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1. INTRODUCTION

IN this paper we consider magnetic relaxation and
dynamic polarization of nuclei in a diamagnetic crys-
tal with small concentration of paramagnetic atoms.
The following are examples of such systems:

1) A dilute param{agnetic salt (for example, lan-
thanum-magnesium double nitrate, in which a small
fraction of the lanthanum atoms is replaced by cerium
or neodymium atoms).

2) An oxide or halide of.a non-transition metal with
a small concentration of a transition metal (for ex-
ample, Al,0; with a small amount of Cr,04 added).

3) An alkali-halide crystal with F centers.

4) A crystal containing free radicals.

The concept of nuclear spin diffusion was first in-
troduced by Bloembergen.[lj He has shown that spin
diffusion plays an important role for nuclear magnetic
relaxation in a diamagnetic crystal with small para-
magnetic-atom concentration. It was shown later that
spin diffusion plays an important role also for the
dynamic polarization of nuclei in such a crystal. The
investigation of the diffusion of nuclear spin has be-
come of great interest, because the method of dynamic
polarization is at the present time the most powerful
method of polarization of light nuclei.

We review first the theory of direct relaxation and
dynamic polarization of nuclei, owing to their dipole-
dipole interaction with the magnetic ions. We then
describe the mechanism of nuclear-spin diffusion,
after which we present the theory of magnetic relaxa-
tion and dynamic polarization of nuclei with account
of spin diffusion. At the end of the paper we compare
theory with experiment.
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2. NUCLEAR MAGNETIC RELAXATION WITHOUT
ACCOUNT OF SPIN DIFFUSION

Since the concentration of magnetic ions in a crys-
tal is assumed to be sufficiently small, there is a
large number of nuclei* (of the given type) for each
magnetic ion. In this connection, the average distance
between the magnetic ion and the nucleus is suffi-
ciently large and their dipole-dipole interaction pre-
vails over the contact interaction. In addition, the
Zeeman energy of the nuclear spin will be much
larger than the energy of the interaction between the
spins of the nucleus and the magnetic ion.

We denote by N the concentration of the magnetic
ions (their number per unit volume of the sample), and
by n the concentration of the nuclei (of the given type);
n > N. We denote further by R the radius of the
sphere per magnetic ion. We obtain

%" RSN —=1. 2.1)

S and I will denote the spin operators of the elec-
tron shell of the magnetic ion and of the nucleus. We
confine ourselves to examination of the case I=1/2,
since almost all the experiments have been carried
out on protons or F'® nuclei.

A strong, external, uniform and constant magnetic
field H is applied to the crystal, and the z axis is
chosen along its direction. The Zeeman (Larmor)
frequencies of the spins of the magnetic ion and of
the nucleus are given by the formulas

(DeZYeHy mnzYnHy (2.2)

*We are referring throughout not to the nuclei of the magnetic

ions, but to the nuclei of the host lattice.
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where 7, is the absolute magnitude of the gyromag-
netic ratio of the magnetic-ion shell, and v, is the
gyromagnetic ratio of the nucleus.

For reorientation of the nuclear spin it is neces-
sary that the energy of interaction of this spin with the
environment be a function of the time. In other words,
it is necessary that the nucleus be acted upon by a
time-varying local magnetic field. The Fourier com-
ponent of this field with frequency equal to the Larmor
frequency of the nucleus w, causes reorientation of
its spin.

In the case when the nuclear relaxation is due to
the interaction between the nuclei and the magnetic
ions, a distinction is made between relaxations of
types I and 1.L2:3] In the case of relaxation of type I,
the change in the energy of interaction of the spins of
the nucleus and of the magnetic ion in time is due to
a change in the vector joining them (both in magnitude
and in direction), that is, to the motion. In the case of
relaxation of type II, we can neglect the motion of the
nucleus and of the magnetic ion. The time dependence
of the energy of interaction of their spins will in this
case be governed by the relaxation of the magnetic-
ion spin.

In this review we consider only the case of relaxa-
tion of type II, due to dipole-dipole interaction between
the spins of the nucleus and the magnetic ion.

For simplicity we shall first investigate the case
S = 1/2 (for brevity we shall sometimes refer to the
electron instead of to the shell of the magnetic ion).

Let us calculate the time of nuclear-spin relaxation
for the case when the condition wpTe > 1 is satisfied
(we are followingl?}, see alsol35]) where 7¢ is the
time of spin lattice relaxation of the magnetic ion.

We consider a system consisting of one electron
and one nucleus. This system has four states (see
Fig. 1, which shows the case Y, > 0), whose energies
are given by the formula

E(b")—E (b)=E (a')— E (a) =},
E(b)—E(a')=E(b)—E (a)=ho,

(in the energy levels we take into account the Zeeman
energies of the electron and of the nucleus, while the
spin-spin interaction energy is neglected).

The introduction of such a system is to some de-
gree arbitrary, since there are many nuclei per mag-

b,

’

a

FIG. 1
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netic ion. Further, the introduction of the energy
levels a, a’, b, and b’ is meaningful only when the
Zeeman energy of the nucleus (Rwp) is much larger
than the width of the level (f/7g), that is, if wnpTe > 1.
Neglecting spin-spin interaction, we have (if vy > 0)

a:(—, +)7 b=(’_’ —)7 d'=(+, +)v b’=(+’ —‘),

where, for example, (—, +) denotes the state with
Sy =—1/2and [, = +1/2,

The dipole-dipole interaction of the spins 8 and I
leads to a mixing of the wave functions. Since
wp < we, we can confine ourselves to a calculation
of the mixing of the states with identical S, and with
values of I, differing by unity. Application of pertur-
bation theory yields

tl:(—, +)+a('—1 _)a a,:(+7 +)'-a(+1—)v
b:(—-’ _)Aa*(——'i +) b =(+, —)Yto*(+, +), (2.3)

where

gPsin ¢ cos §e'®

Beose, (2.4)

=3
=7

where r, ¢, and ¢ are polar coordinates of the nucleus
relative to the electron (the polar axis is directed
along H), g is the magnetic-ion g-factor, and 8 is the
Bohr magneton (g8 = fiyg). In order of magnitude we
have

H
|a|~_lﬁ°£<1,

where Hjo. ® gB/r? is the local magnetic field pro-
duced by the electron at a distance r.

The interaction between the electron spin and the
lattice causes spin reorientation. This interaction can
be described by introducing a time-dependent relaxa-
tion Hamiltonian ¢] (t). The matrix elements of this
operator differ from zero only when AS; = =1 and
Aly = 0. The probability (per unit time) of electron
spin reorientation as a result of the perturbation
Hbrel (t} is, by definition 1/274 (without account of the
Boltzmann factor). However, owing to the mixing of
the states, we shall have not only transitions in which
only S, changes (the transitions a <= a’ and b ~ b’),
but also transitions in which I, changes simultaneously
with S, (transitions a <= b’ and a’ = b).*

It is easy to see that the ratio of the matrix element
of the transition a’ ~= b (flip-flip transition, S, + I,
changes by +2) or a == b’ (flip-flop transition, S, + I,
does not change) to the matrix element of the transi-
tion a == a’ or b = b’ has an absolute value 2|a}.

*The interaction between the electron spin and the lattice can
be represented in the form gBH' - S, where H' is the effective
fluctuating magnetic field due to the lattice vibrations. The com-
ponent of H' along the z axis does not produce any transitions in
this case, and the magnitude of the component of H' perpendicular
to the z axis is defined by the requirement that the probability
(per unit time) of the transition of the electron spin under the in-
fluence of the perturbation gBH' - S be equal to 1/27,.
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Taking into account the fact that the transitions a == a’
and b == b’ cause the spin-lattice relaxation of the
electron spin with a relaxation time 7o, we obtain

dir _1_4|a\2_3<~g[.i 25in2 § cos? ¢
[Tn (T)] - T, — 4 Hr3 Te ’

(2.5)

where Tgir(r) is the nuclear relaxation time due to the
interaction between the nuclear spin and the spin of an
electron situated at a distance r from it. We note that
Tgir(r) is the longitudinal nuclear relaxation time,
while the transverse nuclear relaxation time is not
connected with the magnetic ions and is determined by
the dipole-dipole interaction of the nuclei.

We take account further of the following fact. For
reorientation of the nuclear spin it is immaterial what
causes the reorientation of the spin of the magnetic
ion. We denote by 7 the correlation time of the quan-
tity 8,. 7 is determined approximately from the
formula

1 1 1

T ’Te + TT ’ (2-6)
where T is the spin-spin relaxation time of the mag-
netic ion.

In the case when the spin-spin relaxation of the
magnetic ion is important, it is necessary to replace
Te in (2.5) by 7. The result obtained in this case is
valid if wpT > 1. This condition means that the
Zeeman energy of the nucleus greatly exceeds the
width of the electronic levels* (which is of the order
of fi/r). In other words, this condition means that the
probability of electron-spin reorientation during one
Larmor period of the nuclear spin is small.

A more general calculation, for arbitrary wp7 and
arbitrary S, is given inl!) (see alsol%J).

Calculation yields (see Appendix A)

7835 (7)1 = 3 (yngB)? S (S -+ 1) r~® sin® & cos? & . (2.7)

T
1+ (@,7)

Let us assume that wu7 = TyyH > 1 (this has been
the case in almost all the experiments performed to
date). We also average over the angle ¢ (the average
of sin®# cos?d is equal to 2/15). We obtain

e

T (=1, (2.8)
where
Co2ERRS Y (2.9)
If, in particular, S = 1/2, then
c=3ebr (2.10)

We note that C/2r® gives a probability (per unit
time) of relaxation reorientation of the spin of the
nucleus located at a distance r from the magnetic ion,

*We are speaking here of that part of the electron-level width,
which is due to the so called homogeneous broadening.

due to the electron relaxation and the dipole-dipole
interaction.

The value of T depends on the temperature and on
the external field, but does not depend on N. To the
contrary, the value of 74 does not depend on the tem-
perature or on the field, but depends on N. The order
of magnitude of 75 can be estimated from the formula

h 2 T
r—s~(?§5§=gzvs2. (2.11)
If the concentration of the magnetic ions is suffi-
ciently small, and the temperature is not too low, we
have T¢ < Tg and 7 = Te. In the opposite limiting case
of sufficiently high concentrations and sufficiently low

temperatures we have 7g < Tg and 7 = Tg.

According to the foregoing, in the case when
Tg < Tg, the relaxation of the nuclei is caused by the
time-varying local magnetic field, and the dependence
of the local field on the time is brought about by the
spin-spin relaxation of the magnetic ions. Therefore,
the Zeeman energy of the relaxing nuclei will be
transmitted to the system of electronic spins. Owing
to the cross-relaxation process, this energy will be
ultimately transmitted to the lattice.

An interesting situation should occur in the case
when the concentration of the magnetic ions is such
that Tg < Te but, on the other hand, the specific heat
of the system of the magnetic ions is smaller than that
of the system of nuclear spins*. In this case, the sys-
tem of electronic spins will heat up during the course
of the magnetic relaxation and magnetic resonance of
the nuclei, provided only the cross-relaxation proces-
ses have no time to transfer the excess energy from
the electron spins to the lattice.

We note further that formula (2.6) for T is valid if
hygH/2kT is smaller than or of the order of unity. In
the opposite case it is necessary to take into account
the fact that the transition ‘="’ — ‘“+’’ of the mag-
netic-ion spin is hindered by a Boltzmann factor, so
that the value of the first term in (2.8) is changed, and
that the spin-spin relaxation of the magnetic ions is
made difficult because the majority of the spins have
the same direction. The latter circumstance changes
the magnitude of the second term in (2.6).

The time of direct nuclear relaxation, given by
(2.8), depends on r. Averaging [Tgir(r)]"1 over r, we
can obtain an expression for the average relaxation
time, but the result obtained does not agree with ex-
periment. This can be seen at least from the fact that
according to experiment, the relaxation of the total
nuclear magnetic moment of the sample is exponen-
tial, a fact which cannot be derived from the foregoing
analysis.

*Since the ratio of the magnetic moments of the magnetic ion
and of the nucleus is of the order of 10°, satisfaction of the sec-
ond condition requires that the relative concentration of the mag-
netic ions be, roughly speaking, less that 107,
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We shall see below that an account of spin diffusion
changes completely the results concerning the nuclear
magnetic relaxation.

3. INDUCED DYNAMIC NUCLEAR POLARIZATION
WITHOUT ACCOUNT OF SPIN DIFFUSION

We return to Fig. 1 and formulas (2.3). An alter-
nating field of frequency we, applied perpendicular to
the main field, gives rise to the transitions a — a’

and b == b’ (ordinary electron paramagnetic resonance).

However, owing to the mixing of the wave functions,
the alternating fields with frequencies we + wp and
we ~ wp also give rise to transitions (forbidden tran-
sitions). The alternating field with frequency we + wp
gives rise to the transitions a <= b’, while the alter-
nating field with frequency wg — w, causes the tran-
sitions a’ <= b. However, as is well known, it is more
convenient to determine in the experiment the fre-
quency of the alternating field and to vary the magni-
tude of the main field. We then have

5
for H=H“‘=1~(‘11 transitions g —a’, b1/,

—H, =H* Yo
for H—H,—H <1+ YE)
transitions o’ <~ b (H,-transitions), T (3.1)

for H—=H_—=H* (1_\%>

transitionsq «- b’ (H_-transitions). J

By G(H — H*) we denote the function which gives the
line shape of ordinary electron paramagnetic reson-
ance, and whose integral is normalized to unity. The
probability (per unit time) of an electron-spin transi-
tion due to an alternating field with amplitude 2H; is
(see, for example,[%4])

w=7 v HG (H—H*). (3.2)
Recalling that the ratio of the matrix element of
the transition a <= b’ or a’ == b to the matrix element
of the transition a == a’ or b == b’ is equal to 2|a|, we
obtain for the probability (per unit time) of the for-

bidden transitions under consideration

2| a2y HG (H—Hy).

But according to (2.4) and (2.10) (we are averaging
|@|? over )
C
2laf?= 5}% .

Thus, the probability (per unit time) of simultaneous
reorientation of the spins of the electron and of the
nucleus, separated by a distance r, due to the alter-
nating field, is Iy/r%, wherel%®

Ty =2 v HiG(H—Hy) 1C. (3.3)

Let H ® H*, and let the amplitude of the alternating
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field H; satisfy the condition
2wt =ny HG (H— H*) 1, > 1.

In such a case there will be noticeable saturation
of the usual electron paramagnetic resonance (that is,
of the transitions a = a’ and b += b’). It is easy to see,
however, that the nuclei will not become polarized in
this case, in view of the equality of the flip-flop
(a = b’) and flip-flip (a’ == b) relaxation-transition
probabilities.[2’3’5:| In other words, the Overhauser
effect does not take place in the case of a diamagnetic
crystal with a small concentration of paramagnetic
atoms.

Assume now that H ® H,. The alternating field cau-
ses transitions a’ <~ b. Since the population of the
state b is larger there will be more b — a’ transitions
than a’ — b transitions. However, the transitions
b — a’ disturb the equilibrium between the electronic
spins and the lattice. Owing to the spin-lattice relaxa-
tion, the electronic spin will flip from the state ‘“+”’
to the state ‘‘—’’, and the same electronic spin can
further, under the influence of the alternating field,
cause the flipping of another nuclear spin. Thus, if
the relaxation time of the electronic spin is sufficiently
small, and the relaxation time of the nuclear spin is
sufficiently large, there can be unilateral transfer of
the nuclear spins from the state ‘‘—’’ to the state ‘“+ .
It is easy to see that in the limiting case, if, first, we
can neglect nuclear relaxation compared with elec-
tronic relaxation, and if the condition I > C is satis-
fied* [or mYeHIG(H — H,)T > 1], then the effective
gyromagnetic ratio of the nucleus will be equal to ve.
Similarly, in the case when H = H_ it will be equal to
~Ye-. If ByeH < kT, we find that the polarization of
the nuclei increases by a factor +ve/vnt.

The phenomenon which we have considered, which
consists in the polarization of the nuclei upon satura-
tion of the forbidden transitions (resulting from the
mixing of the wave functions by the dipole-dipole
interaction of the spins of the magnetic-ion shell and
of the nucleus) was discovered in France in 1958L7:8]
(see also the books and reviews(3:4:5:9),

Various names were proposed for this phenomenon:
effet solide,[® double effet,[¥] and dynamic polariza-
tion of nucleil4! (we note, however, that the Over-
hauser effect is also one of the methods of dynamic
polarization of nuclei).

We believe that this phenomenon is best called in-
duced dynamic polarization of nuclei. Indeed, in the

*Since I'/t® is the probability of simultaneous flipping of the

spins of the nucleus and of the electron under the influence of an
alternating field, and C/2:® is the probability of relaxation flipping
of the nuclear spin, then the condition I’ > C is the condition for
saturation of the forbidden transition.

TIf y, < 0, all the foregoing statements remain valid; it is
merely necessary to take into account the fact that in this case
Hy < H* and H. > H*.
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Overhauser effect the nuclear polarization is not
brought about directly by the alternating field, but by
relaxation; in the effect which we are considering
however, the nuclear polarization is brought about
directly by the alternating field.

The probability of simultaneous flipping of the
spins of the electron and of the nucleus depends on
the distance between them. Inl%6% 4 simple model
was investigated, in which this probability is averaged
and a system consisting of N electronic and n nuclear
spins is considered. For the intensification of the
nuclear polarization one obtains, if the condition
I" » C is satisfied, the expression

nt, -1
o=t 3 (1har )

The foregoing results, which pertain to induced
dynamic polarization, are valid also when the width of
the electron paramagnetic resonance is much smaller
than the nuclear Larmor frequency. Indeed, in this
case the usual electronic resonance (the transitions
a--a’ and b = b’), the H, transition (a’ == b), and the
H_ transition (a = b’) are well resolved. In the oppo-
site case, when the width of the electronic resonance
is larger than or of the order of the nuclear Larmor
frequency, an additional complication arises, connec-
ted with the fact that the alternating field causes
simultaneously all three types of transitions. The
expression obtained in this case for the intensification
of the nuclear polarization depends on whether the
broadening of the electronic resonance is homogeneous
or inhomogeneous.

Let us analyze briefly the case of inhomogeneous
broadening. £3,4,6,8,19]

Let the frequency of the alternating field be fixed
and equal to w. The function G(H — H¥) gives the
shape of the EPR line (its integral is normalized to
unity). H* = w/ve is the field corresponding to the
center of the paramagnetic resonance (Fig. 2). By
Hy s we denote the width of the electron paramagnetic
resonance (the total width at half the height).

In the case of inhomogeneous broadening we can
assume that the electronic line consists of narrow
spin packets with width &, and different spin packets
relax and are saturated independently of one another.
Assume that the following conditions are satisfied:

(3.4)

8 < Hy,, 6<<%H*.
e

The function G(H — H*) gives the distribution of the
resonant fields over the sample™® (for fixed constant
frequency w), brought about by the distribution of the
local field.

Assume that we apply to the sample an external
field Hy,. Figure 2 shows three packets, whose centers
correspond to Hy, H,, H_, where (we are considering
the case yp > 0)

*That is, of the resonant values of the external field.

e
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G(H, — H*)6 gives the fraction of the spins which
execute the transition corresponding to ordinary para-
magnetic resonance. G(H_ — H*)é gives the fraction
of the spins for which the resonant field is equal to
H_=Hy, — vpHy/Ye- Since the field applied to the
sample is H,, these spins will experience a H, tran-
sition. Analogously, G(H, — H*)6 gives the fraction of
the spins which execute the H_ transition. Thus, if the
conditions I > C and nt < NTy are satisfied, we ob-
tain for the amplification coefficient of the nuclear
polarization

Q(H0)=% [G(H_—H*)—G (H,— H"] 6. (8.5)

Recognizing that the function G(H — H*) is symme-
trical with respect to H = H*, we find that p vanishes
when Hy = H*. Further, p < 0 when Hy < H* and p > 0
when Hj > H*.

If, in particular, the nuclear Larmor frequency is
considerably smaller than the width of the electronic
resonance (that is, YpH*/Ye < Hys), we can expand
in (3.5) in powers of H, — H. and obtain

o(Ho) = — 28H, <:7§ - (3.6)

Thus, in this limiting case p does not depend on vy.
Further, p is proportional to dG/dH, and therefore p
is maximal for those values of the external field, at
which the slope of the electronic resonance curve is
maximal. Finally, it is clear that the effect of the
overlap of the transitions reduces the amplification
coefficient p compared with its value in the absence
of overlap.

Int¥ there is a detailed analysis of cases when the
function G has Gaussian or Lorentzian shape. The
same paper considers the case when the nuclear
Larmor frequency is of the order of Hy, and also the
case of a broad, homogeneously broadened electron-
resonance line.

In[“’”], account is taken of the cross-relaxation
transitions between the different spin packets of the
inhomogeneously broadened line. Inf3] these results
are compared with the experimental data.

We note a recent paper, %) in which induced
dynamic polarization was considered for the case of a
broad, homogeneously broadened electronic-resonance
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line, using the theory of saturation of the magnetic
resonance developed inl1%],

The method of induced dynamic polarization has
distinct advantages over the Overhauser method. [3:4:9]
The presence of mechanisms of relaxation of nuclear
spin, for which the spin of the magnetic ion does not
become reoriented, decreases the maximum dynamic
polarization attainable when the Overhauser method is
applied. On the other hand, when the method of induced
dynamic polarization is used, these processes are
insignificant (more accurately, their role can be
suppressed by increasing the microwave power), pro-
vided their probabilities do not approach the proba-
bilities of the purely electronic relaxation transitions.
The method of induced polarization does not call for
the application of large concentrations of magnetic
centers; finally, this method is very effective for
polarization of the lightest nuclei, which is very im-
portant from the point of view of the requirements of
nuclear and elementary-particle physics.

Basing ourselves on the statements made in the be-
ginning of this section, we can conclude that the effect
of induced dynamic polarization takes place (and the
Overhauser effect does not take place) if the relaxation
of the nuclei is a dipole-dipole relaxation of type II,
and the dipole-dipole interaction between the nucleus
and the magnetic ion varies with time (owing to the
spin flip of the magnetic ion) slowly compared with
the Larmor precession of the nucleus, that is, if wp7
is sufficiently large. In the opposite case, the induced
dynamic polarization does not take place, but instead
the Overhauser effect takes place.

Since wp is proportional to H, systems are possi-
ble which give the Overhauser effect for weak fields
and the effect of induced dynamic polarization for
strong fields.

The foregoing can be formulated differently.
Assume that the relaxation of the nuclei is a dipole~
dipole relaxation of type II. The operator of the energy
of the interaction of the spins of the nucleus and of the
magnetic ion can be represented in the form of a sum
of static and fluctuating parts. If the static part pre-
dominates appreciably in this sum, then, according to
the statements made in the beginning of this section,
the Overhauser effect will not take place. On the other
hand, the static part of the dipole-dipole interaction
causes mixing of states with different I, and there-
fore an alternating field with frequency wg = wp gives
rise to induced dynamic polarization of the nuclei.

On the other hand, if the static part of the interac-
tion is negligibly small compared with the fluctuating
part, then we can also neglect the effect of mixing of
the states, and therefore the effect of induced dynamic
polarization will not take place (in other words, an
alternating field with frequency wg + wp produces no
transitions). But an alternating field with frequency
w e causes the electron spins to flip, and this in turn,
owing to the fluctuating part of the dipole-dipole
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interaction, leads to the polarization of the nuclei,
that is, the Overhauser effect takes place.

We note in conclusion that all the results concern-
ing induced dynamic polarization, presented in the
present section, are valid only when the nuclear
Zeeman frequency greatly exceeds the width of the
electron paramagnetic resonance, due to the homo-
geneous broadening, that is, if w,7 is sufficiently
large, (it is actually only in this case meaningful to
introduce the levels a, a’, b, and b’).

4. NUCLEAR SPIN DIFFUSION

We have seen that the probabilities of nuclear spin
flip, due to the relaxation (C/2r%) or to the alternating
field (I'/r% depend on the distance from the nucleus to
the magnetic ion r. Therefore, both in relaxation and
in induced dynamic polarization, the component of the
nuclear magnetization along the z axis (which we de-
note by M) will be a function of position. In the pres-
ence of a mechanism which makes it possible to trans-
port nuclear magnetization (that is, excess spin), the
quantity M will diffuse.

Such a mechanism is insured by flip-flop transitions
of neighboring nuclei, due to their dipole-dipole inter-
action. An important fact is that in flip-flop transition
of neighboring nuclei, the total Zeeman energy of their
spins does not change, and therefore this process
takes place without the lattice participating.

The question of the diffusion of the nuclear spin
was considered in detail by Bloembergen.[13 We note
that the nuclei do not move during spin diffusion, only
the excess of the nuclear spin projection diffuses. In
the case of a nuclear spin equal to one half (in our re-
view we consider only this case), it is always possible
to introduce the concept of spin temperature Tg. In
the problems considered by us Tg will be a function
of position, and in place of the diffusion of nuclear
magnetization we can speak of the diffusion of nuclear
spin temperature.

Spin diffusion plays a very important role in the
relaxation and induced dynamic polarization of nuclei
in a diamagnetic crystal with a small concentration of
paramagnetic ions. :

Let us first consider the relaxation phenomenon.
Assume that at the initial instant of time t = 0 an ex-
ternal constant field* H is superimposed on the sam-
ple. Then when t = 0 the spin temperature is infinite,
that is, the sample contains an equal number of nu-
clear spins directed parallel and antiparallel to the
external field. Since the time of direct relaxation of
the nucleus (due to the magnetic ion) is proportional
to the sixth power of the distance from the magnetic

*Or else when t <0 a field H and an alternating field which
completely saturated the nuclear resonance were applied to the
sample. At the instant of time t = 0 the alternating field is turned
off.
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ion, the nuclei located near the paramagnetic ions will
come rapidly into equilibrium with the lattice. This is
the reason for the appearance of a gradient of spin
temperature (near the paramagnetic ions Ts is equal
to the lattice temperature, and far from the ions Tg is

infinite). The presence of the gradient of Tg gives rise

to the diffusion of the nuclear spins that are antiparal-
lel to the external field toward the paramagnetic ions
(in the case Yy > 0). On approaching the magnetic
ions, a fraction of the nuclear spins, directed anti-
parallel to the field, will reverse direction. Thus, the
direct relaxation and diffusion will bring the system

of nuclear spins into equilibrium with the lattice.

The situation is similar also in the case of induced
dynamic polarization. The probability of spin flip due
to the alternating field is inversely proportional to the
sixth power of the distance from the magnetic ion.
Therefore nuclei located near the magnetic ions are
polarized very rapidly after application of the micro-
wave field to the sample. Because of the resultant
spin-temperature gradient, this polarization propa-
gates also towards the far nuclei.

To construct a mathematical theory of spin diffu-
sion, let us consider first a one-dimensional model.
Assume that we have a linear chain of spins, with the
distance between neighboring spins equal to a. We
denote by W the probability (per unit time) of a flip-
flop transition of a neighboring pair of oppositely
directed nuclear spins.

We align the x axis with the chain and denote by
P, (x) the probability that at the point x the spin is
directed upward (downward). We introduce, further,

the quantity
p(x)= P, (z) — P_(2). (4.1)

The z-component of the magnetization M can be ex-
pressed in terms of p:
M :é—nhynp. (4.2)

Introducing the spin temperature Tg, we have

(4.3)*

:;—i:exp ( Zi") , p=th %’; .
Let us consider three nuclear spins located at the
points x —a, X, and X + a. For the process wherein
nuclei located at the points x and x + a go over from
the state with spin projections (—1/2, +1/2) into the
state with projections (+1/2, —1/2) we can readily
obtain

ap aP_
@) =D _wp (z4a) P ().

Considering further all the possible transitions with
participation of the nuclear spin located at the point x,
and confining ourselves here to interaction with the
nearest neighbors, we obtain

*th = tanh.

il
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apaix) =2W{P_()[P. (x+a)+- P, (z—a)]

—P (2)[P-(z+a)+P_(z—a)}}).
This equation can be readily transformed into

PD_Wip@+a)+ ple—a)—2p ().

(4.4)

Assuming that p(x) (and therefore also the spin
temperature) varies little over a distance on the order
of a, we can expand p(x = a) in powers of a. Thus, we
have, going over from p to M,

aM
ot dzr2 °

An account of the interaction of the spin with all
the spins leads in the case of a linear chain to the
equation

2M
dx2

ot T 2~

n

o _1 V W (na) (na)?

(4.5)
where W(na) is the probability of the flip—flop transi-
tion of a pair of identical nuclei, located at a distance
na from each other; the summation is over all the
integer (positive and negative) values of n; the prime
denotes that we have left out from the sum the term
with n = 0.

In the three-dimensional case we find that the diffu-
sion M(r, t) is described by the equation

= —=DAM, (4.6)

where D is the coefficient of diffusion of the nuclear
spin.

In analogy with the case of the one-dimensional
chain, it is necessary for (4.6) to be valid in the three-
dimensional case that the relative change of M over a
distance a be considerably smaller than unity. On the
other hand, the applicability of (4.6) does not impose
any limitations at all on the degree of polarization of
the nuclei.

In fact, D is a symmetrical tensor of second rank,
the components of which depend on the angles between
the external field and the crystal axes. But in the case
of a cubic single crystal, and also in the case of a
polycrystalline sample or powder of any crystal sys-
tem, D reduces to a scalar. We shall henceforth con-
fine ourselves to a consideration of the case of a cubic
crystal.

If we confine ourselves to an account of flip-flop
transitions of nearest neighbors, we have

D~ Wa?, (4.7)

where W is the probability (per unit time) of a flip-
flop transition of a pair of nearest identical nuclei, and
a is the distance between them.

We shall henceforth use an estimate of W, obtained
for a cubic crystal as a result of averaging over the
directions (see Appendix C):
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1 a2
~wry D5 (4.8)

where T, is the transverse time of nuclear relaxation.*

Usually in a solid T, ® 107 sec and a = (2—3)

x 10" em. This yields D= (1—3) x 10712 em?/sec.
Thus, the diffusion coefficient of the nuclear spin is
exceedingly small.

The time required to transport the value M over a
distance r is of the order r?/D. For macroscopic
values of r, the times are astronomical. For
r = 107 cm, however, this time is of the order of one
second.

It is easy to calculate the coefficient of spin diffu-
sion for a cubic single crystal with account of the
anisotropy effects and of the fact that the flip-flop
transitions take place not only for nearest identical
neighbors. Assuming that the position of each nucleus
is a symmetry center of the lattice, we can readily
generalize (4.7) (seel18:11J);

1 ’
D:FZ Wijr%j,
7

w

(4.9)

where Wij is the probability (per unit time) of the flip-
flop transition of a pair of identical nuclei (i, j), and
rjj is the distance between them.T The summation is
over all the nuclei j which are identical with the
nucleus i (the prime indicates that the term j =i is
left out of the summation), and the sum does not de-
pend on the position of the nucleus i. We note that
(4.9) yields the diffusion coefficient of the nuclei of
the type i.

Calculating Wjj (see Appendix C), we obtain

D= 4?1]/—5 2247 ; rif (1 —3 cos? 02,

where ’9ij is the angle between the external field and
the vector rjj joining the nuclei i and j.

This expression can be transformed into (see Ap-
pendix B)

D-—=»x ]—gﬁf— hzy:,S'lh 2 r{,-‘ (1. — 3 cos? 'ﬂ‘ij)2,

(4.10)

(4.11)

7

where S is the second moment of the nuclear reson-
ance line of the nuclei of type i} (that is, the mean
square of the deviation of the nuclear-resonance fre-
quency from the resonance frequency in the external
field), due to the dipole-dipole interaction with the
neighboring nuclei; A—constant of the order of unity;**
in the case of a resonance line with Gaussian shape
A= 1.***

The value of S is given by a formula derived by

*The estimate D = a?/30T, is used in the majority of papers
on spin diffusion. However, in our opinion, this estimate yields
a value of D too small by an approximate factor of 2 — 2.5 (see
Appendix D).

tIn[*¢] formula (4.9) is given without the factor 1/6.

tThe nuclear-resonance width AH is of the order of y™S%.

**In the case of a resonance line with non-Gaussian shape, A
depends on the orientation of the crystal relative to the external
field.

*++1t is stated inl!”) that in the case of a resonance line with
Gaussian shape A = 3/v/27.
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Van Vleck!3 [see Appendix B, formula (B.1)], which
consists of two terms; the first is due to identical
nuclei and the other to nonidentical nuclei (possessing
spins).

In the case of a lattice in which all the nuclei pos-
sessing spins are identical (for example, in the case
of CaF,, spin is possessed only by the F!? nuclei,
which are located at the points of a primitive cubic
lattice), there remains in S only the first term, and
we obtain

> ri}(1—3cos? §;;)2

3
Dex [2’ rif (1—3 cos? ﬁij)ﬂl/z .
7

(4.12)

A detailed analysis of this formula shows that the
dependences of the numerator and the denominator on
the orientation of the crystal relative to the direction
of the external field do not differ greatly, and there-
fore the anisotropy of D will in this case be relatively
small (see Appendix D for details). In the case of a
lattice with nuclear spins of two sorts (for example,
an alkali-halide crystal), the expression for S for
nuclei of type i contains two terms, with the term due
to the spins of the second sort predominating (since
the spins of the second sort are the nearest neighbors).
The dependences of the numerator and denominator
of (4.11) on the crystal orientation will differ notice-
ably from each other, and therefore the anisotropy of
the spin-diffusion coefficient will be considerably
stronger than in the case of a lattice with identical
spins.

We have assumed above that W, and therefore also
D, is constant (that is, we have assumed that D does
not depend on the position of the point in the crystal).
In fact, however, D is a function of the distance r from
the nearest magnetic ion, and when r is small D(r)
decreases with decreasing r.["1%) This is connected
with the fact that the Zeeman frequencies of the nuclei
located near the magnetic ions differ appreciably from
one another (owing to the magnetic field produced by
the ion). This hinders the flip-flop transitions of the
neighboring nuclei, for in such a transition the total
Zeeman energy of the spins is not conserved. It can
be stated that near each magnetic ion there is a diffu-
sion barrier, inside of which the diffusion of the nu-
clear spin is strongly hindered.

In the future we shall use for the function D(r) the
model of a rectangular well:

0 r<9,
D= { r>6.

It remains to estimate the radius of the diffusion
barrier §.

The magnetic field due to the magnetic ion at a dis-
tance r is of the order of Hye/r?. The difference of
these fields at points occupied by the neighboring nuclei
(located along the radius) is of the order ﬁyea/r4.*

4,13
const =D ( )

*In view of the crudeness of the estimates presented below,
we neglect the factor 3 which results from the differentiation.
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The width of the nuclear magnetic resonance is of the
order of the magnetic field produced by the nucleus at
the neighboring nucleus, that is, of the order of ﬁyn/a3.

We can introduce the distance from the magnetic
ion, at which the field produced by the magnetic ion
is of the order of the width of the nuclear magnetic
resonance. This distance is of the order of
(Ve/yn)ma. The nuclei located in a sphere of such
radius and centered about the magnetic ion have
strongly shifted Zeeman frequencies (the shift of the
Zeeman frequency exceeds the width of the nuclear
magnetic resonance). These nuclei therefore do not
participate in the nuclear magnetic resonance.

One can also introduce the distance from the mag-
netic ion, for which the difference of the Zeeman fre-
quencies of the neighboring nuclei (located along the
radius) is of the order of the width of the nuclear
magnetic resonance. This distance is of the order
of (ye/vn)i/“a. For nuclei located in a sphere of such
a radius and with its center on the magnetic ion, the
flip-flop transitions, and consequently diffusion, are
strongly hindered.

In view of the approximate nature of our analysis,
we shall not distinguish between the two aforemen-
tioned lengths. Thus, we assume 6 ~ (Ye/¥Yn)%a,
where @ =1/4—1/3. In the future, in numerical esti-
mates, we shall use the geometric mean of the two
introduced lengths, that is, we shall assume that
a@ = z/24. We note that for an electron and a proton
'Ye/'Yn = 660 and 6 = 6.62 a.*

Everything said concerning 6 is valid if 7 > T,.
Indeed, in this case the nucleus is acted upon by the
static magnetic field produced by the magnetic ion
(since the direction of the nuclear spin does not change
within a time of the order of T,). If, however, 7 < Ty,
this field averages out and it is necessary to replace
in the foregoing expressions Ye by ve(fiyeH/2kT)

(if hiyeH < 2KT). Thus, T

d~ <k>aa
Yn

5 (Yo hvell
Yn 2ET

whent>7, or hy.H >2kT, (4.14a)

%a whent<T, and hyH < 2kT.% (4.14b)

*In fact, when we deal with the function D(r), it is more cor-
rect to employ a value a = 1/4. On the other hand, in the case
of the function A(r) (see Sec. 5, item 9), it is more accurate to
use the value o = 1/3.

T We note that almost everywhere when we say “larger than”
or “smaller than” we imply in fact “considerably larger” and
accordingly “considerably smaller.”

$The foregoing reasoning pertains to the case S = 1/2. In the
general case we have

5 (23 %)“ a for
n

& - (25%5Bs<51;€¥£>]a a for
n

(Bs is the Brillouin function). If 7 < T, and Shy H <kT, we ob-
tain

T>T,,

T Ty

2 o5 qy Yo PYel N0
8- SS(SM)Yn T a.

T
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If we take into account the fact that the width of the
nuclear resonance is AH ~ Hyp/a®, we obtain for the
dependence of 6 on the width

8 o (AH)—e. (4.15)

In fact D(r) is a smooth function of r. The form of
this dependence can be determined by using cross-
relaxation theory. It is easy to see that it is necessary
to substitute in formula (4.9) for the probability Wij
an expression that differs from formula (C.2) by an
exponential factor that takes into account the differ-
ence between the Zeeman frequencies of the nuclei i
and j. If on the other hand we confine ourselves to an
account of flip-flop transitions of the nearest neigh-
bors, the generalization of formula (4.7) gives for D(r)
an expression proportional to exp (—const/r?). How-
ever, when D(r) has such a form, the equation describ-
ing the diffusion of the nuclear spin can be solved only
by numerical methods. We shall therefore use the
square-well model for the function D(r).

We neglect also the dependence of the radius of the
diffusion barrier 6 on the angle & between the external
electric fields and the vector joining the magnetic ion
and the nucleus (see Sec. 5, item 8).

The concentration of the magnetic ions is assumed
to be so small (a criterion will be given below) that
the crystal can be regarded as consisting of individual
systems, each of which is a magnetic ion surrounded
by a large number of nuclear spins. Each such system
can be regarded in this case as a sphere of radius R,
given by formula (2.4).

We denote by I the summary z component of the
nuclear magnetic moment of the sphere belonging to
one magnetic ion

m={ mav, (4.16)
where the integration is over the volume of a sphere
of radius R with center at the magnetic ion (the sum-
mary z-component of the nuclear moment of the en-
tire sample is equal to NV, where V is the volume
of the sample).

As was indicated above, nuclei located in a sphere
of radius 6 do not participate in the nuclear magnetic
resonance. Therefore the experimentally measured
quantity iIJ?eXp differs from the expression (4.16) in
the fact that a sphere of radius § is excluded from the
integration. However, the difference between I} and
Mexp is negligible if 6 < R.* The latter condition is
always satisfied if the concentration of the magnetic
ions is not too large.

5. NUCLEAR MAGNETIC RELAXATION WITH AC-
COUNT OF SPIN DIFFUSION

1. We now proceed to consider nuclear magnetic
relaxation. We shall follow here our papers 20221,

*1t is readily found that Mo, = M — M, (6/R)’.
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The z component of the nuclear magnetization M(r, t)
satisfies the equationl!]

M —DAM—24M—C S |r—r1n [ (M —My). (5.1)
In this equation M; is the equilibrium value of M, A is
the probability (per unit time) of nuclear spin flip
under the action of the radio-frequency field saturating
the nuclear resonance, and ry, is the radius vector of
the m-th paramagnetic ion. The first term in the right
side of (5.1) describes the variation (in time) of M,

due to the diffusion; the second and the third terms
give the variation of M due to the saturating field and
relaxation, respectively. Further, we have

_ . (hya)2H
Mo=n"=2r—,

—123 Yahig (H‘%> ,

where 2h, is the amplitude, w the frequency of the
radio-frequency field saturating the nuclear reson-
ance, and g(H — w/vp) a function which gives the
nuclear resonance line shape, and whose integral is
normalized to unity. In particular, at exact resonance
(we take into account the fact that 7g(0) = Tyvp)

(5.2)

A(H) = (5.3)

A= 7 VihiT,. (5.32)
In (5.1) it is assumed that nuclear relaxation is due

exclusively to the magnetic ions under consideration.

If in addition there is also a magnetic nuclear relaxa-

tion not connected with the magnetic ions (the so-called

extraneous relaxation), with a partial relaxation time
Tg, it is necessary to add to the right side of (5.1) the
term (My— M)/Tq.

We note that in the most general case, when we
have a sample of noncubic symmetry and we take into
account the spatial dependence of the diffusion coeffi-
cient due to the diffusion barrier, the first term of
the right side of (5.1) is replaced by the expression

3

7] aM
2 FEN (D‘ZB dxg > :

o, =1

Recently, Buishvili and Zubarev'?) presented a
quantum-statistical derivation of (5.1), using the
method of the statistical operator for the nonequili-
brium system, developed int24), The results are given
in Appendix E.

2. Our purpose is to determine the law governing
the relaxation of the summary nuclear magnetic
moment (more accurately, the summary z-component
of the moment) of the sample.

Let us consider a stationary case in the absence of
a saturating alternating field. We assume that the
concentration of the magnetic ions is small, and also
take account of the rapid decrease of the probability
of relaxation of the nucleus with increasing distance
from the magnetic ion; we can conclude that each
nucleus experiences noticeable relaxation only from
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the nearest magnetic ion, and therefore we confine
ourselves in the sum over m to one term (the validity
of this analysis is discussed in item 7 of the present
section). In other words, we consider a system con-
sisting of one magnetic ion, surrounded by a large
number of nuclei. Choosing the origin at the center
of the magnetic ion, we obtain

AM —fr8(M — M) =0, (5.4)
where

5:%. (5.5)

The general solution of Eq. (5.4), possessing cen-
tral symmetry, is of the form

M (1) = Mo— M= [ 41, (B2 )~ BLu (87 )] 5 (5.6)

A and B are the integration constants, and Ip(x) is
given by the formula

I, (z) = ", (iz), (5.7)

where Jp(x) is the Bessel function.

Using the well-known expression for the function
Ip(x) for small values of the argument®, we can easily
obtain the asymptotic form of (5.6) for r > 61/4 (the
expansion is in powers of the quantity 8/r%:

4 ( )A [(1-22

M(r)y=M,— TN
e (1-22)], 5
where b is a quantity with the dimension of length:
1
“E T e
We introduce the quantity F (with dimension of
length) by means of the formula
§=% . (5.10)

Neglecting in (5.8) the term proportional to (b/r)®
we obtain

N RION

J.Lﬁl/e
4I‘ < )A [ 7 } '
nﬁl/s 12r4

The solution M(r) contains two constants: A and F.
For the problem to be stationary it is necessary that
for large r the quantity M be maintained artificially

(5.11)

*When x < 1 we have

zP z2
@ =mrprn [ e TD )
and when x> 1

Ip(n)=

ex 41— 4 ]
V 2nz 8z )
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constant, and not equal to M (if we stipulate in our
stationary problem that M be equal to M, for large r,
we obtain automatically that M = M, for all r). This
boundary condition for large values of r makes it
possible to determine the constant A. We shall see
below that the constant A drops out of the expression
for the relaxation time of the summary z-component
of the nuclear magnetic moment of the sample (in
other words, the relaxation time of the summary
moment does not depend on the boundary condition
when r is large).

To determine the constant F, on the other hand, it
is necessary to impose on the exact solution, that is,
on expression (5.6), a suitable boundary condition for
small r (see below).

In particular, if M(®) = 0, then (5.11) yields
A= 7r61/8/4F(5/4) and we have, further

M(r)—M0< F (5.12)

If in (5.11) we neglect the term proportional to

(b/T)*, we obtain
4T 4
M@E)=M li—(—%)(i F)] (5.13)
In particular, if M() = 0, then (5.13) yields*
M (ry=M, " (5.14)

In what follows, in calculating the flux of the nuclear
moment and of the magnetic moment of the sphere per
magnetic ion, we shall use formula (5.13). In order
for our analysis to be correct, it is necessary to
satisfy the conditions

b~prg R, FLAR. (5.15)

The first of these conditions is required in order
that formula (5.13) be applicable in the greater part of
the volume of the sphere of radius R and with center
at the magnetic ion. The second condition, on the
other hand, is necessary to satisfy the inequality

| M (R)— M ()| < My;

only in this case can we assume that each nucleus is
acted upon only by the nearest magnetic ion.

3. According to (5.13), the flux of the nuclear mag-
netic momentT through a sphere of radius r is (for
r »> g4 equal to

*It is physically more sensible to employ the boundary con-
dition not at r = o0, but at r = R, since there is a sphere with
radius R for each magnetic ion. If we stipulate that M(R) = M,
# M,, then (5.13) yields

= {(1=g )" | (M=o )+ me—mp L]

In all that follows we take nuclear magnetic moment (flux of
nuclear magnetic moment, summary nuclear magnetic moment of a
sphere with radius R or of a sample) to mean the z-component of
the nuclear magnetic moment.
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4r<5\A

D-4dnr?|grad M |=4n DFM,——— A

For the summary nuclear moment of a sphere of
radius R with center at the magnetic ion, Eq. (5.13)
yields

4n [1_4F(4

4T < )A
M= "2 R*M, e |+ 2nFRM, >

1/8
Recognizing that the equilibrium value of M is

My — %‘ R*M,,

41‘( >A

a BI/ 8 \ 2R

we obtain

My — M=

Thus, the flux of nuclear moment through a sphere
of radius R can be expressed in the following fashion:

4AnNDF

3F
t=9r

(M — M).

Neglecting the quantity 3F/2R compared with unity,
we obtain finally for the flux the expression:

4ANDF (Mo— M). (5.16)

In the stationary case, the flux of nuclear moment
through the sphere of radius R is equal to the summary
nuclear moment ‘‘emitted’’ by the magnetic ion per
second. The stationary behavior is ensured in this
case by the conditions at large distances from the ion,
where there is a sink of nuclear moment if M(R) < M.
[If M(R) > M,, the magnetic ion ‘‘absorbs’’ the nuclear
moment and a source of moment exists at large dis-
tances.]

In the nonstationary problem of the relaxation
(restoration) of the nuclear magnetic moment after
turning off the saturating alternating field (or after
turning on the constant field H in the absence of a
saturating field), the situation is entirely different.
There are no sinks or sources of nuclear moment at
large distances from the ions at all. In the nonstation-
ary problem (5.16) gives the summary magnetic
moment ‘‘emitted’”’ by the magnetic ion per second.
But this very quantity will be equal to the change in
the summary magnetic moment I of the sphere of
radius R per second due to relaxation.

We see therefore that it follows from (5.1) that

oM

= 7 (Mg ) 249, (5.17)

where

3
T, 1 R

— TaNDF = 308 (5.18)

Since the nuclear magnetic moment of the sample
differs from the nuclear magnetic moment of a sphere
of radius R by a constant factor (equal to NV), we can
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take M in (5.17) to mean the nuclear magnetic moment
of the sample. In this case M, will be the equilibrium
nuclear moment of the sample:

M=V M,

Thus, we have proved that the summary nuclear
magnetic moment of the sample M has a single re-
laxatjon time Typ. Thus the problem of determining
the relaxation time Tp has been reduced to the prob-
lem of finding the value of F.

We see from the foregoing that the fact that the re-
laxation is exponential follows from the fact that in the
stationary problem, without a saturating field, the flux
of magnetic moment through a sphere of radius R and
with center at the magnetic ion, is proportional to
My — M. The latter circumstance, on the other hand,
follows from the fact that when r > b we have

M(r):M(oo)+ const .

r

In the absence of a saturated field we have
M (2) = Mo+ [M (0) — M et/ Tn,

In the presence of a field that saturates the nuclear
resonance we have

M (1) = W+ [T (0) — My exp | —(T—‘n+2A> t], (5.20)

(5.19)

where Mg is the stationary value of IM:

m,— o

=TT 24T, (5.21)

Thus, the value we obtain for T, satisfies also the
other definition of the relaxation time

Trn=(241,)7%, (5.22)

where Ay, is that value of A at which Mg = My/2.

4. At large values of r Eq. (5.4) yields AM = 0.
This equation is satisfied by expression (5.13), which
is also the asymptotic form (when r > b) of the exact
solution of Eq. (5.4). On the other hand, the second
term of (5.4) prevails when r is small. Thus, if b > 6,
diffusion plays the principal role when r > b and direct
relaxation when r < b. In other words, roughly speak-
ing, b is that distance from the magnetic ion, up to
which the direct relaxation of the nuclei is effective.

It is clear from the foregoing that if 6 < b, the
presence of a diffusion barrier plays no role whatever;
on the other hand, if b < &, the diffusion barrier is very
appreciable and must lead to a slowing down of the re-
laxation.

To take into account the diffusion barrier, we im-
pose upon M(r) the boundary condition

ﬂ=O for r=34,

o (5.23)

which expresses the vanishing of the diffusion nuclear-
moment flux at r = 6. Substitution of (5.6), with ac-
count of (5.10), yields
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F Iy, ("‘)‘!‘4-""1'__1/4 (z)

b Iy, (@) el ()

where

_ B b \?
z=tm=108(5)". (5.24)
Using the well-known formula which expresses the
derivative of the Bessel function* we obtain
F_ 221y, (z) .
b " 2zl () 41y, ()’
(5.24) and (5.25) express F as a function of b and 6.
Substitution in (5.18) yields the relaxation time Tj.
Using the expression for the Bessel functions at
large and small values of the argument, we obtain in
the limiting cases

(5.25)

_ _ 1o (R
F=b, Tp=yro=16L02 for 55, (5.26a)

c bt

F=spe =183
T,L=°_1;/,?D?g<%>3=ﬁ"%”i for b<8. (5.26b)

The result (5.26a) was obtained in a different man-
ner by deGennes!?] (see Appendix F), while the result
(5.26b) was obtained by Blumbergl!®) (see Appendix G).

If /b is small, the diffusion barrier is insignifi-
cant. We can assume D constant for all r and impose
on (5.6) the requirement M(0) = M,. Recognizing that
I /4(x) and I_;/4(xX) become infinite when x = < and that
their difference vanishes, we reach the conclusion that
the requirement M(0) = M, yields A = B. Using (5.10),
we obtain F = b.

We note also that if 6 < b, the conditions M(0) = M,,
M(6) = My, dM/dr|; = 0, and dM/dr|5 = 0 lead to iden-
tical results.

In the case of large 6/b, the result (5.26b) can be
obtained directly by imposing the condition (5.23) on
the function (5.11).

Using (2.1), (2.9), (5.9), and (5.26), we obtain the
dependence of T, on the concentration of the magnetic
atoms, the field intensity, and the temperature:

T, oc N-igt/afH Y2
Tra N1t H?®

for 5> 4,
for b<é.

(5.27a)
(5.27h)

According to (2.9), (4.14), and (5.9), the quantity b
decreases with decreasing temperature, and 6§ increa-
ses. Therefore, at sufficiently high temperatures we
have b > 8, and at sufficiently low ones b < 4.

If, in particular, b <6 and 75 < 7¢ (that is, 7 = Tg),
then (2.11), (4.14), and (5.27b) yield

T, NH*whent>T, or hy.H>2kT, (5.27c)
Tp o NT2HPH307 =3¢ when v < T, and wyH < 2kT. (5.27d)

*dI, ()
=L L@+ Ipu (@),
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We use the following terminology.[”’] When b > 9,
we say that diffusion-limited relaxation takes place;
if b < d, we say that rapid diffusion takes place. The
latter designation is connected with the fact that if
b < &, the diffusion in the region where it is possible
(r > 6) is rapid compared with the direct relaxation.*

Comparison of (5.26a) with (5.26b) shows that in
the case when § > b the relaxation time contains an
additional factor (6/b)3, which greatly retards the re-
laxation of the summary magnetic moment of the
sample.

The physical cause of the slowing down of the re-
laxation in the case & > b is obvious. In the region
b < r < é there is no diffusion (since r < §), and the
direct relaxation is slow (since r > b).

In other words, the inequality 6 > b denotes that the
diffusion of the nuclear Zeeman energy to the magnetic
ion (to a distance ) is more rapid than the transfer of
this energy to the magnetic ion. Therefore, if the
ratio 6/b is sufficiently large, the system of nuclei
located in the region 6 < r < R soon reaches internal
equilibrium, after which this system will gradually
approach equilibrium with the lattice. Consequently,
when 6 <r <R the nuclear magnetization M will be a
function of the time but not of the position1% (for
more details see Appendix G).

In the stationary problem which we are consider-
ing, if /b is sufficiently large, we have [we choose a
solution satisfying the condition M(®) = 0]

3 b
M (8)= My k= M,y B = 1.17M0<T>4 & M,. (5.28)

M(6) decreases with increasing §, owing to the de-
crease in the role of the direct relaxation at a distance
6.

Numerical calculations, based on formulas (5.18)
and (5.25), are given int26]. The quantity Ty, is repre-
sented in the form Ty = const - x1[xis given by
(5.24)]. The plot of n against x shown in Fig. 3 is a
result of these calculations.

In the limiting case of large x (b > 6) we have
n = 0.5; for small x (b < 6) n = 2. We see from the
curve that these limiting values are obtained (approxi-
mately) quite rapidly: when b = 1.56 we have n = 0.58
and when 6 = 2b we have n ® 1.9,

We note finally, that if extraneous nuclear relaxa-
tion also takes place, with a partial relaxation time
Td, then the summary time of nuclear relaxation Tp
is given by the formula

T'=T3"+4aNDF. (5.29)

5. In calculating the relaxation time we have used
the model of a square well for the function D(r). More
accurately, a calculation which takes into account the
presence of the diffusion barrier should be carried
out in the following fashion. It is first necessary to
determine D(r), using the cross-relaxation theory

*This is precisely why T, does not depend on D when b < é.
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(see Sec. 4). Then the diffusion term in the equation
for M(r, t) will be equal to

div (D (r) grad M) =D (r) AM + (grad D, grad M).

Thus, we add to the right side of (5.1) the term (grad
D, grad M). In place of (5.4) we obtain

D (r) AM 4 (grad D, grad M)— Cr=s (M — M)=0. (5.30)

It is then necessary to find the centrally-symme-
trical solution of (5.30), satisfying the conditions
M(0) = M, (this condition expresses the fact that
nuclei located near the magnetic ions are in equili-
brium with the lattice) and M(*) = 0. It is necessary
to find the asymptotic behavior of this solution, which
will take the form (5.14), since for sufficiently large r
we have D(r) = const. We thus obtain F and then, using
(5.18), we obtain Ty,. However, Eq. (5.30) with variable
D(r) can be solved only by numerical means.

We must note in this connection that such a calcula-
tion is meaningful only if we take into account, simul-
taneously with the dependence of the diffusion coeffi-
cient on r, also the barrier anisotropy effects (see
below). Indeed, it can be assumed that effects produced
by the barrier anisotropy will be of the same order of
magnitude and possibly even stronger than the effects
due to the smooth decrease of the diffusion coefficient
on approaching the magnetic ion.

In view of the foregoing, it is desirable to replace
this procedure by solving (5.4) with constant D when
r > 6 and with the corresponding boundary condition
when r = 6. The condition (5.23) which we have em-
ployed follows from the continuity of the nuclear-
moment flux density [that is, from the expression
—D(r) grad M], if we assume that D(r) = 0 when r < §.

It is clear in this case that the result (5.262) is not
connected with the use of the square-well approxima-
tion for the function D(r) (since the diffusion barrier
plays no role when b is considerably larger than 6).
On the other hand, the result (5.26b) will be more
accurate to a coefficient which, roughly speaking, is
of the order of unity.
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In Appendix H, the stationary problem is considered
for the case when D(r) = Dj for r < 6 and when D(r)
=Dforr >6.

6. Let us examine the conditions for the applica-
bility of the analysis presented in this section.

The nuclear-spin diffusion plays an essential role
when r > max (b, ). For the macroscopic description
of the spin diffusion to be valid it is necessary that
the latter quantity be appreciably larger than a. For
our analysis to be correct it is also necessary that
6 < R;* we take into account, further, Eq. (5.15) and
the fact that F < b. We then obtain the following con-
ditions for the validity of our analysis:

e & max (b, 8) € R. (5.31)

It is also necessary to satisfy the condition

R3

Tn=1pp

> T max (b, 8)]==C"'[max (b, 8)]5,

or

[max (5,0)]® € L?i .

This inequality, however, follows automatically
from the inequality (b, 6) < R.
7. According to (5.18), (5.26), and (5.31) we have

R3 R2

Tn:m—>7; (5.32)

where R%/D is the time during which the nuclear spin
diffuses over a distance of the order of R. We can
alternately write (5.32) in the form

(DT)2 =R (?RFD% > R. (5.32a)

(DTn)l/2 is the distance covered by the nuclear spin
during the relaxation time T,. We find therefore that
prior to the relaxation the nuclear spin has time to
stay near a large number of magnetic ions.

This raises the question of the validity of retaining
only one term in the sum over the magnetic ions in
(5.1) in the analysis of the stationary problem [see
(5.4)].

Direct relaxation of the nuclei plays an important
role only for those nuclei, the distance of which from
the nearest magnetic ion is smaller than or of the
order of max (b, 6). On the other hand, we assume
that the condition (b, §) < R is satisfied. Therefore,
inside a sphere centered about a certain magnetic ion
and having a radius R we can neglect the relaxation
due to the other ions.

The stationary problem which we have considered
above has an auxiliary character. We have proved
with its aid that the nuclear magnetic moment ‘‘emit-
ted’’ per unit time by the magnetic ion is proportional
to the deviation of the magnetic moment of a sphere
of radius R from its equilibrium value.

When the nuclear spin goes over from the vicinity

*Indeed, the solution (5.6) of (5.4) is valid only when r > 8.
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of one magnetic ion into the vicinity of another (this
takes place within a time of the order of RZ/D), the
magnetic ion causing the spin relaxation changes.
This circumstance, however, does not play any role
in the stationary problem.

De Gennes, considering the case of absence of a
diffusion barrier, takes into account the action on the
nuclear spin of all the magnetic ions.t%J The result
obtained by him coincides in this case with (5.26a).
However, de Gennes’ calculation is difficult to gener-
alize to the case when the diffusion barrier exists.

8. Let us discuss briefly the possibility of taking
into account the effect of angular anisotropy in diffu-
sion theory.

The quantity D (we are referring to the diffusion
coefficient far from the magnetic ions) depends on the
orientation of the crystal relative to the external field.
The quantities C and 6 also depend, generally speak-
ing, on the orientation of the crystal (owing to the
dependence of the correlation time 7 and the width of
the nuclear resonance AH on the orientation). But C
and 6 depend also on the angle 4 between the vector r,
which joins the nucleus and the nearest magnetic ion,
and the direction of the external magnetic field.*
Since we introduce the quantity &, it is clear here that
we are again dealing with the square-well model for
the function D(r), but with an anisotropic radius of the
diffusion barrier.

It is clear that the difficult problem is to take into
account the dependence of C and 6 on the angle 4. On
the other hand, the fact that some quantities depend
on the orientation of the crystal raises no difficulty,
since these values are fixed for a given crystal orien-
tation.

If we average all the quantities over the angle ¥,
then the results obtained in the present section will be
validf, but in the final formulas it is necessary to take
into account the dependence of D, C, and 6 on the
orientation of the crystal.

In the case when b > 6, we obtain for the dependence
of T, on the orientation of the crystal, in accordance
with (5.26a) and (4.11) (we neglect the dependence of
7 on the orientation of the crystal),

To cc D™ o S8 [ 3V rif (1 — 3 cos? 9y5)2] ™,

3

(5.33)

According to the statements made in Sec. 4, we ex-
pect the anisotropy of Ty to be stronger in the case of
a lattice containing two or more species of nuclei with
spins, than in the case of a lattice in which all the
nuclei having spins are identical.

*More accurately speaking, we are referring not to the quan-
tity C given by formula (2.9), but to the quantity obtained after
averaging over the angle 44, that is, we are referring to the quan-
tity (15/2) C sin*$cos?s.

TWe are referring to a cubic single crystal. In the case of a
single crystal of a different system, the quantity D, as noted
above, will be a second-rank symmetrical tensor.
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In the case b < 8, according to (5.26) and (4.15), we
obtain for the dependence of T on the crystal orien-
tation

a

3
T, B (AH) 8 27, (5.34)

We now proceed to consider effects due to the de-
pendence of C and 6 on the angle 4. When averaging
over the angle ¢ we obtain for D(r) a spherical square
well (4.13) and the barrier is represented by a spher-
ical surface centered about the magnetic ion with
radius 6. We now consider how to proceed if we do
not carry out averaging over the angle; the z-com-
ponent of the field acting on a nucleus is given by the
formula

3 hye
4 3

H (1 —3 cos? ),

where the two signs preceding the second term corre-
spond to the two possible spin directions of the mag-
netic ion*. Using for the determination of & the
procedure developed in Sec. 4, we get for the depen-
dence of 6 on v:

&=const-| 1 — 3cos® ¢ %, (5.35)

where the order of magnitude of the constant is given
by (4.14); the dependence of the constant on the orien-
tation of the crystal relative to the external field is
given by the formula

const oc (AH)™%. (5.35a)

(5.35) yields, in spherical coordinates, the equation of
the surface that represents the diffusion barrier.

According to (5.35), 6 vanishes at an angle J;
= cos ! (1/V3) = 54°44’. It is clear that at low tem-
peratures, for angles 4 close to ¥), we have 6 <b,
and for other directions 6 > b. Therefore near the
magnetic ion the spin diffusion will essentially occur
in directions which make angles close to 4, to the
direction of the external field.

When solving the stationary equation for M it is
necessary to take into account the dependence of C
on 4. Further, it is necessary to impose on the solu-
tion of the equation a boundary condition that calls for
the vanishing, on the surface representing the diffu-
sion barrier, of the derivative M with respect to the
normal to this surface. From the asymptotic form of
the obtained solution we can determine the total flux
of nuclear moment through a sphere of radius R cen-
tered at the magnetic ion (when finding the summary
flux we integrate over the angles, so that the angle ¢
drops out), making it possible to calculate the relaxa-
tion time T,.

The foregoing pertains to an account of the eifects
due to the anisotropy of the barrier in the approxima-

*We note, however, that the assumption that the spins of the
magnetic ions are directed only parallel and antiparallel to the
external field is inaccurate.
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tion in which we use for the diffusion barrier a square
well. In the exact analysis of the problem it is neces-
sary first, using the cross-relaxation theory, to deter-
mine the function D(r, ). It is then necessary to solve
the stationary equation for M with variable D, with
account of the dependence of C on ¢ and with the
boundary condition M(0) = M,. Using, finally, the
asymptotic form of the obtained solution, we can de-
termine the summary nuclear-moment flux through a
sphere of radius R, and the relaxation time T,. The
relaxation of the summary moment will be exponential
(if the conditions for the applicability of the diffusion
analysis are satisfied), since we have again for the de-
pendence of M on r when r is large

]P[:M(oo)—}-%n“_

9. We now consider the question of the values of
the alternating-field amplitude (saturating the magnetic
resonance) at which Eq. (5.17) is valid. The term
2A M of this equation is obtained by integrating the
term 2AM of (5.1), if A is assumed to be constant.
The quantity A is in fact not constant, for when r <6
the nuclei have strongly shifted Zeeman frequencies.
In analogy with (4.13), we assume that

0 r<9,

4= r>3é.

const =4 (5.36)
Taking (5.36) into account, we obtain in place of
(5.17)

oM MM 8 \3
& :T—2Aw+2AmO<T> .

Thus, for the applicability of (5.17) we must satisfy
the condition

24t () <1 or A< 4y, (&)

If we neglect the extraneous relaxation, this condi-
tion takes the form

(5.37)

CF (5.38)

A< g

which gives in the two limiting cases

24 < T35 ()58)] 1= — 5 when b3,

T (5.39a)

24 < (7% o)1 =&

o when b << 6.

(5.39b)
The latter condition can be readily understood. To
satisfy this condition, for small values of r the de-
crease of A(r) does not play any role. Indeed, even if
A(r) were not to decrease, the alternating field still
would not cause any noticeable saturation when r = 6.
10. Assume that a saturating alternating field is
applied to the sample at the instant t = 0. We are now
interested in whether the equation 9 ™ /0t
= (Mo — M)/ Ty will describe the relaxation of M (t) for
all t (seem’]).
If the relaxation of M (t) is exponential in the non-
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stationary case, then the corresponding relaxation
time will coincide with the value of Ty calculated by
us. To this end it is necessary that the diffusion play
an essential role; this requires in turn that when
r > max (b, 6) the value of grad M be noticeably
different from 0.* We conclude therefore that the
exponential relaxation takes place for those values of
t, for which the conditions differ greatly from the
condition of total saturation when r = max (b, 6).T

It is easy to see that (C’c)i/6 is the distance from
the magnetic ion reached by the direct relaxation
within a time t, and (C/2A)!/% is the distance from the
magnetic ion at which the probabilities of spin flip of
the nucleus, due to the relaxation and to the alternating
field, are equal to each other.

Recognizing that M(r, t) is always equal to M; when
r <6, we find that when b < 6 then, no matter how
large A, the relaxation of i (t) will be exponential for
all t. The same will take place if

i - c . 1/
s<b and 24 <757 )= (e (5 )" >b).

Assume now that
dir ~ [ . C \1e
5<<b and 24 >[Ta" (B = (1.6.(72) <b> .
At the instant when the saturating field is turned on
saturation will take place of the resonance when
r > max [6, (C/2A)®]. We can easily obtain the follow-

ing approximate formulas: i

Em(t):[‘E_gN?ﬁ%ma\x [63, (%)”2]

for 0<t<max(—éce— , —2171—) (5.40a)
M (1) =2 NI, (Ct) 2
for max %,%><t<%‘i (5.40b)

When t > b®/C, the relaxation of M (t) will be ex-
ponential with a relaxation time Ty.

It is clear from the derivation of (5.40) that these
formulas are approximate; they are accurate to within
coefficients of the order of unity [we note in this con-
nection that in‘1% formula (5.40b) contains an addi-
tional factor 71/2].

11. We have assumed during the entire course of
the analysis that the direct relaxation of the nuclei is
due to dipole-dipole interaction of the spins of the
nucleus and of the magnetic ion. In the case of a local

*r denotes the distance to the nearest magnetic ion.

T for t ~ max (b, 8) the saturation of the nuclear resonance
is complete, then M =~ 0 and grad M = 0 when r > max (b, 8), and
no spin diffusion will take place.

$We can alternately write (5.40) in the form

m, C Y2 _ (¢ 4]
&m(t)zTgmax[ﬁa, (ﬁ) - (C1) 2] for 0t -
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electron center (F center in an alkali-halide crystal,
donor or acceptor center in a semiconductor), the
wave function of the electron propagates over suffi-
ciently large distances; it is therefore not excluded
that if the external magnetic field is sufficiently small,
the direct relaxation of the nucleus will in some cases
be due to hyperfine interaction. The question was con-
sidered in[?"1, 1t is assumed that Tgir(r) is propor-
tional to exp (@r), where « is connected with the radius
of the wave function of the local electronic center.

6. INDUCED DYNAMIC POLARIZATION OF NUCLEI
WITH ACCOUNT OF SPIN DIFFUSION

Spin diffusion was first taken into account in induced
dynamic polarization in[28J (see also[%6)), but without
account of the presence of the diffusion barrier. We
have analyzed spin diffusion in induced dynamic polar~
ization and took the diffusion barrier into account
inL22,29]

We confine ourselves to the case S=1=1/2.

In the case of induced dynamic polarization, the
z-component of the nuclear magnetization M(r, t)
satisfies the equation

oM My—M -
7t_=—°?d——+DAM-—CZ|r—rm| S(M —My)—24M

T2 |r—rn \““(M; %M(,) .

Let us consider the case where the transitions
corresponding to the fields H,, H*, and H_ do not
overlap and a field close to H, or H_ is applied to the
sample. The upper and lower signs in (6.1) are taken
for the case of the H, and H_ transitions. We shall
henceforth leave out the plus and minus sign of I',

The physical meaning of the last term of (6.1) is
obvious: it determines the change in the nuclear mag-
netization due to the H, transitions. In the H; transi-
tion, the microwave field “strives’’ to equate M with
+YnMy/Ye. The physical meaning of the remaining
terms of (6.1) was analyzed above.

We rewrite (6.1) in the following fashion:

(6.1)

%:DAMA(C%—I‘)

X Nlr—ral* [M—C+D*{C 4 Yer) i,

My—M

-+ T, 24M.

We have seen above that (5.1) leads to (5.17). We
obtain now analogously

%?:mvuf [ (c + %1‘) (C+F)‘“J)?o—?m]
+ 2= o am, (6.2)
where
b= 0.68( r >1/‘=b<-£2‘—r>1/‘, (6.3)
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F=F (b, 8). (6.4)

We define here F(k_), 0) as in (5.25). More generally
speaking, if we do not use the square-well model for
the function D(r), it is necessary to define T as a re-
sult of the substitution b — b in the dependence of F
on b.

In order for (6.2) to be correct it is necessary to
satisfy the condition [compare with (5.31)}

a < max (b, 8) < R. (6.5)

If C > T, then b = b. On the other hand,
b~ 0.68(/D)/if C < T'; b is in this case the dis-
tance from the magnetic ion, up to which the direct
induced dynamic polarization is effective.

Assume that A = 0 (that is, no radio frequency field
capable of saturating nuclear resonance is applied to
the sample*). Equation (6.2) can be rewritten

M M—M

K e (6-6)
where
T3+ 4nNDF (C+T)—1 (Cj: _Yip\)

o= ~ > Yn_ 2R, (6.7)

T3'+ 4nNDF
T3t =T3'4-4nNDF. (6.8)

Solution of (6.6) yields

M (2) = M, 4 [M (0) — M, e~/ (6.9)

It follows therefore that g is the stationary value
of the moment of the sample, and Ty is the time neces-
sary to establish stationary dynamic polarization.

Using (5.29) and (6.8), we have

Tn _ T3 $4aNDF (6.10)
Ts  Tq'-+4aNDF

We introduce further the nuclear-polarization am-
plification coefficient by means of the formulaT

Ms

n:—gﬁo— 1. (6.11)

We then obtain

n—=1 ' 43NDF
" C-T 73 ' 4aNDF

_ r T
= o (1—75—/», (6.12)
where

nm:i%j-l- (6.13)
Formula (6.12) shows that 7 increases with de-
creasing C and with increasing Ty, which can be
readily understood. A decrease in C means a de-
crease in the role of the nuclear relaxation brought
about by the magnetic ions; an increase in Tq means

*In experiments, a radio frequency field with frequency equal
to the frequency of the nuclear resonance is applied for the meas-
urement of the degree of polarization of nuclei. We assume that
the amplitude of this field is small enough so that 2AT,, < 1. In
this case we neglect the term 2AM in (6.2).

fn=p —1, where p is the quantity introduced in Sec. 3.
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a decrease in the role of the extraneous nuclear re-
laxation. On the other hand, a decrease in the role of
nuclear relaxation should intensify the effect of the
induced dynamic polarization.

If the extraneous relaxation can be neglected, then
(6.12) simplifies to

T
N="n 17 - (6.12a)

We note that the maximum polarization amplifica-
tion coefficient 0, is found to be the same as in the
simple model which takes no account of spin diffusion
(see Sec. 3).

In limiting cases we obtain from (6.8) and (6.12)
the following results; we make use of the expressions
for the function F(b, 6) in the two limiting cases [see
(5.26)], and also of formula (6.3).

When b > 6 we have

o r 8.5N (C+T)Y/ap*s
=M T 73 4 85N (C+ T) /D’ (6.14a)
Tit=T3 -+ 8.5N (C+T)*DY1, (6.15a)

which coincides with the results of earlier work.[4:28]
When b < 6 we have

"= r 4.2N (C+T) 63
LT TP +4.2N (C+T) 63

T =T34 4.2N(C+T) 872,

(6.14b)

(6.15b)

Since I' increases with increasing microwave
power, at sufficiently large power b will greatly ex-
ceed 6 and the diffusion barrier will be insignificant.
The diffusion barrier is very important at not too high
values of the microwave field power (if in addition
b < &), and will lead to a decrease in the nuclear
polarization.

We note that in the present section we have as-
sumed that fyoH « 2kT. If this condition is not satis-
fied, it is necessary to replace ve/vn in the last term
of (6.1) by the expression tanh (fy H/2kT)x
[tanh (FypH/2kT)] "', It is easy to see that all the
results obtained by us remain valid, except that
formula (6.13) is replaced by

hyeH
o

hynH
th v;;:‘Tf

If the H, transitions overlap, we can generalize
the analysis given in the present section, retaining in
(6.1) both the term proportional to I', and the term
proportional to I'_. It is easily seen that in this case
the results of (6.4) and (6.8) remain in force, while
(6.3) and (6.12) are replaced by (we are considering
the case when iy H < 2kT):

Mm = 3 (6.16)

b=0.68 ( CEL L=, (6.17)
" Ye Ye
n;ffvi“)”‘(ﬁ'“)“_ﬁﬂ_ o1
Crlyt T T3 annpp ~ (6-18)



760

If we neglect unity compared with v¢/vy, formula
(6.18) reduces to

M= Ve T—T_ 4nNDF

= Te 6.19
Yo CH+Te4-T— 73" L 4aNDF ( )

The latter results are in our opinion applicable in
the case of a broad inhomogeneously broadened line
of electron paramagnetic resonance.

We have indicated in Sec. 3 that the analysis pre-
sented there of the induced dynamic polarization is
valid only if the condition w,7 > 1 is satisfied. There-
fore our analysis is not valid for a broad, homo-
geneously broadened EPR line. This question was
recently considered int143,

7. COMPARISON OF THEORY WITH EXPERIMENT

We proceed to a comparison of the experimental
data on nuclear magnetic relaxation with theory.

The first experiments on spin diffusion were set up
by Bloembergen.[” The experiments were made in
the temperature interval 1—300°K at alternating-field
frequencies 9.5 and 30.5 Mc. The relaxation time was
determined from the time dependence of the nuclear
resonance signal after turning off the alternating field
that saturated the nuclear resonance. The experiments
were carried out with potassium-aluminum and
cesium-aluminum alums, with alkali-halide crystals,
with CaF,, etc. The most detailed measurements were
made with potassium-aluminum alums, in which a
small fraction of the aluminum atoms was replaced
by chromium atoms. The dependence of the relaxation
time of the protons on the temperature, on the ex-
ternal field, and on the concentration of the chromium
atoms was measured. The dependence on N and on T
was of the form T, « N_iTg, where 8 = 0.5—0.7.
Unfortunately, however, the values of 7o were taken
from data by others. In the experiments with CaF,
(with iron added) the nuclear relaxation time turned
out to be, within the limits of errors, independent of
the orientation of the crystal relative to the external

field, in agreement with the theory (see Sec. 5, item 8).

Experiments with single-crystal LiF3% have
shown that irradiation of the crystal with x rays cau-
ses a reduction in the relaxation times of both the Li’
and the F!® nuclei, owing to the production of F cen-
ters. The same reference reports measurements of
the dependence of T}, on the orientation of the crystal
relative to the external field. These measurements
were made at room temperature with the condition
b > & satisfied. In addition to the anisotropy of Tp, a
measurement was made of the anisotropy of the
nuclear-resonance width. It turned out that Ty in-
creases with increasing nuclear resonance width, in
agreement with (5.33).

Measurements of the field dependence of the re-
laxation time of the F!? nuclei in LiF are reported
in"33, The measurements were made at 300 and 77°K
with Te << Tg and 6 << b. It was found that Tp & H'Z,
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which agrees with the theoretical result (5.27a) (at the
temperatures in question, the electronic relaxation is
two-phonon and therefore 75 does not depend on H).
Experiments with NH,HSO, with a small amount of
(NH,),CrO, added are reported in[1®}, Measurements
were made of the time variation of the restoration of
the proton signal after turning off the radio frequency
field that saturated the proton resonance. The meas-
urements were made at room temperature, with 6 < b.
It was found that at small values of the time t the pro-
ton signal is proportional to ti/z, which, in accord with
(5.40b), follows from the theory if 6 < b. By using
(5.40b), the value of C was determined and T¢ estima-
ted. An experiment was also made with a sample in
which no magnetic impurity was introduced. For this
sample, the relaxation turned out to be exponential for
all t; this fact can be explained by assuming that the
proton relaxation in this sample is not due to the mag-
netic ions.

An investigation of the anisotropy of the nuclear
relaxation times in several alkali-halide crystals with
small amounts of iron added is the subject of 18], The
measurements were made at room temperature, in a
field of 4400 Oe. Under these conditions 6 << b. Ac-
cording to the theory, the dependence of T, on the
crystal orientation is given by (5.33). According to
the statements made above (see Sec. 4 and Sec. 5,
item 8), the anisotropy of Ty should be noticeable in
the case of a lattice containing two types of nuclei
with spins. For LiF crystals, the results of the ex-
periments agree with the theory* (there is agreement
both for the Li’ and for the F!° nuclei). In the case of
NaCl and KBr, no anisotropy of the relaxation time
was observed, a fact attributed by the author to the
predominance of the quadrupole relaxation mechanism.

Borghinit3?] measured the relaxation times of the
protons and cerium ions in lanthanum-magnesium
double nitrate, in which 0.5 per cent of the lanthanum
was replaced by cerium. The measurements were
made in the temperature interval 1.5—2.1°K, in a
13.5 kOe field. It was found that T, < T2 and 7¢ < T 7.
The result does not agree with theory (since under
the experimental conditions 6 > b and 7g < T¢); it must
be noted, however, that the temperature interval was
too small to draw any conclusions concerning the tem-
perature dependence of the relaxation times.

The relaxation time of the protons in lanthanum-
magnesium double nitrate, in which a small fraction
of the lanthanum atoms was replaced by cerium atoms,
was measured int®). The cerium concentration was
varied in the range of 0.05—10 per cent. The measure-
ments were made in the temperature interval
1.6—4.2°K, and in a field of 3650 Oe. The dependence

*The authors failed to take into account, however, that the
quantity b which enters in formula (5.26a) depends on D {see
formula (5.9]. They assume therefore that T,, < D™ whereas in
fact T, <D,
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of the relaxation time of the protons on the cerium
concentration and on the temperature was measured.
The value of T¢ was measured along with Ty. It was
found that Ty, < N 272 (with 7o « T !4 which contra-
dicts the theory.

Referencell’] is devoted to the measurement of
the relaxation time of F'? nuclei in LiF, irradiated by
gamma rays from Co®® to produce F centers. The
measurements were made at room temperature and at
an alternating field frequency 6.4 Mc. The relaxation
time of the F!® nuclei was measured as a function of
the concentration of the F centers for two orientations
of the external field, namely with H parallel to [100]
and [110]. For the same crystal orientations, a meas-
urement was made of the shape and width of the
resonance line of F1°. The concentration of the F
centers was determined by optical methods. It was
found that when N < 2 x 10'¢ cm™3, Tp & N7L Carrying
out a numerical estimation of the sums in formula
(5.33) the authors found that at these concentrations
the ratio of the values of Ty, for two crystal orienta-
tions is in good agreement with theory. It was fur-
ther found that when N > 2 x 10! cm™, T, ceases to
depend on N, a fact attributed by the authors to the
formation of clusters of F centers near the dislocation
lines.

In[33] experiments are reported with an Al,Oq
crystal with a Cr,O3 impurity; the relative concentra-
tion of Cr,0; was 0.035 per cent. The spin of Al% is
5/2. Owing to the quadrupole effects, the six Zeeman
levels of the AI®" nucleus are not equidistant and five
lines are obtained in the nuclear resonance spectrum.
In the first approximation, the quadrupole splitting is
proportional to 1—3 cos®$, where ¢ is the angle be-
tween the external field and the symmetry axis of the
intracrystalline electric field. Therefore, when &4 = &
= cos™! (1/V3) = 54°44’, the Zeeman levels will be ap-
proximately equidistant. The authors have shown that
in this case Ty should be determined, if b > 6, by the
same formula (5.26a) as in the case when the nuclear
spin is 1/2. The measurement was made at T = 80°K
and H = 9 kOe. The obtained value T = 0.8 sec is in
good agreement with (5.26a). However, the numerical
estimates made by the authors show that for the values
of the physical quantities chosen by the authors, b is
in fact smaller than 6.

Paper 26 j5 devoted to a measurement of the re-
laxation times of the protons and P3! nuclei in KH,PO,
as functions of the temperature (in the interval
4.2—375°K) and of the external field. Measurements
were also made of the anisotropy of the relaxation
time of the protons. The experimental data are in
good agreement in the entire temperature interval
with the diffusion theory that takes no account of the
barrier (that is, with the case 6 < b). However, as
pointed out by the author, when T = 4.2°K b is in fact
smaller than §.

Kessenikh et al.l34:35] (see also'1?) measured the
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relaxation times of the protons in irradiated polyethy-
lenes. Along with Ty, they measured also the spin-
lattice relaxation time of the magnetic center. The
measurements were made at 77, 4.2, and 1.6°K. The
external magnetic field was 3450 Oe. The concentra-
tion of the paramagnetic centers was varied in the
interval (2.8—8.5) x 10!% cm™. The value of Ty, was
determined from the time dependence of the proton
sample after turning off the high frequency field pro-
ducing the dynamic polarization. Measurements were
also made of Ty by observing the restoration of the
signal after turning off the radio frequency field that
saturated the proton resonance.

For the dependence of Ty on the magnetic-center
concentration, they found Tr_11 « NB where g =1-2.

Formula (2.10) yields (we are substituting g = 2)
C=0.87 7' x 104 cm®%/sec. The estimate (4.14a)
yields (we choose a = 2.3 10&) 5 =15 A.

Let us compare theory and experiment for samples
with N = (5.2—5.9) x 10'8 cm™ at T = 4.2°K. Formula
(2.1) yields R = 35 A, According to (2.11) we obtain
Tg ™ 4 X 1078 sec which is appreciably smaller than
Te (Te ® 0.4 sec when T = 4.2°K); therefore 7 = 7.
Then C = 2 X 107 cm®/sec. Assuming that D= 2.5
% 10712 em?/sec, we obtain according to (5.9) that
b~ 2A, Using, finally, formula (5.26b), we obtain
Ty ® 70 sec, which is in good agreement with the ex-
perimental value (40—80 sec).

Further, in accordance with the same paper, at
helium temperatures the relaxation time T, is in-
versely proportional to the temperature. It is easily
seen that such a dependence follows approximately
from the theory if T4 is considerably smaller than T,
[see formula (5.27d)]. According to experiment, the
proton resonance line has a Gaussian form and its
width (between points corresponding to half the maxi-
mum) is 17.5 Oe, yielding T, ~ 6 X 10°% sec. Recog-
nizing that the foregoing estimate of 74 is quite crude,
and taking also into account the fact that we do not
know the values of 7/T, at which the estimate (4.14b)
becomes valid, we can conclude that with respect to
the temperature dependence there is no contradiction
between theory and experiment [we note, however,
that if 6 is estimated by means of (4.14b), we obtain
for the foregoing sample at 4.2°K a value T}, 6 sec,
which is much smaller than the experimental value].
In"3¢) measurements are reported of the relaxation
time of the protons in lanthanum-magnesium nitrate,
in which 0.8 per cent of the atoms of lanthanum are
replaced by cerium atoms. The measurements were
made in the temperature interval 0.3—1.7°K, with an
external field 3.5 kOe. The measurement yielded
Tl o T1%; in other words, Ty increases with de-
creasing temperature somewhat more rapidly than
predicted by theory.

Jeffries and his co-workers measured the relaxa-
tion time of protons in lanthanum-magnesicm double
nitrate, in which one per cent of the lanthanum atoms
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was replaced by neodymium atoms[4J (to get rid of
the hyperfine structure, the isotope Nd!*? was intro-
duced). This concentration corresponds to N = 1.6

x 10'® em™. The measurements were made in the
temperature interval 1.3—4.2°K and at fields ranging
from 1 to 20 kOe. The external field made an angle
40° with the direction of the symmetry axis of the
intracrystalline field. T, was measured by deter-
mining the time dependence of the proton signal after
turning off the high-frequency field producing the
dynamic polarization. T4 was also measured.

Under the conditions of these experiments § > b,
Comparing the results of the experiments with theory,
Jeffries concludes that the diffusion theory leads to
values of T, which are three orders of magnitude
larger than the experimental data. However, if one
recognizes that under the conditions of the experi-
ments in question Tg << Te, one finds that in fact the
theoretical value of Ty is two orders of magnitude
smaller than the experimental data.

The resonance of the F'° nuclei in single-crystal
CaF, containing a manganese impurity is investigated
int3), The angular anisotropy of the nuclear-reson-
ance line width was measured. This was followed by
investigation of the time dependence of the restoration
of the nuclear resonance signal after turning off the
saturating field. At room temperature, a region of
t1/2 and a region of exponential signal growth were ob-
tained in agreement with the theory (the condition
0 < b was satisfied). The experimentally obtained

value of T, agrees approximately with formula (5.26a).

We see therefore that the diffusion theory is in ac-
cord with the experiments made at relatively high
temperatures (when b > &), as regards experiments
made at helium temperatures, (when b < §), the diffu-
sion theory agrees qualitatively with some and contra-
dicts others. This disparity is possibly connected
with the fact that under the conditions of these experi-
ments 6/R is insufficiently small and consequently
the criterion for the applicability of our analysis
breaks down. The disparity may possibly also be due
to the approximations employed by us, particularly
the crude estimates (4.14), and by failure to take into
account the anisotropy of the diffusion barrier.

As regards induced dynamic polarization of the

nuclei, we are unable at present to compare the results

of the diffusion theory with experiment, since most
experiments were made under conditions when the H,
and H_ transitions overlap (with the broadening of the
electron paramagnetic resonance not being purely
homogeneous). In the latest papers by the Jeffries
group[‘ﬂ microwave fields are used with a wavelength
of approximately 4 mm, and there is thus no overlap.
However, no data are given in the review 4] on the
dependence of the coefficient of intensification of the
nuclear polarization and the growth time of the in-
duced dynamic polarization [see formulas (6.8) and
(6.12)] on the temperature, external field, concentra-
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tion of the magnetic atoms, and microwave power. In
a recent review, Abragam and Borghini[“] likewise
present no experimental data on the dynamic polariza-
tion in sufficient detail to be able to make a detailed
comparison between theory and experiment.

We mention, finally, investigations of nuclear polar-
ization in a liquid adsorbed on a solid containing mag-
netic centers, following application of an alternating
field that gives rise to forbidden transitions.[%38:3%]
As a result of the forbidden transitions, direct polar-
ization takes place of the nuclei of the liquid, located
near the solid surface. This polarization is further-
more transported inside the liquid, but not by slow
spin diffusion, but by the much more rapid molecular
diffusion.

8. CONCLUSION

We have already noted in the introduction that
interest in the investigation of spin diffusion has
greatly increased because of the success of the
method of induced dynamic polarization of nuclei.

We note in this connection that the Jeffries group has
attained a proton polarization of 70 per cent.t4J The
sample was lanthanum-magnesium double nitrate in
which one per cent of the lanthanum ions were re-
placed by neodymium ions. The experimental condi-
tions were as follows: H = 20 kOe, T = 1.5°K, external
field perpendicular to the symmetry axis of the intra-
crystalline field, microwave-field frequéncy 74 Ge,
microwave power approximately 100 MW.

Reports have already (more accurately, finally)
been published concerning the first experiments with
a target containing polarized protons. Abragam and
his co-workers %) measured the spin correlation in
the scattering of polarized incident protons (with
energy 20 MeV) by protons of a polarized target
(lanthanum-magnesium double nitrate, in which 0.3
per cent of the lanthanum is replaced by cerium),
with a degree of proton polarization equal to 20 per
cent.

The Berkeley group[‘“] investigated scattering of
250-MeV pions by protons of a polarized target
(lanthanum-magnesium double nitrate, in which 1 per
cent of the lanthanum is replaced by neodymium) with
a proton polarization of approximately 25 per cent*.

We must note, however, that lanthanum-magnesium
double nitrate is by far not an ideal proton target.
Although this target contains a sufficiently large num-
ber of hydrogen atoms (3.7 x 10?2 cm™), the interpre-
tation of the experiments is hindered by the fact that
many more protons are contained in the other target
nuclei.

From this point of view, more convenient targets
are the various hydrocarbon compounds (polyethylene,

*A detailed description of the experiments made with polar-
ized-target protons can be found in{*14].




SPIN DIFFUSION 763

polystyrene), containing as magnetic centers a free-
radical impurity. However, so far no strong proton
polarization could be obtained for such substances.

An ideal target for nuclear research is solid hydro-
gen. Experiments were set up in which solid H, was
bombarded (with gamma quanta, x rays); this yields a
H, lattice into which a small amount of atomic hydro-
gen has been introduced. However, further experi-
ments have shown that the microwave field which
should cause the forbidden transitions does not lead
to the polarization of the protons (H, molecules*).
The explanation of this fact follows (see, for exam-
ple,[“]). The ground state of the H, molecule (state
with zero rotational quantum number K) is the para
state, in which the summary spin of the two protons
is 0. It is clear that there can be no talk of a spin flip
of one of the protons of the molecule by means of the
microwave quantum; indeed, such a transition is a
para-ortho transformation, and the energy required
for it is larger by many orders of magnitude than the
energy of the microwave-field quanta.

It is well known, however, that when hydrogen is
cooled to helium temperatures, it is possible to store
in it, for a sufficiently long period of time, an apprec-
iable quantity of ortho hydrogen (we note that in our
case this will be difficult, since the atomic hydrogen
is a catalyst which accelerates the ortho-para con-
version), and one can raise the question of the polar-
ization of the spins of the protons which are contained
in the ortho-hydrogen molecules. However, in the
ortho state the rotational quantum number of the mole-
cule is K=1.

In view of the small mass of the protons, this rota-
tion is rapid, and it causes a sufficiently fast relaxa-
tion of the proton spins. As we have already seen in
Sec. 3, rapid relaxation of the nuclei (that is, small
Ty), destroys the dynamic polarization.

The situation is entirely different in the case of
solid D, or HD. The ground state of the D, molecule
is the ortho state, and the summary spin of the two
protons is equal to two with a probability of 5/6 and
to zero with a probability of 1/6. On the other hand,
in the case of the HD molecule there are no limita-
tions whatever connected with the symmetry. The
solid D, and solid HD are highly promising polarized
targets provided no trouble is caused by the fact that
the electron spin-lattice relaxation time is large be-
cause of the lack of spin-orbit interaction. For de-
tails and references concerning polarization of pure
hydro%en targets we refer the reader to the re-
views 4’14

" *We note that the resonant frequencies of the protons of
atomic and molecular hydrogen differ greatly. Indeed, in the case
of atomic hydrogen the energy of the hyperfine interaction of the
spins of the electron and the proton is much larger than the
Zeeman energy of the proton.

APPENDIX A

In the derivation of (2.7) we follow the book[3,
From the energy operator of the dipole-dipole
interaction between the magnetic ion and the nucleus
we separate the term V, which is proportional to S;L,

V=hASI,, (A.1)
where

sin ¥ cos Ge~i¥

_ 3 hYe¥n
A=- 2

(A.2)

We introduce the correlation function of the operator
AS,

G (5)=A2(S,(0) S, (t)> (A.3)
and its Fourier transform
-+

J (@)= S G (1) e 10t gp, (A.4)

According to the general theory of magnetic relaxa-
tion, we have for the relaxation time of the nucleus

1785 (r, $)1-1=27 (). (A.5)
Thus

(T (r, 9)]-1= % (RYeYn)? sin? 9 cos® &

ré

W iw_t

S (SL(0) S, e dt.
- (A.6)
We assume that the correlation is exponential, with a
correlation time 7. Then

_l
(Sz(O)Sz(t”:—;‘S(S—}—he T (A.7)

and we obtain (2.7) of the main text.

However, if By H/KT is not small, then (A.7) is not
correct. Indeed, in this case (S;) = 0, (S%)
= (1/3)S(8 + 1).

This circumstance can be easily taken into ac-
count.[42] Indeed, when t = 0 the correlator
(8,(0)8,(t)) is equal to {(S%), and when t = = it be-
comes equal to <Sz>2. Assuming that the correlator
changes exponentially in time, we can write

1t

(82 (0) S, (1) =(S N2+ ((SH—(S e *. (A.8)

For J(w) we obtain
T @)=42 [ 230 (0) (St s (Sh—on | . (AL9)

On the other hand,
So=—sm, (L) (A.10)

./ ShyH
(S5 — (S =528 (—k;e—>

(Bg is the Brillouin function, and the prime denotes

differentiation with respect to the argument).
According to (A.5), (A.9), and (A.10) there appears

in the right sides of (2.7) and (2.9) an additional factor

< ShyeH
s+ 1 T

The replacement of the quantity C by the factor

(A.11)
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(A.11) leads to a corresponding change in T, [see
formulas (5.26)]. Thus, when iygH > 2kT we have an
additional increase in Ty with increase of the ratio
H/T.

Formulas (A.9) and (A.10) were used int4) to cal-
culate the dependence of the diffusion-barrier radius
6 on 7/T, and a more accurate formula than our
formula (4.14) was obtained.

APPENDIX B

We present certain results of the well-known paper
by Van Vleck, devoted to the theory of the line width of
magnetic resonance in a rigid lattice.[18] we shall
consider the case of nuclear resonance (we confine
ourselves here only to an account of the dipole-dipole
interaction of the spins).

The mean-square width of the nuclear resonance
line of nuclei of this type (with spin I and gyromagnetic
ratio yy) is given by the formula
S:((Am)%:% I(I-+1)h2yn ZI ;% (1—3cos? 9;;)
3

+%hzvﬁ Z In (I 4-1) virif (1—3 cos? 952)% (B.1)
Bk

here the summation in the first term is over all the
nuclei which are identical with the nucleus i (the prime
denotes that the term with j = i has been omitted from
the sum); rjj is the distance between the nuclei i and
i; ‘9ij is the angle between the vector rjj and the ex-
ternal magnetic field. The summation in the second
term is over nuclei which are not identical with the
nucleus i; Iy and vk are the corresponding spin and
gyromagnetic ratio.

For a cubic crystal we can derive the following

formulal18:16]
SV riP (13 cost ByP= 5 (ap-+ bpA), (B.2)
i
where
A=ME M-I (B.3)
Af, Ay, and Ag are the direction cosines of the external

magnetic field relative to the cubic axes of the crystal;
the quantities ap and bp are given by the formulas

ap=3
J

bp= 2 riiP [—9+15 (uti; + i +rdsy)
7

1 179 (w5 + udast+ 0
(B.4)
(Kyijs Haij and pgjj are the direction cosines of the

vector rjj relative to the cubic axes).
Let us consider the case of a cubic crystal in which

all the nuclei that possess spins are identical. (B.1)
and (B.2) yield
8= 1 (141 h2} (0 F-bolh). (B.5)

The quantities ap and by depend on whether the
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cubic lattice is pr1m1t1ve (T'¢), body-centered (FV) or
face-centered (I ) A numerical estimate yields for

the I’ lattice

§=12,4h2y3a=8] (I +1) (A— 0.19) (B.6a)
for the I'f lattice

S =5.7h2yta~8I (T41) (2.12— A); (B.6b)

where a is the distance between the nearest nuclei.

In the case of a powder or of a polycrystal of the
cubic system, it is necessary to average the expres-
sion (1—3 cos? &ij)z [or else it is necessary to replace
in (B.5) A by 3/5]. As a result we obtain

=—I(I+1) n2yd 2 G =% I(I+1) Ryt (a6+-§— b3> L(B.7)
Numerical estlmates yield
2

where g = 8.4 for the I'; lattice, 14.2 for the I‘V lat-
tice, and 14.4 for the I‘f lattice. We thus obtaln

(B.8)

= ga-ﬁy

sz? I(I+1)h2yiga—s. (B.9)

For a Gaussian line, the distribution function rela-
tive to Aw = w — wy is of the form [we recognize that
T (0) = Tz]

(B.10)

g (h0y = L2 axp { — THAORY

b1
We thus have for a Gaussian line

(B.11)

5= {(B0)y =57,

We note that for a non-Gaussian line the expression
ST% depends on the orientation of the crystal relative
to the external field.

(B.9) and (B.11) give in the case of a Gaussian line
(for a powder)

g 1/2 43
Ty Sm ]/ a

wrFne | (B.12)

In the case of a spin I = 1/2 we obtain for the 'y
lattice

T,—0.65 hav” . (B.13a)

and for the F‘c’ and I‘f lattices
Ty=0.49 —- M’ . (B.13b)
APPENDIX C

We separate from the energy operator of the dipole-
dipole interaction of the nuclei i and j the term V1J
which causes the flip-flop transitions (1,81,

Vig= — BV (15 4 1) (1~ 3 eos? By)). (C.1)
.7

In the case of a flip-flop transition of a pair of
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identical nuclei, the number of final states per unit
interval of frequency is Tz/\/Err.* For the probability
(per unit time) of the flip-flop transition of the pair of
nuclei (i, j) we obtain

1 1

2 T,
Vin.

25
W=

1 1
—2—,;‘:7 Vij

Since I = 1/2, this yields

= V_h?yn 7 (t—3cos? 9;;)2 Ta. (C.2)

We consider a crystal in which all nuclei with spins
are identical. The formula (B.1) yields (we substitute
I1=1/2)

9

S=g hvh D 75 (1—3 cost 8% (C.3)
i
According to (C.2) and (C.3)
P W,~,~=‘—g\2$T2. (C.4)

i
Assuming that the nuclear-resonance line is Gaussian,
we apply (B.11) and obtain

’

2 W=
j

According to (4.7), it is necessary, in order to deter-
mine the coefficient of spin diffusion D, to calculate
the probability W of the flip-flop transition of the pair
of nearest identical nuclei. It is easy to see that W is
equal to the ratio of the expression in (C.5) to the
quantity g which enters in (B.7) (g plays the role of
the effective number of nearest neighbors). This pro-
cedure however, is valid only if averaging is carried
out over the directions (in particular, this procedure
is exact for a powder or a polycrystal of the cubic
system).

As a result we obtain for the I'

%
ovir, (C.5)

lattice

a2

=307
and for the T'Y and T'L lattices
L
53T,
In most papers on spin diffusion the estimate used
is

a?
=307 - (C.8)

*We take into account the fact that ¢ (0) = T,/n (see Appendix
B). The factor y/2 is the result of the fact that for a system of two
identical nuclei the total width of the state is /2 times larger than
for one nucleus (this statement, however, is accurate only for a
Gaussian distribution). An alternate proof of this statement is as
follows. The number of the final states per unit frequency interval
is

[ § o oi—0ie—onew—on dordos= [ 1o@ampao=_ T2,

where we use for g(Aw) formula (B.10).

APPENDIX D

For a cubic crystal we get from (4.11), (B.2), and
(C.3) (we are considering a crystal in which all spin-
possessing nuclei are identical)

AV g atbd (D.1)
7272 "V agt bgh

A numerical estimate of the quantities a,, by, ag,
and bg leads to the following results (we are consider-
ing a Gaussian line, A = 1): for the I', lattice

D=9.3.10-21¥h A+0.27_ (D.2a)
e VA_049’
and for I‘g
D—53.40-2 ¥R 4044 (D.2b)
e V3IA3-A

For the lattice I'y, (for example F!? in the CaF,
lattice) it follows from (D.2a) that the ratio of the
values of D when the external field is directed along
[100], [110], and [111] respectively is 1:1:1.15, that is,
the anisotropy of D is small.

On going over to a powder (or a polycrystal), it is
necessary to replace A in (D.2) by 3/5. Using, further,
formulas (B.13), we obtain the values of D for powders
or polycrystals of the cubic system. In particular,
for the I', lattice

- 12_”;_2 , (D.3a)
and for I‘g
a2

We assume that these estimates of the coefficient
D are more accurate than the estimate (4.8). Indeed,
the estimates (D.3) take account of the fact that flip-
flop transitions take place not only for the nearest
identical nuclei.

APPENDIX E

We present the main results obtained by Buishvili
and Zubarev, (28] jn which a quantum statistical deri-
vation of the Bloembergen equation (5.1) is given.

We consider a crystal in which the spin-possessing
nuclei are identical. The Hamiltonian of the system
is of the form (there is no alternating field)

1’ .
Fo = —hyH D) 1;+72 U, ) 1318
i ij

+ D VO (i, m) 1ESE 4 .

im

(E.1)

The indices i and j number the nuclei while m numbers
the magnetic ions; repeated Greek md1ces imply sum-
mation from unity to 3 (x, y, z); U B and chg are
operators whose explicit form can be readily deter-
mined by using the formula for the dipole-dipole
interaction energy (we note that the diagonal compon-
ents of the tensors UYP and V@B are real, while the
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off-diagonal components are pure imaginary); &, is
the Hamiltonian of the lattice and of the magnetic ions
(with the exception of the Hamiltonian of their dipole-
dipole interaction with the nuclei).

Using the method of the statistical operator of the
non-equilibrium system, developed in[“], the authors
obtain for the z-component of the nuclear magnetiza-
tion the equation

oM
M_ 9 (Do 876>—L (r) (M — My).

o =75 (E.2)

In the absence of a diffusion barrier, the tensor
D g is given by the formula

Daﬁz%zlz‘i’;iz?jWij, (E.3)
j
where
Vi .
W= __ 2z (7, 2 .
= oy 10 G (E.4)

In the case of a Gaussian nuclear-resonance line,
calculation of (E.4) leads to formula (C.2). Further,
in the case of a cubic crystal, we can replace X?Xg
in (E.3) by (1/3)r};055. Thus, (E.3) reduces to
DozB = D(Saﬁ, where D is given by (4.9).

When account is taken of the diffusion barrier,
each term of the sum (E.3) is multiplied by an ap-
propriate exponential, the argument of which is pro-
portional to the square of the difference of the
resonance frequencies of the nuclei i and j.

The quantity L which enters in (E.2) is given by

L(r):—%zz V=2 (r—rp) V¥ (r—1n) Knm' (©5). (E-5)
where
oo
vEz=Vaz  Vvz, K, (0)= S (8% (0) 82, (¢ et gt (E.6)

It can be shown that

1
T 2n2 L V=2 r—T) VY2 (r— 1) K (@)

=1—25 C Z |r—rp, |"6sin2 &,, cos2op,
{($m and ¢, are the polar angle and the azimuth of the
vector r —r, relative to the external field H). Thus,
if we average over the angle 4y, the diagonal part of
L(r) reduces to the term C2;|r — r /™% (M — M) of
Eq. (5.1). m

Analogously, the off-diagonal part of L(r) reduces
to the expression
15

,
5 € Z | r—Tp |73 | r—r,,. |~3sin ¥y cos O sin &, .cos B, e

gl
This result can also be obtained by following the
procedure of Appendix A, and taking in place of (A.1)
an expression summed over the magnetic ions:
V=h D} A5 I+,
m

where

W, —Tm),

Ap= — 3 hveva

9,
2 |r—rpy |3 !

sin ¥, cos O, e—A

However, the off-diagonal part of L(r) can be neg-
lected if the magnetic-ion concentration is not too
large.

APPENDIX F

We present a derivation of formula (5.26a) as
written by deGennes[%] (see alsol[:267),

1. We start with Eq. (5.1). Considering the sta-
tionary case in the presence of a saturating field and
confining ourselves to one term in the sum over the
magnetic ions, we obtain

DAM —Cr—s (M — M)— 24M =0,
or

AM — Br=8 (M — Mo)— L—2M =0, (F.1)

where

(F.2)

D\1/2
j - (ﬂ\ .
We solve (F.1) under the boundary conditions

M@©)=M, M (c0)=0.

We shall show below that the condition b «< L is always
satisfied. When r > b we can neglect the relaxation
term in (F.1), and the equation takes the form

AM —L—2M =0, (F.3)

with a centrally-symmetrical solution satisfying the
condition M(=) = 0 and proportional to r™* exp (—r/L).
To determine the proportionality coefficient it is
necessary to make this equation continuous with the
solution of (F.1) for small values of r. On the other
hand, when b < r < L the term L 2M in (F.1) plays no
role and the solution is equal to Myb/r [see (5.14);
since we disregard the diffusion barrier, we have

F =b]. Thus, whenr > b

M(r)zMog exp(—f) . (F.4)

The factor exp (—r/L) is brought about by the pres-
ence of the saturating field. This factor is important
when r is of the order of or larger than L. It is essen-
tial that these distances greatly exceed b.

2. We circumscribe a sphere of radius b around
each of the magnetic ions. We assume that the nuclear
spins are continuously in equilibrium with the lattice
inside these spheres, and that in the volume outside
these spheres we can neglect direct relaxation. Thus,
we obtain in place of (F.1)

oM N
W:D AM—24AM when |r—rp, | > b, (F.5)
M=M, when |r—r, | < b.

3. Let us consider the stationary case. We solve
(F.3) for r > b with the conditions
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M

M (b)=M,, ar

=0.
R

The centrally-symmetric solution can be written in
the form

M(r):%[cish kr+co ch kr, k=%=<27)4>1/2 . (F-G)*

The boundary conditions yield

b ‘2 _ A

kR —th kR
*kb+AM°' y

T1—ERth kR ~ (F.7)

¢4

We define Ty by means of the formula [see (5.22)]
Tp={24;,)"1. (F.8)

According to the meaning of Ay, taking k in (F.6) to

mean
2A 1/
= (25 "= (F.9)
we should have
R R
K M (r)r? dr:% \' Myr2dr,
b b
which yields
6bA
kZ:mIﬁ . (F.10)

Let us assume that kR < 1 (this assumption will be
justified below); we then have 6 = (kR)?/3 and simple
transformations yield

3b
RE="pg (F.11)
Since b < R, we obtain kR « 1 (and all the more
kb <« 1). Then (F.9), (F.11), and (2.1) yield
R3 1
Tn=3Db~ ZaNDb *
We thus obtain (5.26a) of the main text.

4. Reference?] also considers the problem of
pure relaxation, and solves (F.5) in the absence of the
term 2AM. The result of this analysis shows that the
total nuclear magnetic moment of the sample relaxes

(F.12)

exponentially, with the relaxation time given by (F.12).

APPENDIX G

We present a derivation of the expression for Ty
for b « 6, given in(19]

If the ratio 6/b is sufficiently large, then the diffu-
sion in the layer 6 < r < R will be much faster than
direct relaxation of the nuclei located at distances of
the order of § from the magnetic ion. In such a case
an internal equilibrium will be established in the sys-
tem of nuclei located in the spherical shell 6 < r <R
(we are referring to all spherical shells about each
of the magnetic ions of the specimen), and subse-
quently this shell will gradually enter into equilibrium
with the lattice. Because of this, the nuclear magne-

*sh = sinh, ch = cosh.

tization M in the layer 6 < r < R will be a function of t
only, and not of r. The relaxation time of the nuclear
magnetic moment of the specimen can be obtained by
averaging C/r® over all the ions located at a distance
r > 6 from the nucleus. Thus,

=

S
Using (2.1), we obtain formula (5.26b).

CNdV = i";ﬂ Co.
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APPENDIX H

For a better explanation of the physical nature of
the solution of the problem with the diffusion barrier,
we present a solution of Eq. (5.4) for the following
form of the function D(r):

D; when< 9,

b= D whenr>s. (H.1)
We introduce the notation
_C £ (H.2)
f’l Di r ﬁ D .

When r > §, the solution is given by (5.6); when r < 6,
the solution is given by a similar formula, but the
argument of the functions I. 1/, will be B%/Z/Zrz, and
the corresponding coefficients will be denoted by A;
and Bi‘

The boundary conditions are of the form M(0) = M,
and M(*®) = 0. When r = 6 it is necessary to join toge-
ther the expression for M(r) and D(r)dM/dr. The ag-
gregate of these four conditions determines the coeffi-
cients A, B, Aj, and B;.

The condition M(0) = M, yields A; = Bj. From
formula (5.8) we find again that the condition M(®) = 0
yields A = nBI/B/4F(5/4). Further, we replace B in
(5.10) by F. After applying the conditions M(0) = M,
and M(*) = 0, we are left with two undetermined con-
stants Aj and F, which are determined from the con-
ditions for continuity.

In the general case we obtain rather cumbersome
formulas, so that we confine ourselves to the case
6 < 611/4. Then, when r < 6

ol/2 1/ ﬁ;/Z
M (r)==M, [1 _Aina exp | =55 s
1
1/apn 1/ 1
am — MyA; Zﬂil‘ ex — i/z
ar — Mo gn X | —ge |

(the differentiation gives rise to one more term, which,
however, we can neglect).

Comparing the conditions for the continuity of M
and D(r)dM/dr at r = §, and eliminating A; from these
two relations, we obtain a connection between the ex-
ternal values of M and dM/dr atr = 6§

(H.3)

/ - p
M4 0)= — oy Vo= ()

[in place of M(6 + 0) we can write M(8), since M(r) is
continuous at r = §].

(H.4)
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If D; tends to zero, that is, i tends to infinity, then
(H.4) yields M'(6 + 0) = 0. In other words, if D(r) = 0
when r < 0, we obtain for the external solution the
boundary condition (5.23) at r = §.

Assume now that the following conditions are satis-
fied

b=0.68p"4 « & « Bi/4.
Then we use for r < 6 formula (H.3), and for r > 6

formula (5.12):

M(=M,; (i B (H.5)

r o 12r4

Comparing the continuity conditions and again elimin-
ating the quantity Aj, we obtain

p
e -
F P piag’ H.6
=5 tmm

which expresses in implicit form F in terms of B8, Bi,
and §.
In the limit as D; — 0 and Bj — = (H.6) yields

B .
F=35, (H.7)
that is, we obtain (5.26D).

Expressing A; in terms F, we readily obtain a

formula for M(r) for r smaller than but close to 6:
1/9
3F /2 (6—
M (r < 8)=M, {1-(1—4—6 exp [_ﬁ_és_')]} . (H.8)

It follows from the last formula that the decrease of
M(r) from a value M, to a value M(6) < M,, occurs
essentially in a layer (5 —63DY2/C!/2, ). In the limit
as D; — 0, the thickness of this layer tends to 0.

Notes added in proof. 1. The nuclear-relaxation diffusion the-
ory development in Sec. 5 does not agree primarily with low-tem-
perature measurements, when samples are used with magnetic-ion
concentrations such that 74 << 7; is satisfied (see Sec. 7). It is
therefore possible that the theory disagrees with experiment be-
cause we have assumed (see Sec. 2) that 7 = 75 when 7g < T7}.

We must, however, take into account that a low magnetic-impu-
rity concentration the energy of the electron spin-spin interac-
tions will be smaller than the energy of the nuclear Zeeman inter-
actions. Because of this, the “electronic spin-spin interactions —
lattice” region may turn out to be narrow for the transfer of energy
from the nuclear spins to the lattice. Then, when 75 < 7; the ef-
fective 7 will not be equal to 7g, but will lie between 74 and 7,
which leads (see Sec. 7) to a better agreement between theory and
the experimental data on the Jeffries group.

2. In a recent paper, M. Goldman [Phys. Rev. A138, 1675
(1965)] investigated the relaxation of protons in para-dibromoben-
zene. The nature and the concentration of the magnetic impurity
were unknown (the impurity concentration, however, was so small
that 7; « 75 and 7= 7 for all T). The dependence of the relaxa-
tion time of the protons T on the field (in the interval from 0 to
140 Oe) was determined at T = 4.2°K. It was found that with in-
creasing field the relation T, & H” gives way to a relation
Tp & H® This result agrees with (5.27a), (5.27b), and (4.14a), if
it is assumed that 7; does not depend on H and that 7;>T,. It is
noted in the paper that the experimentally obtained relation T ,(H)
agrees well with the theoretical curve for the square-well model.
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