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IT was my good fortune over a period of many years
to attend the lectures and seminars of Leonid
Isaakovich Mandel’shtam. In the beginning of 1944, he
lectured on certain problems of the theory of vibra-
tions.[J In describing the essential quality which is
found in the theory of vibrations, and which at the
same time is general for all other branches of
physics, he said figuratively that each part of physics,
optics, acoustics, mechanics, etc. speaks in its own
‘‘national’’ language. But there is an ‘‘international’’
language in physics, and that is the theory of vibra-
tions.

If one uses such a linguistic terminology, then we
can say that L. I. was a polyglot; he understood the
languages of all branches of physics. An especially
fine knowledge of the ‘‘international’’ language per-
mitted L. I. to see phenomena as others did not see
them, and to find the connection between phenomena
that appeared unrelated to others. I shall not take it
on myself to discuss which of L. I.’s discoveries or
investigations played the decisive role, but I think
that in this region of which I shall speak today, his
knowledge of the ‘‘international’’ language played not
a small part.

Mandel’shtam witnessed the birth of molecular
scattering of light and his contribution to this subject
was very great.

Fifty four years ago, Einstein (23 calculated the in-
tensity of light scattered by density fluctuations,
expanding the density fluctuations in a Fourier series
of spatially periodic functions. At almost the same
time, Debye (3 generalized Einstein’s theory of
specific heats of solids by expressing the kinetic
energy of the thermal motion in terms of the energy
of elastic waves. Neither Einstein nor Debye thought
that they were talking about the same thing.

Mandel’shtam foresaw the future clearly and
showed that the Einstein ‘‘formal waves,’’ from which
the light scattering occurs, are also the Debye waves,
whose energy determines the specific heat of the
solid.[l_‘ﬂ Thus, he found a simple relation between
the specific heat of the solid and light scattering, al~
though it appeared that these phenomena have nothing
in common with each other.

Along with this, L. I. stated a new viewpoint on
light scattering. From this point of view, the scat-
tered light is the diffraction of light by elastic
thermal waves, or by hypersound, as we now say.

Figure 1, which has already become classical,

illustrates the essentials of the phenomenon. The
excited light is propagated in the direction shown by
the wave vector k, while the elastic and the scattered
waves are propagated in the direction of the wave
vectors + q and k’, respectively.

The maximum intensity of the scattered (diffracted)
light will be observed, as is well known, in the direc-
tions satisfying the condition

k'—k=+q. 1)
Setting [k?| = |k], we get
2nAsin%:A,

where n is the index of refraction, A and A are the
lengths of the elastic and light waves, respectively,
0 is the scattering angle. This latter expression
allows us to estimate the frequency of the elastic
waves which determine the scattering at the various
angles:

0
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where V is the speed of the corresponding elastic
wave. .

When 6 = 90° and A = 4358 A, we get f ~ 7 X 10°
for liquids, while for crystals, in which the sound
velocity is much greater than in liquids, the frequency
is higher. For example, for sapphire, f =5 X 1010 cps
under these conditions.

In addition to the diffraction of light by an elastic
wave, L. I. saw in light scattering another phenome-
non, which, in the international language of vibration
theory, is known as modulation. The problem is that
of the modulation of light as the result of a time-de-
pendent change in the density of the material in an
elastic standing wave.

In this case of modulation, a doublet with frequen-
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FIG. 1. Diffraction of light by a thermal elastic wave.
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cies v+ f appears in the spectrum of scattered light.
The relative change in the frequency of the doublet
lines, taking (2) into account, will be
Av s

:t%=7:2nv?sm%. (3)
In the first published work on the subject, L. 1.
turned his attention to the fact that an unshifted line
should also be observed in addition to the displaced
lines in the spectrum of scattered light. He looked
into the nature of this central line and in essence
gave an estimate of its half-width. Thus a triplet
should be observed in the liquid.*

The picture of this phenomenon was clear to
Mandel’shtam as early as 1918, but he did not rush
into publication, and when his extremely thorough
paper on its cause appeared in 1926,[5] Brillouin had
by that time already obtained part of his results in-
dependently and had published them. Therefore, the
shifted fine-structure components are now called the
Mandel’shtam-Brillouin components.

Following his transfer to the physics faculty of
Moscow State University as an experimental investi-
gator in optics, he formulated the problem of the
discovery of the fine structure lines of scattered light
predicted by him. He undertook this investigation
together with G. S. Landsberg.

In 1928 he found the shifted components in the
spectrum of scattered light (satellites); the shift was
so great that it was impossible to explain it as the
modulation of scattered light by an elastic thermal
wave. This was the discovery of a new phenomenon,
called by its authors combination light scattering. It
was immediately described correctly by him as the
result of the modulation of the scattered light due to
the periodic deformation of the electron shell of the
molecule, taking place under the action of the thermal
vibrations of the atoms in the molecules.T

The discovery of combination light (Raman) scat-
tering created a new trend in physics; many mono-
graphs and many thousand original researches have
been devoted to it.

With the appearance of powerful lasers, genera-
tion of light in the combination scattering lines has
been observed, and today it is possible to transform
about 30% of the energy of an initial beam of light into
the combination scattering line. It is quite possible
that this subtle phenomenon, which serves so effec-
tively the investigation of the structure of molecular
and intermolecular interaction, will in addition be-
come a fundamental new technical instrument—a light
frequency transformer. Only after the fundamental

*In a solid amorphous body, five components should be ob-
served as a consequence of the existence of longitudinal and
transverse waves. In the most general crystalline case, twenty-
five components are possible.

TFor additional details on the discovery of combination light
scattering, see the initial note of I. E. Tamm (on pp. 633-36).
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laws of combination scattering were made clear did
Mandel’shtam and Landsberg turn to the study of the
fine structure of the scattering line. This phenomenon
was discovered in 1930, and Tamm has already dis-
cussed this in detail.

When the fine structure of the scattering line was
discovered in such liquids as carbon bisulfide, ben-
zene, and carbon tetrachloride, L. I. and his student
M. A. Leontovich saw that the very fact of the exist-
ence of the Mandel’shtam -Brillouin components in
such media confronted the classical theory of sound
propagation in condensed media with an insurmounta-
ble difficulty.

The problem is the following.

If the hypersound responsible for the formation of
the Mandel’shtam~Brillouin components is damped,
then the width of these components will be finite, and
the half width of each component will be

dvM.—B. =0V, 4)

where « is the amplitude damping coefficient of the
hypersound and V is the speed of the hypersound.

Classical hydrodynamics leads to the well known
expression for the absorption coefficient

2
=y oy =g (g n+w) (5)
(Q = 27nf, n and 1’ are the shear and bulk viscosity
coefficients).

If the measured values at the ultrasonic frequen-
cies of 106—10% cps are extrapolated according to the
quadratic law (5) to frequencies ~7 X 10% ¢ps, and
then the resultant values are substituted in (4), we
find that dvpy-g > Av, that is, the half-width of the
Mandel’shtam~Brillouin component is greater than
the distance between the maximum intensity of this
component and the maximum of the intensity of the
central component. Under such conditions, the dis-
crete structure of the scattering line should not be
visible. However, it is very clearly observed.

This fundamental difficulty of the classical theory
of sound propagation in condensed systems appeared
impossible to resolve within the framework of the
theory described above. Mandel’shtam and Leonto-
vich ¥ then created a relaxation theory of sound
propagation in condensed systems. This theory, not
only gave a natural explanation for the existence of
a discrete fine structure of the line of scattered light
in such liquids as benzene, carbon bisulfide, etc. but
is now the basis of molecular acoustics and hyper-
acoustics.

According to this theory, when account is taken of
relaxation of the bulk viscosity coefficient 1’ alone*,
the absorption coefficient (5) is expressed in the fol-
lowing fashion:

*A relaxation theoryl’] was developed by M. A. Isakovich[®]
for the case of a relaxation of the shear viscosity coefficient.
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where T is the relaxation time of 7/, and V,, is the
speed of sound at infinite frequency. It follows from
(6) that at very high frequencies, when @7 > 1, one
can neglect unity in the denominator of (6) and then

Vi V3

° oo
N Ty yEe 0
2V

that is, it does not depend on the frequency at all. At
low frequencies, where one can neglect the value of
Q%7 relative to unity,

VL —V3

oy = LT g

and then the absorption is proportional to the square
of the frequency, as follows also from the classical
formula (5).

Thus the relaxation theory predicts that ayy,
which also constitutes the principal part of absorp-
tion in benzene, carbon bisulfide, and other liquids
with large bulk viscosity coefficients, cannot reach
at high frequencies ~7 X 10° cps such a value that
dvpM-B > Av, but the condition 6vp-B < Av remains
satisfied. This is why discrete Mandel’shtam-Brillouin
components are observed. On the other hand, relaxa-
tion theory requires that the dispersion of sound ve-
locity should be observed. In this case the dispersion
should be positive (in Eq. (6), (V":o - V% )/V% > 0),
and its value can be expressed by the following rela-
tion:

AV
=g (e ay),

(7)

where « lies in the ultrasonic frequency region,
while an is computed from (5). Here it is assumed
that V_ ~ V, for n’ = 0, that is, the dispersion is
not large. If there is no dispersion of the sound ve~
locity, then Eq. (6) gives ay’ = 0 and relaxation
theory cannot explain anything.

At the Physics Institute of the Academy of Sciences,
in the laboratory named for G. S. Landsberg, the
author and his co-workers succeeded in discovering
a significant positive dispersion of the sound velocity
in benzene, carbon tetrachloride, carbon bisulfide,
and several other liquids. The amount of the disper-
sion was shown to be of the order of 10—15%.4,9

In very viscous liquids, on going from liquid to a
glass-like state, it was possible to establish a sig-
nificant dispersion of the sound velocity; this dis-
persion amounted to about 70%. Relaxation theory
helped select in suitable fashion the appropriate ob-
jects of investigation in our experiments. Thus,
everything pointed to the fact that the relaxation
theory should be correct, but until the last few years,
it was not possible to verify it by a direct experi-
ment for liquids with a large bulk viscosity.

From Eq. (7) for AV/V, one can obtain 7 and
compute &y from (6) for frequencies ~10'" cps.

bl
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But up to now it has not been possible for anyone to
measure ap’ at such a frequency. We were not able
to do this so long as we used the rather broad exciting
lines of the mercury spectrum. We were able to
measure a at a frequency of ~ 10° eps when to-
gether with D. I. Mash and V. S. Starunov,” we used
a neon-helium gas laser as our light source or exci-
tation of the scattering.

RN

FIG. 2. Interference spectrum of the fine structure of the
scattering lines in benzene at room temperature, excited by the
line 6328 & of stimulated emission from an Ne- He gas laser.

(a) Spectrum of the exciting line; (b) Spectrum of the fine struc-
ture of the scattered lines. The two spectra are reproduced with
somewhat different magnifications.

As an example, Fig. 2 shows a photograph of the
fine structure of the scattering line in benzene, ob-
tained in the excitation of stimulated emission at
6328 A. From such a spectra one can easily find the
distribution of the intensity in the fine-structure com-
ponents and determine their shape and half-width. One
can measure the integral intensities of the compo-
nents and verify the Landau-Placzek relation. How-
ever, the limited size of this paper does not permit
us to dwell on these interesting results.

Measurement of the half-width of the Mandel’~
shtam ~Brillouin component makes it possible to find
the absorption from (4). Moreover, by measuring
VDo and V;, one can determine 7 from Egs. (6) and
(7) of relaxation theory. Values of T are given in the
Table, computed from the dispersion (6) and from the
absorption of hypersound (7). Comparison of the re-
sults of calculation shows that the simplest variant of
the theory with a single relaxation time gives an ex~
cellent quantitative description of the cases under
consideration. Even we can point out cases in which
the dependence of the absorption on the frequency

Relaxation time T, X 10! gsec, of bulk viscos-
ity coefficient found from the measurement of
sound velocity dispersion and absorption of

hypersound
From From
Substance absorption | dispersion
(Eqa. 6) | (Eq. 7)
|
Benzene . . . . . ... ... . 2.2 | 2.4
Carbon tetrachloride e 0.75 1 0.78
Carbon bisulfide . . . . . . . . 22 1 20
' I
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cannot be described by the formulas of relaxation
theory with a single relaxation time but requires a
whole spectrum of relaxation times or, more
generally, cannot be described in terms of the exist-
ing relaxation theory. Careful investigations of these
cases still lie ahead. Great complications arise in
the explanation of propagation of sound and hyper-
sound in media with large values of the shear vis-
cosity. For these cases, the fundamental measure-
ments have been made in the ultrasonic region of
frequencies. Hypersonic measurements here refer
only to the measurement of the velocity of hyper-
sound.') But even here, it is possible to find the
fundamental direction of constantly observed regu-
larities.

Use of a laser as a source of light for the investi-
gation of the width of the Mandel’shtam -Brillouin
components in viscous liquids and glasses undoubtedly
gives a great deal of new information on the absorp-
tion of hypersound in these media.

It follows from what has been pointed out above
that Mandel’shtam and Leontovich have created a
whole new scientific trend in optics, acoustics, and
physics generally. The development of this trend
cannot be considered to be finished.

During the last several months, the studies of the
Mandel’shtam -Brillouin components have acquired a
special interest from another point of view: the exci-
tation of the scattered light by a gigantic pulse from
a ruby laser has revealed a whole new aspect of the
phenomenon. The intensity of the light of the gigantic
pulse is so large that nonlinear effects become im-
portant in the medium in which this pulse is focused;
in particular, they lead to the generation of light at
the frequency of the Mandel’shtam-Brillouin com-
ponents.

The results of the first experiments of such a type
were published in May, 1964 by Chiao, Townes, and
Stoicheff U, who observed the generation of the
acoustic components of Mandel’shtam -Brillouin in
quartz and sapphire. In their apparatus, the power of
the gigantic light pulse of the ruby laser was about
50 MW and of duration of about 3 X 1078 sec.

The generation of light at the Stokes and anti-
Stokes Mandel’shtam-Brillouin components was ob-
served in liquids by Brewer and Rickhoff. (2]

In order to obtain even an approximate and purely
qualitative representation of the mechanism leading
to the generation of the anti-Stokes Mandel’shtam-
Brillouin components, we consider a rough model of
the interaction of light with a material medium by
means of electrostriction.

As is well known, electric fields, when applied to
a material medium produce electrostriction in it—a
change in the volume of the medium. The relative
volume change of the medium as a consequence of
electrostriction is expressed by the relation

L. FABELINSKII

=g b (055 ), ®)

where Bg is the adiabatic value of the compressibility,
while p and € are the density and optical dielectric
constant of the medium, respectively; the index s
means that the adiabatic value of the derivative is
taken. The excess pressure, as is easily seen from
(8) and the definition of Bg, will be expressed in the
form

|api=g; (o5 ), B% 9)
In Eq. (9), E is the sum of all the electric fields in-
side the dielectric. Let a certain volume be illumi-~
nated by the laser beam, the electric field of the light
wave of which is Egcos (wyt — k- r), while the field
of the electric wave of the Stokes Mandel’shtam-
Brillouin is equal to Ejcos [(wy — 2 )t —k’-r]. Sub-
stituting the sum of these fields in (9), we find that
| Ap| consists of several high frequency components

of which the component corresponding to the lowest
frequency will be expressed in the following fashion:

Aplo=E E cos[Qt —(k'—Kk)r]. (10)

It is seen from the latter expression that the striction
forces create a hypersonic wave whose frequency
coincides with the frequency of the thermal hyper-
sonic wave which generates the Stokes Mandel’shtam-
Brillouin component. Itis seen from (10)that the wave
[Aplg coincides in frequency and direction with the
initial hypersonic wave produced by the Stokes
Mandel’shtam-Brillouin component.

Thus a situation arises in which the energy of the
light wave of the gigantic pulse is transferred to the
energy of the hypersonic wave and to the energy of
the optical Stokes Mandel’shtam-Brillouin component.
The more intense Mandel’shtam-Brillouin component,
together with the initial light wave, creates a still~
more intense hypersonic wave, etc. Thus the process
has the characteristic of parametric resonance.
Parametric resonance, parametric excitation and
amplification, and general questions of the behavior
of systems with periodically changing parameters
have been successfully investigated by Mandel’shtam
and his students A. A Andronov, A. A. Vitt, G. S.
Gorelik, M. A. Leontovich and S. E. Khaikin.!%

Turning to the problem of the stimulated Mandel’-
shtam -Brillouin scattering, it should be noted that if
there is sufficient energy in the initial light flux
which causes the scattering, so that generation takes
place at the frequency of the Mandel’shtam-Brillouin
components, then such a generation does take place.
Moreover, generation of hypersound takes place at
the frequency . Consequently, in the case under
consideration, the gigantic pulse simultaneously
creates two new generators.

Even in the very first experiments

[13]

(11] it was noted
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that the power of the hypersonic wave of corresponding
frequency becomes equal to 1 kW. If one compares

the energy of the sound waves, then the generation as
the result of parametric resonance creates a hyper-
sonic wave with an energy 16 times larger than the
energy of the Debye thermal wave at room tempera-
ture.

Here we have considered in purely qualitative
fashion a greatly simplified picture of the origin of
the generation of the Mandel’shtam-Brillouin com-
ponent. A rigorous consideration of the problem re-
quires the simultaneous solution of Maxwell’s equa-
tions and the equations of hydrodynamics for liquids
(and also the equations of elasticity theory for solids)
with account of the nonlinearity of the system brought
about by the intense light wave. Such a solution de-
scribes interesting features of the phenomenon which
we shall not touch on here*.

In this paper we have only wanted to point out how
the phenomena predicted and found by Mandel’shtam
and his students and co-workers initiated large scale
theoretical and experimental investigations which
marked out new and still developing trends in physics.

The best memorial to a real scientist departing
from life is a rich natural life of the scientific direc-
tions which he began. Not all, even the very great
scientists, have such a memorial, but such is the case
of Leonid Isaakovich Mandel’shtam.

*Detailed reviews of the theoretical and experimental side of
the problem will appear shortly in Uspekhi.
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