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1. INTRODUCTION

I N this paper we consider magnetic relaxation and
dynamic polarization of nuclei in a diamagnetic crys-
tal with small concentration of paramagnetic atoms.
The following are examples of such systems:

1) A dilute paramagnetic salt (for example, lan-
thanum-magnesium double nitrate, in which a small
fraction of the lanthanum atoms is replaced by cerium
or neodymium atoms).

2) An oxide or halide of.a non-transition metal with
a small concentration of a transition metal (for ex-
ample, A12O3 with a small amount of Cr2O3 added).

3) An alkali-halide crystal with F centers.
4) A crystal containing free radicals.
The concept of nuclear spin diffusion was first in-

troduced by Bloembergen. ^ He has shown that spin
diffusion plays an important role for nuclear magnetic
relaxation in a diamagnetic crystal with small para-
magnetic-atom concentration. It was shown later that
spin diffusion plays an important role also for the
dynamic polarization of nuclei in such a crystal. The
investigation of the diffusion of nuclear spin has be-
come of great interest, because the method of dynamic
polarization is at the present time the most powerful
method of polarization of light nuclei.

We review first the theory of direct relaxation and
dynamic polarization of nuclei, owing to their dipole-
dipole interaction with the magnetic ions. We then
describe the mechanism of nuclear-spin diffusion,
after which we present the theory of magnetic relaxa-
tion and dynamic polarization of nuclei with account
of spin diffusion. At the end of the paper we compare
theory with experiment.

2. NUCLEAR MAGNETIC RELAXATION WITHOUT
ACCOUNT OF SPIN DIFFUSION

Since the concentration of magnetic ions in a crys-
tal is assumed to be sufficiently small, there is a
large number of nuclei* (of the given type) for each
magnetic ion. In this connection, the average distance
between the magnetic ion and the nucleus is suffi-
ciently large and their dipole-dipole interaction pre-
vails over the contact interaction. In addition, the
Zeeman energy of the nuclear spin will be much
larger than the energy of the interaction between the
spins of the nucleus and the magnetic ion.

We denote by N the concentration of the magnetic
ions (their number per unit volume of the sample), and
by n the concentration of the nuclei (of the given type);
n » N. We denote further by R the radius of the
sphere per magnetic ion. We obtain

^-R3N=l. (2.1)

S and I will denote the spin operators of the elec-
tron shell of the magnetic ion and of the nucleus. We
confine ourselves to examination of the case I = 1/2,
since almost all the experiments have been carried
out on protons or F 1 9 nuclei.

A strong, external, uniform and constant magnetic
field H is applied to the crystal, and the z axis is
chosen along its direction. The Zeeman (Larmor)
frequencies of the spins of the magnetic ion and of
the nucleus are given by the formulas

l u e = Y e # , Ш„ = \ „ # , (2.2)

*We are referring throughout not to the nuclei of the magnetic
ions, but to the nuclei of the host lattice.
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where y e is the absolute magnitude of the gyromag-
netic ratio of the magnetic-ion shell, and y n is the
gyromagnetic ratio of the nucleus.

For reorientation of the nuclear spin it is neces-
sary that the energy of interaction of this spin with the
environment be a function of the time. In other words,
it is necessary that the nucleus be acted upon by a
time-varying local magnetic field. The Fourier com-
ponent of this field with frequency equal to the Larmor
frequency of the nucleus w n causes reorientation of
its spin.

In the case when the nuclear relaxation is due to
the interaction between the nuclei and the magnetic
ions, a distinction is made between relaxations of

types I and II. [2,3] In the case of relaxation of type I,
the change in the energy of interaction of the spins of
the nucleus and of the magnetic ion in time is due to
a change in the vector joining them (both in magnitude
and in direction), that is, to the motion. In the case of
relaxation of type II, we can neglect the motion of the
nucleus and of the magnetic ion. The time dependence
of the energy of interaction of their spins will in this
case be governed by the relaxation of the magnetic-
ion spin.

In this review we consider only the case of relaxa-
tion of type II, due to dipole-dipole interaction between
the spins of the nucleus and the magnetic ion.

For simplicity we shall first investigate the case
S = 1/2 (for brevity we shall sometimes refer to the
electron instead of to the shell of the magnetic ion).

Let us calculate the time of nuclear-spin relaxation
for the case when the condition шпте » 1 is satisfied
(we a r e following'-2^, see a l s o ^ 3 ^ ) where т е i s the
t ime of spin latt ice re laxat ion of the magnetic ion.

We consider a system consist ing of one e lectron
and one nucleus . This sys tem has four s t a t e s (see
Fig. 1, which shows the c a s e y n > 0), whose energ ies
a r e given by the formula

(in the energy levels we take into account the Zeeman
energies of the electron and of the nucleus, while the
spin-spin interaction energy is neglected).

The introduction of such a system is to some de-
gree arbitrary, since there are many nuclei per mag-

-b'

• a'

netic ion. F u r t h e r , the introduction of the energy
levels a, a', b, and b ' is meaningful only when the
Zeeman energy of the nucleus (Кшп) is much l a r g e r
than the width of the level (К/т е ), that i s , if ш п т е » 1.

Neglecting spin-spin interact ion, we have (if y n > 0)

a = ( - , + ) , b = ( - , - ) , a' = ( + , + ) , b' = ( + , - ) ,

where, for example, ( —, +) denotes the s ta te with
S z = - l / 2 and I z = + l / 2 .

The dipole-dipole interact ion of the spins S and I
leads to a mixing of the wave functions. Since
u>n « w e , we can confine ourse lves to a calculation
of the mixing of the s ta tes with identical S z and with
values of I z differing by unity. Application of p e r t u r -
bation theory yields

« = ( - , + ) + « ( - , - ) , «' = ( + , + ) - < * ( + , - ) ,

b = ( - , - ) - a ' ( - , + ) , b' = ( + , - ) + a * ( + , + ) , (2.3)

where

3 gflsinftcosfl^'1'
4 Hr* '

(2.4)

where r, •$•, and <p a r e polar coordinates of the nucleus
re la t ive to the e lectron (the polar axis is d i rected
along H), g is the magnetic-ion g-factor, and /3 is the
Bohr magneton (g/3 = K y e ) . In o r d e r of magnitude we
have

« 1 ,H

where Щос

 га g/3/r3 is the local magnetic field p r o -
duced by the e lectron at a distance r .

The interact ion between the e lectron spin and the
latt ice causes spin reor ienta t ion. This interact ion can
be descr ibed by introducing a t ime-dependent r e l a x a -
tion Hamiltonian S£re\ (t). The ma t r ix e lements of this
opera tor differ from ze ro only when ASZ = ± 1 and
Д 1 2 = О. The probability (per unit time) of e lectron
spin reor ientat ion as a r e s u l t of the per turbat ion

Sf6ve\ (t) i s , by definition 1/2т е (without account of the
Boltzmann factor). However, owing to the mixing of
the s ta tes , we shall have not only t rans i t ions in which
only S z changes (the t rans i t ions a «— a' and b •*— b ') .
but a lso t rans i t ions in which I z changes s imultaneously
with S z ( t ransi t ions a •*» b ' and a ' -*— b).*

It is easy to see that the ra t io of the m a t r i x e lement
of the t rans i t ion a ' •**• b (flip-flip t rans i t ion, S z + I z

changes by ± 2) or a •*•*• b ' (flip-flop t rans i t ion, S z + I z

does not change) to the m a t r i x e lement of the t r a n s i -
tion a —~ a ' or b •*- b ' has an absolute value 2 1 « | .

•b

• a

F I G . 1

* T h e i n t e r a c t i o n b e t w e e n t h e e l e c t r o n s p i n a n d t h e l a t t i c e c a n

b e r e p r e s e n t e d in t h e form g/8H' • S, w h e r e H' i s t h e e f f e c t i v e

f l u c t u a t i n g m a g n e t i c f i e l d d u e t o t h e l a t t i c e v i b r a t i o n s . T h e c o m -

p o n e n t of H' a l o n g t h e z a x i s d o e s n o t p r o d u c e a n y t r a n s i t i o n s i n

t h i s c a s e , a n d t h e m a g n i t u d e of t h e c o m p o n e n t of H' p e r p e n d i c u l a r

t o t h e z a x i s i s d e f i n e d by t h e r e q u i r e m e n t t h a t t h e p r o b a b i l i t y

( p e r u n i t t i m e ) of t h e t r a n s i t i o n o f t h e e l e c t r o n s p i n u n d e r t h e i n -

f l u e n c e of t h e p e r t u r b a t i o n g/3H' • S b e e q u a l t o l / 2 r e .
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Taking into account the fact that the t rans i t ions a •*
and b •*- b ' cause the spin-lat t ice re laxat ion of the
electron spin with a re laxat ion t ime т е , we obtain

4 | а | 2
Sjn2 ft COS2 ft (2.5)

w h e r e T ^ r ( r ) i s t h e n u c l e a r r e l a x a t i o n t i m e d u e t o t h e

i n t e r a c t i o n b e t w e e n t h e n u c l e a r s p i n a n d t h e s p i n of a n

e l e c t r o n s i t u a t e d a t a d i s t a n c e r f r o m i t . W e n o t e t h a t

T ^ r ( r ) i s t h e l o n g i t u d i n a l n u c l e a r r e l a x a t i o n t i m e ,

w h i l e t h e t r a n s v e r s e n u c l e a r r e l a x a t i o n t i m e i s n o t

c o n n e c t e d w i t h t h e m a g n e t i c i o n s a n d i s d e t e r m i n e d b y

t h e d i p o l e - d i p o l e i n t e r a c t i o n o f t h e n u c l e i .

W e t a k e a c c o u n t f u r t h e r of t h e f o l l o w i n g f a c t . F o r

r e o r i e n t a t i o n o f t h e n u c l e a r s p i n i t i s i m m a t e r i a l w h a t

c a u s e s t h e r e o r i e n t a t i o n of t h e s p i n of t h e m a g n e t i c

ion. We denote by т the c o r r e l a t i o n t ime of the quan-
tity S z . r is determined approximately from the
formula

! = — + — , (2.6)

where T S is the spin-spin re laxat ion t ime of the m a g -
netic ion.

In the c a s e when the spin-spin re laxat ion of the
magnetic ion is important, it is n e c e s s a r y to r e p l a c e
т е in (2.5) by т . The r e s u l t obtained in this case is
valid if ш п т » 1. This condition means that the
Zeeman energy of the nucleus great ly exceeds the
width of the e lectronic levels* (which is of the o r d e r
of К/т). In other words, this condition means that the
probabil i ty of e lect ron-spin reor ienta t ion during one
L a r m o r per iod of the nuclear spin is smal l .

A m o r e genera l calculation, for a r b i t r a r y ш п т and
a r b i t r a r y S, is given in'-1-' (see also'-3-').

Calculation yields (see Appendix A)

1 = 3 (YngP)2 S (S + 1) Г 6 sin2 ft cos2 (2.7)

Let us a s s u m e that ш п т = т у п Н » 1 (this has been
the c a s e in a lmost all the exper iments per formed to
date). We also average over the angle $ (the average
of sin21? cos 2i? is equal to 2/15). We obtain

where
с '

2 {gfi)*S(S+l)

If, in p a r t i c u l a r , S = 1/2, then

r _ 3 (
10

(2.8)

(2.9)

(2.10)

We note that C/2r 6 gives a probabil i ty (per unit
time) of re laxat ion reor ienta t ion of the spin of the
nucleus located at a dis tance r from the magnetic ion,

*We are speaking here of that part of the electron-level width,
which is due to the so called homogeneous broadening.

due to the e lect ron re laxat ion and the dipole-dipole
interact ion.

The value of r e depends on the t e m p e r a t u r e and on
the external field, but does not depend on N. To the
contrary , the value of r s does not depend on the t e m -
p e r a t u r e or on the field, but depends on N. The o r d e r
of magnitude of T S can be es t imated from the formula

(2Д)"
(2.11)

If the concentrat ion of the magnetic ions is suffi-
ciently smal l , and the t e m p e r a t u r e is not too low, we
have т е « T S and т = т е . In the opposite l imiting case
of sufficiently high concentrat ions and sufficiently low
t e m p e r a t u r e s we have T S « т е and т = T S .

According to the foregoing, in the c a s e when
T S < т е , the re laxat ion of the nuclei is caused by the
t ime-varying local magnetic field, and the dependence
of the local field on the t ime is brought about by the
spin-spin re laxat ion of the magnetic ions. Therefore,
the Zeeman energy of the relaxing nuclei will be
t r a n s m i t t e d to the system of e lectronic spins . Owing
to the c r o s s - r e l a x a t i o n p r o c e s s , this energy will be
ult imately t r a n s m i t t e d to the la t t ice .

An interes t ing situation should occur in the case
when the concentrat ion of the magnetic ions is such
that T S < т е but, on the other hand, the specific heat
of the sys tem of the magnetic ions is s m a l l e r than that
of the system of nuclear spins* . In this case , the s y s -
tem of e lect ronic spins will heat up during the c o u r s e
of the magnetic re laxat ion and magnetic re sonance of
the nuclei, provided only the c r o s s - r e l a x a t i o n p r o c e s -
s e s have no t ime to t rans fer the excess energy from
the e lectron spins to the la t t ice .

We note further that formula (2.6) for т is valid if
Ky e H/2kT is s m a l l e r than or of the o r d e r of unity. In
the opposite case it is n e c e s s a r y to take into account
the fact that the t rans i t ion " - " — " + " of the mag-
netic-ion spin is hindered by a Boltzmann factor, so
that the value of the f i rs t t e r m in (2.6) is changed, and
that the spin-spin re laxat ion of the magnetic ions is
made difficult because the majority of the spins have
the s a m e direct ion. The la t ter c i r c u m s t a n c e changes
the magnitude of the second t e r m in (2.6).

The t ime of d i r e c t nuclear re laxat ion, given by
(2.8), depends on r . Averaging [ T ^ i ^ r ) ] " 1 over r, we
can obtain an express ion for the average re laxat ion
t ime, but the r e s u l t obtained does not a g r e e with ex-
p e r i m e n t . This can be seen at least from the fact that
according to exper iment, the relaxation of the total
nuclear magnetic moment of the sample is exponen-
tial, a fact which cannot be derived from the foregoing
analys i s .

*Since the ratio of the magnetic moments of the magnetic ion
and of the nucleus is of the order of 103, satisfaction of the sec-
ond condition requires that the relative concentration of the mag-
netic ions be, roughly speaking, less that 10'6.
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We shall see below that an account of spin diffusion
changes completely the r e s u l t s concerning the nuclear
magnetic re laxat ion.

3. INDUCED DYNAMIC NUCLEAR POLARIZATION
WITHOUT ACCOUNT OF SPIN DIFFUSION

We r e t u r n to Fig. 1 and formulas (2.3). An a l t e r -

nating field of frequency coe, applied perpendicular to

the main field, gives r i s e to the t rans i t ions a * * a '

and b •*— b ' (ordinary e lectron p a r a m a g n e t i c re sonance) .

However, owing to the mixing of the wave functions,

the a l ternat ing fields with frequencies a>e + w n and
ше ~ wn a l s o S i y e r i s e to t rans i t ions (forbidden t r a n -

si t ions). The a l ternat ing field with frequency w e + шп

gives r i s e to the t rans i t ions a-*— b ' , while the a l t e r -

nating field with frequency w e — o>n causes the t r a n -

sit ions a ' •*-*• b. However, as is well known, it is m o r e

convenient to d e t e r m i n e in the exper iment the f r e -

quency of the a l ternat ing field and to vary the magni-

tude of the main field. We then have

for # = # * = — t rans i t ions a*--»a', b*—>b',
Y

for Н = Н+ =

transitions a' <~>b (#+-transitions),

for # = #_ = #* f l - ^
V Y

(3.1)

transitions a *-* V (#_-transitions).

By G ( H - H*) w e d e n o t e t h e f u n c t i o n w h i c h g i v e s t h e

l i n e s h a p e of o r d i n a r y e l e c t r o n p a r a m a g n e t i c r e s o n -

a n c e , a n d w h o s e i n t e g r a l i s n o r m a l i z e d t o u n i t y . T h e

p r o b a b i l i t y ( p e r u n i t t i m e ) of a n e l e c t r o n - s p i n t r a n s i -

t i o n d u e t o a n a l t e r n a t i n g f ie ld w i t h a m p l i t u d e 2 H 4 i s

( s e e , f o r e x a m p l e , 1 - 3 ' 4 ^ )

H*). (3.2)

Recal l ing that the r a t i o of the m a t r i x e lement of

the t rans i t ion a •*•*• b ' or a' •— b to the m a t r i x e lement

of the t rans i t ion a -*— a ' or b •*— b ' is equal to 2 | a | , we

obtain for the probabil i ty (per unit time) of the for-

bidden t rans i t ions under considerat ion

2 | ct |2 nyeHlG(H-H±).

But according to (2.4) and (2.10) (we a r e averaging
I | 2I a | 2 over

2|«I 2 = S -

Thus, the probabil i ty (per unit time) of s imultaneous

r e o r i e n t a t i o n of the spins of the e lect ron and of the

nucleus, separa ted by a dis tance r, due to the a l t e r -

nating field, is Г ± /г 6 , where [ 4 ' e : l

(3.3)

Let H w H*, and let the amplitude of the a l ternat ing

field Hj satisfy the condition

In s u c h a c a s e t h e r e w i l l b e n o t i c e a b l e s a t u r a t i o n

of t h e u s u a l e l e c t r o n p a r a m a g n e t i c r e s o n a n c e ( t h a t i s ,

of the t rans i t ions a -**• a ' and b •*— b'). It is easy to see,

however, that the nuclei will not become polar ized in

this c a s e , in view of the equality of the flip-flop

(a •*-*• b') and flip-flip (a' •*— b) re laxat ion-trans i t ion

probabilit ies. '- 2 ' 3 ' 5 -' In other words, the Overhauser

effect does not take place in the c a s e of a diamagnetic

crys ta l with a smal l concentrat ion of paramagnet ic

a t o m s .

A s s u m e now that H ~ H+. The a l ternat ing field cau-

s e s t rans i t ions a ' -•— b. Since the population of the

s tate b is l a r g e r t h e r e will be m o r e b —- a' t rans i t ions

than a ' —' b t r a n s i t i o n s . However, the t rans i t ions

b —* a ' d i s turb the equilibrium between the e lectronic

spins and the la t t ice . Owing to the spin-lat t ice r e l a x a -

tion, the e lectronic spin will flip from the s ta te " + "

to the s ta te " — " , and the s a m e e lectronic spin can

further, under the influence of the a l ternat ing field,

cause the flipping of another nuc lear spin. Thus, if

the re laxat ion t ime of the e lectronic spin is sufficiently

smal l , and the re laxat ion t ime of the nuclear spin is

sufficiently large, t h e r e can be uni latera l t rans fer of

the nuclear spins from the s ta te " — " to the s ta te " + " .

It is easy to see that in the l imiting case , if, f irst, we

can neglect nuclear re laxat ion compared with e l e c -

tronic re laxat ion, and if the condition Г » С is s a t i s -

fied* [or 7ryeH
2G(H - Н+)т » 1], then the effective

gyromagnetic r a t i o of the nucleus will be equal to y e .

Similarly, in the c a s e when H ~ H_ it will be equal to

- 'y e . If Ky eH « kT, we find that the polar izat ion of

the nuclei i n c r e a s e s by a factor ±Уе/УпТ•

The phenomenon which we have considered, which

consis t s in the polar izat ion of the nuclei upon s a t u r a -

tion of the forbidden t rans i t ions (result ing from the

mixing of the wave functions by the dipole-dipole

interact ion of the spins of the magnetic-ion shel l and

of the nucleus) was d i scovered in F r a n c e in 1958'-7'8-'

(see also the books and reviews'- 3 ' 4 ' 5 ' 9 - ') .

Various names were proposed for this phenomenon:

effet solide, ^ double effet, ^ and dynamic p o l a r i z a -

tion of nuclei'-4-' (we note, however, that the Over-

hauser effect is a lso one of the methods of dynamic

polar izat ion of nuclei) .

We believe that this phenomenon is best called in-

duced dynamic polar izat ion of nuclei . Indeed, in the

*Since Г/г' is the probability of simultaneous flipping of the
spins of the nucleus and of the electron under the influence of an
alternating field, and C/2r6 is the probability of relaxation flipping
of the nuclear spin, then the condition Г » С is the condition for
saturation of the forbidden transition.

tlf y n < 0, all the foregoing statements remain valid; it is
merely necessary to take into account the fact that in this case
H+ < H* and H. > H*.
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Overhauser effect the nuclear polar izat ion is not
brought about d irect ly by the a l ternat ing field, but by
relaxat ion; in the effect which we a r e consider ing
however, the nuclear polar izat ion is brought about
direct ly by the a l ternat ing field.

The probabil i ty of s imultaneous flipping of the
spins of the e lectron and of the nucleus depends on
the dis tance between them, in'- 4 ' 6 ' 9-' a s imple model
was investigated, in which this probabil i ty is averaged
and a sys tem consist ing of N e lectronic and n nuclear
spins is cons idered. For the intensification of the
nuclear polar izat ion one obtains, if the condition
Г » С is satisfied, the express ion

•±yfJ'- (3.4)

The foregoing results, which pertain to induced
dynamic polarization, are valid also when the width of
the electron paramagnetic resonance is much smaller
than the nuclear Larmor frequency. Indeed, in this
case the usual electronic resonance (the transitions
a •*-*• a ' and b •*— b') , the H + t rans i t ion (a' -— b), and the
H_ t rans i t ion (a —- b') a r e well reso lved. In the oppo-
si te c a s e , when the width of the e lectronic re sonance
is l a r g e r than or of the o r d e r of the nuclear L a r m o r
frequency, an additional complication a r i s e s , connec-
ted with the fact that the a l ternat ing field causes
simultaneously all t h r e e types of t r a n s i t i o n s . The
express ion obtained in this c a s e for the intensification
of the nuclear polar izat ion depends on whether the
broadening of the e lectronic re sonance is homogeneous
or inhomogeneous.

Let us analyze briefly the c a s e of inhomogeneous
broadening. [ 3 > 4 > 6 ' 9 > 1 9 ]

Let the frequency of the a l ternat ing field be fixed
and equal to u>. The function G(H — H*) gives the
shape of the EPR line (its integral is normal ized to
unity). H* = ш / у е is the field corresponding to the
center of the paramagnet ic re sonance (Fig. 2). By
Hi/2 w e denote the width of the e lectron paramagnet ic
r e s o n a n c e (the total width at half the height).

In the c a s e of inhomogeneous broadening we can
a s s u m e that the e lectronic line cons i s t s of n a r r o w
spin packets with width 6, and different spin packets
r e l a x and a r e sa tura ted independently of one another .
Assume that the following conditions a r e satisfied:

6 « t f 1 / 2 , 6 « ^ Я * .

The function G(H — H*) gives the distr ibution of the
resonant fields over the sample* (for fixed constant
frequency w), brought about by the distr ibution of the
local field.

Assume that we apply to the sample an external
field Ho. F igure 2 shows t h r e e packets , whose c e n t e r s
cor respond to Ho, H + , H_, where (we a r e considering
the c a s e y n > 0)

H_ HB

FIG. 2

G(H0 — H*)6 gives the fraction of the spins which
execute the t rans i t ion corresponding to ordinary p a r a -
magnetic r e s o n a n c e . G(H_ — H*)6 gives the fraction
of the spins for which the resonant field is equal to
H_ = Ho — y n H ( / y e . Since the field applied to the
sample is Ho, these spins will exper ience a H+ t r a n -
sit ion. Analogously, G(H+ — H*)6 gives the fraction of
the spins which execute the H_ t rans i t ion. Thus, if the
conditions Г » С and пт « N T n a r e satisfied, we ob-
tain for the amplification coefficient of the nuclear
polar izat ion

Q ("o) = V-[G {H~ ~
Yn

(3.5)

*That is, of the resonant values of the external field.

Recognizing that the function G(H — H*) is s y m m e -
t r i c a l with r e s p e c t to H = H*, we find that p vanishes
when H o = H*. F u r t h e r , p < 0 when Ho < H* and p > 0
when Ho > H*.

If, in p a r t i c u l a r , the nuclear L a r m o r frequency is
considerably s m a l l e r than the width of the e lectronic
resonance (that is, y n H * / y e « Hj/2), we can expand
in (3.5) in powers of H+ — H_ and obtain

(3.6)

Thus, in this l imiting case p does not depend on y n .
F u r t h e r , p is proport ional to dG/dH, and therefore p
is maximal for those values of the external field, at
which the slope of the e lectronic re sonance curve is
maximal . Finally, it is c lear that the effect of the
overlap of the t rans i t ions r e d u c e s the amplification
coefficient p compared with its value in the absence
of over lap.

In'-9-' t h e r e is a detailed analys is of c a s e s when the
function G has Gaussian or Lorentzian shape. The
s a m e paper cons iders the c a s e when the nuclear
L a r m o r frequency is of the o r d e r of H t/ 2 and also the
c a s e of a broad, homogeneously broadened e lec t ron-
resonance l ine.

In'- 1 1 ' 1 2 -', account is taken of the c r o s s - r e l a x a t i o n
trans i t ions between the different spin packets of the
inhomogeneously broadened l ine. In'-13-' these r e s u l t s
a r e compared with the exper imental data.

We note a r e c e n t paper , '-14^ in which induced
dynamic polar izat ion was considered for the c a s e of a
broad, homogeneously broadened e lec t ronic-resonance
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line, using the theory of saturation of the magnetic
resonance developed in'-15-'.

The method of induced dynamic polarization has
distinct advantages over the Overhauser method.'-3'4'9-'
The presence of mechanisms of relaxation of nuclear
spin, for which the spin of the magnetic ion does not
become reoriented, decreases the maximum dynamic
polarization attainable when the Overhauser method is
applied. On the other hand, when the method of induced
dynamic polarization is used, these processes are
insignificant (more accurately, their role can be
suppressed by increasing the microwave power), pro-
vided their probabilities do not approach the proba-
bilities of the purely electronic relaxation transitions.
The method of induced polarization does not call for
the application of large concentrations of magnetic
centers; finally, this method is very effective for
polarization of the lightest nuclei, which is very im-
portant from the point of view of the requirements of
nuclear and elementary-particle physics.

Basing ourselves on the statements made in the be-
ginning of this section, we can conclude that the effect
of induced dynamic polarization takes place (and the
Overhauser effect does not take place) if the relaxation
of the nuclei is a dipole-dipole relaxation of type II,
and the dipole-dipole interaction between the nucleus
and the magnetic ion varies with time (owing to the
spin flip of the magnetic ion) slowly compared with
the Larmor precession of the nucleus, that is, if шпт
is sufficiently large. In the opposite case, the induced
dynamic polarization does not take place, but instead
the Overhauser effect takes place.

Since w n is proportional to H, systems are possi-
ble which give the Overhauser effect for weak fields
and the effect of induced dynamic polarization for
strong fields.

The foregoing can be formulated differently.9-'
Assume that the relaxation of the nuclei is a dipole-
dipole relaxation of type II. The operator of the energy
of the interaction of the spins of the nucleus and of the
magnetic ion can be represented in the form of a sum
of static and fluctuating parts. If the static part pre-
dominates appreciably in this sum, then, according to
the statements made in the beginning of this section,
the Overhauser effect will not take place. On the other
hand, the static part of the dipole-dipole interaction
causes mixing of states with different I z , and there-
fore an alternating field with frequency we ± a>n gives
rise to induced dynamic polarization of the nuclei.

On the other hand, if the static part of the interac-
tion is negligibly small compared with the fluctuating
part, then we can also neglect the effect of mixing of
the states, and therefore the effect of induced dynamic
polarization will not take place (in other words, an
alternating field with frequency coe ± w n produces no
transitions). But an alternating field with frequency
w e causes the electron spins to flip, and this in turn,
owing to the fluctuating part of the dipole-dipole

interaction, leads to the polarization of the nuclei,
that is, the Overhauser effect takes place.

We note in conclusion that all the results concern-
ing induced dynamic polarization, presented in the
present section, are valid only when the nuclear
Zeeman frequency greatly exceeds the width of the
electron paramagnetic resonance, due to the homo-
geneous broadening, that is, if шпт is sufficiently
large, (it is actually only in this case meaningful to
introduce the levels a, a', b, and b')-

4. NUCLEAR SPIN DIFFUSION

We have seen that the probabilities of nuclear spin
flip, due to the relaxation (C/2r6) or to the alternating
field (Г/г6) depend on the distance from the nucleus to
the magnetic ion r. Therefore, both in relaxation and
in induced dynamic polarization, the component of the
nuclear magnetization along the z axis (which we de-
note by M) will be a function of position. In the pres-
ence of a mechanism which makes it possible to trans-
port nuclear magnetization (that is, excess spin), the
quantity M will diffuse.

Such a mechanism is insured by flip-flop transitions
of neighboring nuclei, due to their dipole-dipole inter-
action. An important fact is that in flip-flop transition
of neighboring nuclei, the total Zeeman energy of their
spins does not change, and therefore this process
takes place without the lattice participating.

The question of the diffusion of the nuclear spin
was considered in detail by Bloembergen.^ We note
that the nuclei do not move during spin diffusion, only
the excess of the nuclear spin projection diffuses. In
the case of a nuclear spin equal to one half (in our r e -
view we consider only this case), it is always possible
to introduce the concept of spin temperature T s . In
the problems considered by us T s will be a function
of position, and in place of the diffusion of nuclear
magnetization we can speak of the diffusion of nuclear
spin temperature.

Spin diffusion plays a very important role in the
relaxation and induced dynamic polarization of nuclei
in a diamagnetic crystal with a small concentration of
paramagnetic ions.

Let us first consider the relaxation phenomenon.
Assume that at the initial instant of time t = 0 an ex-
ternal constant field* H is superimposed on the sam-
ple. Then when t = 0 the spin temperature is infinite,
that is, the sample contains an equal number of nu-
clear spins directed parallel and antiparallel to the
external field. Since the time of direct relaxation of
the nucleus (due to the magnetic ion) is proportional
to the sixth power of the distance from the magnetic

*Or else when t < 0 a field H and an alternating field which
completely saturated the nuclear resonance were applied to the
sample. At the instant of time t = 0 the alternating field is turned
off.
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i o n , t h e n u c l e i l o c a t e d n e a r t h e p a r a m a g n e t i c i o n s w i l l

c o m e r a p i d l y i n t o e q u i l i b r i u m w i t h t h e l a t t i c e . T h i s i s

t h e r e a s o n f o r t h e a p p e a r a n c e of a g r a d i e n t of s p i n

t e m p e r a t u r e ( n e a r t h e p a r a m a g n e t i c i o n s T s i s e q u a l

t o t h e l a t t i c e t e m p e r a t u r e , a n d f a r f r o m t h e i o n s T s i s

i n f i n i t e ) . T h e p r e s e n c e o f t h e g r a d i e n t o f T s g i v e s r i s e

t o t h e d i f f u s i o n of t h e n u c l e a r s p i n s t h a t a r e a n t i p a r a l -

l e l t o t h e e x t e r n a l f i e l d t o w a r d t h e p a r a m a g n e t i c i o n s

( i n t h e c a s e yn > 0 ) . O n a p p r o a c h i n g t h e m a g n e t i c

i o n s , a f r a c t i o n of t h e n u c l e a r s p i n s , d i r e c t e d a n t i -

p a r a l l e l t o t h e f i e l d , w i l l r e v e r s e d i r e c t i o n . T h u s , t h e

d i r e c t r e l a x a t i o n a n d d i f f u s i o n w i l l b r i n g t h e s y s t e m

of n u c l e a r s p i n s i n t o e q u i l i b r i u m w i t h t h e l a t t i c e .

T h e s i t u a t i o n i s s i m i l a r a l s o i n t h e c a s e of i n d u c e d

d y n a m i c p o l a r i z a t i o n . T h e p r o b a b i l i t y o f s p i n f l i p d u e

t o t h e a l t e r n a t i n g f i e l d i s i n v e r s e l y p r o p o r t i o n a l t o t h e

s i x t h p o w e r o f t h e d i s t a n c e f r o m t h e m a g n e t i c i o n .

T h e r e f o r e n u c l e i l o c a t e d n e a r t h e m a g n e t i c i o n s a r e

p o l a r i z e d v e r y r a p i d l y a f t e r a p p l i c a t i o n o f t h e m i c r o -

w a v e f i e l d t o t h e s a m p l e . B e c a u s e o f t h e r e s u l t a n t

s p i n - t e m p e r a t u r e g r a d i e n t , t h i s p o l a r i z a t i o n p r o p a -

g a t e s a l s o t o w a r d s t h e f a r n u c l e i .

T o c o n s t r u c t a m a t h e m a t i c a l t h e o r y of s p i n d i f f u -

s i o n , l e t u s c o n s i d e r f i r s t a o n e - d i m e n s i o n a l m o d e l .

A s s u m e t h a t w e h a v e a l i n e a r c h a i n o f s p i n s , w i t h t h e

d i s t a n c e b e t w e e n n e i g h b o r i n g s p i n s e q u a l t o a . W e

d e n o t e b y W t h e p r o b a b i l i t y ( p e r u n i t t i m e ) of a f l i p -

f l o p t r a n s i t i o n o f a n e i g h b o r i n g p a i r o f o p p o s i t e l y

d i r e c t e d n u c l e a r s p i n s .

W e a l i g n t h e x a x i s w i t h t h e c h a i n a n d d e n o t e b y

P ± ( x ) t h e p r o b a b i l i t y t h a t a t t h e p o i n t x t h e s p i n i s

d i r e c t e d u p w a r d ( d o w n w a r d ) . W e i n t r o d u c e , f u r t h e r ,

t h e q u a n t i t y

T h e z - c o m p o n e n t o f t h e m a g n e t i z a t i o n M c a n b e e x -

p r e s s e d i n t e r m s o f p :

M=~nbynp. ( 4 . 2 )

I n t r o d u c i n g t h e s p i n t e m p e r a t u r e T s , w e h a v e

^±- = exr> f - ^ Л n — fh1^ (4Ч\*
f — v ici s у ZHI s

L e t u s c o n s i d e r t h r e e n u c l e a r s p i n s l o c a t e d a t t h e

p o i n t s x — a , x , a n d x + a . F o r t h e p r o c e s s w h e r e i n

n u c l e i l o c a t e d a t t h e p o i n t s x a n d x + a g o o v e r f r o m

t h e s t a t e w i t h s p i n p r o j e c t i o n s ( — 1 / 2 , + 1 / 2 ) i n t o t h e

s t a t e w i t h p r o j e c t i o n s ( + 1 / 2 , — 1 / 2 ) w e c a n r e a d i l y

o b t a i n

d
-P£± = 2 W { P - ( x ) \ + (x + a ) + P+ (x-a)\

dP+ (x)
fit

№- (

dt

C o n s i d e r i n g f u r t h e r a l l t h e p o s s i b l e t r a n s i t i o n s w i t h

p a r t i c i p a t i o n o f t h e n u c l e a r s p i n l o c a t e d a t t h e p o i n t x ,

a n d c o n f i n i n g o u r s e l v e s h e r e t o i n t e r a c t i o n w i t h t h e

n e a r e s t n e i g h b o r s , w e o b t a i n

T h i s e q u a t i o n c a n b e r e a d i l y t r a n s f o r m e d i n t o

dp(x)
( 4 . 4 )

A s s u m i n g t h a t p ( x ) ( a n d t h e r e f o r e a l s o t h e s p i n

t e m p e r a t u r e ) v a r i e s l i t t l e o v e r a d i s t a n c e o n t h e o r d e r

o f a , w e c a n e x p a n d p ( x ± a ) i n p o w e r s o f a . T h u s , w e

h a v e , g o i n g o v e r f r o m p t o M ,

дМ „, „дгМ
-5- = Wa1 -j-r- .
Dt. dz'l

An a c c o u n t of t h e i n t e r a c t i o n of t h e s p i n w i t h a l l

t h e s p i n s l e a d s in t h e c a s e of a l i n e a r c h a i n t o t h e

e q u a t i o n

дМ
(4.5)

w h e r e W(na) i s t h e p r o b a b i l i t y of t h e f l ip- f lop t r a n s i -

t i o n of a p a i r of i d e n t i c a l n u c l e i , l o c a t e d a t a d i s t a n c e

n a f r o m e a c h o t h e r ; t h e s u m m a t i o n i s o v e r a l l t h e

i n t e g e r ( p o s i t i v e a n d n e g a t i v e ) v a l u e s of n ; t h e p r i m e

d e n o t e s t h a t w e h a v e left o u t f r o m t h e s u m t h e t e r m

w i t h n = 0.

In t h e t h r e e - d i m e n s i o n a l c a s e w e find t h a t t h e dif fu-

s i o n M ( r , t) i s d e s c r i b e d by t h e e q u a t i o n

3M
~ = Д Д М , (4.6)

w h e r e D i s t h e c o e f f i c i e n t of d i f fus ion of t h e n u c l e a r

s p i n .

In a n a l o g y w i t h t h e c a s e of t h e o n e - d i m e n s i o n a l

c h a i n , it i s n e c e s s a r y for (4.6) t o b e v a l i d in t h e t h r e e -

d i m e n s i o n a l c a s e t h a t t h e r e l a t i v e c h a n g e of M o v e r a

d i s t a n c e a be c o n s i d e r a b l y s m a l l e r t h a n u n i t y . On t h e

o t h e r h a n d , t h e a p p l i c a b i l i t y of (4.6) d o e s n o t i m p o s e

a n y l i m i t a t i o n s a t a l l on t h e d e g r e e of p o l a r i z a t i o n of

t h e n u c l e i .

In fac t , D i s a s y m m e t r i c a l t e n s o r of s e c o n d r a n k ,

t h e c o m p o n e n t s of w h i c h d e p e n d on t h e a n g l e s b e t w e e n

t h e e x t e r n a l f ie ld and t h e c r y s t a l a x e s . B u t in t h e c a s e

of a c u b i c s i n g l e c r y s t a l , a n d a l s o in t h e c a s e of a

p o l y c r y s t a l l i n e s a m p l e o r p o w d e r of a n y c r y s t a l s y s -

t e m , D r e d u c e s t o a s c a l a r . We s h a l l h e n c e f o r t h c o n -

f ine o u r s e l v e s t o a c o n s i d e r a t i o n of t h e c a s e of a c u b i c

c r y s t a l .

If w e c o n f i n e o u r s e l v e s t o a n a c c o u n t of f l ip-f lop

t r a n s i t i o n s of n e a r e s t n e i g h b o r s , w e h a v e

D « Wa\ ( 4 . 7 )

*th = t a n h .

w h e r e W i s t h e p r o b a b i l i t y ( p e r u n i t t i m e ) o f a f l i p -

f l o p t r a n s i t i o n o f a p a i r o f n e a r e s t i d e n t i c a l n u c l e i , a n d

a i s t h e d i s t a n c e b e t w e e n t h e m .

W e s h a l l h e n c e f o r t h u s e a n e s t i m a t e of W , o b t a i n e d

f o r a c u b i c c r y s t a l a s a r e s u l t of a v e r a g i n g o v e r t h e

d i r e c t i o n s ( s e e A p p e n d i x C ) :
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W: D; 30Г2

(4.8)

w h e r e T 2 i s t h e t r a n s v e r s e t i m e of n u c l e a r r e l a x a t i o n . *

U s u a l l y in a s o l i d T 2 » 10" 5 s e c a n d a = (2—3)

x 1O~8 c m . T h i s y i e l d s D « (1—3) x 10" 1 2 c m 2 / s e c .

T h u s , t h e d i f fus ion c o e f f i c i e n t of t h e n u c l e a r s p i n i s

e x c e e d i n g l y s m a l l .

T h e t i m e r e q u i r e d t o t r a n s p o r t t h e v a l u e M o v e r a

d i s t a n c e r i s of t h e o r d e r r 2 / D . F o r m a c r o s c o p i c

v a l u e s of r , t h e t i m e s a r e a s t r o n o m i c a l . F o r

r = 1 0 ' 6 c m , h o w e v e r , t h i s t i m e i s of t h e o r d e r of o n e

s e c o n d .

I t i s e a s y t o c a l c u l a t e t h e c o e f f i c i e n t of s p i n dif fu-

s i o n f o r a c u b i c s i n g l e c r y s t a l w i t h a c c o u n t of t h e

a n i s o t r o p y e f f e c t s a n d of t h e f a c t t h a t t h e f l ip- f lop

t r a n s i t i o n s t a k e p l a c e n o t o n l y f o r n e a r e s t i d e n t i c a l

n e i g h b o r s . A s s u m i n g t h a t t h e p o s i t i o n of e a c h n u c l e u s

i s a s y m m e t r y c e n t e r of t h e l a t t i c e , w e c a n r e a d i l y

g e n e r a l i z e (4.7) ( s e e [ 1 6 > 1 7 : ] ) :

D = -w1i'wUrb< (4.9)
i

w h e r e Wy i s t h e p r o b a b i l i t y ( p e r u n i t t i m e ) of t h e f l i p -

f lop t r a n s i t i o n of a p a i r of i d e n t i c a l n u c l e i (i, j ) , a n d

r y i s t h e d i s t a n c e b e t w e e n t h e m . t T h e s u m m a t i o n i s

o v e r a l l t h e n u c l e i j w h i c h a r e i d e n t i c a l w i t h t h e

n u c l e u s i ( the p r i m e i n d i c a t e s t h a t t h e t e r m j = i i s

lef t o u t of t h e s u m m a t i o n ) , a n d t h e s u m d o e s n o t d e -

p e n d on t h e p o s i t i o n of t h e n u c l e u s i . We n o t e t h a t

(4.9) y i e l d s t h e d i f fus ion c o e f f i c i e n t of t h e n u c l e i of

t h e t y p e i .

C a l c u l a t i n g Wy ( s e e A p p e n d i x C ) , w e o b t a i n

48 у 2
-3cos 2 (4.10)

w h e r e i?y i s t h e a n g l e b e t w e e n t h e e x t e r n a l f i e ld a n d

the vector г у joining the nuclei i and j .
This expression can be transformed into (see Ap-

pendix B)

D = X ^ f c 2

Y * S - 1 / 2 2 ' r ; / (1 - 3 cos2flu)
2> (4.H)

3
where S is the second moment of the nuclear reson-
ance line of the nuclei of type it (that is, the mean
square of the deviation of the nuclear-resonance fre-
quency from the resonance frequency in the external
field), due to the dipole-dipole interaction with the
neighboring nuclei; A—constant of the order of unity;**
in the case of a resonance line with Gaussian shape
Л= 1.***

The value of S is given by a formula derived by

*The estimate D = a2/30T2 is used in the majority of papers
on spin diffusion. However, in our opinion, this estimate yields
a value of D too small by an approximate factor of 2 — 2.5 (see
Appendix D).

t int 1 6 ] formula (4.9) is given without the factor 1/6.
$The nuclear-resonance width AH is of the order of y~'S%.

**In the case of a resonance line with non-Gaussian shape, Л
depends on the orientation of the crystal relative to the external
field.

***It is stated int1 7] that in the case of a resonance line with

Gaussian shape Л = i/\j2n.

Van V l e c k C l 8 ] [ s e e A p p e n d i x B, f o r m u l a ( B . I ) ] , w h i c h

c o n s i s t s of t w o t e r m s ; t h e f i r s t i s d u e t o i d e n t i c a l

n u c l e i a n d t h e o t h e r t o n o n i d e n t i c a l n u c l e i ( p o s s e s s i n g

s p i n s ) .

In t h e c a s e of a l a t t i c e i n w h i c h a l l t h e n u c l e i p o s -

s e s s i n g s p i n s a r e i d e n t i c a l ( for e x a m p l e , in t h e c a s e

of C a F 2 , s p i n i s p o s s e s s e d o n l y by t h e F 1 9 n u c l e i ,

w h i c h a r e l o c a t e d a t t h e p o i n t s of a p r i m i t i v e c u b i c

l a t t i c e ) , t h e r e r e m a i n s in S o n l y t h e f i r s t t e r m , a n d

w e o b t a i n

A d e t a i l e d a n a l y s i s of t h i s f o r m u l a s h o w s t h a t t h e

d e p e n d e n c e s of t h e n u m e r a t o r a n d t h e d e n o m i n a t o r on

t h e o r i e n t a t i o n of t h e c r y s t a l r e l a t i v e t o t h e d i r e c t i o n

of t h e e x t e r n a l f ie ld do n o t d i f fe r g r e a t l y , a n d t h e r e -

f o r e t h e a n i s o t r o p y of D w i l l in t h i s c a s e be r e l a t i v e l y

s m a l l ( s e e A p p e n d i x D f o r d e t a i l s ) . In t h e c a s e of a

l a t t i c e w i t h n u c l e a r s p i n s of t w o s o r t s (for e x a m p l e ,

a n a l k a l i - h a l i d e c r y s t a l ) , t h e e x p r e s s i o n f o r S f o r

n u c l e i of t y p e i c o n t a i n s t w o t e r m s , w i t h t h e t e r m d u e

t o t h e s p i n s of t h e s e c o n d s o r t p r e d o m i n a t i n g ( s i n c e

t h e s p i n s of t h e s e c o n d s o r t a r e t h e n e a r e s t n e i g h b o r s ) .

T h e d e p e n d e n c e s of t h e n u m e r a t o r a n d d e n o m i n a t o r

of (4.11) on t h e c r y s t a l o r i e n t a t i o n w i l l d i f fe r n o t i c e -

a b l y f r o m e a c h o t h e r , a n d t h e r e f o r e t h e a n i s o t r o p y of

t h e s p i n - d i f f u s i o n c o e f f i c i e n t w i l l b e c o n s i d e r a b l y

s t r o n g e r t h a n i n t h e c a s e of a l a t t i c e w i t h i d e n t i c a l

s p i n s .

We h a v e a s s u m e d a b o v e t h a t W, a n d t h e r e f o r e a l s o

D, i s c o n s t a n t ( t h a t i s , w e h a v e a s s u m e d t h a t D d o e s

n o t d e p e n d on t h e p o s i t i o n of t h e p o i n t in t h e c r y s t a l ) .

In f a c t , h o w e v e r , D i s a f u n c t i o n of t h e d i s t a n c e r f r o m

t h e n e a r e s t m a g n e t i c i o n , a n d w h e n r i s s m a l l D ( r )

d e c r e a s e s w i t h d e c r e a s i n g r. '- 1 ' 1 9 -' T h i s i s c o n n e c t e d

w i t h t h e f a c t t h a t t h e Z e e m a n f r e q u e n c i e s of t h e n u c l e i

l o c a t e d n e a r t h e m a g n e t i c i o n s d i f fe r a p p r e c i a b l y f r o m

o n e a n o t h e r (owing t o t h e m a g n e t i c f i e ld p r o d u c e d by

t h e i o n ) . T h i s h i n d e r s t h e f l ip- f lop t r a n s i t i o n s of t h e

n e i g h b o r i n g n u c l e i , f o r in s u c h a t r a n s i t i o n t h e t o t a l

Z e e m a n e n e r g y of t h e s p i n s i s n o t c o n s e r v e d . I t c a n

b e s t a t e d t h a t n e a r e a c h m a g n e t i c i o n t h e r e i s a dif fu-

s i o n b a r r i e r , i n s i d e of w h i c h t h e d i f f u s i o n of t h e n u -

c l e a r s p i n i s s t r o n g l y h i n d e r e d .

In t h e f u t u r e w e s h a l l u s e f o r t h e f u n c t i o n D ( r ) t h e

m o d e l of a r e c t a n g u l a r w e l l :

const = r > 0 .
(4.13)

I t r e m a i n s t o e s t i m a t e t h e r a d i u s of t h e d i f fus ion

b a r r i e r 6 .

T h e m a g n e t i c f i e ld d u e t o t h e m a g n e t i c i o n a t a d i s -

t a n c e r i s of t h e o r d e r of R y e / r 3 . T h e d i f f e r e n c e of

t h e s e f i e l d s a t p o i n t s o c c u p i e d by t h e n e i g h b o r i n g n u c l e i

( l o c a t e d a l o n g t h e r a d i u s ) i s of t h e o r d e r K y e a / r 4 . *

*In view of the crudeness of the estimates presented below,
we neglect the factor 3 which results from the differentiation.
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The width of the nuclear magnetic resonance is of the
order of the magnetic field produced by the nucleus at
the neighboring nucleus, that is, of the order of Kyn/a3.

We can introduce the distance from the magnetic
ion, at which the field produced by the magnetic ion
is of the order of the width of the nuclear magnetic
resonance. This distance is of the order of
(Ye/Vn) a - The nuclei located in a sphere of such
radius and centered about the magnetic ion have
strongly shifted Zeeman frequencies (the shift of the
Zeeman frequency exceeds the width of the nuclear
magnetic resonance). These nuclei therefore do not
participate in the nuclear magnetic resonance.

One can also introduce the distance from the mag-
netic ion, for which the difference of the Zeeman fre-
quencies of the neighboring nuclei (located along the
radius) is of the order of the width of the nuclear
magnetic resonance. This distance is of the order
of (Уе/Уп) 1 ^- For nuclei located in a sphere of such
a r a d i u s and with its center on the magnetic ion, the
flip-flop t rans i t ions , and consequently diffusion, a r e
strongly hindered.

In view of the approximate n a t u r e of our analys is ,
we shall not distinguish between the two aforemen-
tioned lengths. Thus, we a s s u m e б ~ (y e /Yn) a a,
where a = 1/4—1/3. In the future, in numer ica l e s t i -
m a t e s , we shall use the geometr ic mean of the two
introduced lengths, that is, we shall a s s u m e that
a - z/24. We note that for an e lectron and a proton
Уе/Уп = 660 and б = 6.62 a.*

Everything said concerning б is valid if т > T 2 .
Indeed, in this c a s e the nucleus is acted upon by the
stat ic magnetic field produced by the magnetic ion
(since the direct ion of the nuclear spin does not change
within a t ime of the o r d e r of T 2 ) . If, however, т < T 2 ,
this field averages out and it is n e c e s s a r y to r e p l a c e
in the foregoing express ions y e by Уе(КУеН/2кТ)
(if KyeH < 2kT). Thus. t

•^-Ya w h e n T > r 2 or ЬуеН>2кТ, (4.14a)

Ч Г н Й г У " w h e n T < 7 \ , a n d KyeH < 2kT.t (4.14b)
Уд ^Ki У

*In fact, when we deal with the function D(r), it is more cor-
rect to employ a value а = 1/4. On the other hand, in the case
of the function A(r) (see Sec. 5, item 9), it is more accurate to
use the value а = 1/3.

tWe note that almost everywhere when we say "larger than"
or "smaller than" we imply in fact "considerably larger" and
accordingly "considerably smaller."

tThe foregoing reasoning pertains to the case S = 1/2. In the
general case we have

\ - ( 2S •
у

for

for т < T2

( B s is the Brillouin function). If т < T2 and SflyeH < kT, we ob-
tain

If w e t a k e i n t o a c c o u n t t h e f a c t t h a t t h e w i d t h of t h e

nuclear re sonance is ДН ~ Ky n/a 3, we obtain for the
dependence of б on the width

бос(ДЯ)-». (4.15)

In fact D(r) is a smooth function of r . The form of
this dependence can be determined by using c r o s s -
re laxat ion theory. It is easy to s e e that it is n e c e s s a r y
to subst i tute in formula (4.9) for the probability Wy
an express ion that differs from formula (C.2) by an
exponential factor that takes into account the differ-
ence between the Zeeman frequencies of the nuclei i
and j . If on the other hand we confine ourse lves to an
account of flip-flop t rans i t ions of the n e a r e s t neigh-
bors , the general izat ion of formula (4.7) gives for D(r)
an express ion proport ional to exp ( — c o n s t / r s ) . How-
ever, when D(r) has such a form, the equation d e s c r i b -
ing the diffusion of the nuclear spin can be solved only
by numer ica l methods . We shall therefore use the
square-wel l model for the function D(r).

We neglect also the dependence of the radius of the
diffusion b a r r i e r б on the angle S- between the external
e l e c t r i c fields and the vector joining the magnetic ion
and the nucleus (see Sec. 5, item 8).

The concentrat ion of the magnetic ions is a s sumed
to be so smal l (a c r i t e r i o n will be given below) that
the crys ta l can be r e g a r d e d as consist ing of individual
s y s t e m s , each of which is a magnetic ion surrounded
by a l a r g e number of nuclear spins . Each such system
can be r e g a r d e d in this case as a s p h e r e of radius R,
given by formula (2.4).

We denote by Ш the s u m m a r y z component of the
nuclear magnetic moment of the sphere belonging to
one magnetic ion

= \ MdV, (4.16)

where the integration is over the volume of a sphere
of rad ius R with center at the magnetic ion (the s u m -
m a r y z-component of the nuclear moment of the en-
t i r e sample is equal to NVSOl, where V is the volume
of the sample) .

As was indicated above, nuclei located in a sphere
of r a d i u s б do not part ic ipate in the nuclear magnetic
r e s o n a n c e . Therefore the experimental ly m e a s u r e d
quantity Жехр differs from the express ion (4.16) in
the fact that a s p h e r e of rad ius б is excluded from the
integrat ion. However, the difference between 9K and
Жехр i s negligible if б « R.* The la t ter condition is
always satisfied if the concentrat ion of the magnetic
ions is not too l a r g e .

5. NUCLEAR MAGNETIC RELAXATION WITH AC-
COUNT OF SPIN DIFFUSION

1. We now proceed to consider nuclear magnetic
re laxat ion. We shall follow h e r e our papers^ 2 0 " 2 2 - ' .

*It is readily found that -ЭД0 (S/R)3.
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The z component of the nuclear magnetization M(r, t)
satisfies the equation^1-'

~ (5.1)

In this equation Mo is the equilibrium value of M, A is
the probability (per unit time) of nuclear spin flip
under the action of the radio-frequency field sa turat ing
the nuclear resonance, and r m is the radius vector of
the m-th paramagnet ic ion. The f i r s t t e r m in the r ight
s ide of (5.1) d e s c r i b e s the var iat ion (in time) of M,
due to the diffusion; the second and the third t e r m s
give the variat ion of M due to the saturat ing field and
relaxation, respect ive ly . F u r t h e r , we have

(5.2)

(5.3)
4!cT

where 2hj is the amplitude, ш the frequency of the
radio-frequency field saturat ing the nuclear r e s o n -
ance, and g(H — w/y n ) a function which gives the
nuclear r e s o n a n c e line shape, and whose integral is
normal ized to unity. In p a r t i c u l a r , at exact re sonance
(we take into account the fact that 7rg(O) = T2Yn)

In (5.1) it is assumed that nuclear re laxat ion is due
exclusively to the magnetic ions under considerat ion.
If in addition t h e r e is a lso a magnetic nuclear r e l a x a -
tion not connected with the magnetic ions (the so-cal led
extraneous relaxation), with a par t ia l re laxat ion t ime
Tjj, it i s n e c e s s a r y to add to the r ight s ide of (5.1) the
t e r m (Mo - M ) / T d .

We note that in the most genera l case , when we
have a sample of noncubic s y m m e t r y and we take into
account the spatial dependence of the diffusion coeffi-
cient due to the diffusion b a r r i e r , the f irst t e r m of
the r ight side of (5.1) is replaced by the express ion

з

s dx~
D

[23]R e c e n t l y , B u i s h v i l i a n d Z u b a r e v L " J p r e s e n t e d a

q u a n t u m - s t a t i s t i c a l d e r i v a t i o n of (5 .1) , u s i n g t h e

m e t h o d of t h e s t a t i s t i c a l o p e r a t o r f o r t h e n o n e q u i l i -

b r i u m s y s t e m , d e v e l o p e d i n ^ 2 ^ . T h e r e s u l t s a r e g i v e n

in A p p e n d i x E.

2. O u r p u r p o s e i s to d e t e r m i n e t h e l aw g o v e r n i n g

t h e r e l a x a t i o n of t h e s u m m a r y n u c l e a r m a g n e t i c

m o m e n t ( m o r e a c c u r a t e l y , t h e s u m m a r y z - c o m p o n e n t

of t h e m o m e n t ) of t h e s a m p l e .

L e t u s c o n s i d e r a s t a t i o n a r y c a s e in t h e a b s e n c e of

a s a t u r a t i n g a l t e r n a t i n g f i e l d . We a s s u m e t h a t t h e

c o n c e n t r a t i o n of t h e m a g n e t i c i o n s i s s m a l l , a n d a l s o

t a k e a c c o u n t of t h e r a p i d d e c r e a s e of t h e p r o b a b i l i t y

of r e l a x a t i o n of t h e n u c l e u s w i t h i n c r e a s i n g d i s t a n c e

f r o m t h e m a g n e t i c i o n ; w e c a n c o n c l u d e t h a t e a c h

n u c l e u s e x p e r i e n c e s n o t i c e a b l e r e l a x a t i o n o n l y f r o m

t h e n e a r e s t m a g n e t i c i o n , a n d t h e r e f o r e w e c o n f i n e

o u r s e l v e s i n t h e s u m o v e r m t o o n e t e r m (the v a l i d i t y

of t h i s a n a l y s i s i s d i s c u s s e d i n i t e m 7 of t h e p r e s e n t

s e c t i o n ) . In o t h e r w o r d s , w e c o n s i d e r a s y s t e m c o n -

s i s t i n g of o n e m a g n e t i c ion, s u r r o u n d e d by a l a r g e

n u m b e r of n u c l e i . C h o o s i n g t h e o r i g i n a t t h e c e n t e r

of t h e m a g n e t i c ion, w e o b t a i n

w h e r e

c_
D

(5.4)

(5.5)

T h e g e n e r a l s o l u t i o n of E q . (5.4), p o s s e s s i n g c e n -

t r a l s y m m e t r y , i s of t h e f o r m

) ( E l ) ] (5.6)

A and В a r e the integration constants , and Ip(x) is
given by the formula

/ (r\ — i~P T li-r\ (X. 7\
1P\X) — l Jp\l3')i \э»'^

where Jp(x) is the Besse l function.
Using the well-known express ion for the function

In(x) for smal l values of the argument*, we can easi ly
P 1/4(5.3a) o b t a i n t h e a s y m p t o t i c f o r m of (5.6) for r » /3 / 4 ( the

e x p a n s i o n i s in p o w e r s of t h e q u a n t i t y jS/r 4 ) :

(5.8)

where b is a quantity with the dimension of length:

(5.9)

We i n t r o d u c e t h e q u a n t i t y F (with d i m e n s i o n of

length) by m e a n s of t h e f o r m u l a

F _B_
b — A '

(5.10)

N e g l e c t i n g in (5.8) t h e t e r m p r o p o r t i o n a l t o ( b / r ) 5 ,

w e o b t a i n

4Г
Af(r) = i t f o | [ l - -

' - T u

5Л
4 7 '

Rl/8

v 4 / T Z L
„ttVa L r 12r4

(5.11)

The solution M(r) contains two constants : A and F .
For the problem to be s tat ionary it is n e c e s s a r y that
for large r the quantity M be maintained art i f icial ly

*When x « 1 we have

and when x » 1

- ] •
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c o n s t a n t , a n d n o t e q u a l t o M o ( i f w e s t i p u l a t e i n o u r

s t a t i o n a r y p r o b l e m t h a t M b e e q u a l t o M o f o r l a r g e r ,

w e o b t a i n a u t o m a t i c a l l y t h a t M = M o f o r a l l r ) . T h i s

b o u n d a r y c o n d i t i o n f o r l a r g e v a l u e s o f r m a k e s i t

p o s s i b l e t o d e t e r m i n e t h e c o n s t a n t A . W e s h a l l s e e

b e l o w t h a t t h e c o n s t a n t A d r o p s o u t o f t h e e x p r e s s i o n

f o r t h e r e l a x a t i o n t i m e o f t h e s u m m a r y z - c o m p o n e n t

o f t h e n u c l e a r m a g n e t i c m o m e n t o f t h e s a m p l e ( i n

o t h e r w o r d s , t h e r e l a x a t i o n t i m e o f t h e s u m m a r y

m o m e n t d o e s n o t d e p e n d o n t h e b o u n d a r y c o n d i t i o n

w h e n r i s l a r g e ) .

T o d e t e r m i n e t h e c o n s t a n t F , o n t h e o t h e r h a n d , i t

i s n e c e s s a r y t o i m p o s e o n t h e e x a c t s o l u t i o n , t h a t i s ,

o n e x p r e s s i o n ( 5 . 6 ) , a s u i t a b l e b o u n d a r y c o n d i t i o n f o r

s m a l l r ( s e e b e l o w ) .

I n p a r t i c u l a r , i f M ( ° ° ) = 0 , t h e n ( 5 . 1 1 ) y i e l d s

A = 7гД1/8/4Г(5/4) and we have, further

(5.12)

If in (5.11) we neglect the t e r m proport ional to
(b/r) 4 , we obtain

M(r)=M0 1 ^ L _ ( ^ i _ ^ j J . (5.13)

In p a r t i c u l a r , if M(°°) = 0, then (5.13) yields*

M(r) = M0—. (5-14)
Г

I n w h a t f o l l o w s , i n c a l c u l a t i n g t h e f l u x o f t h e n u c l e a r

m o m e n t a n d o f t h e m a g n e t i c m o m e n t o f t h e s p h e r e p e r

m a g n e t i c i o n , w e s h a l l u s e f o r m u l a ( 5 . 1 3 ) . I n o r d e r

f o r o u r a n a l y s i s t o b e c o r r e c t , i t i s n e c e s s a r y t o

s a t i s f y t h e c o n d i t i o n s

pva < д, p « Л. (5.15)

The f i rs t of these conditions is r e q u i r e d in o r d e r
that formula (5.13) be applicable in the g r e a t e r p a r t of
the volume of the s p h e r e of rad ius R and with center
at the magnetic ion. The second condition, on the
other hand, is n e c e s s a r y to satisfy the inequality

only in this c a s e can we a s s u m e that each nucleus is
acted upon only by the n e a r e s t magnetic ion.

3. According to (5.13), the flux of the nuclear mag-
netic m o m e n t t through a s p h e r e of radius r is (for
r » ,81/4) equal to

*It is physically more sensible to employ the boundary con-
dition not at r = oo, but at r = R, since there is a sphere with
radius R for each magnetic ion. If we stipulate that M(R) = M,
ФШ.О, then (5.13) yields

În all that follows we take nuclear magnetic moment (flux of
nuclear magnetic moment, summary nuclear magnetic moment of a
sphere with radius R or of a sample) to mean the z-component of
the nuclear magnetic moment.

D • 4яг21 grad M \ = 4я DFM0
яр1

For the s u m m a r y nuclear moment of a sphere of

rad ius R with center at the magnetic ion, Eq. (5.13)

yields

4Г ^
+ 2nFR2M0- 1/8

лр

Recognizing that the equilibrium value of ЭД1 is

w e o b t a i n

~

4Г т U

аэго-як=-
T h u s , t h e flux of n u c l e a r m o m e n t t h r o u g h a s p h e r e

of r a d i u s R c a n be e x p r e s s e d in t h e fo l lowing f a s h i o n :

l —
JW

N e g l e c t i n g t h e q u a n t i t y 3 F / 2 R c o m p a r e d wi th u n i t y ,

w e o b t a i n f ina l ly f o r t h e flux t h e e x p r e s s i o n :

inNDF (Шо-Ш). (5.16)

In the s tat ionary case , the flux of nuclear moment
through the s p h e r e of radius R is equal to the s u m m a r y
nuclear moment " e m i t t e d " by the magnetic ion per
second. The s tat ionary behavior is ensured in this
case by the conditions at large d is tances from the ion,
where there is a sink of nuclear moment if M(R) < Mo.
[If M(R) > Mo, the magnetic ion " a b s o r b s " the nuclear
moment and a source of moment exis ts at la rge d i s -
tances.]

In the nonstat ionary problem of the relaxation
(restorat ion) of the nuclear magnetic moment after
turning off the saturat ing a l ternat ing field (or after
turning on the constant field H in the absence of a
saturat ing field), the situation is entirely different.
T h e r e a r e no sinks or s o u r c e s of nuclear moment at
large dis tances from the ions at al l . In the nonstat ion-
a r y problem (5.16) gives the s u m m a r y magnetic
moment " e m i t t e d " by the magnetic ion per second.
But this very quantity will be equal to the change in
the s u m m a r y magnetic moment 50} of the sphere of
rad ius R p e r second due to re laxat ion.

We see therefore that it follows from (5.1) that

where

T —
1 77.

Д З

AxNDF

( 5 . 1 7 )

( 5 . 1 8 )

S i n c e t h e n u c l e a r m a g n e t i c m o m e n t o f t h e s a m p l e

d i f f e r s f r o m t h e n u c l e a r m a g n e t i c m o m e n t o f a s p h e r e

o f r a d i u s R b y a c o n s t a n t f a c t o r ( e q u a l t o N V ) , w e c a n
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take 9ft in (5.17) to mean the nuclear magnetic moment
of the sample . In this case 9ftо will be the equilibrium
nuclear moment of the sample:

mo=vMo.

Thus, we have proved that the s u m m a r y nuclear
magnetic moment of the sample 9ft has a single r e -
laxation t ime T n . Thus the problem of determining
the relaxat ion t ime T n has been reduced to the p r o b -
lem of finding the value of F.

We s e e from the foregoing that the fact that the r e -
laxation is exponential follows from the fact that in the
stat ionary problem, without a sa turat ing field, the flux
of magnetic moment through a sphere of radius R and
with center at the magnetic ion, is proport ional to
9ft0 — 9ft. The la t ter c i r c u m s t a n c e , on the other hand,
follows from the fact that when r » b we have

л/г i \ ял- / \ , const

In the absence of a saturated field we have

Ш (t) = 2ft0 + [Ж (0) - 3R0] е'-/т„. (5.19)

In the p r e s e n c e of a field that s a t u r a t e s the nuclear
resonance we have

[ ^ ^ ] , (5.20)

(5.21)

w h e r e 9ft s i s t h e s t a t i o n a r y v a l u e of 9ft:

Thus, the value we obtain for T n sat isf ies a lso the
other definition of the relaxat ion t ime

(5.22)

where A t/2 is that value of A at which 3KS =
4. At la rge values of r Eq. (5.4) yields ДМ = 0.

This equation is satisfied by express ion (5.13), which
is a lso the asymptotic form (when r » b) of the exact
solution of Eq. (5.4). On the other hand, the second
t e r m of (5.4) preva i l s when r is s m a l l . Thus, if b > 6,
diffusion plays the pr incipal ro le when r > b and d i r e c t
relaxat ion when r < b . In other words , roughly speak-
ing, b is that dis tance from the magnetic ion, up to
which the d i rec t re laxat ion of the nuclei is effective.

It is c lear from the foregoing that if б « b, the
p r e s e n c e of a diffusion b a r r i e r plays no ro le whatever;
on the other hand, if b < 6, the diffusion b a r r i e r is very
appreciable and must lead to a slowing down of the r e -
laxation.

To take into account the diffusion b a r r i e r , we i m -
pose upon M(r) the boundary condition

dM
dr = 0 f o r r = (5.23)

which e x p r e s s e s the vanishing of the diffusion n u c l e a r -
moment flux at r = 6. Substitution of (5.6), with a c -
count of (5.10), yields

where

(5.24)

U s i n g t h e w e l l - k n o w n f o r m u l a w h i c h e x p r e s s e s t h e

d e r i v a t i v e o f t h e B e s s e l f u n c t i o n * w e o b t a i n

F 2x1,. (x)
( 5 . 2 5 )

( 5 . 2 4 ) a n d ( 5 . 2 5 ) e x p r e s s F a s a f u n c t i o n o f b a n d 6 .

S u b s t i t u t i o n i n ( 5 . 1 8 ) y i e l d s t h e r e l a x a t i o n t i m e T n .

U s i n g t h e e x p r e s s i o n f o r t h e B e s s e l f u n c t i o n s a t

l a r g e a n d s m a l l v a l u e s o f t h e a r g u m e n t , w e o b t a i n i n

t h e l i m i t i n g c a s e s

= b, Tn = 1
bnNDb

= 1.6 (6Д)8

f o r 6 > 6 , ( 5 . 2 6 a )

F = = 1,6-

0,05
NDb ( 4 ) ' =

(6Д)»
f o r b < 6 . ( 5 . 2 6 b )

T h e r e s u l t ( 5 . 2 6 a ) w a s o b t a i n e d i n a d i f f e r e n t m a n -

n e r b y d e G e n n e s ' - 2 5 - ' ( s e e A p p e n d i x F ) , w h i l e t h e r e s u l t

( 5 . 2 6 b ) w a s o b t a i n e d b y B l u m b e r g ' - 1 9 - ' ( s e e A p p e n d i x G ) .

If б/b is smal l , the diffusion b a r r i e r is insignifi-
cant . We can a s s u m e D constant for all r and impose
on (5.6) the r e q u i r e m e n t M(0) = M o . Recognizing that
l!/4(x) and I_j/4(x) become infinite when x = °° and that
their difference vanishes, we r e a c h the conclusion that
the r e q u i r e m e n t M(0) = M o yields A = B. Using (5.10),
we obtain F = b.

We note also that if б « b, the conditions M(0) = Mo,
M(6) = Mo, dM/dr | 0 = 0, and d M / d r | 6 = 0 lead to iden-
tical r e s u l t s .

In the c a s e of la rge б/b, the r e s u l t (5.26b) can be
obtained direct ly by imposing the condition (5.23) on
the function (5.11).

Using (2.1), (2.9), (5.9), and (5.26), we obtain the
dependence of T n on the concentrat ion of the magnetic
a t o m s , the field intensity, and the t e m p e r a t u r e :

Tn oc 7V-1
for b >

for
( 5 . 2 7 a )

( 5 . 2 7 b )

A c c o r d i n g t o ( 2 . 9 ) , ( 4 . 1 4 ) , a n d ( 5 . 9 ) , t h e q u a n t i t y b

d e c r e a s e s with decreas ing t e m p e r a t u r e , and б i n c r e a -
s e s . Therefore, at sufficiently high t e m p e r a t u r e s we
have b > 6, and at sufficiently low ones b < 6.

If, in par t icu lar , b < б and T S < r e (that is , r ~ T S ) ,
then (2.11), (4.14), and (5.27b) yield

Tn oc N~2H2 when т > Т2 or %yeH>2kT, (5.27c)
Tn ос дг-г^г+зау-за w h e n х < Т г a n d %y<:H < 2 f c r (5.27d)

(x)
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We use the following terminology.'-19-' When b > 6,
we say that diffusion-limited relaxation takes place;
if b < d, we say that rapid diffusion takes place. The
latter designation is connected with the fact that if
b < 6, the diffusion in the region where it is possible
(r > 6) is rapid compared with the direct relaxation.*

Comparison of (5.26a) with (5.26b) shows that in
the c a s e when б > b the re laxat ion t ime contains an
additional factor (6/b)3, which great ly r e t a r d s the r e -
laxation of the s u m m a r y magnetic moment of the
sample .

The physical cause of the slowing down of the r e -
laxation in the c a s e б > b is obvious. In the region
b < r < б t h e r e is no diffusion (since r < 6), and the
d i r e c t re laxat ion is slow (since r > b).

In other words, the inequality б > b denotes that the
diffusion of the nuclear Zeeman energy to the magnetic
ion (to a d is tance 6) is m o r e rapid than the t rans fer of
this energy to the magnetic ion. Therefore, if the
ra t io б/b is sufficiently large, the system of nuclei
located in the region б < r < R soon r e a c h e s internal
equil ibrium, after which this sys tem will gradually
approach equil ibrium with the la t t ice . Consequently,
when б < r < R the nuclear magnetization M will be a
function of the t ime but not of the position'-1 9-' (for
m o r e detai ls s e e Appendix G).

In the s tat ionary problem which we a r e c o n s i d e r -
ing, if б/b is sufficiently large, we have [we choose a
solution satisfying the condition M(°°) = 0]

~ (5.28)

M(6) decreases with increasing 6, owing to the de-
crease in the role of the direct relaxation at a distance
6.

Numerical calculations, based on formulas (5.18)
and (5.25), are given in'-26- .̂ The quantity Tn is repre-
sented in the form T n = const • x"1 [x is given by
(5.24)]. The plot of n against x shown in Fig. 3 is a
result of these calculations.

In the limiting case of large x (b » 6) we have
n = 0.5; for small x (b « 6) n = 2. We see from the
curve that these limiting values are obtained (approxi-
mately) quite rapidly: when b = 1.56 we have n ~ 0.58
and when 6 = 2b we have n « 1.9.

We note finally, that if extraneous nuclear relaxa-
tion also takes place, with a partial relaxation time
T(j, then the summary time of nuclear relaxation Tn

is given by the formula

Tn1 — Tdl + inNDF. (5.29)

5. In calculating the relaxation time we have used
the model of a square well for the function D(r). More
accurately, a calculation which takes into account the
presence of the diffusion barrier should be carried
out in the following fashion. It is first necessary to
determine D(r), using the cross-relaxation theory

/7

2.0

7.8

IB

№

w

as

Q6

0.4
о as ip

FIG. 3

*This is precisely why T n does not depend on D when b < 5.

(see Sec. 4). Then the diffusion t e r m in the equation

for M(r, t) will be equal to

div (D (r) grad M) = D (r) AM + (grad D, grad M).

Thus, we add to the r ight side of (5.1) the t e r m (grad

D, grad M). In place of (5.4) we obtain

D(r)AM + (giauD, gradM) — Cr^ [M — Mo) = 0. (5.30)

It is then n e c e s s a r y to find the c e n t r a l l y - s y m m e -
t r i c a l solution of (5.30), satisfying the conditions
M(0) = Mo (this condition e x p r e s s e s the fact that
nuclei located near the magnetic ions a r e in equil i-
brium with the lattice) and M(°°) = 0. It is n e c e s s a r y
to find the asymptotic behavior of this solution, which
will take the form (5.14), s ince for sufficiently la rge r
we have D(r) = const. We thus obtain F and then, using
(5.18), we obtain T n . However, Eq. (5.30) with var iable
D(r) can be solved only by numer ica l m e a n s .

We must note in this connection that such a calcula-
tion is meaningful only if we take into account, s imul-
taneously with the dependence of the diffusion coeffi-
cient on r, a lso the b a r r i e r anisotropy effects (see
below). Indeed, it can be a s s u m e d that effects produced
by the b a r r i e r anisotropy will be of the s a m e o r d e r of
magnitude and possibly even s t ronger than the effects
due to the smooth d e c r e a s e of the diffusion coefficient
on approaching the magnetic ion.

In view of the foregoing, it is des i rab le to rep lace
this p r o c e d u r e by solving (5.4) with constant D when
r > б and with the corresponding boundary condition
when r = 6. The condition (5.23) which we have e m -
ployed follows from the continuity of the n u c l e a r -
moment flux density [that is, from the express ion
— D(r) grad M], if we a s s u m e that D(r) = 0 when r < 6.

It is c lear in this case that the r e s u l t (5.26a) is not
connected with the use of the square-wel l approxima-
tion for the function D(r) (since the diffusion b a r r i e r
plays no role when b is considerably la rger than 6).
On the other hand, the r e s u l t (5.26b) will be m o r e
accurate to a coefficient which, roughly speaking, is
of the o r d e r of unity.
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In Appendix H, the stationary problem is considered
for the c a s e when D(r) = Dj for r < б and when D(r)
= D for r > 6.

6. Let us examine the conditions for the appl ica-
bility of the analysis p resented in this sect ion.

The nuc lear-sp in diffusion plays an essent ia l ro le
when r > max (b, 6). For the macroscopic descr ipt ion
of the spin diffusion to be valid it is n e c e s s a r y that
the la t ter quantity be appreciably l a r g e r than a. For
our analys is to be c o r r e c t it i s a lso n e c e s s a r y that
б « R;* we take into account, further, Eq. (5.15) and
the fact that F < b. We then obtain the following con-
ditions for the validity of our analys i s :

a < max (b, 6)< R.

It is also necessary to satisfy the condition

(5.31)

3DF

or

[ m a x ( f t , 6 ) ] 6 «

T h i s i n e q u a l i t y , h o w e v e r , f o l l o w s a u t o m a t i c a l l y

f r o m t h e i n e q u a l i t y (b, 6) « R.

7. A c c o r d i n g t o (5 .18) , (5.26), a n d (5.31) w e h a v e

ft* R2
T — "5» ——

(5.32)

where R 2 /D is the t ime during which the nuclear spin
diffuses over a dis tance of the o r d e r of R. We can
al ternate ly wr i te (5.32) in the form

nfi* = R ( - ^ - ) V 2 » R- (5.32a)

(DTn) is the dis tance covered by the nuclear spin
during the relaxation t ime T n . We find therefore that
p r i o r to the relaxat ion the nuclear spin has t ime to
stay near a la rge number of magnetic ions.

This r a i s e s the question of the validity of reta ining
only one t e r m in the sum over the magnetic ions in
(5.1) in the analys is of the s tat ionary problem [see
(5.4)].

Direct relaxation of the nuclei plays an important
ro le only for those nuclei, the dis tance of which from
the n e a r e s t magnetic ion is s m a l l e r than or of the
o r d e r of max (b, 6). On the other hand, we a s s u m e
that the condition (b, 6) « R is satisfied. Therefore,
inside a s p h e r e centered about a cer ta in magnetic ion
and having a r a d i u s R we can neglect the relaxat ion
due to the other ions.

The s tat ionary problem which we have considered
above has an auxi l iary c h a r a c t e r . We have proved
with its aid that the nuclear magnetic moment " e m i t -
t e d " per unit t ime by the magnetic ion is proport ional
to the deviation of the magnetic moment of a sphere
of rad ius R from its equil ibrium value.

When the nuclear spin goes over from the vicinity

•Indeed, the solution (5.6) of (5.4) is valid only when r > 5.

of o n e m a g n e t i c i o n in to t h e v i c i n i t y of a n o t h e r ( t h i s

t a k e s p l a c e w i t h i n a t i m e of t h e o r d e r of R 2 / D ) , t h e

m a g n e t i c ion c a u s i n g t h e s p i n r e l a x a t i o n c h a n g e s .

T h i s c i r c u m s t a n c e , h o w e v e r , d o e s n o t p l a y a n y r o l e

in t h e s t a t i o n a r y p r o b l e m .

De G e n n e s , c o n s i d e r i n g t h e c a s e of a b s e n c e of a

di f fus ion b a r r i e r , t a k e s i n t o a c c o u n t t h e a c t i o n on t h e

n u c l e a r s p i n of a l l t h e m a g n e t i c i o n s . 2 5 ^ T h e r e s u l t

o b t a i n e d by h i m c o i n c i d e s in t h i s c a s e w i t h ( 5 . 2 6 a ) .

H o w e v e r , d e G e n n e s ' c a l c u l a t i o n i s d i f f icul t t o g e n e r -

a l i z e t o t h e c a s e w h e n t h e d i f fus ion b a r r i e r e x i s t s .

8. L e t u s d i s c u s s b r i e f l y t h e p o s s i b i l i t y of t a k i n g

into a c c o u n t t h e e f fect of a n g u l a r a n i s o t r o p y in diffu-

s i o n t h e o r y .

T h e q u a n t i t y D (we a r e r e f e r r i n g t o t h e d i f fus ion

c o e f f i c i e n t f a r f r o m t h e m a g n e t i c i o n s ) d e p e n d s on t h e

o r i e n t a t i o n of t h e c r y s t a l r e l a t i v e t o t h e e x t e r n a l f i e ld .

The quantit ies С and б also depend, general ly speak-
ing, on the orientation of the crys ta l (owing to the
dependence of the corre la t ion t ime т and the width of
the nuclear resonance ЛН on the orientat ion). But С
and б depend also on the angle t? between the vector r ,
which joins the nucleus and the n e a r e s t magnetic ion,
and the direct ion of the external magnetic field.*
Since we introduce the quantity 6, it is c l e a r h e r e that
we a r e again dealing with the square-wel l model for
the function D(r), but with an anisotropic rad ius of the
diffusion b a r r i e r .

It is c lear that the difficult problem is to take into
account the dependence of С and б on the angle 3. On
the other hand, the fact that some quantit ies depend
on the orientat ion of the crys ta l r a i s e s no difficulty,
s ince these values a r e fixed for a given crys ta l o r i e n -
tation.

If we average all the quantit ies over the angle S-,
then the r e s u l t s obtained in the p r e s e n t section will be
val idt, but in the final formulas it is n e c e s s a r y to take
into account the dependence of D, C, and б on the
orientation of the c r y s t a l .

In the case when b > 6, we obtain for the dependence
of T n on the orientat ion of the crys ta l , in accordance
with (5.26a) and (4.11) (we neglect the dependence of
т on the orientat ion of the crysta l) ,

n <XD ОС S [2J ri;i (1 — oCOS2fl;;)2J . (5.33)

i

A c c o r d i n g t o t h e s t a t e m e n t s m a d e in S e c . 4, w e e x -

p e c t t h e a n i s o t r o p y of T n t o be s t r o n g e r in t h e c a s e of

a l a t t i c e c o n t a i n i n g two o r m o r e s p e c i e s of n u c l e i w i t h

s p i n s , t h a n in t h e c a s e of a l a t t i c e in w h i c h a l l t h e

n u c l e i h a v i n g s p i n s a r e i d e n t i c a l .

*More accurately speaking, we are referring not to the quan-
tity С given by formula (2.9), but to the quantity obtained after
averaging over the angle d-, that is, we are referring to the quan-
tity (15/2) С s i n ^ c o s 2 ^ .

tWe are referring to a cubic single crystal. In the case of a
single crystal of a different system, the quantity D, as noted
above, will be a second-rank symmetrical tensor.



S P I N D I F F U S I O N 757

In the c a s e b < 6, according to (5.26) and (4.15), we
obtain for the dependence of T n on the c rys ta l o r i e n -
tation

_ з
Г „ а б 3 а ( Д Я ) " 3 а а 5 ~ 2 а . (5.34)

We now proceed to consider effects due to the d e -
pendence of С and б on the angle d-. When averaging
over the angle t? we obtain for D(r) a spher ica l square
well (4.13) and the b a r r i e r is r e p r e s e n t e d by a s p h e r -
ical surface centered about the magnetic ion with
radius 6. We now consider how to proceed if we do
not c a r r y out averaging over the angle; the z-com-
ponent of the field acting on a nucleus is given by the
formula

where the two signs preceding the second t e r m c o r r e -
spond to the two possible spin direct ions of the mag-
netic ion*. Using for the determinat ion of 6 the
p r o c e d u r e developed in Sec. 4, we get for the depen-
dence of 6 on v.

8 = const • 11 — 3cos2 (5.35)

where the o r d e r of magnitude of the constant is given
by (4.14); the dependence of the constant on the o r i e n -
tation of the crys ta l re la t ive to the external field is
given by the formula

const ос ( Д Я Г а . (5.35a)

(5.35) yields, in spher ica l coordinates, the equation of
the surface that r e p r e s e n t s the diffusion b a r r i e r .

According to (5.35), б vanishes at an angle t90

= cos" 1 (1/V3) = 54°44'. It is c lear that at low t e m -
p e r a t u r e s , for angles •$• c lose to ^ 0 , we have б < b,
and for other direct ions б > b. Therefore near the
magnetic ion the spin diffusion will essential ly occur
in d i rect ions which make angles close to i?0 to the
direction of the external field.

When solving the s tat ionary equation for M it is
n e c e s s a r y to take into account the dependence of С
on •&. F u r t h e r , it is n e c e s s a r y to impose on the solu-
tion of the equation a boundary condition that calls for
the vanishing, on the surface r e p r e s e n t i n g the diffu-
sion b a r r i e r , of the derivative M with r e s p e c t to the
normal to this surface. F r o m the asymptotic form of
the obtained solution we can determine the total flux
of nuclear moment through a sphere of radius R c e n -
tered at the magnetic ion (when finding the s u m m a r y
flux we integrate over the angles, so that the angle S-
drops out), making it possible to calculate the r e l a x a -
tion t i m e T n .

The foregoing p e r t a i n s to an account of the effects
due to the anisotropy of the b a r r i e r in the approxima-

*We note, however, that the assumption that the spins of the
magnetic ions are directed only parallel and antiparallel to the
external field is inaccurate.

tion in which we use for the diffusion b a r r i e r a square
well . In the exact analysis of the problem it is n e c e s -
sary first, using the c r o s s - r e l a x a t i o n theory, to d e t e r -
mine the function D(r, •$). It is then n e c e s s a r y to solve
the s tat ionary equation for M with var iable D, with
account of the dependence of С on •$• and with the
boundary condition M(0) = Mo. Using, finally, the
asymptotic form of the obtained solution, we can d e -
t e r m i n e the s u m m a r y n u c l e a r - m o m e n t flux through a
sphere of rad ius R, and the relaxation t ime T n . The
relaxat ion of the summary moment will be exponential
(if the conditions for the applicability of the diffusion
analysis a r e satisfied), s ince we have again for the d e -
pendence of M on r when r is large

M = M (co)-\- const

9. We now consider the question of the values of
the alternating-field amplitude (saturating the magnetic
resonance) a t which Eq. (5.17) is valid. The t e r m
2A Ш of this equation is obtained by integrating the
t e r m 2AM of (5.1), if A is assumed to be constant.
The quantity A is in fact not constant, for when r < б
the nuclei have strongly shifted Zeeman frequencies.
In analogy with (4.13), we a s s u m e that

0 r < 6 ,
A(-r) = \ const = Л r > 6 . (5.36)

Taking (5.36) into account, we obtain in place of
(5.17)

dl Tn

Thus, for the applicability of (5.17) we must satisfy
the condition

-л1 n С 1 or A < Ai (5.37)

If we neglect the extraneous relaxation, this condi-
tion takes the form

A<£ CF (5.38)

which gives in the two limiting cases

6, (5.39a)

when b < 6 . (5.39b)

= -_£„. When

The la t te r condition can be readi ly understood. To
satisfy this condition, for smal l values of r the d e -
c r e a s e of A(r) does not play any ro l e . Indeed, even if
A(r) were not to dec rease , the al ternating field stil l
would not cause any noticeable saturat ion when r ~ 6.

10. Assume that a saturat ing al ternat ing field is
applied to the sample at the instant t = 0. We a r e now
interes ted in whether the equation 9 Ш /3t
= (5Ш 0 - щ ) / T n will descr ibe the relaxation of Ж (t) for
all t ( s e e [ 1 9 ] ) .

If the re laxat ion of 2Jt(t) is exponential in the non-



758 G. R. K H U T S I S H V I L I

s tat ionary c a s e , then the corresponding re laxat ion
time will coincide with the value of T n calculated by
us. To this end it is n e c e s s a r y that the diffusion play
an essent ia l r o l e ; this r e q u i r e s in turn that when
r > max (b, 6) the value of grad M be noticeably
different from 0.* We conclude there fore that the
exponential re laxat ion takes place for those values of
t, for which the conditions differ great ly from the
condition of total saturat ion when r » max (b, 6) . t

It is easy to see that (Ct) 1 / 6 is the dis tance from
the magnetic ion r e a c h e d by the d i rec t re laxat ion
within a t ime t, and (C/2A)^ 6 is the distance from the
magnetic ion at which the probabi l i t ies of spin flip of
the nucleus, due to the re laxat ion and to the a l ternat ing
field, a r e equal to each other .

Recognizing that M(r, t) is always equal to Mo when
r < 6, we find that when b < 6 then, no m a t t e r how
large A, the re laxat ion of 2K(t) will be exponential for
all t . The s a m e will take place if

6<b and

A s s u m e now that

i.e.

At the instant when the saturating field is turned on
saturation will take place of the resonance when
r > max [б, (С/2А) 1 ' 6 ] . We can easi ly obtain the follow-
ing approximate formulas : $

(5.40a)

(5.40b)

for 0 < f < max ( -^-,

for max 1
~ГА

When t > b6/C, the relaxation of SJJ(t) will be ex-
ponential with a relaxation time Tn.

It is clear from the derivation of (5.40) that these
formulas are approximate; they are accurate to within
coefficients of the order of unity [we note in this con-
nection that in^19-' formula (5.40b) contains an addi-
tional factor ir1'2].

11. We have assumed during the entire course of
the analysis that the direct relaxation of the nuclei is
due to dipole-dipole interaction of the spins of the
nucleus and of the magnetic ion. In the case of a local

*r denotes the distance to the nearest magnetic ion.
t If for r = max (b, S) the saturation of the nuclear resonance

is complete, then M = 0 and grad M = 0 when г > max (b, 8), and
no spin diffusion will take place.

•tWe can alternately write (5.40) in the form

for 0 < t < ~ .

electron center (F center in an alkali-halide crystal,
donor or acceptor center in a semiconductor), the
wave function of the electron propagates over suffi-
ciently large distances; it is therefore not excluded
that if the external magnetic field is sufficiently small,
the direct relaxation of the nucleus will in some cases
be due to hyperfine interaction. The question was con-
sidered in'-27-'. It is assumed that T^ r (r) is propor-
tional to exp (ar), where a is connected with the radius
of the wave function of the local electronic center.

6. INDUCED DYNAMIC POLARIZATION OF NUCLEI
WITH ACCOUNT OF SPIN DIFFUSION

Spin diffusion was first taken into account in induced
dynamic polarization in'-28-' (see also'-4'6-'), but without
account of the presence of the diffusion barrier. We
have analyzed spin diffusion in induced dynamic polar-
ization and took the diffusion barrier into account

We confine ourselves to the case S = I = 1/2.
In the case of induced dynamic polarization, the

z-component of the nuclear magnetization M(r, t)
satisfies the equation

ам_
Td

M^^. (6.1)

Let us consider the case where the transitions
corresponding to the fields H+, H*, and H_ do not
overlap and a field close to H+ or H_ is applied to the
sample. The upper and lower signs in (6.1) are taken
for the case of the H+ and H_ transitions. We shall
henceforth leave out the plus and minus sign of Г.

The physical meaning of the las t t e r m of (6.1) is
obvious: it d e t e r m i n e s the change in the nuclear mag-
netization due to the H ± t r a n s i t i o n s . In the H ± t r a n s i -
tion, the microwave field " s t r i v e s " to equate M with
± y n M 0 / y e . The physical meaning of the remaining
t e r m s of (6.1) was analyzed above.

We r e w r i t e (6.1) in the following fashion:

ом

мо-м
Td

We have seen above that (5.1) leads to (5.17). We
obtain now analogously

_

where

C+Г6 = 0.68 ( - ^ ±

(6.2)

( 6.з)
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= F(b, 6). (6.4)

We define h e r e F(b, 6) a s in (5.25). More general ly
speaking, if we do not use the square-wel l model for
the function D(r), it is n e c e s s a r y to define F as a r e -
sult of the substitution b —* b in the dependence of F
on b .

In o r d e r for (6.2) to be c o r r e c t it i s n e c e s s a r y to
satisfy the condition [compare with (5.31)]

a < max (6, 6) < R. (6.5)

If С > Г, then b ~ b. Onjthe other hand,
b ~ 0.68 ( Г / Б ) 1 / 4 if С < Г; b is in this c a s e the d i s -
tance from the magnetic ion, up to which the d i r e c t
induced dynamic polar izat ion is effective.

Assume that A = 0 (that is, no radio frequency field
capable of sa turat ing nuclear r e s o n a n c e is applied to
the sample*) . Equation (6.2) can be r e w r i t t e n

am
at

where

• Уп Л

Td+inNDF

Solution of (6.6) yields

Ж (t) = ЭЛ5 + [Ш (0) -

(6.6)

(6.7)

(6.8)

(6.9)

I t f o l l o w s t h e r e f o r e t h a t 2J?S i s t h e s t a t i o n a r y v a l u e

o f t h e m o m e n t o f t h e s a m p l e , a n d T s i s t h e t i m e n e c e s -

s a r y t o e s t a b l i s h s t a t i o n a r y d y n a m i c p o l a r i z a t i o n .

U s i n g ( 5 . 2 9 ) a n d ( 6 . 8 ) , w e h a v e

Tn _ Td^ + inNDF
Ts Td1 + AJINDF

(6.10)

We introduce further the nuclear-polar izat ion a m -
plification coefficient by means of the formulat

ЯЯ.

We t h e n o b t a i n

AKNDF

-•г п1- С + Г

w h e r e

(6.11)

(6.12)

(6.13)

Formula (6.12) shows that TJ i n c r e a s e s with d e -
c r e a s i n g С and with increas ing Т ф which can be
readi ly understood. A d e c r e a s e in С means a d e -
c r e a s e in the ro le of the nuclear re laxat ion brought
about by the magnetic ions; an i n c r e a s e in T^ means

*In experiments, a radio frequency field with frequency equal
to the frequency of the nuclear resonance is applied for the meas-
urement of the degree of polarization of nuclei. We assume that
the amplitude of this field is small enough so that 2ATn « 1 . In
this case we neglect the term 2A3J? in (6.2).

t г; = p — 1, where p is the quantity introduced in Sec. 3.

a d e c r e a s e in the ro le of the extraneous nuclear r e -
laxation. On the other hand, a d e c r e a s e in the ro le of
nuclear re laxat ion should intensify the effect of the
induced dynamic polar izat ion.

If the extraneous re laxat ion can be neglected, then
(6.12) s implif ies to

(6.12a)•i— чт c + r •

W e n o t e t h a t t h e m a x i m u m p o l a r i z a t i o n a m p l i f i c a -

t i o n c o e f f i c i e n t r / m i s f o u n d t o b e t h e s a m e a s i n t h e

s i m p l e m o d e l w h i c h t a k e s n o a c c o u n t o f s p i n d i f f u s i o n

( s e e S e c . 3 ) .

I n l i m i t i n g c a s e s w e o b t a i n f r o m ( 6 . 8 ) a n d ( 6 . 1 2 )

t h e f o l l o w i n g r e s u l t s ; w e m a k e u s e o f t h e e x p r e s s i o n s

f o r t h e f u n c t i o n F ( b , 6 ) i n t h e t w o l i m i t i n g c a s e s [ s e e

( 5 . 2 6 ) ] , a n d a l s o o f f o r m u l a ( 6 . 3 ) .

When b > б we have

8.5ЛГ

T-s

1=Td

1 + 8,5N{C + T)4lD
1/aDs/\

(6.14a)

(6.15a)

w h i c h c o i n c i d e s w i t h t h e r e s u l t s of e a r l i e r work. ' - 4 ' 2 8 - '

When b < б we have

T;1 = T~d

1

( 6 . 1 4 b )

( 6 . 1 5 b )

Since Г i n c r e a s e s with increas ing microwave
power, at sufficiently la rge power b will great ly ex-
ceed б and the diffusion b a r r i e r will be insignificant.
The diffusion b a r r i e r is very important at not too high
values of the microwave field power (if in addition
b < 6), and will lead to a d e c r e a s e in the nuclear
polar izat ion.

We note that in the p r e s e n t section we have a s -
sumed that fryeH « 2kT. If this condition is not s a t i s -
fied, it is n e c e s s a r y to rep lace Уе/Уп m the l a s t t e r m
of (6.1) by the express ion tanh (ЙуеН/2кТ) х
[ t a n h ( K y n H / 2 k T ) ] " 1 . It is easy to s e e that all the
r e s u l t s obtained by us r e m a i n valid, except that
formula (6.13) is r e p l a c e d by

- - 1 . (6.16)

If the H ± t rans i t ions overlap, we can general ize
the analysis given in the p r e s e n t section, retaining in
(6.1) both the t e r m proport ional to Г+ and the t e r m
proport ional to Г_. It is easi ly seen that in this c a s e
the r e s u l t s of (6.4) and (6.8) r e m a i n in force, while
(6.3) and (6.12) a r e rep laced by (we a r e consider ing
the c a s e when KyeH « 2kT):

6 = 0.68/

У» \п
С-т-Г++Г_ inNDF

( 6 . 1 7 )

( 6 . 1 8 )



760 G. R. K H U T S I S H V I L I

If we neglect unity compared with Уе/Тп> formula
(6.18) r e d u c e s to

Уе
Уп

r + - r _ AnNDF (6.19)

The l a t t e r r e s u l t s a r e in our opinion applicable in
the c a s e of a broad inhomogeneously broadened line
of e lect ron paramagnet ic r e s o n a n c e .

We have indicated in Sec. 3 that the analysis p r e -
sented t h e r e of the induced dynamic polar izat ion is
valid only if the condition ш п т » 1 is satisf ied. T h e r e -
fore our analys is is not valid for a broad, homo-
geneously broadened EPR l ine. This question was
recent ly considered in^ 1 .

7. COMPARISON OF THEORY WITH EXPERIMENT

We proceed to a compar i son of the exper imenta l
data on nuclear magnetic re laxat ion with theory.

The f i rs t exper iments on spin diffusion were set up
by Bloembergen.'-1-' The exper iments were made in
the t e m p e r a t u r e interval 1—300°K at alternating-field
frequencies 9.5 and 30.5 Me. The relaxat ion t ime was
determined from the t ime dependence of the nuclear
resonance signal after turning off the a l ternat ing field
that sa turated the nuclear r e s o n a n c e . The exper iments
w e r e c a r r i e d out with potass ium-aluminum and
ces ium-aluminum a lums, with alkal i-hal ide c r y s t a l s ,
with C a F 2 , e tc . The m o s t detai led m e a s u r e m e n t s were
made with potass ium-aluminum a lums, in which a
smal l fraction of the aluminum atoms was rep laced
by chromium a t o m s . The dependence of the relaxat ion
t ime of the protons on the t e m p e r a t u r e , on the ex-
te rna l field, and on the concentrat ion of the chromium
atoms was m e a s u r e d . The dependence on N and on T
was of the form T n <* N"4-0, where j3 = 0.5—0.7.
Unfortunately, however, the values of т е were taken
from data by o t h e r s . In the exper iments with C a F 2

(with iron added) the nuclear re laxat ion t i m e turned
out to be, within the l imits of e r r o r s , independent of
the orientat ion of the crys ta l re la t ive to the external
field, in a g r e e m e n t with the theory (see Sec. 5, item 8).

Exper iments with s ing le-crys ta l LiF*-30^ have
shown that i r rad ia t ion of the c r y s t a l with x r a y s cau-
ses a reduction in the re laxat ion t i m e s of both the Li 7

and the F 1 9 nuclei, owing to the production of F cen-
t e r s . The s a m e r e f e r e n c e r e p o r t s m e a s u r e m e n t s of
the dependence of T n on the orientat ion of the crys ta l
re lat ive to the external field. These m e a s u r e m e n t s
were made at room t e m p e r a t u r e with the condition
b > б satisfied. In addition to the anisotropy of T n , a
m e a s u r e m e n t was made of the anisotropy of the
n u c l e a r - r e s o n a n c e width. It turned out that T n in-
c r e a s e s with increas ing nuclear re sonance width, in
a g r e e m e n t with (5.33).

M e a s u r e m e n t s of the field dependence of the r e -
laxation t ime of the F 1 9 nuclei in L i F a r e repor ted
in 1- 3 1^. The m e a s u r e m e n t s were made at 300 and 77°K
with т е « T S and 6 « b. It was found that T n « H 1 / 2 ,

which a g r e e s with the theoret ica l r e s u l t (5.27a) (at the
t e m p e r a t u r e s in question, the e lectronic re laxat ion is
two-phonon and therefore т е does not depend on H).
Exper iments with NH4HSO4 with a smal l amount of
(NH 4 ) 2 CrO 4 added a r e r e p o r t e d in'-19-'. Measurements
were made of the t ime variat ion of the r e s t o r a t i o n of
the proton signal after turning off the radio frequency
field that sa turated the proton r e s o n a n c e . The m e a s -
u r e m e n t s were made at room t e m p e r a t u r e , with б < b.
It was found that at smal l values of the t ime t the p r o -
ton signal is proport ional to t , which, in accord with
(5.40b), follows from the theory if б < b. By using
(5.40b), the value of С was determined and т е e s t i m a -
ted. An exper iment was a l so made with a sample in
which no magnetic impurity was introduced. For this
sample, the re laxat ion turned out to be exponential for
all t ; this fact can be explained by assuming that the
proton relaxat ion in this sample is not due to the mag-
netic ions.

An investigation of the anisotropy of the nuclear
re laxat ion t i m e s in severa l alkali-halide c r y s t a l s with
smal l amounts of i ron added is the subject of'-16-'. The
m e a s u r e m e n t s were made at room t e m p e r a t u r e , in a
field of 4400 Oe. Under these conditions б « b. Ac-
cording to the theory, the dependence of T n on the
crys ta l or ientat ion is given by (5.33). According to
the s ta tements made above (see Sec. 4 and Sec. 5,
item 8), the anisotropy of T n should be noticeable in
the case of a latt ice containing two types of nuclei
with spins . For L i F c r y s t a l s , the r e s u l t s of the ex-
p e r i m e n t s a g r e e with the theory* (there is agreement
both for the Li7 and for the F 1 9 nuclei) . In the case of
NaCl and KBr, no anisotropy of the relaxat ion t ime
was observed, a fact attr ibuted by the author to the
predominance of the quadrupole re laxat ion mechanism.

Borghini'-32-' m e a s u r e d the re laxat ion t imes of the
protons and c e r i u m ions in lanthanum-magnesium
double n i t ra te , in which 0.5 per cent of the lanthanum
was replaced by c e r i u m . The m e a s u r e m e n t s were
made in the t e m p e r a t u r e interval 1.5—2.1°K, in a
13.5 kOe field. It was found that T n <* T~2 and т е ^ Т " 7 .
The r e s u l t does not a g r e e with theory (since under
the exper imental conditions б > b and T S < т е ) ; it must
be noted, however, that the t e m p e r a t u r e interval was
too smal l to draw any conclusions concerning the t e m -
p e r a t u r e dependence of the re laxat ion t i m e s .

The relaxat ion t ime of the protons in lanthanum-
magnesium double n i t ra te , in which a smal l fraction
of the lanthanum atoms was rep laced by cer ium atoms,
was m e a s u r e d in'-6-'. The cer ium concentrat ion was
var ied in the range of 0.05—10 p e r cent. The m e a s u r e -
ments were made in the t e m p e r a t u r e interval
1.6—4.2°K, and in a field of 3650 Oe. The dependence

*The authors failed to take into account, however, that the
quantity b which enters in formula (5.26a) depends on D [see
formula (5.9]. They assume therefore that T n <* D"' whereas in
fact Tn ccD"%.
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of the re laxat ion t ime of the protons on the cer ium
concentrat ion and on the t e m p e r a t u r e was m e a s u r e d .
The value of т е was m e a s u r e d along with T n . It was
found that T n

 tt N " 2 r e

/ 2 (with т е <* T" 1 4 ) which c o n t r a -
dicts the theory.

Reference'-1 7-' is devoted to the m e a s u r e m e n t of
the re laxat ion t ime of F 1 9 nuclei in L i F , i r rad ia ted by
gamma r a y s from Co 6 0 to produce F c e n t e r s . The
m e a s u r e m e n t s were made at room t e m p e r a t u r e and at
an a l ternat ing field frequency 6.4 Me. The relaxat ion
t ime of the F 1 9 nuclei was m e a s u r e d as a function of
the concentrat ion of the F c e n t e r s for two orientat ions
of the external field, namely with H p a r a l l e l to [100]
and [110]. For the s a m e crys ta l or ientat ions, a m e a s -
u r e m e n t was made of the shape and width of the
resonance line of F 1 9 . The concentrat ion of the F
c e n t e r s was determined by optical methods. It was
found that when N < 2 x 101G cm" 3 , T n ^ N " 1 . Carry ing
out a n u m e r i c a l es t imation of the sums in formula
(5.33) the authors found that at these concentrat ions
the ra t io of the values of T n for two crys ta l o r i e n t a -
tions is in good a g r e e m e n t with theory. It was fur-
ther found that when N > 2 x i o 1 6 cm" 3 , T n c e a s e s to
depend on N, a fact attr ibuted by the authors to the
formation of c l u s t e r s of F c e n t e r s near the dis location
l ines .

In'-33-' exper iments a r e r e p o r t e d with an A12O3

c r y s t a l with a C r 2 O 3 impuri ty; the re la t ive c o n c e n t r a -
tion of C r 2 O 3 was 0.035 per cent. The spin of Al2 7 is
5/2. Owing to the quadrupole effects, the six Zeeman
levels of the Al2 7 nucleus a r e not equidistant and five
lines a r e obtained in the nuclear re sonance s p e c t r u m .
In the f i rs t approximation, the quadrupole splitting is
proport ional to 1—3 cos2t?, where S- is the angle be-
tween the external field and the s y m m e t r y axis of the
int racrys ta l l ine e l e c t r i c field. Therefore, when •$• = ^ 0

= cos" 1 (l/v3) = 54°44', the Zeeman levels will be a p -
proximately equidistant. The authors have shown that
in this case T n should be determined, if b > 6, by the
s a m e formula (5.26a) as in the c a s e when the nuclear
spin is 1/2. The m e a s u r e m e n t was made at T = 80°K
and H = 9 kOe. The obtained value T n = 0.8 sec is in
good a g r e e m e n t with (5.26a). However, the numer ica l
e s t i m a t e s made by the authors show that for the values
of the physical quantit ies chosen by the authors , b is
in fact s m a l l e r than б.

P a p e r ^26^ is devoted to a m e a s u r e m e n t of the r e -
laxation t i m e s of the protons and P 3 1 nuclei in KH 2 PO 4

as functions of the t e m p e r a t u r e (in the interval
4.2—375°K) and of the external field. M e a s u r e m e n t s
were also made of the anisotropy of the relaxat ion
t ime of the p r o t o n s . The exper imental data a r e in
good agreement in the e n t i r e t e m p e r a t u r e interval
with the diffusion theory that takes no account of the
b a r r i e r (that is, with the c a s e б < b). However, as
pointed out by the author, when T = 4.2°K b is in fact
s m a l l e r than 6.

Kessenikh et al.'-3 4 '3 5-' (see also^1 2-' measured the

relaxat ion t i m e s of the protons in i r rad ia ted polyethy-
lenes . Along with T n , they m e a s u r e d also the spin-
lat t ice re laxat ion t ime of the magnetic c e n t e r . The
m e a s u r e m e n t s were made at 77, 4.2, and 1.6°K. The
external magnetic field was 3450 Oe. The concentra-
tion of the paramagnet ic c e n t e r s was var ied in the
interval (2.8—8.5) x 10 1 8 cm" 3 . The value of T n was
determined from the t ime dependence of the proton
sample after turning off the high frequency field p r o -
ducing the dynamic polar izat ion. M e a s u r e m e n t s were
also made of T n by observing the r e s t o r a t i o n of the
signal after turning off the radio frequency field that
sa turated the proton r e s o n a n c e .

For the dependence of T n on the magnet ic-center
concentrat ion, they found T^ 1 ^ N ^ where /3 = 1—2.

Formula (2.10) yields (we a r e substituting g = 2)
С = 0.87 "Г1 х Ю"4 7 c m V s e c . The es t imate (4.14a)
yields (we choose a = 2.3 А) б = 15 A.

Let us c o m p a r e theory and exper iment for samples
with N = (5.2-5.9) x 10 1 8 cm" 3 at T = 4.2°K. F o r m u l a
(2.1) yields R ~ 35 A. According to (2.11) we obtain
T S « 4 x Ю"6 sec which is appreciably s m a l l e r than
т е ( т е ~ 0.4 sec when T = 4.2°K); there fore т = T S .
Then С = 2 x Ю"4 2 c m 6 / s e c . Assuming that D = 2.5
x 10"1 2 c m V s e c , we obtain according to (5.9) that
b ~ 2 A. Using, finally, formula (5.26b), we obtain
T n

 ra 70 sec, which is in good a g r e e m e n t with the ex-
p e r i m e n t a l value (40—80 sec) .

F u r t h e r , in accordance with the s a m e paper , at
helium t e m p e r a t u r e s the re laxat ion t ime T n is in-
verse ly proport ional to the t e m p e r a t u r e . It is easi ly
seen that such a dependence follows approximately
from the theory if T S is considerably s m a l l e r than T 2

[see formula (5.27d)]. According to experiment, the
proton re sonance line has a Gaussian form and its
width (between points corresponding to half the m a x i -
mum) is 17.5 Oe, yielding T 2 ~ 6 x 10"6 s e c . Recog-
nizing that the foregoing e s t imate of T S is quite crude,
and taking also into account the fact that we do not
know the values of т / Т 2 at which the e s t imate (4.14b)
becomes valid, we can conclude that with r e s p e c t to
the t e m p e r a t u r e dependence there is no contradict ion
between theory and exper iment [we note, however,
that if б is es t imated by means of (4.14b), we obtain
for the foregoing sample at 4.2°K a value T n 6 sec ,
which is much s m a l l e r than the exper imental value].

In [36] m e a s u r e m e n t s a r e r e p o r t e d of the relaxation
t ime of the protons in lanthanum-magnesium n i t r a t e ,
in which 0.8 per cent of the atoms of lanthanum a r e
replaced by cer ium a t o m s . The m e a s u r e m e n t s were
made in the t e m p e r a t u r e interval 0.3—1.7°K, with an
external field 3.5 kOe. The m e a s u r e m e n t yielded
TjM cc rpi.45. m o t n e r W o r d s , T n i n c r e a s e s with d e -
creas ing t e m p e r a t u r e somewhat m o r e rapidly than
predicted by theory.

Jeffr ies and his co-workers m e a s u r e d the re laxa-
tion t ime of protons in lanthanum-magnesium double
ni t ra te , in which one per cent of the lanthanum atoms
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was replaced by neodymium atoms'-4-' (to get rid of
the hyperfine structure, the isotope Nd142 was intro-
duced). This concentration corresponds to N = 1.6
x Ю 1 9 cm" 3 . The m e a s u r e m e n t s w e r e made in the
t e m p e r a t u r e interval 1.3—4.2°K and at fields ranging
from 1 to 20 kOe. The external field made an angle
40° with the direction of the s y m m e t r y axis of the
int racrys ta l l ine field. T n was m e a s u r e d by d e t e r -
mining the t ime dependence of the proton signal after
turning off the high-frequency field producing the
dynamic polar izat ion. т е was a l so m e a s u r e d .

Under the conditions of these exper iments 6 » b.
Comparing the r e s u l t s of the exper iments with theory,
Jeffr ies concludes that the diffusion theory leads to
values of T n which a r e t h r e e o r d e r s of magnitude
l a r g e r than the exper imental data . However, if one
recognizes that under the conditions of the e x p e r i -
ments in question T S « т е , one finds that in fact the
theoret ica l value of T n is two o r d e r s of magnitude
s m a l l e r than the exper imental data.

The re sonance of the F 1 9 nuclei in s ingle-crys ta l
CaF? containing a manganese impurity is investigated
in . The angular anisotropy of the n u c l e a r - r e s o n -
ance line width was m e a s u r e d . This was followed by
investigation of the t ime dependence of the r e s t o r a t i o n
of the nuclear re sonance signal after turning off the
saturat ing field. At room t e m p e r a t u r e , a region of
t 1 ' 2 and a region of exponential signal growth were ob-
tained in a g r e e m e n t with the theory (the condition
б < b was satisfied). The experimental ly obtained
value of T n a g r e e s approximately with formula (5.26a).

We see there fore that the diffusion theory is in a c -
cord with the exper iments made at re lat ively high
t e m p e r a t u r e s (when b > 6), as r e g a r d s exper iments
made at helium t e m p e r a t u r e s , (when b < 6), the diffu-
sion theory a g r e e s qualitatively with some and c o n t r a -
dicts o t h e r s . This d i spar i ty is possibly connected
with the fact that under the conditions of these e x p e r i -
ments 6/R is insufficiently smal l and consequently
the c r i t e r i o n for the applicability of our analys is
breaks down. The dispar i ty may possibly also be due
to the approximations employed by us, par t icu la r ly
the crude e s t i m a t e s (4.14), and by fai lure to take into
account the anisotropy of the diffusion b a r r i e r .

As r e g a r d s induced dynamic polar izat ion of the
nuclei, we a r e unable at p r e s e n t to c o m p a r e the r e s u l t s
of the diffusion theory with exper iment, s ince most
exper iments were made under conditions when the H +
and H_ t rans i t ions over lap (with the broadening of the
e lec t ron p a r a m a g n e t i c re sonance not being purely
homogeneous). In the la tes t p a p e r s by the Jeffr ies
group'-4-' microwave fields a r e used with a wavelength
of approximately 4 mm, and t h e r e is thus no over lap.
However, no data a r e given in the review'-4-' on the
dependence of the coefficient of intensification of the
nuclear polar izat ion and the growth t ime of the in-
duced dynamic polar izat ion [see formulas (6.8) and
(6.12)] on the t e m p e r a t u r e , external field, c o n c e n t r a -

tion of the magnetic a toms, and microwave power. In
a r e c e n t review, Abragam and Borghini'-1 4^ likewise
p r e s e n t no exper imental data on the dynamic p o l a r i z a -
tion in sufficient detail to be able to make a detailed
compar i son between theory and exper iment .

We mention, finally, investigations of nuclear p o l a r -
ization in a liquid adsorbed on a solid containing mag-
netic c e n t e r s , following application of an al ternat ing
field that gives r i s e to forbidden t r a n s i t i o n s . 1 - 9 ' 3 8 ' ^
As a r e s u l t of the forbidden t rans i t ions , d i rec t p o l a r -
ization takes place of the nuclei of the liquid, located
near the solid sur face. This polar izat ion is fur ther-
m o r e t r a n s p o r t e d inside the liquid, but not by slow
spin diffusion, but by the much m o r e rapid molecular
diffusion.

8. CONCLUSION

We have a l ready noted in the introduction that
i n t e r e s t in the investigation of spin diffusion has
great ly increased because of the s u c c e s s of the
method of induced dynamic polar izat ion of nuclei .
We note in this connection that the Jeffr ies group has
attained a proton polar izat ion of 70 per cent. '-4-' The
sample was lanthanum-magnesium double n i t ra te in
which one p e r cent of the lanthanum ions were r e -
placed by neodymium ions. The exper imental condi-
tions were as follows: H = 20 kOe, T = 1.5°K, external
field perpendicular to the s y m m e t r y axis of the i n t r a -
crysta l l ine field, microwave-field frequency 74 Gc,
microwave power approximately 100 MW.

Reports have a l ready (more accurate ly, finally)
been published concerning the f irst exper iments with
a ta rge t containing polar ized p r o t o n s . Abragam and
his co-workers'- 4 0-' m e a s u r e d the spin corre la t ion in
the sca t ter ing of polar ized incident protons (with
energy 20 MeV) by protons of a polar ized ta rge t
(lanthanum-magnesium double n i t ra te , in which 0.3
per cent of the lanthanum is rep laced by cer ium),
with a degree of proton polar izat ion equal to 20 per
cent.

The Berkeley group'-41-' investigated sca t ter ing of
250-MeV pions by protons of a polar ized ta rge t
(lanthanum-magnesium double n i t r a t e , in which 1 per
cent of the lanthanum is replaced by neodymium) with
a proton polar izat ion of approximately 25 per cent* .

We must note, however, that lanthanum-magnesium
double n i t r a t e is by far not an ideal proton ta rge t .
Although this ta rget contains a sufficiently large num-
ber of hydrogen atoms (3.7 x Ю 2 2 cm" 3 ), the i n t e r p r e -
tation of the exper iments is hindered by the fact that
many m o r e protons a r e contained in the other target
nuclei .

F r o m this point of view, m o r e convenient t a r g e t s
a r e the var ious hydrocarbon compounds (polyethylene,

*A detailed description of the experiments made with polar-
ized-target protons can be found ini4'14-!.
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polystyrene), containing as magnetic centers a free-
radical impurity. However, so far no strong proton
polarization could be obtained for such substances.

An ideal target for nuclear research is solid hydro-
gen. Experiments were set up in which solid H2 was
bombarded (with gamma quanta, x rays); this yields a
H2 lattice into which a small amount of atomic hydro-
gen has been introduced. However, further experi-
ments have shown that the microwave field which
should cause the forbidden transitions does not lead
to the polarization of the protons (H2 molecules*).
The explanation of this fact follows (see, for exam-
ple,'-4-'). The ground state of the H2 molecule (state
with zero rotational quantum number K) is the para
state, in which the summary spin of the two protons
is 0. It is clear that there can be no talk of a spin flip
of one of the protons of the molecule by means of the
microwave quantum; indeed, such a transition is a
para-ortho transformation, and the energy required
for it is larger by many orders of magnitude than the
energy of the microwave-field quanta.

It is well known, however, that when hydrogen is
cooled to helium temperatures, it is possible to store
in it, for a sufficiently long period of time, an apprec-
iable quantity of ortho hydrogen (we note that in our
case this will be difficult, since the atomic hydrogen
is a catalyst which accelerates the ortho-para con-
version), and one can raise the question of the polar-
ization of the spins of the protons which are contained
in the ortho-hydrogen molecules. However, in the
ortho state the rotational quantum number of the mole-
cule is К = 1.

In view of the small mass of the protons, this rota-
tion is rapid, and it causes a sufficiently fast relaxa-
tion of the proton spins. As we have already seen in
Sec. 3, rapid relaxation of the nuclei (that is, small
Tn), destroys the dynamic polarization.

The situation is entirely different in the case of
solid D2 or HD. The ground state of the D2 molecule
is the ortho state, and the summary spin of the two
protons is equal to two with a probability of 5/6 and
to zero with a probability of 1/6. On the other hand,
in the case of the HD molecule there are no limita-
tions whatever connected with the symmetry. The
solid D2 and solid HD are highly promising polarized
targets provided no trouble is caused by the fact that
the electron spin-lattice relaxation time is large be-
cause of the lack of spin-orbit interaction. For de-
tails and references concerning polarization of pure
hydrogen targets we refer the reader to the r e -
views [4,14]

*We note that the resonant frequencies of the protons of
atomic and molecular hydrogen differ greatly. Indeed, in the case
of atomic hydrogen the energy of the hyperfine interaction of the
spins of the electron and the proton is much larger than the
Zeeman energy of the proton.

APPENDIX A

In the derivation of (2.7) we follow the book [ 3 ] .
From the energy operator of the dipole-dipole

interaction between the magnetic ion and the nucleus
we separate the term V, which is proportional to Szl+

V = %ASJ+, (A.I)

where

A= = y-^-sin Фcos фе ^. (A.2)

We i n t r o d u c e t h e c o r r e l a t i o n f u n c t i o n of t h e o p e r a t o r

A S Z

!)> (A.3)

(A. 4)

and its Fourier transform

J(a>) = С G(t)e-iatdt.

A c c o r d i n g t o t h e g e n e r a l t h e o r y of m a g n e t i c r e l a x a -

t i o n , w e h a v e for t h e r e l a x a t i o n t i m e of t h e n u c l e u s

(A. 5)

T h u s

(A.6)

We a s s u m e t h a t t h e c o r r e l a t i o n i s e x p o n e n t i a l , w i t h a

correlation time т. Then

I'l (A.7)

a n d w e o b t a i n (2.7) of t h e m a i n t e x t .

H o w e v e r , if E y e H / k T i s n o t s m a l l , t h e n (A.7) i s n o t

c o r r e c t . I n d e e d , in t h i s c a s e ( S z ) * 0, ( S z )

* ( 1 / 3 ) S ( S + 1).

T h i s c i r c u m s t a n c e c a n b e e a s i l y t a k e n i n t o a c -

c o u n t . ' - 4 2 ^ I n d e e d , w h e n t = 0 t h e c o r r e l a t o r

( S z ( O ) S z ( t ) ) i s e q u a l t o < S | ) , a n d w h e n t = °° i t b e -

c o m e s e q u a l t o ( s z ) 2 . A s s u m i n g t h a t t h e c o r r e l a t o r

c h a n g e s e x p o n e n t i a l l y in t i m e , w e c a n w r i t e

(A.8)

(A.9)

(АЛО)

For J(CL>) we obtain

2лй (со)

On t h e o t h e r h a n d ,

kT

(B s is the Brillouin function, and the prime denotes
differentiation with respect to the argument).

According to (A.5), (A.9), and (A.10) there appears
in the right sides of (2.7) and (2.9) an additional factor

~s+
- f s%yeH \ (A.11)

The replacement of the quantity С by the factor
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(A.11) leads to a corresponding change in T n [see

formulas (5.26)]. Thus, when KyeH > 2kT we have an

additional increase in T n with increase of the ratio

H/T.

Formulas (A.9) and (A.10) were used in'-42-' to cal-

culate the dependence of the diffusion-barrier radius

б on T / T 2 and a m o r e accurate formula than our

formula (4.14) was obtained.

APPENDIX В

We p r e s e n t cer ta in r e s u l t s of the well-known paper

by Van Vleck, devoted to the theory of the line width of

magnetic re sonance in a r igid lattice.'-1 8-' We shall

consider the case of nuclear resonance (we confine

ourse lves h e r e only to an account of the dipole-dipole

interact ion of the spins).

The m e a n - s q u a r e width of the nuclear resonance

line of nuclei of this type (with spin I and gyromagnetic

ra t io y n ) is given by the formula

(B.I)

h e r e the summation in the first t e r m is over all the

nuclei which a r e identical with the nucleus i (the p r i m e

denotes that the t e r m with j = i has been omitted from

the sum); r y is the distance between the nuclei i and

j ; i?y is the angle between the vector г у and the ex-

t e r n a l magnetic field. The summation in the second

t e r m is over nuclei which a r e not identical with the

nucleus i; 1^ and y^ a r e the corresponding spin and

gyromagnetic r a t i o .

For a cubic crys ta l we can der ive the following

f o r m u l a [ 1 8 ' 1 6 ]

=~ (ap+ bpA),

where

(B.2)

(B.3)

Xj, X2, and X3 a r e the direct ion cosines of the external

magnetic field re la t ive to the cubic axes of the c rys ta l ;

the quantit ies a p and b p a r e given by the formulas

(B.4)

/!2у, and МзЦ a r e the direct ion cosines of the
h b )vector ту re la t ive to the cubic axes) .

Let us consider the case of a cubic crys ta l in which

all the nuclei that p o s s e s s spins a r e identical. (B.I)

and (B.2) yield

(B.5)

cubic latt ice is pr imit ive ( F c ) , body-centered (F^), or

face-centered (r j ) . A numerica l e s t imate yields for

the F c latt ice

S = 12.4ftгу'па-«1 (/+1) (Л— 0.19)

for t h e r £ l a t t i c e

S = 5.7?.2у£в-в/ (7+1) (2.12—Л);

(B.6a)

(B.6b)

where a is the distance between the n e a r e s t nuclei.

In the case of a powder or of a polycrystal of the

cubic system, it is n e c e s s a r y to average the e x p r e s -

sion (1—3 cos 2 i?jj)2 [or e l se it is n e c e s s a r y to rep lace

in (B.5) Л by 3/5]. As a r e s u l t we obtain

( B ' 7 )

(B.8)

where g = 8.4 for the F c latt ice, 14.2 for the Г* la t-

t ice, and 14.4 for the Ff lat t ice. We thus obtain

»-«. (B.9)

Numerica l e s t i m a t e s yield

For a Gaussian line, the distribution function r e l a -

tive to Дш = ш — шп is of the form [we recognize that

= T2]

Tl(Afi))M ( в л о )

(B. l l )

We thus have for a Gaussian line

6> = <(Aci))2> = -^F5- .

We note that for a non-Gaussian line the express ion

ST2 depends on the orientation of the c r y s t a l re lat ive

to the external field.

(B.9) and (B. l l ) give in the case of a Gaussian line

(for a powder)

5я ~\ 1/2 a3

•J -j^r- (B.12)67(7 + 1) g

In the case of a spin I = 1/2 we obtain for the F c

lat t ice

а з

a n d f o r t h e FY, a n d r £ l a t t i c e s

(B.13a)

(B.13b)

APPENDIX С

We s e p a r a t e from the energy operator of the dipole-

d i p o l e i n t e r a c t i o n of t h e n u c l e i i a n d j t h e t e r m Vy

w h i c h c a u s e s t h e f l ip- f lop t r a n s i t i o n s ' - 1 ' 3 - ' :

( C . I )

T h e q u a n t i t i e s a p a n d bp d e p e n d on w h e t h e r t h e In t h e c a s e of a f l ip-f lop t r a n s i t i o n of a p a i r of
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identical nuclei, the number of final s t a tes per unit
interval of frequency is T2/V27r.* For the probabil i ty
(per unit time) of the flip-flop t rans i t ion of the pa i r of
nuclei (i, j) we obtain

S i n c e I = 1 / 2 , t h i s y i e l d s

1 8 / 2 r '
1 _ 3 cos* i)u)* T2. (C2)

We consider a c rys ta l in which all nuclei with spins
a r e ident ical . The formula (B.I) yields (we substi tute
I = 1/2)

According to (C.2) and (C.3)

(C3)

(C.4)

A s s u m i n g t h a t t h e n u c l e a r - r e s o n a n c e l i n e i s G a u s s i a n ,

w e a p p l y ( B . l l ) a n d o b t a i n

S ' w w = — £ ^ - < c - 5 )

According to (4.7), it is necessa ry , in order to d e t e r -
mine the coefficient of spin diffusion D, to calculate
the probabil i ty W of the flip-flop t rans i t ion of the pair
of nea r e s t identical nuclei . It is easy to see that W is
equal to the ra t io of the express ion in (C.5) to the
quantity g which en te r s in (B.7) (g plays the ro le of
the effective number of nea r e s t neighbors) . This p r o -
cedure however, is valid only if averaging is c a r r i ed
out over the direct ions (in pa r t i cu la r , this p rocedure
is exact for a powder or a polycrysta l of the cubic
sys tem) .

As a r e su l t we obtain for the F c lat t ice

D = 34Г,

a n d f o r t h e T* a n d r i , l a t t i c e s
f

I n m o s t p a p e r s o n s p i n d i f f u s i o n t h e e s t i m a t e u s e d

i s

~307>,
( C . 6 )

7 6 5

A P P E N D D X D

F o r a c u b i c c r y s t a l w e g e t f r o m (4 .11) , ( B . 2 ) , a n d

(C.3) (we a r e c o n s i d e r i n g a c r y s t a l in w h i c h a l l s p i n -

p o s s e s s i n g n u c l e i a r e i d e n t i c a l )

( D . I )
7 2 > ' 2 Уаб + Ь6Л

A n u m e r i c a l e s t i m a t e of t h e q u a n t i t i e s a 4 , b 4 , a 6 ,

and b 6 leads to the following r e s u l t s (we a r e c o n s i d e r -
ing a Gaussian l ine, A = 1): for the Г с lat t ice

.27
V Л —0.19

and for Г f

V 2.13 — Л

( D . 2 a )

( D . 2 b )

For the latt ice Г с (for example F in the C a F 2

lattice) it follows from (D.2a) that the ra t io of the
values of D when the external field is d i rected along
[100], [110], and [111] respect ive ly is 1:1:1.15, that is,
the anisotropy of D is s m a l l .

On going over to a powder (or a polycrystal), it is
n e c e s s a r y to r e p l a c e Л in (D.2) by 3/5. Using, further,
formulas (B.13), we obtain the values of D for powders
or polycrysta l s of the cubic sys tem. In p a r t i c u l a r ,
for the Г„ lat t ice

and for

D=r~r

D = 13.57-2 '

( D . 3 a )

( D . 3 b )

W e a s s u m e t h a t t h e s e e s t i m a t e s of t h e c o e f f i c i e n t

D a r e m o r e a c c u r a t e t h a n t h e e s t i m a t e ( 4 . 8 ) . I n d e e d ,

t h e e s t i m a t e s ( D . 3 ) t a k e a c c o u n t o f t h e f a c t t h a t f l i p -

f l o p t r a n s i t i o n s t a k e p l a c e n o t o n l y f o r t h e n e a r e s t

i d e n t i c a l n u c l e i .

A P P E N D I X E

W e p r e s e n t t h e m a i n r e s u l t s o b t a i n e d b y B u i s h v i l i

a n d Z u b a r e v , 2 3-' i n w h i c h a q u a n t u m s t a t i s t i c a l d e r i -

v a t i o n of t h e B l o e m b e r g e n e q u a t i o n ( 5 . 1 ) i s g i v e n .

W e c o n s i d e r a c r y s t a l i n w h i c h t h e s p i n - p o s s e s s i n g

n u c l e i a r e i d e n t i c a l . T h e H a m i l t o n i a n o f t h e s y s t e m

i s o f t h e f o r m ( t h e r e i s n o a l t e r n a t i n g f i e l d )

*We take into account the fact that cp (0) = T2/u (see Appendix

B). The factor \J2 is the result of the fact that for a system of two

identical nuclei the total width of the state is \J2 times larger than

for one nucleus (this statement, however, is accurate only for a

Gaussian distribution). An alternate proof of this statement is as

follows. The number of the final states per unit frequency interval

is

И 6(о>г— <o;) ф (<о; — ш„)ф(со у — <ол) rfo; daj = \ 2

where we use for ф(Ло>) formula (B.10).

У 2я

( E . I )

T h e i n d i c e s i a n d j n u m b e r t h e n u c l e i w h i l e m n u m b e r s

t h e m a g n e t i c i o n s ; r e p e a t e d G r e e k i n d i c e s i m p l y s u m -

m a t i o n f r o m u n i t y t o 3 (x , y , z ) ; \Ja@ a n d V a ^ a r e

o p e r a t o r s w h o s e e x p l i c i t f o r m c a n b e r e a d i l y d e t e r -

m i n e d b y u s i n g t h e f o r m u l a f o r t h e d i p o l e - d i p o l e

i n t e r a c t i o n e n e r g y ( w e n o t e t h a t t h e d i a g o n a l c o m p o n -

e n t s o f t h e t e n s o r s U 0 ^ a n d YaP a r e r e a l , w h i l e t h e
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o f f - d i a g o n a l c o m p o n e n t s a r e p u r e i m a g i n a r y ) ; 36 e i s

t h e H a m i l t o n i a n of t h e l a t t i c e a n d of t h e m a g n e t i c i o n s

(with t h e e x c e p t i o n of t h e H a m i l t o n i a n of t h e i r d i p o l e -

d i p o l e i n t e r a c t i o n w i t h t h e n u c l e i ) .

U s i n g t h e m e t h o d of t h e s t a t i s t i c a l o p e r a t o r of t h e

n o n - e q u i l i b r i u m s y s t e m , d e v e l o p e d in ' - 2 4 ^, t h e a u t h o r s

o b t a i n f o r t h e z - c o m p o n e n t of t h e n u c l e a r m a g n e t i z a -

t i o n t h e e q u a t i o n

дМ д {_. дм \ _ .• .
(E.2)

In the absence of a diffusion barrier, the tensor

is given by the formula

B « » = 4 2 '

where

wtl=
167.2

(E.4)

In the case of a Gaussian nuclear-resonance line,

calculation of (E.4) leads to formula (C.2). Further,

in the case of a cubic crystal, we can replace x^x^

in (E.3) by (l/3)r?.6 ag. Thus, (E.3) reduces to

Dap = Шар, where D is given by (4.9).

When account is taken of the diffusion b a r r i e r ,

each t e r m of the sum (E.3) is multiplied by an a p -

p r o p r i a t e exponential, the argument of which is p r o -

portional to the square of the difference of the

resonance frequencies of the nuclei i and j .

The quantity L which e n t e r s in (E.2) is given by

where

iVvz, Kmm. <co)= jj <.Sz

(E.5)

t. (E.6)

It can be shown that

~z(r-rm) F+z ( r- r m ) Kn

r < i s i n 2 d m c o s 2= f c

(•S-m and <pm a r e the polar angle and the azimuth of the

vector r - r m r e la t ive to the externa l field H). Thus,

if we average over the angle »?m, the diagonal p a r t of

L(r) r e d u c e s to the t e r m c £ / | r - r m | " 6 (M - Mo) of

Eq. (5.1). m

Analogously, the off-diagonal pa r t of L(r) reduces

to the express ion

i5 С r - r m 1-3 I r - r m . |-3 sin »mcos sin #m,cos Ьт,е >-*".').

This r e s u l t can also be obtained by following the

p r o c e d u r e of Appendix A, and taking in place of (A.I)

an express ion summed over the magnetic ions:

m
where

'•m— 2 | r r 13

H o w e v e r , t h e o f f - d i a g o n a l p a r t of L ( r ) c a n b e neg-

l e c t e d if t h e m a g n e t i c - i o n c o n c e n t r a t i o n i s n o t t o o

l a r g e .

A P P E N D I X F

We p r e s e n t a d e r i v a t i o n of f o r m u l a (5 .26a) a s

w r i t t e n by d e G e n n e s ' - 2 5 - ' ( s e e a l s o ^ 3 ' 2 6 - ' ) .

1. We s t a r t w i t h E q . ( 5 . 1 ) . C o n s i d e r i n g t h e s t a -

t i o n a r y c a s e in t h e p r e s e n c e of a s a t u r a t i n g f ie ld a n d

c o n f i n i n g o u r s e l v e s t o o n e t e r m in t h e s u m o v e r t h e

m a g n e t i c i o n s , w e o b t a i n

D ш — о - в (M—м0)—2AM=0,

or

where

( F . I )

( F . 2 )

We s o l v e ( F . I ) u n d e r t h e b o u n d a r y c o n d i t i o n s

M(0) = M0, M(co) = 0.

We s h a l l s h o w b e l o w t h a t t h e c o n d i t i o n b « L i s a l w a y s

s a t i s f i e d . W h e n r » b w e c a n n e g l e c t t h e r e l a x a t i o n

t e r m in ( F . I ) , a n d t h e e q u a t i o n t a k e s t h e f o r m

\M — L~*M = (F.3)

w i t h a c e n t r a l l y - s y m m e t r i c a l s o l u t i o n s a t i s f y i n g t h e

c o n d i t i o n M(°°) = 0 a n d p r o p o r t i o n a l t o r " 1 e x p ( — r / L ) .

T o d e t e r m i n e t h e p r o p o r t i o n a l i t y c o e f f i c i e n t i t i s

n e c e s s a r y t o m a k e t h i s e q u a t i o n c o n t i n u o u s w i t h t h e

s o l u t i o n of ( F . I ) for s m a l l v a l u e s of r . On t h e o t h e r

h a n d , w h e n b « r « L t h e t e r m L~2M in ( F . I ) p l a y s n o

r o l e a n d t h e s o l u t i o n i s e q u a l t o M o b / r [ s e e (5 .14) ;

s i n c e w e d i s r e g a r d t h e d i f fus ion b a r r i e r , w e h a v e

F = b ] . T h u s , w h e n r » b

(F.4)

T h e f a c t o r e x p (— r / L ) i s b r o u g h t a b o u t by t h e p r e s -

e n c e of t h e s a t u r a t i n g f i e l d . T h i s f a c t o r i s i m p o r t a n t

w h e n r i s of t h e o r d e r of o r l a r g e r t h a n L . I t i s e s s e n -

t i a l t h a t t h e s e d i s t a n c e s g r e a t l y e x c e e d b .

2 . We c i r c u m s c r i b e a s p h e r e of r a d i u s b a r o u n d

e a c h of t h e m a g n e t i c i o n s . We a s s u m e t h a t t h e n u c l e a r

s p i n s a r e c o n t i n u o u s l y in e q u i l i b r i u m w i t h t h e l a t t i c e

i n s i d e t h e s e s p h e r e s , and t h a t in t h e v o l u m e o u t s i d e

t h e s e s p h e r e s w e c a n n e g l e c t d i r e c t r e l a x a t i o n . T h u s ,

w e o b t a i n in p l a c e of ( F . I )

ЭМ w h e n i r — r m | > b,

when | r—rm | < ь.
( F . 5 )

3 . L e t u s c o n s i d e r t h e s t a t i o n a r y c a s e . We s o l v e

( F . 3 ) f o r r > b w i t h t h e c o n d i t i o n s
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Af (») = *„, ^ | д = 0.

The centrally-symmetric solution can be written in
the form

M (r) = — [cj sh fcr+ c2 ch Ar],

The boundary conditions yield

* = 4 = С ^ у л . (F.6)*

i \ L) J

kR — Oi kRl~kb + A

We define T n by means of the formula [see (5.22)]

Тп = (2А1/г)~1. (F .8)

According to the meaning of A ^ , taking к in (F.6) to
mean

i/ (F.9)

we should have

which yields

± ^

(F.10)

Let us assume that kR « 1 (this assumption will be
justif ied below); we then have б = (kR) 3/3 and s imple
t rans format ions yield

-
дз

( F . l l )

Since b « R, we obtain kR « 1 (and all the m o r e
kb « 1). Then (F.9), ( F . l l ) , and (2.1) yield

т = д з _
" 3Db ~~inSDb

(F.12)

W e t h u s o b t a i n ( 5 . 2 6 a ) of t h e m a i n t e x t .

4 . R e f e r e n c e ^ 2 5 - ' a l s o c o n s i d e r s t h e p r o b l e m of

p u r e r e l a x a t i o n , a n d s o l v e s ( F . 5 ) i n t h e a b s e n c e of t h e

t e r m 2 A M . T h e r e s u l t o f t h i s a n a l y s i s s h o w s t h a t t h e

t o t a l n u c l e a r m a g n e t i c m o m e n t of t h e s a m p l e r e l a x e s

e x p o n e n t i a l l y , w i t h t h e r e l a x a t i o n t i m e g i v e n b y ( F . 1 2 ) .

A P P E N D I X G

W e p r e s e n t a d e r i v a t i o n o f t h e e x p r e s s i o n f o r T n

f o r b « 6 , g i v e n i n t l 9 ] .

If the r a t i o 6/b is sufficiently large, then the diffu-
sion in the layer б < r < R will be much faster than
d i r e c t re laxat ion of the nuclei located at d i s tances of
the o r d e r of б from the magnetic ion. In such a case
an internal equilibrium will be establ ished in the sys-
tem of nuclei located in the spher ical shell б < r < R
(we a r e r e f e r r i n g to all spher ical shel l s about each
of the magnetic ions of the specimen), and subse-
quently this shell will gradually enter into equilibrium
with the la t t ice . Because of this , the nuclear magne-

tization M in the layer б < r < R will be a function of t
only, and not of r . The relaxat ion t ime of the nuclear
magnetic moment of the specimen can be obtained by
averaging C/r 6 over all the ions located at a dis tance
r > б from the nucleus . Thus,

CO
7 7 = [ ~e~N dV = ~ CS"3.

(F.7) Using (2.1), we obtain formula (5.26b).

APPENDDC H

For a better explanation of the physical n a t u r e of
the solution of the problem with the diffusion b a r r i e r ,
we p r e s e n t a solution of Eq. (5.4) for the following
form of the function D(r):

D(r) =
Dt when < 6,
D when r > 6.

We introduce the notation

c_

(H.I)

(H.2)

When r > 6, the solution is given by (5.6); when r < 6,
the solution is given by a s i m i l a r formula, but the
argument of the functions I± 1/i will be /3J'2/2r2, and
the corresponding coefficients will be denoted by Aj
and Bj.

The boundary conditions a r e of the form M(0) = Mo

and M(°°) = 0. When r = б it is n e c e s s a r y to join toge-
ther the express ion for M(r) and D(r)dM/dr. The ag-
gregate of these four conditions d e t e r m i n e s the coeffi-
cients A, B, Aj, and Bj.

The condition M(0) = Mo yields Aj = Bj. F r o m
formula (5.8) we find again that the condition M(°°) = 0
yields A = 7г/?1/8/4Г(5/4). F u r t h e r , we r e p l a c e В in
(5.10) by F. After applying the conditions M(0) = Mo

and M(°°) = 0, we a r e left with two undetermined con-
stants Aj and F, which a r e determined from the con-
ditions for continuity.

In the genera l case we obtain r a t h e r c u m b e r s o m e
formulas, so that we confine ourse lves to the case
б « /3! / 4 . Then, when r < б

RV2

dM (H.3)

(the differentiation gives r i s e to one m o r e t e r m , which,
however, we can neglect).

Comparing the conditions for the continuity of M
and D(r)dM/dr at r = 6, and eliminating Aj from these
two re la t ions, we obtain a connection between the ex-
ternal values of M and dM/dr at r = б

-\M0~M(b)\ (H.4)

*sh = sinh, ch = cosh.

[in place of M(6 + 0) we can wri te M(6), s ince M(r) is
continuous at r = 6].
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If Dj tends to zero, that is, /3j tends to infinity, then
(H.4) yields M'(6 + 0) = 0. In other words, if D(r) = 0
when r < 6, we obtain for the external solution the
boundary condition (5.23) at r = 6.

Assume now that the following conditions are satis-
fied

Ь = 0.68р1/4« 6 « pV".

Then we use for r < б formula (H.3), and for r > б
formula (5.12):

M(r) = M0( - - (H.5)

Comparing the continuity conditions and again e l imin-
ating the quantity Aj, we obtain

363

.f r i (H.6)

which e x p r e s s e s in implicit form F in t e r m s of /3, (3j,
and 6.

In the l imit a s Dj — 0 and jS^ —- °° (H.6) yields

F=-$- (H.7)

that i s , we obtain (5.26b).
Express ing Aj in t e r m s F, we readi ly obtain a

formula for M(r) for r s m a l l e r than but close to 6:

. (H.8)

It follows from the la s t formula that the d e c r e a s e of
M(r) from a value Mo to a value M(6) « Mo, o c c u r s
essent ia l ly in a layer (6 - 6 3 D | / 2 / C 1 / 2 , 6). In the l imit
a s Dj —*• 0, the thickness of this layer tends to 0.

Notes added in proof. 1. The nuclear-relaxation diffusion the-
ory development in Sec. 5 does not agree primarily with low-tem-
perature measurements, when samples are used with magnetic-ion
concentrations such that rs <K ть is satisfied (see Sec. 7). It is

therefore possible that the theory disagrees with experiment be-

cause we have assumed (see Sec. 2) that r ~ TS when r s < r ( .

We must, however, take into account that a low magnetic-impu-

rity concentration the energy of the electron spin-spin interac-

tions will be smaller than the energy of the nuclear Zeeman inter-

actions. Because of this, the "electronic spin-spin interactions —

lattice" region may turn out to be narrow for the transfer of energy

from the nuclear spins to the lattice. Then, when r s < T; the ef-

fective т will not be equal to rB, but will lie between r s and rh

which leads (see Sec. 7) to a better agreement between theory and

the experimental data on the Jeffries group.

2. In a recent paper, M. Goldman [Phys. Rev. A138, 1675

(1965)] investigated the relaxation of protons in para-dibromoben-

zene. The nature and the concentration of the magnetic impurity

were unknown (the impurity concentration, however, was so small

that T; « r s and т = т; for all T). The dependence of the relaxa-

tion time of the protons T p on the field (in the interval from 0 to

140 Oe) was determined at T = 4.2°K. It was found that with in-

creasing field the relation T p

 a H ' : gives way to a relation

T p cc H2. This result agrees with (5.27a), (5.27b), and (4.14a), if

it is assumed that TL does not depend on H and that rt > T 2 . It is

noted in the paper that the experimentally obtained relation T p (H)

agrees well with the theoretical curve for the square-well model.
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