kr') (jl (kr') — y, (r') nt (kr')) J }
r'

for variations of the function y/(r). The expression
(4.12) can serve as the starting point for the deriva-
tion of approximate values of tg 8 ;(k). Knowing the
potential V(r), owing to the intuitive meaning of the
PF one can make a very accurate choice of the initial
form of the test function yj(r). For example, by taking
the test function yj(r) = 0, we get the modified Born
approximation (4.2).

If the potential is everywhere of the same sign,
i.e., attractive or repulsive, variational principlesf16^
can be formulated for the maximum or the minimum
of the functional (4.12). In this case the variational
principle allows us to calculate an upper or lower
limit on the phase shifts and their derivatives with
respect to energy and angular momentum. Naturally
analogous variational principles can be derived for
Eqs. (2.24) and (2.25), for the calculation of the
parameters for low-energy scattering, and for calcu-
lating the energies of bound states. Unlike the standard
methods, the variational principles for the Riccati
equation make it possible not only confidently to find
a class of test functions, but also to estimate the sign
and magnitude of the resulting error .

5. SOME GENERAL QUESTIONS OF THE THEORY OF
POTENTIAL SCATTERING

By means of the phase-function method one can
derive more simply and intuitively than usual not only
well known theorems but also a number of new results
in the theory of potential scattering. We shall demon-
strate this with a number of examples.
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5.1 Analytic Properties of the Partial Scattering
Amplitudes

In papers by Calogero^14-' and by Chadan and
Guennegues^23^ the PFM has been applied to the study
of the analytic properties of partial scattering ampli-
tudes. It has been shown[23^ that Eq. (2.24) is very
convenient for the direct analysis of the singularities
of the partial amplitudes in the complex planes of the
energy and the angular momentum. There is then no
need to use such auxiliary quantities as the Yost func-
tions. In^14^ and^23-' derivations have been found for all
of the theorems of Regge and other authors on the
meromorphic property of the scattering amplitudes in
the region Re I < - l / 2 , their analytic behavior for
I — °°, the complex regions of localization of the poles
of the amplitudes, the kinematic cut which begins at
k = 0, and possible dynamic cuts in the complex plane
of the energy.

Another example of the application of the PFM to
general problems of the theory is the study of the
question of the convergence of the peratization method.
This method has been proposed as a tool for work with
nonrenormalizable field theories. Its analog in the
nonrelativistic theory of potential scattering is the
statement that the scattering phase shifts for a poten-
tial V(r) which is strongly singular at r = 0 can be ob-
tained as the limiting values of the phase shifts for a
regularized potential, in particular a potential
V(r) 0(r - e) cut off at small distances, for e — 0.
When, for example, one considers the equation for the
scattering length, Eq. (3.3), it can be shown that its
solution ao(°°, e, g) for the potential V = g2r~4 9 (r — e) is

a0(oo,e,g)=gth(gh), g>0. (5.1)

Accordingly, although the radius of convergence of the
perturbation-theory series is equal to e and goes to
zero for e —- 0, lim ao(e) exists and its value is a0 = g
for the regularized potential.

and a lower limit is

n> :;>y + T I dr - L p (VT2! ] } • (5-3)

Here { } denotes the integer part of the expression,
and min [A, B] has the value A for A < B and the value
B for B<A. The quantity q is an arbitrary constant
with the dimension of inverse length. It follows from
the conditions (5.2) and (5.3) that if g is the coupling
constant of the potential the number of bound states
cannot increase with g more rapidly than as the square
root—i.e., asymptotically

ni ~ V"g • (5.4)

A s fo r t h e c o n d i t i o n t h a t t h e r e b e bound s t a t e s w i t h

I < L c o n t a i n e d in t h e p o t e n t i a l V ( r ) , i t i s of t h e form^3 1- '

d (qr) | V (r) \
(qr)2Lq2+(qr)-iL\V(r)\1. (5.5)

F o r S s t a t e s (L = 0) , fo r e x a m p l e , t h i s c o n d i t i o n i s

s a t i s f i e d by t h e Hu l then c l a s s of p o t e n t i a l s

V (r) = _ (5.6)

w h e r e e > 0, q > 0 a r e a r b i t r a r y c o n s t a n t s .

A s w a s a l r e a d y p o i n t e d ou t in Sdc . 2, t h e P F M g i v e s

an i n t u i t i v e i n t e r p r e t a t i o n of L e v i n s o n ' s t h e o r e m on

t h e c o n n e c t i o n b e t w e e n t h e s c a t t e r i n g p h a s e sh i f t a t

z e r o e n e r g y and the n u m b e r of bound s ta tes . ' - 8 - '

5.3 The I n v e r s e P r o b l e m of Sca t t er ing

T h e e q u a t i o n s fo r t h e p h a s e func t ion [Eq . (2.5)] and

f o r t h e o t h e r s c a t t e r i n g p a r a m e t e r s c a n b e u s e d to find

p o t e n t i a l s w h i c h l e a d t o a g i v e n v a l u e of a p a r a m e t e r .

F o r e x a m p l e , l e t t h e v a l u e of t h e s c a t t e r i n g l e n g t h b e

known to b e Ao . T h e n , f ix ing on an a r b i t r a r y f o r m of

t h e funct ion a o ( r ) w h i c h s a t i s f i e s t h e b o u n d a r y c o n d i -

t i o n s * a,)(0) = 0, ao(°°) = Ao , w e find f r o m (3.3)

v (r) - (5.7)
5.2 The Number of Bound States in a Given Potential For example, if

Calogero has shown[3(h32^ that the phase-function
method allows us to get new estimates of the number n
of bound states in a given potential and to find simple
conditions which determine a class of potentials which
have at least one bound state with each of the angular
momenta I < L. For this purpose one looks for poles
of the solutions of the Riccati equation (3.2) for the
function ajo(r), which, as we have noted, correspond to
bound states with zero binding energy. Under the con-
dition that the potential V(r) is everywhere attractive,
the number of poles determines the number of bound
states. The results of the analysis are as follows'-30-':
an upper limit for nonsingular potentials is

a0 (r) = Aor (r + ^o)̂ 1.
then V(r) = A§r"4.

The equations of the PFM also give the possibility
of a new formulation of the problem of finding the po-
tential V(r) if the dependence of a given phase <5 j(k)
on the energy E = k2 is known in the entire range
0 < k < ». Let us write Eq. (2.23) in the form

(5.8)

n, < n0 < — ,1/2 V'(r)>0, (5.2)

Here Tj(k) = k tan S;(k) is a known function, and the
kernel of the integral equation,

*It is also necessary that for small r the derivative a0 (r) sat-
isfy the conditions -1 < ao'(r) < 1, which follows from (2.18) and
(2.21).
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i (r, k) = [/, (kr)-li (r, k) nt (r, * 0 (5.9)

is a functional of V(r). Equation (5.8) is the starting
point of an iteration process for the determination of
V(r), if we regard it as a Fredholm equation of the
first kind with a known kernel. As the first step, hav-
ing chosen a test function V(0)(r), we can determine
from (2.23) an initial value t (0)(r, k) for the tangent of
the phase shift, and substitute it in the kernel (5.9).
With the resulting kernel K<0)(r, k) we solve Eq. (5.8)
and find the next approximation for the potential,
V(1)(r). Repeating this procedure a sufficient number
of times, we arrive at the desired solution V(r). We
can expect good convergence of the iteration process
if the first approximation V{0)(r) is well chosen.

We note also that the PFM is very convenient in
models of the type of the model with boundary condi-
tions, in which the action of the unknown inner part of
the potential is replaced by definite boundary condi-
tions for the scattering phase shifts. These boundary
conditions are then the initial conditions for Eqs. (2.5),
(2.23), and so on.

6. CONCLUSION

As has been pointed out earlier, the new formalism
of quantum mechanics described here has a number of
advantages over the standard method of solving the
Schrodinger equation. This is true of the numerical
methods for calculating phase shifts and other scatter-
ing parameters and also of its use for general prob-
lems of the theory of potential scattering. The PFM
is very convenient for the solution of problems of
nuclear^29-' and atomic^40-' physics.

The exposition has been arranged so as on one hand
to show the starting points of the method, and on the
other hand to give the main equations and results in a
form suitable for direct practical use. All more com-
plicated or specialized questions have been dealt with
very briefly, in view of the fact that the details are
contained in the original papers.

It must be emphasized that a number of problems
still await their solutions. For example, as yet no
analog to the equation for the phase function has been
constructed for the total scattering amplitude for an
arbitrary potential. It would be interesting to treat in
the framework of the PFM problems of three or more
bodies, as well as the two-body problem. There has
also been no study from this point of view of the case
of a time-dependent potential.

In conclusion we note that a series of papers by
Calogero, beginning with a major art icle, [ 8 ' has con-
tributed greatly to the development of the PFM.

Note added in proof. Professor F. Calogero has informed us
that his book devoted to the phase-function method will soon be
published by Academic Press, Inc., New York.
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