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INTRODUCTION

I . IN his preface to the Russian translation of Robin-
son and Stokes' monograph Electrolyte Solutions,
published in 1963, Academician A. N. Frumkin writes,
"Although the number of experimental and theoretical
studies on electrolyte solutions at present consider-
ably exceeds ten thousand, interest in this field is not
waning. On the other hand, this is explained by its
great practical significance both in technology and in
laboratory practice, and on the other hand, by the dif-
ficulties that the theory encounters in trying to inter-
pret and generalize the experimental facts." The lat-
ter statement is of especial interest here, and it can
be formulated more sharply: the theory of electrolyte
solutions is now undergoing a definite crisis. As we
see it, the reason for this is that people try automatic-
ally to extend to more concentrated solutions the
methods that have brilliantly proved themselves for
dilute systems, while neglecting a certain qualitative
difference existing between them.

In fact, as the Debye-Hiickel theory'1 ] implies, in
dilute solutions the radius of correlation Rc between
the positions of individual ions (which equals the Debye
radius r% = {e®/8irv)<?e2}*) is considerably greater than
the mean distance R between particles. Hence, the
Debye sphere contains a large number of particles at
one time, and the mean electrostatic-interaction en-
ergy per particle is small in comparison with ®. In
consequence of the latter, the spatial distribution of
the particles hardly differs from that in an ideal gas.
Finally, since Rc » r0, where r0 is the diameter of
the ions, the contribution of the Born repulsive forces
to all the macroscopic characteristics of the system
is negligibly small in comparison with that of the elec-
trostatic forces.

The volume of the Debye sphere v^ = % vr^ de-
clines with increasing concentration as v~3//2, while

*The following notation is adopted here: e is the dielectric con-
stant of the solvent, 0 = kT is the temperature, ea = kae is the
charge of an ion of type, a, and ka is its valence, v*= ]>: va j s

1.<a:;M
the total number of particles per unit volume, and M is the number
of different types of particles in the system. Hereinafter we shall
restrict ourselves to treating only binary symmetric electrolytes,
for which M = 2, k+ = —k_ = k, and v+ = v— = v.

the mean volume per particle v declines as v
sequently, e.g., in aqueous solutions having

-1

0.05 — 0.10 moles/liter

Con-

(I)

the quantity v% becomes equal to v. At the same time,
a substantial rearrangement takes place in the sys-
tem: when v > v^>, each ion is now shielded by only
one counterion. Hence, a pairing of oppositely-charged
particles seems to occur in solutions of intermediate
concentrations. In this process, the mean distance
R+_ = R_+ between ions of opposite type becomes con-
siderably less than the mean distance R calculated
without account of the interaction between the part i-
cles.* And although R is rather large, as before, in
solutions of intermediate concentrations, Born repul-
sion forces beginjto play an important role because R+ -
« r0. Evidently, R+_ can differ appreciably from R
only when the energy of pair interaction of the ions
> ®.

In going to very concentrated solutions or to molten
ionic salts, the radius of correlation Rc increases
again, and in the limit it becomes several times r0.
The structure of the melt thus proves to be similar to
that of ordinary liquids. As we know, the latter is
basically determined by Born repulsion forces.

Thus, the type of distribution of the ions in the sys-
tem undergoes substantial changes with increasing
concentration. Correspondingly, the approach in con-
structing a theory of electrolytes of different concen-
trations must also differ.

II. In 1946, Bogolyubovc 2 ] was the first to find the
second (Debye) term of the virial series of a system
of charged particles by expanding the configuration in-
tegral of the system in a power series in the small
parameter v/v^ = 3XK, where

1- p =•• 2 j i v r ; . ( I I )

S u b s e q u e n t l y M a y e r C 3 ] a n d H a g a u : l h a v e c o n s i d e r a b l y

r e f i n e d B o g o l y u b o v ' s r e s u l t b y c a l c u l a t i n g s e v e r a l

m o r e t e r m s o f t h e s e r i e s

* T h i s effect i s mani fes ted more s t rongly a s t h e maximum v a l u e

of t h e e l e c t r o s t a t i c energy e 2 k 2 / e r 0 i n c r e a s e s in compar ison with

t h e energy © of thermal motion.

1 7 1
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where p = P/Pid, P^ = 2v® is the ideal-gas pres-
sure, and C = 0.577 ... is Euler's constant. One can
easily convince one's self by direct substitution that
when X > 1* and v > vz (i.e., when XK > V3), the vir-
ial series (III) converges very slowly, or perhaps
may diverge completely. Hence, condition (I) prac-
tically defines the boundary between systems for
which one can construct a theory by expanding the in-
itial quantities in power series in the small param-
eter v/vg; (or equivalently, in the concentration v),
and systems not admitting such an approach.

At present there are only two groups of methods in
statistical physics for calculating the configuration
integral of gaseous and liquid systems: the methods
based on virial expansions and the so-called methods
of liquid-state theory.C5] However, as was shown
above, the former are unsuitable for constructing a
theory of electrolyte solutions of intermediate concen-
trations. Hence there remains only one way out: to
use for this purpose the integral-equations method of
liquid-state theory.* As will be shown below, one can
make some progress in this way, mainly because the
absolute values of the density of the ionic subsystem,
which are characterized by the dimensionless param-
eter p = 27rtTjj, are sufficiently small, as before. On
the one hand, the latter situation permits us to neg-
lect the nonlinear terms in the integral equations,
which considerably simplifies the entire calculation.
On the other hand, it permits us to limit the treatment
to a very simple model of the electrolyte solution in
which the solvent is described by its dielectric con-
stant e alone, and the ions are treated as hard spheres
of diameter r0. Within the framework of this model,
the energy of pair interaction of particles of types a
and b is evidently equal to

oo,
0, (IV)

Both these simplifications lose force in going to
concentrated solutions or to fused ionic salts. Hence,

*We recall that y =» 2—3 for aqueous solutions of univalent
electrolytes, and for bivalent ones, \ *~ 8—12.

f Another variant of liquid-state theory, the "free-volume"
method, which is based on a certain analogy between a liquid and
a crystal, is also unsuitable in this case, since the structure of
the ionic subsystem of electrolyte solutions of intermediate con-
centrations is very far from crystalline.

the calculation of the configuration integral for con-
centrated systems is entirely a special problem, which
we shall not take up in this review.

CHAPTER I

THE BINARY DISTRIBUTION FUNCTION OF THE
IONIC SUBSYSTEM OF THE SOLUTION

In essence, any integral equation of liquid-state
theory (and there are a great many of them at pres-
ent*) can be used to describe systems of charged
particles. (This is because, as a rule, no special re-
strictions on the nature of the decline with distance
of the binary-interaction energy are introduced in de-
riving these equations.) Nevertheless, all of the prog-
ress in the theory of electrolytes has involved only
several very simple equations/2' 6~9i to which we
shall limit the treatment here. Here we shall begin
with presenting the theory of Debye and Huckel,[ 1] an
analysis of which will per"mit us to reveal the physical
meaning of the later theories more pictorially.

1.1. The Debye-Hiickel Theory01]

I. Let us put the coordinate origin at the center of
an ion of type a bearing the charge ea. Since this ion
interacts with the other ions in the solution, the mean
concentration of particles near it will be altered. This
will produce a spherically-symmetric charge ("Debye
atmosphere") about the central particle, of density

1a(r)= 2 ebVbSab(r), (1.1)

where ^aD(r) is the binary distribution function de-
termining the probability of finding an ion of type b at
the distance r from ion a. If the two particles are so
far apart that they no longer interact, then all corre-
lations between them vanish, and
while qa(r) becomes the constant

becomes unity,
0) = LJ eKv

b "
Obviously the latter quantity must equal zero, since
otherwise an electric field of non-zero intensity would
exist at great distances from our selected particle.
This would give rise to an electric current. Hence, the
condition of neutrality

vbeb= 0 (1.2)

must be fulfilled in order that the system of charged
particles be at equilibrium.

We can derive another, very important formulation
of the condition of neutrality from the well-known for-
mula of electrostatics1103

•P. (»•) = -£ Qa (r')
Elr-r' I (1.3)

*The most complete review of the results obtained in the theory
of ordinary liquids is given in ["].
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which describes in this case the potential distribution
<pa(r) near the central spherical particle. By using
Green's formula to transform the integral appearing
in this expression, and taking into account the fact that
qa(°°) = 0, we obtain

• = -^ ] •$ I q*{t) l*dt + 1F 4jt dr} •
(1.4)

Now we note that any macroscopic system can have
finite values of its thermodynamic parameters only
when lim r3 VS^y. — 1] = 0.* Correspondingly, as is
known, q a must approach zero faster than r , and <pa

faster than r"1. However, the latter is possible only
when the expression enclosed in curly brackets in
(1.4) is zero. That is

4n \ eb\b$ab (r) r2 dr -= 0. (1.5)

In other words, in order that the binary distribution
function decline rapidly enough toward infinity, the
sum of charges of the central ion and its atmosphere
must be zero. Fulfillment of condition (1.5) provides
for shielding of the field of the central ion, since only
in this case does the integral term in (1.3), which rep-
resents the potential producing the Debye atmosphere,
"throw out" a term "cancelling" the potential ea/er
of the central ion. As will be shown below, such a
situation is typical of the integral equations describing
systems of charged particles.

II. The Debye-Hiickel theory is based on the idea of
using formula (l,3)f to calculate ^aD(r). Evidently, to
do this we must assume that '$2!o a(r)), since
otherwise (1.3) does not form a closed equation. The
concrete form of the sought relation can be found as
follows.

First we note that the definition of the binary dis-
tribution function implies that it can always be repre-
sented in the form1-2'5] ^'^(r) = y(r)Gak(r), where the
coefficient -y(r) = exp [—<p(s>(r)/@] does not depend on
the charges of the ions. Hence, S^ and <pa can be
related only by way of the function Gâ . Second, Sa^
must by definition by a symmetric function of the
charges ea and ê  of the particles.C2-1 On the other
hand, we can easily derive from (1.3) and the neutrality
condition (1.5) the fact that <pa ~ ea. This implies that
Gak can depend only on the product %<Pa- Third, since
Gak is dimensionless, it can be a function only of the
dimensionless potential e|-,<pa/© = (eae|D/e®ro)!/'(r)
= (eaeb/k

2e2)X!/>(r).

*For example, the density fluctuations, which are proportionalr»to \ [$ab(r) — 1] r2 dr, go to infinity when this condition is violated.

t Or, equivalently, Poisson's equation, of which (1.3) is the so-
lution.

Thus, if Safe is determined by the value of <pa, then
this relation must have the form 3^
= TGab^eaeb/k2e2)x^]- Let us expand the unknown
function G^ in a series, and limit it to the first two
terms. In this approximation,

(r) - Y (r) [ 1 - ^ - ) (1.6)

The unknown expansion coefficient B2 appearing here
is in general a function of the dimensionless param-
eters X and K of the problem. Debye and Hiickel as-
sumed it to be unity. As will be shown below, the more
exact theories confirm this assumption.

III. Taking B2 = 1, let us substitute (1.6) into (1.3),
taking (1.1) and (1.2) into account. Consequently, (1.3)
acquires the form

(1.7)

where t = r/r0 and y(t)- f i
t < 1,* Let us

when 0
when l s t < «

calculate the integral appearing in (1.7) using Green's
formula, using the condition of neutrality (1.5). There-
upon, (1.7) is reduced to

oo co
•dt ,= U. (1.8)

Now assuming that ip = m"(t)/t, we transform the in-
tegral equation (1.8) into a differential equation:

m"(t) — v?m(t) -0. (1.9)
It directly follows that m = Ae . Finally, we deter-
mine the constant A from the condition of neutrality
(1.5), and obtain

„"(!-!> 1
J

Upon s u b s t i t u t i o n in to t h e e x p r e s s i o n 1 - 1 1 ]

(1.10)

U(V, 6) =
0 l<a, (1.11)

which relates the internal energy U of the system to
^a]3, it gives (*a)3 being defined by formula (IV))

U(V, G) = N 8 (1.12)

This is the final result of the Debye-Hiickel theory.
IV. We shall make some remarks on the formulas

derived above.
First, the Debye-Hiickel theory is based on the hy-

pothesis that, in the region r > r0, the distribution
function arises only from the Coulombic interaction
among the particles (since it is assumed that G^

*Of course, the latter is true only of systems of hard spheres.
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®)- Evidently, the latter implies com-
plete neglect of short-range forces at distances ex-
ceeding the diameter r0 of the ions. However, as is
known, 3?at> ^ 1 for r >r0, even in a system of un-
charged hard spheres. Here the thickness of the
spherical shell r0 s r < RgS) in which the positions of
the individual particles are correlated increases rap-
idly with increasing concentration.C5 ' l l : l Conversely,
the thickness of the spherical shell Rc ~ ro m a n i ~
festing electrostatic correlation declines with increas-
ing concentration. The decline approximately follows
the law R c

e l ) - r0 =* TO/K ~ 1/Jv, as (1.10) implies.
Hence, the condition R*,s> - r0 « R[,el) - r0, which has
to be fulfilled in order that we can take G a b to depend
only on the electrostatic potential cpa, holds only over
the limited concentration range p Z, p m a x . If we use
the more precise values of the radii of correlation
RgS) and R^el) given in C9>12], we find that for aque-
ous solutions for which 2.0 < X^ 3.0 (see below), the
value of Pmax ^0 .2 . This corresponds to concentra-
tions of the order of 2-3 moles/liter.*

Second, the Debye-Hiickel theory is based on ex-
panding the function Gab = GaD[(eaeDA2e2)X0] m a

power series in X4>(r)> and dropping terms of the or -
der of (X^)2 and higher. Evidently, the latter is pos-
sible only when X^(r) « 1 throughout the region
r >r r0. Hence, the results obtained become more ac-
curate for smaller X , other conditions remaining the
same. And since x is proportional to k2, it follows
that the Debye-Hiickel theory is inapplicable to solu-
tions of intermediate concentrations for bivalent elec-
trolytes, for which X =* 8-12, as is known.** At the
same time, the Debye-Hiickel theory should give quite
satisfactory results for univalent electrolytes, for
which the product X^ is less than unity for almost all
r > r0. t

Third, the Debye-Hiickel theory has the fundamental
defect that it doesn't permit one to obtain full informa-
tion on the distribution function. Indeed, we note that,
since the charges of the particles enter into the con-
figurational energy U^ of the system only in the form
of pair products, therefore Gab = Gajj(eaeij). Hence,
let us represent Gatj in the form

Gab = 1 + gab (eaeb) -----1 -|- Y [gab (eaeb)

+ ~2 [gab (eaeb) +gab( — eaeb)}.

( — eaeb)\

(1.13)

*It is usually assumed that the Debye-Hiickel theory is applica-
able only for v =€ 0.01 moles/liter. This statement is based on a
misunderstanding, since it results from comparing formula (1.12>
with virial series such as (III). However, such a comparison can-
not serve as a satisfactory criterion, since when v > v%j, the virial
series generally diverge, while (1.12) continues to hold true. Inso-
far as we know, no one has yet made any special estimates of the
limits of applicability of formulas (1.19) and (1.12).

tOne can easily convince one's self of this by considering Eq.
(1.10).

where we have written the term unity separately in
order to emphasize the fact that Gab — 1 when r —•«>.
Evidently, for a symmetrical binary electrolyte, for
which e+ = - e _ = ke, the expression within the left-
hand square brackets changes sign as we go from G++

= G— to G+- = G_+, while the second square bracket
remains unchanged. This implies that the binary dis-
tribution function can always be written as

.9o6 =•• -- Y (0 {1 - -fg- %M (l) + R (t)} , (1.14)

where we have written the coefficient (—x) separately
only for convenience. Evidently, since lim t3($au-l)
= 0, t - 0 0

lim t3M (t) = lim t*R (I) = 0. (1.15)
(-•00 |->0O

Substituting (1.14) into (1.3) and (1.5), we obtain

(O M (?) j ^ j - = 0, (1.16)T5T

— K2 \ M(t)l*dt = 0. (1.17)

Thus we see that, the function R(t) completely van-
ishes from all the electrostatic equations, owing to
the condition of neutrality (1.2). Nevertheless, if we
could find from (1.15)-(1.17) the exact value of the
function M(t), then this would suffice for correct cal-
culation of the internal energy U of the system in the
case in which the pair potential *ab(r) *s giyen by re-
lation (IV). In fact, by substituting (IV) and (1.14) into
(1.11) we obtain

U (V, 6) = Uo (6) -£ xx2 \ M (t) t di, (1.18)
I

That is, U(V, ®) does not depend on R(t) at all. At the
same time, the pressure of the system

P {V, 6) = P id (V, 0) —i \ 2
0 l<a,

X "Bob (r) 4nr* dr (1.19)

cannot be found by using only one function M, since
after substituting (IV) and (1.14) into (1.19), we get
the expression

"IT S , (1-20)

from which R(t) does not drop out. Hence, (1.10)
gives U(V, ©) correctly, but P(V, ®) incorrectly.

1.2. The Kirkwood-Poirier Theory16]

I. Following Debye and Hiickel, we set ip (t) = M(t)
in (1.16). Here the physical meaning of Eq. (1.16) is
changed considerably. Indeed, it formerly gave the
electrostatic potential ip(t) at some arbitrary point t
not directly associated with any particle of the sys-
tem. However, after rp has been identified with M, it
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now gives the probability of finding the particle b at
the distance t from the "cent ra l" particle a (since
the correlation function M is part of the binary dis-
tribution function ^ a r j ) . Hence, while the integral
found in (1.16) formerly described the field created by
the N - 1 particles at the point t (i.e., all the part i-
cles of the system but the central one), now it must
describe the influence of N — 2 particles on the pair
of particles a and b that we have chosen, whose po-
sitions are fixed. Correspondingly, we must perform
the integration in (1.16) over the entire space V, ex-
cepting the volume occupied by these particles. How-
ever, the factor -y(t') within the integral already takes
into account the excluded volume occupied by the par-
ticle a. Hence, we have yet only to take into account
the volume of the particle b. We can do this by intro-
ducing the factor y |t — t' |) into the integral. Conse-
quently, (1.16) is converted into the equation

=0 . d-21)

which is the basis of the Kirkwood-Poirier theory. We
see from the arguments given above that it is a natural
refinement of the initial equation (1.7) of the Debye-
Huckel theory.

II. The integral over the volume occurring in (1.21)
can be transformed by Green's formula into integrals
over the surface of spheres having centers at t = 0
and at t. Upon substituting M = m"/t, the latter are
easily calculated. Consequently, when t > 2, Eq. (1.21)
becomes

-4-m(? — l)l = 0. (1.22)

If we let t — °o here, and take (1.15) into account, we
come again to the condition of neutrality (1.17), which
must be satisfied to remove the 1/t term from
Eq. (1.21). After simplifying (1.22) in t, we finally ob-
tain (cf. (1.9)):

2< i<co, ~- —1)] = 0. (1.23)

If the distance between the particles t < 2, then the
spheres intersect (Fig. 1). Correspondingly, the inte-
gral must be taken only over the outer surface of the
figure formed. The end result of this is the expres-
sion

< t < 2, m" (t) — -i- v}m (t -4- 1) = -i- x2m (1)

— X2 ( 1 — — , (1.24)

The region l < t < 2 is marked out physically because
there is always a "forbidden" zone between two parti-
cles of diameter r0 when r , < r < 2r0. The third par-
ticle over whose coordinate the integration in (1.21) is
performed cannot enter this zone (see Fig. 1).

FIG. 1. Diagram of the collision of three particles with

We can easily convince ourselves by direct substi-
-attution that a special solution of Eq. (1.23) is e

where a is the root of the transcendental equation

a2 = x2 ch a. (1.25)

Since (1.25) has an infinite number of roots, the gen-
eral solution of (1.23) can be written as

ai' =AlYi ( -J-) e~^ = Ajk(t). (1.26)m(t) =

The unknown constants Aj occurring here must be de-
termined from Eq. (1.24). Upon substituting (1.26) into
the latter, it gives

< 2. (1.27)

2e~ a iwhere A* = (Aj/A^ta? - V2 «
2 e ~ a i ] . In essence, Eq.

(1.27) is an expansion of the known function (within the
accuracy of the constants m(l) and m'(l)) on the right-
hand side in a series of the characteristic functions
e" a i t of Eq. (1.23). In principle we can find from (1.27)
all the Aj but Als which actually drops out of (1.27),
owing to homogeneity. The constant At can be deter-
mined from the condition of neutrality (1.17), which
gives the following when (1.26) has been substituted
into it:

(1.28)

The study of the transcendental equation (1.25)
made in [14:l showed that it has only two real roots
a i , 2 = al, z> the remaining roots are complex conju-
gates: a^ = Qĵ  ± iw^. When K £, 0.5, a t « K, a 2 s 5 . 5 ,
and the values of the other <% a r e even greater.
Hence, when K& 0.5, we can drop all the terms of the
series in (1.26) but the first, to a sufficient degree of
accuracy. As a result we obtain the Debye formulas
(1.10) and (1.12) for # a b and U.

III. We shall now make some remarks on the Kirk-
wood-Poirier theory.

First, we stress the fact that its starting equation
(1.21) was initially derived directly from the Gibbs
canonical distribution, rather than from the electro-
static equation (1.3) with the substitution of (1.6), as
was done above. Hence, the problem of the value of
the expansion constant B2 in (1.6) does not arise at all
in this case. We see from the derivation given in
that B2 = 1.



176 G. A. MARTYNOV

Second, in Eq. (1.10), which is also a consequence
of the Kirkwood-Poirier theory, let us transform to
the limit of uncharged hard spheres having e a = eD = 0.
Then S^b proves to equal y(r). Upon substitution into
(1.19), this gives the expression p = 1 + 2/3P, which
amounts to the first two terms of the virial series.C l l : l

We can easily convince ourselves by comparing
p = 1 + 2/jp with the more precise equations of state
that this expression gives satisfactory accuracy only
when p £ 0.2. For r0 ^ 3—4A, this corresponds to a
concentration v =* 2—3 moles/liter. As we should ex-
pect, this value coincides with the limit of applicability
of the Debye-Huckel theory (see above).

Third, Kirkwood and Poirier derived Eq. (1.21) by
expanding the initial quantities in a power series in X>
and then dropping the terms proportional to Xn, where
n > 2 . * This is the very reason why (1.10) gives cor-
rectly only the first two terms of the virial series of
the system of charged spheres (III) depending linearly
on X: the remaining terms of the series (III) depend-
ing on the higher powers of X cannot be found by using
(1.21).

Fourth, Eq. (1.21), just like (1.7), determines only
the "electrostatic" component M(t) of the binary dis-
tribution function; its "short-range" component R(t)
cannot be found within the framework of the Kirkwood-
Poirier theory.

1.3. A Theory Based on Bogolyubov's Equations1-8'si

I. Let us apply the operator V to (1.16), and a s -
sume that !p = M, following Debye and Hiickel. Then
by following the same argument as in deriving the
Kirkwood-Poirier equation (1.21), we obtain

VM(t)-V

M (?) y (?) y (11-1' |) v ( - J ^ F T ) * ^ 0 - (1.29)

This expression is the equation of balance of electro-
static forces acting on the particle b. t We can easily
convince ourselves of this by noting that in (1.29) the
term V-J- is proportional to the electric field inten-
sity produced by the central ion a at the point t,
while the integral is the mean electric field intensity
produced by the remaining N — 2 particles of the sys-
tem at the same point. Evidently, the force balance
written in this way cannot under any conditions be
considered complete. This is because it does not
take into account the non-Coulombic forces causing
the impenetrability of the particles. Hence, a natural
generalization of the theories developed above is to go
over to Bogolyubov's equation12]

*See also the original derivation of (1.21) given Folkenhagen
and Kelbg. ["]

T Or equivalently, the forces acting on the particle a, since the
latter are equal except for sign to those acting on the particle b.

(1.30)

which is the equation of balance of all forces. In fact,
let us divide each term in (1.30) by ^ a b- In the ex-
pression that we get thus, the term — ^ i * a b will rep-
resent the total force exerted on the particle a by the
particle b, whose position is fixed, while

- / S " c<£abc/^ab)V i *ac d 3 r 3 i s t h e t o t a l average
c

force exerted on a by the remaining N — 2 particles
of the system (here 2/aDC is the ternary distribution
function). Correspondingly, the term — Vjj® In S^}
will represent the " force" of the thermal movement
of the particle a balancing the potential forces acting
on it. We see from the derivation of Eq. (1.30) given
in l-21 that it follows strictly from Gibbs' canonical
distribution. This is the very reason why we can
write it in the form of a condition of constancy of
chemical potential of the particle a in the system in
which the position of particle b is fixed.

II. Among the infinite multitude of solutions of
Bogolyubov's equation (1.30), the only ones that fit the
canonical distribution (and hence have physical mean-
ing) are those that satisfy the conditions of normaliza-
tion, symmetry, etc.C2 '5> 11] In essence, the latter
play the role here of ordinary boundary conditions as
used in solving differential equations (since both have
as their purpose the selection of a given solution
from the entire class of possible solutions). Hence, it
is natural from the outset to t ry to put (1.30) into such
a form that the imposition of additional conditions (or
at least part of them) would be superfluous.

The definition of the distribution function implies1113

that ^ a D and ^ a Dc c a n always be represented in the
form ^ab(ri2> = r(ri2> t 1 + Sab

]> ^abc<ri2' rl3- r23)
= y(ri2) y(ri3) T(r23)[l + Gabc].* Here the unity terms
are written separately to emphasize the fact that

lim g a b = 1, and lim gaKc = 1. The
ru~°° ri2> r i3, r 2 3 ^ °°
condition that the correlation should decline also im-
plies that if, in the group of three particles aj, b2, and
c3, one of them (e.g., C3) moves infinitely far away,
then ^ a b c becomes equal to ^ a j j . Hence, when r13, r23

—•«>, the function GaDC — gab. Taking into account the
symmetry of GajjC with respect to permutation of par-
ticles, we obtain

$ab -= Yl2 [1 + gab], Sabc = Yl2YlsY23 [1 + gab + gac + gbc + gabc],

(1.31)

Evidently, the correlation function gaDC describes
here the non-linear effects that arise in the simul-
taneous interaction of all three particles. Substituting
(1.31) into (1.30), we get a system of two equations for
the functions g++ = g__ and g+_ = g_+ :

*Here as before, y = exp [-cpls)/&].
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2<<<oo,

+ gab + gac + gbc + gab = 0.

(1.32)

This way of writing Bogolyubov's equation (1.30) has
the advantages that it ensures satisfaction of the con-
ditions of normalization and symmetry, the condition
of declining correlation, and the condition that the dis-
tribution function be bounded at the zero-point,* for
any approximation of the unknown function gaDC.

III. Now we recall that each ion is shielded by only
one counterion in electrolyte solutions of intermediate
concentrations. Here the mean distances between the
thus-formed particle pairs are rather large, as be-
fore. This means that in these systems the simultane-
ous collision of three or more particles is a rather
ra re event. And if this is so, then we can completely
drop the term g a b c in (1-32) describing the non-linear
effects in ternary collisions. Using (1.14) to transform
from gab to the functions M(t) and R(t), we obtain in-
stead of (1.32) the system of two equations:

VM (t) _ V ( i ) + £ \ M (O y (O y (| t - t' |) V [ T 4 F r dV

\ y(t')Vy(\t-t'\)d*t'
(1.33)

( A )

V
i'\)y{\i-i'\)y{f)V ^ (1.34)

The l e f t -hand s i d e s of (1 .33) and (1.34) a r e the e q u a -
t i o n s of b a l a n c e of the e l e c t r o s t a t i c (cf. (1.29)) and
s h o r t - r a n g e f o r c e s , r e s p e c t i v e l y . The r ight -hand
s i d e s d e s c r i b e the in terac t ion e f f e c t s .

IV. We s h a l l r e s t r i c t o u r s e l v e s in s o l v i n g the s y s -
t e m (1.33) and (1.34) to the c a s e of not v e r y g r e a t c o n -
c e n t r a t i o n s , for wh ich p « 1. Dropping a l l the t e r m s
propor t iona l to p in (1.33) and (1 .34) , w e obtain

ll — t'\)V-

(1.35)

(1.36)

By assuming in (1.35) that M = m"(t)/t, and trans-
forming the integral contained in it by Green's for-
mula, we can reduce the system (1.35) and (1.36) to a
single equation:

-m? (t —1)1 = 0.

(1.37)

In going from (1.35) and (1.36) to (1.37), we have taken
into account the condition of neutrality (1.17). As be-
fore, the latter must be fulfilled to remove from (1.35)
the term V4-, which declines too slow toward infinity.
When t2 > KX, we can drop the term containing x2 in
(1.37).* As a result, we obtain the following equation
(cf. (1.9) and (1.23)):

(1.38)

Evidently, the general solution of the latter has the
form

2 n sh a,
a\ = x2 '- (1.39)

The constants A ,̂ i &2 appearing here must be de-
termined from the condition that Eq. (1.37) should
vanish identically in the region 2 i t &t*, and the
equation obtained from (1.35) and (1.36) should vanish
in the region l < t < 2 , which is considered separately,
as before. Just as in the Kirkwood-Poirier theory,
the constant A4 is found from the condition of neu-
trality (1.17), which leads to the expression (1.28).

The study of the transcendental equation (1.39)
made in [9:i shows that when K < 1, f the first root of
this equation ax =* K , while the real part of the r e -
maining roots a^ £ 6, i > 2. Hence, when K ;£. 1, we
can drop all the terms of the series (1.39) but the
first. Consequently, the expression for the binary dis-
tribution function takes on the form

(1.40)

In d i s t i n c t i o n f rom the D e b y e f o r m u l a (1 .10) , it i s
p o s i t i v e for a l l v a l u e s of t and x • H o w e v e r , upon
subst i tu t ing (1.40) into the f o r m u l a (1.11) for the i n -
t e r n a l e n e r g y , w e get the D e b y e e x p r e s s i o n (1 .12) a s
b e f o r e .

V. We sha l l now m a k e s o m e r e m a r k s on the theory
d e v e l o p e d h e r e .

F i r s t , if w e go t o the l i m i t e a = e D = 0 in the in i t ia l
s y s t e m (1 .34) , (1 .35) , then w e obtain

+ R(\t- f |

(t)+R(O

',') V Y (I t — t ' | ) < 2 V = 0 . (1.41)

T h e latter condition is ensured by writing the factors y sep-
arately in So[, an<J 'Sabc •

•This estimate can be obtained by substituting the special so-
lution e"ai'of Eq. (1.38) into (1,37), and matching the terms in y2

and K2.

1 Rather than K < 0.5, as in the Kirkwood-Poirier theory.
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It was shown in Cl6:i that (1.41) gives correctly the
first three virial coefficients, but gives the fourth one
with a small error , which amounts to only 3.5% for a
system of hard spheres.* The more precise solution
obtained in l n l showed that (1.41) gives quite satis-
factory results up to p « 0.6-1.0. For r0 = 4A, this
corresponds to a concentration of 20 moles/liter or
more. The latter overlaps the entire region of elec-
trolyte solutions of intermediate concentrations with
room to spare. However, we cannot say the same for
the system (1.35) and (1.36), since it was derived from
(1.33) and (1.34) by dropping all the terms of the order
of p. In this approximation, (1.41) correctly describes
only the first two virial coefficients. Correspondingly,
the region of applicability of the solutions obtained
cannot exceed 2-3 moles/liter.

Second, as the derivation given above implies, the
fundamental system of equations (1.33) and (1.34) in-
volves no expansions whatever in the parameter X •
This is the very reason why it gives correctly the
first three virial coefficients of the system of charged
hard spheres. We can convince ourselves of this as
follows. In the case of dilute enough solutions at small
distances, we can neglect in (1.32) not only the non-
linear effects in the collective interactions (i.e., the
term gabc)> DUt a ^ s o generally all the collective ef-
fects described in (1.33) by the integral term (since
the latter are small in comparison with the pair inter-
action described by the term V(pak ). Thus we di-
rectly find that at small distances 1 + gab
= exp [(-e aeb/e©)(l / r ) ] . Correspondingly, for great
distances with K « 1, we find from (1.40) that 1 + gab
= 1 - (eaeb/e@) • {[exp ( - r / r ^ , ) ] / r } . Combining the
two results together into a single interpolation for-
mula, we arrive at the well-known Tyablikov-Tolma-
chev •18^ expression

] • (1-42)

Upon substituting (1.42) into (1.19) and calculating the
integral by expanding the exponential in a power se-
ries in (eaeb/e®) • [exp ( - r / r 3 ) / r ] , we obtain

oo
p = 1 - (XK/6) - V2 (X«)2 x . £ lX2J ~s/(2j) !(2j - 3)]

J = 0

+ O(K 3 ) . This exactly corresponds with the first three
terms of the series (III). Since here the K2 term con-
tains all the powers of X , evidently dropping the g a b c

term in (1.32) imposes no limitations on the value of
the parameter X.

Since the formula (1.42) can also be derived from
the "abbreviated" system (1.35), (1.36), the latter r e -
mark fully pertains to it as well. However, this does
not mean that the expression (1.40) for the binary dis-
tribution function found by solving the "abbreviated"

system is valid for all values of X. As was shown
in c 9 ] , the result of dropping all the terms of the se-
ries of (1.39) but the first is that (1.40) describes only
aqueous solutions of univalent electrolytes, for which
X does not exceed 2-3; it is not valid for multivalent
electrolytes.

Third, as we see from (1.40), the equation of bal-
ance of all forces (1.32) completely determines the
binary distribution function. This permits us directly
to calculate not only the internal energy U of the sys-
tem, but also the equation of state P(V, ®). When igjj
and g a b are given by the formulas (IV) and (1.40), the
latter has the form

If we know P and U, we can test the theory for
self-consistency. In fact, we know from thermody-
namics that P and U are connected by the relation119-1

(8U/9V)© = ®2(8/a®)(P/®)v. Hence,

P = © i J® (9U/8V)(d®/®2) + const j . * If we substi-

tute into this U from (1.11), we obtain

P = 1 - 2̂ a- [(1 + x) - ( 1 + x)- ! -2 In (1 +x)] + 4p- (1.44)

This expression differs greatly from (1.43) in external
form. However, as we see from the data of Table I,
which gives the values of A = p (1-44) - p

(1-43) c a i c u la ted
for X = 2, the quantitative difference between the two
formulas practically nowhere exceeds the experimen-
tal error 6 = ± 1 x 10"3. The fact that A nevertheless
is not strictly zero is most probably to be explained
by the fact that (1.40) is an approximate solution of the
system (1.35), (1.36). Thus, the initial equation unam-
biguously determines the thermodynamic parameters
of the system of charged spheres.t This is quite natu-
ral, since the conditions of normalization, correlation,
etc., in turn determine unambiguously the linear terms
of Eq. (1.32).

TABLE I.

X

[l-pa.44,]
A-103

A-100
1—p(1.44

.103

-%

0.1

28.1
0.0
0.0

0

46
0
0

2

.8
3

,6

0

66
1
1

4

.1

.2

.8

0,6

67.0
1.8
2.7

0.8

54.1
2.3
4.3

1

30
3

10

0

.5

.2

.0

*We recall that (1,7) and (1.21) give correctly only the first two
virial coefficients.

*The constant appearing here must be assumed equal to jp
for the case of hard spheres in order to take into account the ex-
cluded volume of the particles within an accuracy of terms of the
order of p, inclusive.

tOne can show that Eq. (1,41), which is a special case of
(1,33), (1,34), also unambiguously determines the thermodynamic
parameters in the case of a system of unchanged particles.
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We see by comparing the equations for the distribu-
tion functions (1.7), (1.21) with (1.33), (1.34) that each
of the latter is a natural refinement of the former.
Without vitiating the fundamental corollary of Eq. (1.7)
(the Debye-Hiickel formula (1.12) for the internal en-
ergy), these refinements nevertheless show that the
latter is valid only for K £ 1 and x ~ 3. A direct cal-
culation of the value of U(V, ©) by the Monte Carlo
method confirms this conclusion.C35:l

CHAPTER 2

THERMODYNAMIC FUNCTIONS OF SOLUTIONS
AND COMPARISON WITH EXPERIMENT

The formula (1.12) for the internal energy of the
ionic subsystem of the solution was first derived by
Debye and Huckel as early as 1923. [1 ] In the 40 years
that have passed, all its consequences have been sub-
jected to thorough experimental testing. It has turned
out that the theory does not satisfactorily agree with
experiment at any appreciable concentrations unless
one introduces empirical corrections.c 20> 21] Up to
now, the observed disagreement has usually been ex-
plained by saying that the theory itself is crudely ap-
proximate and semiempirical. Although this viewpoint
has become widespread now, it is wrong, since as was
shown above, Eq. (1.12) is a direct consequence of the
Gibbs canonical distribution. But then the question
arises anew: what then is responsible for the stated
discrepancy?

To answer it, we recall that the theory involves the
dielectric constant e of the solvent, which arises from
averaging the configuration integral of the system
over all possible states of the solvent molecules.1"19'
22,23] Evidently, the result of this averaging cannot
fail to depend on the temperature © of the system and
the concentration v of the solute (and of course, on the
other parameters of the electrolyte and the solvent,
such as the valence of the ions, the diameter of the
particles, etc.). Hence we can state a priori that a l -
ways e = e(®, v).

It was noted long ago that one must take into ac-
count the temperature-dependence e = e(©) to explain
certain properties of extremely dilute aqueous solu-
tions of electrolytes.* On the other hand, the concen-
tration-dependence e(i") was said to play no role.
However, such a disparity between © and v only stems
from the fact that the concentration parameter e v

= (v/e)(de/di>) is always small in dilute solutions,
while the temperature parameter e® = (O/e)(8e/9©)
for water proved fortuitously to be of the order of
unity (more exactly, e® = — lAl2i]). The situation

alters with increasing concentration, since the value
of e^ also r ises. For aqueous solutions it attains a
value of = 0.2 at v = 1 mole/li ter.C 2 5 ] If in addition
we take into consideration the fact that « occurs in
the final expressions in the form of the product Xep,*
and that always x ~ 2 -3 , then it becomes obvious that
we must in no way neglect the concentration-depend-
ence e = e(^), even at v £ 0.1-0.2 moles/liter. Unfor-
tunately, this feature hasn't received due attention in
calculating the thermodynamic characteristics of
electrolyte solutions of intermediate concentrations.
On the one hand, this has given rise to some inner
contradictions in the thermodynamics itself (see be-
low). On the other hand, it has made it impossible to
attain good agreement of theory with experiment.

2.1. Thermodynamics of Electrolyte Solutions

I. Averaging the configuration integral of an elec-
trolyte solution over all possible positions of the sol-
vent molecules is equivalent to going from the real
solution to a model system consisting of N charged
particles, each of which moves freely (i.e., friction-
lessly) in a continuous medium of dielectric con-
stant e. However, the previous chapter essentially
treated not this model, but a gas of particles bearing
the effective charge e/VT, and moving in a vacuum.
Hence we must first of all analyze to what extent the
results obtained above can be used to construct a ther-
modynamics of electrolyte solutions.

All calculations of the binary distribution function
of an ion gas are based on the assumption that its con-
figurational energy U^ equals the sum of the pair
potentials *ab(r) given by relation (IV). In order that
U^ should have the same form for the model system
as well, we must assume: a) that the charge within the
ion-spheres is distributed with spherical symmetry,
and b) that the dielectric constant e(i} of the medium
within the ions equals the dielectric constant e of the
solvent, t If both these conditions are satisfied, then
we can assume that the above-derived formulas for
^ah are equally valid both for the ion gas and for the
model. However, the expressions for the thermody-
namic functions of the ion gas derived by using (1.11)
and (1.19) cannot be extended to electrolyte solutions.
This is because, generally speaking, these formulas
do not define the relation between the binary distribu-
tion and the macroscopic characteristics of the model
that we are studying. The latter can be seen especially

•Without this, for example, one fails to explain not only
the concentration-dependence of the heats of dilution, but even
the sign of the effect itself. ["]

*See, e.g., the expression (2.7) for the free energy, which con-
tains the term L(x - Xo) =« I Xoev •

t If e'1' / e, then the solution of Poisson's equation
Acp = —(4n-/e) q(rj... rN) for the system of charged spheres, where
ri are the coordinates of the ith ion, cannot be represented in the
form cp = 2 ej/elr - r j . The introduction of the quantity e(i),
which has no clear physical meaning, is necessary only because
otherwise we cannot formulate the initial electrostatic problem.
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well from the example of the formula (1.19) for the
pressure, which implies that the solvent influences
the equation of state of the solution only by way of the
ionic subsystem. However, as is physically evident,
the contribution of the ionic subsystem to P is gener-
ally very small, and fundamentally P depends pre-
cisely on the properties of the solvent.

In order to establish the relation between the binary
distribution function and the macroscopic parameters
of electrolyte solutions, we shall start with the well-
known expression for the internal energy of the sys-
t e m[26,27]*

(2.1)

Since in our case E = ZvEj , where E ^ E i d r - r J

is the field of the ith ion, then E2 =Zy E2 + Z/ E.-E;.
i ! i^j * 1

Substituting this expression into (2.1), we obtain the
following for the electrostatic component of the con-
figurational energy of the solution:

where ry = |r^ — rj |. Here, in calculating integrals

such as f E2d3r, we have omitted the portion of them
«* l
V

that is localized in a sphere of radius r0 centered at
r j , since the latter depends only on the nature of the
charge distribution within the ion. Hence, it is of no
interest.

Averaging (2.2) over the ensemble at constant vol-
ume V of the system, we obtain

This expression represents the electrostatic compo-
nent of the internal energy of the solution.t It differs
from the usual formula (1.11) for U, first by contain-
ing the factor 1 + (®/€)(9e/9O), which describes the
change in the entropy of the solvent in the field of the

*Since the macroscopic volume average of any quantity in a
homogeneous system is a constant, then s also cannot depend on
the value of the coordinate r. The latter is highly essential, since
in the literature attempts have repeatedly been undertaken to treat
e as a function of the distance between ions. This, of course, is
false.

tThe initial formula (2,1) for Uĵ  ' can represent either the in-
ternal energy, or the enthalpy, depending on whether the expression
(l/4n-) eE dE was integrated at constant volume or at constant
pressure. In distinction, the formula (2,3) always represents the in-
ternal energy, since the condition V = const was made explicitly in
the averaging.

ions, and second, in having the additional term
Z/ (N|ea/er0) characterizing the intrinsic energy of the

ions. Both these corrections make an appreciable con-
tribution to the increment of the internal energy of a
solution of finite concentration with respect to an in-
finitely-dilute solution, for which e = e0, and "S^ = 1,

er0

5 2
NaNb

© 3e0 (2.4)

In the special case in which
(1.40), A ,,U(el> has the form

is given by Eq.

E a®) L

(2.5)

If the dielectric constant e(®, v) = const, then (2.5)
coincides with the Debye formula (1.12). However, in
the general case in which e = e(©, v), they differ quite
substantially.

II. When the quantity Aj,U has been found, it is not
hard to calculate the increment in the free energy of
the system A ,,F = F(v) - F(v = 0) by the Gibbs-Helm-
holtz formula U = -©2(9/3®)(F/©). Indeed, upon sub-
stituting into it the Aj,U from (2.5) and integrating the
expression obtained between the limits © = ©t and
© = ©2, we find that

where A@{ } ={ }©=©,,-{ }©=©1- The subscript 0

applied to X implies that in X = k2e2/e®r0 the quantity
e = e(j>) is taken at v - 0, and is equal to e0 = e(0). We
note now that the free energy F of the system is a
single-valued state function. Hence, the value of
AyF(©) at © = ©i cannot depend on the arbitrary tem-
perature © = ©2. The latter condition is compatible
with (2.6) only if

(2.7)

Here A,,F<S) = N®[f(n) - f(0)] and the function f(n),
which is an arbitrary integration constant (since
A@f(n) = 0), can depend only on the relative concen-
tration n = N/N s , where Ng is the total number of
solvent molecules and N is the total number of parti-
cles of the solute. Since the expression enclosed with-
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l Av,^= A,,
.c 2 0•2 4 ] And although

in curly brackets in (2.6) is valid only at concentra-
tions not exceeding one mole/liter (since always
K £ 1), then we can assume to a higher degree of ac-
curacy that f(n) — f(0) a* Bn.

If we assume in (2.7) that X = Xo. then the term
Vz(X - Xo) first introduced by Hiickel[24] vanishes,
and we arrive anew at the ordinary Debye expression
for the free energy increment. We emphasize that this
applies particularly to the free energy Ap F, but not at
all to the thermodynamic potential Av,^= A,,F
+ PAj,V, as has often been stated.c2

the numerical difference between Avjr and A^F is
small (because liquids are practically incompressible
and A^V^ 0), it is very important, since it means that
the chemical potential of the solvent has been calcu-
lated incorrectly heretofore (see below).

III. Using the ordinary formulas of thermodynam-
ics, we can find from (2.7) the rest of the thermody-
namic functions of the solution: its entropy, enthalpy,
etc. However, we shall not do this, but shall restrict
ourselves to treating only the chemical potentials of
the solute M and the solvent ns. We must bear in
mind in calculating them the fact that AF l e l ) = f(®, V,
N, €, e0), and in turn, that e = e(®, V, N, Ns), and
e0 = lim e(®, V, N, Ns). Since by definition \x

N—-o
= (9F/8N)@) V j

neglect the dependence of AF, e
in the differentiation. Hence

and MS = (8F/8Ns)@j v > N , we can

and e0 on © and V in

^ \i —
dAF
dN

dAF , dAF dAF de0
1 e, v,

— HS ^ . . — I ,,M_

de ON

dAF dt ,

>E0 <W
(2

dAF

'
.8)

8, Y,N dNs Oe.o dNs

(2.9)

where Mid = M(o) + © In n and M ^ ' = MS
0> + © In (1 - n)

^ / j g 1 - ®n are the chemical potentials of the solute
and the solvent for the case of an ideal solution,
8eo/8N = lim (8e/8N), and 8eo/8N = lim (8e/8N ).

N—•• o N —• o
In taking the derivative in (2.9), we must bear in mind
the fact that only Av7

is) = ©B(N2/NS) depends directly
on N s in (2.7); on the other hand, the electrostatic
component Aj,F(e** of the free energy depends only
indirectly on N s via £ and £0.* Substituting (2.7) into
(2.8) and (2.9), we obtain

— -Trta ( 1 s0 ON ) J ' (2.10)

2 Xo dN (2.11)

Where M = Mid + ® m f» a n d f is the activity coeffi-
cient, MS = M id* ~ ®gn> and g is the osmotic coeffi-
cient.

By using (2.3), the electrostatic component of the
chemical potentials can be written in the form

- 2 > - \ £ < V & * F h (2.12)

<cl) ^ . ^ A
Vo dx

(2.13)

where T = N s/Vj is the density of the solvent. Thus
(el)we see that Aju is determined (as calculated per

ion) by the increment in the total electrostatic energy
(the integral J (eE2/87r) dV), minus the portion due

Vo

to the change in the dielectric constant of the solvent
(the integral J (EVSTT) N (9e/8N) dV), while Ms

el) is
Vo

the electrostatic work done in changing the density of
the solvent. As we should expect, the expression for
Ms exactly coincides with the usual definition of the
chemical potential of a dielectric in an external
field.[2G]

IV. If we assume in (2.10) that e = e0 = const, then
we get the well-known Debye expression for the activ-
ity coefficient with Onsager's correction*

(2.14)

whereas the expression (2.11) for the osmotic coeffi-
cient g does not transform under any conditions into
the formula used in the theory of electrolyte solu-
tions.1-20' 21>24] In order to understand what the trouble
is here, let us examine the course of the arguments
usually used in deriving the expression for g. First,
one assumes at the outset that (2.7) gives the incre-
ment in the thermodynamic potential Aptp, which is
wrong, as we have seen. Then one finds A^ s by the
formula

, p,N ~dN~ ev
dV

INZ de
dz dAS^ de0

andHere one drops the terms containing 8e/8Ng

8eo/8Ns for unknown reasons, although, as we know,
(T/e)(8e/9T) ^ l . [ 1 0 ] The error in this derivation is
evident. Even if we define pis as

& p N ,
/

p s ( / g & p N ,
then by virtue of the identity &= F + PV, P = -8F/8V,

*And of course, via V = Nv + Nsvs, where v and vs are the par-
tial molar volumes of the solute and solvent, respectively. However,
we need not take into account the dependence of A^F(el'on Ns via
K ~ V'v\ since V is held constant in the differentiation.

*Onsager suggested that in (2.14) the term Bn coincides with the
second virial coefficient 2p/3 of a system of hard spheres. Hence
B = (2/3)(rtsN/V)(Ns/H) = 4(OTO76)(NS/V) = V0/4Vs, where
Vo = OT76 and V = V/N .
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the term in ns containing 9^/9V nevertheless van-
ishes, and we again arrive at Eq. (2.9). This is natu-
ral, since n = <9F/9N)@> v = (8^/aN)@> p . " 9 ]

V. Now we shall show that neglecting the concen-
tration-dependence e = e(N) leads to inner contradic-
tions in the case of electrolyte solutions of intermedi-
ate concentrations for which K Z, 0.1. To do this, we
recall that when P,® = const, the chemical potentials
Ms of the solvent and jx of the solute satisfy the Gibbs-
Duhem relation n*(9^/9n*) + (1 - n*)(9/us/9n*) = 0,
where n* = N/(N + Ns) is the so-called mole fraction.
Upon transforming from n and ns to In f and g, we
obtain 1 - g + (1 - n*) In (1 - n*)(dg/dn) + (d In f/dn*)
= 0. When N « N s , so that n* =* n, this leads to the
well-known Bjerrum relation:c 21 ]

1 - * = -n-L[\.
dn l

-f In/]. (2.15)

To start with, we shall assume that e = e(Ns) is inde-
pendent of the concentration n = N/N s .* In this case,
substituting (2.10) and (2.11) into (2.15) gives

1 (jfc-
sVSt e,p

(2.16)

Such an equality is impossible, since the left-hand
side of (2.16) is a constant, while the right-hand side
substantially depends on v by way of K ~V7^. This
contradiction can be removed only by assuming that
e(v) ^ const. In fact, if e = e(T, v), then substitution
of (2.10) and (2.11) into Bjerrum's relation (2.15)
transforms the latter into a partial differential equa-
tion in the unknown function e. By solving it, we can
find €(T, V), apart from an arbitrary function e<0)

= e(0)(T0, p).
Equation (2.16) implies that ( T A ) ( 9 € / 9 T ) = Vj, for

extremely dilute solutions, for which K -— 0. Upon
substitution into (2.11), this gives 1 — g = i/$XK. Since
this expression, which coincides with the well-known
Debye-Huckel formula, agrees well with the results of
measurements/20 '21> 24] we can consider that in this
case Eq. (2.11) admits of experimental verification.
However, this becomes impossible at higher concen-
trations, since (2.11) contains the unknown derivatives
de(T, V)/BT. In order to remove this difficulty, we can
determine the osmotic coefficient g by integrating of
(2.15):

1—/?= — -
dlnf

dn dn, (2.17)

where In f is given by (2.10). The expression thus ob-
tained, which contains only e and 9e/9N, will evi-
dently be exact, since it is transformed into an iden-
tity upon substitution of (2.10) and (2.17) into (2.15).

•Since the constant e results from averaging over the Ns sol-
vent molecules, it cannot fail to depend on Ng (or more exactly, on
the density r = N /VJ.

2.2. Comparison with Experiment1-28 ]

I. Before going on to comparing directly the for-
mulas derived above with the experimental data, we
shall make some preliminary remarks.

First, the final formula (1.40) for the binary dis-
tribution formula satisfies the system of equations
(1.35), (1.36) better as X and K become smaller. If
we assume that the system (1.35), (1.36) ensures the
necessary accuracy, then the discrepancy between the
thermodynamic and experimental curves must sys-
tematically increase with increase of these parame-
ters . Here it should become very large for K £ 1 and
X ~ 3 (since K =* 1 and X « 3 determine the limits of
applicability of the derived solution). In essence, only
this sort of agreement can serve to prove the correct-
ness of the initial system (1.35), (1.36). However, if
the error of the theory proves to be independent of the
values of X and K, this might mean only that it is due
to some causes other than a systematic error in the
derived solution.

Second, in the Debye model of an electrolyte solu-
tion, all the forces of non-Coulombic origin are sub-
sumed under an intrinsic volume v0 = 7rrj)/6 occupied
by the particles of the solute. However, real systems
can manifest also other forces of a similar sort, * not
explicitly considered in this model. In part, the effect
of these additional (with respect to the chosen model)
forces can always be compensated by varying the value
r0 with respect to the crystallographic diameter r c of
the ions. Hence, in experimentally testing the theoret-
ical formulas, r0 must be treated as a certain adjust-
able parameter effectively characterizing all forces
of non-Coulombic origin acting in the system.

Third, any theory taking the solvent into account
only in terms of its dielectric constant involves the
arbitrary function e = e(v, ®). Generally speaking,
the form of the latter can be determined by independ-
ent measurements and appropriate calculations. How-
ever, such measurements are practically lacking at
present, rendering impossible an all-sided test of the
theory. The concentration dependence e = e(v) has
been determined only at 25 °C with more or less ac-
curacy for aqueous solutions of certain alkali halides.
Here it turned out thatC25]

e = eo(l-e,v), (2.18)

where v is measured in moles /liter, e0 = 78.5 is the
dielectric constant of pure water, and the mean value
of e t for solutions of LiCl, NaCl, KC1, RbCl, NaBr,
and Nal is 0.20 ± 0.03 (there are no data for the other
alkali halides). Using (2.18), we can calculate only the
activity coefficient (2.10)t

•E.g., repulsive forces due to overlap of the hydration shells of
the ions, or ion-dipole attractive forces (see below).

f Here, according to Onsager, ["] the product Bn in (2.10) has
been assumed equal to jf>; the more general case in which
Bn ^ jp has also been discussed in ["].
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Name
of

elec-
tro-
lyte

Lil
UBr
LiCl

Nal
NaBr
NaCl

! KI
i KBr

KCI

KbCl
1 RbBr
i Rbl

CsC.1
I CsISr
i Csl

v = 0,1 moles/liter

A

0.04
0.04
0.04

0.04
0.04
0,04

0.04
0.04
0.04

0.03
0.03
0.03

0.02
0.02
0.02

r0 (A)
Eq.
(2.23)

4.43
4.04
3.86

3.81
3.60
3.53

3.53
3.32
3.27

3.07
2.99
2.94

2.76
2.74
2.70

Eq.
(2.21)

4.54
4.16
3.94

3.89
3.65
3.57

3.56
3.32
3.27

3.07
2.98
2.93

2.73
2.70
2.64

1 A^ --rtf-"-» — rtf-"^.-. — <>,025A

v = 0.5 moles/liter

A

0.23
0.26
0,27

0.27
0.28
0.28

0.28
0̂ 30
0.30

0.31
0.32
0.32

0.34
0.34
0.34

A* = «theor «exp
Eq.

(2.23)
0.009
0.014
0.007

0.014
0.018
0.O24

0.028
0.027
0.028

0.025
0.020
0.020

0.026
0.027
0.027

Eq.
(2.21)

0.009
0.011
0,000

0.007
0.012
0.018

0.022
0.020
0.019

0.016
0.011
0.010

0.016
0.018
0.017

A]H=0.021; 0.014

v = 1.0 moles/liter

A

0.41
0.45
0.47

0.48
0.50
0.51

0.51
0.54
0.55

0.58
0.60
0.61

0.63
0.64
0.65

A« = ?theor«exp
Eq.

(2.23)

0.035
0.025
0.016

0.032
0.044
0.058

0.067
0.062
0.067

0.056
0.051
0.048

0.050
0.056
0.056

Eq.
(2.21)

0.037
0.019
0.004

0.020
0.027
0.039

0.048
0.042
0.044

0.033
0.028
0.025

0.027
0.032
0.031

Ag-=0.048; 0.030

l n / = - -

+ 50.46 -10-V'Y,

X? C|V
(l-e,v)2

a s s u m i n g r 0 = c o n s t , t h e d i f f e r e n c e A g = g t h e o r

- g e X p w a s f o u n d a t v = 0 . 5 a n d 1 . 0 m o l e s / l i t e r . T h e

( 2 1 9 ) v a l u e s o f g e x p w e r e t a k e n f r o m t h e t a b l e s i n [ 3 4 ] . T h e

where at 25 °C, x* = 7.134, K* = 0.3289, r0 is meas-
ured in A, and

y __ /V» __ AU .
* - " 1 - E l v r o ( l - e , v ) '

(2.20)

The remaining formulas of the previous section con-
tain the unknown derivatives 8e/9r or 3e/8©, pre-
venting any comparison of them with the experimental
data.

II. In order to show the nature of the influence of
the concentration-dependence of the dielectric con-
stant, we shall begin by discussing the very simple
case e = c(v) = const (i.e., et = 0). Here, using (2.14)
and (2.17), we get the ordinary Debye expression for
the osmotic coefficient g:

l - 2 In • * ) ] — | l ( 2 . 2 1 )

A s w a s s h o w n a b o v e , t h i s g i v e s q u a l i t a t i v e r e s u l t s

h a r d l y d i f f e r i n g f r o m E q . ( 1 . 4 3 ) , w h i c h w a s f o u n d d i -

r e c t l y f r o m t h e e x p r e s s i o n ( 1 . 4 0 ) f o r t h e b i n a r y d i s -

t r i b u t i o n f u n c t i o n b y u s i n g ( 1 . 1 9 ) .

E q u a t i o n ( 2 . 2 1 ) ( o r e q u i v a l e n t l y , E q . ( 1 . 4 3 ) ) w a s

c o m p a r e d w i t h e x p e r i m e n t a s f o l l o w s : t h e t h e o r e t i c a l

c u r v e g = g ( r 0 , v) w a s f i t t e d t o t h e e x p e r i m e n t a l c u r v e

a t v = 0 . 1 m o l e s / l i t e r b y p r o p e r c h o i c e o f r 0 . T h e n ,

r e s u l t s o f t h e c o r r e s p o n d i n g c a l c u l a t i o n s f o r a q u e o u s

s o l u t i o n s o f 1 5 a l k a l i h a l i d e s a r e g i v e n i n T a b l e n . * *

W e s e e f r o m t h e s e d a t a t h a t ( 2 . 2 1 ) g i v e s a n e r r o r t h a t

o n t h e a v e r a g e i s f o u r t e e n t i m e s t h e e x p e r i m e n t a l

e r r o r 6 = 0 . 0 0 1 , e v e n a t v = 0 . 5 m o l e s / l i t e r . A t

v = 1 . 0 m o l e s / l i t e r , t h e d i s c r e p a n c y i n c r e a s e s t o a

f a c t o r o f t h i r t y . F u r t h e r m o r e , t h e r e i s n o c o r r e l a t i o n

w h a t s o e v e r b e t w e e n A g a n d t h e p a r a m e t e r x

= e 2 / e ® r 0 . T h u s , t h e e x p e r i m e n t a l t e s t o f E q . ( 2 . 2 1 )

h a s s h o w n i t u n s u i t a b l e f o r d e s c r i b i n g e l e c t r o l y t e s o -

l u t i o n s o f i n t e r m e d i a t e c o n c e n t r a t i o n s . H o w e v e r , w e

s h o u l d h a v e e x p e c t e d t h i s ( w e r e c a l l t h a t i n d e r i v i n g

( 2 . 2 1 ) t h e a s s u m p t i o n w a s m a d e t h a t e ( y ) = c o n s t ,

w h i c h i s i n a d m i s s i b l e ) .

I I I . I t i s o f d e f i n i t e i n t e r e s t t o c o m p a r e E q . ( 2 . 2 1 )

w i t h o t h e r c u r r e n t l y k n o w n e x p r e s s i o n s f o r t h e o s m o t i c

c o e f f i c i e n t . A s w a s s h o w n a b o v e , t h e m o s t r i g o r o u s

o f t h e s e i s t h e M a y e r - H a g a f o r m u l a ( I I I ) . H o w e v e r ,

t h e s e r i e s i n ( I I I ) c o n v e r g e s r a p i d l y e n o u g h o n l y w h e n

v £ 0 . 0 5 m o l e s / l i t e r , i . e . , i n t h e c o n c e n t r a t i o n r a n g e

i n w h i c h t h e c o r r e c t i o n t o t h e l i m i t i n g D e b y e - H i i c k e l

l a w i s s o s m a l l t h a t i t c a n ' t b e d e t e r m i n e d e x p e r i m e n -

t a l l y t o a s u f f i c i e n t d e g r e e o f a c c u r a c y . H e n c e t h e r e

i s n o p o i n t i n c o m p a r i n g ( 2 . 2 1 ) w i t h t h e M a y e r - H a g a

f o r m u l a .

T h e n e x t i n o r d e r o f r e l i a b i l i t y i s t h e T y a b l i k o v -

*A11 t h e c a l c u l a t i o n s w e r e p e r f o r m e d b y Y u . M. K e s s l e r , for

w h i c h t h e a u t h o r i s h i g h l y g r a t e f u l .
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Tolmachev formula (1.42) for the distribution function.
At low concentrations it gives results agreeing with
the Mayer-Haga formula. Of course, (1.42) is approx-
imate at higher concentrations, since it does not in-
clude all terms of the same order of smallness. How-
ever, as was shown in c 3 ( u , it can be derived quite
rigorously by selective summation of a definite class
of diagrams. If we assume that the rest of the dia-
grams contribute only little to the final expression,
then we can consider the Tyablikov-Tolmachev to be a
sort of extrapolation valid for any concentration. We
cannot determine directly the size of the error that we
make in such an extrapolation, since this would r e -
quire that we find an exact expression for the binary
distribution function. However, we can estimate it in-
directly to the same degree of accuracy to which, e.g.,
the condition of neutrality (1.5) is obeyed. By substi-
tuting (1.42) into it and transforming to dimension-
less variables, we obtain

(2.22)

Table II gives values of A calculated by this formula
for K = 0.3, 0.7, and 1.0 (this corresponds approxi-
mately to i-= 0.1, 0.5, and 1.0 moles/liter).* Since
when v = 0.1 moles /liter, A is very small, t we can
assume that at this concentration the Tyablikov-
Tolmachev formula is accurate enough: however, on
going to more concentrated solutions, the value of A
increases sharply, and hence the accuracy of (2.22)
must decline.

Table II gives the values of r0 and A g calculated by
the formula t

(2.23)

obtained upon substituting (1.42) into the expression
(1.19) for the pressure. The value of rj was deter-
mined by fitting the experimental and theoretical
curves at v = 0.1 moles/liter. As we see from the
data given in the table, the values of r0 calculated by
Eqs. (2.21) and (2.23) practically coincide (the arith-
metic-mean value of the difference Ar0 is only
0.025 A). However, Eq. (2.21) proves to be more ac-
curate at high concentrations than the Tyablikov-
Tolmachev formula (2.23), since at v = 0.5 and
1.0 moles/liter the value of Ag calculated by Eq.
(2.23) is about 1.5 times as great as the value found
by Eq. (2.21).

IV. We shall now proceed to test Eq. (2.21), which
was derived under the assumption that e = €(u) = var.
Table III gives the values of r0 calculated for aqueous
solutions of 15 alkali halides by fitting the theoretical

and experimental values of logf at v = 0.1 moles/liter.*
The effective diameters reff of the ions are given in
the same table for comparison, as found from electri-
cal-conductivity data.C32] If we consider that in the
former case the ionic diameters are found by studying
the equilibrium properties of the solutions, but in the
latter case, by their kinetic properties, we must ac-
knowledge the agreement of the two quantities to be
strikingly good.

A general graph of the relation of log f to the con-
centration v of the electrolyte is given in Fig. 2. We
see that it shows good qualitative agreement between

GsCl,

FIG. 2. Concentration-dependence of the activity coefficients
of the alkali chlorides. experiment, theory.

Table III.

No.

1
2
3

4
5
6

CO 
00 

-J

10
11
12

13
14
15

Name
of

salt

Lil
LiBr
LiCl

Nal
NaBr
NaCl

KI
KBr
KC1

RbCl
RbBr
Rbl

CsCl
CsBr
Csl

(A)

4.48
4.00
3,89

3,69
3.45
3.30

3.23
3.00
2.90

2.59
2.54
2.45

2.04
2.04
2.04

reff
(A)

3,27±0,13

3.81±0.26
3.45

3.28i;0.22

3.67±0,19
3.30±0.08
3.06jt0.16

2.90

2.61

JCo
7.134

TO

1.59
1.78
1.84

1.94
2.07
2,16

2,21
2.37
2.46

2.76
2.81
2.91

3.49
3.49
3.49

<A"

2.88
2.64
2:49

3.18
2,94
2.79

3.53
3.29
3,14

3.30
3.45
3.69

3.46
3.61
3.85

Aro
(A)

1.60
1.36
1.40

0.51
0:51
0.51

—0,30
—0,29
—0.24

-0.71
—0.94
—1.24

—1.42
—1.57
—1.81

•These data are taken from ["].
t We recall that A must be identically zero in an exact theory.
t The values of Ag are taken from ["]. *The values of f are taken from ["].
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am

aim

0J332

ffM

0.016

0.00S

aooz

|A lo g f

A2

/

/ *IO

/ '

/
f

'15

14.1
/•I3

1.7 2.0 2.3 2.6 2.3 32 3S 3.8 4.1 4A
X=Za/(/-e,v)

FIG. 3. Relation of the absolute error |A log f| = |log ftheor -
log fe | to the parameter y. . — v = 0.5 moles/liter,
A — v = 1.0 mole/liter. The numbers attached to the points corres-
pond to Table III.

t h e o r e t i c a l a n d e x p e r i m e n t a l c u r v e s ; h o w e v e r , t h e

q u a n t i t a t i v e a g r e e m e n t , w h i c h i s v e r y good f o r L i C l ,

g r a d u a l l y d e t e r i o r a t e s in t h e s e r i e s L i > Na > K

> R b > C s . H e r e w e o b s e r v e a d i s t i n c t c o r r e l a t i o n

b e t w e e n t h e e r r o r of t h e t h e o r y | A l o g f | = | l o g f t h e o r

— l o g f e X p I a n d t h e v a l u e s of t h e p a r a m e t e r s K a n d x

( F i g . 3). T h e l a t t e r i s a c o n v i n c i n g p r o o f of t h e i d e a

t h a t t h e d i s a g r e e m e n t b e t w e e n t h e o r y a n d e x p e r i m e n t

in t h i s c a s e i s d u e to a s y s t e m a t i c i n a c c u r a c y of t h e

o b t a i n e d s o l u t i o n . H o w e v e r , t h i s i n a c c u r a c y i s no t s o

g r e a t , s i n c e t h e r e l a t i v e e r r o r A log f of t h e t h e o r y

n o w h e r e e x c e e d s 13%, e v e n a t v = 1 m o l e / l i t e r . *

V. A s w a s n o t e d a b o v e , t h e p a r a m e t e r r 0 e f f e c -

t i v e l y c h a r a c t e r i z e s t h e v a l u e of a l l t h e f o r c e s a c t i n g

in t h e r e a l s o l u t i o n . At t h e s a m e t i m e , t h e m e a n c r y s -

t a l l o g r a p h i c d i a m e t e r r c = i/z(r('(r
) + r ' ^ ' ) , w h e r e t he

r ^ ' a r e t h e c r y s t a l l o g r a p h i c d i a m e t e r s of t h e a n i o n

a n d c a t i o n , r e s p e c t i v e l y , d e f i n e s t h e v a l u e of on ly

t h o s e f o r c e s i n v o l v i n g t h e e x c l u d e d v o l u m e o c c u p i e d

b y t h e i o n s t h e m s e l v e s . H e n c e i t i s n a t u r a l t o a s s u m e

t h a t t h e d i f f e r e n c e Ar 0 = r 0 — r c i s p r o p o r t i o n a l to t h e

a d d i t i o n a l f o r c e s a c t i n g in t h e r e a l s o l u t i o n , a n d no t

t a k e n in to a c c o u n t e x p l i c i t l y in t h e c h a r g e d - s p h e r e

m o d e l . And if t h i s i s s o , t h e n s o m e c o r r e l a t i v e d e -

p e n d e n c e s h o u l d e x i s t b e t w e e n Arg a n d t h e p a r a m e -

t e r s d e t e r m i n i n g t h e s t r e n g t h of t h e a d d i t i o n a l f o r c e s .

One of t h e s o u r c e s of t h e a d d i t i o n a l f o r c e s in a r e a l

s o l u t i o n c o u l d b e t h e h y d r a t i o n of t h e ions.C 3 3> 3 4 ] T w o

p a r t i c l e s of t h e s o l u t e c a n a p p r o a c h c l o s e l y on ly a f t e r

FIG. 4. Relation of Ar0 - r0 - rc to the hydration energy of the
cations <hyd> ^ 2

their hydration shells have been disrupted, which takes
a certain expenditure of energy. Then evidently, hy-
dration must give rise to additional repulsive forces
that can be compensated only by an increase in r0 with
respect to r c . Hence, correlation between the value of
Ar0 and the hydration energy u y of ions must be
observed most clearly for those salts for which Ar0

a 0.
Now we recall that hydration is due to the influence

of the electric field of the ions on the solvent mole-
cules, which have a permanent dipole moment. Other
conditions being equal, the energy of this interaction
is proportional to the electric field intensity at the
center of the water molecules. The latter in turn is
inversely proportional to the square of the distance
ri*>m = t V^r'cf' + rH2o)l between the centers of the
ion and of the solvent molecule (r^j Q = 2.90 A is the
diameter of a water molecule). Hence we see that the
anions, which have a large diameter r '~ \ are almost
unhydrated, since their hydration energy U ^
~ ^["-'m)"2 i s very small.* However, it is consider-
ably larger for the cations, and furthermore, U ( n y d r )

for them varies over the rather large range (0.10
s (r '^j j j)"2 s 0.20). Hence Ar0 should be distinctly
correlated only with the hydration energy of the cat-
ions, as is well confirmed by the factual data. Indeed,
Fig. 4 shows that the value of Ar0 increases practi-
cally linearly with increasing U ^ for salts of
Li+, Na+, and K+. On the other hand, the salts of Rb+

and Cs+, for which Ar0 is negative and large, fall off
the curve.

We shall now examine what happens to the param-
eter r0 in the series MCI, MBr, MI, where M is one

*The relative error is 13% only for CsCl. It drops to .
RbCl, KC1, and NaCl, and is still less for LiCl.

• 10% for *In the series Cl"
0.078 to 0.098.

Br", I", the value of (r'"^)"2 ranges only from
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Table IV.

M

ylMMI -(ro)MCiJ

yK'ojMBr — (ro)MCll

Li

0,59

0.11

Na

0.39

0.15

K

0.33

0.10

Rb

—0,14

—0.04

Cs

0,00

0.00

of the five metal cations (i.e., Li, Na, K, Rb, or Cs).
Since the cations are hydrated but the anions practi-
cally not, then when the Cl" anion in the salt MCI is
replaced by Br~ or I", the increase in r0 must be close
to the increase in the radius (rather than the diameter)
of the anion V^rjT' • I n other words, the difference
V2 [ro)iv/iT ~ (ro)Mril must be approximately equal to

V2 [rc
J ' - r^C1 }] = 0.39 A . When the Cl" ion is r e -

placed by Br", it will be % [ r c
B r > - r c

C 1 >] = 0.15 A.
We see from the data given in Table IV that this r e -
quirement is satisfied quite well for the Li, Na, and K
cations, but not for Rb and Cs. All of this leads to the
conclusion that the additional forces in Rb and Cs
salts do not arise from the hydration effect, but from
some other cause.

Since the value of Ar0 is negative for Rb and Cs
salts, we might naturally assume that for them the ad-
ditional forces are attractive. For example, the latter
might be due to ion-dipole interaction of two solute
particles. When neither of the particles possesses a
a permanent dipole moment, the energy of such an in-
teraction is QjEl, where at is the polarizability of the
first ion, while E2 is the electric field intensity caused
by the second ion at the center of the first ion. When
the Cl ion in a salt MCI is replaced by I" or Br" ,
the value of Eĵ j remains practically constant (since
EM ~ 1 / r c ' w n i l e r c varies only from 3.30 to 3.85 A
for the Cs and Rb salts; see Table III). However, the
polarizability of the Cl", Br", and I" ions, being pro-
portional to their volumes (i.e., to (r^,"')3, increases
by a factor of more than two. Hence, if the difference
between rg and r c for the Rb and Cs salts is actually
due to ion-dipole interaction, the value of | Aro | must
increase approximately according to a linear law with
increasing (r^ )3. On the other hand, Ar0 should not

depend on (r^"*)3 at all for the salts of Li, Na, and K,
which show practically no polarization interaction.
This is precisely what is actually observed (Fig. 5).

CONCLUSION

We shall briefly formulate the results obtained
above.

(A) Depending on their structures, all electrolyte
solutions can be divided into three groups: dilute so-
lutions, solutions of intermediate concentrations, and

UCl

NaCI,

6 7

•UBr

NaBr

8 9

Lil

Nal

(H't
io '

KCl KBr KI

IJD
120
0.90
0.60
0.30
000

-030
-060
-090
-1.ZO
•IJO

-1,80

F I G . 5 . R e l a t i o n of Ar 0 • r0 - r0 t o t h e v o l u m e s o f t h e a n i o n s

concentrated solutions. The distinguishing feature of
the first group is the high degree of "collectivity,"
such that the Debye sphere contains a large number of
ions at one time. For the second group, the charge of
the "cent ra l" ion is screened by only one counterion,
leading to formation of neutral quasimolecules in the
system. Finally, concentrated electrolyte solutions
are characterized by a structure of the ionic subsys-
tem greatly reminiscent of the structure of ordinary
liquids in its close-range order and coordination
spheres.

(B) Since the absolute values of the density of the
ionic subsystem in dilute solutions and solutions of
intermediate concentrations are small enough, one
can describe the solvent in them in terms of the di-
electric constant e = e(®, v) alone. Here one can neg-
lect in dilute solutions the dependence of e on the
concentration v (but not on the temperature ® !). How-
ever, in solutions of intermediate concentrations, one
must always take into account the fact that e = £(y).
One can't introduce the dielectric constant at all in
concentrated solutions, since the discrete structure of
the solvent plays the important role in them.

(C) One can use methods of expansion in series in
a small parameter in constructing a theory of dilute
solutions, but these methods are suitable for describ-
ing solutions of intermediate concentrations or con-
centrated systems, since then the corresponding se -
ries diverge. Hence, the theory of the latter can be
based only on methods analogous to those used in the
theory of ordinary liquids. However, since the density
of the ionic subsystem is small in solutions of inter-
mediate concentrations, one can use the linear equa-
tions of the theory of liquids to describe them. The
non-linear effects must be taken into account for con-
centrated solutions.

(D) One can find a solution of the linear equations
of liquid theory in analytic form for solutions of inter-



S T A T I S T I C A L T H E O R Y OF E L E C T R O L Y T E SOLUTIONS 187

mediate concentrations. Unfortunately, it is applicable
only to aqueous solutions of univalent electrolytes for
v £ 1 mole/liter. This solution unambiguously deter-
mines the free energy of the ionic subsystem of the
solution, and here it turns out that the derived expres-
sion for the internal energy exactly coincides with that
previously found by Debye and Hiickel.

(E) Heretofore, in constructing the thermodynam-
ics of electrolyte solutions of intermediate concentra-
tions, one has had to take account systematically of
the fact that e = e(v) for them. Introduction of the
concentration-dependence into the expression for the
characteristic functions of the system permits one to
eliminate not only the inner contradictions existing in
the thermodynamics of electrolyte solutions, but also
to gain satisfactory agreement of theory with experi-
ment.

(F) An analysis of the values of the single adjust-
able parameter of the theory (the ionic diameter r0)
permits one to establish the fact that in some solu-
tions repulsive forces act between the ions, due to
overlap of their hydration shells (hydration-type sys-
tems), while attractive forces act in others, due to
the mutual polarizability of the ions (polarization-type
systems).*
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