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J. HE need for spectral investigations of substances in
which, owing to optical inhomogeneity, the phenomena
of propagation, absorption, or emission of light are
inseparable from its scattering, arises more and more
frequently and more and more insistently in the prac-
tice of spectroscopic laboratories. The number of such
light-scattering objects is exceedingly large. It in-
cludes, for example, all biological matter (live tissues,
compounds of all types, microorganism cultures), the
principal astrophysical and geophysical objects (stel-
lar and planetary atmospheres, soils, waters, and
their covers), food products, dyes, and structural ma-
terials , powders, emulsions, and colloids, snow-like
and paper-like substances (for example, chromato-
grams), cloths, most luminors and light sources, and
even distilled water in the ultraviolet region of the
spectrum. Many phenomena, such as coagulation and
phase transformations, resonance fluorescence and
the associated reversal of spectra, or Shpol'skii's lu-
minescence and absorption spectra, can be traced only
in substances that exhibit strong light scattering.

It is no wonder that the use of spectroscopy for the
investigation of various objects of this class ceases to
be a rarity. Nevertheless, the number of times one
resorts to it is incomparably small compared with the
number of still unsolved problems for which it can be
used. Frequently this is due to lack of faith in the
very possibility of using spectroscopy for objects of
this kind. It is more frequently the consequence of the
inability to overcome the corresponding methodologi-
cal difficulties.

The most frequent approach, however, is the other
extreme, wherein being unable to take into account the
specific features of the light-scattering media, the r e -
search workers merely attempt to ignore it completely
and remain within the framework of the noncritical
utilization of traditional procedures. If the latter turn
out to be patently inconsistent, then they are replaced
either by general arguments of crudely qualitative
character, far removed from the contemporary level
of knowledge, or by recommendations that are at trac-
tive for their simplicity, but known to be unreliable
and generated by the primitive concepts of past times.

•Expanded version of a lecture delivered at the Moscow State
University on 1 February 1965 to the participants of the All-union
Conference on Spectroscopy.

Among the many hundreds of papers devoted annually
to the spectroscopy of light-scattering substances, one
can hardly find one or two dozen in which the methodo-
logical aspect of the research is at the level of con-
temporary requirements and provides irreproachable
results.

The cause of this situation can be seen in the fact
that the few present-day theoretical and experimental
researches especially aimed at developing the funda-
mentals of spectroscopy of light-scattering substances
remain little known to the practicing spectroscopists
(mostly at the fault of the authors themselves, who
cast these researches in difficult-to-understand math-
ematical form). In particular, two fundamental facts,
clearly established by these researches, remain little
known.

First, the traditional methods of spectral analysis
of optically homogeneous substances are utterly in-
consistent as soon as scattering of light becomes
barely perceptible. The optical singularities of light-
scattering substances call for principally new ap-
proaches to the very formulation of the problem of
spectral analysis. One must speak here not of running
away from the light-scattering phenomena, but their
intelligent utilization for analytic purposes. Artificial
increase of light scattering can sometimes become a
means of producing additional spectroscopic capabili-
ties. To the contrary, ignoring the specific features of
light-scattering substances frequently leads to gross
and difficultly detected errors .

Second, in spite of the extreme variety of light-
scattering substances, there exist certain general
rules governing their optical properties and admitting
of the unified treatment of the entire manifold of opti-
cal phenomena which take place in these substances.
The existence of such laws indeed ensures, in final
analysis, the possibility of developing concrete analytic
procedures as applied to problems and objects of vari-
ous kinds on the basis of a general theory, and not by
empirical tr ials.

The general laws of the optics of light-scattering
bodies, and by the same token the principles of their
spectral analysis, were revealed essentially in the pa-
pers of A. A. Gershun, M. M. Gurevich and co-
workers, P. Kubelka, E. V. Shpol'skii and co-workers,
V. A. Ambartsumyan, B. I. Stepanov and his students,
V. A. Timofeeva, and also the author and his co-
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workers; see, for example C1"13] and also the r e -
views c u " 1 9 ] .

Serving as the basis for this group of researches
are, on the one side, modern theory of radiation trans-
port in light-scattering substances, which has provided
a well developed mathematical formalism. On the
other side, they are based on a sufficiently varied ex-
perimental laboratory material (primarily the investi-
gations of A. S. Toropets, G. Kortum, and especially
A. P. Ivanov and co-workers'14~19]). Each of the dis-
ciplines has for a long time developed practically in-
dependently and has since become part of an extensive
field of knowledge, worthy of an independent study go-
ing greatly beyond the framework of this article. The
theoretical base of the spectroscopy of light-scattering
substances was itself built up of new physical ideas
that resulted from a combination of theoretical and ex-
perimental research and were formulated in more or
less explicit form in the papers of the already-men-
tioned cycle, especially in recent years. These r e -
vealed not only ways and means of solving spectral-
analysis problems, but also the capabilities and limi-
tations of spectral-analysis methods as applied to
light-scattering objects.

However, while the general theory is already at a
satisfactory level, although far from complete, the
particular procedures based on it and the apparatus
needed for its realization have been developed very
little. In this sense, the situation in the spectroscopy
of light-scattering substances recalls the conditions
that developed some quarter of a century ago in emis-
sion spectroscopy, when the practical application of
the general principles came head on against the need
for developing particular procedures, and by the same
token of carrying out numerous researches of method-
ological character. The difference lies only in the fact
that the general principles of the spectroscopy of light-
scattering substances remains so far the preserve of
a narrow circle of specialists and has escaped the at-
tention of most experimental spectroscopists. Only
this can explain the utterly unjustified but widespread
nihilism in the evaluation of the capabilities of the
spectroscopy of light-scattering substances. For this
reason, scientific development of spectroscopic pro-
cedures is frequently replaced by a noncritical utili-
zation of all possible palliatives of the type, for ex-
ample, used in the tendentious and frequently simply
erroneous review of G. Kortum and co-authors.C19]

The review presented here does not pretend to be
comprehensive and is addressed primarily to experi-
mental spectroscopists who are not skilled in the fine
points of mathematical theory. Therefore attention will
be paid principally to the explanation of the physical
picture of the phenomena and of the physical funda-
mentals of constructing a spectral analysis of light-
scattering substances, and also to a clarification of its
capabilities. Questions involved in the experimental
realization of these fundamentals, as well as methods

for their verification, will be touched upon only to the
extent needed to illustrate the general ideas. Part of
the considerations advanced here are published by the
author for the first time.

I. GENERAL PRINCIPLES OF ABSORPTION SPEC-
TROSCOPY OF OPTICALLY HOMOGENEOUS
SAMPLES. SPECTRAL TRANSMISSION
FUNCTION

To clarify the essence of the problems that are
faced by spectroscopy of light-scattering substances,
we turn first to a general formulation of absorption
spectral analysis for optically homogeneous samples,
but considered from an aspect to which little attention
is usually paid.

The purpose of absorption spectral analysis, in any
of its variants, is to measure various parameters that
characterize the state or structure of the substance.
Essentially we are speaking of replacing difficultly
realizable (and sometimes unrealizable) direct meas-
urements of these parameters by more accessible
measurements of the spectral dependence of the ab-
sorption coefficient K (i.e., the imaginary part of the
refractive index) of the investigated substance. The
basis of such a replacement must inevitably be the
theory of the act of light absorption by the substance.
Usually this theory is indeed considered as the basis
of spectroscopy, all the more because in the case of
optically homogeneous objects all the theoretical diffi-
culties are concentrated in it.

However, no less important a role is played in the
realization of spectroscopic research by another the-
ory, which usually remains in the shadow only because
in the case of an optically homogeneous medium its
deductions are elementary. Indeed, the quantities di-
rectly measured under conditions, say, of absorption
spectroscopy are the geometrical dimensions of the
sample and light fluxes at various wavelengths A, in-
cident on the sample (Fo) and emerging from it (F). As
a result of these or equivalent measurements, one ob-
tains the spectral dependence of the transparency of
the sample

T(X) = - (1)

under specified conditions of its illumination. This,
properly speaking, completes the experimental stage
of the spectral analysis.

The next stage should be the conversion of the ex-
perimentally measured function T(X), which charac-
terizes the sample as a whole, into the dependence on
X of various parameters characterizing the optical
properties of the material of this sample, for example
K(X). Only then is it possible, by using the theory of
the act of light absorption, to determine the structural
parameters of the substance or its state. Thus, we
are dealing with the need for establishing a connection
between the quantity T and the volume (or mass) coef-
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ficient a of light absorption by the material of the
sample and, further, the connection between a and K.
For an optically inhomogeneous medium, both connec-
tions are established by the theory of propagation of
light in matter.

In the case of a homogeneous unbounded isotropic
medium and strictly monochromatic light, the results
of this theory are so simple when considered in the
framework of ray optics that they seem to be self evi-
dent. If we go over from light flux F to the bright-
ness I of the light beam, then they reduce to Bouguer's
law:

where

d /= —aldl.

4itx

(2)

(3)

and dZ is the element of length of the light beam, or,
in integral form,

T(k, l) = e~ (4)

where I is the path traversed by the light in the
matter.

Frequently, however, it is forgotten that such sim-
ple expressions are obtained only as a result of far
reaching idealizations. If, for example, the sample
boundaries are plane-parallel, then allowance for the
light reflected by the end surfaces makes it necessary
to replace (4) by the relation

(5)

where L is the length of the sample, X = — V& In R,
and R is the energy coefficient of light reflection
from the end surface, which also depends on a. Al-
lowance for interference1-20-1 or for nonlinear effects
complicates further the relations between T, a, and K,
and the form of these relations greatly influences both
the character of the spectroscopic experiment and the
number of independent measurements necessary for
its unique interpretation. This becomes especially
clearly manifest, for example, when determining the
K(X) dependence from measurements of light reflected
by a mirror surface of the sample, when it is advanta-
geous to supplement or even replace the photometric
measurements by polarization and phase measure-
ments (see, for example, C 2 0 . 2 i : i ) .

Thus, the real scheme of a spectrum-analytic ex-
periment, even in the case of an optically homogen-
eous sample, turns out to be much more complicated
and acquires the form shown in Fig. 1.

The general scope of the experiment is determined
on the basis of the theory of the structure of matter,
which relates its optical parameters with the sought
information concerning it. Further, the theory of
propagation of light in matter, which relates its opti-
cal parameters with the optical parameters of the

sample as a whole, determines the formulation of the
spectroscopic experiment, i.e., the character and
number of the speetroscopic experiment, i.e., the
character and number of measurement operations.
Finally, the theory of the light field, which relates the
measured parameters of the latter with the optical
parameters of a sample situated in the field, deter-
mines the arrangement of the measuring apparatus.

The foregoing pertains directly to absorption spec-
troscopy. However, the scheme outlined above re -
mains practically unchanged also for luminescence and
emission spectroscopy. But in each concrete case the
relations between the different elements of this scheme
are different. Thus, if we are dealing with a standard
quantitative spectrochemical analysis, then, within the
validity of Beer's law, the stage connected with the
use of the theory of structure of matter drops out
completely and the procedure is based entirely on the
theory of propagation of light in matter.

In order to make this even more evident, and inci-
dentally to explain certain circumstances that will
prove useful later, we return to the case of an un-
bounded medium, but assume that the absorption coef-
ficient a of the substance depends essentially on A
inside the spectral interval (X,X + A\) of the measur-
ing instrument (or of the radiation source). This is the
case, for example, when the spectral instrument does
not resolve the rotational structure of the gas-absorp-
tion band, as frequently happens in the infrared region
of the spectrum.

We then must consider in lieu of (1) the quantity

(6)

which is customarily called the "spectral transmis-
sion function" or, as the astrophysicists prefer, the
"growth curve." We retain here the concept of " t rans -
parency" and the symbol T(X, I) for monochromatic

Light field

FIG. 1. Diagram of spectrum-
analysis experiment with optically
homogeneous sample.
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light, or, more generally, for T independent of X in
the interval from X to X + AX. Since we are now dealing
not with monochromatic light but with a finite spectral
interval, it is essential that the measurements of the
light fluxes entering and leaving the sample be carried
out with an identical apparatus function A (A, X' — X)
characterizing the spectral sensitivity of the system
as a whole, including the spectral characteristics of
the source and light receiver and the light-filtering
devices.

Then, as can be readily seen

(7)p (X, AX, I) = Y Ij A(X,X' — X)T(X',l)dX',

X+AX
where Z = J A(X, X' - X)dX and T(X, I) is defined

X
by relation (4) for a homogeneous medium and by r e -
lation (5), say, for a sample of length L. Frequently,
if Beer's law is valid, it is convenient to change over
from the volume to the mass coefficient of absorption
of the matter. But this does not change relations (7),
except that I is formally replaced by the amount m of
matter which is pierced by the light beam.

On the other hand, taking into account the monotonic
character of T(a), we can transform (7) into

AX, l)= — dT
~dada,

where w(a') is the probability, weighted by the appara-
tus function, that in the interval (X, X + AX) we have
a s a', i.e., T(a) >T(a ' ) . In particular, if Bouguer's
law (4) is valid, then

p (X, AX, 1)^1 \w (a) e~a> da. (8)

This notation has certain advantages.
It is easy to see that the spectral transmission

function p(X, AX, I) depends uniquely and monotoni-
cally on I or m. However, the form of this depend-
ence is determined entirely both by the choice of the
apparatus function and of the spectral interval A X,
and by the structure of the absorption spectrum in
this interval. Therefore it becomes necessary to
specify concretely each time the character of p(Z)
or p(m). However, no matter what the form acquired
by the spectral transmission function, the changeover
from T(X) to p(X, AX) is connected with radical
changes in the approach to the spectral-analysis prob-
lems. The latter are then subdivided into two distinct
groups—problems of quantitative spectrochemical con-
trol (i.e., determination of m) and problems of spec-
tral structure, which require the determination of the
spectral dependence of K(X).

If the problem reduces to a determination of the
amount or concentration of absorbing matter, then it is
sufficient to confine oneself to isolated measurements

of p(m) for suitably chosen values of X and AX, under
the condition that the form of the p(m) dependence be
known for these values beforehand, i.e., that a "cal i -
bration curve" be available. For multiple measure-
ments of p(m) under standard conditions, the calibra-
tion curve remains unchanged and it is best constructed
by means of control measurements of p at known val-
ues of m. But it is not realistic to construct calibra-
tion curves covering the entire range of possible varia-
tions if the external conditions are variable, owing to
the sensitivity of the function p(m) to these conditions
and its inherent dependence on many parameters.

The calculation of p(m) is in this case equally un-
realistic. First, it calls for a priori detailed informa-
tion on the structure of the absorption spectrum of the
given substance, including the structure of the remote
sections of the wings of the spectral lines, and also
their sensitivity to external conditions. Second, this
path would again lead to the need for creating practi-
cally unmanageable and unjustified tables of p(m) with
many entries. Third, the use of such tables would pre-
suppose the need for additional supplemental meas-
urements to fix the state of the medium under the
concrete conditions of the analysis.

There is, however, an alternate formulation of the
problem, free of the foregoing difficulties. Let us a s -
sume that under certain experimental conditions the
function p(m) can be approximated with sufficient ac-
curacy, for a sufficiently extensive class of particular
cases, by an analytic form which is sufficiently simple
and contains only a small number of parameters that
characterize individual peculiarities of the structure
and state of the investigated substance. Then, by choos-
ing the corresponding experimental conditions and car-
rying out a certain aggregate of measurement opera-
tions, we can simultaneously obtain also the values of
all the empirical parameters that determine the form
of the function p(m) for the given concrete sample
(i.e., obtain for it an approximate individual calibration
curve) and the sought value of m. This does not r e -
quire knowledge of the structure of the absorption
spectrum of the investigated substance, since all the
necessary information are contained in the experi-
mentally determined parameters. On the other hand,
it is necessary to obtain a minimum amount of infor-
mation which is essential for the determination of
these parameters.

The analytic approximation of p(m) can in general
be either guessed or obtained from some leading con-
siderations. In such a case, however, the degree of its
reliability and the applicability limits remain unclear,
and the reliability of the data obtained with its aid is
doubtful. On the other hand, it is possible to search
directly for approximate solutions of the integral in
the form (7) or (8), but not for particular ones, in a
general analytic form containing a minimum number
of parameters that can be readily determined by ex-
periment, without presupposing an a priori knowledge
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of the properties of tne investigated medium. The lat-
ter is particularly important, for only then does it be-
come possible to analyze substances with properties
that are not known beforehand. Therefore solutions
based on concrete assumptions concerning the form of
the absorption spectrum have no analytic value what-
ever.

Of course, the desired solutions are obtainable only
in a limited number of experimentally realizable situ-
ations. Therefore searches for such situations and for
the approximations of p(m) corresponding to them,
such as to ensure success of the spectroscopic experi-
ment, have for a long time been the center of attention
of spectroscopists working in the infrared region of
the spectrum (see, for example t 2 2 " 2 7 ^ although they
have apparently not yet been considered from this
point of view.

It is obvious from the most general considerations
that, for any structure of the absorption spectrum and
for any apparatus function, the transmission function
p(m) should decrease monotonically with increasing m,
tending to unity in the absence of absorbing matter and
to zero when the amount of matter increases without
limit (Fig. 2). If m is so small that T differs little
from unity in the entire interval (X, AX), then, confin-
ing ourselves to the first two terms in the expansion of
T in powers of m, we get from (7)

p (m.) ^ 1 — Bm ̂  e~Bm (9)

where B is an experimentally determined constant
that depends on the structure of the absorption spec-
trum and on the form of the apparatus function.

With increasing m, the structure of the absorption
spectrum begins to affect more strongly the form of
p(m). However, in the region of applicability of the
Bouguer-Beer law, when the sample becomes practi-
cally opaque to the central sections of the principal
absorption lines and the value of p(m) depends essen-
tially on the absorption in the wings of the lines and
on the conditions of their superposition, the function
p(m) again assumes a practically universal form

p (m) ^ C (1 — D Vm) as Ce~D Vm, (10)

where the constants C and D, as well as the interval
in which such an approximation is valid, depend on

FIG. 2. Typical form of spectral transmission function.

the structure of the absorption spectrum, and also on
the form of the apparatus function. Finally, at very
large values of m, the concrete structure of the ab-
sorption spectrum again begins to affect strongly the
form of p(m). In some cases an expression of the type
(10) remains valid for it, in other cases p(m) ap-
proaches Bouguer's law with a certain effective absorp-
tion coefficient, in still others p(m = 1 - erf(cVin), etc.

It is essential that in any of the foregoing cases, it
is possible to describe the behavior of p(m) over a
wide range of m without a deep insight into the struc-
ture of the spectrum or the state of the sample, and it
is possible to use directly one of the few and relatively
simple formulas, the choice between which can be de-
cided by a small number of auxiliary measurements
which determine at the same time also the parameters
entering in these formulas. Then the theory of propa-
gation of light in matter predetermines beforehand also
the possible form of these formulas and the conditions
under which their agreement with reality can be ex-
pected.

An entirely different picture is encountered in spec-
tral-structure problems. If we know the form of the
function T( A.) from the propagation theory, then the
experimental problem reduces to determining the val-
ues of its parameters (for example, x and L in case
(5)) and the values of the function itself at certain val-
ues of L (or I). In other words, owing to the unique-
ness of the dependence of T on K, a certain set of suit-
ably chosen combined measurements of T for a given
X makes it possible to determine K(X).

If, on the other hand, the light-propagation theory
leads to a spectral transmission function p(X, AX, I),
then the problem of determining a(X), and conse-
quently also X(X), is aggravated by the need for first
transforming from the function p(X, AX, I) to the func-
tion T(X, I). However, this additional step calls for the
solution of an integral equation of the type (7) and (8),
which entails, as is well known, serious difficulties of
fundamental nature, and the discussion of which is not
relevant here (see for example t 2 8"3 o : i). The only ex-
ception is the case when the form of the apparatus
function A(X, X' — X) admits of a rigorous analytic in-
version of an integral equation of the type (7) for the
given form of T(l), as occurs, for example, in the
case of Fourier spectroscopy and low noise level. Only
in this case, strictly speaking, is the reliable defini-
tion of T(X) possible, and with it the further transition
to K(X). It is important to emphasize once more that
both the scope of the capabilities of the structural
analysis and the ways of its realization are primarily
determined precisely by the theory of propagation of
light in matter, and not by the theory of the structure
of matter as is customarily assumed, since the first
essential step in this direction is unavoidably the solu-
tion of the inverse problem of the theory of light prop-
agation.
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2. SPATIAL AND STRUCTURAL TRANSMISSION
FUNCTION FOR AN INHOMOGENEOUS MEDIUM
WITHOUT SCATTERING. IMMERSION AND
PRESSING METHODS

It was assumed in the preceding section that the
sample is optically homogeneous and, if bounded, its
boundaries (or those of the cell containing the sub-
stance) are plane-parallel. We now turn to the case
when the sample has a spatial structure, but diffrac-
tion and scattering of light by this structure can be
neglected.

The simplest example is an unbounded body in which
the state of the matter (say, the pressure, temperature,
dye concentration) vary smoothly in the direction of
one of the coordinate axes, say along the Z axis, as is
the case in the ocean or in the atmospheres of planets,
i.e., a - a(\, Z). For a ray inclined at an angle S- to
this axis, we then have in view of (4) (without allow-
ance for refraction)

T(k, Zu Z2, «) = <

where

: = 5 a(l,Z)
Zl

sec ft dZ

(11)

(12)

is the optical thickness measured along the ray.
Thus, the value of T is determined not only by the

amount m of matter along the path of the ray, but also
by the character of its altitude distribution. Accord-
ingly, the form of the spectral transmission function
p(X, AX, Zj, Z2, S-) varies with Z t , Z2, and S-, as a r e -
sult of which the possibilities of its analytic approxi-
mation are greatly restricted. This is one of the main
difficulties of the spectral analysis of atmospheric
gases (for example, hygrometry or ozonometry) by the
most frequently realizable Bouguer method, namely,
by measuring the spectral brightness of the sun at dif-
ferent zenith distances and at different levels above
the earth's surface.

Under laboratory conditions, a realistic scheme of
an absorption experiment usually takes the form shown
in Fig. 3. Parallel light beams produced by a collima-
tor 1 pass through different regions of the cross sec-
tion of the sample 2 and are gathered in the focal
plane of the exit lens 3. The light propagating in other
directions is then filtered out by a spatial filter, the
role of which is assumed by diaphragm 4, behind which
is placed a light receiver 5. This averages the trans-

FIG. 3. Diagram of an experiment in which the attenuation
coefficient is measured.

parency of the sample over its area, since the light
flux incident on the receiver is

= /0 J T(x,y)dS, (13)

where IQ is the brightness of the light incident on the
sample, S is the cross section area of the light beam
in the sample, and x and y are the coordinates of an
element dS of this section. If the sample is homo-
geneous, then $ = IoTS or

q> (14)

Assume now that the sample is made up of a set of
N parallel bars or cells of different lengths L^ and
cross sections S ,̂ all of the same material (Fig. 4a).
We can then no longer speak of the transparency of the
sample as a whole. This concept is replaced by the
spatial transmission function

(15)

where T(a, Lj) is defined by (5), and w(L^) = Sj/S
corresponds to the probability that a photon incident
on the sample will enter into the channel of length L .̂

If the sample has an irregular, say prismatic, form
(Fig. 4b) then, disregarding the refraction on its
boundaries,

p(a)= [ w(L)T(a,L)dL. (16)

but if the sample has a regular form (i.e., L = const),
then the attenuation function a varies over its cross
section, i.e., a = a(x, y); assume that this is a set of
cells with solutions of different concentrations (Fig.
4c), and then we have in lieu of (16)

p (L) = ^ w (a) T (a, L) da, (17)

where w(a)da is the probability that the photon inci-
dent on the sample will pass through it in a place

FIG. 4a

FIG. 4b FIG. 4c
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where a lies in the interval between a and a + da.
Attention must be called to the fundamental differ-

ence between expressions (16) and (17). The former,
which corresponds to the spatial transmission function,
depends uniquely on the absorption coefficient of the
substance, whereas the second depends uniquely on the
dimensions of the sample and the character of this de-
pendence is determined entirely by its internal struc-
ture. This is why (17) can be called the structural
transmission function of an inhomogeneous sample.

Whereas the changeover from transparency to the
spatial transmission function does not essentially
change the approach to the spectral-structure r e -
search, the transition to the structural transmission
function changes greatly the formulation of the prob-
lem, just as in the case of the spectral transmission
function. This is clearly seen from a direct compari-
son of (17) and (8).

Finally, if we investigate a sample which is inhomo-
geneous along its length and we must employ an unre-
solved spectrum, then (16) is replaced by the more
complicated spatial-spectral transmission function

p (X, AX) = \ w(L)\w(a)T (a, L) da dL

-max
= \ w(L)p (X, AA, L) dL,

(18)

where p(X, AX, L) is the spectral transmission func-
tion for a beam segment of length L.

Of course, the foregoing examples are of no practi-
cal interest. Any spectroscopist will attempt to make
the investigated sample homogeneous and of convenient
shape for only then will the theory of propagation of
light in matter lead to sufficiently simple and clear
experimental procedure and assure the success of the
experiment. But this is precisely the principal lesson.
The theory of propagation leads, generally speaking,
to complicated transmission functions. Their determi-
nation calls for a priori knowledge of the geometrical,
structural, spectral, and other characteristics of the
sample (something almost never feasible), and their
knowledge does not guarantee at all the possibility of
uniquely solving the problem.

Therefore, in the case of optically inhomogeneous
samples, even those that do not scatter light, the ex-
perimenter is faced by the same problem as in the
case when unresolved spectra are used. Namely, he
must seek experimental conditions such that the t rans-
mission function is approximated in general form by a
simple analytic formula with a small number of em-
pirical parameters. When dealing with the spatial
transmission function this solves the problem com-
pletely. But if the transmission function is structural,
then the situation becomes equivalent to the case of
the spectral transmission function considered above,

and the possibilities of the spectral analysis are
greatly limited.

To clarify this conclusion further, let us consider
one more case which is already of direct applied in-
terest. Let us assume that the sample is a two-phase
system, and that a homogeneously absorbing medium
is randomly distributed in the form of isolated inclu-
sions (for example, emulsions or powders)(Fig. 5).
The assumption that there is no scattering is equiva-
lent to the requirement that there be no refraction on
the boundaries of the inclusions. Therefore the two-
phase nature of the system will be manifest only in the
fact that the rays penetrating the sample in different
places will pass through different thicknesses of ab-
sorbing matter (including cases when they bypass the
absorbing particles completely).

If w(O is the probability that the photon will t ra -
verse a path I in the absorbing substance, and if we
disregard the influence of the cell boundaries, then in
accord with (16) and (4) we have

p(a, L)=\w (I) e~al dl. (19)

It is easy to verify that we always have p(a, L)
> exp (-aZ eq), where Zeq is the equivalent thickness
of the absorbing phase, since a fraction of the light
passes through a relatively small thickness of ab-
sorbing matter . c l 8 ' 3 1 ] For the same reason, we obtain
an appreciable "smoothing" of the absorption spec-
trum. In fact, it follows from (19) that d In p(a, L)/da
= — I, where I is the average integral path of the pho-
ton in the absorbing medium, with I < Ze_.

If the object is a liquid dye emulsion, i.e., if the
colored particles are spherical, then, knowing their
distributions by size and concentration, we can theo-
retically calculate w(l). Some authors consider this
procedure promising. However, even if we disregard
the fact that in more complicated cases such calcula-
tions are not feasible, and the microstructure of the
sample usually remains unknown, the very concept of
absorbing but non-scattering particles is a far-fetched
idealization.

In fact, scattering and diffraction vanish only when
not only the real but also the imaginary parts of the
refractive indices of the medium and of the particle
are identical, i.e., when the medium is perfectly ho-
mogeneous. In the case of suspensions of lampblack

FIG. 5. Illustrating the determination of the spatial transmis-
sion function of a two-phase system.
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particles or india ink, the scattering if far from
small, and in the case of metallic spheres it greatly
exceeds the absorption. Therefore for any substance
in which the absorbing substance is inhomogeneously
distributed it is necessary to take light-scattering
phenomena into consideration, i.e., it is necessary to
resort to the specific methods of the spectroscopy of
light-scattering media.

The frequent tendency of "facilitating" the experi-
ment by completely or partially ignoring this circum-
stance is fraught with serious not easily detected e r -
rors , as is now well known and as was first pointed out
by t. V. Shpor sk i i . m

This has given rise to the tendency of suppressing
light scattering by artificial means. At first glance it
is most natural to introduce for this purpose immer-
sion, i.e., equalization of the refractive indices of the
medium and the inclusions. This method is widely
used in biological research/33-1 for example by
R. Barer.C32] It is easy to verify, however, that this
method is not as reliable as it might seem. First, as
we have already seen, no immersion makes it possible
to get rid completely of scattering, and special experi-
ments are necessary to be assured of the efficacy of
the method as applied to each concrete case. Second,
even if the scattering becomes insignificant, this only
leads to the already considered case of inhomogeneous
media, i.e., to transmission functions and not at all to
transparencies, so that reliable calculation of w(2) is
made impossible as a rule by the lack of information
concerning the microstructure of the sample (say a
biological one).

As an alternative, the so-called "pressing method"
has found extensive use in the study of inorganic sub-
stances. This method consists of preparing quasiho-
mogeneous samples from inhomogeneous matter by
pressing in vacuum at high pressure. But even
here there are many reservations which are very fre-
quently not allowed for by many experimenters.

If the pressing is effected without a solvent and if a
sufficiently high degree of microoptical homogeneity
results, then this method raises no objections, except
that not all substances will withstand such an opera-
tion. In most cases, however, pressing is carried out
with a solid solvent or by immersion (for example, in
potassium chloride), both to ensure mechanical integ-
rity of the substance and to dilute the investigated sub-
stance so as to increase its transparency. It is par-
ticularly necessary to resort to the latter in the case
of substances having strong absorption and those which
are generally opaque in bulk form. We then return in
essence to the immersion method with all its short-
comings, since a substance pressed together with the
immersion will not become optically microhomogene-
ous, even if the scattering in the substance can be sup-
pressed, and consequently the use of Bouguer's law is
no longer justified. Moreover, owing to the differences
between the dispersion curves of the substance and the

immersion, the light scattering frequently acquires an
appreciable spectral dependence (the Christiansen fil-
ter). Therefore many results obtained by this method
call for a critical review.

The third way consists of attempting to find empir-
ically experimental procedures in which the scattering
phenomena are somehow compensated and can be ig-
nored. This includes, for example, various recipes us-
ing photometric spheres, mirror or capillary cells,
etc. All these recipes, however, are based on primi-
tive photometric considerations of qualitative charac-
ter, and are not backed by a rigorous theory that takes
into account all the peculiarities of light propagation
in the scattering medium. Therefore, as a rule, such
recipes lead to a clearly pronounced qualitative ef-
fect, but closer examination shows them not to be well
founded and their use frequently leads to gross er rors .

Finally, we have a fourth way, which in our opinion
is the only one scientifically justified. This is to fore-
go circuitous manoeuvres and attempts to eliminate
scattering effects, i.e., a conscious utilization of these
phenomena to create specific methods of spectroscopy
with allowance for all the optical singularities of the
light-scattering substances. The basis for this should
obviously be a disclosure of the laws governing the
propagation of light in a scattering medium.

in. PROPAGATION OF LIGHT IN A SCATTERING
MEDIUM. TRANSPORT MATRIX AND ITS
CONNECTION WITH THE PARAMETERS OF
THE MEDIUM

The propagation of light in a scattering medium is
essentially a statistical process, the evolution of which
depends entirely on the character of the inhomogeneity
of the medium. Strictly speaking, we should be speak-
ing of an interaction between the electromagnetic field
and matter in a unified matter + field system. How-
ever, the weakness of the action of the light and the op-
optical properties of the material allow us to regard
this action as a small perturbation and confine our-
selves in first approximation to the effect of the matter
on the field only. By the same token, the field and the
matter become separated into independent systems
and the general problem of their interaction breaks up
into two independent parts—the problem of scattering
of light by a single inhomogeneity as a function of the
parameters of the latter, and the problem of propaga-
tion of light in a medium with a specified scattering
ability.C12> 3 5 '3 6 ] With this, it becomes necessary to
describe the light field in the scattering medium by
means of a coherence matrix or by equivalent statis-
tical parameters.1-12 ' 35"41]

A program of this kind for the construction of the
theory of light propagation in a scattering medium,
based directly on the equations of electrodynamics, is
so far unrealizable, with the exception of a small num-
ber of strongly idealized models (see, for example,
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C 4 2 ] ) . In the general case it is therefore necessary to
modify the problem further by using the approximation
of ray optics under the assumption that the light beams
having different prior histories are incoherent. It is
necessary with this to take into account the fact that
the state of the polarization of the light beam greatly
influences the result of its scattering.

Accordingly, the light field in the medium can be
represented112 '35> 371 as an aggregate of incoherent
light beams of different directions 1, each of which is
characterized by a quantum-mechanical density ma-
trix or an equivalent four-component Stokes vector-
parameter S(l). All the components of the latter are

2 = Ip cos 2i|>; S3 = 7P sin (20)

(p is the degree of polarization, q the degree of el-
lipticity of the polarization, 4> the angle of rotation of
the plane of maximum polarization relative to the
reference plane135 '43]) have the dimensions of bright-
ness and are additive for incoherent light beams.

Propagating in the scattering medium, each of the
light beams experiences two kinds of action on the
part of the latter. First, it becomes attenuated be-
cause the absorbed and scattered photons are removed
from it, and second, it becomes intensified because
photons removed by scattering from other light beams
are added to it. The ability of the medium of extract-
ing, absorbing, and scattering photons is characterized
respectively by the coefficients of extinction (k = a
+ a), absorption (a), and scattering (a), which have the
meanings of the probabilities of the corresponding
processes per unit volume. The probability that a
photon propagating in the direction lj and having a
polarization state S^'/SJ1' will be scattered in a unit
volume of the medium in the direction 12 with a
changed polarization state, is characterized by a scat-
tering matrix Dy^lj, 12) = (tr/47r)fjj£(l1> 12); for more
details see [ 35, Ml. Thus, in the case of an isotropic
medium, the change in the Stokes vector-parameter in
a length element of the light beam can be written in
theform" 2 ' 3 5 - 3 7 ' 4 3 ' 4 4 3

(21)

where the first term on the right side takes into ac-
count the photon removal process, and the second, the
enrichment of the beam with photons removed from
light beams in all other directions 1'. In the case of
scattering by anisotropic particles or in a force field,
the extinction coefficient k is transformed into an
extinction matrix, which takes also account of the di-
chroism of the medium. l 3 i i

The derivation of Eq. (21), which is the basis of
modern radiation-transport theory, is based on intui-
tive photometric representation and is not well founded
from the point of view of the equations of electrody-
namics. Moreover, although the mathematical analysis
of this matrix integro-differential equation and the de-

velopment of methods for its solution has been the sub-
ject of one of the most extensive branches of mathe-
matical physics (see lii~i6i etc.), it is still impossible
to point to experiments that directly confirm or refute
the correctness of this equation or of its corollaries.
An experimental verification of the transport theory
encounters two main difficulties. One is connected
with the limited nature of the models of the scattering
medium that are amenable to a full mathematical
analysis. As a result, an experimental reconstruction
of these models (for example, the assumption that
scattering is isotropic or that radiation polarization
effects are insignificant) is not realizable. Another
difficulty is due to the imperfection of the existing
methods of measuring the material parameters con-
tained in Eq. (21).

Real experiments are therefore limited as a rule to
a check of the character of various relationships that
follow from the theory, against an empirical choice of
effective values of the material parameters (essen-
tially, of values that lead to a fit). Within the frame-
work of such, incidentally, rather numerous and varied
comparisons with nature, transport theory is valid for
a rather extensive group of objects and in a wide range
of variation of their properties. This affords a certain
justification for trusting Eq. (21), even though its
rigorous derivation and direct experimental verifica-
tion continue to remain among the foremost problems
of modern optics.

Equation (21) relates the characteristics of the light
field Sj(l) inside or on the boundaries of a light-scat-
tering medium with its optical parameters a, a, and
fjk- But even in the simplest cases the methods of
solving Eq. (21) turn out to be quite complicated and,
with rare exceptions, end up with numerical calcula-
tions with an electronic computer. The situation is
always reduced here to finding (for given boundary
conditions) the characteristics of a monochromatic
light field in a medium whose optical parameters are
assumed known. Solutions of this kind are not suitable
for use in spectrum analysis, where the unknown
quantities are the very parameters of the medium. On
the other hand, there are still no effective methods for
directly solving the inverse problems of transport
theory. Therefore, when turning to the needs of spec-
tral analysis, it is no longer possible to use the ordi -
nary apparatus of radiation-transport theory, and a
radical review of the entire formulation of the prob-
lem is necessary. c u " 1 3 ' 4 7 ]

Let us consider a beam of photons in a state S^1'.
passing through a point 1 inside a scattering medium
in a direction lj . Some of these photons arrive at the
point 2 and produce there a light beam in the direction
12. Owing to the homogeneity and linearity of the equa-
tions of electrodynamics, the state of this beam can be
written in the form[35> 47]

;ii). (22)
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where p?? is the matrix of radiation transport from
point 1 to point 2, characterizing the optical coupling
of these two points, and is determined by the optical
properties of the light-scattering sample as a whole.
Obviously, the aggregate of transport matrices for
different pairs of points and different sections of the
spectrum contains all the optical information on the
light-scattering body. Therefore it is precisely these
matrices that should be the measured quantities in
spectroscopic investigations. The component P} I of
this matrix can be called the transport function of the
radiation from the point 1 to point 2, and has the mean-
ing of the probability of the transition of the photon
from point 1 to 2, averaged over all possible states
of its initial and final polarizations.

However, the photon can arrive at point 2 from
point 1 via a great variety of paths (Fig. 6), experi-
encing different numbers of scattering acts and being
subjected in each of them to different changes of the
state of polarization. The probability of the choice of
any particular path depends exclusively on the form of
the scattering matrix f^ characterizing the probabil-
ities of the different changes in the direction of motion
and the states of polarization of the photon during the
scattering act, and also on the geometrical parameters
of the volume filled with the scattering medium, pa-
rameters which determine the probability that the pho-
ton will emerge to the outside of the medium. With
this, a relation of type (22) holds for each of the possi-
ble photon paths, and the total transport matrix Pj^ is
the sum of the corresponding matrices for all the pos-
sible paths.

Let us assume that, in the absence of absorption,
the matrix for the transport from 1 to 2 is equal to
w*? for any path on which the photon experiences n
scattering acts and is equal to wj^(/) for any path of
length I. Then, obviously,

(23)

In the presence of absorption, but for the same scat-
tering matrix and for the same geometrical param-
eters of the light-scatter ing body, the probabilities
that the photon will choose any particular path [i.e.,
the matrices w|^ n and wj^( I)] remain unchanged.
But, in each of the possible paths, an additional prob-
ability appears of the photon becoming lost by absorp-
tion. The probability that the photon will survive in the

medium during the scattering act or in the mean path
from one scattering act to another is

FIG. 6. Illustrating the con-
cept of the transport function.

A = a + o 1+p ' (24)

where y3 = a/cr is the per unit absorptivity of the me-
dium.

Accordingly, the photon survival probability on a
path with n scattering acts is An, and the total t rans-
port matrix from 1 to 2 takes the form

Di2 V 12 An^ih = 2j Wife, n A .l
(25)

A relation of the type (25) is the inevitable result, for
each particular case, of any solution of the radiation
transport equation, obtained by the method of succes-
sive calculation of the scattering acts of increasing
multiplicity n. [7>48]

 m general form, however, for-
mula (25) was obtained for the first time and inter-
preted for spectroscopy applications in [11>49>50i. its
most important feature turned out to be the clear cut
separation, on the one side, of the indicatrix and
geometrical-optical effects, which determine entirely
the probabilities w-, , and on the other, of the ab-
sorption effects, which are also taken into account
fully in terms of the photon survival probability A
(this quantity is frequently called, without sufficient
justification, the "albedo of a scattering particle or of
a volume element of the medium"). It is also import-
ant to note that relation (25) is derived from very gen-
eral considerations, which are independent of the
transport equation (21), and therefore is not connected
with the aforementioned difficulties of justifying this
equation. In particular, allowance for cooperative ef-
fects (including coherent scattering at small angles),
which should greatly influence the form of Eq. (21),
cannot influence the form of (25). Therefore the limits
of validity of (25) are incomparably wider than the
limits of validity of (21).

If the absorption takes place only on the path of the
photon between two scattering acts, but not during the
scattering act itself, i.e., if it depends not on the num-
ber of scattering acts but on the length I of the path
traversed by the photon, then the photon survival prob-
ability is replaced by the transparency T(a, I) and ex-
pression (25) becomes

a)= \w\l{l)T{o.,l)dl. (26)

This relation admits (as first pointed out by H. D.
Van de Hulst and W. Irvine151J as applied to the trans-
port function PJJ) of a substantial generalization,
which overcomes the limitation, inherent in the trans-
port equation (21), that the light must be strictly mon-
ochromatic. To extend the transport theory to include
the case of an unresolved structure of the absorption
spectrum it suffices to replace T(a, I) in (26) by the
spectral transmission function p(A, A A, I):
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U (X, AX.) = ij wli (I) p (X, AX, I) dl.
b

(27)

On the other hand, if absorption takes place both during
scattering and on the path from one scattering act to
the other, then, obviously,

Pit (X, AX) = 2 A? $ w\ln (I) p (X, AX, I) dl,
( 2 8 )

1212
where wilc n(J) is the transport matrix from 1 to 2 in
the absence of absorption along any path of length I
under the condition that the photon experiences on
this path n scattering events, and Ao pertains only to
the scattering event itself.

It was already noted above that the concept of the
transport matrix makes it possible logically to subdi-
vide further the problem of radiation transport in a
scattering medium into two independent parts,111~13>

47, 49-513 n a m e i y the determination of the values of A
and T( a, I) or p(A, AX, I), which depend only on the
absorption and scattering coefficients, and the deter-
mination of the matrices w ^ n(Z ), which depend only
on the form of the scattering matrix fj^ and on geo-
metrical-optics parameters of the light-scattering
body (i.e., those measured in a scale of optical thick-
nesses T; (see (12)).

This leaves as the subject of the transport theory
proper only the problem of determining the quantities

ik,n
Z> o r w

ik,n <Z>
oo

= Zv w.-i. n(l). We can use to this purpose Eq. (21)
n=l 1K>n

with k = a (i.e., a = 0 and A= 1), which in itself
greatly decreases the size of the problem. A small
modification of the reasoning that has led to (21) makes
it also possible to replace this equation directly by an
equivalent equation for the components of the matrix
Wik(i); see C52> 53]. The behavior of the corresponding
transport function w41(Z) was investigated, for exam-
ple, by L. M. Romanova.C53'543

A direct comparison of (26) with (16) and of (25)
with (15) reveals a complete analogy, thus immedi-
ately pointing out possibilities and means of develop-
ing a spectral analysis of light-scattering substances.
In particular, a complete analogy is revealed between
the transport function P l t , which is arrived at by an
optical investigation of any light-scattering body in
monochromatic light, and the spatial transmission
function p(a), the only difference being that in the
case of (25), for example, the argument a is replaced
by the photon survival (or loss) probability.

However, the transport matrix P j^ remains a
single-valued and monotonic function of the absorption
coefficient a only if the scattering medium is statis-
tically continuous and macroscopically homogeneous.
The former requirement ensures the possibility of in-
troducing the coefficients a and a (or k and A), and
also of the scattering matrix f̂ , referred to a unit

volume and characterizing the medium as such. To
this end it is necessary that the scale of the inhomo-
geneities (particles, pores, fibers) be incomparably
smaller than the photon mean free path in the medium
(which is equal to k"1, where k is the extinction coef-
ficient). This requirement ensures continuity of the
average brightness and of its first moment along the
light beam when averaging over cross sections whose
dimensions are much smaller than k"1, and by the
same token the possibility of introducing the concept
of elementary volume.

The second requirement reduces to invariance of
the parameters a, a, and f^ over the entire body.
Violation of this requirement leads immediately to the
change in the form of the transport matrix, equivalent
to the transformation of the spatial transmission func-
tion into a structural function, and we have seen that
this changes radically the very formulation of the
spectrum-analysis problem.

The essence of the changes, just as in the case of
the structural transmission function, is that T depends
not only on the path length, but also on the path loca-
tion, so that the separation of the energy and geometric
effects is feasible only along one ray, and not for the
entire aggregation of the possible photon paths. For-
mulas such as (25) or (26) are therefore incorrect in
this case.

On the other hand, the local values of a , a, and fjjj
can be obviously determined only by variation of the
integral transport function PJ^ as the points 1 or 2
are shifted, which leads to the need of solving the cor-
responding integral equation. We encounter such a
situation, for example, in astrophysical investigations
of stellar and planetary atmospheres, which are light-
scattering media whose parameters can be regarded
in first approximation as relatively regular functions
of one coordinate—the height.

However, the solution of such integral equations
belongs to the class of so-called mathematically in-
correct problems and entails serious difficulties.129' 30]

Insufficient caution in the avoidance of such equations
leads as a rule to erroneous results. An analysis car-
ried out from this point of view has shown that many
of the methods employed in astrophysics (especially
planetary astrophysics) to interpret the observational
data do not satisfy the main requirements and cannot
provide either reliability or uniqueness of the obtained
information (this question is considered, for example,
in C55] in reference to Venus). In particular, one must
reject as unfounded all methods of analysis of polari-
metric, photometric, and spectral-analytic data based
only on a direct analogy with laboratory-measurement
data without proof of uniqueness of the analogy or
without satisfying the requirement of optical similar-
ity, for such an approach ignores by the same token to
one degree or another the singularities of the scatter-
ing medium itself (for example, the influence of scat-
tering on the form of the absorption bands112> 13> s6"583).
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However, even when the analytic methods are based on
detailed solutions of the transport equation, the latter
is usually referred to particularly strongly idealized
models with a priori properties, without experimental
verification of the correspondence of these premises
to reality, and without proof of the uniqueness of the
results of the analytic procedure, which consists e s -
sentially of inversion of these results. Therefore,
data provided by such methods are not trustworthy un-
less a special investigation is made of the degree of
their reliability and sensitivity to noise.

Highly promising from this point of view are new
ideas developed in connection with methods for di-
rectly solving the inverse problems of the theory of
radiation transport in planetary atmospheres, applied
to the problem of using meteorological satellites.C29 '
30,59] Another way is spectrophotometric analysis of a
planetary atmosphere by observing it in daylight or in
twilight from the surface of a planet or from outside
the planet (from spaceships or from other planets),
and was used in C43>6():'. The main idea of this method
is to search for general approximate analytic solu-
tions (unrelated to a priori concepts regarding the
properties of the medium) of the direct transport-
theory problem in a form that would admit of unique
inversion and experimental determination of the pa-
rameters characterizing the structure and state of the
medium under the concrete experimental conditions.
As shown above, in the absence of methods for di-
rectly solving the inverse problem of transport the-
ory, such a way is the only promising one.

Finally, if the scattering or emitting medium is not
macroscopically homogeneous, but has a statistical
structure, the very formulation of the problem in
transport theory should change. The object of study
should be the connection between the statistical char-
acteristics (moments, structure functions and spatial
spectra) of the radiation field, on the one hand, and
the parameters of the scattering or radiating medium
on the other.C61] Such a formulation of the problem
has turned out to be fruitful in cases involving thermal
radiation of an inhomogeneous medium, when the ef-
fect of its scattering can be neglected. t30> 59] For the
general case, when the scattering of light becomes
important, this problem has not yet been mathemati-
cally formulated and one can speak so far only of
preliminary searches for ways of analytically using
the spatial spectra of the scattering-radiation field
(see, for example, C 6 2 ]) .

IV. GENERAL FORMULATION OF THE PROBLEM
OF SPECTRAL ANALYSIS OF MACROSCOPI-
CALLY HOMOGENEOUS LIGHT-SCATTERING
BODIES

We have seen that the only source of spectrum-
analytic information on a light-scattering body are its
transport matrices. If the body is macroscopically

homogeneous, the monochromatic transport matrices
depend monotonically and mutually uniquely on the
absorption coefficient of the light-scattering medium,
or more accurately on the photon survival probability
as the light propagates in the medium. Indeed, for
monochromatic radiation the transparency T (a, I)
has the direct meaning of the photon survival proba-
bility on a path of length I, and the most general
form (28) of the expression for PJj^2 acquires the
form (25) with Ao replaced by A s A0T(k~1), where
k"1 is the photon mean free path between two scatter-
ing acts, as follows indeed from the direct solution
of the transport equation in each concrete case.

Thus, relation (25) is the starting point for any
spectrum-analysis problem.1-11"133 Since wiJt n de-
pends only on the geometric parameters of the body
and on the quantities <r and f ,̂ which characterize
(just as A does) the scattering medium as such, the
result of the solution of the inverse problem of the
radiation propagation (transport) theory in a scatter-
ing medium can be at best a determination of the opti-
cal parameters of this medium. In the absence of
scattering, such a step has led directly to the optical
constants of the medium (including K(A)), thus uncov-
ering a direct possibility of carrying through the
spectrum-analysis problem to conclusion. On the other
hand, in the case of light-scattering media, the result
of the analysis are the quantities a, a, and f ,̂ and
the need for proceeding further to determine the opti-
cal constants of the medium calls for going through a
number of intermediate steps connected with the use
of additional theoretical concepts (Fig. 7).

When dealing with molecular scattering, we can, by
resorting to statistical theory in the style, say, of
CabannesC63~65], relate directly the parameters of the
medium with the polarizability tensor of the molecules,
and further, making use of the theory of molecular
structure, determine the unknown structural parame-
ters . In exactly the same manner, a phenomenological
theory of molecular scattering of light in the style of
the ideas of Einstein-Smoluchowski or Debyet63~67;l

establishes a direct connection between the parameters
a, a, and f̂  on the one hand and the optical constants
of the medium on the other, and further, through the
theory of the structure of matter, also with the un-
known parameters of the latter. In other words, in the
case of molecular scattering the solution of the spec-
trum-analysis problems can be carried through to
conclusion, at least in principle.

The situation is much more complicated in the case
of two- or many-phase systems, such as suspensions,
polymer substances, or biological objects.

It becomes necessary first, to relate the optical
parameters (a, a, f^) of the medium with the optical
parameters (a0, a0, fĵ ) of an individual particle or
inhomogeneity, which can be done in principle on the
basis of the statistical theory of scattering by a sys-
tem of particles or, as is frequently said, the theorv
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FIG. 7. Scheme of spectrum-analysis experiment with light-
scattering substances.

of cooperative effects. However, this theory is so far
only in the initial stages.C12> 35> 36> 42> M If the mean
distance between particles is much larger than the
wavelength of light, the following simple relations
hold:

(29)

where N is the particle concentration (a0 and CT° have
the dimension of cm2, whereas a and a have the di-
mension of cm"1). In the general case, however, the
character of this dependence has not been investigated
either theoretically or experimentally. There are only
some clear indications of appreciable deviations from
(29).

Further, the connection between the quantities a0,
a0 and f Ik and the optical constants of the medium is
established by the theory of scattering of light by
small particles. The direct problem of scattering
theory has been studied in sufficient detail, albeit
only for particles of simplest form—spherical, ellip-
soidal, cylindrical.C69>70:l On the other hand, the solu-
tions of the inverse problems entail serious difficul-
ties here, too, and ways of overcoming these difficul-
ties are in many respects not yet clear.

Of decisive significance is the fact that the optical
properties ' the particle depend strongly on its
sha1"" specially on its dimensions. For example,

uch smaller than the wavelength, the
-—y n of the medium /3 = (1 — A) /A is

rtional to r"3, where r is the

particle radius, i.e., it decreases rapidly with increas-
ing r.C69:l With increasing r, /3 goes through a mini-
mum in the vicinity of r = A, and when r » X (if the
particles are made up of weakly absorbing material)
we have

2JIX
-r. (30)

where K is the shape factor.CT1] On the other hand, if
the absorption takes place not in the dispersed medium,
but in the dispersant or in the adsorbent covering of
the surface of the particle, the dependence of J3 on r
assumes a different form. Furthermore, p, together
with the extinction coefficient and the scattering pat-
tern, depends strongly on the refractive index of the
medium surrounding the particle. This sometimes
causes strong changes in the spectral variation of
these quantities (see, for example C12>34]), a fact used
for example in the construction of optical filters of the
Christiansen type. One can likewise not neglect the
influence of surface phenomena on the optical proper-
ties in a finely-dispersed phase.

A consequence of the dependence of fl on r is first
of all a strong influence of the particle size distribu-
tion on the optical properties of the medium1-8'9'18) 19>
71-77:1 (it also influences Wjj^n)- This is particularly
clearly pronounced in a fact well known to artists, that
a tone becomes saturated and whiteness is subsequent-
ly produced when the paint material is more finely
ground (for a quantitative analysis see C 7 l : l) . More-
over, it is obvious from general considerations and
has been shown by direct measurements1 1 9 '7 3 ] that the
sequence of states having increasing dispersion com-
prises a continuous transition from the solid to the gas
or (if immersion is used) to the solution, and the same
holds for the transformation of the optical properties
of the medium. Therefore knowledge of the particle-
dimension distribution spectrum is a necessary condi-
tion for solving the inverse problem of the theory of
scattering of light. An equally strong influence is ex-
erted on the optical properties of the medium, on the
spectral variation of the refractive index, both of the
particles and of the immersion.c 12> 34>73>78]

This not only leads to the need for auxiliary meas-
urements, but also greatly complicates the formula-
tion of the problem. In fact, if the medium is polydis-
persed, relations (29) are replaced by a system of
equivalent integral equations of the first kind (see,
for example C43: l), for which correct solution methods
are far from fully developed, if one bears in mind the
difficulties that are common to such problems.129 '3o: l

Serious steps in this direction were initiated only in
the most recent time.

Thus, when dealing with disperse systems, a com-
plete solution has been obtained only for the first part
of the spectrum-analysis problem, namely the deter-
mination of the optical parameters of the light-
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scattering medium as such. The contemporary theory
of light propagation provides the experimenter with
sufficiently reliable means for this purpose. Their
analysis will be the subject of the next part of the
article.

As to the possibilities of determining the optical
parameters of the medium itself, we can separate
here a rather large group of problems that are amen-
able to solution, and, most important, point to ways of
increasing this group. Of particular significance in
this case are two circumstances—the possibility of
determining the limits of reliability and refuting un-
founded hopes and inconsistent prescriptions, and the
possibility of a reliable determination of the nature of
the experimental information, such as to ensure
uniqueness of the solution of the analytic problem. It
is known that the most widespread cause of spectrum-
analysis er rors in the case of light-scattering sub-
stances is precisely the ambiguity of interpretation of
the experimental data, owing to the fact that the nature
of the information does not correspond to the gist of
the solved problem. Neglect of this aspect of the prob-
lem is, for example, the main shortcoming of the r e -
view,1-19] which incidentally is provided with a bibliog-
raphy which can only mislead the reader.

No less important is a third conclusion. Inasmuch
as the propagation theory operates with the parame-
ters a, CT, and f̂ , no development of this theory can
serve as a source of additional information for the
realization of the succeeding steps in the spectral
analysis indicated in Fig. 7. To obtain such informa-
tion it is essential to vary the physical state of the in-
vestigated medium itself, for example by dilution, im-
mersion, dispersion, chemical or mechanical action,
etc. The possibilities that are uncovered in this man-
ner are far from thoroughly investigated and are quite
promising. Frequent attempts of circumventing this
situation (see, for example, the reviews'-8' 12> 14~19])
turn out, upon closer examination, to be constructed
on certain arbitrary assumptions and do not ensure a
reliable interpretation of the data.

We now turn to the choice of means of determining
the optical parameters of a light-scattering medium.
Knowing these parameters and making use of t rans-
port theory we can (usually by numerical calculations)
obtain the transport matrix P ^ . The overwhelming
majority of papers on transport theory is devoted to
the solution of this problem for different more or less
idealized models of a scattering medium (see, for ex-
ample, ^4-46,48, 52-54, 76, 7T]}< I t i g e a s y t o s e e t h a t

from the point of view of spectrum-analysis applica-
tions, calculations of this kind are perfectly analogous
to calculations of the spectral transmission function
p(m) when the structure of the absorption spectrum of
the matter is known in detail. Just as in the case when
unresolved spectra are used, these calculations turn
out to be little suitable for the solution of inverse
problems." 2 ' 1 3 ]

The alternate way, which consists of finding such
experimentally realizable situations for which the
transport matrix (similar to the transmission func-
tion in l22~2n) is approximated by convenient analytic
expressions which admit of inversion and play, in final
analysis, the role of a calibration curve whose param-
eters are determined experimentally, turns out to be
identical (see Sec. 1). As applied to the spectroscopy
of light-scattering substances, this version of the
problem was first clearly formulated by the author
i n t ii, 12.3e,49,50,82,83] a n d systematically treated by
him in c l3 '47> 55> 56' "• 84~88]. Without requiring a priori
knowledge of the properties of the medium, and firmly
based on the general theory of light propagation, it
ensures the possibility of reliably solving an exten-
sive group of hitherto insoluble spectrum-analysis
problems. By now these possibilities and their theo-
retical foundation have been developed along a number
of paths, and were also thoroughly verified experi-
mentally and theoretically for a large group of differ-
ent objects and theoretical models. This has clearly
defined the limits of applicability of the corresponding
concepts. A very important role in the establishment
of these concepts was played on the one hand, by the
experimental1-ioi and theoretical1-83] investigations of
the singularities of the optical conditions inside a
light-scattering medium, and on the other hand by the
ideas of V. A. Ambartsumyan concerning the depend-
ence of the average scattering multiplicity on the pho-
ton survival probability,c 7 ] and also the invariance
principles formulated by him.C89:l

The third path has found specially extensive use in
applied spectroscopy of light-scattering substances,
and has frequently led to serious confusion. We refer
again to the finding of an approximate analytic relation
Pj^a) , but in this case not on the basis of the general
theory of light propagation, which is ignored, but by
resorting to intuitive concepts which do not always r e -
flect reality. In this case the source of er rors is usu-
ally the lack of correspondence between the experi-
mental conditions and the real physical premises on
which the theory is based.

The most widely used (and the most solidly founded
theoretically) is the Gurevich-Kubelka-Munk for-
mula,1-2' 4 ] which is a direct consequence of the so-
called two-flux approximation, which stems from the
work of Schuster and Schwarzschild (see C12:i) and
which was used in explicit or implicit form in the work
of A. A. Gershun , m M. M. Gurevich, t2] P. Kubelka
and F. Munk,[4] B. I. Stepanov and his s tudents/8 ' 9]

and by many others. It must be emphasized that the
cited studies and many other experimental and theo-
retical researches based on them (see the reviews C14>

15, 17-19] j n a v e pi a y e ( j an exceedingly important heuris-
tic role in the process of development of the modern
concepts.

E. S. Kuznetsov has shown, however,1-9o;i that the
two-flux approximation is valid only if the angular
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structure of the radiation field in the medium is spa-
tially invariant, thus imposing special limitations (the
quasidiffuseness requirement) on the conditions of il-
lumination of the scattering medium. t l 2>1 3 ]

One actually obtains under these conditions a sim-
ple relation between the transport function P ^ and the
absorption coefficient a. However, as shown by analy-
sis,1-12' 56i the parameters of this relation depend in
turn on a, making it, strictly speaking, unsuitable for
spectrum-analysis purposes, in spite of the state-
ments, say, by the author of the review. i i d l To be
sure, if we confine ourselves to very small specific
absorption and trace only the relative variations of a,
then the Gurevich-Kubelka-Munk formula is valid/1 2 '
56:1 as evidenced also by extensive experimental mate-
rial (see the reviews t l 4 " 1 9 ; l ) ) but only when applied to
the albedo of an infinitely thick layer of large dimen-
sions and under conditions when this layer is diffusely
(more accurately, quasidiffuselyci3]) illuminated. One
can point to a large number of experiments which illus-
trate that the two-flux approximation patently contra-
dicts reality when these requirements are not sat is-
fied. Nonetheless, many authors (for example, [ 1 9 ])
continue to recommend and use this approximation
persistently, without taking into account the limits of
its consistency.

V. CONCRETE METHODS OF SPECTROSCOPY OF
LIGHT-SCATTERING SUBSTANCES

The program described above can be realized only
in a few definite but sufficiently varied experimental
situations, the choice between which is governed by the
concrete properties of the object (which incidentally
are usually also subject to variation) and by the nature
of the analytic problem. We outline below schemati-
cally the possibilities and conditions for applying some
of the already developed methods.

A. Method of Narrow Directional Beam

This is the most traditional method, but its use calls
for a number of precautions.

The optical phenomena accompanying the propaga-
tion of a narrow directional beam in a scattering me-
dium have been considered in detail in c 91 ] and in the
cycle of papers.C92:l If the aperture angle of the beam
is sufficiently small and its cross section is consider-
ably smaller than k"1, then the overwhelming number
of photons scattered by the substance leave the beam
permanently. Therefore, up to optical distances T on
the order of several units, we can disregard multiple
scattering of light.C91-1 This means that on the right
side of (21) there remains only the first term, and if
the receiving unit spans the entire beam, Bouguer's
law (4) holds true with a replaced by k. However, as
shown by D. K. Beridze and M. I. Shakhparonov,193-1

at sufficiently large T, even in a very narrow beam

(for example, inside a capillary), only multiply scat-
tered light is retained, and a state is established
analogous to that under depth conditions, but with a
modified damping coefficient, as a result of the pho-
ton loss,[92> S3i which again leads to a law similar to
(4), except that the extinction coefficient is replaced
by some other quantity.

Thus, a setup similar to that shown in Fig. 4 makes
it possible to determine directly the extinction coeffi-
cient k = a + a, provided only that d « k - 1 and kL
does not exceed several units, the optimal sensitivity
being reached when kL= l . [ 3 ]

Further, attention was already called by A. A. Ger-
shunc 94] to the fact that owing to the finite aperture of
the receiving unit (the diaphragm 4 in Fig. 4) and to
strong elongation of the scattering indicatrix, part of
the light that is scattered only once by the medium will
nevertheless reach the receiver, as a result of which
the measured value k m e a s turns out to be less than
the true value, i.e., k m e a s = k — Ak. Numerous experi-
mental and theoretical estimates have shown that Ak
depends not only on the parameters of the setup but
also on the variable properties of the medium, and
consequently also on the wavelength. Therefore, say
in the presence of a large-droplet fraction of an
aqueous aerosol, measurements of the transparency
of the atmosphere by means of the brightness of the
sun lead to erroneous result owing to the large angular
dimensions of the latter, whereas measurement with
the aid of stars or measurement with the sun but in
the absence of large drops are practically free of er -
rors . It turns outc 95] that if the angular aperture of
the light beam does not exceed several minutes of
angle and if the measurements of k are carried out
while gradually decreasing the diameter of the dia-
phragm 4 (Fig. 4), extrapolation of k m e a s into the
region of small diaphragm apertures ensures elimina-
tion of the error in measurements of the extinction
coefficient.

So long as the influence of the multiple scattering of
the light is negligibly small, measurements of the
brightness and of the polarization of the scattered
light emerging from the beam in different directions
make it also possible to determine the components fjjj
of the scattering matrix and their angular dependences
(including the scattering indicatrix fii),C91] and after
integration with respect to the angles also the scatter-
ing coefficient a. However, the experimental setups
usually do not make it possible for the measurements
to be extended to very small scattering angles (smal-
ler than 7-10°). This leads to an appreciable error in
cr and its spectral variation, since approximately half
of the entire power of the scattered light is concen-
trated within this angle interval as a rule.1-95"97-1 In-
troduction of a correction for the scattering of light at
small angles is effected in the same manner as the in-
troduction of the correction in the measurements of
k.C95] Thus, measurements with a directional beam
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make it possible to determine simultaneously k and
a, from which a can also be obtained (if j3 £ 1).

B. Methods Based on the Use of Small-multiplicity
Scattering

Substitution of (24) in (25) transforms the expres-
sion for the transport matrix into

- V . (31)

With increasing specific absorption /S, the contribu-
tion of the multiply scattered light to the transport
matrix decreases the more rapidly, the larger the
scattering multiplicity n. The influence of /3 on the
brightness, on the angular characteristics, and on the
polarization of the light reflected or transmitted by
the scattering medium reduces essentially to this
effect.112 '13 '49 '503

This can be made immediately obvious by com-
paring (31) with (15) and turning to Fig. 4a. It follows
hence, in particular, that the spectral composition of
light that is diffusely reflected or transmitted by the
scattering substance is determined, on the one hand,
by the spectral variation of /3 (but not a), and on the
other hand by the character of the dependence of
w ik n o n n> ^ s s n o w n by V. A. Ambartsumyan/7-1 the
average scattering multiplicity upon reflection from a
semi-infinite medium, in the case of a spherical scat-
tering indicatrix and diffuse illumination, is equal to

n = (Al + p-1, (32)

i.e., it depends uniquely on /3. (For other scattering
indicatrices or for directional illumination of the sur-
face, /3 must be multiplied by a coefficient.)

On the other hand, the quantities are deter-
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mined, as already shown, by the dimensions of the
body and by the conditions of its irradiation and ob-
servation. A decrease in the optical dimensions of the
body leads, in particular, to a decrease in the prob-
ability of the long photon ranges, i.e., to vanishing of
the coefficients w i k n with large scattering multiplic-
ity, and by the same token to a decrease in n. And
since it is precisely the ratio of the contributions of
the scatterings of different multiplicity to Pj^ (i.e.,
the quantity n) which determines the spectral, angu-
lar, and polarization characteristics of the light r e -
flected diffusely by the medium, changes in the dimen-
sions of the body lead qualitatively to the same conse-
quences as changes in /3.C11~13: |

Thus, if /3 is large or if the optical dimensions of
the body are small (at least in one dimension), we can
confine ourselves in (31) to only the first few terms of
the expansion, and this directly leads to simple ex-
pressions which are convenient for analytical pur-
poses^ 4 9 " 5 "

a) Reflection from a thick layer of strongly absorb-
ing matter. If /3 » 1 then, according to (32), n < 2 and
we can confine ourselves to the first two terms of the
expansion (31), obtaining an expression for the bright-
ness coefficient r of the surface of the scattering sub-
stance with large specific absorption:149~50]

(33)

where r0 and Q are constants that depend on the form
of the scattering matrix f̂  and on the directions of il-
lumination and observation of the substance. When
P » 1 this expression turns into

(34)

where /u0
 = c o s ô> ^ = c o s >̂ an<^ A) a n ^ ^ a r e the

angles between the illumination and observation direc-
tions normal to the surface. The foregoing relations
are well confirmed by experiments, as is the follow-
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FIG. 8. Dependence of r°(/3 = u)/r(£) on the
impurity conconcentration: a) Milk in different
sections of the spectrum with different dyes as
impurities. Abscissas—reduced concentration
of the dye, which is proportional to (i; b) mixture
of magnesium oxide (CJ and lamp black (C2):
1—measured values, 2—values calculated from
(33) and (35).
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ing relation, which is obvious for a mixture of several
components (or for a polydispersed medium),

(35)

where Cj is the relative concentration of the i-th
component. Examples'823 are shown in Fig. 8. The
combination of (33) and (35) makes it possible to carry
out a quantitative analysis by varying the concentra-
tion of the mixture (for example, by diluting the me-
dium with a nonabsorbing or a nonscattering compo-
nent)."1"17-823

From (31) and (34) we find also C49> 50:l that when
/ 3 1 1 the degree of polarization of the reflected light,
when the surface is irradiated by unpolarized light is

P (P) ~ P° (36)

where usually A « B and p^ = f21/fn is the polari-
zation of the light for single scattering in the same
direction. The resultant p(/3) dependence (the "Umov
effect") can also be used for analytic purposes, [ 1 1 ]

but calls for a more detailed study.
Relation (31) and all its consequences are valid if

the surface of the scattering medium does not coincide
with the phase-separation boundary (i.e., if the r e -
fractive indices of the dispersing phase and of the me-
dium over the surface are the same; for example, a
system made up of powder and air, or of an emulsion
and an identical liquid). In this case the reflected light
is only produced by scattering of different multiplicity
(see (31)), since there are no reflections from the sep-
aration boundary ("external component" in the termi-
nology of A. S. Toporets [ 9 8 ]) . [ 1 1 ] To the contrary, if a
specular or rough phase boundary exists (for example,
the surface of milk or glass), then its role must be
taken into account separately. Without touching upon
the numerous investigations devoted to this question,
we note that there are still no verified methods or c r i -
teria for separating volume effects from surface ef-
fects, and it is necessary where possible to eliminate
the influence of the surface in analytic investigations
(for example by immersion199]). One must also bear
in mind the possibility of quasispecular reflection from
the scattering medium or from its rough sur-
face.c l 0 0 ]

b) Thin layer of light-scattering substance. If an
extended layer of light-scattering substance is uni-
formly illuminated and if its geometrical thickness
satisfies the condition crL £, 0.1, then we can again
confine ourselves to single scattering of light, thus ob-
taining the relations (see, for example, t 4 3 ])

(37)

(38)

for the brightness of diffusely reflected light and

for the brightness of light diffusely transmitted by
the layer, where E is the illumination of the layer.
If in addition oL « 1, then both expressions can be
reduced to the same form

in |X(i0
(39)

which depends only weakly on a, making it possible
to measure CT with sufficient reliability. We add that
since both experimental schemes (a and b) are limited
to single scattering, they make it possible also to de-
termine the scattering matrix.

C. Spectrum-analytic Utilization of Measurements
of the Light Field Inside a Scattering Medium

In some cases the physical properties of a medium
(for example, gas or liquid) make it possible to intro-
duce measuring apparatus in it. This uncovers addi-
tional possibilities of carrying out spectrum-analysis
experiments. Their realization, however, calls for the
satisfaction of certain conditions connected with the
experimental technique, namely it is necessary for
this purpose to have /3 « 1 and kZ « 1, where I is the
characteristic dimension of the measuring instrument.
Violation of these conditions leads immediately to a
serious er ror in the result.

a) Determination of the absorption coefficient from

the divergence of the light vector. A. A. Gershun t l 01 ]

has already called attention to the fact that the absorp-
tion coefficient a of a scattering medium is connected
with the divergence of the light vector E introduced by
him (proportional to the Poynting vector) by the simple
relation a* = div E, where * is the so-called "spher-
ical illumination" at a given point of the medium,
which can be readily measured with the aid of the
spherical photometer developed by A. A. Gershun in
1936.c 94] If the medium is a flat layer of large dimen-
sions and if this layer is uniformly illuminated from
above, then the relation assumes the following form,
which is convenient for experiment and follows di-
rectly from the analysis of the radiation transport
equation: c l2>83]

E,-Et
a = k' - (D

(40)

where E ̂  and E | are the illuminations of the hori-
zontal area from above and below respectively, and

d\nEl-dz (41)

is the attenuation coefficient at a given depth.*
The validity of (40) was checked experimentally

numerous times, particularly for optical conditions at
great depths/103-1 when k' does not depend on the

= 4JI 1 +
•According to [202], a similar conclusion was arrived at,

but not published, by R. Preisendorfer.
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FIG. 9. Comparison of the direction of the directly measured

values of a with those obtained from formula (40).

depth (Fig. 9). It is significant that all the quantities
in the right side of (40) can be directly measured,
making this method the only one so far to ensure rel i -
able results in measurements of absorption spectra
of sea water."0 2 '1 0 4 '1 0 5 ] If the conditions of the illumi-
nation are not uniform (say, the medium is illuminated
by a bounded light beam), then the measurement proce-
dure becomes somewhat more complicated but r e -
mains essentially the same.1106-1

b) Measurements at great depths. In 1933, V. V.

Shuleikin111073 noted (see also C1>44"46'108]) that an
asymptotic optical regime is established deep inside a
scattering medium; the characteristics of this regime
are determined by the properties of the light-scatter-
ing medium itself and do not depend on the conditions
of its illumination. It turned out further1110' 12> 13> 83> 84]

that the depth regime is precisely one of those situa-
tions when the transport equation admits of an approx-
imate solution in a form which is convenient for spec-
trum analysis.

The exponential attenuation of the illumination with
depth, which is characteristic of the depth regime, has
a depth-independent attenuation coefficient k', which
differs significantly from the extinction coefficient,
namely

k' = yk,

where for /S « 1 we have

' * qk X q

(42)

(43)

and q is a constant that depends only on the form of
the scattering matrix f^ and is closely connected
with the form of the brightness distribution of the light
scattered inside the medium. The latter does not
change in form with depth and for small values of /3 is
given by C83> 12]

1 (n) = const [l + a((x) y], (44)

where a(^) is an odd function of the cosine /z of the
angle between the sighting direction and the z axis

- +1
g

(which depends only on f^), with q = i/1 J

For symmetrical scattering indicatrices q = V3; for
asymmetrical indicatrices q increases with increas-
ing elongation of the indicatrix, reaching, say, values
of approximately 1.5 for fogs and finely dispersed
powders, and several units for more coarsely dis-
persed media.

It follows from (42) and (43) that k' = Vak/q or

(45)

This relation, which has been confirmed, like all
others, by numerous experiments (Fig. 10) can serve,
as shown by V. A.Timofeeva,C1O9:1 as a convenient
means of measuring a (for example, by introducing
an additional non-scattering dye into the medium).

(*tyk
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FIG. 10. Dependence of the ratio k '2/k on (a - a0) for dyed
milk. a0 - absorption coefficient of undyed milk.

This method can be especially effective for very small
a, when in conjunction with artificial addition of tur-
bidity to the medium by a nonabsorbing strongly scat-
tering admixture (or, we add, under conditions of
critical opalescence), the sensitivity threshold with
respect to a is decreased by 1.5 or 2 orders of magni-
tude compared with the threshold attained in the ab-
sence of scattering, as can be readily seen from (42)
and (43).

Further, it follows from (41)-(43) that

l
4? <D (46)

which is also convenient for the determination of /3.
In addition, according to (44) an increase in /3 leads to
an elongation of the brightness distribution and by the
same token also to a monotonic dependence of the de-
gree of polarization of the light on /3 in the depth r e -
g ^ ^ C 83, 12, 110]

Finally, the illumination from above at a sufficient-
ly large depth z, in the depth-regime zone, is equal
to [13]

Ei(z)=-Eog(lio)e-:c,

where Eo is the surface illumination,

x — yx~ ykz

(47)

(48)
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and g(n) is a function characterizing the distribution
of the light emerging from a thick layer of a turbid
medium, and depends only on the form of the scatter-
ing matrix but not on a.C13' " ' u n Relations (47) and
(48) determine the spectral course of the illumination
at a given depth z.

However, (47), like (42), is valid only in a "bottom-
l e s s " medium. In the presence of a black bottom situ-
ated at a depth L we have for a height z ' < L above the
level of thebot tomU 3 ]

£ T F (49)

where x' =ykz', x0 = ykL, k' is determined by rela-
tions (42) and (43), and

y = ly (l = 4q). (50)

D. Spectroscopy of Thick Layers of Scattering
Substances with Small Specific Absorption

The simple relations given in the foregoing sections
were obtained1-833 by expanding the solutions of the
transport equation (21) in powers of y and retaining
the first terms of the expansion. Comparing (43) and
(32), we can easily see that y is inversely propor-
tional to the average multiplicity of scattering n when
/3 « l.c 12> 13] In other words, the physical meaning of
the operation that has led to these relations reduces
to a re-expansion of the transport matrix (31) in pow-
ers of the quantity (n)"1 , which is small when y3 « 1.
Obviously this procedure can be extended also to any
transport matrix provided n » 1, i.e., when the spe-
cific absorption is small and the geometrical dimen-
sions of the body are large. It must be recognized
here that the average multiplicity of scattering will
be different, according to (31), for different compo-
nents of the transport matrix, and the relation indi-
cated by V. A. Ambartsumyanm holds in this case
(for P n ) , namely

(51)

Realization of this program with account of V. A.
Ambartsumyan's invariance theory and the reciproc-
ity theorem has made it possible1-12'13> 47> 56 '82] to ob-
tain, in sufficiently simple analytic form, approximate
solutions of the transport equation for the matrices of
reflection and transmission of light by a thick layer of
a scattering medium with small specific absorption.
The corresponding solutions were extensively verified
experimentally in a great variety of objects1-12'13> 56> 58>
TI, 99, U2,113, etc. ] g ^ a l s o v e r i f i e c j ^ computer solu-
tion of the transport equation for several models177 '
in, etc.] I t w a g established^6-58-99 '111 '1123 that, at
any rate for samples whose albedo exceeds 0.6-0.7
(this corresponds to n k, 7—10), the relations are
valid with a high degree of accuracy. The generality
of the obtained relations makes their field of applica-

tion almost unlimited, so that they can be recommended
for use in spectroscopy practice.

In addition to the requirement that /3 be small, the
feasibility of using the methods described below en-
tails the observation of the conditions crL > 5, d » k"1,
and d » L, where d is the cross section of the sam-
ple. It is important here to illuminate the entire sur-
face of the sample uniformly and limit the observed
part of its surface to a region whose boundaries are at
least (SO-lOO)k"1 away from the boundaries of the
sample. The latter requirement and the requirement
d » L can be relaxed if the lateral surfaces of the sam-
ple are covered with a specular or diffuse reflector
with an albedo that comes as close as possible to unity
and which at any rate is much larger than the albedo
of the sample.

As the photometric characteristics of the sample it
is convenient to choose the following1-13'43] linear com-
binations of the possible transport functions P^ .

1. Brightness coefficients for diffusely reflected
(r(/u, n0)) and diffusely transmitted (t(/U, fi0)) light, de-
fined as the ratio of the brightness I of the light scat-
tered by the sample in a given direction to the illumi-
nation of the surface of the sample.

2. Coefficients of diffuse reflection R(^o) and
transmission T(^o) in the direction of the flux of the
directional illumination

T (fi0) = 2n \ \it (n, ji0) d\i, R (n0) = 2n \

3. Diffuse transmission 3" and albedo M under qua-
sidiffuse illumination (i.e., illumination in which the
angular structure of the light field is identical with the
angular structure of the light field in the depth regime
for the given sample), defined as the ratio of the light
fluxes reflected or transmitted by a unit surface of the
sample to the illumination of its surface.

Under the conditions stipulated above, we have the
following relations, which are accurate to quantities of
order y 3 : t l 3 ]

j r _ sh V &_ sh x /g2)

T (Ho) = g (Ho) F - R (Ho) = e~v - T (jj,0) e~x-\ (53)

(54)

where g, h, and s are functions of the directions of
illumination and observation, which depend only on the
form of the scattering matrix (see C13> "> ul> U 2 ] ) . An
idea of the behavior of these functions is gained from
Figs, l l a , b, and c, borrowed from C99]. It is import-
ant to bear in mind that the parameters q, g, h, and
s are much easier to determine experimentally than
the angular dependence of the components of the scat-
tering matrix f^ which enters in (21), and are rela-
tively insensitive to its variations. In particular, for
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FIG. 11. Behavior of the parameters g, h,
and s: a) Plot of g(/x) for f*0 = 1 for powders of
different glasses in immersions. The relative
refractive indices are: 1-1.624, 2-1.518,
3-1.4586, 4-1.14, 5-1.09, 6-1.03, 7-1.01
(in the latter cases the satisfaction of the
condition uL 2,5 is doubtful); b) Plots of
IJ.h(p.)/n water at different fi0: 1-1.0,2-0.98,
3-0.92, 4-0.82, 5-0.67; against p (in the
incidence plane) for powdered BS-10 glass in
c) Dependence of s on p (in the plane of
incidence) for milk at different ^0: 1—1.0,
2-0.92, 3-0.82, 4-0.67.
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FIG. 12. Influence of dye concentration C (a), particle

dimensions (b and c), and refractive index K on the degree of
brightness of a thick layer: a) According to recalculated data
of [82]; milk with crystal-violet (1) and india ink (2 and 3)-
various filters; b) Glass powders in different parts of the
spectrum according to data of ["] (1 and 2-different light
filters) and ["] (3-0.7 /i, 4-0.8 \i, 5-0.6 n, 6-0.55 fi).
c) Mixture of glass powders according to data of ["] (1—
650 n, 2-450 n, 3-525 //.). d) Dependence of tan2S (S-angle
of inclination of curves in Figs. 12 b and c) on 4m<A accord-
ing to the data of ["].

a large class of objects we have approximately1-13}

g(M)= V3 +M-
We note that (52) (unlike (53) and (54)) is valid for

samples of arbitrary thickness. However, if quasidif-
fuse illumination is replaced by diffuse illumination,
then for sufficiently small /3 (i.e., large M) relations
(52) become valid (and approximately, at that) only for
samples that are not too thin. If the sample is on a
diffusely reflecting surface with a non-zero albedo, the
formulas become more complicated.1-13' 55>87:i

Special notice must be taken of two limiting cases:
1. x « 1, y « 1;

x+l t f !

2. x » 1, y « 1;

(55)

(56)

In the case of directional illumination and observa-
tion we have in lieu of the latter relation, in accord
with (54), (50), and (43)

(57)

and in the case of relatively large particles made of
weakly absorbing material we get approximately, in
accordance with (30),[13>71]

(58)

The degree and limits of applicability of the foregoing
relations can be seen from the examples illustrated
in Fig. 12.
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The quantities a and CT enter in formulas (52)-(56)
only in the form of the quantities x and y. Conse-
quently, variation of the experimental conditions can
influence only the form of the parameters that relate
these quantities with the measured ones. But in any
case the measurements can yield only two quantities,
namely:C56]

(59)

An experiment of a different type is necessary to de-
termine I.

The scattering medium plays in this case the role
of a multiple-path cuvette, in which the effective num-
ber of passes depends on /3. The sensitivity threshold
with respect to a is smallest for M as x — » (it is
equal to a = 10 ~4 2), whereas the relative sensitivity
8a/a is the largest in measurements of y and for
x » 1 (dafaj. = 10~ 2 Va/L/s) . When compared with
Bouguer's law in the absence of scattering, this cor-
responds to an increase in the effective path of the
light beam in the medium by a factor Vz/a,1156 '58> 88]

which results, in particular, in a change in the line
shapes and the absorption-band shapes.C12) 13) 58> 114]

The sensitivity is discussed also in C123;l.
Inasmuch as we are dealing with samples that have

relatively low absorption, it is convenient to use for
the measurements a photometric sphere,C115:l the ab-
sorptivity of the sample being A = 1 — (£T+M) in the
case of diffuse illumination and Jt = 1 — (T + R) in the

case of directional illumination, in accordance with
(52) and (53).

Formulas (52) are outwardly similar to those ob-
tained with the aid of the two-flux approximation.1-1'2> 4 ]

Actually, however, they differ in principle from the
latter, since they take into account in explicit form the
dependence of the shape of the brightness distribution
on /3.1-56-1 This necessitates a marked alteration in the
character of the obtained spectral relations. However,
when j8 is small, the formal expression for the Gure-
vich-Kubelka-Munk formula1-2' 4] remains approxi-
mately valid, except that the right side is modified,
namely:C563

J/ZJ \ (1 2ct
IT

(60)

where RM = R(X_0O> = e"". With this correction, the
use of this formula is perfectly justified in the range
R^ Z 0.6, as well as all the deductions obtained with
its aid, this being a subject of an extensive literature
(see, for example, C 1 4~1 9 ]). Figure 13a, which is bor-
rowed from c l l 6 : l

) shows the dependence of f(R0O) on
the concentration of the substance coloring the scatter-
ing medium at large B.^, i.e., small /3. With increas-
ing jS, at Rco Z 0.6, formula (60) begins to deviate from
the true situation, as can be seen from Fig. 13b, which
is taken from C117]. At R^, close to 0.15-0.3, formula
(60) already leads to patently erroneous values of
a [12,56,119] H o w e v e r > When p» 1, i.e., R ,̂ £0.1-0.15,
corresponding to a range when (34) is already valid,

FIG. 13. a) Linear dependence of f(Roo) on C for
/3 « 1; b) violation of linear dependence of f(Roo) on
a with increasing /3; c) linear dependence of f(R°o)on
a for /3 » 1; d) linear dependence of the difference
f(C) — f(C = 0) on C for a mixture of colored and
uncolored glass powders.
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formula (60) again begins to be valid, except that the
coefficient of a in the right side is markedly differ-
ent. li2i This is illustrated in Fig. 13c, which is taken
from C118;l. Figure 13d shows the dependence of the
difference of the Gurevich-Kubelka-Munk function,
f(C) - f(C = 0) on the concentration C of colored glass
powder mixed with colorless powder (for identical
values of 2 and small /3, this difference should be
proportional to C).C U 9 ]

It follows from (52)-(54)C54] that when /3 « 1

and

- In + 2

(61)

(62)

where the subscript L denotes that the measurements
pertain to a layer of thickness L. Thus, variation of
the layer thickness makes it possible to determine a
and 2 , as illustrated1-56] in Fig. 14. We note that rela-
tion (62) is valid also when (54) is used, but provided
the measurements are carried out in the reflected and
in the transmitted light for equal values of ju. It fol-
lows in a somewhat less explicit form (subject to all
the stipulations) also from the two-flux approxima-
tion.c l20 ]

E. Luminescence Analysis

Questions of luminescence of light-scattering media,
including their spectroscopic aspects, were considered
by many authors (see, for example c l 2 1 ] ) , but either
from the point of view of the two-flux approximation,
or starting from an a priori specified model of the
structure of the medium.

The method employed above makes it possible to
consider luminescence phenomena from more rigorous
and consistent points of view. In fact, if P (r) is the
function describing the transport of exciting light of
wavelength A.4 to a volume element dV at a point with
coordinates r, and P<2)(r) is the transport function of
luminescence of wavelength X2 from the element dV
to the observer, then the total transport function (lu-
minescence) is P = J p 1 ( r ) a 1 F ( r ) P 2 ( r ) d V , where
T(r) is the luminescence yield and «i(r) is the absorp-
tion coefficient for \1# Execution of this program1-47-1

for a homogeneous thick flat layer illuminated in qua-
sidiffuse fashion leads to an expression (under condi-
tions of weak specific absorption at Aj and X2) for the
luminescence flux from the layer

Eo• l — Y2V

where the subscripts 1 and 2 pertain to At and A2 r e -

(63)

in T ^ T
0/0 20 30 40 50 60 70 SO 0 10 20 30 40 50 L

10 20 30 40 50 60 70 SO L b)

6.6 1/0 cm

c)
FIG. 14. Examples illustrating the use of relations

(61) and (62) for two parts of the spectrum: a) Magne-
sium oxide layers, relation (61); b) and c), the same,
relation (62) with TL replaced by 1-RL, since AL
« 1; d) live leaf, relation (63).
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spectively, thus again improving somewhat on their
results obtained with the aid of different variants of
the two-flux approximation and, most important, delin-
eating the limits of their applicability. The more gen-
eral case of directional illumination of a luminescent
body has not yet been analyzed.

F. Other Methods

The methods described above far from complete the
list of capabilities of the spectroscopy of light-scatter-
ing objects. In particular, we have not touched upon
the important and interesting problem of investigating
Shpol'skii's absorption and luminescence spectra. Nor
did we mention problems of emission analysis, includ-
ing the phenomenon of reversal of spectral lines—the
most typical effect of light propagation in a scattering
medium. Unfortunately this group of problems has not
been treated with the degree of generality and clarity
which is required for the solution of the inverse prob-
lems of light-propagation theory, i.e., for a quantita-
tive solution of spectroscopic problems.

However, even absorption and luminescence analy-
sis contains unexplored prospects. In particular, r e -
cently L. M. Romanovac 122 •* proposed to determine
T(a, I) or P(A, A\, I) on the basis of relations (26)
and (27) by time selection of a light pulse of duration
t « 1/kc scattered by the medium (c—velocity of light);
this can be used, for example, in optical radar sound-
ing of atmospheres of other planets.

A standardization method, consisting of obtaining a
calibration curve for spectral analysis with the aid of
a series of standards with graduated properties, is ex-
tensively used in laboratory practice. If one is a s -
sured that the standard and investigated dyes have the
same nature and color the medium in an identical
manner, then this method is beyond reproach. But if
differences are possible in the distribution of the dyes
in the medium or in the structures of the standard and
investigated media, then this method must be deemed
unsuitable. We have likewise not mentioned many in-
vestigations, of both methodological and applied char-
acter, which have played an important role in their
time. These investigations, as well as an examination
of the technical aspect of spectrum-analytic proce-
dures, are worthy of special treatment.

Finally, we have disregarded completely many
recommendations which can be found in reviews18> 9>

14-193 a n ( j jjj ^ e o r j g m a i papers related to them. Some
of them are promising but, from the author's point of
view, have not been justified with sufficient reliability.
Others, sometimes even widely used, must be down-
graded as incorrect and producing unreliable results.
Their criticism, however, would necessitate an in-
crease in the size of this article, something that can
hardly be justified. Accordingly, the cited bibliog-
raphy is far from full and reflects only that aspect of
the problem which serves as the main subject of the
review.

In conclusion we note that no matter how limited
the scope of the methods of spectroscopic research of
light scattering substances considered above, it is
sufficient for a complete solution of a number of most
varied and hitherto insoluble problems. The limita-
tions are the result of the very nature of the problem
and it is these limitations which should become the
starting point for the next stage of development of
particular procedures for solving problems of differ-
ent types. However, in spite of this, the present status
of the problem already permits extensive practical
utilization of the methods described above in spectrum-
analysis laboratories of different natures and a most
rapid introduction of these methods is a paramount
task of spectroscopy.
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