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INTRODUCTION

iN the present (third) part of this survey we consider
the kinetic properties of metals mainly at low tem-
peratures. Here the main consideration, as in the
second part,1-' is devoted to those phenomena and
properties which are sensitive to the dispersion law
for the conduction electrons. The mathematical ap-
paratus used here is the Boltzmann kinetic equation.

In this part we restrict our treatment to static or
quasi-static properties. This permits us, as shown
in the first paragraph, to use the "gas" approxima-
tion, since the Fermi-liquid interaction drops out of
the final formulas.

•This paper is the third part of a survey; the first part was
published in U.F.N. 69, 419 (1959), and the second part in U.F.N.
78, 411 (1962) [Soviet Phys. Uspekhi 2, 831 (1960) and 5, 878
(1963)].

The majority of kinetic phenomena are extremely
sensitive to the nature of the interaction of the con-
duction electrons with impurities, with phonons, and
with one another. In particular, this interaction dic-
tates the temperature behavior of the kinetic coeffi-
cients. The survey does not attempt to give a presen-
tation of the wide range of theoretical material avail-
able at present concerning this question. Particular
attention is devoted to those regularities and proper-
ties which are more or less independent of the char-
acter of the interaction (cf. Sees. 5-7, 9). At times in
this summary we use the r-approximation, i.e., the
integral collision operator is replaced by the operator
of multiplication with a phenomenological constant
(the relaxation time T); this is specifically stated in
all cases.

In this part of the survey we restrict ourselves to
problems concerned with the computation of the co-
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efficients of electrical conductivity (resistance),
thermal conductivity, and the thermoelectric co-effi-
cients of bulk (infinite) metals * in the absence of a
magnetic field H and in a magnetic field. We do not
consider effects resulting from the quantization of
energy in relatively strong magnetic fields (̂ H ~ T,
fx equals the Bohr magneton). A separate section of
this survey will be devoted to this class of problems.

Most of the quantum kinetic phenomena in a mag-
netic field are of the same nature as the de Haas-
van Alphen effect (cf.'•'-', Sec. 6). However, unlike the
de Haas-van Alphen effect, quantum kinetic phenomena
/uH « ep (where ep is the Fermi energy of the con-
duction electrons) appear in most metals as slight
oscillations of amplitude superimposed on a curve
describing a relatively smooth dependence of the
kinetic coefficients on magnetic fields. The latter is
explained by classical theory. For this reason, we
can divide the calculation of the kinetic coefficients
into two parts: a classical part and a quantum part,
where in the first part we need not consider the
quantization of energy in the magnetic field. If we
add that the condition /JH « ep for most metals
means that the magnetic field is much less than
108 oe, it becomes clear that the neglect of quantum
effects is permissible in describing the kinetic prop-
erties of metals in magnetic fields.

Although high-frequency and, in particular, reso-
nance properties of metals will be discussed in a
separate part of this survey,t various problems from
this domain (the theory of the skin effect, theory of
absorption of ultrasonics) seem to us worth discussing
here since they are closely connected with the other
material in this part of our survey.

Certain more special, as well as very involved,
questions are left for the appendices. In a first
reading they may be omitted. Besides, in the appen-
dices we discuss various questions related to further
developments of the mechanics (classical and quan-
tum) and statistical thermodynamics of electrons with
a complicated dispersion law.

As in the preceding parts of this survey, the au-
thors did not feel that it was their duty to exhaust all
the work that has appeared in recent years, so that
the literature references are not a bibliography on
the present problem. Experimental work is only
mentioned in this survey, while the discussion of the
experimental results requires a special summary.

1. THE BOLTZMANN KINETIC EQUATION

In those cases where the motion of a conduction
electron in the crystal lattice can be regarded as

"free"* (or as motion under the action of external
forces), rarely interrupted by collisions, the Boltz-
mann kinetic equation is valid. The mean free path I,
the mean distance between collisions, is determined
both by the properties of the electrons (in particular,
by their dispersion law) as well as, mainly, by the
interruptions of the period structure of the crystal:
the presence of chemical and physical inhomogeneity,
phonons, electron-electron collisions, etc.

To develop the kinetic equation it is of fundamental
importance to write down the "collision integral"
term in the Boltzmann equation which describes the
comparatively rare collisions of the electrons.

Obtaining the expression for the collision integral
involves a solution of the scattering problem and re-
quires knowledge of the laws of interaction of elec-
trons with phonons, with impurities, and with one
another. However, the development of the electron
theory of metals during the last decade has shown
that there are a large number of non-equilibrium
kinetic properties of metals which depend only slightly
on the detailed structure of the collision integral and
are determined for the most part by the kinematics
of the conduction electrons, i.e., by their dispersion
law. Naturally, it is just these properties, as a rule,
which are sensitive to the structure of the electron
energy spectrum. It is to this problem that most of
the present summary is devoted. This enables us to
devote special attention to the field part of the kinetic
equation without worrying about an investigation of
the structure of the collision integral (cf., however,
Appendix I).

As already stated, we shall not take account of
quantum effects; more precisely, we shall not take
account of the quantization of the electron energy (for
example, in a magnetic field). The quantum character
of the problem will manifest itself in the nature of
the dispersion law of the conduction electrons and in
their statistics. Between collisions (by assumption)
the electron moves along a classical trajectory. The
limitations imposed in connection with the neglect of
the quantum character of the motion are described in
detail in Sec. 3 of the first part of this survey.^ We
recall only that in a classical treatment it is unnec-
essary to consider interband transitions caused by
external fields. This effect is of a quantum nature,
but the many-zone character of the electron energy
spectrum does manifest itself in the summation over
states and in calculating the probabilities for differ-
ent collisions. The latter must be taken into account
in any specific formulation for the collision integral.

The state of the electrons in a metal will be char-
acterized by the electron distribution functions
fs (p, r, t) which have the significance of an electron

*A separate section of this survey will be devoted to the kine-
tic properties of bounded samples (films, wires).

tin addition, we may refer the reader to the survey by M. Ya.
Azbel' and I. M. Lifshitz.t2]

*To avoid misunderstandings we emphasize that we are speak-
ing of electrons with a complicated dispersion law, whose mechan-
ics was discussed in the first part of this survey.
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density for the s'th band (2fs/(27rK)3dpdr is the
number of electrons in the s'th band, in the phase
volume* dpdr = dpxdpydpzdxdydz). Here r is the
coordinate, t the time, and p the kinematic momen-
tum. In the absence of a magnetic field, the kinematic
momentum p coincides with the momentum P which
is canonically conjugate to the coordinate.t If how-
ever, the magnetic field differs from zero,

P = p + -iA, (1.1)

where A is the vector-potential of the magnetic field
H(curl A = H).

All of the quantities which will be of interest to us:
the current density j , the energy flux density Q etc.,
can be calculated if we know the distribution function
fs. Thus

= e $ v/dl\

V, r;t)dV= J

(1.2)

(1.3)

where vg = 9es/8p is the velocity of an electron with
energy £ s(p), and the integration over dr includes
a summation over all the partially filled bands in the
metal.

According to Liouville's theorem, in the absence of
collisions the change in the distribution function with
time is equal to zero, i.e.,

If ~ ~~dt ' P ~dp~ ~f~ r ~gj - ( • )

Equation (1.4) describes the invariance of the number
of particles in an element of phase volume during the
motion of the electrons along their phase trajectories.
The quantities p and r should be taken from the
equations of motion, according to which p = F, where
F is the external force acting on the electron, and
r =v s .

Since F = —8eg/9r (where es is the total energy
including external fields ), dfs/dt becomes zero if fs
is an arbitrary function of the energy es.

If an electric E and a magnetic field Hi act on
the electron, then

(1.5)**

We emphasize once more the classical nature of this
last expression. In particular, we have not included
the interaction of the magnetic moment of the elec-
tron with the magnetic field. This is completely
justified in most of the interesting cases (in a

*Neglecting quantum effects permits us to disregard the spin
variables: each electron state is assumed to be doubly degener-
ate.

tWe remind the reader that in a classical treatment the con-
cepts of quasimomentum and momentum coincide.

t Since we are not considering ferromagnetic metals, we shall
not distinguish H from the induction B.

* * [ V H ] E V X H .

homogeneous magnetic field, the force acting on the
magnetic moment is actually equal to zero).

The external force acting on the conduction elec-
tron cannot always be expressed in terms of the
macroscopic field intensities E and H. Thus, for
example, in the passage through a metal of a sound
wave, the force acting on the electron includes, in
addition to the Lorentz force (1.5), an additional
force caused by the deformation interaction of the
electron with the lattice (cf. Sec. 10).

Collisions violate the condition (1.4). The degree
of this violation is given by the "collision integral"

%- = Zcoii{f,}.. (1.6)

The collision integral is a complicated non-
linear function of the distribution functions whose
structure and specific form are determined by the
interaction of the electrons with impurities, with one
another, or with other quasiparticles. In the latter
case the system (1.6) must be extended by giving the
kinetic equations for the distribution functions of the
various quasiparticles (for example, for the phonons).
The writing of the kinetic equation (1.6), as has been
shown, is possible only in those cases where the mo-
tion of the particles can be divided into a motion
along the phase trajectory and into collisions—sharp
changes in the momenta of the particles without any
significant change in coordinates (from the macro-
scopic point of view). From this it is clear that the
"collision integral" is an operator associated with
the dependence of the distribution function on momen-
tum, but not on coordinates or time. Certain very
general properties of the collision integral are dis-
cussed in Appendix III. Here we mention only that
the collision integral vanishes for the equilibrium
Fermi function for arbitrary values of the parame-
ters—temperature* T and chemical potential £. T
and £ can depend only on the coordinates and the
time.

The Boltzmann kinetic equation (1.6) is a system
of complicated non-linear integro-differential equa-
tions which, if we give exact boundary and initial
conditions, uniquely determine the state of the solid.
In the general case, naturally, it is impossible to
solve this system, an'd we require a considerable
number of simplifications which are determined by
the physical formulation of the problem.

Since the external electric field directly applied
to the metal or arising as the result of external ac-
tion (for example, by a sound wave) is as a rule very
small compared with the internal interatomic electric
fields, the deviation of the electron system from its
equilibrium state is in most cases very small. This

*If the collision integral describes collisions with other quasi-
particles (for example, with phonons), it vanishes only when we
substitute all the equilibrium functions: the Fermi functions for
the electrons and Bose functions for the phonons, etc.
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allows us to linearize the system of equations (1.6)
by replacing the distribution function fs by the sum

(1.7)

where np is the equilibrium Fermi function (in
zero'th approximation) and the smallness of the func-
tion fj (first approximation) is guaranteed by the
smallness of the external interaction. In other words,
the function f4 is proportional to those external
forces which remove the system from its equilibrium
state, (for example, the function ft is proportional to
the electric field when a current flows through an
isothermal conductor, or to the temperature gradient
when a metal sample acts as a heat conductor). The
choice of the zeroth approximation, or more pre-
cisely the choice of the parameters T and £ in the
Fermi function is determined by the statement of the
problem. It is most natural to start from the assump-
tion of local equilibrium, assuming that the parame-
ters in the Fermi function are chosen so that
T = T ( r) determines the temperature at the point r,
and £ = £( r ) is the chemical potential. This means
that the electron density at point r and their average
energy are given by the function of the zeroth ap-
proximation np and

0. (1.8)

In addition the energy of the external electric field
is not included in the energy es (p).

As we have already stated, the main content of
this part of our survey is the calculation of the ten-
sors for electrical conductivity, thermal conductivity,
and of the thermoelectric coefficients. It is therefore
natural to treat those cases where the removal of the
system from its equilibrium state is caused by an
electric field E and a temperature gradient VT,
which by assumption are so small that they guarantee
the validity of the linearization procedures.*

Substituting (1.7) in (1.6), taking account of the
expression for the Lorentz force (1.5) and neglecting
quadratic terms, we obtain

dt
h.

dn
dT V '

(1.9)

Here (9fi/9t)con is the linearized collision integral:

where W is the linear collision operator, equal to

r a.£{/) i
L 6/ Jf="F'

*In order to be able to perform the linearization it is suffi-
cient that I1V T| « T and eEl « T. Both these conditions impose
practically no restrictions on the values of the electric field and
the values of the temperature gradient.

The observed field intensity in the conductor E',
i.e., the force acting on unit charge, is the sum of
the intensity of the field due to the external potential
difference imposed on the conductor (E = —V<p ) and
the quantity —VeV£, where f is the chemical poten-
tial of the electrons (cf., for example, ^, Sec. 25),
i.e.

From now on we shall omit the prime on the electric
field, but remember that the derivative of the Fermi
function with respect to the temperature is taken for
constant chemical potential (9njr/9t = (9np/9t)|-).

Thus, the kinetic equation for the additional terms,
linear in the perturbation, in the distribution function
has the form

dt coll
dn"
de. dT V (1.10)

Frequently for estimates and sometimes in solving
relatively complicated problems of kinetics, the
linear collision operator is replaced by an operator
of multiplication by a phenomenologically introduced
constant T, i.e., one assumes

( , ^ T J C O I I = ~ T - d-11)

The positive* quantity T has the dimensions of
the time and is called the relaxation time or the mean
free time; the quantity I = vr is called the mean free
path, and Eq. (1.11) is called the T-approximation. It
should be remembered that for an anisotropic dis-
persion law the T-approximation cannot be justified
theoretically, and thus the substitution (1.11) can
serve only for estimate or in those cases where the
final result does not depend on the form of the colli-
sion integral (cf. Sees. 9 and 10).

Let us look at the first two terms in (1.10). The
time derivative of the distribution function 9^/91
takes account of the effects of time dispersion in the
kinetic coefficients, i.e., effects associated with re-
tardation of the reaction of the electron gas to the
external force. If the characteristic frequency of the
external field is u, then tff^t ~ wfj. This term
plays an important role for frequencies of the order
of or greater than v = 1/T. For a> « v it can be
neglected. The relaxation time changes over a very
wide range: from 10"I4 sec at room temperature to
10~9 sec for particularly pure metal samples'-5-' at
liquid helium temperature (4.2ºK).

The derivatives with respect to the coordinates
(the term 3fj/9r-v in (1.10)) are responsible for
effects of spatial dispersion of the kinetic coeffi-
cients. If the characteristic distance over which the
distribution function varies is of order d, then

*The fact that T is positive assures the increase of entropy,
with time.
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afj/Br -v ~ v/d fj. This term is important when v/d
~ v, i.e., I ~ d. When I « d, we can also neglect
this term. Since for the purest samples the mean
free path I is no greater than 10~3 - KT1 c m , ^ in
calculating the kinetic coefficients of bulk metals we
may neglect the spatial derivatives. As we shall see
(cf. Sec. 8-10), the calculation of the high-frequency
conductivity and sound absorption under particular
conditions requires one to take account of the spatial
dispersion.

Inhomogeneity of the sample (presence of bounda-
ries etc.) may result not only in an inhomogeneity of
the function f1; but also in the distribution of the
conduction electrons (for example, in an open-
circuited conductor). However, in metals (in con-
trast to semi-conductors) this inhomogeneity, which
is actually present, has no observable macroscopic
effect since the Debye-Hiickel radius rrj (the meas-
ure of the inhomogeneity of the distribution of the
charged particles) is very small ( rrj <, 10~8 cm ) for
the degenerate electron gas*. This fact allows one
always in calculating the kinetic coefficients to r e -
gard the Fermi function appearing in (1.10) as a
homogeneous function (independent of the coordinates).

From now on it will be convenient to use the fol-
lowing notation:

are equal to zero, we find

d — d _i_ d

dnpw - drip

drip

(1.12)

(1.13)

(1.14)

and to replace the function ft (for uniform E
VT) by two vector functions i/)j and <p{:

and

(1.15)

for which we easily obtain the very compact equa-
tions

(1.16)

i--=v,. (1.17)

Comparing expressions (1.12) and (1.4), we see that
the " t ime" t, with respect to which we differentiate
(1.16) and (1.17), is the time for motion along the
phase trajectory of the electron in the magnetic field
(cf. Sec. 5).

Substituting the expression (1.15) for the distribu-
tion function in terms of the vector functions ip^ and
<pj in formulas (1.2) and (1.3), and noting that for
fs = nf the current density j and the energy flux Q

*By definition, e2/rD = h«j0, where <u0 is the plasma frequency
of the electron gas (a>l = 4 7me2/m), n is the density of electrons,
m is the electron mass; since n = I/a3 (where a is the interatomic
distance), rrj = ay'Uc/fiF, while Uc = e2/a is the Coulomb interac-
tion energy of the electrons; ep = hVa2m is the Fermi energy.

U=-eT dnp
(1.18)

(1.19)

In the sequel (cf. Sees. 2 and 3) we shall sometimes
use the following notation:

(1.20)

and consider such integrals as the scalar product of
functions x and rj. It is easy to show that all the
properties required for a scalar product are present
for such integrals. 6^

In this notation

ii = e*{viyh)Ek--?r{{s-Zl)v,<ph)VkT, (1.21)

Qi = e (evrtk) Eh - - i- (e (e - £) viffh) VkT. (1.22)

In Appendix I, we show for a number of examples
(scattering by impurities and by phonons) that the
operator Wp has the following important properties.
First it is hermitian

and, second, it is positive:

(X.

(1.23)

(1.24)

The operator We has similar properties.
So far we have tacitly assumed that the conduction

electrons form an almost ideal gas of quasiparticles.
In other words we have not considered the fact that
the energy of an individual quasiparticle depends on
the state of the whole system, i.e., on its distribution
function.* This dependence is taken into account by
the theory of the Fermi liquid developed (for the
case of He3) by Landau'-7-' and generalized'-8-' to elec-
trons in a metal.

We describe here what changes have to be made in writing the
Boltzmann kinetic equation when we take account of the Fermi
liquid interaction between electrons.

The kinetic equation for the distribution function is constructed
in the theory of the Fermi-liquid in completely analogous fashion
to its construction in the gas model, i.e., one makes use of formula
(1.6). One need only consider that the energy of the individual
quasiparticle (conduction electron) £ is determined not only by the
dispersion law £„ (p) but also by the distribution function f(p).
for states close to equilibrium

e (P) = e0 (p) + \ <D (p, P') h (p') <*r' = e0 (p) + r\,

/i (P) = / (P)-"F (Eo). I /i (P) I € np (e0). (1.25)

Heret £0(p) is the energy of the electron with momentum p in

*We recall that the dispersion law for the elementary excitations
(electrons) of which we are speaking in this and earlier parts of
our survey naturally includes the interaction between electrons
(cf. ['], beginning of Sec. 7).

tin Sec. 7 of the second part of this survey ['] the correlation
function was defined in terms of f(p,p') and the deviation of the
distribution function from its equilibrium value by i/(p).
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equilibrium, given by the Fermi function; <t>(p, p ') is the corre-
lation function, the fundamental characteristic of the interaction
between electrons in the Landau theory of the Fermi-liquid.[7] In
the microscopic theory the correlation function fl>(p,p') is related
to the amplitude for electron scattering. [9] The experimental de-
termination of this quantity is an important problem of the physics
of metals. As will be clear from what follows, the quasistatic
kinetic properties are not suitable for such a determination.

With the definition of the quasiparticle energy given here, the
energy £0(p) is naturally a function of temperature. Limitations
on such a treatment exist, of course (the temperature must be much
less than the Fermi temperature) and result from the fact that the
lifetime of single particle excitations falls off rapidly as one moves
away from the Fermi surface. But at high temperatures, in all phe-
nomena, electrons participate that have energies which are signifi-
cantly far from the Fermi energy.

It would be extremely important to study experimentally the
temperature dependence of the dispersion law e = eo(p). The
corresponding estimates made in reference[10] show that changes
in the dispersion law (from temperature zero up to the Debye tem-
perature) apparently are detectable even though the Debye temper-
ature is assumed to be small compared to the Fermi temperature.

Let us now turn to the derivation of the linearized kinetic
equation. Using formula (1.25) it is easy to show that

Sr

dr\

de

(1.26)

where v = - is the velocity of the electrons in a state of ther-

modynamic equilibrium. It is convenient now to introduce, in addi-
tion to the function ft describing the deviation of the system from
its thermodynamic equilibrium state, another function f*, by the
following equation:

(1.27)

In the linear approximation in f,,

,„ , dnp

taken into account by writing

4oll=-£coll{/. e}. (1.29)

The collision integral goes to zero when we substitute the equi-
librium distribution function in it (for an arbitrary dispersion law),
i.e.,

•£coll{nF(e), e(p)} = 0. (1.30)

We note that e(p) includes the Fermi liquid correction r/, i.e., it
is a complicated functional of the distribution function.

Substituting the second of the expansions (1.27) in (1.29) and
noting that in the approximation which is linear in the perturba-
tion,

I 8/ J/=nF(B),
E=8(p)

\ 6/ f*' (1.31)
e=eo(p)

we arrive at the conclusion that in the collision integral the in-
clusion of liquid effects results only in replacing the function i1

by the function f*, and we can finally write the kinetic equation
(1.6) in the following form:

at at

From this it is clear that in all those cases where the term —- can
of

be neglected, for instance quasistatic cases, i.e., when O J T « 1,
the kinetic equation can be put in "gas" form by introducing the
new distribution function f* (cf. (1.27)). The correlation functions
$(p, p ) drops out of the Boltzmann equation. If we add that the
fluxes (current density j and energy flux Q) are also expressed in
the linear approximation in terms of the function f*: *

(1. 33)Q= \ ev/*dl\
1

-*|. (1.27')

it becomes clear that in treating quasistatic problems we can com-
pletely ignore the Fermi-liquid interaction between electrons. The
correlation between electrons manifests itself only at sufficiently
high frequencies (a>T> 1).

Using formula (1.26) and further linearization of the left side of
the kinetic equation (1.6), one can obtain *

dt — de0
evE + ^p}^T

(1.28)

In considering the collision integral (the right side of the kin-
etic equation (1.6)) we should note that the dependence of the
distribution function is contained first of all in the probabilities
for collision processes (because of the statistical properties of
the electrons) and secondly in the S functions describing the law
of conservation of energy. The latter dependence is a consequence
of Fermi-liquid effects (cf. formula (1.25)). Both dependences are

*We remind the reader that the linearization is carred out with
respect to the electric field E (including the gradient of the chem-
ical potential) and the temperature gradient VT. In the zeroth ap-
proximation in these quantities, e and e0 coincide, and the

electron velocity is equal to v = ——.
dp

2. SPECIFIC ELECTRICAL CONDUCTIVITY.
OHM'S LAW

Let us consider the passage of a constant current
through an isothermal metal in the absence of mag-
netic field.

Using the results of the preceding paragraph, we
need not take account of the Fermi-liquid interaction
between the electrons. The results obtained (the
values of the kinetic coefficients) can be formulated
in "gas" terms. We must, however, remember that
the basic feature of the electron, its dispersion law
eo(p), depends on the electron-electron correlation
(see above). The analogous situation occurs in the
de Haas^van Alphen effect (cf. -^ Sec. 7): the periods

*Equation (1. 33) follows immediately from formulas (1.2) and
(1.3) if we use the fact that

88
= ^ 8 - ^ np (e) dF = 0 (2.3)
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of oscillation are determined only by the shape of the
Fermi surface eo(p) = ep.

In the case we are considering the kinetic equa-
tion can be simplified in a very natural way: we can
restrict (1.16) by dropping the term dip^/dt. Thus

Wpipi = vi. (2.1)

The neglect of terms containing spatial derivatives
means that the distance over which the electric field
or the distribution function varies considerably is
large compared to the mean free path, while the
neglect of the time derivative means that the fre-
quency of the field cu is much less than the collision
frequency v = 1/T (for estimates it is convenient to
use the r-approximation).

Introducing the operator W"1, the inverse of the
collision operator, we find from (2.1)

^>i = W'P
1vi. (2.2)

If (2.1) requires an extension by linearized kinetic
equations for the distribution functions of the phonons
or other quasiparticles with which the electrons
collide, the operator Wp1 should be understood as
the operator which is obtained after including all the
distribution functions in addition to the electron
function.

From formulas (1.18), (1.21), and (2.2) we have

3«,,- W-v
1vh}Eh. (2.4)

Comparing expression (2.4) with Ohm's law

/; = OikEh, (2.5)

we find the formal expression for the tensor of the
specific electrical conductivity:

a ^ = - £ 2 I ^fvtW?vkdr = e*(vu Wfvh). (2.6)

The properties of the operator Wp formulated above
in (1.23) and (1.24), which, as can easily be shown,
also hold for the operator W~' insure the symmetry
of the tensor ffjk and the positive nature of its princi-
pal values.

We note that the symmetry of the tensor
Cik^ik = aki) i s a manifestation of a general princi-
ple of non-equilibrium thermodynamics—the principle
of the symmetry of the kinetic coefficients. The fact
that the principal values of the tensor o^ are posi-
tive assures the validity of the law of increasing en-
tropy.

The number of independent components of the
tensor a^ is determined by the symmetry class of
the particular crystal. Most metals have either
cubic or hexagonal symmetry. In the first case the
tensor degenerates to a scalar, and in the second
case it has two coincident principal values. Some
metals (for example, Mg) have three principal values
for the electrical conductivity—they belong to the
rhombic syngony.

We should point out that the absence of anisotropy
of the tensor of specific conductivity by no means
proves the isotropy of the dispersion law for the
conduction electrons (cf., for example, Au, Ag, Cu,
etc., metals which have a cubic lattice). One of the
main problems of the theory of metals is to calculate
the electrical conductivity tensor and in particular to
obtain its temperature dependence. Although at
present this problem cannot be regarded as finally
solved, it is clear that the basic mechanism for the
resistance is already correctly described in the
papers of F. Bloch: over a wide range of tempera-
tures the main role in the resistance is played by
scattering of electrons by vibrations of the crystal
lattice (by phonons). At low temperatures (of the
order of a few degrees absolute), the main mechanism
for resistance is scattering by static inhomogeneities
(by impurity atoms, grain boundaries, dislocations,
sample boundaries etc.).

We shall return to the problem of the temperature
dependence of the resistance, but we first present
various forms of writing the tensor CT^.

If Wp'v^ is a sufficiently smooth function of the
energy, which occurs whenever the change in energy
of the electron during a collision is small compared
to its energy*, we can replace the derivative of the
Fermi function in the first of formulas (2.4) by a
(5-function. Integrating over the energy, we get

s ss(p)=eF
"(8)

(2.7)

The integration here is taken over the Fermi surface,
dSs is an element of area in the s-th band.

The temperature variation of the components of
the tensor CTJ^ is determined by the temperature de-
pendence of the factor Wp'v^ in the integrand.

Formula (2.7) can be given a somewhat different
form by introducing the "mean free path operator"
which acts along the unit normal to the Fermi sur-
face:

Then

f »

(2.8)

(2-9)

From this form of writing of the electrical conduc-
tivity tensor, it is clear that the symmetry of the
tensor o^ came as a consequence of the hermiticity
of the mean free path operator.

For a cubic crystal it is convenient to introduce
the mean free path l-g by the following equation:

*For collisions of phonons the condition |Ae / e] « 1 (where
A e is the change in energy resulting from the collision) means
that 6/ eF « l . j?Or poor metals of the type of Bi or C (graph-
ite), this condition may not be satisfied.



812 I. M. LIFSHITZ and M. I. KAGANOV

*
e(p)=ei?

where Sp is the area of the Fermi surface. For
simplicity of writing of the formulas we have
omitted the summation over s and we shall do this
from now on. Then the electrical conductivity

= cr6jk) can be written in a very compact form:

(2.10)

or

^ ^ - j 7 p (c (2.10')

The expressions introduced here for the tensor
crik are of very general character and require only a
minimum number of stipulations (for example, as-
sumptions about the degeneracy of the electron gas).

We now give various formulas whose derivations are based on
simplifying assumptions. Let us replace the collision operator by
the mean free time tensor:

#p 1 r i = TjZi;:. (2.11)

If we assume that the components of the tensor T1( are independ-
ent of quasimomentum, it follows from formula (2.7) that

niVi dS. (2.12)

since it is a consequence of an approximate expansion of the col-
lision integral in momentum components. No misunderstanding can
then arise since in these cases the effective masses are constants.
Formula (2.15), for the case of an ellipsoidal Fermi surface, takes
on an extremely simple form:

= neuik. (2.16)

If we assume that the mean free time tensor degenerates to a
scalar,

formula (2.12) can be written as follows:

XVjVh

—~dS. (2.17)

Introducing the mean free path I = TV and neglecting the anisotropy
of the dispersion law (i.e., the anisotropy of the Fermi surface), we
have from formula (2.17) (or (2.10))

(2.18)

This formula, which formally coincides with formula (2.10), if we
replace / by Zp, has an approximate character and shows that large
electrical conductivity for a fixed mean free path (which permits
of an independent measurement) is evidence for a large area of the
Fermi surface. Cases are possible where, with a relatively small
volume, the Fermi surface nevertheless has a large area. This may
be a result of branching of the Fermi surface.

For a spherical Fermi surface of radius pp (for which formula
(2.18) was obtained, but not formula (2.10)! )

Since v/ = — - u s i n g G a u s s - S theorem we find (cf.['L Appendix

I).

gpidp.
dp

• 1 \

urJ (2.13)

The sign is determined by the direction of the vector n rela-
tive to the Fermi surface: if the vector n is directed outward
(electron band) the sign is plus; if it is directed inward (hole
band) it is minus. In the first case (electron band), the integra-
tion is taken over the region of p-space where e < e p , and in
the second case (hole band) over the region where e > e-p. It is
natural to call the quantity

the mobility tensor. From formulas (2.13) and (2.14) we have

aih = neulk, (2.15)

where the dash denotes an averaging over the band, n is the den-
sity of electrons (for an electron band) or the density of "holes"
(for a hole band). The rigorous definition of the hole density is
given in Sec. 5. With our definition of the mobility e < 0 in all
cases.

There is no point in discussing all the complications which
can arise in applying formulas (2.13) to bands with a complicated
Fermi surface (where, in particular, the problem of the sign of
the diagonal components of the effective mass tensor may arise).
The initial formula (2.11) is not Suitable for this purpose. But in
those cases where the Fermi surface is an ellipsoid located near
an external point in p-space, the assumption (2.11) is natural

PF

while 2AF = n (A F is the volume contained within the Fermi
(2-rrnf

surface, n is the density of electrons). Under these simplifying
assumptions, which we have used, one naturally obtains the us-
ual expression for the specific electrical conductivity

neH
PF

(2.19)

An expression of the type of (2.19) (or the analogous
(j = ne2r/m* where m* is the modulus of the effec-
tive mass) is usually used for a "proof" of the
Matthiessen rule, according to which the specific
resistance p = l / c is the sum of the specific resis t -
ances caused by the various scattering mechanisms*.
In fact, l/l is the probability of scattering per unit
path. If there are several independent causes of
scattering, then, according to the theorem of super-
position of probabilities,

i _y_L
i - 2J ij '

(2.20)

where the subscript j enumerates the various scat-
tering mechanisms.

From formulas (2.19) and (2.20) it follows naturally
that

•From this formulation there follows the usual one: the resist-
ance is the sum of the residual (temperature-independent) resist-
ance and the ideal resistance which varies with the temperature.
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i

The Matthiessen rule (2.21) is frequently claimed
to be absolute, although it is completely obvious that
even in the absence of correlations between the scat-
tering processes, formula (2.21) can be derived only
in the r-approximation. In the general case the
specific resistance depends in a more complicated
way on the various scattering mechanisms.

If one of the mechanisms makes a small contribu-
tion to the scattering of the electrons as compared
to the others, then we can formulate a rule analogous
to the Matthiessen rule, but, as we shall see later,
much weaker.

Thus, suppose that the collision operator Wp
contains a small additive correction. Let us denote
it by Wj:

Wf = W0-\-Wi, (2.22)

where | W4 {f} | « | Wo {f} | . Then the solution of the
kinetic equation (2.1) can be found by the method of
successive approximations. Calculation of the speci-
fic conductivity tensor and the specific resistance
tensor in the approximation linear in Wj gives

where

and

(2.23)

(2.24)

The tensor of the specific resistance p?k is related
to the main collision operator Wo. At high tempera-
tures (T »0, where 9 is the Debye temperature),
the main cause of scattering, as a rule, are collisions
with phonons. In this temperature region pj^
~ T (p?k ~ T up to terms 0/T « 1 ), and, as is clear
from the relations (2.24), the correction to the re-
sistance due to scattering by impurities (which is
described by the operator Wt) does not depend at all
on temperature (in the first approximation in the
parameter 0/T).

At low temperatures (for very pure samples, at
super-low temperatures) the main mechanism for
resistance is scattering by impurities and by other
static inhomogeneities. Now the operator Wo de-
scribes the impurity scattering. The role of the
small correction is played by the interaction with the
phonons (the operator Wj). The temperature correc-
tion to the resistance is proportional to T (see
below), while the coefficient of T5 does not depend on
the total number of impurity atoms (cf. (2.24)). How-
ever, this coefficient depends on the nature of the
scattering of the electrons by the impurities and thus
may vary from sample to sample. Such a situation is
observed in various cases (for example, in refer-

ence '-'1-') and is usually regarded as a deviation from
the Matthiessen rule*.

The resistance of a polycrystal can be expressed in terms of
the principal values of the resistance tensor of a single crystal
only when the mean free path is much less than the size of the
crystallites. To calculate the average value of the conductivity of
a polycrystal we may use the method developed in reference[12]
for determining averages of elastic moduli. According to refer-
ence,[1!] in the case of weak anisotropy,t

o — ~<r ((Tj -f- o% -}~ ^3). (2.25)

Here cr l j 2 i s are the principal values of the electrical conductiv-
ity tensor for the individual crystalli te. In deriving formula (2.25)
it was assumed that there are no correlations whatsoever between
crystall i tes and that the polycrystal has no texture.

In the case of sufficiently pure samples at low temperature,
the cause of the resistance of a polycrystal is the scattering of
electrons at the boundaries of crystall i tes. To calculate the speci-
fic resistance of the sample we may use a kinetic approach if we
assign a probability to the scattering of an electron at the bound-
aries and a distribution of boundaries within the sample.

Formula (2.7) and all that follow show that the
electrical conductivity depends in essential fashion on
the dynamical properties of the electrons and, in
particular, on the nature of their dispersion law. It
can be shown that this statement, confirmed by a
whole variety of experiments on the resistance of
metals, is in contradiction with the classical experi-
ments of Stewart and Tolman,1-14^ according to which
the value of e/m for electrons in a metal is equal to
the value e/m0 for free electrons. This apparent
contradiction is most easily explained away as
follows: If the electron is acted upon, in addition to
the electrical field, by the inertial force, the kinetic
equation should be written as follows.15-'

coll
(2.26)

where a is the acceleration. Such an expression for
the inertial force ( -moa) can be justified in two
ways: either by using the principle of equivalence,
where we replace the gravitational force by an ac-
celeration, or by treating the Schrodinger equation
for the electron in a periodic field in a non-inertial
coordinate system (as has been done in detail in
reference '-15-'). In carrying out both proofs, one must
take account of the fact that the number of conduction
electrons (the number of quasiparticles) is equal to
the number of free electrons. For this reason, the
Fermi-liquid interaction does not change the expres-
sion for the inertial force. From Eq. (2.26) it is
clear that the field appearing in an open-circuit con-

*Usually one observes a monotonic dependence of the coeffi-
cient of Ts on the concentration of impurities. This fact is not ex-
plained in terms of the formulas given here.

tSmallness of the anisotropy means that
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ductor (this corresponds to one of the formulations
of the experiment'-14-1) is equal to moa/e, and we see
that the measured quantity is determined by the ratio
mo/e for the free electron.

According to another formulation of the Stewart-
Tolman experiment,_one measures the ratio of the
momentum density P to the current density j . It is
easily shown that

P _
 mo

]•

Actually, according to the general principles of
relativistic mechanics, the momentum of a particle
is equal to ev/c2 where e is the total energy includ-
ing its rest energy. Since the energy of interaction of
an electron both with the lattice and with other elec-
trons is much less than the rest energy, the momen-
tum of an electron, to high accuracy, is equal to
mov (where nij is the mass of the free electron).
From this there immediately follows the relation
given above.

In the formulas presented above, we have tacitly
assumed that the degeneracy temperature of the
electron gas is much higher than the characteristic
temperature of the scattering particles (for example,
phonons). This permitted us to use the limiting value
for the Fermi function ( -dny/de = <5 ( e - ep )). The
temperature dependence of the conductivity tensor in
these cases is determined by the collision integral.
However, one must keep in mind that the criterion
for degeneracy of the conduction electron gas is
much stricter than the criterion for the degeneracy
of a gas of free electrons. In reference ^ it was
shown that the gas of conduction electrons can be
regarded as degenerate so long as

T, (2.27)

where ec is a critical value of the energy (for
e = ec the topology of the surfaces of constant energy
changes). For various metals (for example, for the
metals of group V, Bi, As, Sb, for graphite etc.) the
Fermi surface passes in the neighborhood of singular
points in momentum space. Thus, the value of min
I ep — ec j is anomalously small for these metals.
This means that for such metals the temperature de-
pendence of the resistance depends significantly on
the factor — 8np/9e in the integrand of (2.6) and can
be calculated from a sufficiently detailed knowledge
of the structure of the electron energy spectrum.

However, specifically for Bi, the energy spectrum
of which has been well investigated, the construction
of a quantitative theory is made difficult since one
must include a specific mechanism for scattering of
electrons by phonons (cf. the remarks in reference'-16-').

A complicated temperature dependence of the
electrical resistance, which does not reduce to a
temperature dependence of the mean free path (or
more precisely, of the factor W-1{vi} in formula

(2.6)), but is determined by the structure of the
energy spectrum, can exist in those cases where an
anomalously small group of electrons (or a band;
cf. Sees. 3 and 6) has a relatively large mean free
path. Then, in the dependence of the resistance on
the temperature, there should appear the dependence
on temperature of the number of electrons in the
anomalous band (cf.'-1-', end of Sec. 3).

As we have already stated, the detailed study of
resistance mechanisms is not part of our present
paper. This question is studied in detail, for example,
in the book "Electrons and Phonons" by Ziman.^
We shall therefore restrict ourselves to just a few
general remarks and arguments.

The principal mechanisms for resistance are the
following: 1) collisions of electrons with phonons,
2) collisions of electrons with one another, and
3) collisions of electrons with impurity atoms and
other static defects of the crystal lattice.* The first
two mechanisms occur in an ideal crystal and cause
the so-called ideal resistance, which goes to zero at
absolute zero; the third mechanism is characteristic
of crystals containing defects and is the cause of the
residual resistance, i.e., it determines the value of
the resistance of a metal at absolute zero. The value
of the residual resistance varies markedly for differ-
ent samples of one and the same metal.

Let us begin with the first mechanism. All the
present pictures of the energy structure of a metal
are based on the fact that the conduction electrons
and phonons represent relatively weakly coupled
subsystems. The weakness of the interaction between
the conduction electrons and the phonons (lattice vi-
brations) results from the fact that the main interac-
tions between the electrons and the lattice appear in
the dispersion laws of the electrons and phonons. The
weakness of the electron-phonon interaction permits
us, in treating this interaction, to restrict ourselves
as a rule to one-phonon processes—absorption and
emission of phonons by electrons. Since the velocity
of the electrons with energies near the Fermi energy
is much greater than the sound velocity, these proc-
esses are allowed by the conservation laws.

Assuming the phonon gas is in equilibrium, i.e.,
neglecting disturbances of the phonons by the elec-
trons, one can showt that the scattering of electrons
by phonons leads to the following temperature depend-
ence of the resistance (cf. Appendix III):

*We shall not discuss other mechanisms for scattering in
metals which have very specific properties. For example, in ferro-
and antiferro-magnetic materials there occur collisions of electrons
with spin waves; in ordered alloys there is scattering by fluctua-
tions of long-range order.

Â consistent derivation of the isotropic dispersion law (the
so-called Bloch solution of the Boltzmann equation) is contained
in any detailed course in the electron theory of metals.
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Q(8)

f ( I ) 5 , r«e ,
(2.28)

I
Here p (9) is the resistance of the metal at a

temperature equal to the Debye temperature 0,
p {9) ~ m0/ne2n" (cf. Appendix III). Although these
results have already become classical, the assump-
tions on which they are based are still not completely
clear. In particular, there has been no clarification
of the question of the role of processes of dragging of
phonons by electrons at very low temperatures. 8^

Collisions of electrons with one another result in
a finite resistance only in those cases where they are
accompanied by umklapp. Because of the fact that the
Fermi surface as a rule has portions which are lo-
cated arbitrarily close to the boundaries of the
Brillouin zone, collisions with umklapp are not
hindered. The calculation carried out by L. D. Landau
and I. Ya. Pomeranchuk'-19^ shows that this part of
the resistance is proportional to the square of the
temperature:

Comparison of formulas (2.29) and (2.28) shows that
for all metals (except transition metals) the electron-
electron part of the resistance can be observed only
in the region of very low temperatures and there only
if it is not completely overwhelmed by the residual
resistance.

We note that a comparison of experimental data on
resistance at low temperatures (where the electron-
electron interaction can show itself) with the theo-
retical computations (we are speaking not of the rough
formulas like (2.28) and (2.29), but of rigorous
formulas - ) apparently show that there is a sys-
tematic disagreement between experiment and
theory. The theory gives too high values for the
electron-electron resistance.

The residual resistance is completely determined
by the purity of the metal and the quality of the
single crystal (presence of stresses, dislocations,
etc.). At present one can obtain such pure samples
that the mean free path of electrons in them reaches
several millimeters (for the purest tungsten, for
example, I ~ 1 cm.).

Pomeranchuk has called attention to a very curious
mechanism for the resistance. 2^ It appears that
isotopic inhomogeneity of a metal, which results in
inhomogeneity of the zero point oscillations of the
lattice, may cause a resistance. The mean free path
(lis) associated with this mechanism is of order

M
~KW

Ms

where a is the interatomic spacing, M is the aver-
age mass of a metal atom, AM its mean deviation,
and s the velocity of sound.

FIG. 1

According to the estimates, ?is can reach 0.1—
1 cm. We have discussed this mechanism for re-
sistance in particular since its cause is by no means
trivial. It should be remembered that the electron
clouds in isotopes are identical (a slight difference
caused by hyperfine structure terms surely can be
taken into account). The scattering is related, as we
have already stated, only to the appearance of in-
homogeneities in the zero point oscillations of the
lattice.

A detailed analysis of the mechanisms of phonon
and residual resistance given recently by R. N.
Gurzhi '-23-' showed that in the temperature variation
of the resistance one should see very strange com-
plications caused by the nature of the electron dis-
persion law.

The results obtained by R. N. Gurzhi, and shown
in Fig. 1, are based on the assumption that the pho-
nons are deflected by the electrons so that normal
collisions of electrons with phonons (without umklapp)
cannot lead to a finite resistance. The probability of
such electron-phonon collisions with umklapp is ex-
tremely small. The latter is surely valid for metals
for which the Fermi surface is entirely located within
the first Brillouin zone (such a situation apparently
occurs for K, Na, and various metals).

To this same class of problems there belongs the
observed minimum of resistance which is seen in
various metals (Au, etc.) whose nature apparently
has been explained by Kondo, 4^ who showed that the
resistance minimum is associated with the depend-
ence of the scattering amplitude on energy (cf.
also[24]).

The weak coupling between electrons and phonons,
of which we have spoken, also manifests itself in the
fact that situations are possible in which each of the
subsystems can be described by its own temperature.
The relaxation time under these conditions coincides
with the time for equilibration of the temperatures of
the electrons and phonons. 25^

The difference in temperatures of phonons and
electrons is one of the reasons for the dependence of
resistance on current (deviations from Ohm's law),
which are observed experimentally at anomalously
high current densities[26j (j ~ 107—108 A/cm2).

3. THERMAL CONDUCTIVITY. WIEDEMANN-
FRANZ LAW. THERMOELECTRIC PHENOMENA

The electron participates not only in transfer of
charge, but also in transport of heat, where in good
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metals the electrons are the main mechanism for
this thermal transport. The existence of thermo-
electric phenomena is due only to the free electrons.

The kinetic coefficients describing the relaxation
between the corresponding fluxes (the heat flux q and
the current density j) and the forces (field intensity
E and the temperature gradient VT) can be calcu-
lated by means of the kinetic equations formulated
above.

Before giving detailed computations we consider
the phenomenological description of thermal conduc-
tivity and thermoelectric phenomena.

Staying within the framework of linear relations
and making use of the principle of symmetry of the
kinetic coefficients (cf., for example, 4-', Sec. 25), we
can write the relation between the electric field in-
tensity E,* the temperature gradient VT, the current
density j , and the heat flux q:

dT
dxh '

dT
X-dxJ

(3.1)

Here Pjk is the resistance tensor, KJĴ  is the thermal
conductivity tensor, and a^ is the tensor charac-
terizing the thermoelectric properties of the metal.
We can express the Thompson and Peltier coefficients
and the thermoelectric emf in terms of the tensor
aik- We note that the Qnsager relations (principle
of symmetry of the kinetic coefficients) which re-
quire the symmetry of the tensors pik and Kjk per-
mit the existence of conductors with an asymmetric
tensor for the thermoelectric coefficients (

We now proceed to the calculation of the tensor for the thermal
conductivity and thermo-electric coefficients. In what follows it
is convenient to rewrite the kinetic equation given above by di-
rectly writing an equation for the phonon distribution function y.

We recall that collisions with phonons are almost always im-
portant. In addition, in all solids (and, of course, in metals) the
phonons participate in heat transfer. If the non-equilibrium correc-
tion to the Fermi function is again denoted by f, and that for the
equilibrium phonon function (the Bose-Einstein function
NB = (e*w/T— I)"1, where ht> = hcj(p) is the energy of a phonon
with quasimomentum p) by yt, the system of Boltzmann kinetic
equations can be written as follows (for the reasons mentioned
mentioned above we drop the terms in the derivatives of the dis-
tribution function with respect to the coordinates and time; fur-
thermore we drop the term which includes the action of the mag-
netic field; cf. Sec. 7):

dh_\ e-e , rj>Xi_ \ e ' P h
=

dt yeoll ' ^ dt J coll

Aoii'A st
ph.ph
coll

dnp
~dTev

dNB

dT

vV7\
(3.2)

*As we have already stated, the observed field intensity in the
conductor is the sum of the field intensity caused by the potential
differences imposed on the conductor and the quantity - f / e ) V£
where C i s the chemical potential of the electrons (cf. [4]). This
means that the change in the chemical potential caused by the
temperature gradient is already contained in E.

Here u = -5— is the velocity of a phonon with quasimomentum p,

and the linearized collision integrals are defined as follows:

e, e
coll"

ph, ph
cou =-WPh,Phte1}, (3.3)

/* dji *\Ph'e_- _ * f'_!
V at Jcoll~~ WPh,e{fii< ly

;re

e>e 1 8/ l / = n ' e-Ph v. 6x i f=nF,'

where

(3. 4)

are linear operators acting on the functions f, and y^, -^coll an<^
"''coll a r e ̂ e electron and phonon collision operators; they, of
course, include the interation not only between electrons and
phonons, but also with all static inhomogeneities (impurities, dis-
locations, etc.). The existence of several electron and phonon
bands is assumed and is taken into account in the same way as
in sec. 1 (cf. formulas (1.2) and (1.3)).

By analogy with formulas (1.13) —(1.15) we introduce the fol-
lowing notation for the distribution functions:

<Pf,

Xi=-eE,
dNB

ld{hw) i* ' - y ' ' a r v"

and for the linearized collision integrals:

• dnp A " 1
 A.

(3.5)

dnp \

W • ' • J •

#Ph,e =(J*!B_
^ P h . e j de, • • ) '

dNB anp 1
ae • • • J '

(3.6)

\d(%a>)

Then the Boltzmann kinetic equation is written as a system of
vector equations for the functions t/q, <pj, ^q, and 1 :̂

(3.7)

Using the operators introduced here, one can easily formally con-
struct Wp and We of Sec. 1, for example,

In using the kinetic equation the generalized forces
are the observed electric field intensity E and the
temperature gradient VT. According to the principles
of the thermodynamics of non-equilibrium
processes, the fluxes corresponding to these forces



SOME PROBLEMS OF THE ELECTRON THEORY OF METALS, III 817

must be determined so that the time derivative of the
entropy S (the entropy production) is expressed by
the following equation:

S = j*E + q*( — VT). (3.9)

It is easy to show that then the currents j * and
q* have the following form:

fidTe, (3.10)

. (3.11)

Here by the symbol J. . . dFe we mean an integration
over all electron states (cf. page 807) and by the
symbol J . . . dFpĵ , an integral over all phonon states.
Naturally, here we include a summation over the
bands in the phonon spectrum.

Usually, in place of the fluxes j * and q* one uses
the current density j = Tj * and the density of heat
flux q = T2q*, for which the phenomenological rela-
tions (3.1) are given.

If we assume the generalized forces -Vcp and
-VT, then the corresponding fluxes will be j * and
q*', which differs from q* (cf. formula (3.11) by the
replacement of £ by w = -T2 3/8T (£/T) (where w
is the specific heat per electron; w « £ when
T « eF ) .

Using formulas (3.5) and going over to the fluxes
j and q, we write expressions (3.10) and (3.11) as
follows:

I — F 4 - h 8T 1
'* dXh ' } (3.12)

where

(3.13)

and where we have introduced the notation

(3.14)

where, as in Sec. 1, such integrals can be regarded
as the scalar products of functions x(P) and 1(P)-

In writing the fluxes in the form (3.12) the Onsager
principle of the symmetry of the kinetic coefficients
requires that there be the following relations between
the components of the tensors ofe, bjk, c^, and dj^:

ih = dik, cih=—Tbih. (3.15)

Naturally these relations are a consequence of
definite properties of the collision integral. We shall
not discuss these (but see (3.28)), but mention only
that to prove the various relations (3.15) it is suffi-

cient to make use of the hermiticity of the operator
Wp of (1.23).

Comparing formulas (3.1) and (3.12), one easily
sees that from (3.15) there follow the Onsager rela-
tions which we used in writing (3.1), and

(3.16)

If, using the last of relations (3.15), we replace the
tensor Cim in the formula for the thermal conductiv-
ity tensor iqjc by the equal tensor—Tbmi, then, ac-
cording to formulas (3.13), the thermal conductivity
splits into the sum of an electron and a phonon part:

(3.17)

where

and

dfh=—i-

(3.19)

This splitting, of course, does not mean the ab-
sence of mutual interactions between the electron and
phonon subsystems. Over a wide range of tempera-
tures the phonons are the main cause of scattering of
electrons, which in turn at practically all tempera-
tures are the main cause of the thermal resistance
for the phonon flux. It is just because of the scatter-
ing by the electrons that the mean free path of the
phonons is small, and their role in the thermal con-
ductivity of metals is negligible. Formally this per-
mits us in formula (3.17), and also in the expressions
for Cjk, to neglect the second terms. The Wiedemann
Franz relation is established between the electronic
part of the thermal conductivity coefficient and the
electronic conductivity.

Thus the electronic part of the thermal conductiv-
ity of a metal and the thermoelectric coefficients are
determined by the quantities bjk, dj^, and o^ . As
we have seen in Sec. 2, the electrical conductivity is
expressed as an integral over the Fermi surface (cf.
formula (2.9) et seq.). A similar form can also be
given to formulas (3.16) by expanding the expressions
in powers of the temperature (more precisely in
powers of T/| ec | ); the expansion coefficients
are here also functions of the temperature (because
of the temperature dependence of the collision oper-
ators). All the tensors appearing here can be written
explicitly separating off the integration over the en-
ergy:

dnp
(3.20)
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where

e(p)=e e(p)=e

(3.21)
and the integration is carried out over the constant-
energy surface e (p) = e.

Using the well-known properties of the Fermi
function (cf., for example, formulas (3.7) of'-1-'), one
can easily show that

cih -el* • (3.22)

We note that the Onsager relations (3.15) in this
approximation mean that

(
V V

(3.23)

Substituting the expressions (3.22) in formula (3.16)
and keeping only terms of lowest order in the ratio
T / | C F " e cl . w e ge t

1

aih * T " T ^ T7 * " (3.24)

By analogy with Sec. 2 it is convenient to introduce
mean free path operators acting on the unit vector
ni = v i / v - If. fº r the collision operators, we use the
notation of Sec. 1, we can write

<Pi = Wf-ivt) = lB(nt). (3.25)

The subscripts p and e emphasize that in the
first case in the collision the change in momentum is
most significant, and in the second the change in
energy. In other words, in order of magnitude

4> Zp where Zp is the length over which the mo-
f h lp p

mentum of the electron relaxes, and <p is equal to
le where Ze is the relaxation length for the energy,
(more precisely, e - £ ). At low temperatures
(T « 6 ), when the collisions with long^wave phononr
are most important, these lengths are drastically
different (Zp ~ 02/T2 Ze). This latter fact results in
an observable experimental deviation from the
Wiedemann-Franz law. In those cases where inelastic
collisions can be neglected* the difference between

*This means not only that one can set ̂  = Vy = 0 (cf. (3.7)),
but also, and most important, that one can neglect energy trans-
fers from the electrons to the equilibrium phonons in each colli-
sion. We recall (cf. appendix I) that when T » 0, collisions with
the phonons are quasielastic. This is the reason why the
Wiedemann-Franz law is valid at high temperatures.

Ze and Zp disappears, which is natural, since then
the relaxation is connected only with the bringing to
isotropy of the motion of the electrons (in particular,
the difference between Zp and Z6 vanishes in those
rare cases where the r-approximation is valid).

In the case of a cubic metal it is convenient to in-
troduce average mean free paths. These are functions
of the electron energy and are defined by the following
formula:

S{<L) (re*) dS = Y l (3.26)

where the integration is extended over the surface
e(p) = e, whose surface area is S(e).

The mean free path Zp introduced in Sec. 2 coin-
cides with that used here if, in place of the energy e,
we substitute the Fermi energy: Zp = Zp( ep ), simi-
larly Ze = Z e (eF ) .

Using formulas (3.21), (3.24)—(3.26), we have

3 3

I ' T

(3.27)

J

We note that in the new notation the Onsager rela-
tions (3.15) or (3.23) are written in a particularly
compact fashion:

/ O 7 \ t* / fij \

If Zp = Ze, then

(3.28)

(3.29)

i.e., the familiar relation, the Wiedemann-Franz law,
is satisfied. As we see from the derivation of formula
(3.29), this relation is determined only by the nature
of the scattering and, for example, is completely in-
dependent of the dispersion law. In the case of a non-
cubic crystal, this relation (for <Pi = ipi) is satisfied
for each of the components of the tensors CTJ^ and

«ik-
We shall not spend time on presenting the theory

which explains (or, more precisely, tries to explain)
the observed experimental facts concerning the
thermo-emf and thermal conductivity (many para-
graphs of J. Ziman's monograph "Electrons and
Phonons" are devoted to this problem). We only note
that the opposite sign* of the coefficient a (i.e., of
the thermo-emf) for various metals can be explained
by the hole character of the Fermi surface: If the
Fermi surface is located near a point of p-space
where the energy reaches a maximum, then with in-
creasing energy the area of the surface decreases
(the surface contracts); furthermore, as we approach
the extremal point, the velocity decreases and slow

*For free electrons a < 0.
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electrons are more frequently scattered and there-
fore with increasing energy the mean free path also
clearly decreases.

4. GALVANOMAGNETIC PHENOMENA.
INTRODUCTION

The influence of a magnetic field on the conduction
of metals is due to its effects on the motion of the
electrons (cf.[3], Sees. 3 and 5). Here we should r e -
member that, unlike equilibrium thermodynamic
properties, the kinetic characteristics (specific
resistance, thermal conductivity coefficients, etc.)
depend essentially on magnetic field, even in the
classical approximation. In other words, the depend-
ence on magnetic field appears even if we do not
consider the quantization of the electron energy in a
magnetic field. The characteristic dimensionless
parameter which determines the importance of the
magnetic field is the ratio r/Z, where r is the
radius of the electron orbit and I is the mean free
path. Since the orbit radius r is inversely propor-
tional to the magnetic field, we should regard those
fields as small for which r » I and regard fields as
great for which the reverse inequality holds. The
orbit radius r for a free electron is equal to pc/eH,
where by p in this case we should mean the radius of
the Fermi sphere, while in the general case
p = Vlu, where S is the section of the Fermi surface
that is cut out (for example, an extremal section).

The importance of quantum effects is determined
by the two parameters:

13

e F ~ e c I anc*
(cf.1-3-, Sec. 3). The first parameter as a rule is al-
ways very small* which justifies the neglect of quan-
tum effects. The parameter Ku;H/T in different
fields and temperatures changes over wide limits. If
ficjjj/T >, 1, we have quantized oscillations of the
galvanomagnetic characteristics—the Shubnikov-de
Haas effect and other effects similar to the de Haas-
van Alphen effect (cf. Cl], Sec. 6). For most metals
quantum oscillations appear in the form of slight
bumps on the basic dependence of the galvanomag-
netic characteristics on the magnetic field (Fig. 2).
This allows one first to consider the classical effect
and then to take account of the quantum effects later
as corrections.f

The simplest variant of the electron theory of the

*If the Fermi surface is sufficiently well-branched, which is
characteristic for most metals, one finds cases where
haie/| £ F - e c | reaches a value of the order of unity. This
apparently can result in a phenomenon analogous to magnetic
breakdown (cf. also sec. 6 of [']).

t Quantum corrections always contain the factor
(fidje/l eF - <=c|)n where n > 0. For some metals, for example
for Bi, quantum effects have an important role in determining the
dependence of the resistance and particularly the Hall "con-
stant" R on magnetic field. For these metals the results pre-
sented here must be applied with care.

so

20

W

/

rs 20 25

FIG. 2. Dependence of resistance of Zn on magnetic fields.
Upper curve: T = 4.29ºK; lower curve T = 1.81ºK.

kinetic phenomena (T-approximation, one group of
carr iers with an isotropic quadratic dispersion law)
cannot even qualitatively explain the dependence of
the resistance on magnetic field, although the est i -
mate made for the Hall "constant" R is correct in
many cases ( R = 1/nec, where n is the electron con-
centration). Investigations of recent years have shown
that galvanomagnetic characteristics in strong fields
are extremely sensitive to the structure of the elec-
tron energy spectrum. They serve as one of the most
reliable methods for determining the topology of the
Fermi surface.

We shall not give here a survey of the experimental
data (a separate summary would be needed for this),
but in the course of presenting the theory the results
of experiment will be given to illustrate conclusions of
the theory. We note only a few well-known facts:

a) For polycrystals and for various single crystals
the Kohler rule ^29-i is approximately satisfied, ac-
cording to which the quantity

. __Q(ff)-e(0)

is a function of the effective field

He(t=H Q273

e(0)

(p (H) is the resistance in the magnetic field H,
P2T3 is the resistance at 273ºK for H = 0). This rule,
which is illustrated in Fig. 3, confirms the statement
made above that the parameter on which the change in
resistance depends is r/l.

Recently there have been observed considerable
deviations from the Kohler rule. [30] Jones and
Sondheimer '-31-' have attempted to formulate a more
general rule, which has the following form:

(4.1)
e (0) Ao J '

where A = AJJ=OC and f ( f ) is a certain universal
function (for the given metal) which increases from
zero up to unity as the argument changes from zero
to infinity.

Like the Kohler rule, the Jones and Sondheimer
rule cannot be proved rigorously and must be r e -
garded as semi-empirical. In Fig. 4 are shown ex-
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FIG. 3. Dependence of increase of resistance in a magnetic
field on the effective value of the magnetic field. 1 —Mg;
2 - Cd; 3 - Cu; 4 - P b ; • - T = 2ºK; o _ T = 4.22ºK; D- T = 14ºK;
x - T = 20. 35ºK; A_T = 78ºK[M].

perimental data on the resistance of Al in a mag-
netic field, ^ which were the basis for the formula-
tion of the rule (5.1).

b) All metals investigated so far for the depend-
ence of their resistance on magnetic field can be
divided into three groups. In the first group are
those metals for which the resistance tends to satu-
ration as H —•• ºº irrespective of the direction of the
magnetic field. The increase in resistance (though
the resistance always increases in large fields) for
these metals reaches hundreds of percent (A^
amounts to a few units). In the second group are
those metals for which the resistance increases
quadratically with increase in magnetic field ( r «l),
again for all directions of the magnetic field. The
resistance here can increase by factors of a million
(Bi, for example); here the metal in the strong mag-
netic field has the properties of a dielectric or in-
sulator. A third group has intermediate properties:
for certain directions of magnetic field the resistance

increases quadratically, while for others it tends to
saturation.

So far we have considered transverse galvanomag-
netic effects, i.e. the case where the current meas-
ured is perpendicular to the magnetic field. The
longitudinal galvanomagnetic effect is relatively
small: the longitudinal resistance for all metals tends
to saturation. In the dependence of the resistance on
magnetic field (j 1 H) for most metals one observes
a large region in which the resistance depends
linearly on the magnetic field (the Kapitza law). For
certain metals this region is intermediate either be-
tween two quadratic dependences or between a quad-
ratic dependence and saturation; for other metals (or
samples) one has not succeeded in detecting a devia-
tion from the linear law in large fields.

Most of the experimental facts find their explana-
tion in the present-day kinetic theory of the galvano-
magnetic effects. True, certain observations require
one to assume that final clarity in the understanding
of this area of problems has still not been achieved
(for example, it is very difficult to explain ^ the
behavior of extremely pure Al). For presenting the
theory of galvanomagnetic effects let us start with
their phenomenological description. The connection
between the electric field and the current is naturally
linear in character (Ohm's law):

Ji = oikEh, Et = Qihfh, dik = cTik. (4.2)

In a magnetic field the tensors <7ik and p i k , which are func-
tions of the magnetic field are not symmetric tensors. The prin-
ciple of the symmetry of kinetic coefficients requires a somewhat
more complicated relation between the components of the tensor

Oift(H) = <TA;(-H). (4.3)

The tensor aik, like every second-rank tensor, can be written as
the sum of a symmetric p i k and an antisymmetric tensor aik:

Using the Onsager relations (4.3), it is easy to show that the
tensor p i k is an even function, and the tensor a ik is an odd func-
tion of the magnetic field:

= s,-*(-H), ai ,(H)=-oift(-H). (4.5)

From the components of the antisymmetric tensor aik we can con-
struct the dual vector a:

where e ikj is the unit antisymmetric tensor of third rank.
A similar expansion can be performed with the tensor for the

specific resistance p i k , the tensor which is inverse to a ik:

= cik(-H). 0ffc(H)=-C;i(H)=-Bflk(-H).

The components of the tensors p?k and pfk can be expressed in
terms of the components of the tensors p l k and aik:

FIG. 4. Graph characterizing the Jones-Sondheimer rule (4.1)
for Al of various purities (according to E. S. Borovik et al.["]. eift = s| + (asa) | + (asa)

(4,6)
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Here |s| is a determinant made up of the components of the tensor
p i k ; asa = a ^ ^ a ^ bj is the vector dual to the antisymmetric ten-
s o r P i V b i = £ik/Pik:

Using the quantities we have introduced, Ohm's law for a con-
ductor in a magnetic field is written as follows:

E=Qsj + [bj]. (4.7)

The vector psj is the vector with components pfkjk; the second
term is called the Hall field. We note that it is, first of all, per-
pendicular to the current, and second, it changes sign with change
in sign of the magnetic field. The Joule heat liberated in the con-
ductor is determined by the tensor p?k:

(4-8)

perpendicular to the field by p j_ . From expression (4.9) it fol-
lows that:

so the tensor p?k (i.e., the symmetric part of the resistance ten-
sor) is frequently simply called the resistance tensor.

From formula (4.7) it is clear that a complete description of
the galvanomagnetic properties is possible if one knows the three
principal values of the tensor p?k for all values of the magnetic
field, the direction of its principal axes, and the three components
of the vector b. In general case, the principal directions for the
tensor p?k do not coincide with the crystallographic directions,
but depend on the magnitude and direction of the magnetic field.

The determination of the current density and the electric
field intensity in a sample of finite dimensions is a complicated
mathematical problem which is solvable only in various special
cases,* so that as a rule in experiment one uses long, cylindri-
cal conductors (wires) in which the direction of the current lines
is fixed by the sample geometry.

Additional possibilities for measurement occur if one uses al-
ternating fields of relatively low frequency (cf. Sec. 8).

The components of the tensor p?k and the vector b depend in
a complicated way on the magnetic field. If the magnetic field is
small, they can be expanded in powers of the magnetic field. From
the conditions (4. 5) it follows that the expansion has the follow-
ing form:

bi = RihHh+... (4.9)

We restrict ourselves to the first non-zero term containing the
magnetic field; p i k (0) is the resistance tensor for H = 0.

The number of independent components of the tensors Aik;m

and Rik is determined by the symmetry class of the metal. Thus
the angular dependence on magnetic field and current direction)
of the resistance and the Hall field for the case of weak field is
determined completely by the crystal class. For example, in the
case of a cubic crystal, as for any isotropic body, Rik = Rpik.
The quantity R is called the Hall constant. This quantity (R) for
most metals is actually comparatively weakly dependent on tem-
perature, sample purity, etc. However, a more convenient charac-
teristic of metals (although by no means applicable for all metals),
as we shall see, is the Hall "constant" in high fields R^ (for
the definition see Sec. S).

In the case of an isotropic metal (a polycrystal) the only dis-
tinguished direction is that along the magnetic field. The tensor
component along the field is denoted by p^ , and in the plane

*We are speaking of sufficiently large samples so that one
need not consider surface phenomena and can use a macroscopic
description.

The mathematical formation of the problem of determining the
current density and field intensity E is the following: div j = 0,
curl E = 0, where j-v = 0 at all points of the boundary except those
through which the current is fed; at lead points yv is continuous
(v is the normal for the surface of the body).

(4.10)

As a rule, the constants A|| and A^are positive. Exceptions are
ferromagnetics, in which the opposite sign for the galvanomagnetic
effect (decrease of resistance in a weak magnetic field) has been
explained in references[34'13].

Formulas (4. 9) and (4.10) are phenomenological in character.
The problem of the microscopic theory is to calculate the tensors
Aik;m and Rik. In the Appendix, where we establish the connec-
tion between the components of the tensors \-.i and R.•, and the

i. K. *• 111 1 K

microscopic characteristics of the conduction electron, it is shown
that the Onsager relations (4.3), are a consequence of the general
properties of the collision operator formulated in Sec. 1 (cf. formu-
las (1.23) and (1.24)); furthermore, starting from these same condi-
tions it is shown that the principal values of the tensor p?k in
weak fields are greater than the principal values of the tensor
Pik (P)'t in other words, the resistance increases with increasing
magnetic field.

Although the dependence of the components of the resistance
tensor for the case of weak fields (r » I) can be established from
extremely general considerations (cf. formula (4.9)), their depend-
ence in large fields (asymptotic behavior with magnetic field) can-
not be determined from general arguments, but requires an analysis
of the solutions of the kinetic equation (cf. the next sections).

5. GALVANOMAGNETIC PHENOMENA. STRONG
FIELDS. CLOSED TRAJECTORIES

The development of a microscopic theory of
galvanomagnetic phenomena, i.e., the calculation of
the tensor of specific resistance pjj^ as a function of
magnetic field, is based on the solution of the linear-
ized Boltzmann equation (cf. Sec. 1), which is con-
veniently used in a somewhat different form than that
of Sec. 1.

The character of the motion of an electron in a
constant homogeneous magnetic field shows (cf. ,
Sec. 3) that to describe the location of the electron in
momentum space it is convenient (when a magnetic
field is present) to use not cartesian coordinates
(px , py, p z ) but coordinates related to the trajectory
of the electron in momentum space. The position of
the electron can be specified by assigning it to a
trajectory in momentum space, i.e., an energy e and
a projection of its momentum on the magnetic field
p z (as always, the homogeneous and constant mag-
netic field H is directed along the z axis), and also
its position along the trajectory. To give the position
of the electron along the trajectory one can use
either the arc length s measured from some point,
or (and this is more convenient) the time t for the
motion of the electron from some fixed initial point
to the given point. Thus, we shall describe the posi-
tion of the electron by three quantities (coordinates):
e, p z , and t. The formulas for transformation of
coordinates (from p x , p y , p z to e, p z , t) are given
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by the dispersion law e = e (px, py, pz ) and the
equations of motion of the electron in the magnetic
field:

(5.1)

according to which

eH
ds

where Vj_ is the projection of the vector v on the
plane perpendicular to the magnetic field.

In the chosen variables the Boltzmann kinetic equa-
tion (1.6) has the form*

dt ( 5 - 2 )

where the generalized velocities (t, p z and e) de-
scribe the change of state of the electron caused by
external fields (electric field E and magnetic field
H). They must be calculated using the equations of
motion

Using Eqs. (5.1) and (5.3) we easily find that

8 = evE, pz=-eE2, t = l ~ [vi E]z,

(5.3)

(5-4)

where v_j_ is a vector with components vx, vy, 0.
Using relations (5.4), Eq. (5.2) is easily linearized

in the electric field and takes the following simple
form:

Oj\ f Of I \ •m-i OJlp / r ( - \

Tt—^-aTjcoiT-eyh-dT' ( 5 ' 5 )

As in Sec. 1, we introduce in place of the function fj
a vector function ipi by the relation

fi = -e^f%Ei. (5.6)

Then fa satisfies the following equation (cf. (1.16)):

The operator Wp is defined in Sec. 1 (cf. p. 808 and
formula (1.13)).

Equation (5.7) coincides with (1.16) not merely
formally but also in principle, since when spatial
and temporal inhomogeneities are not considered,
the quantity df/dt (cf. formula (1.12)) describes the
change of the electron distribution caused only by
their motion in the constant homogeneous magnetic
field. As we see, Eq. (5.7) is a differential equation
in t. We discuss the conditions which serve as
boundary conditions. If for given e and p z the tra-
jectory of the electron in the magnetic field is closed,

*In this and the following sections we shall restrict ourselves
to the spatially homogeneous case, i.e., we neglect the boundaries
of the sample. This means that the results obtained can apply for
sufficiently massive samples. The corresponding estimates are
given in Sec. 1 (cf. also[35'3Sa]). In addition we consider only the
static case.

then one boundary condition is the periodicity condi-
tion

yi(t + T) = ipi(t), (5.8)

where T = T ( e, pz) is the period of the Larmor pre-
cession. According to (3.12) of the first part of this
survey ^

rp _ c as

where S is the area of the section of the constant-
energy surface e (p) = e by the plane pz = const.

If the trajectory is open, the boundary condition is
the condition that ip^ be finite for t = ± ºº.

The presence of the factor —3np/3e in (5.6) shows
that the electrons with energies of the order of the
Fermi energy play the main part in the problem. Be-
cause of this we can consider separately the cases of
closed and open surfaces (cf. , Sec. 2). The next
section will be devoted to the latter case.

In this paragraph, therefore, we shall consider
only the case of closed surfaces. More precisely, we
shall treat only the case of closed trajectories. First
of all, cases are possible where open surfaces have
no open sections, and secondly, for certain definite
directions of the magnetic field the open surfaces may
have only closed sections (cf.^, Sec. 2).

Averaging (5.7) over t and using condition (5.8),
we get

Wp {tyi} = vu (5.9)

where the bar denotes an average over the period T:

1
T (e, pz)

udt. (5.10)

We shall regard Eq. (5.9) as a boundary condition
imposed on the function ^i.

A large value of the magnetic field manifests itself
in the fact that in Eq. (5.7) the term 9^j/3t * tp^/T is
much larger than the "collision" term Wpi/ij « i/^/Tp.
The condition |9^/3t | » Iw^l means that T « rp

or r « I (cf. Sec. 4), and allows us to use the method
of successive approximations, which corresponds to
an expansion in inverse powers of the magnetic field.
One can show that the solution of Eq. (5.7) that satis-
fies the condition (5.9) can be represented as follows:

if; = W^Vi -f q (W^Vi — W^Vt) + qz (W^Vt — PFp1^) + . . .

1 — q P p

where the operator q is given by the following equa-
tion*

i t

t— \ Wv(fdt. (5.12)

*In order for the expansion (5.12) to be meaningful, it is nec-
essary that the function cp satisfying the condition $1 cp = 0.
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Formulas (5.11) and (5.12) provide an algorithm
for calculating the functions fa in the form of a power
series in the inverse magnetic field. To accomplish
this calculation we must know the explicit form of the
operators Wp and W"1. But for various basic conclu-
sions, in particular, fo explain the dependence of the
different components of the resistance tensor on the
strong magnetic field, it is sufficient to know only the
topology of the Fermi surface and the neighboring
constant-energy surfaces.

In the case of closed trajectories it follows from
the equation of motion (5.1) that

t7a = 0 (a = x, y), vz^0. (5.13)

Thus the expansion of ipa (a = x, y) begins with
terms proportional to l/H, while that of ipz starts
with a term independent of the magnetic field. Using
formulas (5.11) and (5.12) and the equation of motion
(5.1) one can easily obtain

(5.14)

For computing the electrical conductivity tensor
cr̂ k o n e must use formula (1.18), transforming from
integration over px, py, and pz to integration over
e, p z , and t. The Jacobian is easily computed using
the equation of motion (5.1). If we write (5.1) in com-
ponents as a ratio of determinants

S{px< e. pz) _ eH_ d(s, px, pz)
 d(Py< E> Pz) _ _ eH_ 3{e, pu, pz)

d(t, E, pz) ~~ c d(py, px, pz) ' d(t, s, pz) c d(px, py, pz)

and cancel common factors, we get

Thus

(2n)i)3

»(Px
d(t

eH
c

, Py, Pz)
E, Pz)

P f f dn

eH

F

6 'X

(5.15)

(5.16)

Using this formula for the electrical conductivity
tensor, one can show that the Onsager relations in a
magnetic field (4.3) do not require any other assump-
tions about the collision integral than those formu-
lated in Sec. 1 (cf. Appendix IV).

We now substitute the expansion (5.14) in (5.16).
We start by calculating the components CTXV and
(TyX, where in place of vx and Vy we substitute their
values from the equation of motion (5.1)
(vx = -(c/eH)(9py/8t), vy = ( c/eH)(9px/3t)):

de, \ dpz

tH

From this equation* it is clear that the term contain-

*We shall not give the obvious values for the integration lim-
its. We note that, by assumption, we are dealing with closed tra-
jectories.

ing W
and

- 1 WpPx drops out because of the t integration,

dt pxdpu=±S(e, pz (5.17)
(e, P.)

Here S( e, pz ) is the area of the section of the con-
stant-energy surface e(p) = e by the plane p z

= const. The sign is determined by the direction of
circulation, i.e., by the sign of the effective mass m*
(cf.[3], Sec. 3). Thus, asymptotically in high fields

) — S2(e, pz)}, (5.18)

where the first integral is taken over those parts of
the energy bands where m* > 0, and the second over
those where m* < 0. We also assume a summation
over all partially filled bands.

If we assume that —9np/3e = 6 ( e — ep), then

a - ec 2 [ (Sa*y- TT (2n?o3 ] { '
pz)—S2(eF, pz))dpz (5.19)

and, finally,
2ec (5.20)

Here Vt ( ep ) is the volume bounded by that portion
of the many-sheeted Fermi surface within which the
energy is less than the Fermi energy (m* > 0),
while V2 ( ep ) is the volume bounded by that part of
the Fermi surface within which the energy is greater
than the Fermi energy (m* < 0 ).

If the closed trajectories are located on an open
Fermi surface, Vj (V2) is the volume bounded by the
Fermi surface and the boundaries of the reciprocal
lattice cell (Fig. 5).

Noting that at zero temperature the electrons
occupy all states with energy less than ep, we find

ecjnj — »2)
Oxy = Jl . (5.21)

where n, is the number of occupied electron states
with positive effective mass, while n2 is the number
of empty electron states with negative effective mass.
It is natural to call nj the number of "electrons" and
n2 the number of "holes."

Thus, if the Fermi surface is closed (or, in the
case of an open Fermi surface, if for all p z there
are only closed sections) the asymptotic form of ffXy
is determined by (5.21). We emphasize that in this
case crXy does not depend on either the direction of
the magnetic field or on the nature of the collisions
of the conduction electrons, but is determined only by

FIG. 5
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the numbers of electrons and holes. The component
ffyX = —cTxy This statement is proved by direct cal-
culation, but also follows from the Onsager relation
(as we shall see, the symmetric part of the tensor is
asymptotically much smaller: it is proportional to
1/H2).

One should treat specially the case when there are
equal numbers of "electrons" and "holes" (nt = n2).
In this case the expansion of the components axv,
<7yX starts with terms proportional to l/H2. At the
same time the expansion of the antisymmetric part
starts with terms ~ l/H3. By a suitable choice of the
x and y axes one can make the symmetric part of
the tensor crjk(Sjk) diagonal; in this coordinate sys-
tem the expansion of <rXy and <JVX starts with terms
proportional to l/H3.

We note that equality of the numbers of "electrons"
and "holes" is nothing exceptional: all metals with
an even number of electrons per unit cell have con-
duction electrons only because the energy bands
happen to overlap. The number of freed states
("holes") in the lowest band is equal to the number
of occupied states in the upper band ("electrons").
The concepts of "electron" and "hole" are completely
unambiguous if the Fermi surface is closed. For an
open surface one should speak of "electron" or
"hole" orbits, depending on the direction of motion
along them. If the overlap of the energy bands is
small (Fig. 6), as a rule the constant-energy surfaces
are closed. This seems to be the structure of the
energy spectrum in Bi, As, and Sb.

FIG. 6

Strictly speaking, complete compensation (n, = n2) is possible
only at absolute zero, and also only for an ideally pure metal.
Thermal excitation leads to the participation in the galvanomag-
netic effects of states with open surfaces (as is the case for the
conductivity; cf. Sec. 2 and also[37]). Thus, although the number
of electrons in the upper band is equal to the number of electrons
in the lower band, the equality nt — n2 " 0 may be violated. It is
obvious that at sufficiently low temperatures

n\ — ni==

As
' T

where n is the number of electrons in the band (= n,, n2) while
Ae= ] eF - e c | (ec is the critical energy at which constant-
energy surfaces change their topology).

The presence of impurities increases either the number of
electrons (donor impurity) or the number of holes (acceptor impur-
ity) in proportion to the concentration, making the quantity A n

different from zero. Concerning the dependence of the tensor
components a i k on magnetic field in this case, cf. below.

We turn to the computation of the components of
the tensor cr^. Proceeding just as before, we find
that the expansion of crxx, ayy starts with terms
~l/H2, and that of CTXZ, cryz with terms ~ l/H; a z z

tends to a constant as the field goes to infinity. Thus
the electrical conductivity tensor in strong fields has
the form (n] * n2)

(«**)= -

V

"XX

ec(ni-
H

azx
H

H
avv
H*
azy

"xz
H

"yz

~H

azz

(5.22)

where the components of the matrix a^ tend to con-
stants. In especially symmetric cases, individual
components of the matrix a^ may go to zero. For
example, in the isotropic case a a z = 0 while azz

= a; ff is the value of the electrical conductivity in
the absence of the field.

From (5.22) it is evident that in those cases where
the Fermi surface is closed, all components of the
tensor aj^ except CTZZ go to zero as the magnetic
field goes to infinity; the way the different components
approach zero will be different.

Taking account of the smearing of the Fermi levels
may lead to a change in the results obtained here, but
the corrections are negligibly small for actual fields.
Furthermore, much earlier (at smaller fields) we
must take account of the quantization of the orbits in
the magnetic field (cf ^ ) , before we have to consider
the temperature smearing.

For comparison we give the expression for the
electrical conductivity tensor for the case of a
quadratic isotropic dispersion law in the r-approxi-
mation (magnetic field arbitrary):

±a

0

1 + Q2T2

0 OJ

(5.23)

Here SI = eH/m*c is the Larmor frequency, the "+"
sign corresponds to an electron band, the " - " sign
to a hole band, and a = ne2T/|m*|. If electrons from
several bands participate in the conduction, the con-
ductivity is the sum of similar tensors.

In some cases it is convenient to have a more general expres-
sion for the electrical conductivity tensor, valid over the whole
range of variation of the magnetic field. If we keep to the T-ap-
proximation (Wp {^j = \JJ-JT~), from (5.7) using the condition (5.8)
it follows that

df (5.24)

We note that this solution is also valid in the case of open tra-
jectories. It is used, for example, for calculating the dependence-
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of the transverse resistance of noble metals on the magnetic
field.P9] In[36] a method is also given for solving (5. 7) that is
valid for an arbitrary collision integral and for any value of mag-
netic field, but is restricted to the case of closed trajectories.
The solution is obtained in the form of a series.

Substituting (5.24) in (5. 16) for aik, we find*

k=—e^ \ <pl7l(e,

where

<tlk= l(t)vh(t-f)te
 x df

(5. 25)

(5. 26)

The bar denotes an average over a period in the case of closed
trajectories (cf. 5.10). In the case of open trajectories the average
is understood in the sense of a limit as T -» ºº.

Expressions (5. 25) and (5.26) are convenient for investigating
specific dispersion laws.

In experimental studies of galvanomagnetic phe-
nomena, one usually transmits through the crystal a
current of given magnitude and direction, measures
the components of the electric field in three non-
coplanar directions (possibly three orthogonal direc-
tions; cf, for example,'-41-'). This means that the quan-
tity studied is the tensor of the specific resistance in
the magnetic field pjk(H), which is the inverse of
the electrical conductivity tensor (pj^ = ffj"^)-

Using the expressions found earlier for the asymp-
totic form of the electrical conductivity tensor
cjjk(H), one easily finds the asymptotic form of the
resistance tensor in strong fields.

If the number of electrons is not equal to the num-
ber of holesf (n t * n2), then according to (5.22)

H

Qi*(H) = H

V

\

J

(5.27)

where the components of the matrix bj^ tend to con-
stants as H —* «. They can be determined in terms of
the asymptotic values of the components of the
matrix ajjc.'-

36^ if the measured current j is perpen-
dicular to the magnetic field, then the x axis can be
taken along the current direction. Then the res i s t -
ance p (ratio of electric field along the current to the
current density) is p x x (in general p = PikJiJk/J2)>
and the quantity PyX/H coincides with the Hall "con-
stant" R = Ey/Hj. Thus, in this case (closed trajec-
tories, nj * n2) the resistance always tends to satu-
ration independent of the directions of the magnetic
field or the current measured. The asymptotic value
of the resistance naturally depends on the directions
of the magnetic field and current by virtue of the
anisotropy of the matrix bj^, which is related to the

*Chambers[40] gives almost the same form for the solution of
the kinetic equation.

tRemember that we are considering the case of closed trajec-
tories.

anisotropy of the dispersion law. In Appendix IV it is
shown that p ( H —• ») is always greater than
p (H = 0 ), and this conclusion is based only on the
fact that the collision operator is independent of the
magnetic field. The last statement does not hold in
the quantum case.38-'

The asymptotic value of the Hall "constant" R^
is an important characteristic of the electron energy
spectrum of a metal. If the Fermi surface is closed
(or, in the case of an open Fermi surface, if for all
p z there are only closed sections),

* - = ( s r = b ^ (5-28>
and is independent of the direction of the magnetic
field.

Investigations in recent years have shown that
various metals have a closed Fermi surface with
unequal numbers of "electrons" and "holes"*
(In,^2] Al,[32] the alkaline metals K and Na [43 j). If
the Fermi surface is closed and the number of elec-
trons is equal to the number of holes (nj = n2), then
because CTXV ~ l/H2 all the components transverse torXy
the magnetic field of the tensor
where

tend to infinity,

= x, y) (5.29)

and only the longitudinal component p z z tends to a
constant.

From this we see that in this case the resistance
for any direction of the magnetic field tends to in-
finity, so long as the current has a component t rans-
verse to the magnetic field.

The Hall field is not the main part of the asymp-
totic form for the electric field perpendicular to the
current. In any direction there is a term quadratic
in the magnetic field which characterizes the aniso-
tropy of the resistance (difference in principal values

Pxx a n d Pyy)-
The Hall "constant" in strong fields R^ (the

limiting value of the quantity [p x y ( H) - p x y ( -H )] /
2H for H —• ºº) depends on the direction of the mag-
netic field, and is determined not only by the energy

*The investigations of Al give very convincing proof that ar-
guments about the character of the carriers in metals can be ap-
plied only to measurements of R^ and not to the Hall "constant";
in weak fields the Hall constant R at high temperatures has the
sign corresponding to electrons, while at low temperatures (i.e.,
in high fields) the sign is that for holes. According to the Harri-
son model, the main region of the Fermi surface has hole charac-
ter. The question of the bands with small numbers of carriers in
Al is not completely clear. It is possible that for definite direc-
tions of the magnetic field there are open sections whose presence
results in singularities in the dependence of the resistance on
magnetic field. The Fermi surface of In and Al has recently been
investigated carefully in the work of Gantmakher, Krylov[103] and
VoPskii.[104] Cf. also [1OS], where the parameters of the Bi spec-
trum are found from the experimental data.
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spectrum but also by the nature of the scattering of
the conduction electrons.

We note that when nt ^ n2 the Hall vector is very
accurately parallel to the magnetic field, while when
nj = n2 all the components of the Hall vector are of
the same order.

The quadratic increase in resistance for any di-
rection of the magnetic field has been clearly estab-
lished on various metals (Bi, As, Sb'-44-'). This re-
sult is in beautiful agreement with our notions about
the character of the energy spectra of these
metals.[16'45]

If the difference between the numbers of electrons and holes
is very much less than the number of electrons (nt = n2,
|n, — tij| « ni), the dependence of the components of the tensor
p i k on magnetic field can be studied in somewhat more detail
than was done above. According to [46], the resistance and the
Hall "constant" have the following dependence on magnetic
field (for H » Ho, where Ho is the magnetic field for which the
free path is equal to the electron orbit radius, r = /):

(5.30)

The parameters p , a, Ho depend on the angle between the direc-
tion of the magnetic field and the crystal axes; a = 1.

Formulas (5.30) are in good agreement with the experimental
results of N. E. Alekseevskii, N. B. Brandt, and T. I. Kostina,[47]
who made measurements on Bi containing small amounts of impur-
ities.

Using primitive model assumptions about the conduction elec-
trons, one can get compact formulas describing the behavior of
the resistance over a wide range of fields. Thus, if one assumes
that there are two bands with quadratic anisotropic dispersion
laws, with mobility tensors proportional to one another
(u iĵ  = ku^ k>) and with the number of electrons equal to the num-
ber of holes (n, = n2), an elementary calculation leads to the fol-
lowing relations:

An fl

a2cos2a-(-CT1 sin2 a /
e - — ^ i -

m a = -

Here Ho - c/e Yu^u'tf, av a2 are the principal values of the con-
ductivity tensor, <72

k - ne2ulk (1 + k); the magnetic field is along
one of the principal axes (the third); the current is perpendicular
to the magnetic field; a is the angle between the first axis and
the current.

We note that in this simple model one gets a single quadratic
dependence for the resistance and no field dependence of the Hall
"constant." This is particular to the two-band model with a quadra-
tic dispersion law. The introduction of a third band drastically
changes this state of affairs. One can show (with the same as-
sumptions about the dispersion laws) that the coefficients of H2

in weak (r » /) and strong (r « /) fields are different, where,
in agreement with experiment,["] the coefficient of H3 in weak
fields is always greater than that for strong fields. The Hall
"constants" in weak and strong fields also are different.

Although the introduction of several bands enables one to
give a fair description of the experimental curves obtained using
a wide range of fields,[50] it is clear that formulas, obtained us-
ing very special model assumptions cannot be used for determin-
ing quantitative parameters for metals.

The galvanomagnetic characteristics (more pre-
cisely, their asymptotic values in strong fields) are
extremely sensitive to the nature of the energy spec-
trum and, as we shall see, are a superb instrument
for determining the topology of the Fermi surface.

For metals with closed Fermi surfaces, the gal-
vanomagnetic characteristics enable one, first of all,
to establish the fact that they are closed, and second,
to determine the difference in numbers of electrons
and holes (n j — n2).

The most important information about the charac-
ter of the electron spectrum can be gotten by studying
metals with open Fermi surfaces (cf. Sec. 6).

In concluding this section we should like to men-
tion an interesting nonlinear galvanomagnetic effect
(in the sense of a deviation from Ohm's law) which
was discovered by Esaki, and which consists in the
fact that at a definite value of the electric field the
resistance of Bi rises sharply (of.1-51-1, Fig. 1). As
shown by the author, this rise in resistance is ex-
plained as follows. We know that in crossed electric
and magnetic fields electrons drift with a velocity
V(jr = cE/H. When v^r, as a result of increase of
the electric field, becomes larger than the sound
velocity s (V(jr > s ), the electrons begin to radiate
phonons ("Cerenkov" radiation of sound waves),
which leads to an increase of the resistance.*

6. GALVANOMAGNETIC PHENOMENA. STRONG
FIELDS. OPEN TRAJECTORIES

In the preceding section we investigated in detail
the galvanomagnetic phenomena for metals having a
closed Fermi surface. In this section we consider the
case of open Fermi surfaces. The most significant
feature of the galvanomagnetic properties of metals
with open Fermi surfaces is their marked aniso-
tropy. 5 " For some directions of the magnetic field
the transverse resistance in strong fields ( r « I)
tends to saturation, while it increases quadratically
for others. This property is used for studying the
topology of the Fermi surface.'-54-'

One can demonstrate the marked anisotropy of the
resistance for the simplest example of an open Fermi
surface. Consider a metal for which the Fermi sur-
face (and the constant energy surfaces touching it) is
a crimped cylinder (Fig. 7). We take the axis of the
cylinder as the x axis. As usual the magnetic field
is along the z axis.

If the magnetic field is not perpendicular to the
axis of the cylinder, all the cross sections are
closed. We treated this case in Sec. 5. It is true that
a special treatment is required when the field is al-
most perpendicular to the open direction, but the
electron trajectories are still closed, but very

*There is now a large literature on the Esaki effect; cf., for
example,[5S] and the bibliography given there.
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FIG. 7. Constant-energy surface of the
'crimped cylinder" type.

elongated, so that their length is much greater than
the size of the cells of the reciprocal lattice. We
shall consider this situation below.

In solving the kinetic equation for the case of open
surfaces we must consider various points. In the
first place, the characteristic time of the motion
(for determining the order of magnitude of
|3i/jj/at| in Eq. (5.7)) should be taken to be the time
during which the momentum of the electron changes
by an amount of order | 27rfib|, where b is the re-
ciprocal lattice vector in the direction of opening
(along the x axis in the present case); the magnetic
field will be considered to be large if the relaxation
time is much greater than this time (we note that
from the equation of motion (5.1) it is clear that this
relaxation time is inversely proportional to the mag-
netic field and of the order of the period of revolu-
tion of the electron T). Secondly, the boundary condi-
tions should be made more precise. As stated in
Sec. 5, the boundary conditions are provided by the
requirement that the function tp be finite for large
values of the "time" t (for t —"• ± ºº). If we general-
ize the definition of the average value of a function
by setting

u = lim - - \ u(t)dt, (6.1)

the boundary condition for the function tp^ is written
formally the same as for the case of closed trajec-
tories:

Wv{^} = Vi. (6.2)

Thirdly, the average value of the velocity components
transverse to the magnetic field is zero. For our
choice of coordinate system

(6.3)

while

Vx== º ^ X = 0. (6.4)
x eH at x '

We make the last statement more precise: there are
values of pz ( |p z | < p t; Fig. 8) for which the cross
sections are open and vv * 0.

The formal solution (5.11) of Eq. (5.7) is valid also
for the case of the crimped cylinder, but the expan-
sion of tp in inverse powers of the field now has the
form (cf. (5.14)):

<Pi),

• ) + . . . (\Pz\>Pi).

(6.5)

Using these asymptotic values of i/̂ , one can cal-
culate the asymptotic values of the components of the
electrical conductivity tensor

(«**) =

f axx

w
ay*
H

a'zx

axy
H

a'vv

"xz
H

a'yz (6.6)

H a2Z I

where the expansion of the matrix elements a^ in
inverse powers of the field starts with the nonzero
term. Inverting this tensor, one easily finds the
asymptotic value of the resistance tensor

<xx HbX!) Hbxz

HbyX Oy,j byz

\Hb'zx b'zy b'zz

(6.7)

the elements of the matrix
the elements of the matrix

Because vv 0, axy and
bt

are determined from

depend not only on
y y

the energy spectrum but also on the form of the
collision integral (cf. the derivation of formula (5.21)).
Let us analyze these results.

One of the components of the transverse resist-
ance (pxx) increases quadratically with increasing
magnetic field, while the other (Pyy) tends to satura-
tion. We note that the resistance in the open direc-
tion (along the x axis) increases with magnetic field.
The difference in asymptotic behavior between Pxx
and Pyy shows that there is a marked dependence of
the resistance on the direction of the current j (even
when j 1 H). For an arbitrary current direction the
resistance p = pjkJiJk/J2 increases quadratically, but
for a current along the y axis it tends to saturation.

If, for a metal whose Fermi surface is a crimped
cylinder, we examine the dependence of the resist-
ance on the direction of the strong magnetic field
( H » Ho or r « I) for an arbitrary direction of the
current, we should observe the following picture: for
an arbitrary direction of the magnetic field the re-
sistance tends toward saturation, for particularly
selected ones (magnetic field perpendicular to the

FIG. 8
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open direction) it increases quadratically. Analyzing
the equation for the function ip^, one can show'-55-' that
the transition from one dependence to the other oc-
curs in a narrow range of angles A6 of order
Ho/H « 1. This is apparent from the fact that for
elongated trajectories the period of revolution of the
electron is inversely proportional to the angle be-
tween the magnetic field and the plane perpendicular
to the open direction.

We note that except for the marked angular de-
pendence described here, the resistance and other
galvanomagnetic properties show a smooth dependence
on the direction of the magnetic field. It can be ex-
plained only by a numerical solution of the kinetic
equation and will not be discussed here.

In L55-' the analytic dependence of the resistance on
the magnetic field direction was found; it had the
following form:

ftff2 cos" a
6 =~ (6.8)

Here /3, A and A are smooth functions of angle
(X ~ 1) T) = H/Ho^, while C (rj) is a smooth function
of its argument, and C (0 ) = C (ºº) = 1; a is the angle
between the current direction and the x axis. We r e -
call that in this formula S- is the angle between the
magnetic field and the plane perpendicular to the open
direction (S- « 1).

Figure 9 shows schematically the dependence of
the resistance on the magnetic field direction S-, cor-
responding to formula (6.8).

Practically always the direction of the current is
determined by the geometry of the sample (its axis),
while the magnetic field rotates in the plane perpen-
dicular to the current. Knowing the direction of the
current relative to the crystal axes, and the direction
of the magnetic field for which the resistance in-
creases quadratically, one can determine the plane in
which the open direction lies. Thus, for a unique de-
termination of the open direction one needs experi-
ments on at least two samples with different current
directions. In practice the problem of determining
the open direction is more complicated than may
appear from this description, since we are required
not only to determine the open direction, but also to
find out the type of the Fermi surface.

We also mention the following point. If the Fermi surface is
almost closed, i.e., the bridges are very narrow (Fig. 10), which

FIG. 10

in our case means that the quantity P; is small (i/ = p,/27Tnb « 1,
where b is the size of the reciprocal lattice cell in the plane
perpendicular to the open direction), the dependence of the resist-
ance on the strong magnetic field (H » Ho) is somewhat more com-
plicated. It is easy to show that the resistance in the open direc-
tion depends on the strong magnetic field as follows:

(6.9)

i.e., up to magnetic fields of order H0/\/z7 » Ho one will not be
aware of the openness of the Fermi surface.

A few words about the Hall "'constant." For an
arbitrary direction of the magnetic field (not close to
the y, z plane, perpendicular to the open direction)
the Hall "constant" is isotropic and determined by
the volume V contained inside the part of the Fermi
surface which is located within one cell of the r e -
ciprocal lattice (for definiteness, we are assuming
that with increasing energy the crimped cylinder be-
comes larger):

R - - i v'- 2V'
00 n'ec ' ~(2n1,)3-

For a direction of the magnetic field close to the
y, z plane, the value of the Hall "constant" may
change markedly. It depends on the collision integral

(thisjs related to the fact that 9px/8t * 0, so that
Wp1 WpPv does not drop out of the expression for
crXy). Figure 11 shows the angular dependence of the
resistance and the Hall "constant" for metals for
which the Fermi surface is a crimped cylinder.

The dependence of the resistance on magnetic field
direction described here also occurs when the Fermi
surface splits up into a "crimped cylinder" and an

FIG. 9 FIG. 11
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arbitrary number of closed regions, so long as there
is a compensation of volumes, i.e., so long as the
expansion of crXy for an arbitrary direction of the
magnetic field does not start with a term of order
l/H3. In the latter case the resistance increases
quadratically for an arbitrary direction of the mag-
netic field (just as for a metal with the number of
electrons equal to the number of holes, nj = n2).

In treating the galvanomagnetic properties of
metals for which the Fermi surface is a crimped
cylinder we have shown that a marked dependence on
magnetic field direction is observed for those cases
where the topology of the electron trajectory changes
in the magnetic field. In the case considered, the
singular directions are those for which the magnetic
field is perpendicular to the cylinder axis. On a
stereographic projection* this corresponds to a circle
of unit radius (cf. Fig. 12, where the polar axis coin-
cides with the open direction).

Now let us consider an open surface of the type of
the "space grid." In this case open trajectories oc-
cur very frequently. Figure 13 shows stereographic
projections of the magnetic field direction (shaded
regions and solid lines) for which open trajectories
occur ( e = ep, pz = const). The different pictures
correspond to different types of Fermi surfaces.'-55""57^

Examination of the stereographic projections (cf.
Fig. 13) shows that there are different regions of
magnetic field directions: a) in which there are no
open trajectories (unshaded), b) in which there are
layers of open trajectories with the same opening
direction (shaded) and c) in which there are layers
of open directions with different directions of open-
ing (shaded twice). In addition there are at least four
types of singular magnetic field directions:

1. Magnetic field directions for which there is a
layer of open trajectories that form a single manifold.
This occurs in particular, if there is an isolated
direction of the open trajectories. Examples are the
directions perpendicular to the axis for a surface of
the "crimped cylinder" type, the solid lines on the
stereographic projections for the case of a surface of
the "space grid" type.

2. Boundaries of two-dimensional regions (solid
angles) in which there are open trajectories (bound-
aries of the shaded regions in Fig. 13).

3. An isolated direction within the region of open
trajectories, in which the layer of open trajectories
degenerates into an isolated cross section (the points
in Fig. 13). As a rule this direction coincides with
the direction of a 3-, 4-, or 6-fold axis.

•Stereographic projection is the mapping of a hemisphere of
unit radius on a plane, where the position of a point is given by
the polar coordinates p and \ . The correspondence with the
points on the hemisphere is given by the following equations:

Q = 26/JI, x = <P.

where 8 and cp are the azimuthal and polar angles, respectively.

FIG. 12

4. The boundary of the region of those magnetic
field directions for which there are layers of open
trajectories with different opening directions (bound-
aries of twice-shaded regions in Fig. 13).

Along directions of the magnetic field other than
the singular ones, one should find the following situ-
ation:

a) In unshaded regions (regions of closed cross
sections) the resistance tends toward a constant
value (saturation), and the Hall "constant" is deter-
mined by the volume occupied by the electrons,
either free electrons or "holes" (cf. Sec. 5).

b) In a once-shaded region (these are layers of
open trajectories with a common opening direction)
the resistance increases proportionally to the square
of the magnetic field (except in the case where the
electric current which is perpendicular to the mag-
netic field, is perpendicular to the opening direction);
the Hall "constant" depends in a complicated way on
the collision integral (cf. p. 828).

c) In the twice-shaded regions (where there are
layers of open trajectories with different opening
directions) the resistance tends toward a constant
value (saturation), the Hall "constant" depends on

FIG. 13. Stereographic projections of magnetic field direc-
tions (shaded regions and solid lines) leading to open trajec-
tories, for different forms of the Fermi surface of the type of the
"space grid."
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FIG. 14

the collision integral and is very small (for H —* «
it tends to zero).

Now let us consider the dependence of the resist-
ance on the magnitude and direction of the magnetic
field near the singular directions.

1. Near the directions indicated by the heavy lines
in Fig. 13, the situation is completely analogous to
that which occurs for a Fermi surface of "crimped
cylinder" type near the plane perpendicular to the
axis of the cylinder. In particular, formula (6.8) is
valid. In this case the angle $• measures the "dis-
tance" to the heavy lines on the stereographic pro-
jections.

2. Considering the behavior of the resistance near
the boundaries of the two-dimensional regions in
which there are open trajectories, we must consider
that in the unshaded regions there are only closed
trajectories, while in the shaded regions there are
open trajectories, whose number (width of layer)
vanishes at the boundary. In this connection, outside
the shaded region the standard dependence of resist-
ance on magnetic field (saturation) is established out
to the boundary, while if we approach the boundary
from the direction of the shaded region the dependence
of the resistance on the magnitude and direction of
the magnetic field has the following form:

(6.10)

(the notation is the same as in (6.8)). Figure 14 shows
the dependence on magnetic field direction near the
singular directions.

3. An analogous situation also occurs near those

isolated directions in which the layers of open tra-
jectories degenerate to isolated sections (the points
in Fig. 13). In particular, formula (6.10) retains its
validity. Figure 14 shows the dependence on magnetic
field in this case.

When the magnetic field is rotated in a plane, in
various cases one can get a rosette shape of the re-
sistance (dependence of resistance on direction for a
fixed magnitude of the magnetic field) which has all
three types of singularities.

For the dependences considered here it is charac-
teristic that for a particular direction of the current
(a = n/2) the anomaly in the variation of the resist-
ance vanishes.

4. On the boundaries of the twice-shaded regions
the resistance goes over from saturation (within the
region) to a quadratic dependence (outside the region).
The analytic expression for the resistance near the
boundary has the following form:

(6.11)

where p' and A are smooth functions of angle, and
A ~ 1.

As we see the study of an open Fermi surface of
the "space grid" type leads to the most varied situa-
tions, and shows that the comparison of the asymp-
totic variation of the resistance with magnetic field
for different directions with the theoretical "pic-
tures", i.e., with stereographic projections like those
in Fig. 13, allows one not only to determine the type
of the Fermi surface, but also to study its form in
considerable detail.

A similar analysis can also be carried out for
surfaces of other types. For example ref.*-58^ explains
the dependence of the resistance on the magnitude and
direction of the magnetic field for metals whose
Fermi surfaces are "plane grids" (Fig. 15).

In all cases the characteristic properties of metals
with an open Fermi surface are, first, marked aniso-
tropy of the resistance transverse to the magnetic
field, and, second, a strong dependence of the resist-
ance on the direction of the electric current (when
j 1H).

FIG. 15. Open Fermi surface of tin.[5*]
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FIG. 16. Characteristic angular dependences of resistance in strong magnetic field (the lower graphs are for Au).

So far we have considered cases where in the un-
shaded regions, i.e., for those directions of magnetic
field for which there are no open sections, the re-
sistance tends to a constant. This means that there
is no compensation of hole and electron volumes. If
there is such a compensation, then in the unshaded
regions one finds a quadratic increase of resistance
(just as in the shaded regions). On the boundaries of
these regions the resistance shows a jump. Similar
jumps are also seen for all singular directions. This
case has been studied in detail, in connection with
studies of the galvanomagnetic properties of tin,* in

*The Fermi surface of tin consists of an open surface of
"plane grid" type (cf. Fig. 15) and several closed regions,
whose shape cannot be studied by the methods described here.
To study the shape of these closed regions one uses resonance,
magnetoacoustic, and other methods.

the work of N. E. Alekseevskii, Yu. P. Gaidukov,
I. M. Lifshitz, and V. G. Peschanskii.[5fl The charac-
teristic stereographic projections of the "plane
grid" type are shown in Fig. 17. We also mention
that, just as in the case of closed surfaces, the com-
pensation of hole and electron volumes is not a ran-
dom phenomenon. It should occur whenever the num-
ber of electrons per unit cell is even.

In recent years there has been a great deal of
work on the comparison of experimental results on
the dependence of resistance on magnetic field with
different models of the Fermi surface. Figure 16
shows the results of experiments on anisotropy of
resistance.

The dependence of the Hall "constant" on magnetic
field direction for metals with an open Fermi surface
has a distinctive character (cf. also Fig. 11), which
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FIG. 17. Stereographic projections of singular direc-
tions of the magnetic field for constant-energy surfaces of
the "plane grid" type (cf. Fig. IS).

allows one to use measurements of the Hall effect for
studying the structure of electron energy spectra.'-59^

In particular, from measurements of the Hall
"constant" one can say whether the resistance satu-
ration is the consequence of closure of all cross
sections, or a consequence of the presence of layers
of open sections with different opening directions. In
the latter case the Hall "constant" tends rapidly to
zero (like 1/H2).[58]

As we said above, the asymptotic value of the Hall
"constant" is independent of the nature of the colli-
sions, for all those directions of the magnetic field
for which there are no open sections (cf. Sec. 5), but
nj * n2. A similar situation exists if, in addition to
closed sections, there is an isolated open section (the
third case of the singular directions). For such di-
rections

2 1
Rcº ~- (2S7rp ~W±7ZJHh ' ( 6 - 1 2 )

where AV = V, - V2 = ( 27rn")3 (m - n2 )/2, while the
definitions of the quantities d m j n , bj and b2 are
clear from Fig. 18. The sign is determined by the
direction of motion of the electron along the open
trajectory. It is clear that measurement of the Hall
"constant" for these special directions allows one to
determine not only the minimal diameter of the tube

FIG. 18

containing the opening direction, but also the direction
of motion of the electron. If the quantity AV is not
zero, it must be measured for other directions of the
magnetic field.

The marked dependence of the resistance on mag-
netic field direction allows one in certain cases to
explain the linear increase of the resistance of poly-
crystals with increasing magnetic field (the law of
P. L. Kapitza). In fact, if a quadratic growth
(p ~ H2) is observed within a narrow range of
angles A0 ~ Ho/H (cf. formula (6.8)), any averaging
of the resistance over angles in the interval 50
» Ho/H (containing At? ) leads to a linear increase
of resistance with field. It should be emphasized that,
because of the small width of the maximum, the
nature of the averaging plays no important part: in
particular, averaging the conductivity and then taking
the reciprocal gives the same result, a linear depend-
ence of resistance on magnetic field.'-55-' It is entirely
possible that this is not the only cause of the linear
rise in the resistance. As E. S. Borovik has shown,'-50-'
a linear dependence is frequently seen in the transi-
tion region (when H ~ Ho) from the quadratic de-
pendence in small fields ( H « Ho) to saturation or
to a second quadratic dependence in strong fields
( H » Ho). Thus in certain cases the linear depend-
ence may mean that the measured values of the re-
sistance should not be regarded as asymptotic.
Finally, quite recently M. Ya. Azbel'^a and M. Ya.
Azbel' and V. G. Peschanskii[35a;l have shown that
including the boundaries of the sample, even for
samples of quite large size, may lead to a substantial
complication of the p (H) dependence. In particular,
when r « / 2/d, where d is of the order of the wire
thickness, the resistance depends linearly on the
magnetic field.

So far we have used classical concepts in con-
structing a theory of galvanomagnetic properties.
The possibility of neglecting the energy quantization
was based on the smallness of the oscillating terms
in the magnetic field. There is, however, a quantum
effect that can change the smooth variation of the
components of the resistance tensor with changing
magnetic field. We are speaking of magnetic break-
down,60-' as a result of which the electron under the
action of the magnetic field can make a transition
from one classical orbit to another. The probability
P for such a transition, as shown by Blount, ^ is
quite high (P = exp(-HB/H), where HB = KA2m*c/eeF.
A is the energy barrier separating one classical
orbit from another, and K is a constant of order
unity). Thus in many cases P reaches unity in'fields
much smaller than Ho (for which I = r ). These
transitions are especially important if, as a result of
the magnetic breakdown, the topology of the trajec-
tories changes (trajectories change from open to
closed or vice versa). If we start from the Harrison
model'-62-' (i.e., from the approximation of almost
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o 50

FIG. 19. Magnetic breakdown between open and closed
orbits, a) Orbit with breakdown probability equal to zero;
b) with breakdown probability equal to unity; c) dependence

eHT
of transverse resistance on magnetic field (a> T = , &>„ T

characterizes the probability of breakdown).

free electrons), then as a result of magnetic break-
down (P = 1) the electron trajectories in the mag-
netic field are circles for all polyvalent metals. In
other words, in a sufficiently strong field (but such
that one can still neglect the energy quantization) the
electrons behave like an electron gas in free space.
These ideas were the basis of a calculation of trans-
verse resistance and the Hall effect in various
specific cases M (Fig. 19).

The experimental investigations seem to confirm
the existence of magnetic breakdown for several
metals (Mg, Znte4]).

7. THERMAL CONDUCTIVITY AND THERMO-
ELECTRIC PHENOMENA IN A STRONG MAG-
NETIC FIELD

The magnetic field changes not only the resistance
of the metal, but also its thermal conductivity, its
Thomson and Peltier coefficients, and other charac-
teristics of thermoelectric phenomena.^ This is
entirely natural, since the electrons whose motions
are significantly changed by the magnetic field are at
the basis of all these effects.

The dependences of the thermal conductivity and
thermoelectric coefficients on magnetic field are
often called thermomagnetic phenomena. Like the
galvanomagnetic effects, they can be divided into
transverse and longitudinal, even and odd effects.
The latter are analogous to the Hall effect. Starting
from symmetry arguments, one can construct the
dependence of the thermomagnetic coefficients on
weak magnetic field as an expansion in powers of the
field. The number of independent components in
these tensors (proportionality coefficients) is deter-
mined by the symmetry class of the crystal. Tra-
ditionally (true, in most cases for semiconductors)

thermomagnetic investigations are used for studying
the mechanisms of scattering of charge carriers. It
appears that there is still no work in which these
properties of metals are used for determining
parameters of the electron energy spectrum.

On the other hand, as the theoretical papers show
(and as we shall see below), the study of thermomag-
netic properties in strong fields allows one to deter-
mine a distinctive feature of the electrons that is ex-
tremely useful for establishing the spectrum.

Without repeating the arguments for justifying the
quasiclassical approach (cf. Sees. 1 and 4) we use
the technique developed for studying galvanomagnetic
phenomena for determining the dependence of the
thermomagnetic coefficients (cf. the beginning of
Sec. 3) on the magnitude and direction of a strong
magnetic field (I » r ).

The whole set of thermomagnetic effects is de-
scribed by the dependence on magnetic field of the
coefficients a^ and K^ in formula (3.1). The latter
are related by formulas (3.16) to the coefficients
ffik> îk> îk> a n ^ cik> where, according to the prin-
ciple of symmetry of the kinetic coefficients,

p

The tensors djk and bjk a r e given by formulas
(3.13), in which we must substitute the solution of the
kinetic equation

^L + Wm = v,. (7.2)

Equation (7.2) is derived similarly to Eq. (5.7) and
differs from it only in the collision operator (cf.
formulas (3.6) and (3.7)). In deriving it we have not
improved the form of the phonon distribution function
or, in other words, have not included the dragging of
the phonons by the electrons (cf. below).

Since the explicit form of the collision operator
does not affect the asymptotic behavior of the solution
(in strong magnetic fields), the analysis given in
Sees. 5 and 6 is applicable to the present case. In
explaining the dependence on the strong magnetic
field of the components of the thermal conductivity
tensor /qk and the thermoelectric coefficients ajk
one can, furthermore, use formulas (3.22), keeping
in mind, of course, that Kjk = — djk (cf. (3.24)).

It is completely clear that, with the possible ex-
ception of certain singular cases (cf. below) the
character of the dependence of the components of the
tensors bik> Cik, and dik coincides with the depend-
ence on magnetic field of the components of the elec-
tric conductivity. This allows us immediately to use
the results of Sees. 5 and 6. We should consider as
a special case the situation when the numbers of
electrons and holes are equal. As we know, the
peculiarity of this case is that, because of the com-
pensation of volumes (nj = n2 ) the expansion of the
component crXy (the z axis, as always, is along the
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magnetic field) begins with the quadratic term
(crXy ~ l/H2). This in turn results in a quadratic in-
crease in the transverse (to the magnetic field) re-
sistance. But equality of the numbers of electrons
and holes (nt = n2) does not mean that
(dVi/de)e=eF and (dV2/de)e=ep are equal, where
V](2)(e) is the volume inside (outside) the electron
(hole) part of the surface e (p ) = e. Consequently,
even when nt = n2 (where ni(2) = 2Vi(2)( ep )/(27rh")3),
the expansion of b x v and ex v starts'With a term
proportional to l/H (cf. formula (3.22)).

We present some fundamental results (for more
detail, cf. >67-'). First, for a closed Fermi surface

asymptotic form of the tensor Kfa is the following:

and n2

= ^ - ? ' - ^ ( « i — n2). (7.3)

This means that measurement of the Righi-Leduc ef-
fect (like the Hall effect) allows one to measure the
difference in numbers of electrons and holes. Second,
under these same conditions the asymptotic form of
the matrix dik is*

A

\~7T

1
'xx

W v«x

1

H

V

1

vxy

VV

Vxz \

J

(7.4)

vxx

The expansions of all components of the matrix
v\k begin with terms of zeroth power in the inverse
magnetic field, and all components (except v-
ĵ yy) depend on the collision integral, while

(7.5)

and consequently, the study of the Nernst-Ettings-
hausen effects in strong magnetic field allow one to
measure a characteristic of the electron energy
spectrum (d/de In (nt - n 2) e = ep), which cannot be
determined from galvanomagnetic (or any other) ex-
periments. In the case of a quadratic isotropic dis-
persion law (e = p2/2m), when n2 = 0

-f-lnK-rc2) = T i _ . (7-6)

If the number of electrons nj is equal to the number
of holes n2 and the Fermi surface is 'closed, all the
components of the thermal conductivity tensor «ik
depend on the nature of the scattering, where,
naturally, the asymptotic dependence on magnetic
field is the same as the asymptotic dependence of the
components of the electrical conductivity tensor. In
particular, the transverse components KXX, Kyy de-
creases sharply (KXX, Kyy ~ l/H2). This, it appears,
should enable one to separate the phonon (lattice)
contribution to the heat transfer in metals. The

(7.7)

In our case all the components of the matrix î k
depend on the angles between the vector H and the
directions of the crystal axes, while their specific
form is determined by the collision integral. We
should call the reader's attention to the fact that
metals with nt = n2 should be distinguished by a
relatively high thermo-emf in strong magnetic field.

Our treatment of the different cases of open Fermi
surfaces shows that as in the case of the galvanomag-
netic phenomena, the most characteristic feature of
the case of closed surfaces is the marked anisotropy
of the thermomagnetic characteristics: as we ap-
proach a selected (singular) direction, the asymptotic
form of the tensor components Kjk and a ^ changes
markedly, and as is clear from our preceding re-
marks, the asymptotic behavior of »qk is completely
analogous to the behavior of crjĵ  (cf. Sec. 6).

L. E. Gurevich and G. M. Nedlin t68] called atten-
tion to the fact that phonon drag by the electrons in a
strong magnetic field can change the asymptotic be-
havior of the thermomagnetic coefficients (in terms
of the inverse magnetic field). The point is that the
phonon drag reduces (as shown in"-68 )̂ to the appear-
ance of "additional" forces on the right side of Eq.
(7.2), while none of the components of this "force"
average to zero (we recall that in many cases, vx
= Vy = 0 ). Because of this the expansions of all com-
ponents of the function <p\ start with terms independ-
ent of the magnetic field. We shall not write out the
final results of '-68-'. We mention only that the effect of
drag is most important when the temperatures are
not too low (when T » To, where To = 6 (0/ep) l / 2).

8. NORMAL SKIN EFFECT

The behavior of metals in variable electromag-
netic fields is described by the Maxwell equations:

rotH= 4n (8.1)"

which must be supplemented by a relation between the
current j and the electric field E of the electromag-
netic wave. Since we are not interested in nonlinear
effects, we can go over to Fourier components:

rotEM = (8.2)

We shall drop the subscript u: from now on, re-
membering, however, that the time dependence of all
quantities is exponential (E, H, j ~ e~ iwt).

*Our notation differs somewhat from that of ["]. *rot = curl.
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To establish the connection between the field E
and the current density j in the general case requires
that we write the linearized kinetic equation (ef.
Sees. 1 and 2) with an unknown electric field E ( r ) ,
depending on the coordinates according to Eq. (8.2).
The distribution function found from this equation is
substituted in formula (1.2) for the current density j ,
and the current density j is put in system (8.1), in
order to find the coordinate dependence of the elec-
tric and magnetic fields (cf. Sec. 9). But if the fre-
quency of the electromagnetic field u is much less
than the collision frequency v0 = 1/T, and the distance
over which the field changes significantly (the skin
depth 6) is much greater than the free path I, we
can use for the relation between the current density
and the electric field the static value of the electrical
conductivity tensor or the resistance tensor (normal
skin effect):

i = Qihjk- (8.3)

In order to be able to take account of the effect of
a constant magnetic field, we shall not assume from
the start that the tensors a^ and pjk are symmetric
(cf. Sec. 4).

Since an electromagnetic field as a rule damps out
over a wave length, the most convenient characteristic
of the high-frequency properties of a metal* is un-
doubtedly its surface impedance (surface resistance)—
a two-dimensional second-rank tensor, introduced
through the following relation:.w

(a, p = (8.4)

Here the superscript (0 ) means that the values of
the field components are taken at the boundary of the
metal, n is the unit vector along the normal to the
surface. The coordinate axes are chosen so that the
z axis is parallel to n.

As shown in is a tensor; the Onsager
relations apply to it:

^po(-H). (8.5)

Furthermore, one can show that there are dispersion
relations for the surface resistance analogous to the
Kramers-Kronig relations. In particular, for the
isotropic case,

cc

i-^QA-ii,, t ((0) = — • - X ~--5- . (8.6)

The use of the surface impedance greatly simpli-
field the solution of electrodynamic problems external
to the metal: reflection of an electromagnetic wave,
calculation of resonators, etc. This is related to the
fact that for an optically dense medium (and a metal
is certainly such a medium) the impedance is prac-

*In this and the following sections we consider only a metal-
lic halfspace (more precisely, samples whose dimensions are
much greater than the wave length and the damping length).

tically independent of the form of the field, i.e., of
the angle of incidence of the wave, or of its polariza-
tion.* This permits us to calculate the impedance in
the simplest case of normal incidence of the wave on
a metallic halfspace, and to use Eq. (8.4) as an ef-
fective boundary condition (the Fock-Leontovich ap-
proximation '-72-'). Without specifically saying it, we
shall from now on always assume that the wave
propagates normally to the surface of the metal.

Using formulas (8.2) and (8.3), one can show that
the components of the tensor £ap are the roots of
the following system of equations. '

"4JT
(8.7)

But for computations it is more convenient to use a
specially selected system of coordinates. Thus, if
pap is a symmetric tensor (no external magnetic
field), then £a£ is also a symmetric tensor, whose
principal values are

Si, 2=] /MQl, 2 (8.8)

while p1)2 are the principal values of pafl- We note
that the surface impedance (and even its principal
values) depend on the direction of the normal to the
surface of the metal, because the components pap
depend on this direction. For a cubic crystal the
tensor pj^ degenerates to a scalar and consequently
this dependence disappears.

The coordinate system in which the tensors pap
and tap a r e diagonal is called the set of principal
directions. If pap is a symmetric tensor ( H = 0 )
the principal directions are perpendicular to one
another.

The skin depths for the different polarizations are
different:

yi. 2
2ix(o

(8.9)

The propagation of electromagnetic waves in
metals in a strong magnetic field (r « I) has many
interesting featurest which have been observed in
recent years.

To study these features it is convenient to write
the Maxwell equation (8.2) in a somewhat different
form:[74]

dEj_ ;m __ dHj_ 4jif5j_ __
(8.10)dx. CQ,

*Cf. the survey by V. L. Ginzburg and G. P. Motulevich.[70]
For the anomalous skin effect (cf. Sec. 9) the last statement is
rigourously proved in["], in which the corrections to the surface
impedance because of oblique incidence of the wave are com-
puted.

tWe remind the reader that we are considering the quasistatic
case, i.e., not taking into account spatial and temporal disper-
sion. When H ̂  0 we must add to the conditions <u « v0, I « a
the condition OJ « o)H = eH/m*c, which it is true, is always sat-
isfied in a strong magnetic field (tin » v if / » r).
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where

1 D _ Qi-
a—6211 P± — —n,

•Qi Ql — Q2

(8.11)

The significance of the parameters pj, p2 and p12

is clear from the following form of the two-dimen-
sional resistance tensor:

(8.12)
Qi Q12

. - Q 1 2 62

Such a form for the tensor pap means that by the
diagonalization of the symmetric part of the tensor

p the axes " 1 " and " 2 " are singled out.
Assuming that the electromagnetic wave is plane

(E, H ~ e1 3), we find the dispersion equation r e -
lating the wave vector k and the frequency co:

ini
(8.16)

In concluding this section we call attention to an effect, spe-
cific to anisotropic (or gyrotropic) conductors, which changes
somewhat the value of the surface impedance, and is not related
to the frequency dependence of the electrical conductivity tensor.
We are referring to the inclusion of thermoelectrical forces in cal-
culating the surface impedance.["] If the normal to the surface of
the sample does not coincide with one of the principal directions
of the tensor p i k ("skew cut"), then when an electromagnetic
wave is incident there appears along the z axis an electric field
Ez (which is found from the condition j z = 0). It leads to the ap-
pearance of a temperature gradient proportional to the field inten-
sity in the incident wave. A self-consistent solution of the prob-
lem, including the Maxwell equations and the heat conduction
equation, in the case of a uniaxial crystal gives the following
result.* If we choose the axes as shown in Fig. 20 (where " 1 "

from which we see that two waves can propagate in
the medium. In the most interesting case of strong
gyrotropy |p1 2 | » \pt +p 2 | , the "res is tance" p± is
almost pure imaginary (p± « =F ip21) and consequently
one of the waves is almost undamped (helicoidal or
spiral wave '-73-'). The absence of dissipation results
from the fact that the oscillations are coupled only to
the Hall current. Strong gyrotropy ( |p j 2 | » \pi + p 2 | )
occurs, as is clear from formula (5.27), when a wave
propagates in a metal, with unequal numbers of elec-
trons and holes (n t * n2), along the magnetic field.

If the anisotropy exceeds the gyrotropy |pj — p2 |
> 2 |pi2 | , the eigenwaves are linearly polarized (/3±

are real quantities ), and the principal directions are
not perpendicular to one another. The angle ip be-
tween the principal directions is given by the follow-
ing formula:

' ' 7 = ^ - 1 - (8-14)

When |pi — P2I =2 |p1 2 | the principal directions
coincide.

In a strong magnetic field ( r « I) the predomi-
nance of anisotropy over gyrotropy ( \p1 — p2\
> 2 I p J 2 | ) should be seen for metals with equal num-
bers of electrons and holes (n4 = n2), and most
clearly for metals with open Fermi surfaces, where
for particular directions of the magnetic field the
components p t and p2 have different asymptotic de-
pendences on the magnetic field (cf. Sec. 6, in partic-
ular formula (6.7)).

In our notation the impedance is conveniently de-
fined as follows:

(8.15)
xs=0

This permits us to use the standard formulas r e -
lating the impedance and the complex reflection co-
efficient:

(I)

FIG. 20

is the direction of a crystal axis), then one of the principal val-
ues of the impedance is unchanged:

r - 1 /aQxx (8.17)

while the second depends strongly on the conditions of heat ex-
change. If the boundary is kept at constant temperature,

Vb+Vl+a (8.18)

while if the boundary is adiabatic (zero heat flow through the
boundary)

X-!
l—i>)» — 4a6)1/

; (8.19)

w h e r e Pyy = p j_ cos
y/477K

cp + P | | sin2 9, a = Taxy/Pj;y/<ZZj

z z (C is the specific heat per unit volume,: for
yy = p j_ cos cp + P | | sin 9, a = Ta 2

x y /P j ;

b = c 2 C p y y / z z

the other notation, cf. Sec. 3) . For good metals, as a rule,
a « 1, b » 1, and the role of the thermoelectric forces in the
skin effect is completely unimportant. But for metals like Bi
(and also for semiconductors) the effect treated here may be very
significant.

Thermoelectric forces may also manifest themselves in the
skin effect in isotropic conductors (polycrystals with cubic sym-
metry) if they are placed in a magnetic field.[7s]

*The principal values of the tensor pilc are: pl = 2 = p3= pL •
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9. ANOMALOUS SKIN EFFECT

In this part of our survey (as already stated in
Sec. 1) only quasistatic properties of normal metals
are considered. By quasistatic properties we mean
those for which the characteristic frequencies w are
much lower than the collision frequency f0 = l / r
(u> « v). But the formulas that have been given in the
preceding Sec. 8 will as a rule remain valid for fre-
quencies much lower than the collision frequency v.
This is related to the fact that with increasing fre-
quency, at low temperatures, for sufficiently pure
samples, the depth of the skin layer <5 is comparable
with the mean free path I and can even become much
smaller than the latter.

The reflection of an electromagnetic wave from a
metal under such conditions (Z >, <5) is called the
anomalous skin effect, and in those cases where
I » 8, the limiting anomalous skin effect.* It is
easy to show that the condition I » 8 = c/v2now does
not contradict the condition OJ « v. The condition
for consistency of these inequalities can be written
as a condition imposed on the collision frequency:

yi (9.1)

where cog = 47rne2/m, v is the velocity of the elec-
trons at the Fermi surface, where the simplest a s -
sumptions about the electron dispersion law have
been used for the estimates (cf. formula (2.19)). For
good metals, condition (9.1) means that the mean
free path I = v i = v/e should be much greater than
10'5 cm, which is easily realized at helium tempera-
tures for pure samples of metals.t

The problem of this section is getting and dis-
cussing the formulas for the surface impedance in
the case of the limiting anomalous skin effect
(I » 6). The constant magnetic field is assumed to
be zero. The propagation of electromagnetic waves
in metals when H * 0 has a number of interesting
features and requires special detailed investigation
(cf., for example,[8(fl ).

Formally the effect of inhomogeneity of the elec-
tric field is taken into account by keeping terms in
the kinetic equation that describe the change of the
distribution function with the coordinates,
v-8f , /8r (cf. Eqs. (2.1) and (1.16)). The kinetic equa-
tion is then changed into an integro-differential equa-

tion, whose solution requires formulation of boundary
conditions for the distribution function fj of the elec-
trons. These boundary conditions must reflect the
physical picture of the collision of electrons with the
surface of the sample. In a rigorous formulation the
statement of the boundary conditions is a complicated
problem which, as a matter of fact, goes beyond the
framework of the semiphenomenological description
that we are using here. But such a formulation is not
necessary for the purposes of this section, since the
quantity of interest to us (the surface impedance) is
very insensitive to the nature of the boundary condi-
tions. This insensitivity is explained by the following
argument: when I » 8 the most important electrons
are those moving parallel to the boundary of the
metal (Fig. 21). They interact only with the trans-
verse components of the electric field which are de-
termined by the electrodynamic boundary conditions
(continuity of the tangential components of the elec-
tric and magnetic field intensities). In calculating the
surface impedance when I » 8 the normal component
of the electric field can be omitted, for the following
reason: it depends essentially on the boundary condi-
tions imposed on the distribution function. We con-
firm this qualitative argument by the following
method. Instead of the correct (physical) boundary
conditions we shall use "convenient" ones (i.e.,
those which enable us to greatly simplify the calcu-
lation) of two types, and show that changing from one
set to the other scarcely changes the value of the
surface resistance. A rigorous formulation of the
boundary conditions for electrons with an anisotropic
dispersion law is contained in D5,35a]

So we consider the normal falloff in the electro-
magnetic wave in the metal halfspace (z > 0 ).

The Maxwell equations for the field in the metal
in this case have the form:

_ dEv 4it . _ dHx \
T—dz

dHy (9.2)

The equation j z = 0 serves to eliminate the longi-
tudinal field E z from the system of equations. We
use the Fourier method (expansion in plane waves)
and express the field in the metal ( z > 0) in terms

*The anomalous skin effect was discovered experimentally
by London.["] The initial form of the theory of this phenomenon
is contained in the papers of Reuter and Sondheimer[77], and
also Pippard.f8]

t We note that condition (9. 1) does not restrict the region of
applicability of the expressions obtained below; rather it restricts
the method used for deriving them. Since the free path and the
collision frequency drop out of the final formulas, all the formulas
are valid up to frequencies of the order of or greater than the col-
lision frequency. Only when o) » v do all the formulas become
invalid (cf.[77] and

FIG. 21. An electron
moving at an angle to
the surface spends only
a small part of its free
path in the skin layer.
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FIG. 22

of the value of the field on the boundary ( z = 0 ). It
is convenient to replace the actual boundary by a
plane on which the field components have singularities,
and consider the field to be continued into the half-
space z < 0. We then consider two variants:

a) The electric field and the current density are
continued as even functions and the magnetic field as
an odd function.

b) The magnetic field is continued even, while the
electric field and the current density are continued
odd.

The connection of these variants with the nature
of the boundary conditions will be considered below.
Figure 22 shows schematically the dependence of the
components of the electric and magnetic fields on the
coordinates near the boundary z = 0 for the case of
even continuation of the electric field.

Multiplying each of the equations of the system
(9.2) by e ^ z and integrating over the coordinate
from - K to + ºº, we obtain in the case of variant a):

-jhy=-ikHhx-2Hx(0),

(9.3)

for the case of variant b):

An .
] (9.4)

Here E^x, Ej™, etc, are the Fourier transforms of
the corresponding field components:

= [ Ex(z)eihzdz.

Hence

(9.5)

(9.6)

So far our computations were completely exact.
But to solve the system of equations (9.3) and (9.4)
we must know the relation between the Fourier t rans-
forms of the current density and the electric field. If
in calculating this connection we use the kinetic equa-

tion with the exact boundary conditions, this will be
an integral relation. Our simplification (of which we
spoke above) is that in calculating this relation we
neglect the presence of the boundary. If we correct
for this neglect of the boundary by introducing
special boundary conditions* it turns out that variants
a) and b) correspond to different boundary conditions.
On the other hand, as we have seen, the results ob-
tained are insensitive to the kind of continuation.
This also serves as a confirmation of our thesis
about indifference to the boundary conditions.

We shall now determine the connection between the
electric field and the current. According to the first
Section, the kinetic equation for this case is the fol-
lowing:

(9.7)

while the current density is

ftdT. (9.8)

The main term on the left is the one containing the
derivative, while the integral term (the collision inte-
gral Wpl^} is a small correction, which we could
neglect if this did not result in the appearance of a
singularity at momentum values for which v z = 0.
From this it is clear that the main contributors are
the gliding electrons that move parallel to the sample
boundary (for which v z = 0 ). We recall that we are
interested in the case of the limiting anomalous skin
effect, i.e., the limiting value of the impedance cor-
responding to infinitely large mean free path. This
permits us to neglect the term on the right containing
the longitudinal field component E z . Formally this
means that we are interested only in the principal
part of the solution of Eq. (9.7) related to the singu-
larity at v z = 0. This same argument enables us to
greatly simplify the collision operator Wp{fj} by
dropping the integral terms in it, since the integra-
tion over momenta undoubtedly smooths out the
singularity, and consequently for v z close to zero,
the integral term for the " l o s s " is much greater
than the term for the "gain" (since it is much
easier to leave a narrow region of states than to fall
into it). This permits us to write, without restriction
of generality: '-81-'

W ff\'— i rfQ Q \

*To accomplish this program one must, following!81], change
from the distribution function f, to the function O(z,v) = f1(z,v)
— f, (z1( — v), in terms of which one can express the current den-
sity, and the equation for which is of second order and admits
even or odd continuation. The simplifying boundary conditions
are formulated for the function $ . To the even continuation of the
electric field and the use of the relation between j k and Ek valid
for an unbounded space, there corresponds the boundary condition

-r—I = 0, and to the odd continuation,
dz|z - 0

0, v) = 0.
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The subscript "gl" means that this form is valid
only for the treatment of those effects in which
gliding electrons play the main role (i.e., electrons
for which vz = 0 ). Thus, in our approximation Eq.
(9.7) can be rewritten as follows:

t-£- + ̂ -.tx= — º.vaEa {a = x, y). (9.10)

From this and Eq. (9.8) we have

/Aa = ( T a p ( ( o , k ) E k f l ( a , f i = x , y ) , (9.11)

and

• §
8(p)=eF

(9.12)

where Zgj = 7a\v, n = v/v; in getting the last formula
we have used, first, the fact that -3np/3e
<* 5 ( e — ep), and second, the presence of a center
of inversion on the Fermi surface.

We note that in this approximation we are taking
j z = 0, since the corresponding components of the
tensor o\\^(oaz and CTZZ ) are much smaller than the
components <7Q//3, and are set equal to zero.

The expression (9.12) allows a transition to the
limit of infinitely long free path. We write
lim oap = <Jap\ It is not difficult to show that

lcr\—»• oo

where

3 (2it/i

(9.13)

(9.14)

and K (<p ) is the Gauss curvature of the Fermi sur-
face at points where nz = 0. For a quadratic disper-
sion law K(cp) = 1/pp and Bap = (v/l)6ap (cf.
formula (8.4)).

We now turn to the calculation of the surface im-
pedance, taking x and y axes along the principal
directions of the tensor Bap. From Eqs. (9.3), (9.4),
and (9.6), and also (9.11), (9.13), and (9.14), we have,
using the definition (8.4) for the impedance,

variant a):

J K2'

variant b):

W~£*

Ex, y (31) d9l

(9.15)

(9.16)

where £a,/3 i s t n e effective dielectric constant of the
metal; the principal values of the tensor ea^ are

(9.17)

or, in our case, (cf. (9.13))

ex> y (91) = —2- --f'-"- i. (9.18)

In the absence of spatial dispersion, i.e., when the

dielectric constant does not depend on the refractive
index, N = ck/w (for example, under conditions of

) ^ b | /
p

the normal skin effect), fx
a) =

formula (8.8)).
In the case of interest to us*

= l/ x,y

. .- 9

(9.19)

(9.20)

Comparing formulas (9.19) and (9.20), we see that
the expressions obtained differ by a real factor of
order unity (£(a)/f(b) = 16/27). This result con-
firms our statement about the relatively weak de-
pendence of the surface impedance on the boundary
conditions when we have the limiting anomalous skin

effect. This statement is proved rigorously in [83]

which shows that a change of the boundary conditions
only changes a real factor of order unity in the im-
pedance.

As we see from formulas (9.19), (9.20), and (9.14),
anisotropy of the surface impedance, i.e., a depend-
ence of £ap on the direction of the normal to the
metal surface relative to the crystal axes, is closely
related to the anisotropy of the dispersion law. We
recall that the integration in (9.14) is taken over a
line on the Fermi surface, where vz = 0 (Fig. 23).

FIG. 23

When the direction of the normal is changed, this
line shifts, changing the value of the integral. From
the dependence of the impedance on the direction of
the normal we can "sense" the shape of the Fermi
surface. The shape of the Fermi surface of copper
was determined in this way (PippardJ4j ). Figure 24
shows the dependence of the impedance of copper on
the direction of the normal, and Fig. 25 shows the
Fermi surface of copper. Experiments on the De
Haas-van Alphen effect'-8^ and on absorption of
ultrasonics in a magnetic field -* agree well with
Pippard's results.

If we assume an isotropic dispersion law

*The calculation of the surface impedance under conditions
for the limiting anomalous skin effect, for an arbitrary dispersion
law, was done in the papers of Pippard,[82] M. Kaganov and M.
Azbel'.t"]
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FIG. 24. Angular dependence of impedance of Cu under condi-
tions of anomalous skin effect (after Pippard[84]). FIG. 25. Fermi surface of copper.

(potassium, sodium, etc), formulas (9.17) and (9.18) can
can be put in the following form:

(9.19')

(9.20')

so that they can be used for determining the free
paths of electrons.87-'

10. ABSORPTION OF ULTRASONICS BY METALS

In recent years the study of the absorption of
sound in metals has been one of the most popular
methods for studying electron energy spectra. This
results from the fact that at low temperatures the
electrons play an important part in the absorption.
The latter is shown very well by the dependence of
the sound absorption coefficient on temperature in
the vicinity of the superconducting transition: there
is a sharp reduction in the absorption coefficient at
temperatures below the critical temperature, which
is the best proof that the electrons are important
(since we know that in the superconducting transition
neither the lattice nor its vibrations undergo any
significant changes).

The second fact that points to interaction of sound
with the electrons is connected with the fact that at
present it is comparatively easy to get metal sam-
ples in which the free path of electrons is much
greater than the wave length of sound (I » s/o>,
where s is the sound velocity and w its frequency).
When k I » 1 (k = w/s) not all the electrons with
energies of the order of the Fermi energy act effec-
tively on the sound wave, but only those that move
along with the wave, i.e., those for which v = s
(where vn is the projection of the electron velocity
along the wave vector k of the sound wave). Since the
electron velocity is approximately a thousand times
greater than the sound velocity, we may assume that
only those electrons with vn = 0 interact effectively
with the sound wave. This situation is similar to that
which is characteristic for the anomalous skin effect

(cf. Sec. 9). Here the gliding electrons are replaced
by those that move in phase planes. In the formula
for the absorption coefficient there naturally appears
an integral over the band around vn = 0 on the Fermi
surface (cf. formula (10.8) below). But it is difficult
to use this result directly to calculate the electron
energy spectrum since the answer is not expressed
in terms of quantities related to the dispersion law
alone. More precisely, the absorption coefficient
still depends on the tensor Aik(P). equal to
(9e/3ujk )e=ep , which plays the role of a "phonon

uik=o
charge," i.e., describes the interaction between elec-
trons and phonons. *

The most interesting results concerning electron
energy spectra have been obtained from measure-
ments of absorption of sound in a strong magnetic
field (I » r ) , naturally when kl » 1. As has been
shown experimentally by Bommel '-94-' and theoretically
by Pippard, ^ when I » r and kl » 1 one observes
oscillations of the absorption coefficient whose period
is determined only by the extremal diameters of the
Fermi surface. The observation of the Pippard os-
cillations is one of the main sources of information
about the shape of the Fermi surface of metals.'-96-'

In this Section we shall deal only with the theory
of the absorption of sound by metals in the absence
of a magnetic field. There is a relatively large
literature on this subject at present, 9v>10O which in-
cludes a considerable amount of work about the
derivation of the fundamental equations, generalizing
the Maxwell equations and the equations of the
dynamical theory of elasticity, and enabling one to
calculate not only the absorption coefficient but also
the dispersion of the sound velocity. We shall re-
strict our calculation of the sound absorption to two
limiting cases: low frequencies (kZ « l ) and high
frequencies (kl » 1). It can be shown '-98-' that the
nature of the absorption is determined completely by

*This difficulty does not arise in the theory of the anomalous
skin effect.
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the ratio of the free path and the sound wave length,
and is practically independent of the ratio of the
sound frequency and the collision frequency.

In the first case (kl « 1) we use a macroscopic
approach, while kinetic considerations enable us to
establish the magnitude and temperature dependence
of the coefficients appearing in the answer (viscosity,
heat conductivity, etc). The collection of parameters
describing the equilibrium state of a real metal r e -
sults in a complicated frequency-temperature de-
pendence of the absorption coefficient. But if these
parameters are independent and we can introduce a
relaxation time Tj for each of them,* the absorption
coefficient F ( u>) can be written as follows:

A (10.1)

where the Aj are coefficients telling how much the
sound wave shifts the various internal parameters
(for example, the temperature) from their equili-
brium values. A study of the frequency dependence
of the absorption coefficient F( w ) allows one in
certain cases to determine the relaxation times r-.
Because of the use of a wide range of frequencies,
this method (called the method of relaxation reso-
nance) allows one to "sample" all sorts of interac-
tions, including the very weak ones which lead to
dissipation.

Very often, the absorption coefficient has a com-
plicated dependence even when kl « 1, and is not
described by (10.1), but can be expressed in macro-
scopic terms (cf., for example, 00^ ).

In calculating the absorption coefficient for high
frequency sound (kZ ~ 1 ) the kinetic approach is
necessary.

It is customary to assume that the passage of a
sound wave through the metal results in a correction
to the electron energy e proportional to the deforma-
tion tensor and equal to

Xik(p)uik(r, (10.2)

where Ajk(p) = [9e (p J/Sujk] u . ,=o is a second-rank
tensor characterizing the interaction of the electrons
with the acoustic phonons. A rigorous derivation of
(10.2) exists. We should mention that the formula
given here differs from the exact one by the omis-
sion of a term related to the Stewart-Tolman ef-
fect.14-' As the estimates show/98-' the term omitted
is vp / s ~ 103 times smaller than the one retained.
The time dependence of the electron energy causes
the system of electrons to leave the equilibrium state.
Dissipative processes (collisions of the electrons
with impurities, with one another and with phonons)

*In the simplest cases, r. can be expressed in terms of the
macroscopic coefficients. For example, if the sound absorption
is due to the thermal conductivity TJ = K/CVS2 , where K is the
thermal conductivity and Cv is the specific heat per unit volume.

are the cause of the sound damping, while the ab-
sorption coefficient is determined by the dissipation
function per unit volume ( TS):

T = ^ ; (10.3)

Here ES - W . is the energy of the sound wave per unit
volume.

The entropy increase S is calculated using formu-
las from statistical mechanics, for which one must
know the nonequilibrium distribution function of the
electrons (at low temperatures, when one can satisfy
the condition kl » 1 given above, the role of phonons
in the sound absorption is insignificant). The dis t r i -
bution function can be determined from the Boltzmann
kinetic equation.

In this case, as shown in '-98^, the linearized kinetic
equation can be written as follows:

W
f a/i dnF r-

where A.^ = A.jk — Aj .̂, and the dash denotes an aver-
age over all electron states, where the "weights"
are the derivatives of the Fermi function:

cp = (10.5)

The transverse part of the electric field E must
be found from the Maxwell equations, while the
longitudinal part can be included in the renormaliza-
tion of the chemical potential; it actually does not
enter in the electroacoustic effects in the cases we
are considering. We note that at these frequencies
we cannot speak of temperature oscillations with
such a frequency (I » K = s/w!).

Since the sound frequency is as a rule much lower
than the relaxation frequency v of the electrons
( v = 1 / T ) , the first term on the left of (10.4) can be
omitted. The second term should be written in the
form i (k • v ) fj, considering that the right side of the
equation is proportional to e ^ " r . As we have already
said, when kl » 1 the important electrons a re those
moving perpendicular to the wave vector. This (as in
the case of the anomalous skin effect, Sec. 9) permits
us to drop the integral (influx) term in the collision
integral, keeping only the term associated with outflux
of electrons from the states with vn = 0.

Thus the kinetic equation (10.4) can be rewritten
as follows:

(10.6)

If in place of f, we introduce the new function x
by the equation

one can show that, as T — 0,

V (EF) = - (10.7)
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where the dissipative function TS splits into a sum
of two terms: the first is caused only by the term
^ikuik o n t n e right side of the kinetic equation (de-
formation interaction), and the second is caused by
the Joule losses (i.e., by the term containing the
electric field). When k2c2/4vo (k )u> » 1, the deforma-
tion interaction is of principal importance, while the
Joule losses are most important in the opposite
limiting case.'-101-'

When k2c2/47ra(k)w » 1, one can get the following
expression for the absorption coefficient:'-98-'

(10.8)

where K is the Gauss curvature of the Fermi surface,
and the integral is taken along the line where v 1 k
(vn = 0), which, as we have already said, is con-
nected with the predominant role of the electrons
moving in the planes of equal phase of the sound
wave. The components of the fourth-rank tensor
*ikZm a r e o f order unity and depend on the polariza-
tion q and direction n of the sound (

qm
When k2c2/4iro-(k) u> « 1, but kl » 1, the absorp-

tion coefficient again depends linearly on frequency,
but with a different coefficient.101-'

When k2c2 «= 47ro-(k)oj (kl » 1) one should see a
marked increase of the absorption coefficient, ana-
logous to a kinematic resonance. The origin of this
increase is the coincidence of wave lengths of the
electromagnetic and sound waves.'-101^ It is also
shown in the paper of V. M. Kontorovich'-101-1 that
there should also be marked dispersion of the sound
velocity in this region of frequency.

As is clear from the preceding, the characteristic
features of the sound absorption coefficient when
kl » 1 are its linear dependence on frequency and
independence of temperature. At low frequencies,
F ~ W2T also increases with decreasing tempera-
ture, along with the relaxation time T .

Since the components of the tensor A^ a r e ºf the
order of the Fermi energy, while K « l /pp , one can
use the following expression for T(co) in making
estimates:

JVep-co (10.9)

The linear dependence of the absorption coefficient
on frequency has been repeatedly observed in experi-
ments on different metals. It serves as a reliable
criterion for the fulfilment of the condition kl » 1.

It was shown in &G that the validity of formulas
(10.8) and (10.9) is not restricted by the condition
u 7 « 1, subject to which they were formally intro-
duced. The linear increase in T(u>) also occurs at
ultrahigh frequencies ( « T » 1).

APPENDICES

I. CHANGE IN ELECTRON QUASIMOMENTUM IN SCAT-
TERING OF AN ELECTRON BY A FORCE CENTER

In various physical problems the problem arises of the change
in the quasimomentum of the electron in the individual act of scat-
tering by a force center. In the quantum mechanical treatment one
may be dealing either with the calculation of the transition prob-
ability from a state with quasimomentum p to a state with quasi-
momentum p (such probabilities, denoted by WP( , are usually
used in studying the kinetic properties of conductors), or with
the calculation of the probability that the electron has gone from
the state p to the state p', where the transition is accompanied
by an umklapp of amount 2rrhb where b is a vector of the recip-
rocal lattice. The probability WP, is proportional to the square
of the matrix element <p|V|p'>,

(P I V I ; F (r) Hpp.d», (I.I)

while i/fp is a Bloch wave (i/rp = e l pº r / hup (r)), up (r) is a periodic
function, u (r + a) = Up(r), a is an arbitrary period of the crystal
lattice, V(r) is the potential for the interaction of the electron
with the impurity center.

The probability of the second type (we denote it by Wp\ ),
as shown in [89] is equal to

where

(p I V I p', b) =
iAp-p

V (e) e n dvp Al
+b,

(1.2)

(1.3)

A^ are the Fourier components of the function up (r). The quan-
tity Wp' b characterizes the process of transfer of momentum
from the electron to the impurity center.

In the classical (more precisely, quasiclassical) approach, one
can treat the motion of the electron in the field of the impurity,
starting from its dispersion law, and state exactly into which
final state the electron goes as a result of the scattering. Of
course, in general (for an arbitrary dispersion law and for an ar-
bitrary dependence of the interaction potential on distance) this
problem can be solved only by a numerical solution of the equa-
tions of motion p = — *jr- , r = $r=-. But some qualitative argu-
ments about the character of the motion of the electron in the
field of the impurity can be given by considering the head-on
collision of the electron with the impurity. One can, for example,
show that in the process of scattering the electron can go from one
band on the constant energy surface to another. If the electron
has the dispersion law e = p2/2m, (electron in free space) two
things can occur as a result of the head-on collision: if there is
a turning point in coordinate space, it returns to the opposite
point on the constant-energy sphere (Fig. 26); if there is no
turning point, the electron comes back to the same point on the
constant-energy sphere from which it began the process of scat-
tering (Fig. 27).

For an electron whose dispersion law is a periodic function,
the situation is complicated, since the electron can be reflected
not only from a point at which the energy is a minimum and the
velocity vanishes, but also from a point where the energy is a
maximum, since the velocity vanishes there also.

Figures 28-30 show various cases of the motion of an elec-
tron in the field of an impurity. For clarity we have taken a very
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V(x)

FIG. 26. Scattering of an electron with a quadratic
isotropic dispersion law from a repulsive potential.
e0 is the kinetic energy of the electron at infinity;
x' is the turning point in x space; to it there corresponds
the point p' in momentum space. The electron went over
to the opposite side of the constant-energy surface.

FIG. 27. Scattering of an electron with a quadratic
dispersion law from an attractive potential. The nota-
tion is clear from the figure. The electron returns to the
same point in p-space.

simple dispersion law. In analyzing the motion in momentum
space, one must remember that in those cases where there is a
turning point (Figs. 29 and 30) the force acting on the electron
always has the same sign (there is no turning point in momentum
space), while in those cases where there are no turning points
the force changes sign, so that p vanishes, i.e., there is a turn-
ing point in p-space.

As we see from Fig. 29, very frequently the particle in the
process of scattering emerges into the neighboring cell in the re-
ciprocal lattice.

In the case of small angle scattering (large impact parameters)
it is difficult to find an analytic expression for the change of mo-
mentum in the scattering process.

If the force acting on the electron is central, the change in
quasimomentum can be written as follows:

FIG. 28. Diagram of constant-energy surfaces: At A and the
equivalent points (A', A", etc) the energy is a minimum, at point
B (B', B", etc) the energy is a maximum. A head-on collision
corresponds to motion only along the line AA' (and equivalents)
and along BB' (and equivalents), since only on these lines is
the velocity directed along the x axis. The points C and D (and
the equivalent C', D', . . . ) are saddle points. During motion along
theline AA', the energy is maximum at point D; during motion
alongB'B' the energy is minimum at point C.

p' — p = (1.4)

where § and Sj_ are the changes in momentum along the direction
of the velocity n = v/v and in the perpendicular direction m = pip.
Since the collision is elastic, from the energy conservation law we

FIG. 29. Scattering of the electron with dispersion law,
£(p) = e> shown in Fig. 28, in the field of a repulsive potential.
If the electron energy far from the impurity is close to minimum
(£ = e ;), the electron remains within one cell of the reciprocal
lattice; if the energy is close to maximum (e = <̂ ) the electron
goes over to the neighboring cell of the reciprocal lattice; if the
energy is such that there is no turning point (e = e3) the electron
will naturally always return to the point in p-space where the
process began (cf. Fig. 27).
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FIG. 30. Scattering of an electron with dispersion law
£ (p) = e (cf. Fig. 28) in the field of an attracting impurity (scat-
tering from the top of the dispersion law). If the energy is close
to minimum (e = e,) the electron goes out into another cell; if
the energy is close to maximum (e= e2) the electron remains in
the same cell. At sufficiently small energies (for example,
e = e3) there are no turning points of the electron in x-space
(cf. Fig. 27).

have

(1.5)

Expanding in series in 8\\ and S_i_ up to terms of second order,
we get

0 = v(nO|| +m&±) + y (M-i)i*(«iS|| +mi«j_) (nftfl n + m*«j> (1-6)

-12 r

where (M'')ik=3—-— is the inverse effective mass tensor (cf.['],

App. I). The scalar product of the vectors v and m is zero, v-n = v,
the terms containing S|| and S|(Sj_ can be dropped, since they are
small compared to the term linear in S11; thus

v6,, = -4 - (M- i ) (1.7)

In considering the flux of electrons we most often need the
average change of momentum. Averaging (1.7) over the azimuth
angle, and noting that n^tn^ 2"Sik (i, k = z, y, the x axis is
along the electron trajectory), we get

(1.8)

We note that S\\v is the change of the average momentum of a
unit current of electrons with impact parameter p per unit time.

The value of §j_ can be determined immediately from the equa-
tions of motion:

o ±

or, to the same accuracy,

(1.9)

II. MAGNETIC MOMENT OF A METAL IN A STRONG MAGNETIC
FIELD

As shown in Part II of this survey,['] only the oscillations of the
magnetic susceptibility (de Haas — van Alphen effect) can be ex-
pressed in terms of the dispersion law. The paramagnetic and dia-

magnetic susceptibility of a metal depend not only on states of the
electron with energies significantly different from the Fermi energy,
but also on the correlation function. Besides, experimentally one
cannot distinguish the contribution of the conduction electrons
from the contribution of the ion cores of the metal.

Azbel' and SkrotskayaM called attention to the fact that
measurement of the magnetic moment of a metal in the limit of high
fields (/iH » e F , T; for metals like Bi this condition is satisfied
in reasonable fields H » 104 oe) can give information about the
structure of the electron ground state in high field. As shown
in[91], the magnetic moment of a metal M in strong field is given
by the simple formula:

M=—JV 9H • NT
alnv0 (II. 1)

where N is the density of electrons, eo(H) and vo(H) are the energy
and density of states for the lowest energy level of the conduction
electrons (with the lowest quantum numbers). Thus the measure-
ment of the magnetic moment and its temperature behavior in prin-
ciple gives the possibility of determining —- and — In v0.

dH dn
It is interesting to note that the dependence of the magnetic

moment on strong magnetic field for a free electron gas[92] is es-
sentially different from the dependence for electrons in a metal.
This is related, as shown in[91], to the difference between the
ordinary and the effective mass.

III. PROPERTIES OF THE LINEARIZED COLLISION
OPERATOR Wp

Let us first consider the interaction of electrons with impuri-
ties. The interaction Hamiltonian in second quantized form is
written as follows:

where aj!, (a ) are the creation (annihilation) operators for an elec-
tron with momentum p, while BJJ , is the matrix element for the
transition of an electron from state p to state p'. The presence of
the hermitian conjugate terms (h.c.) guarantees the hermiticity of
the interaction operator (Bp\ = (BjJ' )•) .

Constructing the collision operator according to the standard
rules, we have

df \e, imp 2JI (*

Here f(p) = f, f(p') = f', e(p) = e, (p ) = e', while the S function
guarantees energy conservation (the collision is assumed to be
elastic). Introducing a new function cp in place of f bythe equa-
tion

"9. (III.3)

we get

where

f d<f \ e , imp

(III-5)

According to the definition (1.13), the action of the operator W
is defined as follows:
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We note that for the case of an anisotropic dispersion law the
operator Wp does not reduce to a multiplication, i.e., the
T-approximation is not justified even in this simplest case of elas-
tic collisions. Now let us construct a scalar product of the type
(1.20):

Changing p <-» p' in the integral and using the hermiticity of
the matrix BjJ/ (cf. above) it is easy to show that

BnF

as' )

X(X'-30 I B% [2 6 (B-E ' ) (cp'-<t)dT'dT. (III.6)

The properties (1.23) and (1.24) then follow quickly.
Now let us consider collisions with phonons. The Hamiltonian

for the electron-phonon interaction is conveniently written in the
following form:

"I;t
ph= S {^y«;v»$+'1piapV,>. (m.7)

pp'q

where A[[[, are the transition matrix elements, having the following
symmetry: AP? = (Aj^)*, guaranteeing the hermiticity of the inter-
action Hamiltonian H?^t

ph; the operators b^ and b are the opera-
tors for creation and annihilation of a phonon with wave vector q;
we have omitted indices labelling the electron and phonon bands.

In formula (III.7) the summation goes over all momenta that
satisfy the conservation condition

— p ' = 2jxfib, (III.8)

where b is an arbitrary vector of the reciprocal lattice.
Constructing the collision integral in standard form, and again

introducing the function cp by (III.3), in the linear approximation
in cp we have

ec'oii= \ \

here

P'—P—1—2nJib)8(E'—e — (III. 10)

For simplicity we have assumed that the phonon gas is in equilib-
rium*, and have used the symmetry properties of the matrix P,1 .

llThe symmetry and the positive character of the kernel of the colli-

sion integral \ (̂ pq + ̂ p-q) dFjj, guarantees the properties (1.23)

that for T » 6 the collisions of electrons with phonons are quasi-
elastic and one can, in the first place, neglect the phonon energy
in the 5 functions describing the energy conservation law, and

secondly expand the Bose function (exp 5 i i _ I)"1 = T/fi<u. In

other words, a linear law for the resistance is determined simply
by the fact that the number of phonons when T » 6 is propor-
tional to the temperature.

At low temperatures the situation is somewhat more compli-
cated. From the structure of the collision integral we see that in
place of the cartesian momentum components (px, p pz) it is
more convenient to take as arguments of the function cp the energy
e = e(p), or more precisely the quantity (e — £)/T, and a vector
p e characterizing the position of the electron on the constant en-
ergy surface. Since at low temperatures the momentum of the
phonon is much lower than the momentum of the electron, the
change of the function cp in the sense of its dependence on p e

should be regarded as slow. This allows us to go over for this
variable from an integral to a differential operator (in the sense of
the Fokker-Planck equation). The quantity x = (e _ £ )/T itself
changes considerably in each collision, since ftcj = T. Thus in
the sense of an operation on cp as a function of x, the collision
operator remains an integral operator, even after the simplifica-
tions associated with the fact that T « 6 « e F (but T » 0VeF).
As the result of quite involved transformations the kinetic equa-
tion for the function cp = cp (x) (cf. Eq. III.3) takes the form

= ( - £ - ) \j dx (x)-<pp

(iii.ii)

here

K ", —-'

a- = a(p£) is a quantity of order 6/-fi, depending on p £ in the same
way as the integro-differential operator L (integral in x and sec-
ond-order differential in p e) . In getting (III.11) we have used the
fact that when q -> 0, AP /̂y'-h&i tends to a limit that is inde-
pendent of the modulus of the wave vector of the phonon.

The first term on the right, proportional to (T/9)3, is much
greater than the second, but the second term cannot be neglected:
it guarantees the existence of a solution. In fact, without the
second term the equation has no solution, since the integral of
the left side with respect to x from — ºº to º= is different from
zero, while that of the first term is equal to zero.

We look for a solution of (HI.11) by the method of successive
and (1.24). We note that in writing the action of the operator W , it approximations: we choose cp as a function of p £ alone (cp = cppe)

should be divided by —_, and in constructing scalar products of
c9e

the type (1.20) it should be multiplied by the same function.
It is also not difficult to prove similar relations for the case

of electron-electron collisions.
If we use the explicit form (III.9) for the electron-phonon col-

lision integral, one can show that the limiting temperature laws
for the resistance (expression (2.28)) hold for an arbitrary dis-
persion law for the electrons, and that their derivation uses only ex-
tremely general properties of the collision operator.

At high temperatures a linear law is guaranteed by the fact

*0ne can show that including deflection of phonons and inter-
phonon collisions does not change the properties of W (cf., for
example, [17]).

in order to make the first term on the left of (III.11) vanish. We
find the function cp from the equation which is gotten from
(III.11) by integrating with respect to x. It is clear that cp = 1/T6

This also leads to the temperature dependence of the resistance
given in (2.28) ( p e p h = T5 for T « 9).

IV. GENERAL PROPERTIES OF THE DEPENDENCE OF THE
ELECTRICAL CONDUCTIVITY TENSOR ON MAGNETIC FIELD.

For this discussion it is convenient to write the electrical con-
ductivity tensor <7ik as follows:

(IV.l)
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where the function i//k must be found from the kinetic equation
(5.7):

(5.7) (IV.7)

. . . ., . ,f, . , ., . „-,-., „ ,. If we recall that W"'v, = L (cf. (2.8)), we easily find from (IV.5)
while the operator Wp (and its inverse Wp ) satisfies conditions and IV 7) *••'•'
(1.23) and (1.24). The operator <9/<9t changes sign when we change
the sign of the magnetic field; furthermore it is easy to show that
the operator — is an antihermitian operator, i.e.,

<9t

%wz *"-£>. (iv.8)\

/w
' at/' \ at • V*

Let us write cpk as the sum of an even and an odd function
(of the magnetic field):

then

(IV.3)

From the last equations we easily obtain equations for each of
the functions:

If, on the other hand, we write

then by simple but tedious transformations we can get

din \

(uril (,umir anhm)},

where

(IV. 9)

(IV. 10)

(IV.ll)

-at
(IV.4)

The functions cpk and cpjj can be used to calculate the symmetric
and antisymmetric parts of the electrical conductivity tensor:

We shall show that the properties (1.23) and (1.24) of the col-

In the case of cubic symmetry of the crystal, the second-rank
symmetric tensor a ik degenerates to a scalar (a ik = O-Sik), and

dpk/ \ ' ' dph/
(IV. 12)

As we see from formula (IV.ll), the tensor fiikZm n a s an extremely
complicated structure. For a cubic crystal there are six independ-
ent components.

Knowledge of the tensors a and p. enables us to determine the
f dlision operator guarantee the validity of the Onsager relations for components of the tensors R and A, by using approximate inver-

the tensor o i k .
If we use formulas (IV. 1) and (IV.5) and also (IV.4), we can

show that

«2 stk = (if-

(IV.6)

sion formulas:

• ¥ >

v

From these expressions the following are clear:
a) symmetry of the tensor s i k and antisymmetry of the tensor

a lk, i.e., the validity of the Onsager relations;
b) positiveness of the eigenvalues of the tensor s i k; and

finally
c) decrease of the diagonal elements of the electrical con-

ductivity tensor with field, i.e.,

0 < O , 1 ( H ) < C T 1 1 ( 0 ) etc.

The last statement is obvious from the first equality (IV.6),
since e2 /vjWp vS = a ik (0).

where s ' = s -<r(0). Then

-Rf»i = y (e*S — G'O

For a cubic crystal

(IV. 13)

(IV. 14)

(IV.15)

(In formulas (IV.13)-(IV.15) the resistance values are taken at
H = 0.)

We shall not give the messy formulas for the components of the
tensor Aik;m. We show only that from conditions (1.23) and (1.24)
there follows the positive character of the diagonal elements of
the tensor Ap^ k =pf k - P i k .
According to formulas (IV. 13), (IV.5) and (IV.8), we have

A -l . \ 2 /dh fr-i , \ 2 , I V l f i.

where
"2,3

-l , \For calculating the tensors Rlk and Aik/m we can use approx- are axes in a space with the norm \cpWj1 m>, tp is an arbitrary
imate values of the functions cpk and cpk : function and the orthogonality of £2 and f3 is quaranteed by the
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fact that the 1, 2 and 3 axes are chosen along the principal direc-
tions of the tensor aik (and consequently of p^)- It is easily veri-
fied that in our approximation the principal directions of the
tensors p?k and p i k coincide.

It is clear that the right side of (IV. 16) is greater than or
dlx

equal to zero, since the square of the "vector" is greater
dt

than or equal to the sum of the squares of its projections along
any two axes (of the infinite number). Equality holds only when

r"the "vector"—- lies in the "plane" of
dt

and

V. CALCULATION OF THE COMPONENTS OF THE TENSOR
pfk AND THE VECTOR b IN HIGH FIELDS (/ » r)

According to Appendix II

(V.I)

where

and i/sf^ are subject to Eqs. (IV.4). Inverting the tensor aik,
we easily find

(V.9)

(V.10)

(V.2) The bar denotes an average over a period (cf. formula (5.10)). We
first consider the system (V.9).

In place of the function cpj it is convenient to introduce an-
other function cp1 = yl

0 - Wj,1 Vj. Then the system (V.9) takes the
form

where

I sI + (asa) (asa)
(V.3)

Here ai is the vector dual to the tensor a ik, and bi to the tensor

Now let us calculate the functions </r? and t//? as series in in-
verse powers of the field. To do this it is convenient to rewrite
Eqs. (IV.4) as follows:

(V.4)

(V.5)

dt

(V.ll)

From (V.ll) it is clear that

cp^scpj^!, (V.12)

where the operator q is given by the following equation:

« =
V

look for a solution in the form of a series in powers of y, and set
y = 1 in the answer. Averaging Eqs. (V.4) and (V.5) over the
period of revolution of the electron, we find the conditions which
serve as boundary conditions (cf. (5. 9) and (5.10)):

' ' '

(V.6)

WVl>? = 0. (V.7)

But since Eqs. (V.4) and (V.5) contain second derivatives with
respect to t, we need more conditions for a unique determination of
the solution (cf. below).

Thus,

Substituting formulas (V.8) in Eqs. (V.4) and (V.5) and equat-
ing coefficients of like powers of y2, we get

-Wv
lWv [ Wp{\ Wfxdt"-W-iWv ^ tfpXdt"}dt';

— OO —CO — Q»

consequently

<pj, = g V . (V.13)

Now let us calculate the function cp1. From the first equation of
the system (V.ll) we have

(V.14)

We now use formula (V.8), setting y = 1

1 - 9
(V.15)

Formula (V.15) corresponds to an expression of tA£ in powers of
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the inverse square of the field. From (V.15) and (V.2) it follows
that

I . M. L I F S H I T Z a n d M. I . K A G A N O V

ponents; then

1 q v " /

In completely analogous fashion, we obtain from the system (V.10)

1 — 9

where

Zo =

Then

"ih=^(«i^%X/. (V.19)

In the T-approximation (W = 1/ r) we can get even more compact
formulas (analogous to formula (5.26) or (48) of[36]):

(V.20)

(V.21)

\(t,t')e T dt',

0 0 _ ''
ib . = — \ v. it. t') € dtr.

1 J *

(V.27)

i.e., the tensor s l k has the following structure:

/ Yx
7 0 — -

i/2

ft 1X« ^

w w
(V.28)

The components of the matrix y ik tend to constants for H -> «,.
For the first terms in the expansion of the antisymmetric tensor

a ik we easily find the following formulas:

z = axv= — ayx = jjj (pyvx

(V.29)

where

i'i'a(*, «') =-5- [»!('+*')±»i (t — t')\. (V.22)

where

Then

and

(V.24)

We also note that formulas (V.16) and (V.19) can be used for cal-
culating the tensors Sjk and a^ in weak fields. For this purpose it
is more convenient to write them as follows:

' » i — ^ l - W r W ) , (V.25)

q

l - i
w~l — w~l (V.26)

1 - , d - d
where — = W — W" ;

q p dt p dt
terms independent of t standing to the

right of the operator 1/q have been dropped. The first terms of the
expansion obtained from formulas (V..25) and (V.26) coincide with
formulas (IV.8).

Now we shall give the asymptotic values of the various com-
ponents of the tensors s i k and a ik. We note that the coordinate
system we use is naturally "linked" only to the magnetic field.
This means that we are at liberty to choose the x and y axes in
the plane perpendicular to the magnetic field (H 11 Oz). We choose
them so that the tensor* san (a, fi= x, y) has no nondiagonal com-

*Using the property (1. 23) of the operator W , one can show
that s i k = s k i (cf. Appendix IV).

Since the quantity <Pyvx> is equal to e2(n, -n 2 ) for closed con-
stant-energy surfaces (cf. formulas (5.17) —(5.21)),

az = a-xy = j](nl — n2>- (V.30)

Using the values found here for the components of the tensors
s i k and a ik we get the asymptotic values of |s | and (a sa):

The dots denote terms containing higher powers of the reciprocal
of the magnetic field. Starting from these last formulas, we see
that the denominators in formulas (V.3) when n^ ̂  n2 are of order
y z z a x y , while when n1 = n2 they contain all the components of
the matrices s i k and a ik.

Calculating the various components of the tensor pfk and the
vector bj we see that the matrix pfk has the following structure:
when nt 4 n2 all the components of p?k tend to saturation*,
while bz = H/(nt - n2)ec, bx and b are proportional to 1/H, i.e.,
they tend to zero as H -> <*>. This means that, to high accuracy, in
strong fields the Hall vector b is parallel to the magnetic field
(for any symmetry of the crystal).

When n1 = n2 all components of the tensor p l k except p | z

increase quadratically in strong field, p z z tends to saturation
(but p | z ^ sz'z); all the components of the Hall vector b increase
linearly with increasing magnetic field (the Hall vector is not
parallel to the magnetic field).

*pzz = s z z , while the other components are given by rather
complicated expressions in terms of the components of the tensor
s i k and the vector a.
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In conclusion we prove the following theorem: if the magnetic
field is perpendicular to one of the principal directions in the cry-
stal, then when n, 4 n2 the transverse resistance px x in strong
magnetic fields (H -> ºº) is greater than or equal to the resistance
in the absence of the field* pxx(0) = lArxx(0). The x axis coin-
cides with one of the principal directions of the tensor ffik(0).

Using the asymptotic behavior of the components of the tensor
<7ik (cf. formula (V.28)), we have

Qxx (CO) £? •

so that

(co)

Qxx (0) (co)

Using the notation of this paper, the last inequality can be writ-
ten as follows:

Qxx (co) > <.vv%) <.vW~ lvlvx)

Taking vy from (5. 7) , we get

lvx)

In the last transformation we have used the property (1. 23) of
the operator VL- The relation obtained also proves our assertion
since the numerator of the fraction is the product of the "squares'
of the vectors ifj and W"lvx, while the denominator is the
"square" of the scalar product of the same vectors (for more de-
tail, cf. ["]).
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