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1. NORMAL COMBUSTION OF GASES

NORMAL or fundamental combustion is, following
the nomenclature of V. A. Mikhel’son,[12J a plane
flame propagating in a stationary gas or in a laminar
flow by means of the thermal conductivity, which heats
the unburnt gas, and by means of diffusion which sup-
plies it with chemically active particles from the com-
busting layer. The propagation velocity of normal com-
bustion in a previously prepared homogeneous com-
bustible mixture (this velocity is also called the
normal velocity of the flame) is determined both by
the coefficients of thermal conductivity and diffusion
and also by the chemical reaction rate at a tempera-
ture close to the combustion temperature.

The time of chemical reaction 7 is from dimen-
sional analysis equal to the time t necessary for a col-
lision between the molecules multiplied by the mean
number of collisions per act of chemical reaction:

T=1tn.

The number n is obviously inversely proportional to
the chemical reaction probability. Assuming the time
between collisions to be equal to the ratio of the mean
free path 7to the mean velocity of the molecules c (the
latter is close to the speed of sound), we find the chem-
ical reaction time

l
tadn M

The width of the zone of the chemical reaction is in
order of magnitude equal to the product of the chemical
reaction time and the speed of the flame:

A:Tun:ll—;‘—‘n. (2)

In addition, it follows from dimensional analysis that
the width of the chemical reaction zone is also some
fraction of the total width of the heated region in front
of the flame propagating with a velocity up:

780

Detonation . . .. .......... ... ......
The instability of planar gas detonation with respect to the combustion front . . . . ... ...

780
781
785
789
790
792
795
797

A~B (3)

Here k/uy is the width of the heated region (« is the co-
efficient of thermal conductivity) and S8 < 1.

Comparing (2) and (3), and bearing in mind that the
coefficient of thermal conductivity is

1
'n—glc,

we obtain for the normal velocity of the flame the
relation

Up="C f’\l - -T%« @, (4)
where ¢ is a quantity smaller than unity.

The normal velocity of a flame is, as is seen from
(4), proportional to the speed of sound, but consider-
ably smaller than the latter, since the number of col-
lisions n necessary for one act of chemical reaction is
usually of the order of 10* — 105,

With the aid of (4) and (2) one can find the width of
the channel of the chemical reaction zone—the width
of the flame front:

=) 7 g (5)

It is proportional to the mean free path, but much
larger than the latter.

The complete theory of the propagation of normal
combustion, now quite generally accepted, is that of
Ya. B. Zel’dovich and D. A. Frank-Kamenetskiy. 81
It is not presented here, because for what follows the
general physical facts on the normal flame presented
above are sufficient.

The normal velocity of a flame is one of the main
physico-chemical constants of volatile fuels. It in-
creases with increasing initial temperature of the
mixture and changes little with changing initial pres-
sure. The normal velocity reaches a maximum in a
mixture with a certain deficiency of air (oxygen) com-
pared with a mixture in which there is just enough of
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FIG. 1. Diagram of a normal flame.

it for complete combustion. For air mixtures of hydro-
carbons the maximum normal velocity amounts to
0.3—0.4 m/sec. The maximum normal velocity in a
hydrogen-air mixture is 2.67 m/sec. This is generally
the maximum velocity recorded in air mixtures of
combusting gases.

Oxygen mixtures of combusting gases and vapors
for which the number of collisions necessary for one
chemical reaction act is considerably smaller than for
air mixtures have higher normal velocities (but still
far from the speed of sound). Thus, the maximum
normal velocity in a butane-oxygen mixture is
4.8 m/sec and in a hydrogen-oxygen mixture it is
about 10 m/sec.

The width of the chemical reaction zone in a normal
flame in air mixtures is of the order of several tenths
millimeters, and in oxygen mixtures it is even less.

Let us imagine that the normal combustion front is
stationary (Fig. 1). The unburnt gas enters into the
combustion zone with a velocity uy. the combustion
products escape from it in accordance with the law
of conservation of mass with a velocity

u-=u Lo ) (6)

where py and p are the densities of the unburnt gas and
of the combustion products respectively.

By virtue of the conservation laws of mass,
momentum, and energy there appears on the combus-
tion front a pressure drop whose magnitude for the
case up << ¢, is given by the expression toJ

u

p—Po=—pog { ) = ™

— pogM>.
Here c; is the speed of sound in the unburnt mixture,
q is the ratio of the thermal effect of the combustion
reaction to the initial internal energy of the gas

f]:Y(Y—i)%,

v is the ratio of the heat capacities; M in formula (7)
is the Mach number of a normal flame, i.e., the ratio
of the normal speed to the speed of sound in the
unburnt gas mixture.

The pressure drop on the front of a normal flame
turns out to be very small. Thus, for example, for an
air mixture of pentane (CgHy,)

u, = 0.35 m/sec, ¢y, = 340 m/sec,

M =10"% q=1,
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and the difference between the pressures on both sides
of the zone of the normal flame is

p—po= — poqM?®= — p-7-1078 =~ — 1075 p,.

At atmospheric pressure the drop on the flame front
is in this case about 0.1 mm of the water column. In
oxygen mixtures it is approximately by one to two
orders higher, but even in this case it remains very
small.

2. INSTABILITY OF NORMAL COMBUSTION

The problem of the stability of normal combustion
against infinitesimal perturbations, which is of funda-
mental significance for the theory of combustion, was
posed and solved by L. D. Landau as early as 1944, (1]
Making use of the considerable pressure drop on the
front of a normal flame, L. D. Landau applied to the
problem the exact equations of perturbation theory.
Without carrying out the calculations which indicate
the absolute instability of a plane front of normal com-
bustion, we will indicate the physical reason for this
phenomenon.

We superimpose on a normal combustion front
(Fig. 2) a perturbation—we distort the front as indi-
cated by the wavy line—and follow its behavior. When
the gas crosses a portion of the flame front which
makes an angle with the approaching flow, the tangen-
tial component of the speed of the gas remains
unchanged, and the normal component increases in
proportion to the ratio of the densities p,/p. The gas
stream which crosses the combustion surface at an
angle will be deflected as indicated on Fig. 3. As a
result a flow will occur behind the wavy front of the
flame whose flow lines are schematically indicated in
Fig. 2. The flow lines converge behind the convex
portions of the flame (in zones a) and diverge behind
the concave portions (in zones b). In the 4—4 plane

FIG. 2. The initial perturbation of
the normal front (solid line) is in-
creased (dashed line), because in the
combustion products for the cross =
sections 1-1 and 2-2 in region
a p, > p,, and for the cross sections
3-3 and 4—4 in region b p, < p,.

Un
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FIG. 3. Deflection of a gas flow by the front of a flame.

behind the flame front the pressure is constant
throughout, but a certain nonuniform distribution of
speed remains: the speed of the combustion products
behind the convex portions of the front is somewhat
higher than behind the concave portions.

The gas behind the convex portions (in zones a) is
under conditions similar to those in a converging
nozzle (confuser) and behind the concave portions
(b zones) similar to those in a diverging nozzle
(diffuser). For this reason the pressure is increased
slightly in zones a, and decreased slightly in zones b
compared with the pressure in the 4—4 plane and in
the unburnt gas. As a result the initial perturbation
represented by the wavy line increases, and the flame
front is further distorted as indicated by the dashed
line.

On Fig. 2 the front has no width. Actually in con-
sidering the wavelength of the perturbation one must
take into account the finite dimensions of the combus-
tion zone (Fig. 4). The wavelength of the perturbation
and consequently also the linear dimension of the
surface of the combustion front should, if we follow
the qualitative instability mechanism described above,
exceed the width of the combustion zone, more pre-
cisely the zone of heating. At the instant when the
dimension of the flame R exceeds the width of this
zone, i.e., the instant at which the flame front itself
will appear, the initial perturbations will, by virtue
of the absolute nature of the instability, begin to grow.

The condition for the appearance of the instability
can be written in the form

R>uin

FIG. 4. R is the length of the perturbation
wave, and A is the width of the flame front.
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Rep=
n %

>1. (8)

When the dimensionless criterion (8), reminiscent in
its form of the Reynolds criterion, exceeds a quantity
of the order of unity, the plane zone of the normal
combustion ceases to exist, the flame becomes self-
turbulent, and turbulent combustion appears which
follows laws other than the laws of normal combustion.

The instability of a normal flame was first observed
experimentally by Zel’dovich and Rozlovskil. [12] They
ignited a mixture of 56.6% hydrogen, 41.1% oxygen, and
2.0% carbon disulfide inside a steel bomb 150 mm in
diameter and having a window for photography.
Whereas at initial atmospheric pressure the flame
reached the walls of the bomb without change in the
nature of the propagation, on increasing the pressure
the velocity increased abruptly at some distance from
the walls and the combustion changed into detonation.
The change occurred at a value of Re of (8) of 2 — 5
% 10%. Zel’dovich and Rozlovskil assume that the
transition from combustion to detonation is due to the
instability of normal combustion. The unexpectedly
large value of the criterion (10° instead of 1) indicates
a greater stability of normal combustion than pre-
dicted theoretically. The flame is stable with respect
to perturbations which exceed in their length by 4—5
orders the width of the combustion zone, becoming
unstable only with respect to relatively long perturba-
tions. The instability turned out not to be absolute.

In the experiments described the action of the
chamber walls on the flame front was not excluded.
Weak perturbations (including weak shock waves) re-
flected by the walls of the chamber and meeting the
flame may interact with it. It cannot be stated in ad-
vance whether they stabilize or increase the instability
of the flame.

The effect of the chamber walls was practically
completely excluded in the experiments of Rakipova,
Troshin, and the author of this article; these experi-
ments were carried out with acetylene-oxygen mix-
tures enclosed in soap bubbles and ignited at the
center with a red-hot loop. L13] Photographs of the
spherical flame through a narrow slit in a screen
separating the soap bubble from the camera indicate
a gradual increase of the velocity of propagation of
the flame, beginning at the instant when criterion (8)
reaches a value 3— 6 x 10%. In [1¥ distortions of the
flame front were recorded, indicating that the front
was self-turbulent and appearing after Re, of (8) in-
creased to the same value of 3 — 6 x 104,

Subsequently the appearance and growth of instability
was studied by the Toepler method. (143 For criteria
(8) exceeding 104 for acetylene-oxygen mixtures and
0.7 x 10* for mixtures of Saratov (natural) gas with
oxygen, there appeared on the front perturbations of
increasing intensity—wave-like inhomogeneities.
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FIG. 5. Photograph of the
acceleration of a flame in a
mixture of 33% C,H, and 67% O,
in a soap bubble.

Figure 5 shows the progressive acceleration of a
spherical flame in an acetylene-oxygen mixture indi-
cating its instability. Figure 6 shows the transition of
slow combustion into spherical detonation in a thin
rubber sphere due to the instability of normal com-
bustion.

Self-turbulence was also observed by a group of
authors directed by Yu. Kh. Shaulov. %] The results
of this work coincide with those described above.

The stability of a normal flame with respect to
relatively short-wavelength perturbations observed
experimentally and contradicting theory requires a
consideration of stabilizing effects not taken into ac-
count in Landau’s theory.

One of the stabilizing factors (which was pointed
out in the first experimental work of Zel’dovich and
Rozlovskiit12d) may turn out to be the effect of the
curvature on the thermal flux, increasing the velocity
of normal combustion at the concave surface and de-
creasing it at the convex surface. Thus the top of the
Bunsen flame is always rounded off because the
velocity of the concave flame is always larger than
the velocity of a plane flame. For this reason pertur-
bations on a plane flame are evened out: the flame
propagates faster in the retarded (concave) sections
and more slowly than for a plane flame in the convex
sections. The effect of the curvature on the velocity
of the flame can stabilize combustion with respect to
perturbations approximately by an order longer than
the zone of heating. This increases the criterion (8)
to approximately 10. However an increase by one
order of magnitude does not remove the difficulty.
The discrepancy between the experimental and theo-
retical values of criterion (8) remains larger by
about three orders of magnitude.

The effect of viscosity on the flow of gas stabilizes
combustion, the effect being stronger for short-
wavelength perturbations than for long-wavelength
ones. However, the discrepancy between the theory
and experiment by several orders is difficult to
ascribe to such a weak stabilizing effect.

In Landau’s work the following conditions were

Expansion of
detonation
products

Accelerating
combustion

FIG. 6. Transition of a slow spherical flame into a spherical
detonation in a mixture of 22% C,H, and 78% O, enclosed in a thin
rubber sphere.

assumed on the boundary dividing the burnt and
unburnt gas:

le——g—f=vzx-—%§~=0.
Here v is the perturbation of the velocity of the un-
burnt gas along the x axis, perpendicular to the per-
turbed front, vy is the perturbation of the velocity of
combustion products along the same axis, £ is the dis-
placement of the combustion front.

These conditions correspond to a constant velocity
of propagation of the flame along the x axis. Under
this condition the flame shifts (is translated) from the
equilibrium position in correspondence with the change
in the rate of the gas flow, i.e., with its perturbation.
On increasing the velocity the flame shifts towards the
burnt gas, and on decreasing it it shifts towards the
unburnt gas. At the same time each point on the front
shifts independently of its neighboring points.

Actually, however, the flame front does not repre-
sent an independent inflammation of gas particles, the
flame propagates in all directions (over the unburnt
gas) with a constant normal velocity. For this reason,
strictly speaking, one must set on the boundary the
constant velocity of the flame in a direction perpen-
dicular to the normal front.

Normal propagation has a stabilizing action. Com-
bustion ‘‘consumes’’ the gas more rapidly in front of
the concave sections of the combustion zone than in
front of the convex sections. Let us consider the dis-
tortion of the flame front F unsupported (unhindered)
by an external reason (Fig. 7). Applying Huygens’
principle to combustion one can readily convince one-
self that the given perturbation decreases spontaneously.
The amplitude of the perturbation decreases particu-
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FIG. 7. Decrease in the amplitude of the initial distortion of

the flame from A to A’ because of the equalizing action of the
combustion propagation.

larly rapidly at the instant of the appearance of a dis-
continuity O on the surface of the front. With time the
rate of decrease of the amplitude decreases and ap-
proaches zero asymptotically. The very slow smooth-
ing out of the perturbation duririg the last stage leads
incidentally to an interesting phenomenon. One can
often observe on a spherical flame a structure remin-
iscent of the surface of a volley ball. Perturbations on
the surface of a flame when it is stable decrease
rapidly during the initial stage of smoothing out and
very slowly during the last stage. For this reason the
traces of the perturbations remain on the surface of
the flame for a long time, giving it the form shown in
Fig. 8.

In order to be convincing, the above qualitative dis-
cussion about the stabilizing effect of the propagation
of combustion requires quantitative estimates. A
rigorous solution of the problem is thus of consid-
erable interest.

Recently the assumption was advanced (see [10J,

p. 187) about the existence of another stabilizing
effect. In a spherical flame, so long as it is small in
dimension, perturbations can average over the surface
of the front and can stabilize combustion. The time
needed for propagation of the perturbations over the
combustion products from one section of the sphere

to another (opposite) section is of the order of
R/ccom where cqop is the speed of sound in the com-
bustion products. The time characteristic for combus-
tion (the time during which the flame propagates over
a distance equal to the thickness of the flame zone) is
of the order of A/u,,. Hence the condition for the
smoothing out of perturbations in the burnt gas can

be written in the form

A
£—' >_1

or Ru,> Accom.
Dividing both sides by the thermal conductivity, we
obtain a criterion for the absence of smoothing out of

perturbations

Run> Accom or Ref1>ic_or.n (9)

L
% % un

Substituting numbers, we find the ratio cgom /tp
for oxygen mixtures to be equal to 10°—103, and for
air mixtures 10°—10%. The numbers agree almost
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FIG. 8. Spherical unaccelerated flame with slowly attenuating
perturbations on its surface in a mixture of 10% Saratov (natural)
gas and 90% air. The light spot at the end of the dark arrow is the -
center of the sphere.

precisely with the experimental value of criterion (8).
More exact agreement should not be expected when
the two criteria (8) and (9) are correct only to within
the order of magnitude.

It is not impossible that the smoothing out of per-
turbations over the combustion products will turn out
to be the strongest stabilizing factor absorbing all the
other stabilizing effects: the action of the combustion
propagation, the effect of the viscosity, and others.
Thus, to verify the theory and for elucidation of the
true meaning of criterion (8) experiments are essen-
tial in which smoothing out would be excluded.

One must mention two papers in which stable com-
bustion modes were obtained. [16:17 1t is, however,
difficult to compare their results with the experiments
cited above, since the theoretical problem was solved
under the assumption of an induction mode. The
stability was attained under a more complicated form
of conditions on the combustion surface. The experi-
mentally observed transition from stable combustion
with short-wavelength perturbations to instability with
long-wavelength perturbations was not confirmed by
the investigations.

One of the factors stabilizing combustion is, as was
noted above, the dependence of the velocity of propaga-
tion of the flame on the curvature of the front. The -
thermal flux into the unburnt gas increases near con-
cave sections of the front and decreases near the con-~
vex sections. Therefore the velocity of the flame in-
creases around concavities and decreases near con-
vexities on the flame front, and this indeed stabilizes
the flame when the wavelength of the perturbation is
equal to or exceeds approximately by an order of mag-
nitude the width of the combustion zone.

However, all that has been said is correct, as was
first noted by Zel’dovich, Lel only when the diffusion
coefficient of the combusting material and of the
oxidizer is approximately equal to the coefficient of
thermal conductivity of the mixture. The situation
changes radically if the diffusion coefficient of the
component which determines the process (of which
there is little) exceeds the coefficient of the thermal
conductivity of the mixture. In this case so-called
diffusion combustion takes place at the combustion

¢




INSTABILITY OF COMBUSTION AND DETONATION OF GASES

boundary: the front of the flame is at rest (or almost
at rest), the combusting component flows from the un-
burnt gas by virtue of the diffusion. Here the velocity
of the flame near convexities of the front increases
compared to the velocity in a plane front, and near
concavities it decreases. The effect of the front dis-
tortion on the velocity of the flame changes sign com-
pared with the case when the diffusion coefficients and
the thermal conductivities are close to each other.
The point is that in diffusion combustion the supply of
the combusting component (of which there is not
enough) is greater near the convex sections of the
front (the diffusion to the front is from a larger vol-
ume) and smaller in the concave sections compared
with a plane flame. Therefore at points where random
convexities have appeared the flame propagates more
rapidly, it extends forward. The combustion moves
over the unburnt mixture in the form of separate bell-
shaped or spherical bubbles. This type of instability
was first observed in pure form by V. I. Kokochashvili
in a mixture of hydrogen with bromine (35-40% H,

+ 65—70% Br) at a pressure of 200 mm Hg in down-
ward propagation of a flame. Le]

No continuous combustion front is produced in this
type of instability, because the gas between the spheres
(bubbles) becomes strongly hydrogen deficient. The
propagation limit of the flame turns out to be broader
than the propagation limit with a continuous front. By
virtue of the concentration of the combustion in dif-
ferent sections (diffusion collects the combusting
material from the surrounding space) the flame propa-
gates at compositions which are outside the propaga-
tion limits of a continuous front.

As a result of instability the lower limit of propa-
gation of a flame in mixtures containing hydrogen is
lower when the flame moves upward compared with
the case of downward propagation. The bubbles or
spheres are pulled up by convection. In downward
motion there is no convection and the propagation
possibilities decrease on this account. Diffusion com-
bustion and the instability connected with it is not only
observed in hydrogen-containing mixtures. In mixtures
containing a large amount of heavy phlegmatizer, whose
molecular weight is considerably larger than the mol-
ecular weight of oxygen and of the combusting mate-
rials (carbon tetrachloride, CCl,, in a mixture of
carbon or methane with oxygen), the diffusion coeffi-
cient of the combusting component (or the oxidizer)
is considerably higher than the thermal conductivity
of the mixture. In such mixtures diffusion combustion
and the instability of the plane flame connected with it
are also observed.

The very subtle phenomena at the limits of propa-
gation of the flame in phlegmatized mixtures and in
mixtures containing hydrogen, discovered and investi-
gated by V. I. Kokochashvili and Ya. B. Zel’dovich, L8
may turn out to be essential for the techniques of safe
explosions.
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3. DETONATION

Detonation is the name given to combustion propa-
gating in broad tubes with a constant ultrasound veloc-
ity completely determined for each combustible mix-
ture. For example, the detonation velocity in a hydro-
gen-oxygen mixture (the composition in each case is
stoichiometric) is 2800 m/sec, of methane with
oxygen—2320 m/sec, and of pentane (C;H,,) with air—
1710 m/sec. Detonation combustion is always accom-
panied by a strong increase in the pressure and by a
considerable increase in the density of combustion
products compared with the initial combusting mixture.
The combustion products move in the detonation wave
in the same direction as the detonation. In contrast to
detonation, slow combustion, for example normal com-
bustion which was discussed above, is accompanied by
a decrease in the pressure and density in the combus-
tion zone, the products of the combustion move in it in
a direction opposite to that of the front of the flame.

The gas-thermodynamic theory of detonation was
developed already at the end of the last and at the be-
ginning of this century. In the plane case one obtains
from the laws of conservation of mass, momentum,
and energy (and the equation of state) for the gas
crossing the combustion front (four equations with
five unknowns—the velocity of the wave D, the velocity
of the combustion products w, the pressure p, the den-
sity p, and the temperature in the wave) expressions
for the velocity of the wave and the velocity of the
combustion products in the laboratory system of

coordinates
(p PO)Q
b= ‘/(@ Q) o

W— l/p Po) (@—Qa)
QQo

Eliminating the velocities (of the wave and of the
combustion products) and the temperature, one finds a
connection between the pressure and the density of the
combustion products—the Hugoniot equation

(10)

(11)

Qo g - 2\0

p T ¢
i et (12)

Here, as in (10) and (11), p; and py are the pressure
and density of the initial gas, and « = (v + 1)/(y — 1).
In Fig. 9 we present a graph of the Hugoniot equa-
tion. The upper branch of the curve corresponds to
detonation (p > pg). The conservation laws allow for
each mixture (given py, Py, and Q) an infinite number
of detonation velocities corresponding to any pressure
on the upper branch (above the point E) of the Hugoniot
curve. Detonations whose pressures lie above the
point B are called strong, those whose pressures lie
below are called weak. The point B describes the
Chapman-Jouguet (C.—J.) detonation. This detonation
and only it, as was first shown by D. Chapman (1899)
and E. Jouguet (1904), corresponds to the experimen-



786 K. I.
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’
FIG. 9. Hugoniot curve. N — for shock waves, C — for combus-
tion waves.

tally observed spontaneously propagating detonation
having a completely determined velocity for each
mixture. The selection rule for the unique value of
the detonation coincides with the rule for determining
the point of tangency B of the straight line AD (it is
called the Michelson line) with the Hugoniot curve. At
the point of tangency B the detonation velocity relative
to the velocity of the combustion products is precisely
equal to the speed of sound in them. For this reason
the C.—J. detonation propagates without attenuation
and with constant velocity. The rarefaction waves, as
well as the weak compression waves, appearing behind
the combustion front, which move always with the
speed of sound, do not overtake the front and it propa-
gates indefinitely without attenuating or becoming
stronger.

A strong detonation will not propagate spontaneously
with constant velocity, it will be weakened by rare-
factions whose velocity (the speed of sound) is always
larger than the velocity of the front relative to the
combustion products. A strong detonation propagates
without attenuation if, for example, a piston moves
behind it with the velocity of the combustion products.
No rarefaction waves appear in this case behind the
detonation front.

A weak detonation—all the points on the section
B—E—is possible if there exists an external source of
inflammation which ignites the gas with a velocity
larger than the velocity of C.—J. detonation. A limit-
ingly fast weak detonation (the velocity of propagation
is infinite, and on Fig. 9 the point E corresponds to
such a detonation) can be produced in a mixture which
is liable to ignite under illumination if one simul-
taneously illuminates the entire tube by an intense
source. Inflammation at constant volume is also a
limitingly fast weak detonation.

The section E—I of the Hugoniot curve has no phys-
ical meaning, it corresponds to imaginary velocities
of the propagation of combustion.

The lower branch of the Hugoniot curve (all points
below I) refer to deflagration—propagation of combus-
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tion with constant velocity smaller than the speed of
sound. In deflagration combustion is accompanied by
an expansion of the combustion products which like in
all expansion waves move in a direction opposite to
the motion of the front. In detonation combustion is
accompanied by a contraction of the gas and the com-
bustion products move in the direction of the propa-
gation of the combustion wave.

The velocity of deflagration, and also the velocity
of the combustion products is calculated from the
same formulas as detonation. However, for deflagra-
tion there are no selection rules distinguishing some
point on the Hugoniot curve, for example the point of
tangency K—the C.—J. deflagration. Thermodynamic-
ally arbitrary velocities of deflagration are possible,
but only on the section of the weak deflagration I—K
is its magnitude determined by the physico-chemical
properties of the mixture. Strong deflagrations (sec-
tion below the point K) are impractical from thermo-
dynamic considerations, although they are allowed by
the conservation laws.

An example of weak deflagration is the normal
velocity of a flame, the slowest of all actually occur-
ring deflagrations. The state of the combustion prod-
ucts in it lies extremely close to the point I--combus-
tion at constant pressure.

Thus far we were discussing the gas-dynamical
description of detonation. The physico-chemical
aspect of the phenomenon was first approached by
Zel’dovich. 32:8:61 He drew attention to the fact that
the gas in a detonation wave does not ignite instanta-
neously. After its compression some time is needed
for the development of the chemical reaction. Conse-
quently, a shock wave should always move before the
combustion front in a detonation wave with the same
velocity as the front. Thus detonation is a complex
consisting of a shock wave and a combustion zone.

The velocity of the wave is proportional [as is seen
from (10)] to the square root of the tangent of the angle
of inclination of the straight line AD to the abscissa
axis of Fig. 10. From the condition of the equality of
the velocities of the shock wave and the combustion
zone it follows that the state of the shock-compressed,
but as yet unreacted, gas and the state of the combus-
tion products should lie on the same straight line. The
pressure in the shock wave is thus determined by the
point D, and that of the combustion products by the
point B. It is interesting that the point B describes
detonation if the initial state is taken to be the point
A and deflagration if the initial point is D—a com-
pressed gas. Thus the complex constituting the detona-
tion consists of a shock wave and the Chapman—Jouguet
deflagration moving along on it.

The length (depth) distribution of the pressure in
the complex is shown schematically on Fig. 11. The
length of the ‘‘little square’’ is determined by the in-
duction period of the inflammation reaction. The shape
of the curve on the section N—B on which the pressure
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FIG. 10. Detonation portion of the Hugoniot curve.

drops from C to B depends on the course of the chem-

ical reaction. Usually the reaction rate depends on the
temperature exponentially with a large value of the
exponent. Therefore the pressure distribution in the
shock wave-deflagration complex is often shown under
the assumption that after the induction period the
pressure has altogether not changed, and after its
completion the mixture is instantaneously combusted
(Fig. 12).

The detonation shown in Figs. 11 and 12 is usually
called the Zel’dovich-Neumann detonation. J. Neumann
(USA) L] proposed it two years after Zel’dovich. A
year later DGring also proposed it. (40 The works of
Neumann and Doring were for a long time unknown in
the Soviet Union, as were the works of Ya. B. Zel’do-
vich abroad. For almost twenty years the Zel’dovich-
Neumann model of detonation was considered funda-
mental although not the only one. As early as 1926
Campbell and Woodhead (0] jp England discovered
spinning detonation. They showed that in a smooth
tube with mixture compositions with a large excess
or deficiency of the combusting component the com-
bustion zone is clearly not planar, Combustion in the

i w, |2,
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3

FIG. 11. Schematic distribution of the pressure in detonation
considered as a complex consisting of a shock wave and an in-
flammation zone.
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FIG. 12. Extremely simplified diagram of detonation.

form of a nucleus propagates in the forward direction
with the velocity of the detonation and simultaneously
rotates about the tube axis. From the nucleus the
flame propagates at some distance behind the front
over the entire cross section of the tube. A photograph
of spin detonation on a moving film is shown in Fig. 13.
For comparison, a ‘‘normal’’ (not spinning) detonation
is shown on Fig. 14. The velocity of the spin detonation
along the tube axis (the velocity of the process as a
whole), disregarding the clearly three-dimensional
structure of its front, coincides accurately with the
velocity of detonation in the same mixture calculated
according to the classical one-dimensional theory.
Spinning detonation which does not fit into the
Zel’dovich-Neumann model was considered for many
years an exceptional phenomenon characteristic only
of certain gas mixtures, for example, of carbon
monoxide with oxygen. Then Kh. A. Rakipova, Ya. K.
Troshin, and the author of this article showed (for
references see [10]) that detonational spin occurs
always and in all mixtures near the propagation limits
of detonation, by whichever method they were attained:
by decreasing the diameter of the tube, by decreasing

FIG. 13. Photograph of spin detonation in a mixture of 20% H,
and 80% air on a moving film. The detonation is propagating from

left to right and the film is moving from top to bottom.
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FIG. 14. Photograph of “normal” detonation in a mixture of
2H, + 0, on a moving film. The detonation moves from left to
right, and the film from the top down.

the initial pressure of the mixture, or by changing the
concentration of the combusting component.

After a long and very difficult search the author of
this article 211 and Zel’dovich succeeded in establish-
ing that the spin is of gasdynamical nature, and con-
stitutes an inclined overdriven detonation propagating
with constant velocity in a spiral along the tube walls.
The combustion in the spinning detonation, as it
turned out, begins behind the front NP of a triple
Mach configuration (see Fig. 24a). The wave NV of
the same configuration constitutes a direct shock
front whose characteristics can be calculated from
the Zel’dovich-Neumann theory.

But this did not exhaust the capabilities of detona-
tions to prepare surprises for the investigators. B. V.
Voitsekhovski! and his co-workers, [®] after careful
investigation of the structure of the front of a spinning
detonation and measuring the pressure in its various
zones, observed (at least under certain conditions) a
structure of the spin of considerably greater com-
plexity than was previously assumed. In particular
they recorded considerably higher pressures than
those calculated according to the old scheme (see
Fig. 24a). They recorded an inclination angle of 75°
between the combustion zone in the spin nucleus and
the tube. Here a contradiction also appeared with the
theory, since according to the theory this angle cannot
be larger than 45°. B. V. Voitsekhovskil expressed
the assumption that the inflammation of the gas occurs
in the spin behind the transverse wave NK and not NP,
as was assumed according to the theory. But gas-
dynamic calculations did not confirm this assumption.
Then in order to obtain correspondence between the
experiment and the calculations, a new structure of
the spin was assumed in Voitsekhovskii’s laboratory.
Roughly speaking, the nucleus of the spin consists ac-
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cording to this hypothesis of two triple configurations.
In addition to the configuration shown in Fig. 24a, in
spin in a compressed gas 2 another identical configu-
ration is propagated, and combustion occurs in two in-
clined waves: in the ‘“‘old”’ wave NP and in the ‘““trans-
verse’’ wave traveling in the gas 2 (it is not shown on
Fig. 24a). A more appreciable portion of the mass of
the gas burns in the ‘“transverse’’ wave of the second
configuration. In addition one can also find evidence
for the first hypothesis of Voitsekhovskii on inflamma-
tion in the wave NK (see Fig. 24a). If the gas is very
close to the limit of propagation of a detonation and
the inflammation time in the wave NP is sufficiently
large, and the wave NP itself is stable against distor-
tions (this type of stability will be discussed below),
then inflammation in the boundary layer behind the
wave NK cannot be excluded following two retardations
of the gas: one behind the wave NV, and the other be-
hind the front NK. In this instance the temperature in
the boundary layer behind the wave NK is considerably
higher than behind the front NP even after retardation
of the gas in the boundary layer behind this front.

Such a scheme is more logical. A natural place is
immediately found for the phenomenon discovered by
Voitsekhovskii and his laboratory co-workers. It
should be emphasized that the calculation of the triple
configuration with retardation in the boundary layer is
not trivial. The conception above is based more on
numerical estimates than on a rigorous internally con-
sistent calculation. The usual trivial gasdynamic cal-
culation of inflammation behind the transverse wave
NK leads to contradiction with the conservation laws;
for this reason indeed a more complex gasdynamic
scheme of the spin was worked out containing some
contradictions. If the just stated conceptions in favor
of the initial hypothesis of Voitsekhovskil with allow-
ance for the retardation of the gas in the boundary
layer were confirmed, then the spin structure discov-
ered in his laboratory would occupy a natural place
among other quite diverse detonation structures. The
contradictions on which it is not here the place to
dwell, would be resolved most successfully. However,
let us return to the primary subject of this article—the
instability of combustion and detonation.

Even the first investigators of the spin detonation
noted that on departing from the limiting mixture com-
position for the propagation of detonation the number
of spin nuclei increases, and the spin becomes multi-
ple. Then the detonation becomes ‘‘normal’’ and
planar. In 1957-1959(24:25) yy. N. Denisov and Ya. K.
Troshin undertook an investigation of multiple and
‘““normal’’ detonation by means allowing them to ob-
serve in the detonation front inhomogeneities consid-
erably smaller in size than they could observe pre-
viously. It turned out that not only spinning detonation
(simple and multiple), but also ‘‘normal’’ detonation
has actually a three-dimensional structure. In connec-
tion with the first experiments of Denisov and Troshin
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the author of this article undertook to investigate the
stability of a planar detonation in the Zel’dovich-
Neumann model. The detonation, as a physical analysis
showed, turned out to be unstable. [26]

4. INSTABILITY OF A PLANAR GASEOUS DETONA-
TION WITH RESPECT TO DISTORTION OF THE
COMBUSTION FRONT

Instability in detonation differs in principle from
instability in normal combustion. In normal combus-
tion instability can appear as a result of the distortion
of the gas flow on crossing the combustion front, or as
a result of a difference in the coefficients of diffusion
and thermal conductivity. On the other hand, instability
in detonation is connected with the exponential temper-
ature dependence of the chemical reaction time. A
small increase (decrease) in the temperature of the
unburnt gas in detonation leads to a sharp decrease
(increase) in the time from the initial compression in
the wave to the instant of inflammation of the gas in it.
Both the instability of detonation with respect to distor-
tion of the inflammation front, considered in this sec-
tion, and the instability with respect to one-dimensional
perturbations to which the next section is devoted are
related to this phenomenon.

Figure 15 shows the cross section of the complex
which constitutes the detonation. Here VV is the shock
compression front, BKLKB is the inflammation zone,
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FIG. 15. Diagram of a small perturbation of the inflammation
zone in the detonation KLK (considerably exaggerated on the
figure). Below the sections indicate the decomposition of the
perturbation perpendicular to the motion of the detonation.
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distorted by the perturbation KLK which has been
strongly exaggerated in Fig. 15 for purposes of illus-
tration. Actually of course the initial perturbation of
the plane front must be infinitesimally small. The dis-
tortion KLK can appear, for example, as the result of
a small inhomogeneity in the composition of the mix-
ture leading to a decrease in the period of induction of
inflammation in the zone L and to its increase in the
region K. Above the line BKLKB the gas is compressed
to a pressure of pc, below it to pp (cf. Fig. 12). In the
plane wave the pressure drop from p¢ to pg, as shown
in Fig. 12, is retained for an arbitrarily long time: it
satisfies the conservation laws and the condition of

the equality of the velocities of the shock wave front
and of the combustion zone. However in a nonplanar
wave the pressure jump is unstable in the transverse
direction, right and left in Fig. 15. It is not in equili-
brium and disintegrates, as is shown in the cross sec-
tions below the BKLKB line. The pressure in the K
region decreases, whereas in the L region it increases.
This is a most important detail and we will therefore
repeat this statement again in other words. The pres-
sure drop from p¢ to ppg along the x axis is stable.
However, the perturbation KLK produces unstable
pressure breaks (jumps) perpendicular to the direction
of motion of the detonation front. Nothing prevents
these jumps from disintegrating. Moreover, they must
disintegrate like an arbitrary pressure discontinuity
(differential) produced in the gas by any method.

Thus in the zones L the pressure of the reaction
products is increased, the detonation in the region L
turns out to be overdriven, and the Jouguet condition
is violated. In front, from the zone L to the shock
front CC, a compression wave propagates whose induc-
tion time decreases in this region, the gas is inflamed
more quickly and the point L approaches the front CC.
In the KK zones the pressure decreases as a result of
expansion, the gas is cooled, the induction period is
increased, and the points KK move away even further
from the shock front CC. In all, the disturbance KLK,
having appeared, is strengthened. This indeed con-
stitutes the instability of the complex consisting of a
shock wave and the planar inflammation zone that fol-
lows it.

Since the speed of sound is always larger in the gas
compressed by the shock wave than the velocity of the
front with respect to the compressed gas, perturbations
of the combustion zone give rise to perturbation of the
shock front CC. The shock wave (one readily sees) is
unstable when the perturbations of the combustion zone
are of a dimension on the order of or larger than the
width of the inflammation zone (A in Fig. 12). Per-
turbations of smaller extension than the zone width
are averaged (the pressure in them is equalized) be-
fore they reach the shock front.

The described qualitative mechanism of instability
allows one to find a quantitative criterion for its ap-
pearance. The activation energy E of the inflammation
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reaction will enter into it. Clearly, the more the
period of the inflammation reaction depends on the
temperature (the higher the activation energy), the
less stable the detonation. The changes in the pressure
in the expansion and compression zones (K and L)
which lead respectively to cooling and heating of the
unburnt gas have the larger an effect on the chemical
reaction time (the position of the points K and L in

Fig. 15), the stronger the reaction rate depends on the
temperature.

For a derivation of the criterion it is essential to
allow for one more circumstance. The pressure in the
zone K, of dimension A, is equalized (the zone relaxes)
in a time on the order of A/2c, (here c, is the speed of
sound in the shock-compressed gas of the zone K). The
time during which the shock-compressed gas remains
in zone K of dimension A is of the order of

A
D—w"
But in the shock wave cqom > D — W always, so that the
inequality 2c, > D — W is even more correct in it;
therefore,
A A
ey < =W -
The time of the equalization of the pressure in the
transverse direction is always less than the time
during which the perturbation remains in the detona-
tion front (less than the lifetime of the perturbation).
For this reason the period of the induction always ‘‘has
time’’ to take on a value corresponding to the pressure
which has decreased or increased as a result of the
disintegration of the transverse discontinuity. More
accurately, the induction period has time to assume a
value corresponding to that temperature which will be
established after the compression of the gas in the
region L and its expansion in the region K. Therefore
one does not have to consider the time evolution of the
disturbance, and it is sufficient to consider only the
change in the chemical reaction rate as a function of
the temperature change caused by the compression or
expansion of the gas in the initial perturbation.

As a result one can formulate the following quanti-
tative criterion for the loss of stability; if the adiabatic
expansion of the gas from the zone K into the region L
will on decreasing the temperature of the gas increase
the delay in the inflammation by a quantity of the order
of the delay itself or larger, then an arbitrary initial
perturbation (distortion) of the flame front will in-
crease and the planar detonation will lose its stability.
Neglecting the dependence of the reaction time on the
pressure (density), we obtain the instability criterion
of a planar detonation

) (T—To) >,

(13)
ar Tc

where T is the chemical reaction time, and T is the
temperature of the unburnt gas in the perturbation
zone after the expansion.
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The time of the chemical reaction—a quantity in-
versely proportional to its rate—is proportional to

t~exp (7 ) - (19)

From (13) and (14) we obtain the criterion
E T 15
Tro (1 T )=t (15)

Near the point K the gas, whose pressure until the
perturbation was pc, expands adiabatically up to a
pressure pg. Therefore (15) can be rewritten as

y—1
E Iy ¥
arg 1= (5e) " 1>

True, estimates of criterion (16) for various mix-
tures are not very precise, because the activation
energy E at high temperatures is not known exactly,
but they indicate an instability of the planar detonation
practically in all gas mixtures in which it is observed.

The physical analysis carried out above gave rise
to somewhat more thorough mathematical investiga-
tions of instability of planar detonation (R. M. Zaidel’,
B Erpenbeck, (28] and Pukhnachev (%] ). The
instability criterion (17) (see below) obtained by
R. M. Zaidel’ differs from (16). Nonetheless, in his
work as in that of others instability of planar detona-
tion is observed: in the main the results coincided
with the results of the physical analysis.

Zaidel’ and Pukhnachev arrive among others at the
conclusion that detonation is stable with respect to
perturbations whose wavelength is small compared
with the width of the reaction zone. This type of
stable detonation can, as they assume, take place in
narrow tubes whose diameter is considerably smaller
than the width of the reaction zone. The occurence of
stability is clear from the above. Perturbations on the
flame front are not imparted to the shock front: the
pressure in the waves traveling away from them is
averaged out over the cross section of the tube before
it reaches the shock front.

(16)

5. ONE-DIMENSIONAL INSTABILITY OF
DETONATION

Detonation in narrow tubes, stable with respect to
distortions of the combustion zone, turns out to be un-
stable with respect to one-dimensional perturbations,
as R. M. Zaidel’ and Ya. B. Zel’dovich have shown. [30J

Detonation in the Zel’dovich-Neumann model is
clearly a Jouguet deflagration propagating in the
shock-compressed gas—the shock wave (Fig. 16a). In
the steady-state regime the compressed gas is in-
flamed after a time 7 after entering the shock front.
This time corresponds to the velocity of propagation
of combustion, equal to the flow velocity of unburnt
gas, and is opposite to it in sign: the combustion front
B remains stationary with respect to the shock-
compression front AC. Let now the chemical reaction
time be randomly shortened for any reason by some
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FIG. 16. The appearance of two shock waves C' and B’ on
shortening the period of the inflammation delay on the detonation

front by 7.

small amount. The flame front will now move toward
the shock front, and a velocity component of the flame
will now appear, directed toward the forward boundary
of the shock wave. The conditions on the ‘‘unburnt
gas—combustion products’’ boundary will cease satis-
fying the Jouguet condition. The new discontinuity will
fall apart into two shock waves, one (C’) will travel in
the shock-compressed gas and the other (B’) in the
combustion products (Fig. 16b). If the increase in
velocity is relatively large, then a rarefaction wave
LM will appear in the considered instance (Fig. 16c).
However, as long as the perturbation is small, the
wave LM can be neglected.

The complex consisting of a combustion zone and a
shock wave propagating in front of it is called a double
nonstationary discontinuity. The wave velocity, the
velocity of the gas, and its state in all zones of double
nonstationary discontinuity can be readily calculated. (10]

The shock wave C’ which appeared as a result of
the decrease of the chemical reaction time heats the
gas additionally; this results in further decrease of
the chemical reaction time, a new shock wave C’
travels in the gas which decreases the chemical reac-
tion time even more, and so on. The perturbation (ac-
celeration of the combustion) having appeared, will
progressively increase. When the perturbation reaches
the initial shock front AC, a rarefaction wave is propa-
gated back in the compressed gas, the pressure on the
front drops sharply, and the detonation may be atten-
uated as a result of the very strong dependence of the
reaction time on the temperature (pressure of the
shock-compressed gas).

The authors of 133 obtain for one-dimensional per-
turbations an instability criterion of detonation which
coincides with the condition derived by Zaidel’L27] for
loss of stability of a planar detonation with respect to
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distortions of the combustion front
£ A (et A+ VD) (17)
RTp 2 (x+2)

Here T is the temperature of the compressed, unburnt
gas (in zone C of Fig. 16a), k = (Y + 1)/(Yy — 1), and v
is the ratio of the heat capacities.

Criterion (17) suffers from the deficiency that it
depends neither on the ratio of the speed of sound in
the burnt and unburnt gas, nor on the thermal effect
of the combustion, on which, all other conditions being
equal, the intensity of the shock wave traveling in the
unburnt gas depends.

In [31] 3 different, quantitative solution, presented
below, is obtained for the one-dimensional instability
problem.

In a Chapman-Jouguet detonation the inflammation
zone is at rest with respect to the shock front. There-
fore the flame velocity is equal and opposite in sign to
the flow velocity of the unburnt gas:

U= —~Ucom-
The distance from the shock wave to the inflammation
zone is
A=ur,

where 7is the inflammation delay.

In an unperturbed wave the volume of gas per unit
of front surface burnt after an arbitrary period of
time t, is

V =ut.

If the inflammation delay time is accidentally short-
ened in the time t by 6t, then the flame front will ap-
proach the shock front by a distance of

AL =ubt

and the volume of gas burnt during this time will be
V' =ut -+ ubr.

The ratio of the gas volumes burnt during the same
time intervals is equal to the ratio of the propagation
velocities of the flame:

v’ w

! ot
v u:1+T'

Since the time interval t is arbitrary, we will take it
to be 7. Then, taking into account the signs, we can
write

u"'—u
A=t BT (18)
In writing (18), we must bear in mind that Au is the
dimensionless increase in the flame velocity averaged
over the time interval 7. If in the following time inter-
val T the induction period will become shorter hy a
further 67, then the flame front will come closer to the
shock front by an additional amount u’67. In other
words, in order for the new flame velocity u’ to be re-
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tained, the inflammation delay must become contin-
uously shorter. If, on the other hand, it will, after
being once shortened by 67, remain 7 — 67, then the
combustion zone will settle at a new distance A — uér
from the shock front. The flame will again be at rest
relative to the shock front.

The dimensionless pressure drop in the shock wave
traveling in the unburnt gas and due to a small in-
crease in the flame velocity will be determined in
accordance with [10] (p. 221) by the expression

Ap P =P _
P p ¢+ccom

qgMAu. (19)
Here p’ is the pressure in the shock wave, p is the
pressure in the gas, in which the shock wave is
traveling, ¢ and cgom are the respective speeds of
sound in the unburnt and burnt gas, q is the ratio of
the thermal effect of combustion to the internal energy
of the unburnt gas, and M is the ratio of the velocity of
the flame to the speed of sound in the unburnt gas.

The subsequent fate of an initial perturbation (in
the time 67 and length udT) depends on the reverse ef-
fect of the shock wave (19) upon the inflammation
delay period, and correspondingly on the flame velocity
given by expression (18). If the shock wave will in a
period no longer than 7 shorten the delay by a quantity
exceeding 07, then the initial perturbation will grow.
If, on the other hand, the shock wave shortens the in-
flammation delay by less than 67, then the initial per-
turbation will decrease. Consequently, to explain the
condition for growth of an initial perturbation, one
must find the dependence of the change of the inflam-
mation delay (the relative change in the flame velocity)
on the relative pressure drop in the shock wave.

The chemical reaction time depends on the tem-
perature as

rerxp(I%) . (20)
Therefore,
T
T-|—6T=Aexp {m} ,
or

T RI*C

Assuming an adiabatic compression in the shock

wave, we obtain
voi
ot _E 4 _ /PN
2 —du=p |1 (p/ 1. (22)
Expanding (22) in a series and confining oneself to

the linear term, we find
v—1 E &p

Au="——pr 5 =

1 E Ap.

N &T (23)

Making use of the instability condition [[103, p. 229,
formula (31.2)]

dAp
dAu

1IAp_
dAu [(23)

’

(19)
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we arrive at the criterion for the incipience of a one-
dimensional detonation instability in the form
Y=t _E 1
Yy RTp 1. oA
4 [

The criterion (24) is practically always larger than
unity. A plane wave is therefore also unstable with
respect to one-dimensional perturbations. If it can
be observed, then only in special cases when the acti-
vation energy at high temperatures will turn out to be
so small that criteria (16) and (24) will become less
than unity [the inequalities (16) and (24) will not be
fulfilled]. So far it is impossible to say whether such
cases occur in reality.

In homogeneous gas mixtures detonation therefore
does not propagate as a plane wave, but becomes
either a pulsating or a spinning detonation. In this
connection the old approach to the detonation limits,
in which the attenuation of a planar detonation is con-
sidered loses its validity. The propagation limits of a
detonation are now determined, as will be seen below,
by the conditions for the propagation of detonation
spin.

gM > 1. (24)

6. PULSATING DETONATION

Inhomogeneities in the detonation front, which was
previously considered planar, first observed by Yu. N.
Denisov and Ya. K. Troshin [24:25. by a so-called trace
method and also by B. V. Voitsekhovskii, B. E. Kotov,
V. V. Mitrofanov, and I. E. Topchiyan %] by a photo-
graphic method, have been investigated in detail in
Soviet and foreign laboratories. [33:34:85,89,10,233  of the
foreign investigations a particularly interesting one is
that of D. White *J who studied the structure of a
detonation in the mixture 2Hy + Oy + 2CO by an inter-
ference method. White invariably observed a strong
turbulence behind the reaction zone. This is an addi-
tional convincing and independent proof of the three-
dimensional structure of the detonation front. Pul-
sating detonation, as the detonation with numerous
inhomogeneities in its front was called, can now be
considered an independent form of combustion: it is a
plane wave in the Zel’dovich-Neumann model, which
has lost its stability. Spinning detonation turned out
to be a limiting case of pulsating detonation, appearing
when there is only one inhomogeneity in the tube cross
section.

The structure of inhomogeneities in a pulsating de-
tonation, as the experiments and gasdynamic calcula-
tions compared with them show, is the following. L10]
From the overdriven portions (L, Fig. 15) compression
waves travel to the shock front and give rise on its
surface to two types of disturbances: a break—the
intersection of two shock waves (Fig. 17a), and the
intersection of a shock wave with an inclined detona-
tion wave (Fig. 17b). Simplified diagrams of the cor-
responding breaks, the well-known triple Mach config-
urations which are amenable to exact gasdynamic cal-
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C

FIG. 17. Diagram of the deflection of the shock front of a de-
tonation: a) — b) without combustion directly after the deflection;
¢) — d) with combustion.

culation, are shown on the right-hand side of Fig. 17.
The line NP shows the ‘‘branches’ or ‘“Mach discs”’
of triple configurations. The angle « differs appre-
ciably for the configurations of both types. In the cases
of intersection of a shock wave with a detonation wave
(Fig. 17) it is appreciably smaller than in the inter-
section of two shock waves. The motion of the point N
of Fig. 17 can be followed from the imprints on the
side of the tube (Fig. 20) and one can thus measure
the angle k. Measurement and comparison with calcu-
lations of configurations of both types show that in the
majority of cases perturbations of the type of 17a
appear in pulsating detonation. There are many of
them on the front. Colliding, they produce zones of
increased pressure and temperature in which the gas
is influenced (the diffuse zones at the points of inter-
section of the lines on Fig. 20).

Impinging on the plate perpendicular to the motion
of the front (Fig. 18), the configurations leave on it
imprints, one of which with the largest inhomogeneities
is shown in Fig. 19. It is very curious that the mean

%

FIG. 18. Diagram of the collision of a detonation
front with a solid wall.

N
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FIG. 19. Trace of the collision of a pulsating detonation with
the end of a tube. The lines indicate the places where triple
shock configurations met.

dimension of the cells similar to those shown in Fig.
19 is proportional to the chemical reaction time in the
Zel’dovich-Neumann model. The model leaves a
peculiar reminder of itself, and this is no accident.

Disregarding the instability, the existence of the
pulsating detonation is based on this model. The
instability does not destroy a detonation with a shock
wave in front of the combustion zone, it only imparts
to the wave a more complex three-dimensional
structure.

Figure 21 shows two additional imprints of the pul-
sating detonation on a plate placed perpendicular to
the motion of the wave front. These photographs, as
those on Figs. 19 and 20, were taken by Ya. K. Troshin
and Yu. N. Denisov with the aid of a simple, but at the
same time sensitive, technique. To obtain clear
imprints, the plates were covered by a special tech-
nique with a thin layer of soot.

- & .‘: I Ly
FIG. 20. Imprint left by a pulsating detonation on the lateral
sutface of the tube.
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FIG. 21. Imprints of a pulsating detonation incident on a sooty
plate. a) A mixture of 2H, + O,, initial pressure 300 mm Hg; b) a
mixture of CH, + 20,, pressure 800 mm Hg. Smali-scale inhomo-
geneities (fine structure) are visible within some large-scale in-
homogeneities,

The mean dimension of the inhomogeneities de-

creases with increasing initial pressure of the mixture.

The method made it possible to record inhomogeneities
down to 0.1 mm in size. The decrease in the dimension
is accompanied by a certain increase in the velocity

of detonation with increased pressure, leading to in-
creased temperature of the shock-compressed gas and
a decrease in the chemical reaction time.

Figure 22 shows the change in the detonation veloc-
ity and temperature of the shock-compressed gas in a
2H, + O, mixture as a function of the initial pressure.

The dependence of the mean dimension of the in-
homogeneity Ay on the chemical reaction time is ex-
pressed by a relation which is apparently correct up
to a constant coefficient of the order of unity (341,
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FIG. 22. Dependence of the detonation velocity and of the
temperature T behind the shock front on the initial pressure of
the 2H, + O, mixture (tube diameter 16 mm).
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Using (25), one can determine the chemical reaction
time in the Zel’dovich-Neumann model experimentally.
This method was used in 1367 to measure the tempera-
ture coefficient (the apparent activation energy) of the
inflammation reaction of benzene with oxygen.

The activation energy in the temperature range
shown in Fig. 23 turned out to be 37 kcal/mole.

Figure 21b shows an inhomogeneity structure more
complex than Fig. 21a. Fine inhomogeneities, more
numerous by an order of magnitude, fill some of the
large cells. One might think that there appear in some
instances on the detonation front inhomogeneities sim-
ilar in structure to those of Fig. 18b: an intersection
of a shock-wave with an inclined overdriven detonation
takes place. The overdriven detonation existing within

Ay ~

=fD. (25)

=45

!
SN
b

log 7, sec

!
g

-7
a5

wirK
FIG. 23. Temperature dependence of the inflammation delay
of a benzene-oxygen mixture in a detonation wave. The apparent
activation energy under these conditions is 37 kcal/mole.
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one large-scale cell may turn out to be unstable, re-
gardless of the fact that the left-hand side of criterion
(16) is always smaller for an overdriven detonation
than for a Jouguet detonation.

In the Zel’dovich-Neumann model an overdriven
detonation for an initial state A corresponds to (is
identical with) a weak deflagration for the initial state
¢y (Fig. 10). Therefore, for an estimate of the insta-
bility limits of an overdriven detonation one can use
the approximate criterion obtained for weak deflagra-
tion H10J;

s E
(Y“”"ﬁ;%

M2>1. (26)
Here M is the ratio of the ‘‘propagation’’ velocity of
the combustion with respect to the shock front to the
speed of sound in the compressed gas. The reader is
already familiar with the remaining quantities.

As a result of the higher temperature in the shock
front of an overdriven detonation compared with a
Jouguet detonation, the dimension of the cells on loss
of stability turns out to be considerably smaller than
in Jouguet detonations. Thus the fine structure
appears.

A. N. Dremin, G. A, Adadurov, and O. K. Roza-~
nov B37:38J observed an inhomogeneous structure in the
detonation front in nitromethane (liquid) diluted with
acetone. No pulsating detonation has been recorded in
solid explosives. The inhomogeneities in the structure
of explosives are practically always larger than those
connected with the instability.

7. DETONATION LIMITS

Instability, however paradoxical this is, extends
the possibilities of detonation propagation. In inclined
waves (in the Mach ‘“‘branch’’ NP, Fig. 17) the temper-
ature is considerably higher in the direct shock wave
CN. At the collision point of two inclined shock waves
(of two Mach discs) the temperature is even higher.
Such an instability, giving rise to perturbations of the
shock front, produces on a relatively small area of the
front points of particularly high temperature. Because
of the exponential temperature dependence of the reac-
tion time the mixture is inflamed in these considerably
more rapidly than in the plane wave. From these hot
points the combustion is then propagated over the
entire tube cross section. Without hot points the in-
flammation at the detonation boundaries would occur
very far behind the shock front, the losses to heat
transfer and friction would lead to the attenuation of
the detonation considerably sooner (for example, at a
higher pressure, in a composition of higher fuel value
on in a more rapidly burning composition) than in the
presence of inhomogeneities.

In Tables I and II, made up of data from (10} (Sec. 4),
we present the calculated pressure and temperature
(dimensionless, relative to the initial gas) in the
various zones of the triple Mach configuration (Fig. 24a

795

Table I. Calculated pres-
sure, density, and tem-
perature in different zones
of the triple Mach configu-
ration in the case of deto-
nation of a mixture of 2H,
+ Oy, D = 2800 m/sec, py
=760 mm Hg, vy =1.4

Zones on Fig. 21a
Param-
eters ‘
1 2 3 ‘ 4
P/py 11 34.4 48.7 | 48.7
/04 1 5.113 5.36] 6.57
gy in 1 6.7 9.1 4.7

Table II. Calculated pres-
sure, density, and temper-
ature in a triple Mach con-
figuration with an inclined
detonation wave in the case
of spin detonation in a mix-
ture of 2H, + Oy, D = 2200
m/sec, py = 45 mm Hg

‘ Zones on Fig. 21b i
baram-

eters \ 1] 2 \; 3 1 4 ‘ 5 ’

| V | |

L

pipy | 1] 20.2|37.8]34.3]34.3"

e/oy | 1] 4.7] 5.2| 3.2 6.6

/T |1} 45| 7.3{10.6| 5.2}

‘ |

FIG. 24. Triple Mach configuration (break) in the case: a) of
the intersection of two shock waves CN and NP, b) of the inter-
section of a shock wave with a detonation.

and 24b). In zones 2 and 3 in each of the configurations
the gas is compressed but not inflamed. Zone 4 is
filled with combustion products. The temperature of
the unburnt gas is always higher in zone 3; naturally,
it is in this zone that the inflammation of the gas takes
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FIG. 25. The result of the collision of two shock configura-
tions — two waves of the type NP (Fig. 24, a).

place. However, if in zone 3 the gas is inflamed slug-
gishly (the inflammation time is less than the time up
to the collision of the configurations), two shock con-
figurations collide. The reflection of the two NP waves
from each other (Fig. 25) turns out to be irregular
(Mach reflection). The calculated temperature in the
various zones of the new configuration resulting from
the collision is given in Table III. Two Mach configura-
tions are taken as the initial configuration, one of
which is presented in Table I. In the collision zone 8
and in the neighboring region 7 an even higher temper-
ature is attained than in the inclined shock wave 3.
The collision zones serve as good sources of ignition.

In view of the extremely strong temperature depend-
ence of the chemical reaction time, the condition of
the existence of triple configurations, assuming a
rapid inflammation of the gas, coincides with the con-
dition for the propagation of detonation. [10:34] gyuch an
approach to the determination of the limits of exist-
ence of detonation differs radically from that which
prevailed previously. 132]

The number of perturbations on the surface of a
detonation front in a tube of diameter d with account
of (25) turns out to be of the order of

d 2 1 d 2
<75?> P (?ﬁ> :
Hence the condition for the existence of one (spinning)
perturbation can be written in the form
1 d \?
5 (55 )=t

and the condition for the attenuation of a detonation is

(27

7 (5 )<t (28)

SHCHELKIN

Table III. Pressure, den-
sity, and temperature in
the configuration of Fig.
25 resulting from the col-
lision of two configurations
of the type of Fig. 24a

Zones in Fig. 25
Param-
eters i 1‘ 3 s ’ , s
p/py | 1| 48.7 ) 54.8 1 54.8 | 59
/o4 { 1] 5.4 5.8 5.4 5.5
T/Ty 1] 9.1 9.42) 10.1 | 10.8

The chemical reaction time increases very rapidly
on decreasing the detonation velocity. To the extent
of the enrichment or depletion of the mixture of the
burning component—the approach to the limit of the
detonation propagation—the wave velocity decreases,
the product 7D increases, and the left-hand side of the
criterion (28) decreases rapidly. The left-hand side
of (28) decreases also as one approaches the limit be-
cause of a decrease in the pressure of the mixture or
a decrease in the tube diameter. In this case losses to
friction and heat transfer enter in the criterion im-
plicitly. They decrease the wave velocity and thereby
sharply increase the chemical reaction time.

The calculation of criterion (28) both from kinetic
and thermochemical data is so far very unreliable: no
accurate data are available on the kinetics of chemical
reaction under detonation conditions, and the theoret-
ical dependence of the detonation velocity on the initial
pressure of the mixture and the tube diameter is un-
known. Should this become necessary, the detonation
limits are better determined from experiment. Rela-
tions (27) and (28), as is seen from the above, are only
physically illustrative in nature.

To conclude, we return to the determination of the
detonation instability. The instability was seen to be
related to the strong (exponential) temperature de-
pendence of the rate of the chemical reaction of the
inflammation of the gas compressed and heated by the
shock wave which precedes the inflammation zone. The
shock wave was introduced by Ya. B. Zel’dovich in
proposing the model of a detonation wave (which has
come to be called the Zel’dovich-Neumann detonation)
as the essential condition for the propagation of a
strong and Chapman-~Jouguet detonation. The insta-
bility leading to the appearance of a pulsating (and in
the limit a spinning) detonation excludes the propaga-
tion of a planar shock wave before the combustion
front. But a shock wave preceding the combustion
zone—now in the form of quite complex three-
dimensional intersecting and colliding shock configu-
rations—has nevertheless remained a necessary con-
dition for the propagation of a detonation (a strong or
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a Chapman-Jouguet detonation). In science fruitful
ideas are often retained in some form, even under new
conditions. Thus it was here, foo. The idea of a shock
wave inflaming the gas remained, although it under-
went considerable change. The instability of the de-
tonation is now considered a result of the inflamma-
tion of the gas in the shock wave. If there were no
shock wave, there would be no instability!

It remains to say a few words about weak detona-
tion. Its propagation is possible only in the presence
of an external inflammation source. Inflammation in
the shock wave before the combustion zone, as well as
the appearance of the shock wave itself, makes the
propagation of the weak wave impossible. There is
consequently in weak detonation no fundamental cause
which determines the instability. There is no self-
inflammation of the gas with a sharp temperature de-
pendence of the inflammation time. The weak detona-
tion is for this reason always stable, at least against
perturbations against which Chapman-Jouguet and
strong detonations are unstable in the cases consid-
ered above.
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