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1. INTRODUCTION

ELECTROMAGNETIC waves propagating in cosmic
space are radiated as the result of various mecha-
nisms. Thus, in the optical part of the spectrum the
main role is played by radiation resulting from tran-
sitions of electrons between discrete atomic or mo-
lecular levels (bound-bound transitions), from recom-
bination (free-bound transitions), and, finally, from
transitions in the continuous spectrum (free-free
transitions). In the last case when the conditions

hw < KT are satisfied (w = 27y is the cyelic fre-
quency of the radiation and T is the absolute temper-
ature ), the radiation process can be treated classically
—we are of course considering bremsstrahlung arising
in the acceleration of an electron passing near an atom
or an ion. Some components of the cosmic radio emis-
sion are generated in similar fashion. Thus, the ob-
served radio emissions of atomic hydrogen (A = 21 cm)
and OH are due to bound-bound transitions, while the
thermal radio emission of interstellar and coronal gas
is bremsstrahlung.

There are also other important radiation mecha-
nisms in the radio region. Among these there are in
particular those incoherent and coherent mechanisms
of sporadic solar radio emission whose action is asso-
ciated with the presence of a quite dense plasma. In
other words, we are considering emissions which
could not occur from the motion of individual electrons
in vacuum. Making the picture rather crude, we may
say that these mechanisms are important in the radio
region because for the solar atmosphere the plasma
frequency lies just in the radio region, wy=+v 4me?Ng/m
= 5.64 x 104V Ng (where Ng is the electron concentra-
tion).

There is, however, another emission mechanism
which acts even for the motion of electrons in vacuum
and plays a tremendous role in radio astronomy. We

*This paper is being published simultaneously in English in
the Annual Review of Astronomy and Astrophysics, vol. 3, 1965.
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are speaking of magnetic bremsstrahlung, sometimes
called synchrotron radiation.

In the motion of a charged particle in a magnetic
field, as soon as its velocity is not directed along the
field, the particle experiences an acceleration and
consequently must radiate electromagnetic waves.
Thus, the appearance of magnetic bremsstrahlung
immediately follows simply from the fundamentals of
classical electrodynamics. The main features charac-
teristic of the magnetic bremsstrahlung of ultrarela-
tivistic particles have been known for a long time; we
may point out that this problem was already consid-
ered in quite great detail in the book of Schott, [1] pub-
lished in 1912. But, as usually occurs in such cases,
magnetic bremsstrahlung attracted attention only when
its investigation became associated with quite impor-
tant and specific physical and astrophysical problems.
By these, we refer to the magnetic bremsstrahlung in
electron accelerators, %3] in the terrestrial magnetic
field, %) and under cosmic conditions (cf. [16-18] ana
below ). *

The theory of magnetic bremsstrahlung was devel -
oped after Schott by many authors (cf. [2-%14-11]), How-
ever, neither the analysis nor the presentation of all
these papers are of direct importance for us. The
physical aspects of the problem and even the compu-
tations, so long as we are interested only in order of
magnitude, can be obtained in most cases from elemen-
tary arguments (cf. Secs. 2 and 3). As for some of the
formulas which are obtained as a result of long compu-
tations, we present them without proof, referring to the
original paper in which one can find the details. At the
same time, we hope that what we have given will be

*There is a very extensive literature concerning the problems
considered in this paper. In this connection, to give a complete
reference list would be almost impossible and rather useless, We
refer primarily to papers which are of interest for the correct under-
standing of the history of the problem, to summaries, and finally
to individual papers which are directly used in the text. We also
mention that at certain points in the present paper we make use
of material contained in our book.[*?]
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sufficient for readers to make use of the theory of
magnetic bremsstrahlung and its applications to typi-
cal astrophysical problems. In particular, we treat
the problem of magnetic bremsstrahlung in the motion
of electrons not in a vacuum, but in a plasma (cf.

Sec. 4 ), since this is important in many cases (dis-
crete sources of cosmic radio emission, solar corona,
ete. ).

The interest in magnetic bremsstrahlung for astro-
physics is primarily related to the fact that the non-
thermal (non-equilibrium) cosmic radio emission in
most cases has precisely the nature of a magnetic
bremsstrahlung. (6-9,18=20] Thjg applies to the general
galactic radio emission (radiation of the disc and halo),
radio emission of the envelopes of supernovae (Cassi-
opeia A, Taurus A, etc. ), and radio emission of normal
and radio galaxies (we are referring to the radiation
in the continuous spectrum). A partial magnetic
bremsstrahlung character is present also in the spo-
radic radio emission of the sun, (1217231 45 well as of
Jupiter.23:24 In addition, in particular cases (Crab
nebula—Taurus A, radio galaxy M87 = NGC4486
= Virgo A, galaxy M82, and possibly the quasar
sources —source 3C273B etc. ), one observes optical
magnetic bremsstrahlung;[13’25’263 it appears that this
is the case also for the optical radiation with a con-
tinuous spectrum which sometimes occurs during the
time of solar flares.[?] In certain cases, especially
in the Crab nebula, one may also expect the appear-
ance of cosmic magnetic bremsstrahlung in the x-ray
region. [27732]

In those cases where the cosmic radio or optical
emission has the character of a magnetic bremsstrahl -
ung, the determination of the intensity in the spectrum
of this radiation enables one to obtain information about
the concentration and the energy spectrum of relativis-
tic electrons in the corresponding source. It is for this
reason that the question of magnetic bremsstrahlung in
the cosmos is closely connected with the astrophysics
of cosmic rays, or, using a more common terminology,
with the problem of the origin of cosmic rays, (118,13,
33,341 and also with gamma and x-ray astronomy. [27-32]

Thus magnetic bremsstrahlung plays an important
role in contemporary astrophysics, and one must con-
sider it in analyzing a variety of important problems.
It is understood, however, that in the framework of the
present paper it is impossible to present in detail all
of these problems as well as the results of radioastro-
nomic investigations. We therefore restrict our pre-
sentation to the theory of magnetic bremsstrahlung and
certain ways of applying it in astrophysics (Sec. 5).

Let us make just a few historical remarks. This
seems appropriate to us because in the literature the
history of the question is frequently presented in-
correctly.

Non-thermal cosmic radio signals were first as-
sumed to be formed in the atmospheres of stars
(“‘radio-star hypothesis’’). (35,361 At first glance, such
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a point of view seems natural, considering the
existence of the quite intense sporadic radio emission
of the sun. However, it is easy to see that to explain
the observational data the hypothetical radio stars must
be distinguished by very unusual properties. The es-
pecially fantastic requirements presupposed in the
radio-star hypothesis became clear after the quasi-
spherical component of the general galactic radio
emission was observed. "] It then became clear that
the sources of the non-thermal galactic radio radiation
are mainly in the galactic halo whose existence was
predicted only just a little earlier. [38] Nevertheless,
even in paper (37] and in some of those which fol-
lowed, [3%4%] the radio-star hypothesis still was not
discarded. But if we associate the general galactic
radio emission with magnetic bremsstrahlung of rela-
tivistic electrons, 8] then we immediately arrive at
completely tenable and reasonable estimates of the in-
tensities of interstellar fields and the concentration of
relativistic electrons. In the case of discrete

sources, [&8] the estimates are also satisfactory.
Thus, in the U.S.S.R. the radio-star hypothesis was
discarded as early as 1953, and the magnetic-brems-
strahlung character of the main part of the non-thermal
cosmic radio emission seemed unquestionable.

For physicists the mechanism of magnetic brems-
strahlung is so simple and lucid that to use this me-
chanism under cosmic conditions seemed completely
natural. But to many of the astronomers the mechanism
of magnetic bremsstrahlung at first apparently ap-
peared to be too strange and applicable apparently only
to the cosmic radio emission. Because of this the pop-
ularity of the magnetic-bremsstrahlung hypothesis rose
rapidly after the optical magnetic bremsstrahlung was
detected. So far as we know, the question of cosmic
optical magnetic bremsstrahlung was first discussed
in 1952 by Gordon as applied to solar flares. (2] pater,
Shklovskil applied the same picture to explain part of
the optical emission of the Crab nebula.['3] Magnetic
bremsstrahlung, as is obvious from the most elemen-
tary considerations (cf. Secs. 2 and 3), is generally
speaking polarized. Thus already in 1953 proposals 4L
12,1L,12] were made regarding polarization measure-
ments in the optical and radio regions.* Very quickly
the polarization of the optical emission of the Crab
nebula (%5261 and of the jet in the NGC4486 galaxy
(radio galaxy Virgo A) was detected. ) In the radio
region the polarization of the observed magnetic
bremsstrahlung generally is much weaker for a
variety of reasons and primarily because of the Fara-
day rotation of the plane of polarization in the sources
and in the interstellar media. However, even in this

*It is quite curious that at this first stage the possibility of
observing the polarization of the optical radiation of the Crab
nebula gave rise to a dispute (cf.[**]; we should like to call atten-
tion to the summary[*’] as a source of information about the state
of the problem at the middle of 1953).
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case, the polarization was detected (cf., for exam-
ple, [45"47:]).

The polarization measurements seemed especially
convincing to many astronomers apparently because
from the point of view of all the known non-magnetic
bremsstrahlung mechanisms it was difficult and, in
fact, essentially impossible to explain the polarization.
However, we feel that there was no reason for doubt-
ing the magnetic-bremsstrahlung character of the non-
thermal cosmic radio radiation and of the optical radi-
ation in the continuous spectrum in the Crab and the
Virgo sources, independent of measurements of the
polarization.

In any case, at the Paris symposium on radio as-
tronomy in 1958 (cf. [48]), in contrast to the Man-
chester symposium of 1955 (cf. [4]), the magnetic-
bremsstrahlung theory of the non-thermal cosmic
radio emission already was generally accepted.

2. MAGNETIC BREMSSTRAHLUNG OF AN INDI-
VIDUAL ELECTRON

2.1. Character of Electromagnetic Radiation from the
Acceleration of Nonrelativistic and Ultrarelativistic
Particles

If a charged particle moves in vacuum, it radiates
electromagnetic waves only when it is accelerated
(during motion in a medium the picture is changed
fundamentally; the influence of the medium will be
treated in Sec. 4). In the nonrelativistic case when the
velocity of the particle v < ¢ = 3 x 10! em/sec, the
radiation usually has a dipole character. More pre-
cisely, the intensity of the quadrupole and higher mul-
tipole radiations is proportional to additional factors
of the order of (v/¢)*® ~ (a/A)21, where a is the
size of the radiating system (for example, an oscil-
lator), A =cT is the wave length of the radiation,

T ~ a/v is the characteristic period of motion of the
particle, n =1 for a quadrupole, n = 2 for an octu-
pole, ete. So, for example, the quadrupole radiation
is usually important only if the dipole moment of the
system is equal to zero or is anomalously small. For
a dipole (oscillator ) with moment p changing only

in magnitude, the electric field in the wave zone
varies according to the law &€ ~ sin y and the in-
tensity is

a7 =P sin*y dQ,
where y is the angle of the wave vector of the radia-
tion k with the axis of the dipole and dQ is the ele-
ment of solid angle (Fig. 1a).

In a magnetic field, a nonrelativistic particle with
charge e and mass m moves along a helix where the
cyclic frequency of its rotation around the axis of the
helix is

o =2 —1.76.10°H. -1
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FIG. 1. a) Electric field intensity of a fixed dipole as a func-
tion of angle y between the axis of the dipole p and the wave
vector k. b) Intensity of cyclotron radiation as a function of angle ¢
between the magnetic field vector H and the wave vector k.

Here H is the magnetic field strength, and the numer-
ical value is given for an electron (in formula (2.1),
and later on, unless specifically stated, we give the
absolute value of the charge of the particle).

The radiation from a nonrelativistic electron dur-
ing its motion in a magnetic field is sometimes called
cyclotron radiation. The frequency of the cyclotron
radiation is whm and is dipole radiation. In the sim-
plest case of circular motion (orbit radius ry = V/wf{m
= mev/eH), the particle radiates like two mutually
perpendicular linear oscillators shifted in phase by
7/2, or, what is the same thing, like a fixed dipole
perpendicular to the magnetic field and rotating with
frequency wg). The intensity of the cyclotron radia-
tion averaged over a period is

2 (o)
8mcd

dJ = (1 cos?2%)dQ,

where # is the angle between k and the field H

(Fig. 1,b). For the helical motion, so long as the com-

ponent of velocity parallel to the field v =v- H/H « ¢,

the intensity distribution changes very slightly.
Ultrarelativistic particles radiate completely dif-

ferently. For them

ey -2 <.

When v ~ ¢ the dipole radiation is by no means pre-
dominant in intensity, and the character of the radia-
tion is most simply explained qualitatively as follows:
We change to a system of coordinates in which the in-
stantaneous velocity of the particle is zero or is non-
relativistic. Suppose that in this system the radiation
has dipole character and occurs at frequency wj. We
now transform the radiation field by changing to a sys-
tem in which the velocity of the particle is v. Then the
frequency is determined by the well-known formula for
the Doppler effect (¢ is the angle between v and the
wave vector k)

(2.2)
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eV =(e)

5 2.3)
1—? cos P
We see that in the ultrarelativistic case (2.2) the
frequency w ~ wi/N'1-(v/c)? = w;E/mec? is large
compared to wj, so long as the angle ¢ is sufficiently
small, namely, so long as

pE=20 (2.4)
If, however, ¥ > mc¥/E, the frequency of the radia-
tion drops markedly. Expressions for the field
strength and the intensity of the radiation (cf., for ex-
ample, tr] ) also contain in the denominator some
power of the factor (1 - (v/c)cos ¢). Thus the radia-
tion is mainly concentrated within a cone of opening
angle ~ mc?/E around the direction of the instanta-
neous velocity of the particle (Fig. 2). Below we shall
always assume that condition (2.2) is satisfied, i.e.,
that we are dealing with ultrarelativistic particles.

&

FIG. 2. Projection of the electric field on a plane passing
through the axis of the dipole as a function of angle ¢ between
the translational velocity of the dipole v and the wave vector k.
The dipole moves perpendicular to its axis. The field distribution
is shown for the case v = 2/3 c.

2.2. Magnetic Bremsstrahlung of an Ultrarelativistic
Electron (Estimates)

In the motion of an electron with arbitrary total en-
ergy E in a magnetic field, the rotation period T

= 27/ wy, where
V1 —<%)i .

O — el mc®  eH
H™ "me E ~ me

(2.5)

i
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FIG. 3. Velocity cone of electron moving along a helix around
a magnetic field H. v is the instantaneous velocity of the particle,
0 the angle between v and H, ¢ the angle between k and the near-
est generator of the velocity cone.

2n
T2
@y

-/ —— ¢

N =

~me (me?)?
At=27, (T)

FIG. 4. Electric field in the wave zone as a function of time
for a particle rotating in a magnetic field. This picture is ob-
tained if we rotate the field of a rapidly moving dipole, shown in
Fig. 2, with angular velocity wy.

the axis of the dipole is always perpendicular to the
field H and rotates about it with frequency wyg). The
duration of each pulse is

rHE 7 me2 N2 me me? \ 2
S~ () = ()
where rﬂ = E/eH_L is the radius of curvature of the
space trajectory of the particle*, H| = H sin ¢ is the
magnetic field component perpendicular to the direc-
tion of motion (velocity ) of the electron and the factor

(2.6)

The velocity of the electron v makes a constant angle ¢ (mc%/ E)? appears as a consequence of the Doppler ef-

with the field vector H and describes a cone about the
field direction (Fig. 3). For 6 > ¢ = mc?/E an ob-
server, sitting on the surface of this cone at a large
distance from the radiating particle, fixes his atten-
tion successively on different radiation pulses follow-
ing one another at intervals 7= 27r/wH. The character
of these pulses (Fig. 4) is easily explained if we con-
sider the electric field of a rapidly moving dipole
(Fig. 2) which turns relative to the observer as the
result of the motion of the particle in the magnetic
field (the acceleration vector, which corresponds to

fect. In fact, within the limits of angle ¢ = me?/E the

*We emphasize the difference between the radius of curvature

Y = ® and the radius of cur-

of the space trajectory r;}:m o= TH
H sin eH |

vsing _csin® Esin®O ro 4po circle which describes
g [0} e

the projection of the electron velocity on the plane perpendicular

to the field H (the radius r;y will not appear in what follows, and

thus the radii of curvature will usually be designated simply as

rH).

vature ry=
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electron moves in the direction of the observer during
atime At/ = rH.E/c = mc/eH|. During this time the
electron has traversed a path v At’ and the pulse
radiated is therefore also contracted by an amount

v At’ (this is the Doppler effect). As a result, the
observed length of the pulse is of order (c — v)At’
and its duration At = At’ (1 — v/c) = 2At' (mc¥E )2,
which is equivalent to (2.6).

The spectrum of the radiation, consisting of pulses
following one another at intervals 7= 27/wg, will ob-
viously consist of overtones of the frequency wg. In
fact, since 7 > At, in the region of high harmonics the
spectrum can be considered to be continuous, where
the maximum in the spectrum is at the frequency

eH
.L
o~ 5~ (e )

An important point is that the field of the radiation
changes sign (cf. Fig. 4). This is why the spectrum
has a maximum. The effective width of the spectrum
of the radiation is also of order wy,, and thus the
mean spectral density of power of the magnetic brems-
strahlung can be estimated by dividing the total power
of this radiation (cf. formula (2.10) below) by wp,. As
a result

(2.7)

R (2.8)

me2

—  P(E)
P~ ~
One of the characteristic features of magnetic
bremsstrahlung is its polarization. In the coordinate
system fixed on the electron the preferential direction
for the electric vector in the radiated waves lies in the

same plane as the direction of acceleration (c¢f. Fig. 1,a).

Since during the motion of a particle in a magnetic field
the direction of the acceleration is continually changing,
the waves will generally be elliptically polarized. If
the oscillator is moving in the direction of the ob-
server, the polarization of the radiation moving along
the direction of translation does not change. It is thus
clear that magnetic bremsstrahlung of a single elec-
tron in general is polarized elliptically with the elec-
tric field & in the wave a maximum in a plane passing
through the acceleration direction. This means that
the preferential direction of the field & in the wave is
perpendicular to the projection of the magnetic field
and the plane of the diagram. (As usual, by this plane
we mean the plane perpendicular to the line of sight.)
Before proceeding to the results of the quantitative
theory, we should emphasize that the magnetic brems-
strahlung of electromagnetic radiation treated in the
present paper is by no means the only possible type of
magnetic bremsstrahlung. In fact, a charged particle
moving in a magnetic field will radiate all those fields
with which it interacts. Thus particles of all types will
radiate gravitational waves, while, for example, pro-
tons should also radiate 7*, v mesons (processes
p—n+7", p—p +7°), positrons and neutrinos (8"
decay of the proton in a magnetic field, i.e., the pro-

V. L. GINZBURG and S. I.
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cess p—n +e’ + v). However, the intensity of the
magnetic bremsstrahlung of nonelectromagnetic radi-
ation is negligibly small and plays no particular role
in astrophysics. [4%]

2.3. Magnetic Bremsstrahlung of an Electron
(Formulas)

During the motion in a uniform magnetic field H the
frequency of rotation of the electron is given by formula
(2.5), and the radius of the projection of the orbit on the
plane perpendicular to H is

v sin 6 _ mev sin 0

O v N2
The total power in the magnetic bremsstrahlung is
easily calculated from the general formulas (cf. [”],

Secs. 73, 74 ) without carrying out a spectral resolu-
tion. This power is

=

2e4H 3 v2 2e4H?
P = 1
® 3m2ch <1 _v_: A 3m203 < me? ) (2.9)
4
For the ultrarelativistic case
2e4H? 2 e
S = - erg
P (E Bm2c3 <m02 ) =1.57-10 15H2 (mcz > i
=0.98-107H3 ( me? i seevc ’ (2.10)

where the numerical estimates refer to electrons
(and positrons; mec? = 0.51 x 10 eV); for a nucleus
with charge eZ and mass M

P(E)=0.98-1021% (2P (o5 ) 2L

Expression (2.10) obviously determines the rate of

loss of energy by an ultrarelativistic electron moving
in a constant magnetic field. We note that in a field of
electromagnetic radiation with characteristic frequency
w « (mc?)¥/KE the so-called Compton losses of en-
ergy d1ffer from the expression (2.10) by the replace-
ment of H_L by (167r/3)w where wy is the density of
energy in the radiation ( for more details, cf. [34],

Sec. 8).

The calculation of the electromagnetic field for
each of the harmonics of the magnetic bremsstrahlung
is quite involved (detailed calculations are given in
l:1"’]; for circular motion of the electron, i.e., for sin 6
=1, the appropriate expressions are not difficult to
obtain by using the potentials given in [171). If the
electric field of the radiation of an ultrarelativistic
particle is expressed in Fourier series

(2.11)

=<3

€=Re (D g mH'),

n=

where Re is the real part of the expression, at dis-
tance r from the particle the amplitude of the n-th
harmonic of the radiation in the direction k is
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2e* o

o= oxp (i - ) g (€ ) K (80) s

+ 0 (E ) 2Ky (gn) 12} (2.12)

Here e* is the charge of the radiating particle (for
an electron e*= —e¢), ¢ is the angle between the wave
vector k and the nearest generator of the velocity
cone, 1; and l, are two mutually perpendicular unit
vectors in the plane of the diagram, where 1, is par-
allel to the projection of H on this plane, and 1,

=k x l,/k. The functions Ky 3(g,) and Ky/(gy) are
Bessel functions of imaginary argument of the second
kind, while

(2.13)

gn =gy (B2 W),

~3sin

In the expression (2.12), as throughout in symbolic

formulas, we use only the absolute (Gaussian) system

of units.

As one sees from (2.12), the electric vector

Re { &5 "™H'} for a given harmonic describes an

ellipse in the course of time. One of the axes of this

ellipse (the minor axis) is along the projection of H

on the figure plane, and the second (major) axis is

perpendicular to this projection, and their ratio, which

we denote by tan 3, by virtue of (2.12) is equal to
2= i) .

(E2 442 /2K,, (gn)

When 3 > 0 the direction of rotation is right-handed

(clockwise relative to the observer ), and when ¢ < 0

it is left-handed. The angle ¢ is taken to be positive

if the direction of the radiation and the magnetic field

vector lie on the same side of the velocity cone (Fig. 5).

(2.14)*

FIG. 5. Ellipse of vibration of the electric vector in a wave
radiated by a particle moving in a magnetic field. The charge is
assumed to be positive. For a negatively charged particle (an
electron) the direction of rotation is opposite to that shown. K is
the figure plane (the plane perpendicular to the direction of radia-
tion, or, what is the same thing, to the direction of the observer);
1, and 1, are two mutually orthogonal unit vectors in the figure
plane, of which |, is directed along the projection of the magnetic
field H on the figure plane.

*tg = tan.

Ll g
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The polarization degenerates to linear only when
P =0, i.e., if the wave vector lies precisely on the
surface of the velocity cone. For large ¢ (i.e., when
Y > &) the polarization tends toward circular polari-
zation, since for large values of the argument Ky/;(x)
~ Ky5(x) =~ (1/2x)Y2e7X; however, the intensity of the
radiation then becomes neg11g1b1y small (cf. below,
Fig. 6).

15t
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FIG. 6. Magnetic bremsstrahlung of a single electron. The
angular dependence of the radiation fluxes for the two principal
polarization directions: perpendicular to the magnetic field pro-
jection on the figure plane (p{) and along this projection (p'?) for
V/vC = 0.29. The unit for the vertical scale is the coefficient
3e3H/4n*E - r*mer(v V)? in expressions (2.17) and (2.18). The angle
Y = 0 corresponds to the direction of the instantaneous velocity
of the electron.

The density of flux of energy of the radiation aver-
aged over a period, for the energy contained in the n-th
harmonic, is

pn:;_n[gnlz. (2.15)
Since when ¢ = mc?/E « 1 the radiated energy is al-
most entirely concentrated in the region of very high
harmonics where the spectrum is practically continu-
ous, it is convenient to change from harmonic number
n to frequency

., o _ 2 ng3

V=R = T 5e Ve
where we have introduced the notation

V. — 3eH sin@®

€T 4dmmeE® T Fc?)

Then, by virtue of (2.15), (2.12), and (2.16), the spec-

tral densities of flux of radiation with the two princi-
pal polarization directions are

3eH 1
4mime

E_N? (2.16)

3 eSH 2 2
p(vl) = Gner? m(,?E > <1 + %5 £ > Kz/ (g\’)

(vc )2 5 (sz )Ku,, gv), (2.18)

(2.17)

@ __ e3H
b= Z;:rt?r2 me?E

where
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gv=%<1+l§;>% , (2.19)
and we write py = ppdn/dv = 2mpp/wH.

The angular distributions of the radiation fluxes
p{M and p$’ are shown in Fig. 6. For the unit on the
vertical scale we have taken the coefficient
(3e*H/4n*r’mc?t ) (v/vc)? in expressions (2.17) and
(2.18). The curves are drawn for v/vg = 0.29 which
corresponds, as we shall see later, to the maximum
in the frequency spectrum of the total radiation (over
all directions) of an electron. Figure 6 shows that in
the region of small angles ¥ the main contribution to
the radiation comes from p{,”, i.e., from vibrations
for which the electric field direction is perpendicular
to the projection of H on the figure plane.

We now find the spectral distribution of the total
radiation (over all directions) of a single ultrarelativ-
istic electron. To do this we must integrate expres-
sions (2.17) and (2.18) over all solid angles. Here we
can use the fact that the quantities pf}) and p,‘,z) as
functions of angle § tend rapidly to zero outside an
interval Ay ~ mec?/E and thus, in integrating over
solid angle, the only important contribution comes
from the narrow ring sector AQ = 27 sin 4 Ay around
the velocity cone, where 4= 9~y ~ 8 is the angle be-
tween the direction of observation k and the field H.
Thus we must find the quantity

+eo
r? S pr? dQ =2nr?sin 0 S PP dvy,
where in the last expression the limits of integration
are replaced by +«. As the computation shows (cf.,
for example, [15])

o

+oo 5
| rar=lomare e[ | Kontmdn+ K (3]
/

—_00 'V'Vc

N V3e3H v | ¢ v
§reav=1200 | Key(ydn—Key (5) ] - (2.20)
-0 Vive

The spectral distribution of the power in the total ra-
diation from a single electron is

A

p(V):an2 sin 6 5 (pg)+p§’z))dq)

0

_VH, v { Kosman. (2.21)
mc? Ve i
¢ O
The graph of the function F(x) = fo5/3(T))dn,
X

showing the spectral distribution of the power in the
total radiation (2.21) is given in Fig. 7. The polariza-
tion of the total radiation (for more details see sec-
tion 3.3) is

S (PP —pP) dR Bayg (/) Fp(v/ve) 2.22)
=% S 72N
a1 @Y 7O
S (.Uv +Pv) S Ks/s(n) dn
v/,
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FIG. 7. Spectral distribution of the power of the total radiation
(over all directions) from a charged particle moving in a magnetic
field.

Values of the function F(x) and Fp(x) = xKy/3(x) and
their approximate expressions are given in Table 1.

The maximum in the spectrum of the radiation from
a single electron is at the frequency

eH 2 2
~ L LN E
Vm 2 0.29v, = 0.07 L (m/ =1.2.10°H (m)

— 1.8 108 H | (Eerg)* = 4.6-10°H | (Eoy)2. 2.23)

Here the frequency vy, is expressed in hertz (cycles
per second) and the component of the field H, perpen-
dicular to the line of sight is measured in oersted.
At the maximum frequency (2.23) the spectral den-
sity of the power in the total radiation (2.21) is
e3HJ_
c?

erg
sec-Hz

P (Vi = 0.29v¢) = pr = 1.6 =2.16.1622H | (2.24)

m

and, of course, is in agreement with the estimate (2.8).
Expressions for the intensity of the magnetic brems-
strahlung for the case of an aggregate of electrons, with
which one actually deals in astrophysical cases, will be
obtained and discussed in the following Section 3. How-
ever, it is already useful here to consider the simplest
case when there are monoenergetic electrons with a
distribution of velocities which is isotropic over all
directions. We denote the concentration of such elec-
trons with energy E at point r by N(r) and assume
that the total power p(v) is radiated strictly in the
direction of the motion. Then the spectral density of
the flux of radiation from electrons in volume dV
= r?drdQ at distance r from the observer and moving
in the solid angle dQ’ is

4D, =~ p(v) N (r)dQ’ av.

The intensity J, is taken per unit solid angle d{
and is the flux through unit area, i.e., in this case dQ’
=ds/r? = 1/r%

Thus

J, =2 _pO) S N (r)dr, (2.25)

TdQ T T4m
where the integration is taken along the line of sight
and the magnetic field on which p(») depends is as-
sumed to be uniform along the whole path.

Actually we do not have to regard the electrons as
being distributed isotropically —the important point is
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Table I. Values of the functions F(x) = fo5/3(n)dn
X
and Fp(x) = xKp/(x)
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Approximate expressions

for &1

F (z) == V??%E%) <%>1/3

! | !
x \ F(x) ‘ Fp (x) x l F(x) ! ) x lJ F (x) ’ Fu (o)
| ! I
|
0 0 0 0.30 0.918 0.596 2.0 0.301 0.250
0.001 0.213 | 0.107 0.40 0.901 0.607 2.5 0.200 0.168
0.005 0.358 | 0.184 0.50 0.872 0.603 3.0 0,130 0.111
0.01 0.445 | 0.231 0.60 0.832 0.590 3.5 0.0845 | 0.0726
0.025 0.583 | 0.312 0.70 0.788 0.570 4.0 0.0541 | 0.0470
0.050 0.702 | 0,388 0.80 0.742 0.547 4.5 0.0339 | 0.0298
0.073 0.772 | 0.438 0.90 0.694 0.521 5.0 0.0244 | 0.0192
0.10 0.818 | 0.475 1.0 0.655 0.49% 6.0 0.0085 | 0.0077
0.15 0.874 | 0.527 1.2 0.566 0.439 7.0 0.0033 | 0.0031
0.20 0.904 | 0.560 1.4 0.486 0.386 8.0 0.0013 | 0.0012
0.25 0.917 | 0,582 1.6 0.414 0.336 9.0 0.00050 | 0.00047
0.29 0.918 | 0,592 1.8 0.354 0.290 10.0 0.00019 | 0.00018

i I

F(z) = l/% % Z/ {1+ %’—x'l—%g—;—x—2+ oL
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that within the range of angles y ~ ¢ = mc%/E along
the line of sight their distribution should not change a
great deal, while their concentration per unit solid
angle is equal to N(r)/4n. Thus we can carry out an
average over the angle ¢, and the simplifying assump-
tions made above about the radiation being strictly for-
ward are unimportant. A more consistent derivation of
formula (2.25) is given in Sec. 3.3.

At the maximum frequency, which is related to the
electron energy E by formula (2.23), we find, accord-
ing to (2.24) and (2.25)

e3H |
me?

Ty, m=0,13

S N (r)dr

- 1.7-10‘23H_|_SN(r)dr —

cm’ sec-Hz-sr

17100, { Nmar 2

5 .
m” Hz-sr

(2.26)

To the monoenergetic electron spectrum, there ob-
viously corresponds a distribution N{(r, E)

= N(r)o(E —-E’) where 6(E) is the delta-function.

A similar result is obtained when the spectrum of the
electrons is arbitrary, but the energy of the predomi-
nant majority of particles lies in an interval AE « E.

3. MAGNETIC BREMSSTRAHLUNG OF AN AGGRE-
GATE OF ELECTRONS

3.1. The Stokes Parameters

Before proceeding to give the basic formulas char-
acterizing magnetic bremsstrahlung of an aggregate of
electrons, we recall the definition of the Stokes param-
eters, (501

An arbitrary flux of radiation, in addition to its fre-
quency dependence, is characterized in general by four
independent parameters; for example, the position of
the principal axis of the polarization ellipse, the inten-
sities along the two principal axes, and the direction
of rotation of the electric vector. The choice of these
parameters is, of course, not unique. In many cases
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it is convenient to make use of the Stokes parameters,
which are defined as follows:

Let us choose, at the point of observation, in a plane
perpendicular to the direction of arrival of the electro-
magnetic wave (that is, in the so-called figure plane)
two mutually perpendicular directions 8; and s,

(Fig. 8, the wave vector of the radiation is directed
toward the reader). Then the intensity of any har-
monic of the electric field produced at the point of ob-
servation by an individual radiating particle (with
label i) has the projections

& (1) =&} cos (01 + @),
& (&) =&} cos (02 + ¢ — ),

where g} and ¢; are the amplitude and phase of the

oscillation along axis sy, while £} and (@j—¥j) are
the similar quantities for direction 8;. The field of

the radiation from an aggregate of particles is equal
to the sum of the respective components for all par-
ticles:

(3.1)

& (8)= ; B @)= 2 HOP (3.2)
The quantity measured experimentally is the time av-
erage of the flux of energy in the radiation (or the in-
tensity of the radiation, when we are talking about the
flux per unit solid angle) J = (¢/47)E2. One can get
complete information about the flux of radiation by in-
troducing some additional phase difference for one of
the projections of the electric field and measuring, as
a function of the position of the analyzer, the intensity
of the radiation with a given vibration direction as se-
lected by the analyzer.

Suppose that, for the projection of the electric vec-
tor of the vibrations along direction &,, we introduce
an additional phase difference € relative to the vibra-
tions along s, (cf. Fig. 8).

Sy

2

FIG. 8. Definition of the Stokes parameters. In the direction s,
we introduce an additional retarding phase ¢ relative to the vibra-
tions in the perpendicular direction s,. Angle 6 determines the
position of the plane of the analyzer.. The measured flux of radia-
tion is directed toward the reader.

Then the wave (3.2) becomes
Ei(t)=DElcos(ar i),  Ep(1) =D Eicos (0f + @i —; —e).
(3.3)
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If the plane of vibration of the electric vector selected
by the analyzer makes an angle 6 with the direction
84 (cf. Fig. 8), then at the output of the analyzer the
electric field is equal to

E(t)=E, (t)cos 6+ E, () sin §,

while the time averaged energy flux of the radiation
(intensity ) is

(3.4)

T (8, &) =7 [E (P = 7 {(E( (B)]* cos? 8-+, (1)]?sin? 6

+E, (£) &, (£) sin 26}. (3.5)

I the radiations of individual particles are inco-
herent (phases for different particles independent and
distributed randomly ), then from expression (3.3),
after averaging over time and phase, we easily find

E(OF =5 3 &) & Or=- ) G

T

N E T 1

HOE (D= D tEicospioos e— 5 D GEisinpisine. (3.6)
Thus, if we introduce the notation
J= DT =g 2 IEP+ED,
Q= 2 Ji—Uh=4= Z & —ED,
: i 3.7)

U= S Eigicos

V=23 ttisiny,
i

the intensity (3.5) as a function of position of the ana-
lyzer (angle 6) and the additional phase difference €
becomes

J (8, a)=%[J—l—Qcos 26+ (U cos e — V sin &) sin 28}.  (3.8)

The quantities J, Q, U, and V are called the Stokes
parameters and completely characterize the flux of
radiation. By changing the phase difference € and the
analyzer position 8, we can, as is clear from (3.8) ex-
perimentally determine all these parameters. For in-
dependent (incoherent) fluxes of radiation the Stokes
parameters are additive, as is immediately seen from
their definition (3.7).

For the radiation of an individual particle, the
Stoke parameters Jg, Qg, Ug, and Vg are expressed
in terms of the densities of flux of radiation with the
two principal directions of vibration p{> and p$’, the
ratio of the minor and major axes of the ellipse of the
vibration of the electric vector, which we denote by
tan 8, and by the angle y between a fixed direction
(direction s;) and the major axis of the ellipse of vi-
bration (the angle y is measured clockwise and ob-
viously is defined in the interval 0 < ¥y < 7). Let us
find these expressions.
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The vector of the electric vibrations of the radia-
tion from a single particle can be written in the form
(cf. Eq. (2.12))

&€ — A(cosPcos ot 1| sinPsin et l,). 3.9)

If the principal axes of the vibration ellipse 1y and 1,
are turned through an angle yx relative to the axes s;
and 8, respectively, then the vibrations along axes
8; and 8, are expressed as follows:

£, (t) = A (cos y cos f cos ot —sin y sin f sin wt) = &, cos (ot + ¢1),]
&, (£) = A (sin y cos B cos wt + cos y, sin P sin of) = &, cos (wf — §2).

(3.10)

The phase difference of these vibrations = ¢;+ ¢,
and their amplitudes £; and &, (cf. (3.1)), as one can
easily verify from (3.10), are given by the relations

B E2=A2 B2 2= A%cos 2P cos 2y,
28,8, cosp = A% cos 2 B sin 2y, ' (3.11)
2E,&, sinp = A?sin 2f. J

For a single particle the densities of radiation flux
with the two principal directions of polarization are,
as a consequence of (3.9), equal to

pP =%A2 cos?p, p‘2)=% A?sin?p. (3.12)

Thus, according to (3.7), (3.11), and (3.12), relative to
the axes s; and 8, the Stokes parameters of the radi-
ation of a single particle are equal to

Jo== pV 4 p,
Qo (p — p)cos2,
U,=(pY — p®)sin2y, (3.13)

Ve=(p¥— p*)tg 2p.

The first Stokes parameter J obviously deter-
mines the total density of energy flux (or intensity ) of
the radiation. The degree of polarization of the radia-
tion is given by

_Y@ETUEET

! , (3.14)

P

while the angle y, characterizing the position of the
principal axis of the polarization ellipse, is, accord-
ing to (3.13),
1
g2y =5 (3.15)
Of the two values of the angle x (0 < x < 7), given by
(3.15), we select the one which lies in the first quad-
rant if U > 0, and in the second quadrant if U < 0.
The degree of ellipticity (ratio of principal axes
of the vibration ellipse) is characterized by the angle
B defined by the relation
sin 2[3:—];—_ (3.16)
The angle # is defined within the interval —n/2 <8
< w/2; for 8 > 0 the direction of rotation of the elec-
tric vector is right-handed (clockwise relative to the

Al
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observer ), while for 8 < 0 it is left-handed (cf. equa-
tion (3.9)).

In the absence of elliptical (and circular) polariza-
tion V = 0 and the degree of polarization is

Imax—J/min

- Jmax+ Jm'm ’

where Jp3x and Jpyj, are the maximum and minimum
values of the observed intensity (3.8) as a function of
the analyzer angle ¢ (without introducing retardation,
i.e., for € = 0).

3.17)

3.2. Radiation from an Aggregate of Particles

Let us now consider the radiation of a system of
particles. Let N(E,r, 7)dEdVdQ; be the number of
particles in the volume element dV = r¥dr df, whose
energies are contained in the interval E to E+dE,
and with velocity within the solid angle d€2; in the
neighborhood of the direction T. Since the radiation
of the individual electrons is incoherent and the Stokes
parameters are therefore additive, the intensity of the
radiation of such a system along the direction k is

Jo=J (v, k)= S Jov, B, x, 0, 9) N (E, v, 1) dE dQ.r*dr.
(3.18)

Here Je(v,E,r, 6,y) is determined by the first of the
expressions (3.13), and consequently for the magnetic
bremsstrahlung of a single electron is equal to

Jo(v, E,x,0,¢) =pS + p2) (cf. (2.17) and (2.18)); the
integration over r is carried out along the line of
sight in the direction —k. The other Stokes param-
eters are expressed similarly.

We emphasize that, unlike the Stokes parameters
for the radiation of a single electron (3.13), with the
dimensions of spectral density of flux of radiation en-
ergy, expression (3.18) determines the intensity of the
radiation, i.e., the flux of energy per unit area perpen-
dicular to the direction of the observer, taken per unit
solid angle and per unit frequency interval. The usual
unit for the measurement of intensity of radiation in
radioastronomy is W/m?Hz-sr = 10° erg/cm?-sec-
Hz-sr.

If the source (the radiating system of electrons)
has small angular size, then the quantity measured
experimentally is (as in the case of an individual par-
ticle ) the spectral density of flux of radiation

O, = S JydQ= S Jo(v, E, v, 0, %) N (E, r, 1)dE dQ. dV,
(3.19)

where dV = r’drdQ and the integration is taken over
the whole volume of the source.

In the expressions (3.18) and (3.19) and the analo-
gous expressions for the other Stokes parameters,
the integration over d{i; can be carried out in general
for an arbitrary distribution of particles N(E, r, T).
In fact, as we have seen in deriving expressions (2.20)
and (2.21), the functions pf}) and pf,z’ differ from zero
only within the small solid angle AQ; = 27 sin 6 Ay
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where Ay < mc%/ E. Thus, the contribution to the ra-
diation comes only from particles moving within this
angle. If the distribution of particles over the angle ¢
between the velocity and the field is sufficiently
smooth, then considering that 4 = 6 —y =~ § we may set
N(E,r, )= N(E,r, k), and from now on not make any
distinction between the angles 4 and 6. Then the inte-
gration over d{; reduces to an integration over dy.
As a result, using expressions (2.20) and (2.21) we get

Jy=J (v, k)= S N(E, r, k) p(v)dE dr

1V 3es

= Tmet

S {N(E, r, k) H sin 0 _VV_ §, Ky, (n) dn} dE dr.
/

c

(3.20)

Here in the general case the field intensity H, the
angle 6 between k and H, and the density of particles
N(E, r,k) depend on the distance r.

We can similarly express the other Stokes param-
eters, for example

Qv =132

X Ky, (%)} dE dr.

The parameter U(v,k) differs from Q(v,k) only in
the replacement of cos 2x in the integrand of (3.21) by
sin 2x. As for the parameter V(v,k), which charac-
terizes the presence of elliptically polarized radiation,
in the ultrarelativistic approximation considered here
it is equal to zero.[!®] This result is valid up to terms
of order mc?/E and is easily understood if we recall
that the sign of ¥ determines the direction of rotation
of the electric vector in the wave radiated by an indi-
vidual electron. Since the power of the radiation (cf.
(2.17) and (2.18)) is independent of the sign of y, while
the distribution of particles over directions of motion
within the limits of very small angles y < mc?/E is
practically constant by assumption, the contributions to
the radiation in a given direction from particles with
positive and particles with negative ¢ are the same,
and the polarization will be linear. A significant ellip-
tical polarization in the ultrarelativistic case could
occur only for a markedly anisotropic distribution of
velocities of the electrons. For this it would be nec-
essary that the distribution vary markedly within the
very small angle y ~ mc?¥/E, i.e., essentially there
would have to be a discontinuity in the angular distri-
bution of the electrons just along the direction toward
the observer. If, in addition, we consider the possible
fluctuations in direction of the magnetic field, the
realization of this sort of possibility is extremely
improbable.

S{N (E, r, k)HsmOcos2x—

(3.21)

3.3. Intensity and Polarization of the Radiation in the
Case of Monoenergetic and Power-law Spectra of
the Electromns.

We now present the expressions for the intensity
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and polarization of the radiation in various specific
cases.

If all the electrons have the same energy (monoen-
ergetic spectrum ) and the magnetic field is uniform,
the intensity of the radiation, according to equation
(3.20), is
N (k) # sin 0 S Ksjy(n)dn =N (k) p(v),

v/v

383

J(v, k)=

¢

(3.22)

where IN\I(k) = fN(r,k)dr is the number of electrons
per unit solid angle along the line of sight, whose ve-
locities are directed toward the observer. Formula
(3.22) obviously coincides with (2.25) obtained in less
rigorous fashion. The degree of polarization in this
case, according to (3.14), (3.20), and (3.21), is

(LY
F"\w) %[1—}— \3 (;;)2/3 for v < v,
( > _é% for v > v,
(3.23)

and coincides with the degree of polarization of the
total radiation (over all directions) of a single elec-
tron (2.22). Values of the functions Fp and F are
given in Table I.

The energy spectrum of the electrons along the line
of sight can be approximated within a limited energy
interval E; < E =< E, by a power function of the form

N(E,X)dE=K (k) E"VdE. (3.24)

Here ﬁ(E, k) is the number of electrons along the
line of sight moving in the direction of the observer
and taken per unit solid angle and per unit energy in-
terval.

As we shall see later, for the electrons responsible
for cosmic radio emission, such an approximation is
applicable over a quite broad interval of energy. Here
the limits E; and E, of the spectrum (3.24) frequently
can be taken so that, within the range of frequencies of
radiation of interest to us, the radiation from electrons
with energies E < E; and E > E, will be negligible. On
this assumption, in the integrals (3.20) and (3.21) we
can take the spectrum (3.24) over the whole energy in-
terval and make use of the relations
v vV v

AE B Koy ()

7

Sy §

y—1
" 3¢l sin@ q 2
) l Zsundedv | ’

I ) St /w+r
‘?F<12/F\

7

—y v . 1Y 3 y—1
SdEE o S Ksia(m)dn= vt ( 12 j
0 vIve
3 3eH sin® 1 1
T, eH sin@ 779
% FK : ) 2Am3chy ’ (3.25)

where I'(x) is the Euler gamma function and we as-
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sume that the condition y > %, is satisfied. Then (3.20)
reduces to the following expression for the intensity of
the radiation of a system of electrons with energy spec-
trum (3.24) in a homogeneous magnetic field H:

y—1

V3 3\(—1\ 3v+19 e/ 3¢ N3
J (v, k)= F< 12 / F< me? A\ 2nm5c5)
¥+ -

2y 7.

« K (k) [H sin 6) (3.26)

Here K(k) is the coefficient in the spectrum (3.24).

Let us assume that the distribution of electrons
can be regarded as homogeneous and isotropic, i.e.,
N(E,r,k) = (1/47)N(E), where

N (E)dE = KE™VdE (3.27)

is the number of electrons per unit volume with arbi-
trary directions of motion and with energies within the
interval E to E+dE.

Then

where K is the coefficient in the energy spectrum
(3.27) and L is the extent of the radiating region along
the line of sight. Of course, in the general case, ﬁ(k)
may depend on the angle 8 between the direction of the
magnetic field and the line of sight.

In the case of a homogeneous field the degree of po-
larization of the radiation depends only on the exponent
v in the energy spectrum (3.24) and, as can be seen by
using (3.14) and (3.25), is equal to

Y+ 3
which amounts to 75% when y = 3 and 69% when vy = 2.

It is not appropriate to apply formulas (3.26) and
(3.28) to magnetic bremsstrahlung of cosmic electrons
since the observed radiation is collected from a large
region of space, over different portions of which the
magnetic field is oriented differently. One should
rather assume that along the line of sight the direction
of the magnetic field varies chaotically. In this case
there is no polarization of the radiation, and its inten-
sity is easily found by averaging (3.26) over all mag-
netic field directions. By using the relations

)T )

this gives the following expression for the intensity of

) (3.28)

£ v+1

! S(sm(f))gksmﬂde—‘/:rI I‘<Y+5

= (3.29)
0

A4
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the radiation from a homogeneous and isotropic dis-
tribution of electrons with energy spectrum (3.27) in
a random magnetic field:

—1 v+1 y—1

( [mmsco} H?®KLv t

vi
2 /6 26- 1018>
\

v

e3

Jy=a(y) = (3.30)

erg

=1.35-10"%a (y )LAH - .
cm” sec-sr-Hz
Here K is the coefficient in the spectrum (3.27) per
unit volume, and by H(Y*D/2 we mean some average
value of this quantity in the radiating region, while
a(y) is a coefficient depending on the exponent of the
energy spectrum vy:

(v);-z o y 3F(3\"‘>F(SY—T219-)
xr(\#‘)/s V:T(YH)F(EZJ).

Values of the coefficient a(y) are given in Table II.

As we see from expressions (3.26) and (3.30), for a
power-law energy spectrum of the radiating particles
with exponent vy, the corresponding exponent in the
frequency spectrum of the radiation is

(3.31)

(3.32)

J‘VNVVay

We have assumed above that the energy spectrum
of the electrons is a power-law spectrum (cf. (3.24)
and (3.27) within some sufficiently wide range of ener-
gies. Now we present quantitative estimates of this in-
terval. The error caused by the replacement in (3.20)
and (3.21) of the finite integration limits by 0 and «
for a given frequency v does not exceed 10% for each
of the limits if the conditions

E, (v) < me? [4numevi3eHy, (v)]7* ~ 2,5-10% [v/y, (y) H]'? eV
Ey (v) > me? lasumev/3eHys (V)1 ~ 2,5-10° [v/y, (v) HI"? eV
(3.33)

are satisfied.

The values of the numerical factors y;(y) and
y9(v) for different values of y are given in Table II
As we see, in the case of a power-law spectrum the
energy interval giving the main contribution to the ra-
diation at a given frequency is strongly dependent on
the exponent y. For y = 1.5 (@ = 0.25) more than 80%
of the radiation at a given frequency comes from elec-
trons with energies different by no more than a factor
of ten. For vy < 1.5 this energy interval increases

Table II
v ‘ 1 ‘ 1,5 ’ 2 i 2,5 ! 3 ; 4 ‘ 5
|
a(y) 0.283 0.147 ‘ 0.103 | 0.0852 | 0.0742 | 0.0725 | 0.0922
z(y) 0.34 0.22 i 0.15 0.11 0.074 | 0.036 | 0.018
v (y) 0.80 13 | 1.8 2.2 2.7 3.4 4.0
v (v 0.00045 0.011 J 0.032 | 0.10 0.18 0.38 0.65
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rapidly, and when y — Y, (o — - 1/3) it becomes infi-
nite. The point is that within the range of frequencies
v < vm, the intensity of the radiation from an indi-
vidual particle py = p(v,E) ~ (v/vg)3 ~ YIBE-3,
and for the spectrum (3.17) the total intensity

Jy oo S (v, E)N(E‘)dENS £
Vs
is unbounded if the energy spectrum of the particles is
taken with index y < 1/3 to arbitrarily large energies.

The value o = ~ 1/3 is minimal for magnetic brems-
strahlung in vacuum since even the spectrum of the
radiation from an individual particle does not contain
regions with a more rapid rise in intensity with fre-
quency.

In applications of the theory one frequently comes
across the problem of evaluating the interval of ener-
gies of electrons (Ey, E,) giving radiation with a power
spectrum (3.32) within the frequency interval vy to v,.
If the frequency interval is sufficiently large (vy/vy
2 ¥1(v)/y2(v)), then from the results given we con-
clude that the electrons should have a power-law en-
ergy spectrum within the energy interval E; < E < E,,
where
Ey = me? [4ntmev,/3eHy, ()] = 2.5-10 [v,/y, (y) H]"* eV,
E, = mc? [4nimev,/3eHy, (Y)]I/2 ~2.5-102 [vo/y, (v) HI2 eV.

(3.34)

If, however, the frequency interval is small, or « is
small (in practice « < 0.25, i.e., ¥ <1.5), then we
can only make a rough estimate of the interval of en-
ergy of the electrons by assuming that all the radia-
tion of an electron with energy E occurs at frequency
vm = 0.29 v,. Then, in expressions (3.24) we must set
yvily) =yoly) = 0.24.

If we make such a simplifying assumption, i.e., if
we set (cf. (2.10) and (2.23)) py = p(v, E)
= P(E)é6(v — vy ), then for isotropically moving elec-
trons with the spectrum (3.27) in a random magnetic
field (H} = %3 H?) we easily find
Jo=2 { PE)S (v—vm) KETVAE

c (e N

=a(V)5 % (Tmaﬁ H * XLy ) (3.35)
where 3(y) = 0.31(0.24) "D/2. The values of the co-
efficient a(y) are given in Table II. As we see, with-
in the interval of values of y considered, the exact
formula (3.30) and the elementary approximate for-
mula (3.35) differ only by an unimportant numerical
coefficient.

3.4. Radiation in a Non-uniform Field

If the magnetic field over the extent of the line of
sight L is inhomogeneous or cannot be regarded as
completely random, the assumptions made in deriving
equations (3.26) and (3.30) are not valid, and we must
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use expression (3.20). Then, in the general case, we
must take account of the dependence of the magnetic
field intensity H and the distribution function for the
radiating particles N(E,r, 7) on the coordinates. In
this general form the problem was solved, for exam-
ple, for a dipole magnetic field in papers [#1:52] jn
order to determine the characteristics of the magnetic
bremsstrahlung of the radiation belts of the earth and
Jupiter.

It is sometimes of interest to consider a some-
what different formulation of the problem where, with-
out giving a specific dependence of magnetic field on
coordinates, we can restrict ourselves simply to some
of its average characteristics. For example, in the
problem of the polarization of magnetic bremsstrahl-
ung, an important role is played by a certain effective
anisotropy of the field, if the field cannot be regarded
as homogeneous or completely random.

The calculation of the degree of polarization in such
an “‘intermediate’’ case was carried out in ('] for two
models of the magnetic field.

The first of these assumes that there is superposed
on a homogeneous field some random (isotropic on the
average over the radiating region) field He whose ab-
solute value is constant. We may imagine that such a
situation exists approximately in the neighborhood of
the galactic plane and in particular in the spiral arms
of the galaxy. If H| is the projection of the intensity
of the homogeneous magnetic field on the figure plane
and B = H) /Hg, then in the two limiting cases of weak
and strong homogeneous field the degree of polariza-
tion turns out to be

P = (V+:‘3)(/Y+5)7(Y\+'1) B2 ¢ <), (3.36)
2tsy
2 1
P~ (1) ¢>n. 63D
Ty

Y

The second model corresponds to the situation
where there is no homogeneous field, but because of
the more or less regular character of the field (for
example, a mixture of dipole or toroidal fields) cer-
tain directions occur more frequently than others.
This case may be realized in the discrete sources
of cosmic radio emission. If the distribution of mag-
netic fields over direction differs little from isotropic,
while the intensity of the field H can be assumed to be
approximately constant in absolute value, then the de-
gree of polarization is

P_ 15(v+71)(v+5) % , (3.38)
(v )0+

where AH? = Hf — H} is the difference between the av-
erages over the volume of the source of the squares

of the components of the magnetic field along two per -
pendicular directions in the figure plane; these direc-
tions are chosen so that this difference is a maximum.
Thus, for both models the degree of polarization serves
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as a measure of the anisotropy of the magnetic field in
the source of radiation.

4. INFLUENCE OF COSMIC PLASMA ON THE PROP-
AGATION AND RADIATION OF ELECTROMAG-
NETIC WAVES

In most of the cases one meets it may be assumed
that the magnetic bremsstrahlung develops and is
propagated in vacuum, as we have assumed above.
This does not mean at all, however, that the effect of
the medium, and in particular the cosmic plasma, can
always be neglected.

On the contrary, the medium sometimes has a radi-
cal effect on the character of the electromagnetic radi-
ation. Consider, for example, an oscillator (dipole)
vibrating in an isotropic, non-absorbing plasma, for
which the square of the index of refraction has the
form

4merN,
m2

n¥(w)y=1—

1—3.18.10° e
[0}

2

=1-—8.06-10" e,
v
4.1)

where N, is the concentration of electrons in the
plasma. If the frequency of vibration of the oscillator
wj is significantly higher than the plasma frequency
wy =2y, = Y H0Ne 564104 Y ., (4.2)
the oscillator in the plasma radiates in approximately
the same way as in vacuum. But when wj £ w, the in-
fluence of the plasma becomes decisive, since for
wj < wy the radiation is absent in general. This last
point is already clear from the fact that when wj < wy
the index n(w;) becomes imaginary, and the field far
from the oscillator is damped so that*

gweXP{—ﬁ} l/lmr} '

Another characteristic example is the radiation from
a uniformly moving electron: In vacuum this radiation
is absent, whereas in a medium it can occur—we are
speaking of Cerenkov radiation which appears when the
velocity of motion v exceeds the phase velocity of
waves in the medium Cp = ¢/n{w). Formally we may
say that it is just the replacement of ¢ by cp = c¢/n(w)
that distinguishes the theory of radiation in a medium
from the case of a vacuum. In order to understand the
situation more specifically we shall show that formula
(2.3) for the Doppler effect in the motion of a radiator
in a medium becomes (cf. [%3])

IR
mw\iw%n(m)coswl

4.3)

In the expressions in the denominator for the intensity
we must naturally also replace the factor 1~ (v/c)cosy

*Here, obviously, the field is assumed to be sufficiently small
so that we need not consider non-linear effects.

Al
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by |1-(v/c)n cos ¥|. This replacement is extremely
important because when (v/c)n(w) cos gy/c =1, the
frequency (4.3) and the intensity go to infinity. Of
course, for observed quantities there is no divergence
if we take account of dispersion and some other fac-
tors (for example, absorption) in actual cases. But
the possibility of fulfilling this condition, which we
write in the form

¢ (4.4)

n(0)v"

already shows various points. For example, whereas
in vacuum the frequency w — « only for v/c — 1, and
only in the direction of the velocity of the radiator
(i.e., for angle ¥ = 0; cf. (2.3)) in 2 medium w — «

on the cone ¢ = ¢y (cf. (4.3), (4.4)). Condition (4.4) de-
termines the direction of the Cerenkov radiation, i.e.,
the cone ¢ = ¥, is the Cerenkov cone. This cone sepa-
rates the whole space of wave vector directions into
two parts. Outside the cone (region of angles ¥ > ;)
the Doppler effect is normal. Here formula (4.3) dif-
fers from (2.3) only by the replacement of ¢ by c/n,
while the physical processes in the radiation occur
qualitatively just as in vacuum (for example, the radi-
ating atom goes from a higher energy level to a lower ).
Within the cone (when ¥ < ¢;) the Doppler effect is said
to be anomalous or ‘‘superluminal.’”’ Of course, the
anomalous Doppler effect exists only for motions with
“‘superluminal’’ velocity, i.e., when v >c¢/n(w). For
the anomalous effect we must take the absolute value
of the denominator as we have written in (4.3) and as
is automatically obtained in a quantum or classical
calculation. The physical feature of the radiation in
the region of the anomalous Doppler effect consists in
the fact that the radiation is accompanied by the trans-
ition, for example, of an atom from a lower energy
state to a higher; for a classical oscillator this corre-
sponds to a jump of the vibration when the radiation
occurs, whereas for the normal Doppler effect the
vibration of the osclllator is damped as a result of
radiation. (The increase of amplitude of oscillation
during radiation or, in quantum language, the transi-
tion of the system to a higher energy state, is ac-
companied by a reduction of the kinetic energy of
translational motion of the radiator, which guaran-
tees the satisfying of the laws of conservation of
energy and momentum; cf. [53].)

The influence of the medium on the radiation is es-
sentially different depending on whether n(w) > 1 or
n(w) < 1. If n(w) <1, as is the case in an isotropic
plasma (cf. (4.1)), then vn/c < 1 always, and the anom-
alous Doppler effect cannot occur. In this case, even
at the very highest energies, when v — ¢, the denomi-
nator in (4.3) does not tend to zero, and the radiation
does not have the features typical for the radiation of
ultrarelativistic particles in vacuum (cf. Sec. 2.1).
Thus, even when E/mc? — « , the radiation is concen-
trated not within a cone with opening angle ~ mc%/E
(cf. (2.4)), but within the range of angles /S Vvi-n(w)
(for simplicity we are assuming that 1 —n « 1; cf.

cOs Yy =
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(4.3)). From similar arguments one can easily see that
the effect of the medium is unimportant if

1—n%(e) <m£2 >2.

This condition is also obtained, of course, from a
direct calculation of the intensity of radiation in a
medium (cf. (4.24)). If, however, n > 1, then the ra-
diation is very similar in its properties to the radia-
tion of ultrarelativistic particles in vacuum even when
v < ¢, namely in the vicinity of the Cerenkov cone.
Specifically, this means that the very highest frequen-
cies and the main fraction of the energy will be radi-
ated not along the direction of the instantaneous ve-
locity of the moving radiator, but in the neighborhood
of the Cerenkov cone. Here we must say that when
dispersion is taken into account (dependence of n on
w ), the situation becomes much more complicated
since the Cerenkov angle y, itself depends on w. All
we wished to do, however, was to emphasize the fea-
tures which occur for a radiator moving in a medium.
This applies in particular to the magnetic bremsstrahl -
ung in a medium, which will be considered in Sec. 4.3.

Still the formulas for the magnetic bremsstrahlung
in vacuum in many cases are retained completely. This
is explained by the low concentration of the cosmic
plasma. Thus, in intergalactic space the influence of
the medium is unimportant over the whole radio range
(cf. the criteria (4.26)). In the interstellar medium
(Ne £ 1) the formulas obtained for the vacuum also
can be used in a large part of the radio range, and the
situation is changed only for waves with wave length
A 2 30—100 meters. The inclusion of the effect of the
medium is more important for the long wave part of
the spectrum of various discrete sources of radiation
and also in the solar corona and, in general, in stellar
atmospheres.

The process of radiation of electromagnetic waves
is directly affected by the medium which is in the vi-
cinity of the radiator, in a region with dimensions of
the order of the wavelength in the medium, A
= 2re/n(w )w. But at distances r > A from the radi-
ator the wave field already is formed and ‘‘stripped
off’’ from the source. Thus the influence of the medium
on the radiation when r > A can be treated without
making any connections with the character and nature
of the radiation. Questions of this sort are usually
called problems of propagation of electromagnetic
waves. Here we must first of all explain how the
amplitude (intensity) and the state of polarization
of a plane wave of the type

3=$oexp{——?xz+i(—‘;lnz—mt>}

changes as it traverses a path L through some
medium.

The index of refraction n and the absorption index «
(absorption coefficient u = 2wk/c¢) depend on the prop-
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erties of the medium and the frequency w of the radi-
ation. Here we have to deal with the most varied con-
ditions, and there are no universal formulae for all
media and all frequencies. Thus y rays with energy

E 2 10! ev may be absorbed in the cosmos as a result
of the process y+y — e’ + e, i.e., creation of pairs
from thermal photons (y’), which are present in space
as a result of radiation from stars. When 10 < E
<111 eV, vy rays are absorbed mainly because of pro-
duction of pairs e* + e~ on nuclei and electrons, while
for E < 10% eV we must also consider Compton scat-
tering. X rays and soft y rays are absorbed primarily
as the result of photoeffects in atoms. In the optical
region the important effect is the absorption in atomic
transitions as well as in interstellar dust. Finally in
the radio region the absorption in the cosmos occurs at
the lines of neutral hydrogen (A = 21 em) and, in prin-
ciple, in some other lines, but in the rest of the spec-
trum is associated with the collision of electrons with
protons in the cosmic plasma. Later we shall restrict
our treatment of the propagation of radio waves in
plasma and leave out of account the effects of neutral
atoms (cf. Sec. 4.1), since this case is the most in-
teresting one in radioastronomy. Furthermore it is
especially important to consider the reabsorption of
the magnetic bremsstrahlung by the radiating relativ-
istic electrons themselves (Sec. 4.2).

4.1. Propagation of Radio Waves in the Cosmic Plasma

The presence of magnetic fields in interstellar
space and generally under cosmic conditions makes
the plasma magnetoactive. The propagation of waves
in such a plasma in general is strongly dependent on
the intensity of the constant magnetic field, the angle
between this field and the wave vector, etc. (cf., for
example, [%4]), However, if we do not consider stellar
atmospheres and, specifically, the solar corona, under
cosmic conditions the influence of magnetic fields
shows itself only in a rotation of the plane of polariza-
tion of the radio waves. The point is that the gyrofre-
quency wg) =1.76 x 10"H (cf. (2.1)), even in a field
H~ 1072 Oe, amounts to wﬁ)) ~ 10° from which )\ﬁ)
= ch/wg) =1.07 x 10* H ~ 10 cm. Usually, however,
the field H in the cosmos is weaker, and consequently
the frequency wﬁ” is even smaller (for H~ 10~° we
already have Af)) ~ 10° cm). Thus, even in the radio
region (especially in the region of meter waves, which
are most widely used in radioastronomy ) the frequency
of the radiation

o> 0.

4.5)

If this inequality is satisfied, the plasma can be re-
garded as practically isotropic (with index of refrac-
tion (4.1)), except when we are computing the phase
difference between the ordinary and extraordinary
waves. This difference (w/c)(n;-ny)L is propor-
tional not only to the difference of the indices of re-




COSMIC MAGNETIC BREMSSTRAHLUNG

fraction ny —n; of the waves of the two types, but also
to the path length L. Therefore, obviously, even for
negligible values of |[n, —ny| the phase difference may
become quite large. From the general formulas for a
magnetoactive plasma one can easily show that for
practically all angles 6 between the constant magnetic
field H and the wave vector k, the propagation of
waves in the cosmic plasma can be regarded as
‘‘quasi-longitudinal.”’* As a result, for the angle
¥ through which the plane of polarization of the radi-
ation rotates in traversing the path L, we may use
the formula
2re3N . H cos 6°
m2c2p2

1
V=2 (ny—ny) L — L

N,LH cosB

NeLH cos
:0.93~1O“T

2.36.10% 4.6)
In the case where the quantities H, Ng, and 6 vary
along the line of sight but this change is small over a
wave length, we must replace the product NgLH cos 6

L
in (4.6) by an integral f NeH cos 0 dr, which is taken
0

along the line of sight. It is also of interest to con-
sider the rotation of the polarization and the depolari-
zation of the radiation when there are various inhomo-
geneities along the line of sight (gas clouds, local in-
homogeneity of the magnetic field, etc.), but we shall
not consider this here (cf. [%%7),

The inequality (4.5) may be violated in stellar at-
mospheres, and it frequently cannot be used in the
analysis of the propagation of radio waves in the solar
corona. In such cases, one must use the very familiar
general formulas for a magnetoactive plasma. (93,231
Under cosmic conditions the absorption of radio waves
usually is comparatively small. Thus under the condi-
tion (4.5) in first approximation one can, for the aver-
age value of n, use the formula (4.1), and for ¥ (or
n, —ny ), use formula (4.6), in which absorption is not
included. At the same time total absorption along the
line of sight may be important, and therefore one must
know the coefficient of absorption of radiowaves u dur-
ing their propagation through the cosmic plasma.

The expression for u depends on the ratio w/wy,

€., the ratio of the frequency of the radiation to the
plasma frequency (4.2). If we exclude the case of
stellar atmospheres, the electron concentration in
the cosmic plasma Ng < 10* em™® and consequently
wp < 5x 108 (Ay = 2mc/wy > 3 x 104 cm = 300 m), Usu-
ally, however, Ng < 10 cm ™, w; < 10% and Ay 2 10 km.
At the same time, in radioastronomy usually one uses
waves shorter than 30 meters, and only with satellites
can one systematically carry out measurements at
longer wavelengths.[%6%"] We shall therefore limit

*The condition for “quasi-longitudinal” waves in this case has
the form (cf.[*], Sec. 37) u sin* 6/4 cos® § K 1, u sin® § < 1,
Vu =0 /o.When A = 27c/w = 10* cm and H ~ 1075, the parameter
u-~ 10’12.

il
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ourselves to the case where

< 1. 4.7)

24771078 -2
(0% ‘/ NE
Under the condition (4.7) the absorption coefficient is
given by the expression (the derivation for this for-
mula can be found in [54], Sec. 37)
20 32n2e8N;

=—%= —
" ¢ 3V 20 (lcTem)S/? co?

(2kT )2
2.115¢2m' 2

10 2 VC

e

, 4.8)

where the electron temperature Ty is measured in °K
and v in Hz. (formula (4.8) is identical with formula
(35) given in paper 221, we shall throughout drop the
subscript on Tg).

The absorption of radio waves, which we are con-
sidering occurs in the process of collisions of elec-
trons with ions, i.e., in a process which is inverse to
bremsstrahlung. Formula (4.8) is a purely classical
formula (the quantum constant h does not appear in
it), since it applies to the frequency region satisfying
the condition

ho L kT . “4.9)

Furthermore, in using classical theory to describe the
collisions of an electron with an ion, it is assumed that
e?/fiv « 1, i.e., T « 3 x 10° degrees. If T 2 me*/ki?

=3 x 10° °K, then in (4.8) the logarithmic term has ap-
proximately the form In (v 3 x 105 T/v). For T » 3

x 10° the factor 1n[(2kT)¥2/2.115e*mY?w] in (4.8)

is replaced by

4kT

v (ot ) ~ %6+1n () ~ [17.7+1n n (58]

What we have stated, of course, does not mean that
formula (4.8) could not be obtained by quantum methods
or by using various quantum pictures, for example, the
Einstein relations between the probabilities of sponta-
neous emission and absorption (cf., for example, [54]),
But for the major part of the problems of radioastron-
omy one can limit oneself to the classical formula (4.8)
if its conditions of validity are satisfied.

Knowing the absorption coefficient y one can com-
pute the optical thickness of the gas in the direction
considered

= K pdr. (4.10)

If 7> 1, then an ionized gas with temperature T (or,
more precisely, with an electron temperature Tg) ra-
diates like a black body, i.e., the intensity of the radia-
tion under the condition (4.9) is

2kv2 T.

Jo=2 (4.11)

In this case the spectral index «, i.e., the exponent in
the relation J, = conste. v™® is @ = —2. For an arbi-
trary optical thickness



690 V. L. GINZBURG and S. I.
2k 2
Jy= 5 Togr — 3.07-1079v2T o m’—;rcg-ffz_—;
2.76-10-17
¥ (in meters) eff 2 nHz-sr ? 4.12)
where
Tett =T (1—e"T). 4.13)

When 7 <« 1 (optically thin layer), according to (4.8)
and (4.10)

Zkv

Toip ~Trcov?, J,= Tt=const, a=0 (4.14)
(the weak logarithmic dependence of (4.8) on frequency
v can usually be neglected). Thus the spectral index
of the thermal radiation varies within the range -2

=< a = 0, while the effective temperature Tegs =< T.
These two facts permit one in principle to separate
out the thermal radiation of the medium from the non-
equilibrium radiation and in particular from the radia-

tion of the magnetic bremsstrahlung type.

4.2. Reabsorption of Magnetic Bremsstrahlung by
Relativistic Electrons

If the dimension of the region which is filled with
relativistic electrons is sufficiently large, one begins
to feel the effect of absorption of the magnetic brems-
strahlung by the relativistic electrons themselves.
This process of reabsorption leads to a redistribution
of the energy over the spectrum of the magnetic
bremsstrahlung of the system.

Let us determine the coefficient for absorption
(self-absorption) in an ultrarelativistic electron gas
which is in a magnetic field. Let N(p) be the distri-
bution function of the electrons in momentum space
and J, the intensity of the radiation in a given direc-
tion. The reduction in the number of quanta in the ra-
diation flux with intensity J, associated with true ab-
sorption caused by transitions of electrons from state 1
with energy E —hy to state 2 with energy E is
Byy;N(p —hk)Jy, where hik is the momentum of a pho-
ton with frequency v = ke/27 and By, is the Einstein
absorption coefficient. On the other hand, the number
of quanta in the flux increases as a result of stimu-
lated emission (transitions from state 2 to state 1) by
an amount By;yN(p)J,. Thus the net change in number
of quanta per unit volume per unit time is

ByN (p) Jo— BN (p—1k) I,
while the reabsorption coefficient, taking account of

all possible transitions, is

1 4J,

br= "7, G

- g {BﬂN(p—hk)—BnN (p)} wvptdpdQ.

(4.15)
We now make use of the Einstein relation

c2
By =312=A21W,
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where the spontaneous radiation probability A, is
equal to the number of quanta radiated by an electron
into unit solid angle per unit time in the absence of ex-
ternal radiation. We assume the radiation to be occur-
ring in vacuum, i.e., we set the index of refraction
equal to unity.

Since, for ultrarelativistic electrons, the radiation
is concentrated in the direction of motion and its power
p(v) =p(v,E) is given by (2.21), on substitution in
(4.15) we should set A,;dQ = p(v, E)/hv. Then, taking
account of the fact that p and k are parallel,

N(p—#k)=N (p—rk)=N <p _ v

Here for simplicity we assume the distribution of elec-
trons to be isotropic; but we may take N(p - (hy/c))

to be the distribution function per unit solid angle for
the direction k. If we consider that the only transi-
tions having significant intensity are those with hy

<« pc, we may set

3 hv ON
Np—N(p-2)=2 0

As a result, expression (4.15) takes the form

b= | S p(v, B) p* dp. (4.16)

dp
We now go over from the spectrum in momentum
space to the energy spectrum of the electrons using
the equations E = cp and N(p)4mp?dp = N(E)dE,
where the electrons are assumed to be distributed
isotropically. Expression (4.16) now becomes

(N(E)> (v, E)dE.

Then for the power spectrum N(E) = KE™Y we get
(cf. (2.21) and (3.25))

(4.17)

Hr= 8nv2 u

yi2 _y+é
2 2
Br =g (¥) 5 2nm < 211m3c5 > KH, ’

where the coefficient g(y) which depends on the index
of the energy spectrum is equal to

P () (y

Values for the coefficient g(vy) are given in Table III.

(4.18)

(4.19)

g(v)—

Table III

Y ’ 1 2 l 3 ‘ 4 | 5

g (V) ‘ 0.96 | 0.70 l 0.85 r 0.69 I 0.83

Substituting numerical values in (4.18) we have
o o

pr=g(y)0.019 (3.5 10 KH,> v 2 . (4.20)

Taking account of reabsorption, for example, for a
homogeneous radiating layer of thickness L,
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L

Jyoo S p(v)e W dr="P2M (1

_ e'-HJ‘L)'
Wy
0

If the depth of the radiating region L > 1/up, the
spectral dependence of the emerging radiation will
have the form

Jy oo py/ptroe v (4.21)
As we see, this dependence is different from the fre-
quency dependence of the equilibrium thermal radia-
tion of an optically thick layer, which is proportional
to the square of the frequency. This difference is re-
lated to the fact that the assumed power spectrum of
the electrons is not an equilibrium spectrum.

4.3. Magnetic Bremsstrahlung in a Medium (Plasma)

In Sec. 4.1 we have already discussed qualitatively
the effect of the index of refraction of the medium on
the process of radiation of electromagnetic waves. We
now must dwell on the quantitative inclusion of the ef-
fect of the medium on the intensity of the magnetic
bremsstrahlung. In the cosmos, under the condition
(4.5), we may assume the plasma to be isotropic and
use formula (4.1) for n, with n = 1. This is just the
case which we will consider. More general calcula-
tions [%3,%8] are needed, for example, for the solar at-
mosphere where the frequencies w and w(}%) = eH/me
may be comparable to one another.

The computation of the power radiated by an elec-
tron moving in a magnetic field in a medium with n <1
is analogous to the computation mentioned above for
motion in vacuum, and under the condition 1 -n <« 1
gives the following expression for the spectral density
of the power of the radiation

e edH o I T
pv) =3 me? | L+ (1—n% L me2 ) 1 :
X\ Ky (ydn, (4.22)
V/Vé
where
. b
vi=vo [ 1= (1—n?) (T’z )] (4.23)

We see from (4.22) and (4.23) that the medium has a
strong influence on the radiation only under the con-
dition

(1-—112)(’52 >2> 1.

If, however,
—n2 / me \\\2
{—n \E
the influence of the medium can be neglected (this
same criterion was obtained in section (4.1)). Using

expression (4.1) for the index of refraction in a plasma,
the inequality (4.24) can be written in the form of a

(4.24)
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condition on the frequency interval for which the influ-
ence of the medium is not appreciable:

2 €2 E N\ _ 4
”>>mNe<7m> =3

where the characteristic frequency ve is determined
by the expression (2.16). In order for the effect of the
medium to be negligible over the main interval of fre-
quencies of the magnetic bremsstrahlung v ~ v, it is
necessary that the criterion

ecN,

i (4.25)

Ves

(4.26)

be satisfied. Based on this condition one can easily
verify the validity of the statement made at the begin-
ning of Sec. 4, that it is possible in most cases occur-
ring in the cosmos to neglect the effect of the medium
on the intensity of the magnetic bremsstrahlung.

5. SOME APPLICATIONS OF THE THEORY OF MAG-
NETIC BREMSSTRAHLUNG TO ASTROPHYSICS

5.1. General Remarks

The theory of magnetic bremsstrahlung has a very
extensive and rapidly increasing region of application
in astrophysics. This fact is explained by two circum-
stances which have become clear during the last ten
to fifteen years.

First of all, relativistic particles, and in particular
relativistic electrons, occur under cosmic conditions
not as an exception, but as a rule. Their appearance
is caused by the fact that in a moving or turbulent
plasma there are practically always various instabili-
ties and various accelerating mechanisms.

Second, as a rule there are magnetic fields in the
cosmos. Their occurrence is also related to instabili-
ties, in this case to the instability of the motion of a
conducting medium (cosmic plasma) in the absence
of magnetic fields. In other words, the blowups of
various oscillations and turbulences (in the broad
sense of this concept) leads on the one hand to the
appearance of ‘‘superthermal’’ particles and gener-
ally insures the injection of fast particles. On the
other hand, the production of a turbulent plasma, es-
pecially in the absence of collisions, means precisely
that in it there are blowups, and different electromag-
netic ‘‘normal’’ waves are propagated, including the
low frequency waves which are called magnetohydro-
dynamic waves. The appearance in a plasma of dif-
ferent motions leads to the ‘‘twisting’’ of the force
lines, i.e., an increase in intensity of the magnetic
field.

The question of what level the energy density of
relativistic particles (cosmic rays) reaches and how
high the magnetic field rises does not become com-
pletely clear and in general under nonequilibrium
conditions we cannot give an entirely general answer.
But apparently, in the cosmos, one frequently has
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conditions which are close to quasi-equilibrium, when

_H? ou?

We.r. 831 ~ P

(6.1)

Here wg, ,. is the density of energy of cosmic rays,
H%/87 is the energy density of the field, and pu?/2 is
the density of kinetic energy of chaotic (turbulent)
motion of the gas.

The presence of relativistic electrons and magnetic
fields—these are necessary and also practically suffi-
cient conditions for the appearance of magnetic brems-
strahlung. As we have already pointed out in the Intro-
duction, and as is very well known, the magnetic
bremsstrahlung process accounts for the radiation
and, especially, the radio emission of a very large
number of cosmic objects.

The primary use of the theory of magnetic brems-
strahlung consists in drawing conclusions about rela-
tivistic electrons and magnetic fields in the sources of
radiation on the basis of measurements of the intensity,
spectrum, and polarization of cosmic radiation. An-
other application is associated with the analysis of the
changes in intensity of the radiation of the source, re-
absorption, depolarization, and rotation of the plane of
polarization of magnetic bremsstrahlung, for the pur-
pose of determining various parameters, (for exam-
ple, electron concentration), characterizing both the
source of radiation itself as well as the medium on
the path from the source to the earth.

It would be impossible and useless to discuss in
detail, within the framework of the present paper, the
various methods and possibilities for using the theory
of magnetic bremsstrahlung. Our problem is much
more prosaic, to point out some of the most important
relations and formulas which allow one to make typical
calculations.

5.2. Electronic Component of Cosmic Rays in Ex-
tended and Discrete Sources of Radio Emission

Quite frequently one deals with a situation where
the spectrum of the radiation in a given region of fre-
quencies can be regarded to sufficient accuracy as a
power law, i.e., J, ~ v~®. We furthermore assume
that from some arguments (presence of polarization,
very high effective temperature, or considering that
for the thermal radiation o =< 0) we are sure that
the radiation is of magnetic bremsstrahlung origin.
Then, as we see from (3.32) one immediately deter-
mines the exponent y in the differential energy spec-
trum of electrons N(E) = KE™Y, Namely

v=2a-1. (5.2)

If the magnetic field in the radiating region is as-
sumed on the average over the line of sight to be ran-
dom in direction and equal to H, then from formula
(3.30) we have
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. 7.4-1021),
T e(WILIH (6 26- 101811)
 B.9-102HT o v 18 (5.3)
a(y L (&26-1018}1)
Here
c2
Teff =W Jv, (5-3’)

the path length L is measured in cm, H in oersted, v
in Hz, Teff in degrees, and K in erg'y- cm™3, We
recall furthermore that N(E)dE = KE™YdE is the
number of electrons per unit volume (em?) in the
energy interval E to E+dE. Furthermore, the dis-
tribution of electrons along the line of sight (path L)
is assumed to be isotropic and homogeneous. For an
inhomogeneous distribution, other things being un-
changed, KL in (3.30) and (5.3) is replaced by

L
fo Kdr. As for the assumption that the electrons

are isotropic, it is used in the derivation of formulas
(3.30) and (5.3) since it is assumed that the distribu-
tion of electrons over direction does not depend on the
direction of the vector H at a given point in space. If,
however, the field in the radiating region can be as-
sumed to be uniform (in particular, on the basis of
polarization measurements ), then one should use for-
mula (3.26). In deriving this formula the assumption
of isotropy was, in fact, not made. The only thing nec-
essary was that the distribution over direction vary
slightly within the limits of the cone with opening angle
~mc?yE along the line of sight.

If the spectrum is a power spectrum with vy < v
< v,, then according to formulas (3.34) we can deter-
mine the values of the energy E; and E, between which
the electron spectrum also can be taken to be a power
law. For a rough estimate it is convenient to use the
simple relation (2.23) between E and v = vy, for mono-
energetic electrons.

We remark that information on the quantity y = 2a+1
can also be obtained from polarization measurements
(cf. (3.28)) so long as depolarizing factors can be as-
sumed to be absent, as is the case for sufficiently high
frequencies for radiation in a quasi-uniform field. Un-
fortunately, this latter condition occurs only as an ex-
ception in the cosmos.

If the spectral index ¢ is unknown or if one wants
to obtain a lower limit for the total number of relativ-
istic electrons, one should use formula (3.22) for mono-
energetic electrons, according to which (cf. also (2.25)
and (2.26))

]’V (k) — Jy (k)

1.683II_L/mc'3 ° .4)

T, k)ip (v)=
Here it is assumed that for all electrons the maximum
in the radiation spectrum occurs at the observed fre-
quency v, i.e., their energy is determined by expres-
sion (2.23), while the spectral density of the power of
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the radiation is glven by expression (2 24). In the iso-
tropic case when HJ_ = ¥ H?, while N(k) = NL/47, the
concentration of relativistic electrons according to
(5.4), is equal to

4remc?

N=-— 6eSLH |

_ Iy (k)

Ty (k) =T7.2.402 220 (5.5)
When one considers discrete sources, then usually
the measured quantity is not the intensity dJ,, but the

spectral density of the flux of radiation

®,= SJV a0, 5.6)

where the integration is taken over all solid angle oc-
cupied by the source. If the linear size of the source
L is small compared to the distance R to it, while the
absolute value of the magnetic field intensity and the
concentration of relativistic electrons can be assumed
to be approximately constant over the volume of the
source, we have from (5.6) and (3.30)

v+t y—1
KVH 2 (6.26-1018 )T

o v 6.7)

@, —1.35-10"%a (y)

where V is the volume of the source (for a spherical
source obviously V = 7L3/6).

Expressing K in terms of the spectral density of
the flux of radiation &, observed at some frequency »,

we get
y-t
v 2
<6.26- 1018H>

From this one can determine the total number of rela-
tivistic electrons in the energy interval (E;, E,):

7.4-102LR20,

K= a(y) HV

(5.8)

Ey y—1

v\ wrvgm_ 14108 R, Cy (v 2
Nt—VI;\ KE dE‘—(y_i)a(y) H Vi ]
1

X {1 —(
Here E; and E, are the limits of the energy interval
in which the electron spectrum has the form KE™7.
The frequencies vy and v, are related to E; and E,
according to (3.34); in the frequency interval (vq, vy)
the spectrum of the radiation will be a power law with
index o = (y—1)/2 (cf. Sec. 3.3). Since usually vy
<« vy and y,(v) <yy(y), for v > 1 the number of elec-
trons is determined practically only by the lower limit
of the frequency interval and is equal to

y—1
Yo (Y) V4 _2} (5.9)

y1(y) v2

y—1
7.4.1021  R2D, Y1 (y)v ]_2—

T(y—Daly) H vy
The values of the factors a(y) and yi(y) are given in
Table II.

Similarly we can represent the total energy of the
electrons in the source responsible for radiation in
the observed interval of frequencies vy < v < v, as

(5.10)

Ni(>E,)=

Eg
R0,
W,=V S KE-VI' dE=A(y, )7,

E1

(5.11)
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where
A(Yv ’V):
v—2

2.96- 1012 1/ !/1(\)V y2(y) Vi R 9

w—2em * 1 { L]} for v>2,
— 401341/ Y1 (Y)Vz _

1.44-1013vY2 In {yz(Y)"1} for v=2,

Y—2
2.96-1012 ) Cya()v] 2 y2(v) V(] 2
e N IR O mwvj }for F<v<,

(5.12)

5.3. Cosmic Rays and Magnetic Fields in Discrete
Sources of Magnetic Bremsstrahlung

The formulas (5.3), (5.8), and (5.11) given above
permit one to determine the electron concentration
along the line of sight in an extended source (for ex-
ample, in the galactic halo) or to determine the total
energy of relativistic electrons in a discrete source
from the known ¢, and R only if we know the field H.
Unfortunately, there are still no reliable, independent
methods for estimating the strength of the magnetic
field in sources, and therefore in calculating We one
must make additional assumptions.

As the basic assumption of this sort, one usually
assumes that the energy of the magnetic field in the
source, Wy = (H2/81T)V, and the energy of relativistic
particles (cosmic rays, including relativistic electrons)
We.r., in first approximation are equal to one another.
Actually, this assumption corresponds to a minimum
total energy of the system of field and particles for a
given power in the magnetic bremsstrahlung. More
precisely, the minimum of the total energy of the rela-
tivistic electrons (5.11) and the magnetic field in the
source, i.e,, the minimum of the quantity W = We+Wgy
= C;H %%+ C,H?, where C; and C, are coefficients in-
dependent of H, occurs when Wy = 3/4 We. (A similar
result, Wy = %, W¢_ ., is also obtained using the for-
mula (5.14) below, so long as «, is independent of H.)
We note furthermore that a magnetic field with an en-
ergy density significantly less than the energy density
of the relativistic particles could not retain the rela-
tivistic particles within the limited volume of the
source. As a result, the outflow of particles from the
system itself would probably lead to a state of ener-
getic quasi-equilibrium between the magnetic field and
the relativistic particles. Thus, it seems quite reason-
able to assume that in the source

We=uxWe.r., (6.13)

where «y is a numerical coefficient of order one.
Since the data on radio observations permit one to
judge only the number and energy of electrons in the
source, to determine the total energy of all relativistic
particles one must also establish a relation between
this quantity and the energy of relativistic electrons
We. Any sort of reliable method for estimating the
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fraction of relativistic electrons in the total energy of
relativistic particles does not exist at present, and so
one must introduce some proportionality coefficient
between the energies of all cosmic rays in the source
and the energy of the relativistic electrons:

Wer =%W.. (6.14)

Usually one assumes that the proportionality coeffi-
cient is of order ky = 100. The choice of this value is
to a large extent arbitrary, but a basis for it may be
the relation between cosmic rays and electrons in the
galaxy and in some radio nebulae (for example, in
Cassiopeia A, cf. £s91y,

Under these assumptions, from the observed flux
of radio emission one can directly determine both the
magnetic field intensity and the total energy of cosmic
rays and electrons in the source, if one knows the
spectrum, the angular diameter, and the distance of
the source. In fact, from (5.11), (5.13), and (5.14) it
follows that

W=V Ay, v) f‘/’ . (5.15)
Then
= [ 48 d (v 25 |7 (5.16)

where A(vy,v) is determined by expression (5.12),
V= (n/6)L% and ¢ = L/R is the angular diameter of
the source. Then the total energy of cosmic rays in
the source is equal to

We.p. =% W,o=0.1%5"" [1,4 (y, v) DR (Re)”". (5.17)

5.4, Emission Spectrum and Characteristics of Dis-~
crete Sources

We assumed above (in Secs. 5.2 and 5.3) that the
spectrum of the radiation and the corresponding spec-
trum of the electrons followed power laws. Of course,
such an assumption has only a limited validity, and
actually the spectra of all sources somewhere deviate
(kink or pile up). The study of the reasons for the
change in spectral index is a matter of overwhelming
interest since it discloses possibilities for determin-
ing various parameters of the sources.

The inclusion of all possible factors makes the pic-
ture very difficult to see through. It is, therefore,
natural to restrict oneself to two of the more frequent
formulations of the problem.

Within the framework of one of these, we assume
that the electrons radiate in vacuum, and that their
radiation is propagated without distortion, that the
spectrum of electrons no longer is assumed to be a
power law, and in general is not assigned beforehand.
In this case, the problem consists in (based on some
specific pictures) determining the nature of the energy
spectrum of the electrons and the corresponding fre-
quency spectrum of the magnetic bremsstrahlung.
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In the second formulation of the problem, the elec-
tron spectrum will be assumed to be given (a power
law in the simplest case), but the effect of the medium
in the process of radiation and propagation of electro-
magnetic waves will not be neglected. Here the prob-
lem reduces to explaining the nature of the changes in
the frequency spectrum, polarization, and intensity of
the radiation caused by the influence of the medium.

Let us look at the first formulation of the problem,
i.e., let us consider the factors determining the char-
acter of the energy spectrum of ultrarelativistic elec-
trons. If for simplicity we assume the distribution of
electrons to be isotropic, for which there is a justifi-
cation in some cases, then this distribution is com-
pletely characterized by the function N(e, r,t) giving
the number of electrons per unit volume and unit en-
ergy interval at the time t. When we include spatial
diffusion, energy losses and the contributions from
sources of electrons, the function N= N(E, r,t) sat-
isfies the equation

O _DAN + 2 b (E)N1+ 4 =Q(E, r, 1). (5.18)

Here D is the diffusion coefficient for electrons, b(E)
= dE/dt is the rate of change of the energy of the elec-
trons as a result of continuous loss due to radiation
and collision (this term by necessity includes the sys-
tematic acceleration of the particles in the variable
magnetic field), T is the lifetime of the electrons with
respect to catastrophic losses, for example, radiation
with large energy transfer in one collision, Q (E, r, t)
is the strength of the sources (number of electrons
emerging per unit time) taken per unit volume and unit
energy interval.

In applications to the general, non-thermal emission
of the Galaxy, in first approximation it is natural to
limit oneself to the stationary picture, setting N
=N(E,r) and Q= Q(E,r) in (5.18). Here it is as-
sumed that over the last (1—3) x 10® years (the life-
time of cosmic rays in the galaxy ), the galaxy has
changed very little. In particular, if during this time
there have occurred, as is assumed in paper L6807, ex-
plosions of the galactic nucleus, we assume that they
led to no significant change in intensity of relativistic
particles (cosmic rays and electrons) in the galaxy.
For such a stationary model, the spectrum and distri-
bution of electrons in the galaxy was determined by
means of Eq. (5.18) in [, In [8!] the spectrum of
the sources was assumed to be a power law with index
v = 2, while in [%2] the source of relativistic electrons
was taken to be the process of generation of electrons
in the collisions of cosmic rays with the nuclei of the
interstellar gas, i.e., the electrons were assumed to
be secondary with respect to the proton and nuclear
components of cosmic rays. In papers £61,62] spatial
diffusion and continuous loss of energy for the elec-
trons were taken into account.

The spectrum of secondary electrons in the galaxy
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was also calculated in [#3] for a spatially homogeneous
stationary model where N = N(E) (diffusion was not
considered, but to estimate the outflow of particles, in
(5.18) T was taken to be the time Tg for diffuse
emergence of particles from the galaxy ).

If we include all these various factors (non-power
spectrum of electron sources, energy losses, and dif-
fusion), the spectrum of electrons no longer, of course,
can be a power law if we are not considering individual
small regions. Thus, to calculate the spectral intensity
of the magnetic bremsstrahlung, one must use the gen-
eral expression (3.20), which, for an isotropic distri-
bution of electrons in a field H which is random in
direction, takes the form

L o)
/3 o3
Jy=232 Car S dEN(E, r) H (t) ® (v/vo). (5.19)
0 me2
Here
ve  3eHd E 2
Vo= 5inp ~ anme mcz) ' (5.20)
while the function (cf, [34:62])
__r3 m7 dg 3 3 o dg R
Q)(C)gg §§2}€2_€2 SKS/:;( )dﬂ § gt3]/§2 gg[‘(é)
(5.21)

gives the spectral distribution of the radiation from an
electron, averaged over all angles ¢, between its ve-
locity and the field H. Thus, for example, the spectral
density of the power of radiation from electrons with
energy E (monoenergetic spectrum ) and an isotropic
distribution in the chaotic field is equal to
b1

E,,:%Spvsinede vdesH(D( ,

0
where pyp is the spectral density (2.21) of radiation of
an electron moving at an angle 6 to the magnetic field.

In the problems considered in 62,831 the reason for
the non-power nature of the spectrum of the radiation
was primarily the non-power spectrum of the sources
of electrons. However, even in the case of a power
spectrum of the sources, [61] the character of the spec-
trum of the electrons (and consequently also the spec-
trum of the radiation) may be changed drastically as a
result of energy losses.

This can be easily seen on the example of a station-
ary homogeneous problem where N = N(E). In this
case, the solution of (5.18) has the form (cf. [3811; j¢
is assumed that b(E) < 0, i.e., there is no acceleration
of particles, or it is less important than the losses)

by o

If there are no catastrophic losses (T = =), and the
sources have a power spectrum of the form Q(E;)
= QE; 7Y, then from (5.23) we get
Qoo 1)
(vo—NT8(E)] °

(5.22)

N (E)=-

Sb(E)}Q Ey)dE,. (5.23)

N(E)= (5.24)

T
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For losses of energy due to magnetic bremsstrahlung
and Compton effect, b(E) E? (cf. (2'.10)); therefore
the spectrum (5.24) has the form N(E) = KE™Y, where
the index is

Yy="vo-+1. (5.25)

In the case of radiation losses, if we assume ap-
proximately that these losses are continuous, then
b(E) « E and, as is clear from (5.24)

Y= Yo (6.26)

For ionization losses (loss in collision with particles
of the medium ) b(E) for ultrarelativistic electrons
depends only logarithmically on energy. This depen-
dence can be neglected in first approximation and then

y=1vo—1. (6.27)

In various parts of the energy spectrum usually
losses of different types predominate (ionization
losses at low energies, magnetic bremsstrahlung and
Compton losses at high energies). Therefore even for
a power law over the whole range of the energy spec-
trum of the sources, the spectrum of the electrons will
not be of this type.

Now let us consider the non-stationary case which
apparently applies to such discrete sources of radio
and optical magnetic bremsstrahlung as the radio
galaxies, exploding nuclei of galaxies, and supernovae.
In the non-stationary case, the spectrum of the elec-
trons is determined by the expression (cf. [3461])

 fenl— 1 )

b(E))dE"

A detailed a.na_lysis of this expression for the case of
magnetic bremsstrahlung losses was given in [43.

However, the main consequences can already be ob-
tained from the expression for the magnetic brems-

N(E, t)=

><Q<E0,t .28)

strahlung loss (2.10). In this case b(E)= —P(E)
and integrating the equation
dE
- = —P(E)=—pE?,
where
§ig
B= o H = 1.95.10 ~ L (5.29)
we get
I
E—= (PR (5.30)

where E; is the energy of the electron at time t = 0.

It then follows that the energy of the electron decreases
by a factor of two during the time

5.1-108

me?
7o —5 sec. (5.31)

1
Tau= =

Furthermore, as is clear from expression (5.30), for
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any initial energy of the electron, at time t its energy
does not exceed the value

_ 54108

1 s 2,6.1014
Em () =57 ="ga: ™= "

H‘it
Therefore, if the generation of electrons in the source
ceases at t = 0, then after time t one will observe in
the electron spectrum a sharp drop at the energy, de-
termined by the expression (5.32). This drop will cor-
respond in the frequency spectrum of the magnetic
bremsstrahlung to a sharp edge at frequencies (cf.
(1.23))

ev. (5.32)

v>vm(Em(t))=3';I—'£?:in. (5.33)

If, however, the source is ‘‘switched on’’ at time
t = 0 and is stationary starting from that moment, then
in the energy range E > 1/8t one can have a stationary
spectrum developed, which, in the case of a power law
for the sources, will have the exponent (5.25). For
E < 1/B8t the spectrum will differ very little from the
spectrum of the sources, since the losses in this en-
ergy region are small, according to (5.31). Thus, the
quantities Ep(t) and vyl Em(t)] (ef. (5.32) and (5.33))
in this case determine the position of the kink in the
energy spectrum of the electrons and in the partial
spectrum of their radiation, respectively.

In a certain sense an analogous situation also holds
in the stationary case, when we include diffusion emer-
gence of particles from the radiating region. In this
case, the role of the time t is played by the effective
time of diffuse emergence Te = L2/2D where L is the
size of the region and D the diffusion coefficient. For
particles with energies E > Eg, where

- 1 2D
bc=m=m y (5.34)
the spectrum will be distorted by the effect of losses
and, for example, for sources with a power spectrum,
will have an exponent (5.25), whereas for E < E; the
spectrum will differ little from the spectrum of the
sources. Accordingly, in the frequency spectrum of
the radiation, in the region of frequencies

3.1-1023

Vo~V (Ec)z—ﬁij,—?3 Hz (5.35)

one will observe a kink. Thus the analysis of singu-
larities in the frequency spectrum can give valuable
information about the age of sources, diffusion coeffi-
cient, etc.

For a given form of the energy spectrum of the
electrons, a change in intensity of the magnetic brems-
strahlung may be caused both by the outflow of elec-
trons from the radiating region, as well as by the
change in dimensions of the source of radiation, for
example due to the expansion of a radiating nebula. £es]
Let us consider in more detail the change in intensity
of radiation when the dimensions of the region occupied
by relativistic electrons and magnetic field changes.
Here we shall assume that there is no injection or
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“pumping in’’ of energy to the relativistic particles.

Since, under cosmic conditions, to high accuracy,
we satisfy the condition for freezing in of force lines,
i.e., conservation of magnetic flux through a material
contour, for a uniform expansion

He L2 (5.36)

where L is the size of the source of radiation. A re-
duction of the magnetic field leads to an adiabatic
‘‘cooling’’ of the particles, namely the energy of a
relativistic particle in the isotropic case changes
according to the law

EwH"w [, (5.37)

This relation is easy to obtain by taking account of the
conservation of the adiabatic invariant pi/ Hina
slowly varying magnetic field. Here p| is the com-
ponent of the momentum of a particle perpendicular
to H where p = E/c; if in the process of expansion
the isotropic distribution of the particles is main-
tained, then pi = 2/3 pl.

Furthermore, in the expansion the number of par-
ticles does not change, but they get shifted to some
other energy interval. Thus

VN (E)dE =VKE YdE = const,
from which with V » L® and E « L7!, we get

K e L70F2) (5.38)

Consequently, the flux of radiation from a discrete
source, according to (5.7) and (5.36)—(5.38), changes
with the size of the source according to the law

@, w L2, (5.39)

From this, for example, for a nebula expanding with a
radial velocity v (and dL/dt = 2v), the percentage
change in flux is

1 4o,

2y dL _
@, dr

T L odt

4yv
I -

(5.40)

Such an effect was detected in [%] for the radio source
Cassiopeia A (rate of expansion of this nebula—the en-
velope of a supernova of the second type—reaches
7,000 km/sec).

We point out here that when in such a source there
is a kink or some other singularity in the spectrum,
the frequency v; corresponding to this singularity
changes as the source expands according to the law

vy L4 (5.41)
(cf. (2.23) and (5.36), (5.37)). In addition to the as-
sumptions made above about the conservation of iso-
tropy in the distribution of electrons over direction
during expansion, we also assume that other processes
which could lead to a change in the position of the kink
(primarily loss of energy of the electrons) are slow
compared to the expansion. For example, if the kink
is due to magnetic bremsstrahlung losses and, conse-




COSMIC MAGNETIC

quently, its position changes with time according to
the law dE/dt = —8EZ2, then one must satisfy the con-
dition L~'dL/dt > BE.

Now let us briefly consider those changes in the
characteristics of magnetic bremsstrahlung which are
caused by effects of the medium in the process of gen-
eration and propagation of magnetic bremsstrahlung.

The polarization and intensity of magnetic brems-
strahlung can change because of the effect of the me-
dium not only in the source, but also along the path
from it to the earth. In the latter case, however, the
nature of the radiation is not specific (if we do not
consider the fact that in the cosmos polarization is
primarily a characteristic of the magnetic brems-
strahlung ). We shall therefore not spend time on dis-
cussion of the ‘““method of de-excitation’’ consisting in
finding information about inter-galactic, interstellar,
or solar plasmas on the basis of a study of the polar-
ization characteristics of the cosmic radio emission
(cf. Sec. 4.1 and [%%]), As for the usual absorption
along the path from the source, as a result of such
absorption the intensity will change according to the
law J = Jge~7 where J, is the intensity near the source
and T is the thickness of material traversed (cf.

Sec. 4.1). Therefore in the low frequency region
where 7 becomes large, one should observe a rapid
fall-off in intensity in the spectrum of the radiation.
For the galactic radio emission such a fall-off is ob-
served at frequencies v £ 3 MHz.

Absorption in the source itself also should lead to a
change in the spectrum of the radiation. Thus if g(v)
is the intensity of the radiation from unit volume of the
source (radiative power ), then the total intensity is

L

T =g em ar=gm) 125,
0

(5.42)

Since the absorption coefficient y depends on fre-
quency (for radio waves in plasma, according to (4.8),
U = v7%), obviously the spectrum of the total radiation
of the source J(v) differs from the spectrum of the
radiation of the particles g(v) if the optical thickness
7= uL is sufficiently large. In application to the
radio-galactic radio emission, the case of interest is
that where the radiating region is interspersed with
absorbing regions (clouds of ionized hydrogen). Such
a case was treated in [87],

Reabsorption of radiation in an ultrarelativistic
electron gas leads in a qualitative way to a result
analogous to ordinary absorption, since the absorption
coefficient in the case of reabsorption (4.18) also in-
creases rapidly with decreasing frequency. As a result
of reabsorption in the low frequency region, where the
optical thickness upL for reabsorption is large, the
spectrum of the radiation changes markedly in form,
namely, the intensity drops with decreasing frequency
like 572 (cf. (4.21)), in contrast to the case for the high

frequency region, for which J; « v, « >0. Since, in
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the case of reabsorption, the absorption coefficient (cf.
(4.18)) depends on the concentration of relativistic elec-
trons and the intensity of the magnetic field, the possi-
bility arises of obtaining information about the values
of these quantities in the source starting from the ob-
served positions of kinks in the spectrum of the radia-
tion due to reabsorption.

Finally, if condition (4.26) is not satisfied in the
source, one must take into account the effect of the in-
dex of refraction on the process of radiation itself, i.e.,
one must use expression (4.22) for the intensity of the
radiation of a plasma with n < 1. The analysis of this
expression shows that in the frequency region v < vy
(cf. (4.26)) the intensity of the radiation falls off mark-
edly (cf., for example, [6°]).

From the remarks in the present section it is clear
that the study of magnetic-bremsstrahlung spectra
makes it possible to obtain a variety of important in-
formation about relativistic electrons, magnetic fields,
and gas in sources, and also about the time scales and
ages of sources.

5.5. Optical and X-ray Magnetic Bremsstrahlung

Optical and x-ray magnetic radiation does not dif-
fer from the magnetic bremsstrahlung in the radio re-
gion, and here again the qualitative picture given in
Sec. 2 remains, and the quantitative results presented
in Secs. 2 and 3 also. At the same time, in a given
magnetic field, for radiation of optical and even more
so for x-ray frequencies, the electrons should have
considerably higher energy than in the case of radiation
of radio frequencies. If, however, the energy of the
electron is unchanged, then we must increase the mag-
netic field even more. Specifically, for an estimate we
make use of formula (2.23), by virtue of which

" H 2
=g = (5.43)
Suppose, for example, v; =3 x 108 (A=¢/vy=1m) in
a typical field H] ;=3 X 107% for the galaxy. Then,
according to (2.23), the energy of the radiating elec-
trons E; ~ 5 X 10% eV. In the same field Hy ,=H]
the optical frequencies vy = 10410 (A= 0.3— 3;1)
can be radiated only by electrons with energies E,

~ 5x 1012 eV. For X-rays, vq ~ 108 and, consequently,
for the same magnetic field the electrons must now
have energy E; ~ 3 x 101 ev,

One must keep in mind that magnetic bremsstrahl-
ung losses are proportional to HiE2 (cf. (2.10)) and
therefore particles with very high energy or in a very
strong field are slowed down very quickly. An esti-
mate of the energy and ‘‘lifetime’’ in a magnetic field
can be made conveniently using formulas (5.30) and
(5.31). Then in formula (5.31) one can express the en-
ergy of the electron in terms of the characteristic fre-
quency of its radiation (2.23) and thus obtain a direct
connection between the observed frequency and the
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characteristic lifetime (the time during which the en-
ergy decreases by a factor of two) of the radiating
electrons:

5-108 me? 5,5-101 1,8-104
Ty="—"57— o 2 = 5.44
M Hy E ijzvl/z H_Y’vl/z ( )
Here H) is measured in Oe and v in Hz. The time

Ty expressed in terms of frequency has, of course,

a somewhat conventional character since we have used
for v the frequency corresponding to the maximum in
the spectrum of the radiation of monoenergetic elec-
trons.

In a field H) = 3 X 1078 the times Ty for electrons
with energy 5 x 10%, 5 x 10%, and 3 x 10 eV are re-
spectively 2 x 108, 2 x 10°%, and 3 x 10% years. For our
galaxy, and generally for normal galaxies for which
the value H) =3 x 107% can be regarded as typical,

a characteristic time Ty of the order of 10° years,
let alone 10° years, seems to be extremely small, and
it is therefore natural that the optical and x-ray mag-
netic bremsstrahlung will be weak. More precisely,
the situation can be changed only when there is an in-
tense injection of electrons at high energy in inter-
stellar space from some of the sources, for example
from the envelopes of supernova. A discussion of the
question of interstellar x-ray magnetic bremsstrahl -
ung can be found in (1. In the case of a field H ~ 3
x 107* which is typical for the envelopes of super-
novae, the electrons responsible for optical and x-ray
radiation are those with energies 5 x 10 and

3 x 10'3 eV, for which the lifetimes Ty are of order
10% years and 1 year respectively. Thus, for example,
for the Crab nebula, whose age is about 900 years, to
assume that the electrons responsible for the optical
radiation were formed in the explosion can only be
possible by stretching things (this is possible in a field
H| ~ 107%, which from other considerations is already
too weak). But if the x-ray radiation of the Crab nebula
is magnetic bremsstrahlung, as now appears most prob-
able, the existence in the Crab of ‘‘pumpings’’—injec-
tions of electrons of high energies right at the present
time —appears completely definite.

As stated, the optical and x-ray magnetic brems-
strahlung is described completely by the formulas
given earlier. There even arises a simplification in
that at high energies one can neglect the effects of the
index of refraction n(w) = 1 in the radiating region,
reabsorption, and rotation of the plane of polarization
in the cosmic plasma. Thus, one need only include ab-
sorption of the radiation along the path from the source
to the earth or in the source itself, for example, when
it contains dust (as for the galaxy M82).

For convenience, we give some expressions which
are useful for calculation. In the x-ray region and
sometimes also in the optical region, one uses not the
energy flux, but the flux or intensity of the number of
particles (photons), which we denote respectively by
F, and I,. The change obviously is made by dividing
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the energies by the quantum energy hv. Thus, accord-
ing to (3.30) the intensity of the number of quanta is

vt !
I(v)= 3y —3.26-10% (y) LKA 2 (P2200) 2

photons

cm’ sec-sr-Hz
(5.45)
or, if we go over from frequency v to photon energy
€ = hy, expressed in eV,
vt
Ie)=1 (2 -0, 79a(y)LKH ( 259104 )

photons

3 .
cm” sec-sr-eV

(5.46)

Here L is measured in cm, K in (ergs)Y tecm™3,

H in Oe and € in eV. Similarly the flux of photons
from a discrete source (cf. (5.7)) is

¥+t y+1
VKH &2 <e .26- 1018> 2

photons

F(v)=

a (y)

em® sec-Hz
(5.47)

or, taken relative to the photon energy € = hv =

4.14x 1078 pev,

y+i y+i
VKH 2 g 59 100\ 2
F (e)=0.79a(y) ( )

photons

cm’® sec-eV ° (5.48)
Furthermore when the electron spectrum can be
assumed to be the same over the whole volume of the

source, it is convenient to use the following expres-
sion for the ratio of the fluxes of radiation at different
frequencies v; and v, (cf. (56.7))

HONCOR

Here it is assumed that the radiation at frequency v,
arises in a region of the source with volume Vy, while
in this region the magnetic field intensity is H;, whereas
the radiation at frequency v, comes from a volume V,
with field H,. If we are considering the radiation of
electrons with the same energy E, = E;, then the fre-
quencies v, and vy are related by (5.43) and the ratio
of fluxes is

Dy (va) _
@ (vy)

(6.49)

D, (vo) __
Dy (v)

VoH,
VH,

(5.50)

Formulas (5.49) and (5.50) are important when, within
a small volume V, of the source with total volume V,,
the field H, > Hj, and in the electron spectrum there
is a cutoff on the high energy side so that the electrons
from the volume V, do not radiate at frequencies v,
> p; while the radiation from volume V, at frequen-
cies vy is small because of the smallness of volume
V,. Then the observed ratio of fluxes at frequencies

v, and v; from the whole source will be determined
by the ratio of the fluxes from the volumes V, and V,
Such a situation can exist, for example, in the case of
a nebula, having in its central region a collapsed star
with a very strong magnetic field.
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5.6. Summary of Important Formulas

We may assume that the present paper will be used
not only to familiarize the reader with the physical as-
pects and results of the theory of magnetic brems-
strahlung, but simply in order to find quickly formulas
that are needed. We therefore, in conclusion, give a
summary of the most important formulas which we
have already met and discussed in the text.*

The total power of the magnetic bremsstrahlung of
an ultrarelativistic electron (magnetobremsstrahlung
loss) is

(2.10)

P(E)={ p(v)av=098-10217 (
0

E 2
. ) eV/sec.
mc

The spectral density of the power of the total radiation
from a single electron is

P

=2.37T1020 | F (%)

S
]3e3HJ_

me?

p{v)=

erg
sec +Hz

(2.21)

a plot of F(x) is given in Fig. 7, and its values and
approximate expressions in Table I. The spectral
density p(v) has a maximum

P (Vm) = L=216.102H; 5 (2.24)
at the frequency
~0.20v.=1,2-100  ( 2
=4.6-10%H | [E(eV)]® Hz. (2.23)

The electron energy for which the maximum of the
radiation occurs at frequency v = vy, is
— 75400 (Y VVerg— 4700 ( ) eV, (.
E=1.5-10 (HJ erg—4.7-1 (\HJ ev. (2.23)
The intensity of the radiation in a homogeneous field,
for electrons distributed isotropically along the line of
sight (length L), with one and the same energy (mono-

energetic spectrum) and concentration N(r), is
L

Jy= 20 5 N (r)dr; (2.25)
0
its value at the maximum is
L
— L 10~23 Y erg
Joym=1.7-10"8f | 5 N (x)dr —— (2.26)

0
The average concentration of electrons (assuming H?
= 3/2 Hi ) is

*In all cases the magnetic fields H and H, are measured in
oersted, the path L in cm, the time in sec, the frequency v
in hertz (cps), electron concentrations N and N in cm™, the co-
efficient K in the energy spectrum of electrons N(E)dE = KE'YdE
in (erg)?™t em™.
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1 £ J
V=1 {Nmar=12.102Jx (5.5)

0

The intensity of the radiation in a random magnetic
field, for electrons with a homogeneous and isotropic
distribution along the path L and energy spectrum
N(E) = KE™Y (radiative power g, =J,/L) is

y—1
6.26. 1013 ) erg

o
J,=1.35-10% (v) LKH * e (3.30)

The intensity of number of photons under these same
conditions (photon energy € = hy = 4.14 x 1075,
measured in eV) is

photons

(5.46)

Lan i
I(e)=0.7% (v) LKH * <2‘59§;.104> * cm® sec-sr-Hz
The values of the coefficient a(y) are given in Table II
on page 685.
The limits of the energy interval for a power spec-
trum of electrons given a power spectrum of radiation
in the interval v; = v < vy are

E =2.5-10*[vy/y, (v) HV2 eV,

Ey=2.5-10% [vy/ys (y) H]Y2 €V; (3.34)

The coefficients y;(y) and y,(y) are given in Table II.
For rough estimates, and also when y < 1.5, we may
set y1{y) = yy(y) = 0.24.

The intensity of radiation, expressed in terms of
effective temperature, is

erg
cm? sec-sr-Hz

J y=3.07-1073W2T o “4.12)

The coefficient in the electron spectrum expressed in
terms of the intensity or effective temperature of the
radiation at frequency v is

Ko 41007, 5
T e IH <6 26. 1018H>
v+3
_ 8.940RHT o / v TE - -3

ergv-l.cm (5.3)

a(y) L \.6.26-1018 H

The flux of radiation &, from a discrete source of
volume V, located at distance R, is
'VTi y—1

@, =1.35-10"%2q (y )KVH (6‘26 1018) :

In this case

e . (5.7)

2
cm’ sec-Hz’

y—i

7.4-102R2Q,, / > %ergV-!.cm

-3
a(y) HV Kﬁzb 106 H . (5.8)

K=

The total energy of relativistic electrons in a source
is

Wo=A(y, v) o 3/2 i (5.11)

Expressions for the coefficient A(y, v)
formula (5.12).

The magnetic field energy WH and the cosmic ray
energy We . in the source are

are given in
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WH == %HWc.r. = KH%rWe

= 0.19 {xgx, A (y, v) DR (Re)*r. (5.17)
The magnetic field intensity is
H = [48ugn, A (y, v)®,/Rp?|*. (5.16)

The characteristic time for magnetic bremsstrahl -
ung losses (the time during which the energy of the
electron decreases by a factor two) is

5.1-108 me?
—— 8€ecC

Ta= 00"

(5.31)

or if v is the frequency at which the maximum in the
spectrum of radiation of the electron occurs, then

Ty =~ 5.5-101/H/>y'/s sec. (5.44)

The maximum energy of electrons at time t after
their injection into the magnetic field is

2.6-1014
HYt

En(t)= ev. (5.32)

The frequency in the spectrum of radiation of these

electrons corresponding to the dropoff of the spectrum

is

3.1.10%8
HYe

Vi (Em (1)) = (5.33)
The change in flux of radiation due to expansion of the
source with dimension L in the absence of ‘‘pumping
in’’ of energy is

, (£) « [L(t)]=2. (5.39)
The coefficient of absorption of radio waves in a
plasma is
10-2N2 T2 -1
b= D [17.7—}—ln—v]cm 3 (4.8)

The coefficient for reabsorption in a gas of ultrarela-
tivistic electrons is
vtz o yid

me=g (v)0.019(3.5-1GKH > v 2 em~!  (4.20)

The values for the coefficient g(y) were given in
Table III (coefficient g(y) ~ 1). The characteristic
frequency above which the deviation of the index of re-
fraction of the plasma from unity has no effect on the
magnetic bremsstrahlung is

Ne
7 Hz,

i, (4.26)

v, o~ 20
where Ng is the concentration of electrons in the
plasma. The angle of rotation of the plane of polariza-
tion of the radiation in passing through a path L at an
angle 6 to the field H is

\P:2.36-104&‘%’Bﬂ’ rad. (4.6)
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