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1. INTRODUCTION

DURING the past fifteen years our conceptions of
the shapes of atomic nuclei have changed greatly.
Prior to 1950 it was generally believed that all nuclei
possess a spherically symmetric equilibrium shape
and that excited nuclear states can be represented as
vibrations of the nuclear surface about that shape and
changes in the states of motion of individual nucleons
in a self-consistent spherically symmetric field.
These ideas were well supported by the very success-
ful shell model of the nucleus that was proposed by
Goeppert-Mayer and Jensen in 1949. The shell model
provided a qualitative explanation of the magic num-
bers, spins, and magnetic moments of nuclei. It was
found, however, that the observed quadrupole moments
of rare earth elements and several others are almost
30 times larger than those predicted by means of the
shell model. Rainwater gave the first qualitative
explanation of large deviations from nuclear spheri-
city by considering interactions between outer nu-
cleons and the nuclear core. On the basis of these
ideas A. Bohr proposed a collective model in 1952,[2]
and nuclear theory entered a new stage. Bohr’s
theory explained the principal regularities observed
for the first rotational states of nonspherical even-
even nuclei. Following the work of Bohr and of Bohr
and Mottelson ) the investigation of nuclear equili-
brium shapes became one of the most active branches
of nuclear physics.

The shape of a nucleus, or more exactly the sym-
metry of the self-consistent field acting on the nu-
cleons within the nucleus, is very important for the
classification of single-nucleon and collective excited
nuclear states. In the case of spherical symmetry,
which undoubtedly exists in the ground states of
doubly magic nuclei, a single-nucleon state is char-
acterized by its energy, parity, and the quantum
numbers j and mj specifying, respectively, the total
nucleonic angular momentum and its projection on an
arbitrary quantization axis. In axially symmetric
nuclei the projection £ of nucleon angular momentum
on the axial symmetry axis is conserved in addition
to energy and parity. In nonaxial nuclei neither j nor
@ is an integral of the motion.

In spherically symmetric nuclei excited rotational
states cannot be observed without simultaneous
nuclear deformation. In nonspherical nuclei rotational
states play an important role in nuclear excitations.
The classification of excited nuclear states thus de-

pends essentially on the symmetry of the intranuclear
self-consistent field.

The symmetry of the self-consistent field depends
on the spatial (angular) distribution of intranuclear
nucleons. It has been shown experimentally that the
nucleon density (with r < 1.2AY3x 10783 cm) is
nearly constant. At the nuclear boundary the nucleon
density falls off rapidly to zero within about
2% 10" ¢cm. Therefore the concepts of the nuclear
surface and shape are good approximations. Because
of small nuclear compressibility, in the case of exci-
tations below 10 MeV the alteration of the nucleon
distribution is basically a change of nuclear shape
without affecting the nuclear density. It must, of
course, be remembered that even in the ground state
there exist zero-point oscillations of the nuclear sur-
face about its equilibrium shape. The character of
these oscillations and their amplitudes depend on the
degree of deformability and the symmetry of the
equilibrium shape, which depend, in turn, on the num-
bers of protons and neutrons and their states of mo-
tion.

It is evident that to account for many experimental
results it is sufficient to take into account the devia-
tions from spherical shape due to quadrupole defor-
mations, i.e., the nuclear shape can be approximated
sufficiently by a triaxial ellipsoid. Then in the co-
ordinate system fixed on the nucleus the shape of a
nucleus with a given mean radius will depend on two
parameters, for which it is convenient to use
B(=0) and (0 =y =< 71/3), which were introduced
by Bohr.?

In the adiabatic approximation the total energy of
single-nucleon motions depends on the nuclear shape,
i.e., on the parameters B and y. This energy deter-
mines the potential energy V (S, v) of the surface
vibrations in any given state of single-nucleon mo-
tions.

The values B and Yy, corresponding to the mini-
mum of V (B, ¥) characterize the equilibrium shape
in any given state of single-nucleon motions. In
nuclei with a spherical equilibrium shape £, = 0, and
for small values of § the potential energy V (8, v)
= 1/2 CB? is independent of Y. A nucleus with gy = 0 is
not spherically symmetric and its potential energy
depends on both 8 and 7y. If then ¥, = 0 or 7/3 the
nucleus is, respectively, a prolate or oblate ellipsoid
of rotation (an axial nucleus).

For other values of y, nuclei do not possess axial
symmetry. Variations of 8 about an equilibrium
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value B for a fixed value of y, are called 8 vibra-
tions or longitudinal vibrations. Variations of y
about v, for a fixed value of 5, = 0 are called y
vibrations or transverse vibrations.

In an axially symmetric nucleus (yy = 0) trans-
verse vibrations can exist in two mutually perpen-
dicular planes (double degeneracy). Two mutually
perpendicular transverse vibrations with 7/2 phase
difference can be regarded as a pure rotation. Fig-
ure 1 shows the scheme of longitudinal atomic vibra-
tions along the z axis and transverse vibrations
along the x and y axes in a linear triatomic mole-
cule, which serves as the simplest model of an axial
nucleus.
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FIG. 1. Hlustration of longitudinal and transverse vibra-
tions of an axially symmetric nucleus model by a linear tri-
atomic molecule. a) longitudinal vibrations; b) transverse
vibrations.

2. THEORETICAL CALCULATIONS OF EQUILI-
BRIUM NUCLEAR SHAPE

Several different nuclear models have been used
in theoretical calculations of V (8, vy ).[2_“’]

In 27478 the nucleus is viewed as a system that con-
sists of a core containing all closed nucleon shells,
plus any additional outer nucleons moving in the field
of the core. The equilibrium shape of the nucleus was
determined by minimizing, over the states of motion
of the outer nucleons, the energy of interaction be-
tween these nucleons and the nonspherical part of the
core field; the spherical part determines the states
of motion of the outer nucleons.

In 274 an axial shape was postulated and the value
of B, was sought with independent motion of the outer
nucleons. In [ Filippov investigated V (8, v) as a
function of both variables without account of the inter-
actions between outer nucleons. The correlation of
outer nucleon motions was taken into account only in
accordance with the Pauli principle. It was shown
that, depending on the degree to which outer shells
are filled with protons and neutrons, nuclear defor-
mation is possible in two mutually perpendicular
directions. In these cases the nucleus will not

possess axial symmetry. Filippov showed that such
cases should be observed near magic numbers of
either neutrons or protons.

The theoretical possibility of a nonaxial shape for
some nuclei was mentioned by Geilikman (5] and by
Zaikin,m who investigated the dependence of nucleon
energy on the parameters defining the symmetry of
the self-consistent nuclear field. In these studies
interparticle interactions and pairing were not con-
sidered.

Very interesting calculations of the potential
energy V (S, v) have recently been performed in
Canada (%10 taking into account the residual nucleon
pairing interaction. The minimum total energy was
calculated as a function of 8 and y (for constant
nuclear volume), for a given number of neutrons and
protons moving in an anharmonic three-dimensional
oscillator potential, with account of spin-orbit inter-
action (a correction term proportional to 1% that
was introduced by NilssonH!] ) and nucleon pairing.
Characterizing these interactions by means of the
same set of parameters as in [12’13], Gunye, Das
Gupta, and Preston 10 showed that rare earth nuclei
should possess axial equilibrium symmetry while
nuclei with mass numbers near 188 should be non-
axial for the same set of parameters. The potential
V (By, v) of the latter type is relatively weakly de-
pendent on y; this indicates the possibility of zero-
point transverse surface y vibrations with large am-
plitudes.

Figure 2 illustrates the calculation ¥ of
V(B, v) for Hf® and Os!®® as functions of B
plotted radially and v in the main interval 0 <y
=< 7/3. Equipotential energies (in MeV) are repre-
sented by solid lines (for the interaction parameters
given in %)) and by dashed lines (for the interaction
parameters given in 13) }. Energies are measured
from the minimum, corresponding to v = vy, and

B =By

3. DETERMINATION OF NUCLEAR SHAPE AND
DEFORMABILITY FROM EXPERIMENTAL DATA

The theoretical calculations of V (3, v) can yield
only qualitative results. Because of the great mathe-
matical complexity of the problem and our incom-
plete knowledge of intraparticle nuclear forces,
exact quantitative calculations of V(f, ¥) are not
feasible at the present time, and would evidently be
inexpedient, like, for example, exact calculations of
the refractive indices of complex materials such as
glass.

Methods must be developed for determining ex-
perimentally the shapes of nuclei and their deforma-
bility in connection with transitions to different ex-
cited states. Because the properties of excited
states—the sequence of energy levels, spins, proba-
bilities of transitions between excited states, mean
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Fig. 2. Potential energy V(8, y) as a function of 8 and y,
calculated in [*°].

electric quadrupole moments etc.—depend on nuclear
shape and deformability, by measuring these quanti-
ties we can determine nuclear shapes and their
changes on the basis of the existing theory.

The experimental results are interpreted most
simply for even-even nuclei, although even for some
of these nuclei we do not possess unique interpreta-
tions at the present time. The ground state of each of
these nuclei has spin zero.

According to the theory of Bohr and Mottelson'?:%
the simplest spectrum of collective excitations
should be found in spherical nuclei. These collective
excitations should consist of equally spaced levels
corresponding to phonon excitations with the energy
E(2) and the angular momentum 2. Neglecting the
degeneracy corresponding to different projections of
the angular momentum, one-phonon excitations with
the energy E(2) and I =2 will correspond to a non-
degenerate spin state. Two-phonon excitations with
the energy 2E(2) are triply degenerate in the spin
(I=0, 2, 4), three-phonon excitations are quintuply
degenerate (1=0, 2, 3, 4, 6) etc.

Doubly magic and neighboring nuclei are spherical
(By = 0). However, the spectra of excited states that
are predicted by the theory are not observed in these
nuclei. For example, in several nuclei having magic
numbers of neutrons or protons (016, Ge”, Zrm) the
first excited state has spin zero instead of spin two.
In Ge'Y, ce!®? and Ca® the spin zero state lies very
close to the spin-2 first excited state. According to
the theory of the surface vibrations of spherical
nuclei the energy of this level should be twice as
high. Degenerate excited states with the energy
2E (2) and spins 0, 2, and 4 are also not observed
in other nuclei (Cd'* and Pd1%) that are usually
assigned to the class of spherical nuclei. The high
probability of Coulomb-excited first levels of these
nuclei indicates the collective nature of these excited
states.

The reduced probabilities of electric quadrupole
transitions from the ground state to the spin-2 first
level are given by the single formula

B(E2; 0—> 2) =a®($?) 1)

for both spherical and nonspherical even-even nuclei.

Here a = BZeRg/41r, Ry is the mean nuclear radius,
and (B?) = (0|B%|0) is the mean square of S in the
ground state.
For a spherical nucleus (B; = 0) the ground-state

wave function is given by

| 1 g2

O =Nexp [~ ), (@)
where By = K (BC )‘1/2 is the amplitude of zero-point
B8 surface vibrations, B is the mass parameter, and
C is the elastic coefficient of these vibrations. From
(2) we obtain

B2 =~ B (3)

The first excited level of spherical nuclei that is
quintuply degenerate in the spin projections is a vi-
brational level with spin 2 and the energy

EQ—ny Sl b (4)

TR T T
where B’ = 2B/5.
In the ground state of a nonspherical nucleus the
surface performs zero-point longitudinal and trans-

verse vibrations represented by the wave functions L]
0y—=Nexpd — L/ B—Bo™F_ y—vony?
O =Nexp =5 ", )~ e ) (5)

where p and T characterize the zero-point surface
vibrations and are defined by

w2000 @—By)t /B T2=5 O (v—Yo*lp.  (6)

The parameter ¢ was introduced in [153, where it was
called the ‘‘nonadiabaticity parameter.’”” For u =0
the rotational motion of the nucleus and the longitud-
inal vibrations are completely separated.

In accordance with (5), in the ground state of a
nonspherical nucleus we have

B =1+ 500 ), M

i.e., for small values of u we have (%) ~ B%. The
first excited level of a nonspherical nucleus is
represented by a rotation and has spin 2. Without
account of nonadiabatic corrections the energy of
this level is
h2
E(2)= BpE (8)

By measuring the reduced probabilities of E2
transitions in even-even nuclei we can with the aid
of (1) calculate the values of vV (B2) for each of
these nuclei. These values are represented b{ the
filled circles in Fig. 3 on the basis of data in 1617,
The experimental energies of the first excited level
enable us to determine the mass parameter B for
each nucleus using (4) or (8). However, neither the
data in Fig. 3 nor the values of B enable us to de-
termine whether the ground-state nucleus is spherical.

We see from Fig. 3, for example, that the values
of v{B2) for Pd!"'" and U%*® are almost equal (0.26
and 0.28, respectively). It is not clear whether these
values resulted from static nonsphericity in the
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FIG. 3. Values of <B’} for even-even nuclei, calculated
from data on the Coulomb excitation of the 2 + first excited
level.

ground state or only from zero-point vibrations.
From the analysis of data on higher excited levels
the 2* first level of U?® is usually assigned to the
rotational spectrum, while the 2% level of Pdltd ig
assigned to the vibrational spectrum of a spherical
surface. In this case we can assume that the large
value of (B?) indicates easy deformability of the
Pd! surface.

In order to account for discrepancies between the
observed spectrum of excited states in nearly
spherical nuclei and the vibrational theory of spher-
ical nuclei, different complications of the model have
been proposed. For example, Scharff-Goldhaber and
Weneser (% considered a weak interaction of four
f; /9 nucleons and investigated the coupling between
two interacting f;/; nucleons and the surface vibra-
tions. Tamura and Komai 20 investigated the an-
harmonicity with respect to § and ¥y vibrations.
Ovcharenko 2 in Kiev recently calculated the effects
of small transverse and longitudinal deviations from
a spherical surface. All these attempts and several
others 22725 have thus far failed to yield satisfactory
results. The cause of this failure appears to lie in
the fact that in each of these attempts only a single
factor was being investigated—interaction with outer
nucleons, anharmonicity of surface vibrations, small
sphericity and nuclear ‘‘softness’’ etc. In actuality,
all these factors appear to have comparable roles in
nearly spherical nuclei and should be considered
simultaneously, although this would lead to very
great mathematical difficulties.

Several investigators [14:15:26-28] have developed a
theory of collective quadrupole excitations in non-
spherical even-even nuclei with account of the
coupling between the rotational motions and the
longitudinal and transverse surface vibrations. This
work has led to the following main results. If it is

assumed that the equilibrium value of vy, is zero,
then the energy of collective excitations, given for
each nucleus in units of the first excited level energy,
can be determined from the values of only the two
independent parameters p and I':

)
E (I, K, ng, ny) _ ng LAV 37 S5
T ER® T T e
A2
—gtew I ..0), 9)

where ng and are the respective quantum num-
bers of the longitudinal and transverse vibrations and
have the values 0, 1, 2,...; I is the nuclear spin;
K(=~ 0, 2, 4,...) is an approximate quantum number
for the spin projection on the nuclear symmetry axis;
€(u, I',...) is an additional energy characterizing
the coupling among different types of collective exci-
tations. In the limit of small € (u, I', ...) the col-
lective excitations can be separated into rotational
and vibrational excitations, although in the general
case this separation is very arbitrary.

a) Ground-state Rotational Band

The excited states represented by (9) for ng = n,
=0,K=0,1=0, 2, 4,....form the ground-state
rotational band. In very hard nuclei (u = 0) the ex-
citation energies of the ground-state band satisfy the
simple interval rule

1:10/3:7:12:55/3:26:35 ... (10)

This rule follows from the rotational energy repre-
sentation

E()=AI(I+1), [1=0,2 ... (11)

The excited states given by (11) represent nuclear
rotation around an axis perpendicular to the nuclear
symmetry axis. All rotating real nuclei undergo de-
formation, which increases with the nonadiabaticity
parameter. However, the simple formula (11) does
not determine excited state energies. For small
values of I and uy < 1, perturbation theory can be
used to represent nuclear excitation energy in the
form of the series

ED=AI(J--1)-BI*(I 12 -CI3(T 413+ ..., (12)

where B, C,.... characterize the deformability of
the nuclear surface. However, for ‘‘soft’’ nuclei and
when investigating high-spin excited states (see be-
low) we cannot use (12), because considerable de-
formation can result from centrifugal forces.

A nucleus rotating with the angular momentum I
becomes stretched. The ground-state equilibrium
value B, then becomes B1 = pBy, where p is the root
of the equation

pr—pt=gwl (I41), 1=0,2, ...

Figure 4 shows the ratio between the equilibrium
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Table I. Ratio between excitation energies and the 2% level of an

even-even nucleus. Ry (I) - ground-state rotational band, Ry;(1)

- rotational band of longitudinal vibrations, Ry, (I) - rotational
band of transverse vibrations.

D T
2 g|z 2|2 8|85 |88 g|¢=
s & £0& & & & & &) &£ & <
0.10] 8{3.327\6.978111.9() 18.09 125.51 '94.77 195.80 198.20 (25.02 lo6.01 |27.34 |28.98
0.20] 8‘3.292)‘6.823}11.47 17.12 123.68 [22.77 |23.88 [26.43 123.25 |24.11 125.26 |26.66
10.40] 812.9625.513] 8.448,11.65 |15.06 | 5.394| 6.676| 9.069114.85 |15.28 115.85 16.54
i0.60 812,597 4.449 6.444] 8.536(10.69 | 3.160{ 4.40716.216 [10.56 |10.83 |11.18 11.61
0.80 812.4173.99% 5.651| 7.350. 9.100; 2.620 3.866| 5.350| 8.993| 9.210] 9.494, 9.838!
1.00 8 2.3233.770° 5.272| 6.805| 8.360 2.401| 3.659| 4.966| 8.265 8.475 8.710 9.016
0.1015 3.2716.678'11.07 [16.36 {22.52 185.99 |87.02 180.36 | 6.844] 7.841) 9.250,10.82
0.20 15 13.241i6.533{10.66 [15.49 [20.95 |20.67 |21.78 |24.26 | 6.691; 7.638| 8.966.10. 44
0.4015 2,898 5.263| 7.867/10.61 |13.48 | 4.925 6.206) 8.511| 5.369; 5.990| 6.832 7.732
0.60 15 '2.543 4,264 6.045| 7.854 9.688] 2.914] 4.154| 5.898 4.338| 4.770| 5.347] 5.954
0.80 15 2.373'3.844] 5.331| 6.817 8.308| 2.432| 3.664| 5,103 3.907 4.270| 4.751| 5.256
1.00115 2.28513.639| 4.990; 6.331| 7,667, 2.238| 3,476 4.752/ 3.696| 4,027 4.465| 4.922
0.1025]2.834'5.335| 8.533/12.43 117.02 169.63 |70.66 |72.55 | 2.406| 3.405, 5.505| 6.397
0.2025‘2.809\5.2261 8.243,11.82 115.91 |16.75 [17.86 [19.86 | 2.390| 3.365| 5.388| 6.237
0.40,25 [2.526 4.281) 6,225 8.319110.53 | 4.050) 5.324| 7.167 2.194 2.952 4.391| 4.956
0.60125 12.248'3.530! 4.914 6.329| 7.786 2.449! 3.675 5.081 1.989) 2.573] 3.630 4.031
0.80252.120 3.248| 4.403 5.584| 6.788) 2.073| 3.276| 4.453| 1.892| 2.405/ 3.316| 3.658
1.00)252.0553.100] 4.160] 5.235) 6.324] 1.923) 3.122 4.177) 1.841] 2.320| 3.163| 3.477
| | e

deformation B for rotation with angular momentum

I and the ground-state equilibrium value B, as a /83” '

function of I and u. We see that for I = 4 and %‘90

p =1.05, By is replaced by B4 = 28,. The simple I

character of the rotation (around an axis that is per-

pendicular to the symmetry axis for y, = 0 and 201

K = 0) is possible only for axially symmetric nuclei

with small values of I', i.e., for nuclei that are suf-

ficiently hard with respect to transverse surface vi- //

brations. Nonaxial nuclei and axial nuclei with mﬂ

T" > 15° perform complex rotational motions. Their
rotational states are described by linear superposi-
tions of states with K =0, 2,.... States with K=20
will be dominant in the linear superposition for the
ground-state rotational band. The contributions from
states with K = 2, 4, ... will increase as I" or 7y,
approaches 30°.

Rotational state energies with account of longitud-
inal nuclear deformation for all possible fixed values
Yo of ¥ were investigated theoretically by Chaban and
the present author in U] 1t was shown in later
work 1426271 that the transverse surface vibrations
of axial nuclei can be taken into account in the calcu-
lations of (%) formally by identifying v with the value
of I' characterizing the amplitude of zero-point vi-
brations. This formal substitution is possible when
we study only the first excited states pertaining to
the transverse surface vibrations.* Just as in the
case of a spherical nucleus the value of (82) is
equivalent to ﬁ% for some nonspherical nucleus, so
in the case of an axially symmetric nucleus I'?

*The equivalence is destroyed for higher excited states and
for the probabilities of some electromagnetic transitions.[*"]
However, the pertinent experimental data are too sparse to permit
a confident choice of a model.

7 4 6 8 W © #
VA

FIG. 4. Equilibrium nuclear deformation vs. rotational-state
spin I and parameter y.

Y, (¥?) is equivalent to v¢ for some nonaxial nu-
cleus.

Table I gives calculated 28] yalues of Ryp (I) based
on the formulas in {5, These are the ratios between
the energies of excited states in the ground-state ro-
tational band and the 27 first level as a function of
p and T'. For soft nuclei considerable deviations
should be observed from the interval rule (10) for a
perfectly hard axially symmetric nucleus. For ex-
ample, in nuclei with p =1 instead of (10) the energy
ratios of levels with spins 2, 4, 6, 8, 10, 12 should
satisfy

1:2.32:3.77:5.27:6.80:8.34 ..., when I =8°, (13)

and

1:2.05:3.10:4.16:5.24:6.32 ..., when I'=25°.  (14)

Thus for u = 1 and T = 25° the excited states of the
ground-state rotational band should be almost
equally spaced.

A clear proof of high deformability even for nuclei
exhibiting a very clear rotational spectrum at low ex-
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Table II. Comparison between

experimental high-spin rotational

state energies B30) and the Davydov-Chaban theory

% deviation
gt 10+ 19+ 14t 1gt of theory.
from experi-

Isotope 2t 4t 6*
W6 | pxp. [108,7 [348.5 [699.4
Theor. |108.7 |349.1 |698.8

Wir1 | Exp.  [111.9 [355.0 |704.2
Theor. (111.8 |355.8 |705.3

Wiz | Exp.  [122.9 1376.9 |727.2
Theor. [122.6 {378.7 |729.3

Hfl7z | Exp. 94,5 1307.9 |627.0
Theor. | 94.4 [307.5 [625.5

Hift7o | Exp.  1{00.0 [320.6 1641.1
Theor.  [100.0 |320.5 |639.8

Hfies | Exp. 123.9 [385.0 |756.1
Theor. [121.7 |384.9 |758.6

Hfwes | Exp. 158.7 |470.7 |897.6
Theor.  \155.7 1471,3 (902.2

yptes | Exp. 101.8 1329.7 |667.1
Theor.  1101.9 (330.2 |667.7

ybier | Exp. 122.5 [384.0 |758.0
Theor. 19912 384.7 |760.3
|

| | ' | __ment ‘
1140 | 1648 | 2206 | — — 0.20
1137 | 1646 | 2213

1137 | 1635 | 2186 | — -— 0.16
1137 | 1633 | 2181

1147 | 1616 | 2129 | 2677 | — 0.27
1147 | 1617 | 2126 | 2668

1036 | 1519 | 2063 | 2651 | — 0.31
1033 | 1517 | 2066 | 2669

1041 | 1503 | 2013 | 2564 | 3147 0.22
1038 | 1500 | 2012 | 2568 | 3160 '
1212 | 1734 | 2304 | — — 0.79
1216 | 1740 | 2315

1407 | 1971 | 2565 | — — 1.45
1413 | 1983 | 2600

1097 | 1604 | 2172 | — — 0.12
1097 | 1601 | 2169

1219 | 1748 | — — — 0.52

1222 | 1752

citations was obtained by Stephens et al. at the Uni-
versity of California in 1964.89 Nuclear reactions
induced by the relatively heavy ions B'!, N1, and F*°
indicated high-spin excited states of the nine nuclei

Yh (164, 166), Hi (166, 168, 170, 172), W (172, 174, 176).

By investigating conversion electrons and y rays
emitted by these nuclei in cascade transitions to the
ground state the excitation energies of these nuclei
were measured very accurately (to 0.3%). Table II,
which was taken from Stephens’ report at the 15th
All-union Conference on Nuclear Spectroscopy com-
pares the experimental rotational state energies with
the theoretical values based on the Davydov-Chaban
theory 5] for I = 0. The last column gives the mean
percent deviations of the theoretical values from ex-
periment. Considering that the comparison between
the theory and experiment is based on only the two
parameters E(2) and u, there is good agreement.
If instead of the absolute energies we take their
ratios to the energy of the 2" first level, the com-
parison between theory and experiment enables us to
determine the single theoretical parameter u for
each nucleus. This comparison is shown in Fig. 5
(taken from (30 ), where the nearly horizontal lines
correspond to the calculated (5] ratios between the
energy levels of different spins I and the energy of
the 2% first level as functions of . The vertical
lines connect the measured ratios for each nucleus.
It can be seen that the hardest of the investigated
nuclei with respect to longitudinal vibrations is
Hf (p ~ 0.25) and that the softest nucleus is
Hf'%8 (;, = 0.4). Figure 6 (taken from [31]) gives.the
ratios Ay,y/Aj of successive rotational constants de-
fined by

_EWN—E{I=2)
A==

The dots in the figure represent the experimental
values, while the solid curve represents the theory

in %), The dashed curve represents the theoretical
values (12) with the two parameters A and B deter-
mined from the energies of the 2% and 4% levels.

The dot-dash curve represents the theoretical values
(12) with the three parameters A, B, and C determined
from data for the 2%, 4%, and 6* levels. We also see

60 ————1————

Wt -

2[7-/?

44

B Hfl72

Y
1
925 4q30

|
435 240
it
FIG. 5. Theoretical (Davydov-Chaban(!*]) and experimental
(Stephens et al.[*°"*']) energy ratios between the rotational
levels of spin I and the 2+ first level as a.function of e
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FIG. 6. Ratios of successive rotational constants A as
functions of the spin I. Dots — experimental; [30-21] solid
curve — Davydov-Chaban theory[ts]; dot-dash and dashed

curves — perturbation theory Eq. (12).

that the perturbation theory, represented by (12),
cannot be used to describe rotational states with ac-
count of nuclear stretching accompanying rotation.

b) Rotational Band of Transverse Surface Vibrations

The excited states (9) for the quantum numbers
ng =1, =0, K= 2, =2, 3, 4,...will be called the
rotational band of transverse surface vibrations. In a
rough approximation neglecting the correction term
€ (u, I') in (9) the ratios between the energies of
these excited states and the 2% first level are given
by

Ry (1) =

EG200) L 14+ 1 4 4
—_— — =2, 3, ...

F(y T ar 2"
With account of longitudinal nuclear deformation,
values of Ry, (I) for different values of p and I' and
for 1 =2, 3, 4, 5 are given in Table I on the basis of
the theory in L5} and tables in 29,

The first term of Ryy(2) for the rotational band
of transverse vibrations corresponds to the trans-
verse surface vibrations, As was pointed out at the
end of the Introduction, when the ground state is
axially symmetric two degenerate transverse vibra-
tions can be regarded as a pure rotation around the
z axis. The wave function of this excited state de-
pends on the two quantum numbers K and n.

These excited states are often called y vibrations
without sufficient justification. It is then assumed
that the energy of these vibrations depends on the
eigenvalues of the operator (2]

B,

o T R )
"= 42]1{ L Y ooy LY

The second term in the square brackets is the rota-
tion-operator part. Therefore in all states charac-
terized by non-zero values of K the eigenvalues of
H.y determine rotation-vibration excitations or the

-
ay
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energy of two transverse vibrations rather than pure
vy vibrations. In truly nonaxial nuclei (7 = 0) the
states represented in Ry (2) correspond to rotation
around the z axis.

From the experimental ratios Ryy(4) and Ry(2)
using the tables in (29 (some of which ratios are
given in Table I) we can for each nucleus determine
the two parameters p and I' characterizing its de-
formability with respect to longitudinal and trans-
verse vibrations. We thus obtain the values shown in
Figs. 7 and 8 for several even-even nuclei as func-
tions of the number of neutrons. Figure 7 shows that
nuclei which are far from magic numbers are rela-
tively hard with respect to longitudinal deformation.
For example, in the regions 82 <N <126 and N
> 126 we have u = 0.2. However, as the number of
neutrons approaches magic numbers the deformability
of a nucleus with respect to longitudinal vibrations
increases considerably. This can be seen especially
well in Gd and Xe isotopes. The given effect results
from weaker coupling between the core and nucleons
that begin the formation of a new shell (or holes in a
nearly filled shell). A similar picture is observed in
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FIG. 7. The nonadiabaticity parameter y for even-even
nuclei vs. the number of neutrons. The lines connect points
corresponding to nuclei with identical numbers of protons.
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FIG. 8. The parameter [" characterizing transverse deformabil-
ity (or the value of y,) of even-even nuclei vs. the number of neu-
trons. The values of I" are given in radians in the left-hand scale,
and in degrees in the right-hand scale.
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atoms when their polarizability is investigated; the
effect is especially large in alkali metal atoms.

In the regions 82 <N <126 and N > 126 the de-
formability with respect to transverse vibrations (the
value of T") behaves like the deformability with re-
spect to longitudinal vibrations. However,

I'=0.4 (T >20°) for almost all nuclei in the region
50 < N < 82. This indicates either that these nuclei
are thus very soft with respect to transverse vibra-
tions or that they possess no axis of symmetry in the
ground state. Nuclei with large I’ do not possess the
simple rotational spectrum (11) of excited states.
Excited states in these nuclei are, as a rule, complex
superpositions of (longitudinal and transverse) vibra-
tional and rotational excitations. It is incorrect, al-
though this is often done, to assign the excited states
of these nuclei to vibrational excitations; it would also
be incorrect to refer to them as rotational excitations.

It follows from Table I that for u = 1 and T = 25°
even-even nuclei have almost equally spaced excited
states. This fact is sometimes regarded incorrectly
as an indication of spherical symmetry, because
spherical nuclei should have an equally spaced vibra-
tional spectrum. However, soft nonspherical nuclei
should also have an equally spaced spectrum.

With ¢ known from the experimental data for
Ry (4) and Ry)(2), and with (5%) known from data
on electric quadrupole transitions from the ground
state to the first excited level, we can use (7) to de-
termine the contribution of the zero-point surface
vibrations of nonspherical nuclei to (8%?). Table III
gives the values of %)/} for some nuclei. It is
seen here that zero-point longitudinal vibrations play
a very large role in Cd!'* but have only a small role
in 0s'®, U8, and HfYS,

The theory of collective quadrupole

A. S. DAVYDOV

excitations 14 15,26 jg important because it enables

us to determine the two theoretical parameters u
and I' from the values of Ryjy(4) and Ry (2) (or
any other two energy ratios), to predict from the
tables in ¥ all other ratios of excited quadrupole
state energies to the 2* first level, and to determine
unambiguously the relative probabilities of transitions
between excited states. Specifically, from a knowl-
edge of ¢ and I' we can determine the excitation
energies of zero-spin longitudinal vibrations and of
the rotational band associated with these vibrations.
The theoretical and experimental ratios Ry (0)

= Eg(0)/E(2) are compared in Table IV.

According to (9), excited spin-0 states Ej (0) with
the quantum numbers ng =1, ny = 0, I=K=0, which
can be called one-phonon excitations of longitudinal
surface vibrations, can be accompanied in even-even
nuclei by spin-0 excitations E.Y(O) representing one-
phonon excitations of transverse vibrations (with the
quantum numbers =1, n3=0, I=K=0). The
latter excitations have been studied in [14’26’28]; their
properties differ considerably from those of Eg(0)
excitations.

In axially symmetric nuclei the ratios
Eg (0 )/E-y {0), like other ratios of quadrupole exci-
tation energies, depend on only the two theoretical
parameters p and I'. It has been shown in (26] that
in a rough approximation we have the equalities

ro_ E ©)
T ‘/LB '

4

2Ea (2) — Eyo (2) & E, (0). (13)

Two spin-0 levels were observed in Os 188 by King
and Johns, ¥ who obtained Ey(2) = 80.7, Ep(2)

= 788, EY(O) = 1086, and Eg(0) = 1765 keV. Taking
u=0.25 and T =0.33 (19) for Os!®, we find that
(15) is relatively well satisfied.

Table III. The role of zero-point longitudinal vibrations in
(B%) for nonspherical nuclei

| i | | | \
| o .
. Nucleus 1 Vg2 l; n T, rad) <B2>/B; | Nucleus | 1/ <p2> i‘ ro I, rad» <B2> /B
| I i i : !
| Gdi f 0.2 f 10 Lo | = oL { 0.28 [0.2 Lo f 1.02 |
Pdlod | 0.20 1 0.5 038 1.2 | WL | 030 | 0.15| 015 | 1.01
| Osto0 ) 0.14 ‘0.25 ‘ 0.45 | 1.03 | ‘ | | | 1
: ‘ i ‘
Table IV. Theoretical and experimental ratios Ry{(0)
=EB(0)/E(2)
Ri1 (0) Rir (0) o
' . T .
Nucleus 3 r Theory l El'ﬁgf):l- Nucleus 3 Theory E;Eﬁ?'
— - | —
Pu2i0 | 0.22 | 8.0 19.3 | 20.0 Osl88 | 0.25|19.0| 11.6 1.4
Pu238 | 0.21 | 7.8 2(.1 | 21.38 | Er186 |0.20 | 12.7] 21.1 18.12
r2s | 0.2 |8.0 22.8 | 22.2 Gd1s6 | 0.25 § 10.5 13.8 | 11.7 !
v2se | 0.2 | 8.7 22.5 | 18.66 | GdIsd | 0,37 | 13 5.2 5.53 |
r2sz | 0.25 | 8.8 14.1 14.6 Sm152 | 0,37 | 11.5 6.1 5.62
Th232 | 0.25 | 8.9 14.1 14.7 cdll4 | 0.54 | 22.5 2.6 2.03 |
Th230 | 0.25 | 9.5 13.9 | 11.9 " :
| i
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FIG. 9. Scheme of some excited states of an odd nucleus, with
(a) and without (b) account of interaction between collective and
and single-particle excitations.

For nonaxial nuclei, the energy ratios depend on a
third theoretical parameter v, in addition to p and I':
(15) should not then be satisfied. It must be men-
tioned, that at the present time we do not possess a
sufficiently rigorous theory of collective excitations
for nonaxial nuclei that can take into account rota-
tions along with the longitudinal and transverse sur-
face vibrations.

Among the experimental methods used to observe
nuclear deformation occurring at the instant of a
quantum transition, special importance attaches to
the investigation of electric monopole (E0) transi-
tions between states of identical spins (0 — 0,

2 — 2 etc.). The probabilities of these transitions
depend entirely on the change in the radial distribu-
tion of electric charge within the nucleus at the in-
stant of the quantum transition. A theory of this ef-
fect has been developed by Rostovskii and the present
author [ for axial nuclei with account of the coupling
between longitudinal and transverse vibrations. We
showed that the nuclear matrix elements of E0 transi-
tions are expressible in terms of g8, I', and u.

In addition to the foregoing collective excitations
corresponding to quadrupole deformations of the
nuclear surface and always possessing positive parity,
even-even nuclei are observed to possess collective
excited states of negative parity (37).13473¢ Theses
evidently correspond to octupole vibrations of the
surface, and their energies are in the range 1-3 MeV
for medium- and large-A nuclei. The theory of
octupole excited states in even-even nuclei is still
in its initial stage of development.Bﬂ

Excited states of odd nuclei have not been con-
sidered in the present review. In odd nuclei the
energies of single-particle excitations are of the
same order of magnitude as the energies of collective
excitations; therefore the division of excitations into
collective and single-particle types is often unjusti-
fied. For odd nuclei Coriolis interactions are im-
portant; these lead to mixing of states with different
values of K and Q. The theory of the excited states
of odd nuclei has been developed by several authors
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on the basis of simple nuclear models.[38742] we
mention here only the importance of the mixing of
single-particle and collective excitations in odd
nuclei; this mixing can play a large part when we
calculate the probabilities of transitions between the
ground state and excited states of such nuclei. Fig-
ure 9a shows the dependence of odd-nucleus excita-
tion energies on ' (characterizing surface deforma-
bility with respect to transverse vibrations), without
taking into account the interaction between single-
particle and collective motions. The spin % and ¥,
levels correspond to collective excitations in the
ground-state rotational band, with energies that are
only slightly dependent on I'. Three excited states
with spins 3/2, 5/2, and 7/2 and energies that are
strongly dependent on I', pertain to collective excita-
tions including transverse surface vibrations.
Finally, a spin % level that is slightly dependent on
T’ belongs to the single-particle excitations. Figure
9b shows the same scheme with account of the inter-
action between single-particle and collective excita-
tions. We see that in the region I' ~ I'y the spin %,
states are completely ‘‘entangled.’’ Thus the proba-
bilities of two E2 transitions, indicated by two
arrows in Fig. 9b, will differ considerably. Outside
of the region of ‘‘entanglement’ the %, and Y, levels
lying above the 3/2 level can be regarded as the
second and third members of a rotational band based
on the spin 3/2 level. In the region of ‘‘entanglement’’
(T' ~ I'y) this concept is meaningless for the spin %
level, which then ‘‘drops out’’ of the rotational band
by virtue of all its properties (position, transition
probability). It would be extremely interesting to ob-
tain direct experimental evidence of this effect.
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