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I wish to d e m o n s t r a t e , using a s an example L. I. Man-
d e l ' s h t a m ' s work on the theory of the optical image,
the depth and broad scope of his scientific method,
which has enabled him to see, in an already-thoroughly
studied topic, perfect ly new and unexpected aspects ,
whose significance has come to be appreciated only
recently, after the lapse of many decades .

In connection with the p r e s e n t g rea t expansion of
r e s e a r c h in the theory and techniques of coherent
light, and also in connection with p r o b l e m s involving
generat ion, amplification, and t r a n s m i s s i o n of osc i l la-
tion in the longer-wavelength sect ions of the e l e c t r o -
magnetic s p e c t r u m (the m i l l i m e t e r and submil l imeter
bands), many w o r k e r s have become great ly in teres ted
in quasioptics, a branch of e lectrodynamics dealing
with the asymptotic laws of diffraction by bodies
whose d imensions a r e l a r g e compared with the wave-
length.

To understand the laws of wave diffraction by la rge
bodies, dealt with in quasioptics, it i s n e c e s s a r y to
make use of both the geometr ic-opt ics and wave p r o p -
e r t i e s of the e lectromagnet ic field. Moreover, it i s
p r e c i s e l y the diffraction phenomena that d e t e r m i n e the
specific c h a r a c t e r i s t i c s of the wave p r o c e s s e s in
quasioptical s y s t e m s .

Recent advances in quasioptics include, f irst , the
development of a theory of free osci l lat ion of open
r e s o n a t o r s used in l a s e r s t n H , the theory of propaga-
tion of coherent wave b e a m s in lens and m i r r o r wave-
guides ^ , the theory of excitation of open r e s o n a t o r s
and waveguides'-6-', and the solution of severa l p r o b -
l e m s in the theory of wave propagation in smooth
waveguides of l a r g e c r o s s section'-7-'.

Even long before these topics were intensively
tackled in quasioptics, i t s methods w e r e successfully
applied to the theory of optical ins t ruments , to explain
the diffractive a b e r r a t i o n s of i m a g e s . Mandel ' shtam
paid much attention to questions of the theory of the
optical image. One of the approaches developed by him
in this theory i s especia l ly interes t ing in light of p r o b -
l e m s now being solved by modern quasioptics .

In 1912, while at the Phys ics Institute of the S t r a s -
bourg University, Mandel ' shtam wrote a paper " O n
the Use of Integral Equations in the Theory of the
Optical Image. " ^ This paper was a regu lar devel-
opment of h i s e a r l i e r r e s e a r c h on the theory of the
microscopic image'-9-'. As i s well known, Mandel '-
shtam analyzed cr i t ica l ly Abbe's theory and demon-
st ra ted the feasibility of a unified t r e a t m e n t of the

s t r u c t u r e of the diffraction image of both self-luminous
(i .e. , incoherent) and nonluminous (i.e., coherent)
objects.

The paper " O n the Use of Integral Equations in the
Theory of the Optical I m a g e " differed from e a r l i e r
work on this topic p r i m a r i l y by a fundamentally new
statement of the problem. Here is what Mandel ' shtam
wri tes :

" P r i n c i p a l attention has been paid hi therto to a
study of how the image of a given object i s produced
through a given diaphragm; for example, to the m i n i -
mum width that a d iaphragm must have in o r d e r for
the image sti l l to exhibit a cer ta in s t r u c t u r e . This
problem reduces , as i s well known, to a determinat ion
of the resolving power of optical i n s t r u m e n t s .

The question which I want to d i scuss briefly con-
s i s t s in the following: What s t r u c t u r e s resu l t in images
s i m i l a r to themselves if a specified diaphragm is
u s e d ? " (emphasis i s by M a n d e l ' s h t a m t t ] , p. 230).

An important factor in such a formulation of the
question of the s t r u c t u r e of the optical image is the
fact, especial ly noted by Mandel ' shtam, that it leads
direct ly to a homogeneous integral equation of the type

pf{x)= \ K(x, x')f(x')dx' (1)

for the sought field s t r u c t u r e f(x). The kernel of this
equation is the diffraction image of a luminous point on
the object in image space; the integration l imits a re
determined by the boundaries of the object and i t s
image.

We thus see h e r e p r e c i s e l y the formulation of the
problem of a per iodic field s t r u c t u r e , which is the
b a s i s of contemporary work by Goubau and Schwering'-5-'.
Fox and Li'-1-' , Boyd and Gordon'-2-', Boyd and Kogel-
nik'-3-', Vainshtein'-*•', and many others'-7-' working on
the diffraction theory of open r e s o n a t o r s and beam
waveguides.

The investigation of integral equations of type (1),
with kernel s K(x, x ' ) possess ing the p r o p e r t i e s of the
diffraction image of a luminous point, i s present ly one
of the fundamental prob lems of quasioptical theory.
Extensive use is made in i ts solution of modern com-
putational techniques. The difficulty in investigating
these equations l ies in the fact that in the a r b i t r a r y
case the kerne l s К (x, x ' ) obtained a r e complex and
symmetr ica l , but not hermit ian, and a genera l theory
of integral equations with such kernel s has not been
fully developed as yet. Only very recent p a p e r s deal
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w i t h t h e e x i s t e n c e o f s o l u t i o n s o f t h e s e e q u a t i o n s u n d e r

t h e s a m e l i m i t a t i o n o n t h e k e r n e l s K ( x , x ' ) a s a r e i m -

p o s e d b y t h e p h y s i c a l c o n d i t i o n s o f q u a s i o p t i c s ' - 1 0 - ' .

L e t u s c o n s i d e r i n s o m e w h a t g r e a t e r d e t a i l t h e

g e n e r a l s c h e m e o f t h e o p t i c a l i n s t r u m e n t d i s c u s s e d

b y M a n d e l ' s h t a m . I t i s s h o w n i n F i g . 1 .

H e r e F j a n d F 2 a r e t w o l e n s s y s t e m s . T h e o b j e c t i s

i n t h e f o c a l p l a n e A ' B ' o f t h e l e n s s y s t e m F j . T h e

i m a g e o f a c e r t a i n p o i n t x ' o f t h i s o b j e c t i s t h e p o i n t

x i n t h e f o c a l p l a n e A B o f t h e s e c o n d l e n s s y s t e m . I n

t h e s e c o n d f o c a l p l a n e o f t h e l e n s s y s t e m F i i s a d i a -

p h r a g m D . I n a d d i t i o n , d i a p h r a g m s i n p l a n e s A ' B ' a n d

A B l i m i t t h e d i m e n s i o n s o f t h e o b j e c t a n d o f i t s i m a g e .

I t i s a s s u m e d f o r s i m p l i c i t y t h a t t h e d i s t a n c e f r o m t h e

p o i n t s x a n d x ' t o t h e o p t i c a l a x i s o f t h e s y s t e m i s t h e

s a m e , i . e . , t h e m a g n i f i c a t i o n o f t h e s y s t e m i s e q u a l t o

u n i t y . T h e q u e s t i o n o f f i n d i n g p e r i o d i c d i s t r i b u t i o n s

i s f o r m u l a t e d f o r t h i s v e r y s y s t e m . M a n d e l ' s h t a m

r a i s e s t h i s q u e s t i o n b o t h f o r t h e f i e l d , i n t h e c a s e o f

c o h e r e n t o b j e c t s , a n d f o r t h e i n t e n s i t y i n t h e c a s e o f

c o m p l e t e l y i n c o h e r e n t ( s e l f - l u m i n o u s ) o b j e c t s . W e

s h a l l b e i n t e r e s t e d i n w h a t f o l l o w s o n l y i n t h e f i r s t

c a s e . T h e l i m i t i n g d i a p h r a g m c o n s i d e r e d b y M a n -

d e l ' s h t a m i s a r e c t a n g u l a r a p e r t u r e , a n d t h e k e r n e l o f

i n t e g r a l e q u a t i o n ( 1 ) i s c h o s e n t o b e t h e f u n c t i o n

^ C ( x - x ' ) ( 2 )

which, as is well known, is the Fraunhofer diffraction
pattern of a rectangular aperture. The constant С in
(2) depends in a known fashion on the diaphragm di-
mension and on the wavelength \.

It is interesting to find out which of the modern
quasioptical problems in the theory of open wave-
guides and resonators corresponds to this concrete
formulation. It is easy to show that the optical system
corresponding to the kernel (2) in question can be re-
duced to the form shown in Fig. 2. To be sure, in the
latter the magnification is equal to - 1 and not to 1, as

F
FIG. 3

is assumed by Mandel'shtam for simplicity in writing
the integral equation, but this has no fundamental sig-
nificance and is manifest only in the sign of the eigen-
values p. It is perfectly obvious that if we find the
solution of integral equation (1) for the indicated
optical system, the same solutions will describe the
periodic field distribution in the lens-type diaphragmed
waveguide obtained by periodically continuing the unit
optical cell under consideration. The eigenvalues p
will determine in this case the damping and the phase
of the wave beams in such a waveguide. It is also easy
to construct the scheme of an open resonator corre-
sponding to the optical system shown in Fig. 2. To
this end we can consider in lieu of the beam passing
through the diaphragm D a beam reflected from a
plane conducting metal screen replacing the diaphragm
aperture. A similar procedure can be used for dia-
phragm A'B'. AS a result we obtain the open resonator
shown in Fig. 3.

Equation (1) describes, obviously, the field distribu-
tion on the left-hand mirror of this resonator. From
the system of Fig. 3 we can go over, by replacing the
single lens F with two equivalent ones (in the sense of
image transmission), to the resonator shown in Fig. 4.

FIG. 4

In this resonator lenses with focal lengths F are lo-
cated near mirrors separated by a distance F.

This system is in turn equivalent, with respect to
the field distribution on the mirrors, to a resonator
with two confocal spherical mirrors of focal length
F/2 (Fig. 5). The latter is the presently well-known
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and well-studied model of the confocal resonator widely
used in lasers^1"4-1.

We see thus that the concrete example considered
by Mandel'shtam is from the modern point of view
equivalent to the problem of the modes in a dia-
phragmed confocal beam waveguide (Fig. 2), or the
equivalent confocal resonator (Fig. 5).

Mandel'shtam solved the integral equation (1) with
kernel (2) for a = °°, i.e., for the distribution of a
field which is not diaphragmed in the object and image
planes. By the same token he actually found the field
distribution on the non-diaphragmed (left-hand) mirror
of the resonator shown in Fig. 3, or the resonators
equivalent to it (Figs. 4 and 5).

Were Mandel'shtam to consider the solution of his
Eq. (1) for finite a, then by the same token he would
have investigated the presently known modes of a dia-
phragmed confocal beam waveguide, or a confocal r e s -
onator with finite mirrors . At that time, however,
integral equations with a kernel of type (2) were not
yet thoroughly investigated. The main results for such
equations were obtained several decades later, in con-
nection with problems arising in information theory,
antenna theory, and finally, the theory of open wave-
guides and resonators'-11"14-'.

Mandel'shtam therefore did not have at his disposal
a well developed mathematical formalism for a de-
tailed investigation of the properties of the solution of
the equations derived by him. This makes all the
more interesting those opinions concerning the char-
acter of the solutions, and hence the character of the
repeating field distributions, which were expressed
by Mandel'shtam on the basis of the general theory of
integral equations, and which apply in their entirety,
by virtue of the foregoing, to modern quasioptical
waveguides and resonators. Since the kernel (2) in the
example considered by Mandel'shtam is real and sym-
metrical, he indicates that there exists an infinite set
of eigenvalues p and corresponding solutions of the
integral equation (1) or, as we now say, when speaking
of open resonators and waveguides, an infinite set of
natural modes.

Especially modern-sounding is the following r e -
mark by Mandel'shtam: "Of practical importance is
the following situation: . . . from among the infinite
number of structures which yield (for different values
of p) similar images, only a finite number corre-
sponds to a noticeably luminosity of the image . . .
Structures corresponding to all other values p will
have images with only negligible brightness" ( ^ ,
p. 236.) Thus, Mandel'shtam called attention even then
to the most important property of diaphragmed optical
systems, that of transmitting selectively, with different
illuminations, periodic field distributions that are sim-
ilar in structure. In modern quasioptical waveguides
and resonators this property is the basis of selection
of modes and resolution of their spectrum. It is con-

'nected with the possibility of obtaining single-mode

operation in multimode systems with dimensions much
larger than the wavelength. The selection of modes in
open resonators and beam waveguides is at present
one of the most important problems of modern quasi-
optics. On its solution depend, in particular, the pos-
sibilities of successfully using lasers for communica-
tion, navigation, radar, microscopic operations, i.e.,
wherever it is required that the laser beam have a
high degree of coherence, monochromaticity, and
large directivity.

From the mathematical point of view the problem
of optimal selection consists in finding a wave-beam-
transformation operator compatible with the electro-
magnetic-field equations, such that its largest eigen-
value exceeds all others appreciably in absolute value,
but at the same time remains sufficiently close to
unity. Yet no one has considered this problem in this
formulation. An analysis of the hitherto investigated
concrete lens and mirror systems shows that the best
selectivity in this sense is possessed by confocal r e s -
onators and waveguides with diaphragms having con-
stant transparency over the entire aperture, i.e., just
the systems analyzed by Mandel'shtam in his 1912
paper. Additional possibilities of suppressing unde-
sirable oscillations in open systems can be connected
with the use of special selective elements.

In connection with the problem of beam transmis-
sion of electromagnetic energy, interest is attached to
one more aspect of Mandel'shtam's problem. We refer
to a search for an optimal wave-beam configuration
realizing the transmission of energy between two
specified apertures with minimum loss.

In the optical scheme considered by Mandel'shtam
(Fig. 2), the role of such apertures is played by the
openings in screens A'B' and AB in object and image
space, respectively. It can be shown that in the case
of rectangular apertures the solution of this varia-
tional problem again leads to integral equation (1) with
a kernel of the type (2) '-15-'. It follows therefore that
both the main field distribution in Mandel'shtam's
optical system (Fig. 2) and the fundamental mode in a
confocal resonator or waveguide have the lowest radia-
tion loss compared with any other possible field distri-
bution among the specified apertures in these systems.
In this sense the field distributions that can be obtained
from the integral equation formulated by Mandel'shtam
are optimal.

Thus, the approach developed by L. I. Mandel'shtam
in the theory of the optical image more than 50 years
ago discloses almost all the main elements that are
characteristic of modern quasioptical theory of open
resonators in a waveguide.
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