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1. INTRODUCTION

-t\.STRONOMY is indeed undergoing a dramatic per-
iod, a period when many of the most important funda-
mental problems have already been formulated and
distinctly posed, but have not yet been resolved.

The stirring conflict of this drama has arisen long
before the discovery of the celestial bodies of the new
type, called superstars or quasistellar radio sources
(quasars). The conflict concerns the final fate of
ordinary s tars .

The theory of the structure of s tars , which are in a
state of slow evolution, has been developed in detail
and is in excellent agreement with observations. The
distribution of the temperature and of the density in
the sun and other stars containing a sufficient reserve
of hydrogen (stars of the principal series of the
Hertzsprung-Russell diagram) has been fully calcula-
ted. Their luminosity (total energy release), radius,
spectrum, and evolution were calculated. It turned out
that the relations obtained agree with the observations.
This outstanding accomplishment of the last twenty
years convinces us of the correctness of the main
premises of the theories concerning the properties of

*The first part of the review was published in UFN 84 (3), 377
(1964), [Soviet Phys. Uspekhi 7, 763 (1965)]. This will henceforth
be cited ast1].

matter at the temperature of stellar interiors and the
rate of nuclear reactions under these conditions.

However, whereas the theory is correct as applied
to the stationary state of the star, it becomes also
necessary to regard seriously the deductions of the
theory concerning the final fate of s tars . The general
trend of evolution consists in the consumption of the
nuclear fuel, and in a gradual r ise of the temperature
and density at the center of the star.

The final state, however, is sought without tracing
in detail the entire evolution, but by using a different
approach. We shall assume that all the nuclear fuel
has already been consumed (or else the reactions
would continue), but the temperature has dropped to
zero (or else the outward radiation of energy would
continue), and we shall seek the distribution of matter
satisfying the condition of mechanical equilibrium.

For s tars having a mass smaller than 1.2 solar
masses (M_) the answer is well known: an equilibrium
state is obtained in which the electron shells of the
atoms have been crushed, but the nuclei are still at a
sufficient distance from one another. The pressure of
the degenerate electron gas counteracts the gravita-
tion. This possibility was pointed out by Fowler'-147-'
and J. I. Frenkel.^138^ The stars in such a state are
called white dwarfs. The observations confirm this
prediction of the theory. When the stellar mass ex-
ceeds 1.2 M^, but is smaller than the critical mass
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M c r i t ~ 2Mrr>' t h e equilibrium state is a neutron star.
The matter has been compressed to a density of the
same order as the density of the atomic nucleus
(1014 g/cm3). The radius of the star is on the order of
10 km, the potential of the force of gravity is on the
order of 0.2 c2.

Under these conditions it is necessary to take into
account those changes of the laws of gravitation which
follow from Einstein's general theory of relativity. It
is meaningless in principle to separate here the effects
of special relativity (the weight of energy) and the
general theory (curvature of space, effect of gravita-
tion on the flow of time).

What does relativity theory contribute to the ques-
tion of the fate of a star ?

When the mass is smaller than M c r i t , only quanti-
tative changes take place. But the very existence of a
maximum critical mass is the result of relativity
theory. It turns out here that the critical mass exists
for any conceivable equation of state compatible with
relativity theory. When the mass exceeds the critical
value, there is no equilibrium solution. The final stage
of the evolution should be unbounded compression. At
this stage, an account of the general theory of rela-
tivity leads to a deduction which is paradoxical at first
glance: owing to the slowing down of the course of
time, a remote observer will register an asymptotic
approach of the star to a definite state (see'-'J). This
is not an equilibrium state, and can be called the
"cooled" state.* Actually there is no paradox at all,
the deduction of the theory is simply unexpected and
unusual. The relativistic slowing down of the time
denotes simultaneously that the frequencies of the
quanta received by the observers tend to zero. A
gravitational self-closing of the star takes place, the
star ceases to radiate energy, and the flow of informa-
tion to the external observer stops.

Thus, the theory predicts three types of celestial
bodies in the final state, depending on their mass:
1) white dwarfs, 2) neutron stars , 3) "cooled" s tars .
The drama (and possibly also the tragedy) of astron-
omy consists in the fact that the latter two types of
bodies have not yet been observed. It is precisely
those bodies for which relativity theory plays an im-
portant or decisive role, which have not been observed.

The question of the existence of such bodies plays
an important role also for cosmology, since the p res -
ence of neutron and cooled stars influences the aver-
age density of matter in the metagalaxy; the average
density of all types of matter determines the curvature
of space in large scales, and consequently determines
whether the uniform metagalaxy is closed or infinite.

The first rough estimate'-36-' has led to the hypothe-
sis that the total mass of the cooled stars can be com-

parable with the mass of the visible s tars . However,
this estimate depends strongly on the assumptions
made in'-36-'.

What are the possible ways of resolving the conflict
between theory and observation? First, it is possible
that we have so far not observed neutron and cooled
stars only because they are difficult to observe. Con-
sequently, it is necessary first to solve the question of
their properties. What properties do they possess?
How must they manifest themselves in the neighbor-
hood of other stars, in the interstellar medium con-
taining dust, gas, or a magnetic field? Can there be
many cooled and neutron stars in the galaxies, and in
our own galaxy?

Second, it is necessary to analyze the assumptions
which have led to the conclusion that this indicated
final state of the star is unavoidable, particularly the
role of rotation of the star and its magnetic field.

During the course of evolution of a massive star,
the increase in density is accompanied by an increase
in temperature. At a definite instant of time the star
approaches the limits of stability, beyond which catas-
trophic compression begins. However, up to that in-
stant, the matter of the star still contains a reserve of
nuclear energy.* The release of this energy can cause
the contraction to give way to expansion and to an ex-
plosion of the star. It must be borne in mind, however,
that the observed frequency of stellar explosions yields
a number many times smaller than the expected num-
ber of stars whose evolution is terminating; in other
words, the observational data provide evidence which
speaks rather against the assumption that all s tars
are transformed into neutron or cooled states by ex-
plosion.

Thus, the disparity between the deductions of the
theory and observations has been objectively in exis-
tence for a long time; however, the discovery of
quasars has made the situation much more acute. All
attempts to describe a quasar by means of traditional
concepts, by transferring to a mass ~ 108 M^ the usual

picture of a gas sphere in the state of mechanical
equilibrium, in which energy is released as a result
of nuclear reactions, have failed. In connection with
the discovery of quasars, dozens of theoreticians have
returned to the theory of equilibrium and contraction
of stars, with account of general relativity; the astron-
omers have recalled the classical papers of Oppen-
heimer, Volkoff, and Snyder of the 1938—1939 period.
At the same time, in accord with a natural psychologi-
cal law, the assumption appeared that the two puzzles,
namely the fate of ordinary stars and the nature of
quasars, are interrelated and perhaps have a common
answer.

The present article presents a detailed review of
the above questions. The material is schematically

*In this part of the review we shall use a new term, "cooled"
star, for stars during the stage of relativistic collapse. In the
first part of the review such stars were called "collapsed."

*This margin depends essentially on whether different layers
of the star have become intermixed by convection.
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arranged in such a way that the first part of the r e -
view'-1-' contains the justification of the need for the
stars to go over into a neutron or cooled state under
very simple assumptions; this, as it were, is the state-
ment of the problem. In part II we consider, on the one
hand, the observational properties of such objects and,
on the other, we analyze in detail the reasons why a
star can avoid collapse or, to the contrary, will reach
the state of collapse; in other words, we consider the
possible variants of the answer; some problems in the
theory of quasars are expounded. There is no com-
plete theory at present. Many of the variants have
already dropped out (Sees. 2—5), and ways of creating
such a theory are beginning to appear (Sec. 16). The
rapid development of the question hindered greatly the
compilation of the review; the authors have reviewed
the literature up to the end of 1964, and less com-
pletely the later papers.

2. EQUILIBRIUM OF A SUPERMASSIVE STAR

a) Energy Approach to the Theory of Equilibrium of a
Star

The first attempt at explaining the nature of quasars
as sources of energy sufficient for the formation of
radio galaxies was the attempt to represent them as
supermassive stars with M ~ (105—109) M , ^ while

applying to them all the usual concepts and approxima-
tions of stellar theory. The theory of such hypothetical
stars is, obviously, also of interest in itself. There-
fore, after having considered in'-1-' questions concern-
ing the equilibrium and evolution of an ordinary star,
we shall stop to discuss briefly the theory of a super-
massive star.

We recall that a star in the usual state is in hydro-
dynamic equilibrium, and the release of nuclear energy
(if it takes place) proceeds slowly and does not upset
the conditions of hydrodynamic equilibrium. The en-
ergy from the central regions seeps out to the surface
and is radiated into the surrounding space. Initially
the star consists principally of hydrogen. Such a star
is situated on the "principal sequence" of the Hertz-
sprung-Russell diagram. As the hydrogen is burned
up, the parameters of the star change gradually. The
limiting case is a star which has completely exhausted
its energy reserve and which consists almost entirely
of iron. However, we shall show below that for stars
with mass M i 5 x 105 M .̂. the nuclear reactions are

of no importance at all. In an equilibrium star with
mass larger than 100 M Q , the entropy is so large that
the pressure and the internal energy are determined
essentially by the radiation, and the pressure and en-
ergy of the plasma* are relatively small, a fact noted

already by Eddington.'-3-' This singularity is indeed
the cause of the difference between the structure and
evolution of a supermassive star and an ordinary star
in which the decisive factor is the plasma energy, and
the contribution of the radiation is relatively small.

For pure radiation, the adiabatic exponent is
y = 4/3, i.e., it has a critical value for the equilibrium
of the star (see'-1-'). By virtue of this, the adiabatic
exponent in massive stars differs little from 4/3 and
much greater care is necessary in consideration of
deviations of y from 4/3. The deviation of y from 4/3
is connected with the fact that the plasma makes its
own contribution to the pressure, while at high tem-
peratures, the contribution is made by production of
e+, e~ pairs and by the dissociation of the iron,
Fe —- 13a + 4n. It is precisely as a result of the in-
fluence of the plasma that y > 4/3 and the star can be
in stable hydrodynamic equilibrium.*

The gravitational potential near the star is small:
q> « c2, and one might think that the theory of the
equilibrium of such stars is not connected at all with
effects of general relativity (GR). This is not the
case, however. After all, the difference between y
and 4/3 is small, and there are enough small effects
to influence appreciably the stability of the star, so
that small corrections to GR must also be taken into
account.

As noted in [ 1 ] , S. A. Kaplan [4] (see also [139]) was
the first to emphasize the importance of small GR
effects when y — (4/3) « 1. Recently similar work
was repeated by Chandrasekhar.^140-'

He applied these considerations to the theory of
white dwarfs. Recently Fowler'-5-' developed an analog-
ous theory for stars of large mass.

In the first part of this review it was already noted
that the equations of the hydrostatic equilibrium of the
star are equivalent to the variational principle of the
extremum of the stellar energy for a specified total
number of nucleons and a specified entropy. This
principle is equally valid in either Newtonian or in
GR theory. The minimum of energy corresponds to
stable equilibrium, and the maximum to unstable
equilibrium. In the energy approach, the clarification
of stability does not call for supplementary calcula-
tions; yet a direct solution of the differential equation
of equilibrium still does not allow us to decide that
stability exists, and it becomes necessary to investi-
gate in addition the linearized equation for small per-
turbations. It must be particularly emphasized that
entropy plays an important role in the energy approach.
This special role is connected with the thermodynamic
relation P = — (8E/9p)g, where E is the internal energy
per unit mass, p—the density, and S—the entropy per
unit mass. It is precisely this relation which makes it
possible to establish a connection between the energy

*By plasma energy we mean here the energy of the nuclei and
the electrons. The plasma pressure is the pressure produced by
these particles.

•Concerning the special type of instability in the equilibrium
of large stars, connected with isothermal perturbations, see Sec. 5.
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of a star, which contains E, and the equilibrium equa-
tion, which contains the pressure P. Therefore the
theory contains E rather as a function of p and S, and
not of p and T, in terms of which the energy is usually
more conveniently expressed. The energy approach
was indicated, for example, in^6>7'149'150^. A formal
derivation in GR theory is given i n ' - 1 4 . It is possible
to develop in this manner an asymptotically exact
theory. The Appendix presents a comparison of our
method and Fowler's method.'-5^

We shall proceed by the method of successive ap-
proximations. We shall first find the equilibrium of
the star, using Newtonian theory, and taking into ac-
count only the radiation in the energy, neglecting all
other corrections. We then take into account succes-
sively the influence of the plasma, of pair production,
and of GR. The processes of dissociation of iron and
the neutronization of matter turn out to be immaterial
for the equilibrium stage of a supermassive star.

b) Equilibrium of a Star with y = 4/3

The total energy of the star £ is written in the form

(2.1)

The first term is the internal energy, the second—the
gravitational energy, E is the internal energy per unit
mass, m is the mass inside the radius r,

r

m = J pr2dr.

As the zeroth approximation we take into considera-
tion only the energy of the light. The specific internal
energy E per unit mass, the specific entropy per unit
mass, and the pressure are written in the form

where

Q ' " 3"" Q ' " 3 ° Q 3[

V3 ,
erg/cm* deg* V 5̂6<J

Hence we express E in terms of p and S:

(2.2)

(2.2')

(2.3)

If we know the distribution of the matter in the star
p = p(r), then, substituting (2.3) in (2.1) and integrat-
ing, we get

]/3, (2.4)

where p c is the central density, while the constants kt

and k2 depend on the distribution of matter in the star
(see Appendix I). In our case the dependence of the
pressure on the density at constant S is in the form of
a polytrope P ~p4^3 with polytropic index n = l /(y — 1)
= 3 ( s e e ^ , Sec. 3). The distribution of density in
equilibrium polytropic gas spheres is given in the
basic paper of Emden.'-8-' In an equilibrium star with
n = 3, the density distribution is p = p(m/M)
= pci/>(m/M), where m is the running mass, and is

FIG. 1. Emden's function p/pc = ifr(m/W) for a polytropic index
n = 3 (y = 4/3) and n = 1.5 (y = 5/3).

shown in Fig. 1. Using these data, we obtain for the
constants the numerical values kj = 1.75 and k2 = 0.638.
The equilibrium of the star is determined by the ex-
tremum of % at constant mass (more accurately, at a
constant number of nucleons) and constant entropy S.
The only quantity which varies in (2.4) is p c , but the
equilibrium condition, that is, the condition for the
extremum of %, namely d i / d p c = 0, is satisfied only
when

kfiM — /c2GM6/3=0. (2.5)

In this case the equilibrium is neutral and does not
depend on p c .

We emphasize that neutral equilibrium occurs only
with respect to contraction and expansion of the star
as a whole, that is, with respect to a similar change of
the entire star, the star being stable with respect to
deformation of the density distribution in it.

For a star in equilibrium we obtain from (2.5)

be = p GM2'3 = 0.364 GM2/3 (2.6)

and from (2.2') and (2.6) we obtain the corresponding
unique value of the equilibrium entropy for the given
mass

-7.85-10' M (2.7)

In this approximation the total energy of the star is
identically equal to zero, and the density and tempera-
ture at any point are connected by the relation

T(CK) = 1.97-107 f ~^- Qcl/: (2.8)

If the entropy is not equal to its equilibrium value,
then from the general expression for the energy (2.4)
with | S - Se| < Se we obtain*

_ 2 1 104° ( M

*We use the CGS system of units and °K throughout.
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s<se

FIG. 2. Energy >£ of a star with fixed entropy and with pressure
determined only by the radiation, as a function of the cubic root
of the central density,

rad

When S > Se, the energy increases monotonically with
p c , and when S < Se, it decreases monotonically (Fig.
2); (it is convenient to plot p c ' 3 on the abscissa axis).

c) Effect of Plasma

We now take into account the change in the equation
of state, connected with the energy and pressure of the
nuclei and electrons of the plasma.

At a given temperature, account of the plasma in-
creases the internal energy. In fact, now in place of
(2) we should write for E

p _ aT1 3 R

where the second term on the right is the plasma en-
ergy, and /i is the molecular weight. However, at a
given entropy, an allowance for the plasma decreases
the energy. Qualitatively this is clear already from
the general principle the state of thermodynamic
equilibrium corresponds to maximum entropy at a
given energy or, what is the same, to minimum energy
at a given entropy. The zeroth approximation, when
the plasma energy is not taken into account, cor re-
sponds to the state in which there is radiation and a
cold plasma with zero energy. The transition to a
complete equilibrium state for a given entropy can,
according to the general principle, only reduce the
energy. Numerically, the correction to the internal
energy of the matter at constant entropy, necessitated
by the plasma, is given by

L — — 3 85

where

a = 8 63 iQPgA'i 6 = 2 18 10"1 (2.9)

A—atomic weight, Z—nuclear charge, g—statistical
weight of the nucleus.

This expression is valid in the region when the
corrections for the plasma in the expression for the
energy and entropy are small, and in addition, the
plasma is a nondegenerate ideal gas. Under the con-
ditions of an equilibrium star with mass

104—108 M / M Q , these limitations are satisfied with
sufficient accuracy.*

We can now calculate the energy of the entire star
with account of the influence of the plasma. A correc-
tion for the equation of state of the order a = AE/E
« 1 changes not only the energy in the given volume
element, but causes also in principle a change in the
distribution of the matter in the star (of the same
order a), and this change must be taken into account
in the calculation of the energy. However, owing to the
extremal properties of the distribution function of
matter, as a solution of zeroth approximation, a
change in this function of order a will produce a
change of order a 2 in the total energy of the star,
since the first variational derivative of the total en-
ergy with respect to the distribution function of matter
is equal to zero. Therefore, to calculate the correc-
tion to the total energy of the star, of order a, it is
necessary to integrate AE over the distribution of the
zeroth approximation (with respect to the Emden func-
tion), and this yields exactly the first term (of order a)
of the expansion of the energy in powers of a. In this
sense we can speak of an asymptotically exact theory
(with er ror ~a 2 ) of the equilibrium of stars with
y - ( 4 / 3 ) ~ a .

Integrating (2.9) over the zeroth-approximation
distribution of the density in a star, we obtain the
correction Ag p^ to the energy of the star.

A8p i - — Qc1/3{ffli — &i [1 1761ngc—1 615]),

a , - 4 5 iQ^S1^ f ~ \ A'1 {in (8 6

Z\n(2 2 IO-1S^4~')\ .

6, - 1 925 1045S M\ A 1 (1 + Z) (2.10)

This expression, of course, is valid also only under
the limitations indicated above.

For different values of the entropy, we now obtain
in place of Fig. 2 a series of curves of g , shown in
Fig. 3. All the curves pertain to one value of the mass,
and the entropy plays the role of a parameter. The
curves now have minima. These minima correspond
to the equilibrium state of the star and are designated
by bars. The dashed line is the geometric locus of the
minima if e ( p c ) . In the coordinates of Fig. 3, the

*We present for reference, without giving the calculations, the
first order correction to the entropy, due to a hydrogen plasma

\Spl 8 3 10'(15 5J >\nT3/°~ 2 In Q)
In this formula the temperature should be expressed in °K and

the density p in g/cms For an equilibrium hydrogen star this yields
ASpj/S = 60(M/Mo) H, whereas for the pressure we have APpl/P =
8.6 (M/Mo)"1/} Since an additive constant does not affect the en
tropy, one can develop a more complicated method with an error on
the order of (AP/P)2.
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FIG. 3. Energy % of a star with account of the contribution of
the plasma (of electrons and nuclei) to the pressure. St > S2 >
S3 > S4. The minima of the curves correspond to the equilibrium
position of the star with given entropy. The dashed line is the
geometric locus of the equilibrium positions.

curves & (Pc) a r e obtained from one another by a
similarity transformation, and the dashed line is a
straight line and (in accordance with the well-known
deduction from the virial theorem)

that is, the energy of the star is equal to the thermal
energy of the plasma, taken with the opposite sign.
Numerically, recognizing that T /T c » 0.6, we obtain

%e= — 5-io4irm f M
Mr.

Substituting the expression for Tc from (2.8), we get

0 J U.= — 5.9-1048(

= -3-io«rc( •£-

M,
d) Account of Production of Electron-positron pairs

At temperatures on the order of 5 x 108 °K (kT/mec
2

« 0.1) and above, there are electron-positron pairs in
equilibrium. At a given temperature, pair production
increases the energy of the matter, but, as noted above,
it follows from the general principle of thermodynam-
ics that at a given entropy pair production decreases
the energy.

We shall verify below that the appearance of pairs
leads to an instability of a massive star at a tempera-
ture which (in energy units) is 10—15 times smaller
than the energy of one pair 2mc2. For reference pur-
poses, 2mc2 = 1.02 MeV and ® = 2mc2/k = 11.9
x 109 deg. The number of positrons in the entire star
is not larger in this case than several per cent of the
number of electrons, and even in the center of the
star n+ < 0.25 n_. We shall therefore use asymptotic
formulas pertaining to a nonrelativistic nondegenerate
gas:

A(2nmkT)3 rr
(2nh)s (2.11)

We assume that n+ « n_ , n_ = n_0 = p/^emp, and
n+ n+n_

»-2o

where n_0 is the number of electrons in the matter
(plasma) of given density, without account of pair
production. Substituting the numbers, we write

the quantity ® was defined above.
With the aid of the zeroth approximation [see (2.8)]

we express also the density in terms of the mass of
the star and of the temperature:

M

430
In this formula we can substitute the local tempera-
ture and obtain the local value of n+/n_. In particular,
the formula is, of course, also valid for the center,
where T = Tc.

To average over the star any quantity x, which
varies rapidly with the temperature (or with the den-
sity p ~ T3), there is a convenient formula

= xc 3.2 din: _3/2
.dlnT.

which in the case of interest to us yields

3.2 - 3 ) -3/2 ,2 ( £ ) " • .

We now turn to the thermodynamic aspect of the
matter.

The supplementary energy, occurring at a given
temperature in connection with the pair production, is
equal to 2mc2n+ per unit volume or AEL = 2mc2n+/p
per unit mass. We consistently neglect here terms
of order T/®; this means neglecting the kinetic energy
of the positrons compared with their rest mass, mean-
ing also automatically that their pressure is neglected.

The change in energy for a given entropy is connec-
ted with the change in energy for a given temperature
by the relation

AT? = — T dT
T

We write down the energy of the entire star at a given
entropy. In place of t (S, pc) it is technically more
convenient to change to g (S, Tc), expressing pc in
terms of Tc by means of the zeroth-approximation
formula (2.8). We obtain

$ = A(S-Se)T+ jL-I-

where N+ is the total number of positrons in the star.
It is convenient to rewrite this expression in the

form

2LYe j

x e-«.'T3.2 ( 4-
For iron ix ~ /x_ ~ 2, and

(2.13)
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l = A'(S-Se)Tc

The contribution of the pairs to the energy, the sign
of which is negative, increases rapidly in absolute
magnitude with increasing temperature. Allowance
for the pairs changes the curves of Fig. 3 into the
form shown in Fig. 4.

The isentropic curves now have in addition to
minima also maxima which, like the minima, are
marked with vertical bars. On the curve correspond-
ing to a certain entropy, which we shall call critical,
S" on Fig. 4, the maxima and the minima merge and
produce a point of horizontal inflection (marked by
two bars). When S < S" (for a fixed mass) there is no
extremum of 8(p_) at all, that is, there is no state of
equilibrium.

The equilibrium corresponding to the maxima of
the curves is unstable in accordance with the general
ideas of the energy approach.

The geometrical locus of the extrema of £ ( p c , S),
that is, the curve of equilibrium energy % e(pc), is
shown in Fig. 5. The minimum of this curve corre-
sponds to the horizontal inflection on Fig. 4, the
descending branch of % e corresponding to stable,
and the ascending to unstable equilibrium.

FIG. 4. Change in the energy curves of Fig. 3 when account is
taken of production of e+, e~ pairs (for M < 104Mo) or GR effects
(for M > 1O"M0).

FIG. 5. Energy ge of equilibrium star. The dashed line shows
the energy of the equilibrium star without account of pair production
and GR.

On the ascending branch there is a region where
t> e > 0. We recall that these states, which correspond
to maxima of the isentropic curves, are the result of
a negative correction to the energy. This correction
has caused the appearance of an extremum where pre-
viously there was none, but the energy itself, of course,
without correction was positive.

The critical state, as already noted, is attained when

= = U, I.e., = —9- = U.

We write immediately the condition with 92 i?/9T2,
since the condition with the first derivative can always
be satisfied by choosing a suitable value of S. From
the condition with 92 g/9T2 all the constants A', Se, D,
and B' will drop out. We obtain the condition

50 U /
Table I lists the parameters of the critical state

for three typical s tars (composition—iron), T c 9 = T c

x 10"9.
The estimates given above confirm the correctness

of the assumptions made, T c /O « 1, n+/n_ < 1.
For a hydrogen star with \J. = 1/2, /xe = 1, we obtain

Table II.

Table I. Parameters of the critical state due
to the influence of e+, e~ pairs for s tars of

iron

M/MQ

T
(-9Qc

e/rc

n+/n_
(n+/n_)c

300
1.2

10 000
10

5-10-5

0.022
0.22

3000
0.92

1600
13

2.4-10-6

0.013
0.18

6000
0.87
800
14

8-10-'

0.011
0.18

Table II. Parameters of the
critical state due to pro-
duction of e+, e" pairs for

stars of hydrogen

M/MQ

TcS

Qc

2400
1.2

3600

24 000
0.92

550

At equal temperature (see Table I), the remaining
quantities do not depend on the composition. The ex-
treme masses (6000 for iron, 24,000 for hydrogen, on
the average ~ 104 M J constitute the limit where the
GR effects, which we shall consider shortly, come
materially into play.

We note also that the corrections to the equation of
state, connected with dissociation of nuclei, for ex-
ample'-10-' Fe56 —- 13a + 4n, necessitate, as a rule, a
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higher temperature compared with pair production
and in the theory of equilibrium of supermassive stars
these processes are immaterial, precisely as is the
case for processes of neutronization of matter.

e) Correction for General Relativity and Conclusions

The introduction of the correction for general rela-
tivity calls for careful attention to the very definition
of the "correction at a given density distribution,"
since it is necessary to take into account both the fact
that the space is not Euclidean, and the difference be-
tween the density of the rest mass and the density
which includes the energy, divided by c2.

Rather lengthy calculations (see Appendix III) lead
to the following type of correction to the energy of the
star, connected with the GR effects:

= —0.93- (2.14)

In order of magnitude, A £ Q R is equal to the prod-
uct of the gravitational energy of the star, — GM2/R,
and the ratio of its gravitational radius to the actual
radius:

The sign of this correction and the character of its
influence on the general picture is the same as for the
e+, e" pairs . Thus, there are two causes of the t ransi-
tion from Fig. 3 to Fig. 4. It turns out that depending
on the mass of the star, only one of the causes plays a
significant role: for a mass smaller than 104 MQ—only

pairs, for a mass larger than 104 M.K—only GR.
Such a sharp distinction is a consequence of the

strong dependence of the equilibrium number of pairs
on the temperature. In equilibrium stars with mass
larger than 104 MQ, when the density increases the
GR effects change the course of the isentropic curves
long before a temperature sufficient for intense pro-
duction of e+, e~ pairs is attained.

Thus, for stars with M > 104 M Q the transition from
Fig. 3 to Fig. 4 is due to GR effects. We again turn to
the curve if e on Fig. 5. For stars with M > 104 M_
the appearance of a minimum and of an ascending
branch on the curve is connected with GR effects. The
presence of the region where £ e > 0, is here also due
to GR. But we emphasize once more (see'-1-', Sec. 11)
that positive energies in the equilibrium state are not
necessarily connected with GR, and can arise also for
other reasons. Initially solutions with positive energy
were obtained in the problem of Oppenheimer and
VolkoffLnJ concerning a sphere of ideal degenerate
gas. In this case their appearance was actually con-
nected with GR. However, when the e+, e~ pairs are
taken into account, that is, for a non-ideal gas, such
solutions as we have seen in the preceding subsection
are obtained also without GR effects, so that they can-

not be regarded at all as being specific consequences
of the curvature of space and other characteristic
features of GR.

The most characteristic for a given mass is the
critical state corresponding to the minimum of % e ,
designated by two bars on Fig. 5. It corresponds to
the last equilibrium state in a series with decreasing
entropies. In this state the star has the minimum en-
ergy possible under equilibrium for a given mass, and
the maximum possible temperature and density.

For M/M f l > 104, the critical state is determined
by the effects of general relativity. In this case the
following formulas are. valid for the critical state
(see Fowler'-5-')

(2.15)

(2.16)

(2.17)

H v "'0

"= -0.93-105 4-¥ erg.

The energy % " of the critical state does not depend on
the mass.

3. EQUILIBRIUM OF A ROTATING STAR WITH
y = 4/3

To find the equilibrium, let us consider the energy
of a rotating star and let us find its extremum. The
GR effects will be assumed to be small. Therefore we
shall consider first the condition for the equilibrium
in Newtonian theory,* and then the corrections for GR.
We shall assume that the density of matter in the
rotating star on similar ellipsoids of revolution is
constant.

The energy is written in the form [see (2.2)]

3 + k3

A2 = 0.64, ft, = 1.75, /c3 = 1.25.
The first term here is the gravitational energy,

the second the thermal energy, the third the energy of
rotation; A is a parameter characterizing the oblate-
ness: A is equal to the ratio of the diameter of the
ellipsoid on the axis of revolution to the diameter of
the equivalent sphere, \ < 1; the factor g(A) takes into
account the change in the gravitational energy as the
result of the oblateness of the star as it rotates; K is
the moment of rotation.

Even from the very form of % it follows that the
energy of rotation depends on the density p c like the
energy of a gas with adiabatic exponent y = 5/3, that
is, it contributes to stability.

We denote by b0 = 0.364 GM2/3 the value of b at
which there is neutral equilibrium in the absence of
rotation, so that (see Sec. 2)

*The energy approach to the problem was adopted from["].
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'.ibnMQ1'3 g = const • (3.1)

and we introduce the dimensionless quantities b/b0 = h
and r = pc/pa, where p0 is the characteristic density,
made up of G, M, and K:

The expression for the energy is now rewritten in
the form

£ frV31

We denote the curly bracket by A. The factor p re -
ceding the bracket is made up of conserved specified
quantities. To find the extremum of % we vary A and r .
The value of h is determined by the entropy and is
also specified; during the course of the evolution of
the star, it varies slowly. The equilibrium conditions
(the conditions for the extremum of %) have the form
9A/9A = 0 and 3A/9r = 0. From these two relations we
express A and r in terms of h. The solution exists only
when h < 1, which is perfectly natural. If h > 1, then
the entropy is so large that even without rotation the
given mass is scattered apart without restraint; it is
clear that rotation is incapable of changing this result.
When h < 1 without rotation, the gas is compressed
without restraint. In this case the rotation stops the
compression. A decrease in h is accompanied by an
increase in the density and by an increase in the
oblateness, characterized by the quantity 1 - A. For
arbitrary h < 1 there exists a formal solution of the
problem, in which it was specified that the surfaces
of constant density are similar ellipsoids; here h —* 0
gives A —- 0, p —' °°, that is, a solution corresponding
to a flat disc. This solution is, as is well known, un-
stable; the disc breaks up into clusters with dimen-
sions of the order of the thickness of the disc.

If we consider the decrease of h, then for a given h
we can expect instability with respect to the t rans-
formation of the ellipsoid of revolution into a triaxial
ellipsoid, as is the case for an incompressible liquid.
In the expressions used by us, the dependence of the
gravitational energy and the energy of rotation on the
shape is separated in a factor (factorization), and
therefore in the case with arbitrary adiabatic exponent
the instability arises for the same value of A as in an
incompressible liquid. However, as we shall see below,
the solution becomes meaningless long before this in-
stant, when the oblateness is still small, when h is
close to unity, and when accordingly A is close to
unity. In this region we have the relations

and the average density is

For a gas, unlike an incompressible liquid, the den-
sity distribution is characterized by a decrease from
the center towards the edge. For a given mass and
for a given average density, the outer radius of the
gas sphere is larger than that of an incompressible
liquid.

In the case of the gas, the gravitational field is
smaller on the edge, and at the same time, for a given
moment of rotation, the centrifugal force is larger.
Therefore in the case of a gas sphere the condition
for the breakaway of the matter from the equator is
attained much earlier than in a liquid, that is, at rela-
tively small deformation.

Let us find the breakaway condition for the Emden
solution with n = 3. We shall use the method of succes-
sive approximations: we find the breakaway condition,
specifying a definite value of p~ and neglecting deforma-
tion, that is, regarding the rotation of the sphere and
determining its moment of rotation. We then find h
and A, corresponding to the assumed density and the
moment.

We set up the condition for equality of the centri-
fugal force to the gravitational force on the equator:

an _ GM

where a; is the angular velocity.
From this condition we obtain after calculation for

the critical state

1 —A, = 0.05, /«-=0.9G.

Since we found that A is quite close to unity, this justi-
fies also post factum the method of successive approxi-
mations used above.

In the critical state, when the centrifugal and at-
traction forces are equal, the star differs little from
a sphere, that is, it is very far from a disc. In the
critical state the matter on the equator ceases to fall,
even if it is not supported by the pressure from the
inside, but at the same time the energy of the matter
is insufficient to permit it to escape to infinity.

The general considerations of dimensionality and
similarity theory undoubtedly remain in force also
when the specific ellipsoidal model is no longer appli-
cable. We are therefore fully assured of the correct-
ness of the general formula (3.1), according to which
for a specified mass and entropy the density is pro-
portional to K~6, and the shape depends only on the
ratio of the mass and entropy, and does not depend on
the momentum. In particular, the critical condition for
the start of escape is likewise independent of the
momentum. There is a definite critical value of the
entropy (for a given mass), at which matter begins to
escape, and there is no hydrostatic solution. We em-
phasize once more that this unique result pertains
specially to matter with exponent y = 4 /3 .
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Tentative estimates from above show that in the
course of the decrease of the entropy the condition for
escape was reached earlier than the condition for a
loss of stability of shape with formation of a triaxial
ellipsoid.

We must emphasize specially that rotation stabilizes
the star with y = 4/3 and leads to the appearance of a
definite equilibrium density (which depends on the
entropy) while the shape is still practically spherical.

We can imagine for the sake of illustration that a
non-rotating star with y = 4/3 is in neutral equilibrium
(at b = b0) or is compressed without limit (when b < b0),
retaining a spherical form. However, even for neutral
equilibrium, that is, in the absence of elasticity with
respect to a change in the radius, the star has a finite
elasticity with respect to a change in the shape: the
thermal energy Q does not depend on the shape, and
the potential energy of gravitation U increases with
deviation from sphericity, the dependence of U on the
shape being the same for different y.

At first glance the rotation can prevent the com-
pression only at the equator, and does not prevent
axial collapse. Actually, however, the elasticity of the
shape causes indirectly the delay in the contraction of
the equator also to give rise to a delay in the contrac-
tion at the pole. This is connected with the fact that
upon contraction into a disc the gravitational force at
the pole tends to a constant (unlike in the contraction
of a sphere into a point), whereas the force due to the
pressure gradient at arbitrary positive y in the rela-
tion P = const • pT tends to infinity when the thickness
of the disc tends to zero. This force unavoidably bal-
ances the gravitation and stops the contraction.

We emphasize that the escape condition is reached,
for small deviation from sphericity, in the case when
the turbulent viscosity and the magnetic forces ensure
rotation of the body as a whole. Prior to the start of
the escape, the evolution proceeds at a rate that de-
pends on the rate of change of the entropy, and the
system goes through a series of equilibrium states.
An analysis of this stage can be easily carried out in
analogy with the preceding. By way of the first ap-
proximation, we substitute in the energy equation
A. = 1 and g(A.) = 1. It is curious that the additional
term depends on the density in exactly the same way
as the correction for general relativity, but has an
opposite sign and cancels out this correction exactly
at some definite value of the momentum.

In order of magnitude, the compensation condition
is of the form

circular parabolic — GM/R.

When the effects of rotation overcome the effects of
general relativity, the slow evolution continues until
the escape conditions are reached. An analysis of the
next stage has not yet been made, and for this analysis
it would be essential to clarify the kinetics of the ex-

change of angular momentum between the different
layers of the star (see Sec. 11).

4. POSSIBILITY OF OCCURRENCE OF A SUPER-
MASSIVE STAR

Let us consider the process of gravitational con-
densation of a rarefied gas cloud in a supermassive
star.* In order for the gas to start compressing spon-
taneously under the influence of gravitation, it is
necessary that the gravitational force exceed the
elasticity of the gas. This question was first consid-
ered and solved by J. H. Jeans. t13^ (For a simple
exposition see^14^.) In a homogeneous medium, in a
volume of diameter D, the gravitational energy is
GM2/D ~ D5, whereas the internal energy of the gas
is proportional to the volume, that is, to D3. It is
clear that in a small volume gravitation can be neglec-
ted, and any sufficiently small local fluctuation of
density will not build up, but will propagate through
the medium with the velocity of sound. This is a sound
wave. With increasing dimension of the fluctuation D,
the role of gravitation increases, and at a certain
critical value D c r ^ it exceeds the role of gas p res -
sure. Fluctuations with dimensions larger than D c r ^ ,
after having set in, increase with time and gravita-
tional instability develops. The critical dimension is

— (nc).
(4.1)

Here a a c is the speed of sound, y is the adiabatic ex-
ponent, and /J. the molecular weight. The mass of gas
in a sphere of diameter DOT,nt is

M „ v
M,©

(4.2)

where D c r i t is in parsec.
Jeans suggested that an infinite homogeneous med-

ium against the background of which the fluctuations
develop, is stationary. Obviously, such a formulation
of the problem is incorrect,'-131'15-' for a homogeneous
medium cannot be in stationary equilibrium, and this
assumption must be discarded. The introduction of
suitable changes does not change the critical length of
the perturbation, but it changes essentially the depen-
dence of the growth of the fluctuations on the time.
For details we refer the readers to^-104'131'15-'.

The process of gravitational condensation is very
complicated. Its details depend on the possible p res -
ence of external pressure of heated gases, on the
mechanisms of heating and cooling of the matter, on
the development of the fluctuations during the process
of compression, on the presence of a magnetic field
and of rotation, etc. In addition, the calculation calls

*V. A. Ambartsumyan[12] and co-workers adhere to a different
point of view, according to which the stars arise from superdense
bodies. For more details see Sec. 17.
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for knowledge of the concrete astrophysical conditions
under which gravitational condensation takes place.

In spite of numerous papers (for reviews seeL16>17J)
the process of formation of ordinary stars from a
diffuse medium is still unclear, as is the process of
formulation of galaxies'-16-' (concerning this topic see
the papers by L. M. Ozernoi^34^ and by Bird^35^). A
fortiori, we cannot specify more concretely the condi-
tions for possible occurrence of supermassive s tars .

However, some considerations of principle can
already be advanced here. In order to maintain in
equilibrium the mass of gas, the entropy of the super-
massive star must be sufficiently large (see Sec. 2).
During the course of the compression of initially r a r e -
fied gas into a star, its entropy due to energy radia-
tion can only decrease. The separation of nuclear
energy prior to the attainment of the equilibrium state,
obviously does not take place, owing to the low tem-
perature. Consequently, if we assume that during the
course of contraction there are no processes in which
the entropy increases as a result of energy transfer
from the macroscopic motions into heat, the entropy
of the gas in the initial state should be no lower than
the entropy in the final state.

The entropy of the initial state consists only of the
entropy of the gas (neutral hydrogen), and the role of
radiation can be neglected.* The entropy of a gas made
up of neutral hydrogen, calculated per unit mass, is
given by the expression

- " ) . (4.3)

Equating this value to the entropy per unit mass in
the star (see Sec. 2), we obtain the critical value of
.the initial temperature necessary (at a given initial
density) for the formation of an equilibrium star:

crit - \W-2i
(4.4)

Here T^ j ^ is the required minimum initial tempera-
ture of the gas, expressed in degrees, and p is the
initial density in g/cm3. In Table III are listed the
values of the critical temperature for two values of
the initial density p, and p2, characteristic for inter-
stellar and metagalactic conditions, respectively.

Thus, stars with mass M/1VL-. z 104 cannot be pro-
Table III. Critical temperature of the diffuse

medium as a function of the mass of the
formed star, °K

^"^ _ M/MQ
p, g/cm3 ̂ ~~~~~—_̂_̂^

ei=10-M
e2 = 10-29

103

10-8
-5-10-10

3 103

3
-10-3

104

-5-1012
2-10»

duced without energy transfer from the macroscopic
motion of the gas into heat. Consequently, for the
occurrence of such stars, an essential factor is the
presence of turbulence in the process of gravitational
condensation, with subsequent formation of shock
waves, which increase the entropy.

Thus, if M & 103 M , the rate of compression is

determined by the decrease in entropy upon radiation
of energy, and an equilibrium star with M =: 104 M Q
is produced only if the entropy increases sufficiently
in the shock waves to hold the star together.

5. EVOLUTION OF A SUPERMASSIVE STAR

a) General Remarks

A stable star in equilibrium, for a given chemical
composition and a specified entropy, is at the mini-
mum of the energy curve % (p, S). The equilibrium
energy is negative. If the reserves of nuclear energy
of the star have not been exhausted, then this energy
is incomparably larger than the absolute value of
g eq- In fact, the reserve of nuclear energy per gram
of matter is on the order of q = 1018 erg/g and in the
entire star we have*

(5.1)

which for the masses in question, 104—109 M , is
much more than gg = 3.56 x 1054 erg.

Were the nuclear energy to be released instan-
taneously, then the material of the star would scatter.
However, we have seen in the first part of the review
that the star has a mechanism for automatically regu-
lating its energy sources. When it is produced from
rarefied matter, it contracts until the release of
nuclear energy near the center balances the radiation
from the surface. This determines its value of T c r i t
and consequently also the position of the representa-
tive point on the energy curve fe (Fig. 5). If there
were no factors to cause instability of equilibrium in
such a state, the star would gradually burn up all its
nuclear fuel. However, stars in which the principal
role is played by the radiation pressure are subject to
isothermal instability (see below), which develops
within a time of the order of the time of thermal r e -
laxation of the star. Such instability causes the star
to break up into clusters with M ~ 102 M,-. and leads to
catastrophic contraction of the entire system. Finally,
if the temperature for the occurrence of nuclear r e -
actions is low, the evolution of the star (without loss
of mass) concludes in the fact that the star gradually

*Even if the entropy of radiation were noticeable, during the
course of compression this radiation would still leave the star,
since the cloud is transparent during the start of contraction.

*To estimate 8n u c , we take into account the mass of the entire
star, not only of the core, where the temperature is high. This is
explained by the fact that in massive stars the energy is trans-
ferred to the surface by convection, thus causing mixing of the
material.
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decreases its entropy and energy during the course
of emission of light. The representative point then
moves downward along the curve % e . The minimum
of this curve corresponds to a transition to states
in which the equations of hydrostatic equilibrium
have no solutions. A catastrophic contraction takes
place, with a velocity determined by the equations of
hydrodynamics and the representative point begins to
slide downward along the curve S = const, which has
no maxima or minima (the curves below S" in Fig. 4).

Let us consider first the rate and time of equilib-
rium evolution due to cooling of a star without nuclear
sources of energy; we shall then see what is obtained
by taking into account nuclear sources of energy and
isothermal instability, and in the final paragraph we
shall turn to the stage of catastrophic contraction.

b) Condition of Optical Equilibrium

This condition was considered in Eddington's
classical book.'-3-' In a supermassive star, the force
of gravitation is balanced by the light pressure. Let
us consider the forces acting in the surface layer of
the star. In a strongly ionized plasma, the Compton
scattering by the electrons is the fundamental process
which causes the matter to become opaque. Let us
calculate the force of light pressure acting on one free
electron. This force is, obviously,

dr 3n,
dE

~~df
(5.1a)

where ne is the concentration of the plasma, and E the
density of radiant energy. In a medium whose optical
thickness is larger than unity, the radiation flux q is
equal to

q=-D
dr

and the diffusion coefficient is

3 neae

(5.2)

(5.3)

where a e is the scattering cross section, cre = 6.7
x 1CT25 cm2. The cross section does not depend on the
frequency of the quanta so long as KOJ « m ec2 .

Substituting (5.3) and (5.2) in (5.1a), we get

e —' ^ (5.4)

We note that expression (5.4) does not depend on the
assumption that the optical thickness is large. Indeed,
the time-averaged force acting on one electron, for a
radiation flux equal to q, is given by (5.4) independently
of the angular distribution of the quanta of radiation.
The same force acts on an isolated electron in the
radiation field of a point source.

Since the plasma is electrically neutral, the mass
per electron is Me/A, where A = 6 x 1O23. Under
equilibrium, the force of radiation pressure on one

electron F e is equal to the force of attraction of the
mass per electron

GM\t,e _ aeg
Ar*

(5.5)

From this, expressing q in terms of the luminosity L,
namely q = L/47rr2, and substituting the numerical con-
stants, we obtain finally for a hydrogen plasma

L= 1.3 erg/sec,

Mr.
(5.6)

We emphasize that formula (5.6) gives an upper
limit of luminosity of any stationary star (and not
necessarily a supermassive one). A larger flux will
cause the surface layers to drop off.

In the stars in question, in which the pressure is
determined by the radiation, expression (5.6) is not
only an upper limit, but also the actual luminosity.
Digressing somewhat, we note that in such stars the
condition for equilibrium (5.5) should be observed not
only on the surface, but also in the entire star. Conse-
quently, the following equality should hold true

LT = 1.3. erg/sec, (5.7)

where M r is the mass inside a sphere of radius r and
L r is the total flux of light through this sphere.

It is clear that the nuclear energy sources (if they
exist) are located near the center and the light flux
cannot increase in the entire star in proportion to the
mass in accordance with (5.7). At first glance it seems
that a star with a light pressure and central source
cannot exist at all. But the point is that the central
source causes convection in the star, for even without
this source the star is on the border of convective
instability. Convective energy transport ensures the
necessary flow of heat in the supermassive star. No
matter what causes the transport of energy inside the
star, at the surface itself the transport should be
realized by means of radiant thermal conductivity,
for the energy flux into outer space leaves the surface
in the form of light rays, and therefore relation (5.6)
remains in force also for the total luminosity.

c) Time of Cooling to the Critical State

Let us return to a star without nuclear energy
sources. As can be seen from the formulas of Sec. 2,
the temperature in the center of a star with M > 105 M
is insufficient, even in the critical state, to cause
neutrino radiation. Therefore the cooling of the star
is determined by the photon luminosity (5.6). This
luminosity determines the rate of evolution—the rate
of motion along the curve $ Q.

When the material of the star was in the dispersed
state, its energy was equal to zero. In order to reach
the critical state, it is necessary to radiate an energy

©
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- %" = 3 . 5 6 x 1 0 5 4 e r g ( s e e t h e e n d o f S e c . 2 ) . T h u s ,

t h e t i m e o f e v o l u t i o n i s g i v e n b y t h e f o r m u l a

y e a r s . (5.8)

We have already emphasized (see Sec. 2) that if " is
much smaller than the thermal energy of the s tar .
Therefore t e v is much smaller than the time of
thermal relaxation t c o o i = Q/L.

It is obvious that a star can be regarded to be in
quasi-equilibrium only when the time of evolution up
to % " greatly exceeds the characteristic time of the
hydrodynamic processes (see'-1^, Sec. 2). The latter
time has an order of magnitude [ s e e ^ , formula (2.2)]

( 5-9 )

S u b s t i t u t i n g p = p c / 5 4 ( a n e x p r e s s i o n w h i c h i s v a l i d

f o r a p o l y t r o p e w i t h n = 3 ) , a n d s u b s t i t u t i n g f o r p c t h e

e x p r e s s i o n ( 2 . 1 4 ) f o r p " , w e g e t
c

th = 5 . i a - y / » ( - £ - ) 7 / 4 . ( 5 - 9 ' )

C o m p a r i n g ( 5 . 9 ' ) w i t h ( 5 . 8 ) w e s e e t h a t t h e t i m e s t e v

a n d t n v c ] r b e c o m e e q u a l w h e n M ~ 1 0 8 M _ . C e r t a i n l y

n o e q u i l i b r i u m s t a r s w i t h s u c h a l a r g e m a s s ( w i t h o u t

a m a g n e t i c f i e l d ! ) c a n e x i s t .

d) N u c l e a r S o u r c e s o f E n e r g y

W e h a v e a l r e a d y n o t e d a b o v e t h a t a s t a r w i t h

M < 1 0 8 M,-. w i l l c o n t r a c t i n q u a s i - e q u i l i b r i u m f a s h i o n

u n t i l t h e t e m p e r a t u r e n e a r t h e c e n t e r r i s e s s u f f i c i e n t l y

h i g h f o r t h e r e l e a s e o f n u c l e a r e n e r g y t o c o m p e n s a t e

f o r t h e r a d i a t i o n f r o m t h e s u r f a c e . T a b l e I V g i v e s t h e

e f f e c t i v e p o w e r p e r g r a m o f m a t t e r o f t h e s t a r A n u c

= ( j A n u c d M ) / M ~ 0 . 1 A n u c c a l c u l a t e d f o r t h e c r i t i c a l

s t a t e .

D a t a f o r t h e c a r b o n - n i t r o g e n c y c l e a r e g i v e n u n d e r

t h e u s u a l a s s u m p t i o n t h a t t h e c o n t e n t of c a r b o n a n d

n i t r o g e n i n t h e m a t e r i a l i s a p p r o x i m a t e l y 0 . 5 % . I t i s

s e e n f r o m T a b l e I V t h a t u n d e r t h e s e a s s u m p t i o n s t h e

p r o t o n - p r o t o n r e a c t i o n c a n b e c o m p l e t e l y n e g l e c t e d

f o r t h e r e g i o n w h e r e A n u c i s c o m p a r a b l e w i t h t h e

e n e r g y l o s t b y t h e s t a r t o r a d i a t i o n , c a l c u l a t e d p e r

g r a m of m a t t e r L / M . F o r L w e u s e d f o r m u l a ( 5 . 6 ) .

T h u s , A n u c a n d L / M b e c o m e c o m p a r a b l e f o r

M « 5 x 1 0 5 M ^ . T h i s m e a n s t h a t w h e n M > 5 x 1 0 5 M
•©

Table IV. Effective power of nuclear energy
released per gram of material of the star

erg/g- sec ^ ^ ^ ^

A

L/M

105

2 102

2 1014

6 104

5

8

6

e

105

10-2

•104

104

5

6

lll<>

•10-4

0,1

Id '

t h e t e m p e r a t u r e , e v e n i n t h e c r i t i c a l s t a t e , i s s t i l l

i n s u f f i c i e n t f o r t h e r e l e a s e d n u c l e a r e n e r g y t o c o m -

p e n s a t e f o r t h e r a d i a t i o n , a n d t h e s t a r c a n e x i s t f o r a

l o n g t i m e i n e q u i l i b r i u m a s a r e s u l t o f t h e n u c l e a r

e n e r g y . T h u s , f o r s t a r s w i t h M > 5 x 1 0 5 M Q , t h e

n u c l e a r s o u r c e s o f t h e e n e r g y a r e i n s i g n i f i c a n t d u r i n g

t h e e n t i r e t i m e o f e q u i l i b r i u m e v o l u t i o n . T h e e v o l u t i o n

o f s u c h s t a r s a f t e r t h e i r a p p e a r a n c e i s d e t e r m i n e d b y

t h e c o o l i n g p r o c e s s , a s d e s c r i b e d i n S e c . 5 c .

F o r s t a r s w i t h M < 5 x 1 0 s M ~ , t h e r e l e a s e o f

n u c l e a r e n e r g y b e c o m e s a p p r e c i a b l e e v e n b e f o r e t h e

c r i t i c a l s t a t e i s r e a c h e d . W e r e i t n o t f o r f a c t o r s t h a t

l e a d t o i n s t a b i l i t y of s u c h a s t a r , t h e s t a r c o u l d e x i s t

i n e q u i l i b r i u m u n t i l i t e x h a u s t e d a l l i t s r e s e r v e o f

n u c l e a r e n e r g y . T h i s r e s e r v e a m o u n t s a p p r o x i m a t e l y

t o g n u c ~ 1 0 5 1 M / M e r g [ s e e ( 5 . 1 ) ] . C o n s e q u e n t l y

t h e t i m e o f n u c l e a r e v o l u t i o n i s o n t h e o r d e r o f t n u c / " - 1

~ 1 0 5 y e a r s . H o w e v e r , a s w e s h a l l s h o w l a t e r , t h e

i s o t h e r m a l i n s t a b i l i t y o f t h e s t a r c h a n g e s t h i s r e s u l t .

e ) S t a b i l i t y o f a S u p e r m a s s i v e S t a r

T h e e n t i r e t h e o r y d e v e l o p e d a b o v e i s b a s e d o n a

c o n s i d e r a t i o n o f t h e s t a b i l i t y o f t h e s t a r r e l a t i v e t o

o v e r - a l l a d i a b a t i c e x p a n s i o n o r c o n t r a c t i o n . F o r t h i s

p r o c e s s , a s a l r e a d y r e p e a t e d m a n y t i m e s , t h e c r i t i c a l

f a c t o r i s t h e a d i a b a t i c e x p o n e n t y = 4 / 3 , w h i c h i s c h a r -

a c t e r i s t i c f o r m a t t e r i n w h i c h r a d i a t i o n p r e s s u r e p r e -

d o m i n a t e s .

T h e l i n e a r i z e d s m a l l - p e r t u r b a t i o n p r o b l e m h a s ,

o b v i o u s l y , a n e n t i r e s p e c t r u m of s o l u t i o n s ; t h i s m e a n s

t h a t t h e r e e x i s t m a n y d i f f e r e n t p e r t u r b a t i o n s , w h i c h

d e p e n d e x p o n e n t i a l l y o n t h e t i m e w i t h d i f f e r e n t e x p o n -

e n t s

o g = 2 J ( « Q ) I I (OQ) ; = <P( ( r ) e , u , = W , ( r ) e .

T h e e x p o n e n t i a l t i m e d e p e n d e n c e f o l l o w s f r o m t h e

f a c t t h a t t h e u n p e r t u r b e d s t a t e d o e s n o t d e p e n d o n t h e

t i m e , a n d c o n s e q u e n t l y t h e e q u a t i o n f o r t h e p e r t u r b a -

t i o n s c o n t a i n s o n l y d t , b u t n o t t i t s e l f , s o t h a t w h e n a

c o n s t a n t i s a d d e d t o t t h e s o l u t i o n s h o u l d a g a i n g o o v e r

i n t o a s o l u t i o n ; o n t h e o t h e r h a n d i n t h e l i n e a r i z e d

p r o b l e m , w h e n t h e s o l u t i o n i s m u l t i p l i e d b y a c o n s t a n t

i t s t i l l r e m a i n s a s o l u t i o n ; t h i s i s p r e c i s e l y t h e p r o p -

e r t y p o s s e s s e d b y t h e e x p o n e n t i a l :

M o r e o v e r , t h e e q u a t i o n w i t h o u t v i s c o s i t y f o r <? i ( r )

c o n t a i n s o n l y a ; ? . A n o v e r - a l l e x p a n s i o n o r c o n t r a c t i o n

i s t h e " f u n d a m e n t a l t o n e , " a n o s c i l l a t i o n w i t h o u t

n o d e s , w i t h <po(r) h a v i n g e v e r y w h e r e t h e s a m e s i g n .

A l l t h e r e m a i n i n g t y p e s o f p e r t u r b a t i o n s a r e o r t h o -

g o n a l t o i t ; t h i s m e a n s t h a t <p^(r) w i t h i * 0 h a v e o p p o -

s i t e s i g n s i n d i f f e r e n t r e g i o n s * a n d c o n s e q u e n t l y h a v e

*We must u s e Lagrang ian ra ther than Eule r c o o r d i n a t e s , or e l s e

a t r iv ia l so lu t ion i s ob ta ined , connec ted with t h e d i s p l a c e m e n t of

the s t a r a s a whole , cp, = a grad p 0 , with nodal s u r f a c e and &J| = 0.
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nodal surfaces cp^r) = 0. The corresponding OJ2 < wjj
are indeed real. Therefore, if we prove the stability
of the star relative to an over-all expansion or con-
traction, col < 0. o n e c a n be assured of the stability of
the star relative to all other adiabatic deformations.
This result can be obtained in a different manner, as
follows. We start by considering the stability of an
unbounded homogeneous medium, recalling the state-
ments already made in Sec. 3. We allow the same in-
accuracy as Jeans we assume that this state can be
stationary.*

In the limit, for very long waves, the perturbations
depend on the time with OJ2 = 47rGp0 and w = ±[47rGp0] .
For short waves the growth of the perturbations is
hindered by the pressure gradient, since an increase
in the density is accompanied by an increase in the
pressure. Accordingly

where a is the speed of sound and k is the wave vector
of the perturbation <p(p) ~exp(ik • r ) , in the limit when
k2a2 » 4TTGP0, the equation describes the propagation
of sound. The only perturbations which are unstable
and growing are those with k < [47rGp]^2/a or, in other
words, with a wavelength larger than critical-

2na

-
crit ^ F WThe diameter of the star in an equilibrium state is

precisely of the order of the critical " J e a n s " wave-
length ^ c r l f This means that within the confines of
the star we cannot produce perturbations that would
grow. A star which is in equilibrium is always stable
against breakup into many small parts , see also'-149'150-'.

A specific feature of large stars is that the p res -
sure of the plasma constitutes a small fraction of the
light pressure

-^5l-~ 8 6 ( M \~1/2

L E Gurevich and A I Lebedinskii ^18-' raised the
question of the stability of a large star against iso-
thermal density perturbations. In the case of iso-
thermal displacement of matter, only the plasma part
of the pressure increases in proportion to the density,
while the light part P r ~ CTT4/3 remains unchanged.
Consequently, the restoring force which counteracts
the growth of the perturbations is much smaller than
in adiabatic compression. In other words, the iso-
thermal speed of sound â . is much smaller than the
adiabatic speed of sound, and the critical Jeans wave-
length for the isothermal perturbations is accordingly
smaller.

By growth of isothermal perturbations, a massive
star can in principle break up into an aggregate of

individual stars.* The non-existence of stars with
M > 1001Vl_ was, in particular, attributed to this.t

Actually, in the case of isothermal motion of a
plasma relative to a homogeneous field of electro-
magnetic waves, friction is produced between the
plasma and the radiation field. As a result, the iso-
thermal perturbations, as well as the buildup of the
perturbations, increase much more slowly than the
adiabatic ones

Let us express the friction between the plasma and
the radiation in terms of the quantities customarily
used in astrophysics, the coefficient of radiant thermal
conductivity and the cross section.

With the aid of (5.4) we can relate the force per
gram with the energy flux

We used this expression when we considered the
"light equilibrium." Now, applying it to a plasma
moving relative to a specified distribution of radiant
energy, we write the energy flux relative to the matter
in terms of the velocity of the matter u relative to the
(stationary) radiation.

Obviously q = ~uE r a ( j , where E r acj is the energy
density of the light. Consequently, the friction law is

The force is proportional to the velocity and the
radiant-energy density, we shall denote the friction
coefficient for brevity by n.

We now set up an equation for the perturbations

where 6p is the density perturbation, 6<p the perturba-
tion of the gravitational potential, the velocity in the
unperturbed state is equal to zero, and in the perturbed
state the velocity is directed along the x axis.
Poisson's equation yields

Acp = AUGQ —> — k2ty = inGr

The continuity equation is

dt
— — div QUX —»cor = —ikuQ0

*In this connection see, for example,[ls]

*The total energy of a massive star is quite small in absolute
magnitude, since the adiabatic exponent is close to 4/3. This has
lead once to the conclusion[141] that one star with a given mass M
and E ~ 0 can break up into two stars with masses M/2 and E = 0,
etc. Actually, with the entropy S at which the star with mass M is
in equilibrium and has E = 0, the equilibrium of stars of smaller
mass is impossible.

tSchwarzschild and Harm["7] state that when M > ~ 100Mo, in
a hydrogen-burning star, a vibrational instability develops as a
result of the dependence of the rate of nuclear reactions and heat
transfer on the density. We have assumed above that the thermal
processes are slow and can be disregarded.
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The equation of motion (with account of radiant fric-
tion!) is

~ = — ikty— nu= — grad9 + F

From this we obtain the characteristic equation for

o)2 -f- run — 4 JIGQ0 = 0;

and when n > [47rGp0] we obtain approximately

a>2=—n, where n= — £ i a d -AnGo
0), = —

Let us compare the frequency characterizing the
growth of the perturbations, u 1 ( with the time Tj of
thermal relaxation of the star. In order of magnitude
(R—radius of star, I—the range of a quantum)

M- GM*

GQ2.fl2 ~~ G~Q

Thus, the time necessary for the perturbation 1/w,
to increase by a factor e is in order of magnitude
equal to the time during which the light can diffuse to
the outside through the plasma of the star; the entire
approach, however, is valid only if the time Ti is con-
siderably longer than the hydrodynamic time of con-
traction of the star in free fall

Actually the energy of the star is equal to the
kinetic energy of the plasma, taken with the negative
sign. Consequently, if the nuclear reactions do not
maintain the temperature of the star, its contraction
as a whole begins long before an appreciable fraction
of the radiant energy is lost (we recall that we are
considering a massive star, in which the radiant energy
is much larger than the plasma energy). In this case
isothermal instability does not have a chance to de-
velop.

For stars with M « 105 M Q , the nuclear reactions,
as was shown in item (d), are significant. The r e -
serves of nuclear and thermal energy of such a star
are comparable, and the isothermal instability will
arise.

The breakup of a star into clusters presents a pic-
ture whose details call for a concrete analysis. So far
we can state only that the breakup will occur into clus-
ters with M/M^ ~ 100, for in an equilibrium star of
such a mass the pressure of the radiation and of the
plasma are of the same order. When such clusters
begin to arise, the"plasma can at points of reduced
density, under the influence of the light pressure,
acquire an acceleration and can be ejected to the out-
side.

Thus, the ejection of matter in such a star will
occur even before the pieces into which the star breaks

up after its light is exhausted begin to collide in the
course of their fall.

f) Catastrophic Contraction

After the start of the catastrophic contraction, the
energy can be regarded as practically constant if
there are no nuclear reactions. The energy outflow
does not have a chance to reduce the entropy apprec-
iably (the neutrino energy outflow and the neutrino
spectrum are considered in Sec. 6).

We note that the growth of entropy for a given en-
ergy, due to shock waves, viscosity, etc., cannot stop
the contraction after the critical state is reached.
Indeed, as can be seen from Fig. 6, a state with cr i t i -
cal energy % " and with increased entropy S must of
necessity lie on that branch of the curve £ ( p c , S), on
which unrestrained contraction proceeds. In exactly
the same manner, the ejection of part of the mass
cannot stop the contraction of the main part of the star
after the critical state, if we recognize that the ejec-
ted mass should have positive energy (or else it could
not overcome the gravitational field of the star and
escape to infinity). This means that ejection of the
mass only decreases the (negative) energy of the r e -
maining star, so that it is impossible to go over from
the critical state to a state of stable equilibrium by
ejection of mass.

,'A

S>S"

FIG. 6. Increase in the entropy of a star during the appearance
of shock waves during collapse shifts the representative point to
the descending branch of the lsentrope S > S", that is, it cannot
stop the collapse.

The contraction can be stopped only by the follow-
ing factors. First, by rapid exothermal nuclear reac-
tions at high temperature. In this case it is easy for
the heat release to be such as to cause the matter of
the star to be completely scattered.* However, if the
nuclear reactions have already converted during the
equilibrium stage practically all the matter of the
star into iron, this is certainly excluded, since all the
possible nuclear energy has already been released.

Second, a contraction could be stopped in principle
by the powerful baryon repulsion forces, which come
into play at densities larger than nuclear and which
bend the curve g(p, S) upward ( see 1 ^ , Sec. 3). How-

*For this reason, Fowler's idea, according to which the oscil-
lations of the luminosity of the quasar 3C 273 are periodic cycles
of contraction and release of nuclear energy, seems little likely.
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ever, when the mass is large [larger than (2—3) M f l] ,
this is impossible, since general relativity effects
turn from being merely corrections into a decisive
factor long before the nuclear density is reached.
Indeed, it was noted in the first part of the review that
gravitational self-closure with the star going inside
the Schwarzschild sphere with radius rg = 2GM/c2 is
attained at an average density

e = 2-lO16(M/M0r2 g/cm3.

Nuclear density is reached before self-closure only
when M / M a < 10, that is, not for supermassive s tars .
After self-closure, no pressure can stop the contrac-
tion. We recall that a remote observer can obtain
information only about the processes which occur in
the star prior to self-closure; he sees only the asymp-
totic approach of the stellar radius to the gravitational
radius. For him, the star cools, as it were, with
R ^ rg. The observer can obtain information only on
processes occurring in the star prior to self-closure,
that is, up to densities p" given by the formula indicated
above.

6. EVOLUTION OF A STAR OF MEDIUM MASS

In Sees. 2, 3, and 12 of the first part of the review
we considered the fundamental principles of stability
and evolution of s tars . We explained the role of the
adiabatic index, the concept of negative specific heat
of the star as a whole, and presented the concept of
slow, quasistatic evolution, in which the instantaneous
state at each moment is close to hydrodynamic equili-
brium. In the opposite case, that of catastrophic con-
traction, the pressure at each instant is much smaller
than the gravitational forces, so that the acceleration
does not differ much from the acceleration in free
fall. These concepts were used above to analyze the
evolution of a supermassive star.

Referring the reader to the first part of the review
for the general picture, we confine ourselves here to
an analysis of particular cases, for the most part on
the basis of papers published between the writing of
the first and second parts. These papers are for the
most part connected with the role of the neutrino in
astrophysical processes.

a) Neutrino Emission Upon Contraction of Cold Matter

Let us consider, following'-109'110-', neutrino emis-
sion accompanying the contraction and neutronization
of cold matter. In considering the equilibrium con-
figurations of the star it is assumed that the Fermi
energy of the electrons is equal, for each specified
density, to the energy difference of the coexisting
nuclei. For example, the coexistence of stable 26Fe56

and radioactive 25Mn56 occurs at a Fermi energy equal
to 3.3 MeV, corresponding to matter with density
6 x 108 g/cm3. Almost the same state is realized in

slow contraction of matter. The near equality of the
Fermi energy of the electrons to the reaction thres-
hold signifies that in the case of slow contraction the
neutrinos produced in the reaction e~ + 2eFe56 = 25M1156

+ v carry away little energy.
It was mentioned in'-1-' that in fast contraction the

neutronization can lag and produce an effective vis-
cosity. The most interesting and most important a s -
pect of the neutronization kinetics, however, is the
following: if neutronization lags, then the Fermi energy
rises above threshold, and the electron energy excess
is picked up by the neutrinos. This is the mechanism
whereby neutrinos of high energies (up to 30—40 MeV)
are produced. It is accompanied by the formation of
only neutrinos (but not antineutrinos), since it is a s -
sumed that there are no stars made up of antimatter.
The yield of neutrinos is not more than one per nu-
cleon, if the initial matter is hydrogen, and one per
2—2.5 nucleons in the case of helium or heavier ele-
ments.

Rough estimates of the neutrino energy were made
in'-109'110-'. It was assumed that the density varies in
accordance with the same law as in free fall of homo-
geneous matter:

Q =
1 As.

dt
1

" 3it<3 («0 — «
• = Q3/"2 V&nG =

450

The Fermi momentum and the Fermi energy of the
electrons are expressed in terms of the density p and
the number of nucleons per electron ^ e :

/ ; —

We denote by x the fraction of the nuclei which have
undergone neutronization. The probability of neutron-
ization depends on the properties of the initial and
final nuclei Zj and Z2, or concretely on the matrix
element M12. Under the usual laboratory conditions
(without degenerate electrons) Zi is stable and Z2 is
|8-active. The probability of the decay of Z2 makes it
possible to obtain M21, and according to quantum mech-
anics |M12| = |M21|. It is convenient to express the
probabilities of the neutronization process of Zt by
degenerate electrons directly in terms of T, the half-
life of the radioactive Z2, and in terms of the well-
known function f of the decay energy Q.

When E F » Q we get

dx _ 1 (EF/meci)5 In 2
~dT ~ ~ IT X Jx.

For allowed transitions, for example, n ^ p + e
+ V, fr = 800 sec. The expressions given above are
sufficient for a complete solution of the problem. The
simplest example of neutronization of cold hydrogen
leads to the conclusion that x = 0.5 will be attained
for E F ~ 7—8 MeV, which is much higher than the



538 Y a . B . Z E L ' D O V I C H and I . D. NOVIKOV

threshold (1.25 MeV, including the rest energy); this
means that in this process the neutrinos carry away
an energy of 5—7 MeV. The transformation of the pro-
ton into a neutron in a medium consisting of protons
gives r ise to a chain of nuclear reactions, which term-
inate with formation of He4: n + p = D + y, D + p = He3

+ y, n + He3 = T + p or He3 + e~ = T + v, n + He3 = He4

+ y, while p + T = He4 + y.
The formation of one He4 nucleus from four pro-

tons and two electrons is accompanied by a release
of 26 MeV. However, almost half of this energy is
carried away by the two high-energy neutrinos. The
neutronization of hydrogen during the course of free
fall occurs predominantly at a density 5 x 108 g/cm3,
although the threshold density amounts to only 1.6
x 107 g/cm3. A more difficult problem is the neutron-
ization of helium under catastrophic contraction (free
fall). In helium the threshold of the reaction e" + He4

= T + n + y - Q , with Q = 22 MeV, is very high. Fur-
thermore, inasmuch as there is no bound state of H4

(see the review'-111-'), the right side of the equation
contains three particles. The probability of the reac-
tion depends also on the energy which is carried away
by the neutron.

It is understandable that experimental data on the
inverse process n + T = He4 + e~ + T> are nonexistent,
since the probability of weak interaction in flight (with
a free neutron) is negligible. Therefore, to estimate
the matrix element, the experimentally investigated
capture of a negative muon was used in'-110-', namely
e" + He4 = T + n + v^. For JJL~ on the lower orbit, the
probability is 370 sec"1.

Assuming that the matrix element does not depend
on the neutron energy, they found

where

dx
dt

y=-n- = 45 ne10<s

The integration of the equation for x together with
the law of free fall leads to the conclusion that the
reaction takes place at Ep ~ 45 MeV and a density
~1012 g/cm3.

The difficult reaction of helium neutronization is
followed by the much easier reaction with smaller
threshold (-10 MeV)

e~ + T = 3re + v.

Thus, during the course of collapse, neutronization
gives rise to neutrinos with energies up to 30—40 MeV.
Rough estimates show that the average cosmic flux of
such neutrinos can reach several per cent of the flux
of high-energy solar neutrinos, resulting from the
decay B8—• Be8 + e+ + v, with end-point energy 14 MeV.
Since the probability of neutrino registration increases
with increase in the neutrino energy, we cannot exclude
the possibility of experimentally observing cosmic

high-energy neutrinos, the origin of which is connec-
ted with collapse and neutronization of matter. Of
particular interest in this connection are the projected
experiments for the determination of the energy and
direction of neutrinos.'-112-'

It remains for us to make two remarks. The calcu-
lations were made for the density of freely contracting
matter. The pressure gradient slows down the con-
traction of the central core. On the other hand, when
matter falls in the peripheral part, the density increa-
ses first more slowly, and then more rapidly than
given by the free-fall formula. Furthermore, we are
comparing dp/dt for a given p. We note that compari-
son at the same instant of time is meaningless. Thus,
the law governing the density variation, which serves
as the basis for the calculations, cannot be regarded
as an upper limit; deviations from it are possible in
both directions.

Does gravitational self-closure of a star influence
the possibility of neutrino registration? We have seen
that self-closure occurs at a density 2 x 1016(M/M,-. )~2.
The maximum density at the center of the star, which
can still be seen by an observer, is somewhat smaller
than this quantity. For a simple example'-113^' the
limiting central density is smaller by a factor 2.25.
The neutronization of helium occurs at p ~ 1012 g/cm3.
Consequently, for the overwhelming majority of s tars
with M < 50M,-. the neutrinos will emerge experiencing
only a small red shift. The registration of the high-
energy neutrinos may turn out to be a method of ob-
serving spherically symmetrical "soundless" collapse
of s tars .

b) Emission of Neutrinos from a Hot Plasma

The neutronization process described above is a
direct consequence of the experimentally investigated
interaction connected with the transformation of pro-
tons into neutrons and vice versa. Contemporary
theory predicts with great probability the possibility
of emission of neutrino-antineutrino pairs following
any change in the electron momentum, when the elec-
tron jumps from one orbit to another, or finally, when
an electron and positron annihilate:

e" = (e~)' + v-,-v, e~-\-e+= x~ x.

The astrophysical consequences of this process were
pointed out by B. M. Pontecorvo. lls-' The first calcu-
lations were made by Gandel'man and Pinaev^114^ for
radiation by an electron moving near a nucleus, e~ + Z
= e" + Z + v + V. However, the neutrino processes
become significant in astrophysics only at a tempera-
ture on the order of 5 x 108 and above,d32,128,151] w n e n

the annihilation e" + e+ begins^128-1 and the urea process
with electrons and protons, of the type e~ + p = n + v,
e+ + n = p + V, begins (P inaev [ U 6 ' m ] ) . In one of the
first attempts to explain quasars, L118^ it was suggested
that when the central part of a star collapses, v and 7
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can carry away an energy which constitutes a notice-
able fraction of the rest energy Me2 of the core of the
star. The decrease in the mass of the star gives rise
to a decrease in the forces of attraction acting on the
outer shell, and the latter, heretofore in equilibrium,
will now expand and be partially discarded.*

In connection with this hypothesis (which inciden-
tally turns out to be untenable, as was shown already
in 1963^119^), and in connection with problems involv-
ing the evolution of s tars , it is interesting to consider
the question of the rate of neutrino losses. In the case
of nonrelativistic electrons and positrons, the rate of
energy loss is

- ^ = 2,8-l(r4Ore+«-erg/cm3
 s e C j

where n_ and n+ are the concentrations of electrons
and positrons in cm"3.

In turn, in the case of a nonrelativistic temperature
and at a density such that the gas is still not degener-
ate, the equation of thermodynamic equilibrium yields
(see Sec. 2)

In this situation we have

The inequality on the right gives the region of ap-
plicability of the formula (m— electron mass). Substi-
tuting the numerical values and expressing further the
temperature in units of 109° (T9), we obtain

du
dt

Q_
|i-10f

= 4 .8 -10 1 8 r 3 e -» '
2/3 .„,

erg /cnr sec,

(T = T9 everywhere).

In the region of high temperatures, kT > me2, the
number of e+, e" pairs increases like T3, as does also
the number of quanta; it becomes much larger than the
number of the initially taken electrons (which neutral-
ize the nuclei). The product n+n_ increases like T6,
and the annihilation cross section like T2- The spec-
trum of the produced neutrinos and antineutrinos has
the approximate form

(E is in MeV and T in T9 units), so that the average
neutrino energy is six times larger than the energy kT.t

*The inner part of the shell bears against the core and is also
dragged inward during the collapse. We have in mind that external
part which the hydrodynamic signal concerning the start of the
collapse (speed of sound) has not yet reached.

f For comparison we note that the spectrum of equilibrium photon
emission has a maximum at Ti&> = 4 kT. The maximum for fermions is
even higher. For this reason, whenever we write below formally, for
example, the condition kT > me2, etc., the less stringent condition
2kT > me2 is actually sufficient. For example, for the ultrarelativis-
tic formulas to be valid, it is sufficient to have T = T9 > 3. The
spectrum of the emitted neutrinos is in general not in equilibrium,
since the matter remains transparent to the neutrino. The radiated
spectrum is harder than the equilibrium spectrum, because the
interaction increases with the increasing energy.

u (pairs) =1.75a7'4=1.3-10227M erg/cm3

erg/cm3
sec, >

the lastActually, as noted by Hoyle and Fowler,
formula is satisfactory starting with T > 3 (the over-
estimate is 50% and decreases rapidly to 10% at T = 6).

One can recommend an intermediate interpolation
formula

duv
IF = 1014r i25 erg/cm3 sec, l < r < 3 ,

which fills satisfactorily the gap in which both the
theoretical, asymptotically correct formulas are
poorly satisfied.

Finally, in a relativistically degenerate gas the
chemical potential of the electrons* is given by the
expression n_ = me2 (p/Me x 10G) ,
tion of the positrons is

and the concentra-

For the energy losses we obtain approximately

duv
dt

duv
dt 6y

so that finally in the latter case we get

duv
l0V

6 < r < 6 r

Expressions for the energy lost by the urea process
are given by Pinaev.'-116'117-'

Let us consider the energy loss during the course
of free fall and compression of matter with specified
initial value of the specific entropy So. Let the initial
state be such that the energy of radiation and of the
pairs exceed the energy of the initial plasma. We write
down immediately expressions for T > 6, when the
e+, e" pairs comprise a full-fledged term of the energy
density

" = " p a x r + " r a d = 2 - 7 5 a ? t 4 = 2-l-102 2?1 4 , S =• 2.8 • 1022 ~ .

T h e e n t r o p y i s e x p r e s s e d in u n i t s of e r g p e r g r a m p e r

10 9° . T h e e q u a t i o n f o r t h e c h a n g e in e n t r o p y i s

dS
~df

1
W dt

- = _ J - 4 . 3 - 1 0 1 5 r 8

e

•Not to be confused with \ie in the parentheses, which is the
molecular weight per electron.
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It remains to express the temperature in terms of the
entropy and the density:

r = ( QS Y /3

~ V 2.8-1022 J
We ultimately obtain

dS _ _na <n_45 5/ PS/
dt ' 6 •

If we specify the density as a function of the time p(t),
for example in accordance with the law of free fall,
then, by expressing dt in terms of dp, we obtain
directly a simple easily solved equation

dt = dS

Astronomers, who are not used to dealing with en-
tropy, should notice how much simpler the derivation
of the equation becomes, as compared with the usual
procedure, in which it is necessary to consider the
energy and work done by the pressure forces, which
do not enter into the entropy equation!

We obtain (p = 0, S = So)

= IS-5/3 + 1.6 • 10-42Q'/6]- (6.1)

Knowing S(p), we can easily write an integral which
gives the total energy loss A per gram of matter upon
compression from p = 0 to a specified density p. To
this end, we express all the quantities S, T, duv/dt and

I ^J pdt in dt in terms of p and dp.p at
If we were to disregard the decrease in the entropy

during the course of the compression, then we would
obtain

A = A4 l ^ - dt = J
b b

that is , an integral which diverges at the upper limit
p —' °° ; when p — °° the loss would increase without
limit. However, by substituting the expression (6.1)
for S, we obtain a converging integral

= 4.3-10»5- 1
(2.8-1022)3

• 450

Simple calculations yield*

A = -|-k5SlQ*3/2, Q* =-1.64 (1.6 • 10-42^/3)-6/',

where

__ 4.3-1Q15450 __ ,n-49.06 . _1fl4.85
°~ (2.8-1022)3̂  ~ 1 U , ft6—1U

The quantity p* characterizes the density at which
the decrease in entropy effectively stops the energy

*The value of the dimensionless integral is

loss; the value of A, calculated for compression to
p = °° with account of the decrease in the entropy, is
expressed in terms of p* in the same manner as the
energy loss A for S = const and for compression to p
is expressed in terms of p.

This characteristic quantity p* must be compared
with the density at which gravitational self-closure
occurs as a result of the approach to the Schwarz-
schild radius p g = 1.8 x 1016 (M/M )2. Let us express
the initial entropy So in terms of the mass of the star.

The following picture of the process is obtained.
The star evolves slowly, going through a sequence of
equilibrium states. Finally, a critical state is reached
with an adiabatic exponent equal to 4/3 (or somewhat
larger, with account of corrections for general rela-
tivity). This exponent is reached in two cases: (i) as
a result of relativistic degeneration of the electron
gas in the case when the mass is not much larger than
the Chandrasekhar limit for white dwarfs: this case
will not be considered here; (ii) in the opposite case,
the exponent 4/3 corresponds to predominance of the
energy of radiation, while there are still no electron-
positron pairs. As was shown in detail earlier, in this
case,

T = 0.02QV» ( in units of

The corresponding expression for the entropy (in
the stage without pairs!) is

A 7̂3 ^3 / M \ !/?C __ _ a l _ _ o 97.1022 - = 8 1016 I I3 Q Q l " '^
erg/10 deg-g.

Pair production is itself a cause of decreasing y to
a value smaller than 4/3, that is, the cause of the
start of catastrophic fall.

This fall proceeds adiabatically, that is, with con-
stant entropy; the situation when the pairs become
full-fledged participants in the equilibrium is attained
before the neutrinos have time to decrease the entropy
noticeably. Thus, in the region 0.5 < T < 3 there oc-
curs a transition to the formulas

u^2J5aT\ S^2.8-1022—,
Q

from which we get

' = 0.014 (J; >/•

In the case of adiabatic (lossless) contraction to a
density corresponding to gravitational self-closure,
Po-= 1.8x 10le (M/M_ r 2 , we obtain an important
physical conclusion: the energy of the photons and of
the pairs per unit volume constitutes 0.24 of the rest
energy pc2. In this state

One cannot give more than one has. As applied to
neutrino radiation, this means that the total radiated
energy cannot exceed 0.24 Me2. This, however, is a
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highly exaggerated overestimate.
Actually, the integration of the loss equation leads

to the conclusion that the limit is equal to 0.1 Me2. If
the mass of the star is large, M > 104 M , then the
neutrino emission, which occurs under conditions of
practically constant entropy, is limited by the gravi-
tational closure. For masses M > 106 the temperature
is such that pair production becomes exponentially
small.

On the other hand, when M < 200Mp., the decrease

in the entropy as a result of the neutrino radiation
itself limits the total energy loss before relativistic
self-closure takes place; the transition from one
region to the other is quite gradual.

For the effective density and temperature, at which
the loss reaches A/2, we have in this case the follow-
ing expressions

e * ~ 8 . i o " Q | ) - 5 / \ r ~ 100 ( ^ ) - v " .

Table V (in part taken from'-119^) gives the values
for different masses.

Actually the entire Table V is a very crude approxi-
mation. In the region of small masses, M < 100M_ , it
is necessary to take into account the plasma energy
and the electron degeneracy. All the processes, in-
cluding gravitational closure, must be considered
against the background of the true hydrodynamic solu-
tion, which depends both on the time and the coordin-
ates. 115^ Neutrino scattering must also be taken into
account.128^ This can reduce the given values of A
by a factor of several times.

At the same time, the following qualitative conclu-
sions can be regarded as reliably established:

1. The neutrino energy loss upon collapse always
constitutes a small fraction of the rest energy and
cannot cause stripping of the shell.

2. The over-all density of the intergalactic neu-
trinos and antineutrinos produced in the collapse does
not exceed 5% of the density of the collapsing s tars .

3. In the collapse of stars with small mass
(M < 3M_), neutronization may be accompanied by
production of neutrinos with energies up to 30—40 MeV,
in amounts of 0.25—0.5 per nucleon, yielding A/c2

4. In the collapse of stars with 100M > M > 3MQ ,
neutrinos and antineutrinos are produced with a broad
spectrum and with average energy on the order of

30—50 MeV; the energy loss up to A/c2 ~ 5% cor re -
sponds to the emission of up to one neutrino or anti-
neutrino per nucleon.

The region of small masses and high temperatures
calls for additional analysis. The production of a
small number of muonic neutrinos is not excluded.

It is obvious at any rate that the realization of mod-
ern experimental ideas, which would make it possible
to determine the energy and flight direction of the
neutrino, can yield information of extreme value to
astrophysics.

c) Release of Nuclear Energy, Rate and Stability of
Evolution

Besides general regularities, astronomical obser-
vations disclose also large qualitative diversities in
the world of s tars . These diversities concern the
chemical and isotopic composition of the s tars .
Stars are observed in which the contents of rare
earths is 1000 times larger than the average, stars
with the ratio C13: C12 ~ 1 (as against 0.01 on earth);
finally, there is one lone star with He3: He4 = 4 (as
against 10~7). Some stars have anomalously large
magnetic fields.

There are stars whose brilliance varies periodi-
cally (Cepheids), s tars which flare up regularly, and
finally stars which experience catastrophic explosions
(supernovas). There is a known example of a super-
nova flare—the explosion which gave rise to the Crab
nebula.

It can be assumed very roughly that all the recently
produced young stars consisting essentially of hydro-
gen or 60% hydrogen and 40% helium, and 1% of heav-
ier elements, are similar to one another. All the
properties of such stars are determined entirely by
their mass; these stars form a one-parameter family.
On the spectrum-luminosity diagram they form the
"main sequence" of Hertzsprung-Russell. The con-
cept of youth of a star depends in turn on the rate of
consumption of the fuel: a star with M ~ MR reaches

middle age after 5 x 109 years, while a star with mass
30Mp. exhausts its hydrogen and ages in 106 years.

It is precisely for the period of evolution occurring
after the exhaustion of hydrogen that the variety of the
observed properties and behavior of the stars is char-
acteristic. The questions which arise in connection
with this stage of evolution are not fully clear and ap-
parently are not specially connected with relativistic

Table V. Mass loss of a collapsing star due to neutrino radiation

T(TCJ)
l

10

0.05
85

.6-1011 2.

100

0.1
70
5-101°

103

0.1
50

5-10»

101

0.1
.-;6

2-108

2

10'

.5-10-3
11

2-106

1 0«

6 10-5
3.6

2-10*

1

10
(
-12
. )
I
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effects. We shall therefore discuss them only very
briefly.

What parameters can produce the variety in the
properties of s tars , if we assume that all the s tars
were condensed initially from a gas of approximately
the same composition? After all, all the stars pass on
the main sequence through the Lethic stage.!

In this case the star "forgets" the asymmetry,
turbulence, and temperature of the initial gas, from
which it was condensed. What does the star " remem-
be r "? On what does its further development depend?
We already mentioned the mass, the main character-
istic of the star. During the period of combustion of
hydrogen on the main sequence, the loss of mass is
negligibly small, the mass is conserved.

The second conserved quantity is the angular
momentum of the star . Apparently, the magnetic
properties must also be regarded as an innate property
of the star, as an invariant; incidentally, this is far
from obvious; it is still not clear to what extent the
magnetic field of the star is the result of intensifica-
tion of the magnetic field of the interstellar medium
upon condensation of the star. Another possibility is
the appearance of magnetic field as a result of con-
vective motions in the star (dynamo effect)'-121-'; see
Batchelor's theorem concerning the magnetic field in
a turbulent conducting liquid. Finally, the fate of the
star can be greatly influenced by the presence of a
nearby neighboring star, with which it forms a close
double system. This is frequently forgotten by the
theoreticians, yet among definite classes of s tars
double stars are quite abundant; there is the opinion
that all "novas" are double s tars . We recall in this
connection the considerations advanced concerning the
age of the two components of Sirius (see Sec. 12 below),
and also the limitations imposed on the parameters of
double stars by the radiation of gravitational waves
(see the article by Braginskii in the present issue).

We now proceed from a listing of the parameters
characterizing the star and the conditions of its evolu-
tion, to a clarification of those deep internal reasons
which can cause some instability of the star . Appar-
ently, on the whole all the listed factors, namely rota-
tion, the magnetic field, the presence of a second
component, are small perturbations compared with
the most fundamental cause—the force of gravitation
which depends on the total mass. These factors there-
fore influence strongly the evolution only during periods
of low stability of the star. It is frequently—but inac-
curately! —stated that rapid absorption of heat can be
the cause of catastrophic contraction,t and neutrino

emission is regarded on par with such energy-consum-
ing processes as the dissociation of iron F e | | = 14 He4

+ 4n or pair production e+ + e~. Actually the emission
of neutrinos is a factor which causes a change in the
entropy. The neutrino loss rate enters into the right
side of the equation

dS 1 duv

~~di QT dt '

In the presence of stable solutions which depend on S
as a parameter, the rate of change of the entropy de-
termines the rate of the evolution. The speed of con-
traction is always smaller than the speed of light.
Before gravitational self-closure sets in, the neutrino
has time to leave the star. The emission of the neu-
trinos is essentially a non-equilibrium process, and
in this lies its sharp difference from production of
e+, e" pairs. In hot matter, the time of establishment
of equilibrium of these pairs is negligible in all
scales; for example, when T9 = 6 this time is of the
order of 10"18 sec. Consequently, at each instant and
at each point the pairs are in complete equilibrium,
and their number is not determined by the rate of the
process. The heat consumed in pair production has
not vanished: let the matter expand and let the tem-
perature decrease; when the number of pairs decrea-
ses in accordance with the equilibrium condition, the
lost heat will be released again. The equilibrium of
pair production is not a factor which changes the en-
tropy. Pair production changes the form of p = p(p, S),
that is, it changes the dependence of the pressure on
the density at a given entropy. The same pertains also
to the dissociation of iron and helium. As a result, in
a definite region of temperatures and densities

a in p
dIn e

This new term[35] is derived from the name of the mythological
river Lethe, which separates the kingdom of the living from the
kingdom of the dead. Lethe is the river of oblivion.

tFor this contraction there is a special term- implosion -
"inward detonation," distinguishing it from explosion, which is
directed outward with ejection of matter.

is attained and stability is lost. The gist of the matter,
of course, lies in the fact that when the loss of the rest
energy of e+ and e" or of the energy lost to overcoming
the nuclear forces is taken into account, the ratio of
the additional pressure of the new particles to the den-
sity of the energy turns out to be small, less than 1/3.
However, the description of this circumstance by in-
troducing special quantities dQ/dT is the lamentable
consequence of the underestimate of the thermodynamic
methods and of the clarity and convenience afforded by
the use of entropy.

In the p, T plane we can draw a line on which
y = 4/3 . This line separates the region of instability
from the stability region. Under the roughest assump-
tions concerning the structure of the star we can draw
lines p = aM2^3p4^3 = const • p4^3, corresponding to the
average hydrostatic equilibrium. When such a line
crosses the line y = 4/3 this means that a star of a
given mass loses stability.

For example, according to the calculations of
Imshennik and Nadezhin, [13o:i for a star with M = 20M
the value y = 4/3 is reached when p « 6 x 1OG g/cm3
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and T9 ~ 4.8. However, during the course of the fur-
ther adiabatic contraction, beyond the region y < 4/3,
the line S = const crosses the second line y = 4/3 and
again enters into the stability region. The reason is
the formation of a large number of nonrelativistic par-
ticles upon the dissociation of iron Fe — a + n — p + n .

Thus, after a fast nonstationary contraction, a halt
can occur in a new equilibrium state. During the
course of the halt, shock waves are produced and
propagate towards the surface of the atmosphere of
the star, transferring their energy to an ever decreas-
ing mass and breaking up the outermost layer. This
is the mechanism of supernova flare considered in the
papers of Nadezhin and Frank-Kamenetskii.'-122-' They
investigated in great detail the hydrodynamics of the
process of establishment of a new equilibrium and the
ejection of the shell by the wave, without stopping to
discuss the causes of the initial disruption of the old
equilibrium. The outward appearances in the picture
which they have calculated are in good agreement with
the observations.

A second most important factor in the instability,
for many years advertised by Hoyle and Fowler, 10>120>123-'
is connected with the inhomogeneous composition of
the star. In the absence of convective mixing, at the
instant when at the center of the star total thermo-
dynamic equilibrium is attained and the matter near
the center has been completely converted into iron, the
adjacent layer contains oxygen and carbon, the next
contains helium, and finally, in the outer layer there
remains the uncombusted hydrogen.

The transmutation of hydrogen into helium is con-
nected with weak interaction and can never become
rapid. We shall therefore not take into account the
energy of the hydrogen. But even without the hydrogen
the energy of the transformation of heavier nuclei ex-
ceeds the negative energy of the star as a whole. This
means that the reserve of nuclear energy, for example
the reaction 2O16 — S32, together with the thermal en-
ergy of the star, is sufficient to overcome the gravita-
tion and to scatter the entire star to infinity. The proc-
esses 3He4— C12, 2C12 — Mg24, and 2O16 — S32 do not
need transformation of protons into neutrons, and are
the result of strong interaction (nuclear forces). At
sufficiently high temperatures, which weaken the action
of the Coulomb repulsion of the nuclei, these processes
can occur within a time shorter than the free-fall time,
that is, behave explosively. Hoyle and Fowler devel-
oped a scheme for the blow up brought about by im-
plosion: the shock wave, passing through the corre-
sponding layers, produces in them nuclear reactions
with release of heat. In other words, the shock wave
is transformed into a detonation wave. All the upper
layers are ejected with giant velocities. One must not
think, however, that the iron core will in this case be
completed: even if it is initially compressed as a r e -
sult of an increase in the pressure during the start of
the nuclear reaction, then afterwards, lacking the ex-

terior pressure of the escaping shell, the core will
also expand and scatter.

It should be remembered that the entropy of the
core material corresponds to the equilibrium of the
core only under the condition that the latter is under
the pressure of the layers of the star surrounding it.
This entropy, however, is much larger than the equili-
brium value Se for the smaller mass remaining after
the discarding of the shell.

Thus, the star, during each instant of its evolution,
almost up to the time of the total exhaustion of the fuel,
"s i ts on a powder keg" and contains a fuel reserve
sufficient for suicide. Is implosion the only mechan-
ism capable of blowing up the s tar? To what extent is
the state which is fully stable hydrodynamically also
stable with respect to thermal blowup?

In the first part of the review we related the thermal
stability with the negative specific heat of the star.
There are two factors which cause under given condi-
tions thermal instability.

1) The negative specific heat is characteristic of a
nondegenerate plasma. At high density and not too high
temperature, when appreciable degeneracy of the elec-
trons takes place, the specific heat of the star becomes
positive. An attentive reader should indeed have ob-
served this already in the first part. During the course
of the decrease of the entropy, the temperature of a
star with M = M first increases, and then decreases;
a white dwarf cools down to a low temperature. The
decrease of the temperature with decreasing entropy
denotes positive specific heat. This circumstance has
led to an abrupt halt of the nuclear reaction, to the
cooling of the composition of the white dwarf. The de-
crease in temperature reduces the reaction rate, and
the lagging of the reaction relative to the heat loss
produces conditions for a decrease in entropy, which
in turn, when the specific heat is positive, reduces the
temperature. Under other conditions, for a different
composition, the same instability can lead to a thermal
explosion.

2) The second circumstance is even more impor-
tant. Negative specific heat is a concept pertaining to
the star as a whole, the result of the realignment of
the density of the entire star with its entropy changing
everywhere. Each individual small layer of matter in
the star has a positive specific heat equal to Cp: each
layer is under constant pressure of the matter above
it. Therefore, in principle, individual layers can blow
up thermally. This process is made difficult by the
fact that the given layer is in thermal contact with
matter lying above and below it. But if we take the
layer too thick, the increase of the entropy in it will
already be accompanied by a noticeable change in
pressure—the specific heat increases and in the limit,
passing through c = ±°°, it becomes negative when the
layer is comparable with the entire star.

If the reaction occurring in the layer between the
burned-up core and the shell has a sufficiently strong
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temperature dependence, there can exist such thermal
disturbances, with respect to which the stationary
mode is unstable. The process of explosion with in-
creasing entropy in the layer is difficult in the p res -
ence of convection. The very increase of the entropy
in the layer produces conditions for convective mixing.

It is possible that the thermal explosions, the de-
velopment of which terminates by intensification of
convection, play an important role in multiple flares
(see also the third footnote on page 535).

The anomalous composition of the stellar atmos-
phere points to a mixing of matter which has never
burned (hydrogen, helium) with matter that stayed at
some time in the interior of the star and contains
heavy nuclei.'-123-' These nuclei can be produced only
by the joining of neutrons to nuclei of the middle of
the periodic table, that is, they require such a high
temperature that hydrogen could not survive. Finally,
there are singularities in the composition (He3: He4 > 1)
which, in the opinion of several authors, ^123"125^ point
to the very strong irradiation of the matter with part i-
cles having energies of many MeV, that is, particles
such as cosmic rays, which are not in thermal equili-
brium.

The foregoing exposition does not pretend to des-
cribe exhaustively the nonstationary phenomena. We
hope, however, that even such a brief review will
present the reader with an idea concerning the char-
acter of the possible theory and will perhaps attract
new mathematicians and physicists to its development.

7. MOTION OF TRIAL PARTICLES AND LIGHT RAYS
IN A SCHWARZSCHILD FIELD

a) Potential Curves of Motion

In the first part of the review we analyzed the mo-
tion of particles and of light along a radius in a
Schwarzschild field. Here we shall stop to discuss
the general case of non-radial trajectories. This
question has been analyzed in detail long ago. A com-
plete classification of the motions is contained, for
example, in the book of A. F. Bogorodskii ^19J; see
also'-20'21^. An analysis of the principal questions in-
volving the stability of motion on circular orbits is
given by S. A. Kaplan. [22]

The equations of motion in polar coordinates are of
the form (planar trajectory)

~dx~

V dX ) ~

£2

1

(7.1a)

(7.1b)

For convenience, the equations were written out in
terms of dimensionless quantities. Here r—Schwarz-
schild radial coordinate, measured in units of the
gravitational radius r g = 2GM/c2; dT = dr(l - l/r)"1/2—
element of radial distance ( s e e ^ ) ; T—physical time,

measured by a local observer ( s e e ^ ) in units of
r g / c ; a—angular momentum, measured in units of
mcrg; E—energy measured in units of me2; m—mass
of the trial particle. The energy includes the rest
mass, and therefore for a particle at rest at infinity
we have E = 1. At distances which are large com-
pared with the gravitational radius, that is, when
r » 1 and when the energy of motion is small com-
pared with unity, | E — l| « 1, we obtain from (7.1) the
equations of the Kepler problem in Newtonian gravita-
tional theory. Indeed, under these conditions we can
neglect the term a2/r3 in (7.1a), and we have dl « dr
and E2 - 1 « 2(E - 1). In this case ( - l / r ) is the gravi-
tational potential and a2/r2 is the potential of the
centrifugal forces. The vanishing of the numerator
in (7.1a) obviously yields the potential curve of radial
motion.

FIG. 7. Potential curve of radial motion in Newtonian theory
for a fixed momentum a,. Ej < 1 - horizontal of finite (elliptical)
motion; E2 > 1 — horizontal of hyperbolic motion.

For Newtonian theory, such a curve E = E(r, aj) for
fixed aj is shown in Fig. 7. For any aj the curve has a
minimum. The qualitative singularities of the motion
of the trial particle are immediately seen in this fig-
ure. The motion occurs at constant energy Ej and is
given by the horizontal line E = Ej. A particle with
momentum at moves along the horizontal to the corre-
sponding turning curve E = E(r, aj), and then moves in
the opposite direction again until it crosses the same
curve, etc., carrying out finite motion in the "potential
well ." In accordance with the fact that we have chosen
in this example Ei < 1 and the energy, as in general
relativity, is measured from me2 (from unity in our
units), the particle will not go off to infinity.

If the energy of the particle is E2 > 1 (Fig. 7), then
it travels along the hyperbola from infinity, reaches a
minimum r, corresponding to the intersection of E2

with the curve E = E(r, aj), and again goes off to
infinity. Since the potential curves tend to infinity
when r —• 0, E — °°, for any large energy the particle,
after overtaking the attraction center, will again es -
cape to infinity, provided of course it does not collide
with the surface of the attracting body. Gravitational
capture is impossible in Newtonian theory of two
point-like bodies.
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FIG 8. Potential curve of radial motion in general relativity
for a fixed momentum a,. E, < 1 — horizontal line of finite motion,
1 < E2 < Emax _ horizontal line of hyperbolic motion, E > Emax -
particle approaches gravitational radius and does not go off to
infinity.

finity. In this case the orbit near r m i n is not at all
similar to a Newtonian hyperbola. When E = E m a x the
trajectory will wrap itself around the circle r = rjr

b) Circular Orbits

If the point is located at the extremum of the curve
E(r, at) = 0, this means that dr = 0 identically and the
particle moves along the circle with r = const. It is
obvious that the circular motion at the minimum of E
is stable in the case of a small perturbation the par-
ticle, whose values of E and a] experience small
changes, will execute a finite motion (Fig. 9) corre-
sponding to E = E m m + <5E, and to a new turning curve
E = E(r, ai + Saj). The new trajectory differs little
from the previous circle.

We now turn to relativistic theory, to the exact
equation (7.1a). Here the potential curves have a
different form (Fig. 8). Because of the term a2/r3,
the potential curve does not r ise upward without limit,
as in Newtonian theory, but bends downward, tending
to zero at the gravitational radius r = 1. One such
curve is shown in Fig 8. The curve has both a mini-
mum and a maximum.

The motion of a trial particle with Ej < 1 in a poten-
tial well (Fig. 8) is analogous to that analyzed above.
However, unlike in Newtonian theory, the orbit of the
particle is not a closed curve (for details see'-19^). In
the Newtonian problem, the period of the radial os -
cillations is equal "by accident" to the time necessary
for (p to change by 2v, meaning that the curve is
closed. In general relativity this is not so. The famous
secular shift of the perihelion of Mercury, by 42" per
century, is a manifestation of this singularity.

When 1 < E2 < E m a x the horizontal E2 = const on
the right side goes to infinity, and on the left side it
bears against the turning curve In this case the par-
ticle arrives from infinity and goes off to infinity in
analogy with the hyperbolic motion of the Newtonian
theory.

An important singularity of the potential curve in
the Schwarzschild field is the presence of a maximum.
For a frequency with E3 > E m a x the horizontal line
E = E3 does not cross the potential curve. Such a par-
ticle reaches the sphere of gravitational radius (r 1
in our units) and no longer goes off to infinity. Gravi-
tational capture of the particle takes place. This im-
portant singularity of gravitational theory will be dis-
cussed in detail later.

We note one more curious circumstance. If a par-
ticle has an energy which is only slightly lower than
- E m a x , then near the turning point a plot of the right
side in (7.1a) approaches zero with an arbitrarily
small slope, that is, when r is changed by a small
amount dr, the particle has time to describe an arbi-
trarily large angle <p, meaning that near r m l n it can
make many revolutions before it goes off again to ln-

FIG. 9. Motion along a circular orbit is stable, at the minimum
of the potential curve and unstable at the maximum. 1 — Potential
curve E - E(r, at + aaj, 2 - potential curve E - E(r, a; + oa2).

Motion along the circle at the maximum of
the E curve is unstable, a small disturbance will now
cause the particle either to go to infinity or to fall to
the gravitational radius.

We have seen that in Newtonian theory the potential
curve has a minimum for arbitrary a. Consequently,
in Newtonian theory for arbitrary a there exists a
stable circular orbit. The smaller a, the closer the
orbit is to the center, when a —- 0 we have r —- 0. In
Einstein's theory this is not the case there exists a
minimum radius of the circular orbit, on which the
motion is stable, and accordingly a minimum energy
of circular motion. This circumstance was first poin-
ted out by S. A. K a p l a n . ^ To check on the foregoing,
it is sufficient to plot E = E(r, a) for different a (Fig.
10).

We see that when a < V~3 the plots have no extrema.
When a > V~3 each curve has two extrema—a minimum
and a maximum. The minima correspond to stable
orbits and have r > 3 and accordingly V 8/9 < E m l r

The coordinates of the maxima, when a increases
from / 3 to °°, decrease monotomcally from r ~ 3 to

< 1.
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FIG. 10. Potential curves for different momenta a. The numbers
near the curves denote the momenta a.

r = 3 / 2 , a n d t h e e n e r g y E m a x i n c r e a s e s f r o m

= 0 . 9 4 3 t o i n f i n i t y .

T h u s , t h e c i r c u l a r o r b i t c l o s e s t t o t h e c e n t e r h a s

r = 3 . T h e v e l o c i t y o n i t v c i r c = c / 2 , a n d t h e c o r r e -

s p o n d i n g m i n i m u m e n e r g y E c r j t = 0 . 9 4 3 m e 2 .

W e r e c a l l t h a t f o r a r e m o t e o b s e r v e r a l l t h e p r o c -

e s s e s i n t h e g r a v i t a t i o n a l f i e l d a r e s l o w e d d o w n b y a

f a c t o r / g o o = (1 ~ r g / r ) 1 / 2 ( s e e [ i : i ) . T h i s o b s e r v e r w i l l

s e e t h e m o t i o n o f t h e p a r t i c l e o n t h e c r i t i c a l c i r c u l a r

o r b i t w i t h a p e r i o d

T =
( 2 / 3 ) ^ "

If t h e p a r t i c l e c a r r i e s a m o n o c h r o m a t i c e m i t t e r w i t h

f r e q u e n c y w 0 , t h e n t h e f r e q u e n c y of t h e l i g h t r e c e i v e d

b y t h e o b s e r v e r i s g i v e n b y t h e f o r m u l a

/
. r, , /"I —vie1 — — 1 / J - i — T •

r V 14-v c

T h e f i r s t f a c t o r f o l l o w i n g w 0 d e s c r i b e s t h e s l o w i n g

d o w n o f t i m e i n t h e g r a v i t a t i o n a l f i e l d , a n d t h e s e c o n d

t h e D o p p l e r e f f e c t . F o r a p a r t i c l e m o v i n g o n r c r ^ , t h e

p l a n e o f t h e o r b i t o f w h i c h p a s s e s t h r o u g h t h e l i n e o f

s i g h t o f t h e o b s e r v e r , a t t h e i n s t a n t o f m o t i o n t o w a r d s

t h e o b s e r v e r w e h a v e OJ = V"2~w 0 — v i o l e t s h i f t , w h i l e a t

t h e i n s t a n t o f m o t i o n a w a y f r o m t h e o b s e r v e r w e h a v e

u> = O J 0 V 2 / 3 — r e d s h i f t . F o r a s o u r c e a t r e s t h a v i n g

t h e s a m e r c r i t = 3 r g w e h a v e w = V 2 / 3 w 0 — r e d g r a v i -

t a t i o n a l s h i f t .

U n s t a b l e c i r c u l a r o r b i t s a r e l o c a t e d c l o s e r t o t h e

g r a v i t a t i o n c e n t e r , i n t h e i n t e r v a l 3 / 2 < r < 3 . T h e

v e l o c i t y o f m o t i o n a l o n g t h e l a s t o f t h e s e ( u n s t a b l e )

w i t h r = 3 / 2 i s e q u a l t o t h e v e l o c i t y o f l i g h t , v = c .

T h i s c o r r e s p o n d s t o i n f i n i t e e n e r g y E = ° ° . C l o s e r t o

t h e g r a v i t a t i o n a l r a d i u s ( w e r e c a l l t h a t i n o u r u n i t s i t

c o r r e s p o n d s t o r = 1 ) t h e r e a r e n o c i r c u l a r o r b i t s a t

a l l ( t h i s w a s n o t e d a l r e a d y b y E i n s t e i n ) .

c ) G r a v i t a t i o n a l C a p t u r e o f a N o n r e l a t i v i s t i c P a r t i c l e

L e t u s a n a l y z e a c a s e o f i m p o r t a n c e t o p h y s i c a l a p -

p l i c a t i o n s , t h a t o f t h e m o t i o n o f a b o d y w h i c h h a s a t

i n f i n i t y a v e l o c i t y v w , n e g l i g i b l y s m a l l c o m p a r e d w i t h

c . A n d a c c o r d i n g l y E = 1 . W e t r a c e q u a l i t a t i v e l y t h e

m o t i o n o f s u c h a b o d y f o r d i f f e r e n t v a l u e s o f a . T h i s

m o t i o n , p l o t t e d i n u n i t s o f E a n d r , i s r e p r e s e n t e d b y

t h e h o r i z o n t a l l i n e E = 1 ( F i g . 1 0 ) . I f t h e a n g u l a r

m o m e n t u m a t i n f i n i t y i s s m a l l e r t h a n a c r i t = 2 , t h e n

t h e h o r i z o n t a l l i n e E = 1 d o e s n o t c r o s s t h e t u r n i n g

c u r v e E = E ( r , a ) , m e a n i n g t h a t t h e p a r t i c l e t r a j e c t o r y

e n d s o n t h e S c h w a r z s c h i l d s p h e r e . W h e n a c r ^ = 2 , t h e

t r a j e c t o r y w i n d s a r o u n d t h e c i r c l e r = 2 . I f a > 2 , t h e n

i t a g a i n g o e s o f f t o i n f i n i t y . W h e n a d i f f e r s l i t t l e f r o m

a c r i t = ^ ' * n e P a r t i c l e w i l l e x e c u t e m a n y r e v o l u t i o n s

n e a r r = 2 b e f o r e g o i n g o f f t o i n f i n i t y . T h e a s y m p t o t i c

f o r m u l a f o r t h e n u m b e r o f r e v o l u t i o n s i s ^M^

i v = _ I n ( a _ 2 )

2 3 / 2 n

W e n o w t u r n t o t h e q u e s t i o n o f g r a v i t a t i o n a l c a p -

t u r e . W e h a v e a l r e a d y e m p h a s i z e d t h a t i n N e w t o n i a n

t h e o r y a p a r t i c l e a r r i v i n g f r o m i n f i n i t y , i t i t d o e s n o t

s t r i k e t h e s u r f a c e o f t h e c e n t r a l b o d y , w i l l a g a i n g o

o f f t o i n f i n i t y — g r a v i t a t i o n a l c a p t u r e i s i m p o s s i b l e .

I n E i n s t e i n ' s t h e o r y , a s w e h a v e a l r e a d y s e e n , a p a r -

t i c l e w i t h a < 2 i s g r a v i t a t i o n a l l y c a p t u r e d ; i t w i l l n o t

g o o f f t o i n f i n i t y . T h e d i m e n s i o n l e s s c a p t u r e c r o s s

s e c t i o n i s

i r ) (v « c). ( 7 . 2 )

L e t u s c o m p a r e t h i s c a p t u r e w i t h " g e o m e t r i c a l c a p -

t u r e " o f a p a r t i c l e b y a g r a v i t a t i n g s p h e r e o f r a d i u s R

i n N e w t o n i a n t h e o r y , t h a t i s , w i t h t h e c a s e w h e n t h e

p a r t i c l e e n c o u n t e r s n e a r t h e p e r i a s t r o n t h e s u r f a c e o f

t h e s p h e r e . I n t h i s c a s e t h e c a p t u r e c r o s s s e c t i o n

( i n t h e s a m e u n i t s ) i s

•=Rn (7 .3 )

w h e r e R i s t h e r a d i u s o f t h e s p h e r e .

C o m p a r i n g ( 7 . 2 ) w i t h ( 7 . 3 ) , w e s e e t h a t i n t h e r e l a -

t i v i s t i c c a s e t h e c a p t u r e o c c u r s e f f e c t i v e l y i n t h e s a m e

m a n n e r a s i n N e w t o n i a n t h e o r y , b u t w i t h a c e n t r a l

b o d y o f r a d i u s

W e e m p h a s i z e a l s o t h a t i n N e w t o n i a n t h e o r y t h e c a p -

t u r e b y t h e s p h e r e i s a c c o m p a n i e d b y i m p a c t a g a i n s t

i t s s u r f a c e . I n a S c h w a r z s c h i l d f i e l d , t h e c a p t u r e d

b o d y , a f t e r e x e c u t i n g a f i n i t e n u m b e r o f r e v o l u t i o n s o n

a s p i r a l t r a j e c t o r y , r e a c h e s t h e S c h w a r z s c h i l d s p h e r e ,

a n d i s s e e n b y a r e m o t e o b s e r v e r t o s l o w d o w n a s y m p -

t o t i c a l l y . S u c h a n a p p r o a c h s t r e t c h e s o u t f o r t h e r e -

m o t e o b s e r v e r o v e r a n i n f i n i t e t i m e ( a s w a s d e s c r i b e d

i n d e t a i l i n ^ 1 - ' f o r t h e c a s e o f r a d i a l m o t i o n ) . N o i m -
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pact takes place here. We note also that the trajectory
approaches the Schwarzschild sphere always perpen-
dicularly, along the radius [see (7.1a) and (7.1b)].
Therefore all the formulas given in'-1J for a radially-
falling particle will be asymptotically correct near
the Schwarzschild sphere also in the case of a non-
zero momentum a of the incident particle.*

d) Motion of Ultrarelativistic Particles and of Light
Rays

We now consider exactly the opposite case of mo-
tion of the particle, which is ultrarelativistic every-
where, even at infinity. Such particles, of course, are
always photons and neutrinos.

The equation for a particle moving in a Schwarz-
schild field with fundamental velocity c is obtained
from (7.1) by taking the limit as Voo—- c, correspond-
ing to E —• °°. Noting that a/E —I as E —• °°, where I
is the impact distance of the trajectory at infinity, we
obtain in the limit as E —- °°

dx J

' _ 4 ' i ' (7.4a)

(7.4b)

In Newtonian theory there is no term Z2/r3 in (7.4a),
nor the factor in the round brackets in (7.4b), and
dZ ~ dr. This is uniform motion along a straight line.

The presence of a term l2/rs causes the light ray,
when passing near the gravitating mass, to be deflec-
ted from its linear motion. At large I (meaning also
large r m m ) this deflection is small. For a ray graz-
ing the surface of the sun, it amounts to 1.75". It was
this prediction by Einstein, brilliantly confirmed dur-
ing the time of the total solar eclipse of 1919, which
was one of the first experimental proofs of the correct-
ness of general relativity.

For small values of r, the trajectory of the ray can
deviate greatly from a straight line. The turning
curve—the dependence of r m m on I—is shown in Fig.
11. It is seen from the figure that the ray (or the
ultrarelativistic particle) coming from infinity with
impact parameter I < 3^3/2 ~ 2.6 (we recall that all
distances are measured in units of rg), does not meet
the turning point and consequently is gravitationally
captured. In this case, as in the case of a nonrela-
tivistic particle, the trajectory approaches the
Schwarzschild sphere perpendicularly. Here, too,
near the limiting sphere, the asymptotic formulas
derived in'-1-' for the case of radial motion are valid.
In particular, the time that the ray approaches the
Schwarzschild sphere stretches out to infinity for an
external observer.

*Of course, we imply at all times that in the relativistic case
of motion the central mass has already collapsed and that the
particle does not strike its surface.

FIG. 11. Turning curve of relativistic particle. / - impact dis-
tance at infinity. Particles with Z/rg < 3\/3/2 are gravitationally
captured.

Thus, the cross section for gravitational capture
of an ultrarelativistic particle is

a = it.

We note also that a light ray emitted by a source
which is at rest at a radius r cannot go off to infinity
for all angles of emission. In Fig. 12 the rays which
emerge from the inside of the shaded cone will not go
up to infinity. The formula for the angle ip is (Fig. 12)

|taro|: = V 1 - 1/r (7.5)
V 1/r —lT4/27r2

FIG. 12. Gravitational capture of radiation: the rays emerging
from each point inside the shaded conical cavity are gravitationally
captured.

8. RADIATION OF GRAVITATIONAL WAVES

The predicted existence of gravitational waves'-24-"
is perhaps one of the most important and interesting
predictions of general relativity. It is universally
known that general relativity is mathematically very
complicated, and therefore the problem of gravitational
radiation could be solved so far only for a weak field.
Moreover, doubts were even cast concerning the phys-
ical reality of Einstein's results with respect to the
existence of gravitational waves.'-25-' Although the
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overwhelming majority of physicists believe that
there are no grounds whatever for doubting the reality
of gravitational waves, the question would be solved
finally by direct experiments in which such waves
would be recorded. Unfortunately, this has not yet
been done.

The point is that in view of the smallness of the
gravitational-interaction constant, the radiation power
is usually exceedingly small even for astronomical
masses. For example, when a planet or star of mass
m moves around a star with M (M » m) at a distance
r (r » rg), the formula for the radiation power is

dt = 0.2 - £ - ( - £ V f - ^ (8.1)

The radiated power of the gravitational waves from
the entire solar system is on the order of several
hundred watts! This is approximately 1024 smaller
than the power of the light radiated from the sun
(L 0 ~ 4 x 1O33 erg/sec).

However, astronomers know of actually observable
double stars, the gravitational radiation power of
which is incomparably larger.

Attempts of observing by modern methods gravita-
tional waves* generated under terrestr ial conditions
are apparently still hopeless. However, there seem-
ingly is a real possibility of observing gravitational
waves emitted by short-period double stars close to
us. It can be assumed that in the not too far future
these waves will be discovered. A detailed review of
modern experimental possibilities in this field was
presented by V. B. Braginskii.'-27^

We now turn to the question of the radiation of
gravitational waves from bodies that move in the field
of a cooled star . As already noted, the existing theory
of gravitational radiation'-28'29-' is applicable only to
processes in a weak gravitational field. However,
from dimensionality considerations it is clear that the
estimates given later should be of the correct order
of magnitude also in the case of motion at distances
that are comparable with the gravitational radius of
the central body. Let us make also the following r e -
mark in this respect. Just as a charge moving uni-
formly along a circle with velocity v ~ c emits prin-
cipally higher harmonics, the emission of gravitational
waves from a body in a strong gravitational field whose
velocity is v ~ c should have the same singularities
(see'-30-' on this subject). However, in the problem in
question v ~ c is obtained only near the gravitational
radius itself, where the radiation is cut off by the
general relativity effects (gravitational red shift,
gravitational capture of radiation). When r exceeds
r g to any appreciable degree, these effects do not
change the order of magnitude estimates.

An important feature of gravitational radiation is
the following. When bodies come closer together under
the influence of mutual gravitation, and the distance
between them becomes of the order of their gravita-
tional radii, the total amount of radiated energy should
be a function of only their masses, G, and c. From
dimensionality considerations it follows immediately
that the small constant G cannot enter the formula,
and that the total amount of radiated energy should be
equal in order of magnitude to me2, multiplied by a
function of the mass ratio m/M. If m is of the same
order as M, then we can conclude immediately that
the total radiation of gravitational energy is not small
compared with me2 (m is the mass of the smaller
body).^23'31'32^ The formulas are given below.

Let us see how the radiation of gravitational waves
influences the motion of a mass m. This radiation
gives rise to a force acting on the body, that is, it
leads to a unique radiant gravitational friction. '-23-'
The friction force is due to the interaction between
the mass m and the proper gravitational field, and is
therefore proportional to me2, unlike the force of inter-
action with the external gravitational field, which is
proportional to m. Thus, a change in the motion of the
body resulting from the radiation of gravitational waves
can be regarded in the case of m/M « 1 as a small
correction to the motion under the influence of the
force of the external field.

In the case of motion of a nonrelativistic particle
m, arriving from infinity, the main fraction of the
radiated energy is emitted during the time of flight at
the vertex of the trajectory, that is, in the periastron.
The total amount of radiated energy and the charac-
teristic emission time are equal to, respectively'-23-'

M

where r is the coordinate of the periastron. The en-
ergy loss due to radiation causes the body to become
gravitationally captured by the mass M at angular-
momentum values a which greatly exceed a = 2, when
capture of the trial particle in the pure mechanical
problem described in Sec. 7 takes place.

Taking into account the radiation, the critical values
of a c a p and crcap depend on the parameter x = c2m/v^M,
and are determined in the following manner:

for ,z»10 a c a p=(2x)v ' , acap = it (~Y (2xfh,

for , ocap = 4* ( -f- ) (1 + e

•Observation of the wave reduces in principle to a measure-
ment of a difference in the accelerations imparted by the arriving
wave to test masses which are separated in space.

For example, when Voo = 106 cm/sec and m/M « 0.1,
we get x ~ 1018 and hence a c a p « 10; the cross section
CT is 25 times larger than without allowance for radia-
tion.

As a result of the capture, the body moves away
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from M after going through the periastron not to infin-
ity, but to a distance on the order of L ~ iv/2 x
[m/M(rg /r)3-5 - (v£/2c2)]. When Voo is small and
r = 3rg we get L = 600 r g . During the next passage
through the periastron, the body will radiate more
energy, etc. The elongation of the orbit will decrease
rapidly.*

How does the gravitational radiation affect the c i r -
cular motion of the particle? This motion is repre-
sented by the minima of the curves on Fig. 10. As a
result of the radiation, the point representing the
motion shifts on the diagram along the minima of the
curves. First, at large values of r, this evolution is
very slow. The power of the radiation on the circular
orbit is determined by formula (8.1). For ordinary
double stars the energy lost annually amounts to ~10~12

of the total energy of the star . In the case of small r,
the rate of evolution is much faster. Even for real
stars, which we mentioned above, the period of revo-
lution decreases by a factor 10~9 annually. The circular
motion continues up to the last stable orbit with r c r ^
= 3r g (see Sec. 7). This is followed by a fall to the
Schwarzschild sphere. The energy in the case of mo-
tion along the critical circle amounts to 0.943 of the
energy for the case of revolution at a large distance.
Consequently, the total amount of radiated energy is
Aif = 0.06 me2 and does not depend on the mass of the
central body. The smaller the ratio m/M, the larger
the number of revolutions executed by the body before
it radiates an energy Ag and reaches rcrj(;.

During one revolution on the critical circle, the
radiated energy is ~0.1 m2c2/M. The body enters on
a spiral-like orbit, falling to the Schwarzschild sphere.
On this orbit, it goes through another ^ M / m ) 1 ' 3 revo-
lutions. The energy radiated per revolution is at all
times of the same order as when r = 3rg.. Thus, after
the critical orbit is reached, the body falls down on a
sphere of gravitational radius, without adding prac-
tically anything to the energy already radiated before
that time, if m/M « 1.

If m/M ~ 1, then the number of revolutions execu-
ted after reaching critical orbit is of the order of
unity, and the radiated energy is of the same order as
before reaching this orbit. Although the force of
radiant friction is no longer a small correction to the
action of the external field, from considerations of
dimensionality, symmetry, and correspondence with
the formula for M » m, we can immediately write
down a formula for the emitted energy, valid also in
the case when m/M ~ 1:

AC finite--a— ~-M-.
where a is of the order of 0.06.

We present one more formula for the total amount
of radiated energy when masses fall towards each

other with zero angular momentum (frontal motion
along a straight line):

Here j3 ~ 0.02, that is, of the same order as a.
This formula is applicable for arbitrary m/M and is
obtained from the same considerations as (8.2).

Thus, as a result of gravitational radiation the sys-
tem can lose several per cent of the rest energy.

9. COLLAPSE OF A ROTATING STAR

How will a rotating star collapse? In classical
theory, as we have seen in Sec. 3, even a small mo-
mentum prevents unlimited contraction. This corre-
sponds to the fact that in Newtonian theory a trial
particle with arbitrarily small momentum can move
along a stable circular orbit around a gravitating cen-
ter. Therefore the particle on the equator of a rotating
star will not fall to the center, as a result of the cen-
trifugal force, for a definite value of the radius, even
without support by the pressure of the material from
the inside.

The position is different in relativistic theory. We
have seen in Sec. 7 that for a momentum less than
a < V~3 there exists no finite motion and there are no
circular orbits. As noted by Hoyle, Fowler and the
Burbidges'-6-' (see also^37^), this should give rise to
situations in which the small angular momentum of the
star cannot prevent relativistic collapse.* However
such a qualitative reasoning still does not provide the
exact answer to the question and calls for further r e -
finement.

So far we have considered only a spherical gravita-
tional field produced by a spherical body. We recall
that in Einstein's theory, unlike in Newtonian theory,
the gravitational field depends not only on the distribu-
tion of the masses but also on their motion. In
Newton's theory the field of a rotating sphere is per-
fectly identical to that of a stationary sphere. This is
not the case in relativity.

When the field can be regarded everywhere as
weak (<p « c2), the influence of rotation of the body
on its gravitational field was already established by
Thirring'-39-' (the derivation can be found in the text-
book^28^). It reduces to the fact that in vacuum, near
a gravitating rotating body, the trial particle is acted
upon by the Coriolis force. We can speak of an analogy
with the magnetic field of a rotating charge. The local
inertial reference frame rotates relative to the r e -
mote stars with angular velocity

G:K\ (3cns29 (9.1)

•Radiation produced in motion along an elongated orbit is ana-
lyzed by Peters and Mathews.["]

where K is the total momentum of the body.
This means, in particular, that an inertial com-

*In a recent paper, Wagoner[3s] also discusses this question.
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pass (a system of gyroscopes), which points when far
away from the moving masses towards the same r e -
mote s tars , will turn near a rotating body at the indi-
cated angular velocity, changing its orientation relative
to the remote s tars .

The rate of precession of the gyrocompass at the
pole of a rotating star (6 = 0) is double that at the
equator (9 = 7r/2). At the pole the precession is in the
same direction as the rotation of the star, whereas at
the equator it is in the opposite direction.

For a homogeneous sphere moving with frequency
co, formula (9.1) can be rewritten in the following con-
venient form

\Q\ = - \Vs| (9.2)

From this we see immediately that near ordinary
stars and planets the precession is negligibly small
(although it is in principle measurable!) Thus, on the
sun's surface Q^ « 5 x 1O~12 sec"1. At the earth's sur-
face n+ ~ —0.1 sec of an angle annually on the equator,
and 0.2 on the pole (we choose as positive the direc-
tion of rotation of the body). On the pole the rotation
of the gyroscope proceeds in the same direction as
rotation of the body, while on the equator in the oppo-
site direction.

In a strong gravitational field, when i"g/r is no
longer small, but the rotation can still be regarded as
weak (K/cm « r g ) , the formula for J2, as follows
from'-40'129-', assumes the following form

-r J

~r) i (9.3)

It is interesting to note that for the neutron star, cal-
culated by Saakyan and Vartanyan'-41-' with M = 1.55M_ ,
radius R = 9.3 km, and momentum K ~ O.OlcMr™ we
obtain on the surface £2 « 50 sec"1.*

Let us now consider a contracting star . It is known
that the external field of a contracting spherical non-
rotating star is the same as for a stable star having
the same mass. This is understandable, since the
external field depends in the spherical case only on
the mass, and the latter is conserved during the con-
traction process.

It is seen from (9.3) that the influence of rotation
of the star on the external field depends only on the
total momentum K. The momentum, just like the mass,

*The analogy noted above with the magnetic field reaches
much farther. As is well known, the lines in the spectrum of an
atom radiating in a magnetic field are split (Zeeraan effect). It is
shown in[42] that in the spectrum of an atom that radiates near a
relativistic rotating star the lines are also split. The magnitude of
the frequency splitting is of the order of Q.

is a conserved quantity. Therefore, the conclusion,
which is rigorously proved in'-40-', namely that during
the course of contraction a weakly rotating star (rotat-
ing like a rigid body) maintains its external field
constant (accurate to terms linear in K/cM) is not
surprising.

Consideration of motion of trial particles and of
light rays in such a field leads to the conclusion that
the properties of motion are qualitatively the same as
in the case of a Schwarzschild field. For an external
observer, a particle with an impact parameter smaller
than the critical gravitational value is captured and,
after executing a finite number of revolutions along a
spiral, approaches asymptotically as t —• °° the singu-
lar Schwarzschild surface g00 = 0.

The same takes place for light rays. The preceding
considerations make it possible to understand immed-
iately how a rotating star will collapse. If we first
consider a contracting weakly-rotating dust sphere
without pressure, then the motion, for example, of a
particle on the equator of the sphere is simply the
motion of the trial particle in the field of a rotating
sphere. We have already said that for an external ob-
server this motion has qualitatively the same proper-
ties as in a Schwarzschild field, namely the particle
with small initial momentum cannot execute a finite
circular motion, but falls to the center and approaches
asymptotically the singular surface. Consequently,
the collapse of a rotating sphere proceeds for the r e -
mote observer qualitatively the same as that of a non-
rotating sphere. An account of the pressure does not
change the conclusion. Here, too, a characteristic
feature is gravitational self-closure and the tendency
to the limiting picture of a "cooled" star, as was
described in detail in'-1-'. We emphasize that in the
limit as t—-°° the observer sees the cooled star only
as if it were not rotating, but in an external gravita-
tional field the terms due to the momentum K are con-
served and are invariably manifest. The apparent
contradiction is resolved in the following fashion. It
can be stated that the momentum is effectively pro-
duced by a mass m, which rotates with a velocity v̂ ?
on the equator of the contracting star K ~ mv^R.
During the course of the collapse R —- rg, and the
velocity v,̂  seen by an external observer, as already
noted, tends to zero because of the effect of the slow-
ing down of the time in the gravitational field—the
"cooling" of all the processes on the star . But the
rate of contraction v r for a local observer tends to
the velocity of light as R—- rg, the mass
m mo[l — (v2/c2)] 1'2 tends to infinity, and the prod-
uct mv^R = K remains constant.

Thus, in spite of the fact that the gravitational field
of the rotating star differs from a Schwarzschild field,
its collapse occurs qualitatively in the same manner
as for a nonrotating sphere. The star approaches
asymptotically the "cooled" state'-40^, prior to "cool-
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ing" it has time to execute a finite number of revolu-
tions.*

10. COLLAPSE OF NONSPHERICAL BODY

Rotation of a body makes it oblate, that is, non-
spherical. Perturbations of an external field, connec-
ted with these deviations from sphericity, are quanti-
ties of second order of smallness compared with the
perturbations due to the rotation itself, so that they
can be neglected. But how can the body whose non-
sphericity is connected not with the rotation, but, for
example, with an asymmetrical mass distribution,
collapse1?

For small deviations from sphericity, this problem
was solved in^40^ We shall not present here the exact
proof of the somewhat unexpected result of this inves-
tigation, referring those interested to the paper itself.
We present only qualitative considerations which en-
able us to explain the nature of the matter.

We consider first the contraction of a homogeneous
spherical dust cloud of radius R. For a remote ob-
server, as already mentioned many times, the picture
of the contraction tends to stop as R —* r^ and at a
dust density p g - 2 x 1016 (MQ/M)2 g /cm* An observer
situated on the surface of a contracting cloud will
reach after a finite proper time R = rg. For him, the
contraction does not stop at all, and continues further,
even inside the Schwarzschild field in the so-called

T-region. [43,44] The density of the material of the
sphere at R = r« and at a large mass is not at all r e -
markable, for example, for M ~ 108 M~ we have
p s ~ 2 g/cm3. After the surface of the sphere crosses
the gravitational radius, the light rays move off from
the surface, as can be seen in Fig. 13, to the inside
from the Schwarzschild surface and never cross it,
never reaching the external observer.

If initially there were in the sphere small distur-
bances of the density and of the velocity of matter,
then these disturbances become more intense upon
contraction, as investigated in detail in the papers by
E. M. Lifshitz.[45>46] However, the instant when R = r,
is nothing special for the dynamics of the material of
the sphere, and the density is still far from infinite.
Consequently, if at the beginning of the contraction of
the sphere the disturbances are sufficiently small,
then by the instant when R - r g they still do not have
time to grow sufficiently. Thus, the surface of the
sphere in the system of the co-moving observer
crosses the sphere R = r^ when the disturbances in
the matter and the disturbances of the field itself
around the sphere are still small.

g

*Kerr[148] considered the particular case of the field of a rotat-
ing body. He noted that for a pointhke mass, when the angular
momentum exceeds Mrgc, the topology of the surface g00 - 0 itself
is changed. However, such a momentum will stop the contraction
even during the nonrelativistic stage

FIG. 13. Collapse of a sphere in a co-moving reference frame.
T — proper time, R - Lagrangian coordinate, r = 0 — true singular-
ity, r - rg _ Schwarzschild surface, dashed lines — world lines
of points which are stationary in the Schwarzschild system, with
r - 1.5 rg, 2rg, etc., 1 and 2 - world lines of light rays. The shaded
region is the one with matter. The co-moving reference frame is
continued without interruption in the vacuum by the free trial
particles.

The disturbances in the sphere then grow, but
owing to the gravitational self-closure this is not
manifest in any way in the space-time region near the
Schwarzschild surface or in the exterior region of the
remote observer. A reader who is inclined to believe
this without explanation can omit the next paragraph.

The point is that the perturbations of the gravita-
tional field propagate from the sphere with the velocity
of light. But it is seen from Fig. 13 that the trajector-
ies of the rays leaving the sphere in the T-region do
not approach the Schwarzschild surface. Large per-
turbations along the characteristics-rays do not ar -
rive in this region. This means that the perturbations
in vacuum near the Schwarzschild surface are always
small and the properties of this surface remain un-
changed. In particular, no radiation or information
ever passes through the surface to an external ob-
server. Consequently, even in the presence of per-
turbations in the sphere, the external observer has
access only to a finite interval of the evolution of the
sphere. The observer can trace the development of
the perturbations in the sphere and in the surrounding
field only up to the instant when R = r g .

It is now clear that the external field of the dust
should tend as t —-00, for an external observer, to a
stationary condition, where all 9/9t — 0. In fact, in
his reference frame the perturbations which arise
before the surface of the sphere reaches r g should,
like the gravitational waves, be scattered in space and
no new perturbations can proceed from under the
Schwarzschild sphere. Thus, the limiting field as
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t — °° of a contract ing nonrotat ing body with smal l
deviations from spher ic i ty r e m a i n s s ta t ionary .

The mos t cur ious fact is that if the co r rec t ions to
the Schwarzschild field for the quadrupole and higher
moments do not depend on the t ime and a r e smal l
everywhere (up to the gravi tat ional radius) , then they
vanish identical ly. This was noted a l ready by Regge
and W h e e l e r . t 4 7 ] Consequently, in an external field of
a contract ing body, the co r rec t ions for the multipole
moments must tend to ze ro as t — °°. The quadrupole
and higher moments of the external field of a body
during the re la t iv i s t i c s tage , as shown by ca l cu la -
tions ^4 0 ] , at tenuate like t"1.

Even if the body as a whole does not ro ta te , when it
cont rac ts in an external field t he r e a r i s e nondiagonal
components g^f, which desc r ibe the rota t ion of a local
iner t ia l r e fe rence f rame re la t ive to a r emo te iner t ia l
sys tem (see Sec. 9). The occu r r ence of these devia-
t ions is connected with the tangential components of
the velocity of the contract ing nonsymmet r i ca l body.
These " ro ta t iona l dev ia t ions" from spher ica l s y m -
m e t r y do not at tenuate as t —• °°. Although the mul t i -
pole moments at tenuate, the s ta te which has " c o o l e d "
for the r emote obse rve r , to which the body tends as
t—»°°, is far from spher ica l ly s y m m e t r i c a l . In spi te
of the fact that the m a s s dis t r ibut ion is nonspher ical ,
th is nonspher ic i ty is not manifest in the external field.

This is eas i ly understood by recognizing that in the
Schwarzschild field any fixed local per turba t ion , for
example a smal l m a s s at r e s t , is manifest far away
the weaker , the c lose r it is located to the gravi tat ional
r a d i u s . The influence of this per turba t ion on the field
far from the body tends to ze ro when the per turba t ion
approaches the Schwarzschild sur face .

F r o m the las t two sect ions we should draw the
following conclusion the col lapse of a s t a r with sma l l
deviations from spher ic i ty and a s t a r which ro t a t e s
slowly also leads to the s ta te of a cooled s t a r .

In conclusion le t us stop to d i s cus s a question which
d i g r e s s e s somewhat from the p rob lems considered
above, but never the les s unavoidably a r i s e s . What is
the final fate of a collapsing s t a r not for an external
obse rve r , but for an obse rve r on i ts su r f ace? What
happens to the s t a r inside the Schwarzschi ld sur face ,
in the T-region*?

We st i l l have no complete answer to this quest ion.
We can only s ta te the following. According to the
der ivat ions of Lifshitz, Sudakov, and Khalatnikov,'-48-'
the ma t t e r cannot cont rac t to infinite density.* As we
have seen above, the s t a r cannot expand again,
even in an a s y m m e t r i c a l manner , so as to come out
from under the Schwarzschild sphere into a region
which can be access ib le to an external o b s e r v e r . It is
poss ib le that the development of the a s y m m e t r y leads

*It is stated in[49] that a singularity of the solution is unavoid-
ably obtained in the T-region. This contradicts[48]. The question
remains open.

to a s t ronge r var ia t ion of the geometry of space - t ime
in the T region or even to a change in the topology.
At any r a t e , no ma t t e r what occurs inside the T-region,
this will never be manifest in the space - t ime region
outside the Schwarzschild sphere and the external
obse rve r will never l ea rn about it .

11. DOES RAPID ROTATION INTERFERE WITH THE
COLLAPSE OF A STAR?

In the preceding sect ions we cons idered s t a r s with
smal l momenta . The c r i t e r ion of sma l lnes s of the
momentum of the s t a r is given by the condition

K < Kcrlt = kcMre,

where k is a factor on the o r d e r of 0 .1 , which depends
on the dis t r ibut ion of m a t t e r in the s t a r . Numerica l ly

Kc 1048 M
M,0

g - c m 2 / s e c . (11.1)

For s t a r s which have a s i m i l a r o r l a r g e r momentum,
the considera t ions advanced above concerning the
col lapse a r e not applicable. Because of the rotat ional
instabil i ty, ma t t e r begins to spil l out from the equator ,
and the s t a r cannot be compres sed d i rec t ly to r g as a
whole ' ^ (see below). The sun ' s angular momentum
is » 3 x 1048 g -cm 2 / sec "*> K c r i t The br ight s t a r s of
the main sequence usually have momenta which a r e
appreciably l a r g e r than that of the sun. In^37^ the re
is der ived for these s t a r s the following s e m i - e m p i r i c a l
re la t ion.

K ~ 1051 M g-cm 2 / sec (11.2)

For o rd inary s t a r s with 10 < M / M Q < 100 we have
K » K c r l t .

We do not know whether the momentum r ema ins
constant during the p r o c e s s of evolution of the s t a r .
Various conceivable mechan i sms for loss of angular
momentum were d i scussed in the l i t e r a t u r e . Fo r ex -
ample , when the m a s s of a rotat ing s t a r spi l l s out from
the equator, the init ial and final angular momenta of
the s t a r differ by a factor K J / K J = (M1/M2)

1^k, where
k ~ 0 . 1 . Loss of half the m a s s r educes the angular
momentum by t h r e e o r d e r s of magnitude. This e s t i -
mate is valid under the assumption that the s t a r r o -
ta tes all the t ime like a r igid body. The t remendous
s ize of a tmosphe res of red giants contr ibutes to the
outflow of m a t t e r .

Another poss ible mechanism whereby an app rec i a -
ble loss of angular momentum can occur is magnetic
braking, suggested by UoyleS50^ If the s t a r has a
sufficiently s t rong magnetic field and i ts magnetic
force l ines a r e frozen in the surrounding p l a s m a of
in te r s t e l l a r ma t t e r in the HII zone, the twist ing of the
force l ines leads to a breaking of the rota t ion. The
r a t e of breaking is de te rmined by the re la t ion

dh
dt (11.3)
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where R is the radius of the star, H the field intensity,
and /3 the efficiency of the mechanism. Babcock ob-
served in some stars fields with intensity up to
103—104 Oe. Nonetheless, the observations apparently
indicate that there is no connection between the age of
a star near the stage of the main sequence and its
momentum. Consequently, magnetic breaking is more
likely to be negligible for ordinary s tars .

At any rate, it is quite probable that massive stars
can terminate their evolution while still retaining a
large momentum. Of course, because of the dispersion
of the values of the momenta about the mean value,
even for example by formula (1.2), there undoubtedly
exist stars with small momentum (for an estimate of
the number see*-3^), whose collapse (if not prevented
by other causes) should proceed in the manner des-
cribed in Sees. 9 and 10. In addition, if the momentum
is concentrated principally in an extensive atmosphere
of the star, which contains however a small fraction
of the mass, then a core with small momentum will
collapse independently of the shell. But if the momen-
tum of the core of the star is large, what will then
happen to the core? A detailed analysis of this prob-
lem is complicated, and there is still no final answer.
It turns out, however, that an answer in a very crude
form can be obtained without a detailed analysis of the
dynamics of the process, by merely listing all the con-
ceivable possibilities.

An important fact in the entire problem is that the
total energy of the star, that is, the algebraic sum of
the thermal, gravitational, and kinetic energies, is
negative; therefore, if the sources of nuclear energy
have been completely exhausted or are not in opera-
tion (we shall assume this at first), then the entire
matter of the star cannot be scattered to infinity as a
result of arbitrary processes. In Sec. 3 it was already
noted that for a cooled star which has been strongly
oblated by rotation there exists no stable configuration.
As the contraction proceeds, matter can be ejected
from the equator, forming a disc around the star, as
described, for example, by Struve.^51-' If at the same
time a sufficiently effective viscosity is conserved
which couples the escaping matter with the star (for
example by means of a magnetic field), then this
matter will take on the main fraction of the momentum
and will allow the central condensed section to col-
lapse.

Another alternative is that as the main mass cools
down, contracting without giving up momentum, it ac-
quires a more and more oblate form. Because of the
instability of such a form, the star breaks up into two
or more parts. If there are many such parts, then the
system evolves like a stellar system during the later
stages of evolution (see Sec. 15). The evolution is ac-
companied by collisions between the condensations, by
ejection (evaporation) of individual bodies from the
system, and leads ultimately (we are still not consid-
ering the possibility of release of nuclear energy!)

either to the collapse of the entire system (see Sec.
15), or to the formation of two remaining bodies which
revolve about a common center of mass.

In the presence of two bodies the motion is stable.
It can be accompanied by escape of matter from the
shells, but we have emphasized that the entire matter
cannot be dissipated. During this stage of revolution
of two nearby or almost coalescent masses, an impor-
tant factor is the radiation of gravitational waves.
This radiation results in loss of energy and momentum,
and the stars come closer together (see Sec. 8).
Dividing the reserve of gravitational energy & g r a v
= —Gm1m2/2r by the power of the gravitational radia-
tion d g/dt, we obtain the characteristic time of evolu-
tion of the system:

(SgTl '«1

Here rg and rg are the gravitational radii of the
masses. The factor in the square brackets is equal
to 1/2 if the masses are equal; when rg » rg this
factor becomes * rg / r g . It follows from (11.4) that
for equal masses of the order of M , each at an initial

distance r ~ loVg, the time of evolution is of the order
of ~10T years.

By losing momentum through gravitational radiation,
the masses should coalesce and (if nuclear reactions
induced in this process do not interfere), they should
collapse; see Chiu'-26-', page 405.

Thus, the conclusion from the foregoing is as fol-
lows. If the matter of the rotating star, terminating its
evolution, is for the most part inert with respect to
nuclear reactions, that is, if during the preceding
stages the nuclear fusion has led to the transforma-
tion of all the elements into elements of the iron
group, then the final stage of the evolution will be a
cooled star even in the presence of rapid rotation.

A similar conclusion is reached by a process in
which the nuclear reactions in the matter are possible,
but proceed at a much slower rate than the hydro-
dynamic phenomena, say upon collision of individual
fragments of a massive star that is breaking up.

Of course, the possibility of a nuclear explosion
(or explosions) depends on the details of the slow evo-
lution of the star (see Sec. 6) and on the concrete
processes occurring during the catastrophic stage.
All this is still to be calculated. However, if the star
were always to end its life by a nuclear catastrophe,
then, as we shall show in the next section, the astron-
omers would know of it from their observations.

12. COMPARISON WITH OBSERVATIONS

Do astronomical observations give any indications
of the final fate of massive s tars? If the collapse of
the star leads to a nuclear explosion, which destroys
all or practically of the star, then such an explosion,
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of course, will be seen from a tremendous distance.
It is natural to identify such a nuclear catastrophe with
the flares of supernova stars, observed by astrono-
mers . The energy released in such a flare is of the
order of 1O50 erg.

To be sure, it is still unclear at present what frac-
tion of the mass of the star is ejected during flares of
supernovas of types I and II (for more details see^1 7 ]).
If we assume that each star with mass larger than
~1.5 M Q terminates its evolution with a supernova
flare and thereby avoids relativistic collapse, then the
number of supernova flares within a time interval At
should be equal to the number of massive stars which
conclude their evolution within the same interval At.
Let us estimate the latter number'-52'36'37-' and let us
make a comparison with observations.

We shall assume that the star does not lose ap-
preciable mass during the process of evolution, or at
any rate the loss is not large enough to make the mass
of the heavy star smaller than critical. The most
prolonged period of the life of the star is the stage of
the "main sequence" when the hydrogen burns up in
the center of the star (see'-1-'). We recall that the time
of evolution of the star during this stage (practically
the entire time of the equilibrium evolution), is

= 1010
T%—years. (12.1a)

For bright s tars of the main sequence, the approxi-
mate relation L ~ M3 is satisfied, so that we can r e -
write (12.1a) in the form

i = 1010(—j^-Y years. (12.1)

From the observations we can determine the number
dN of the main-sequence stars per unit volume of
space, with masses in the interval M, M + dM. If the
lifetime of the star t is smaller than the time of exis-
tence of the galaxy (~1010 years), then, dividing dN by
t, we obtain the frequency, averaged over the last t
years, of star production; this coincides with the fre-
quency of "dying" of stars of a given mass. A similar
calculation, carried out by Salpeter ^53-̂  yields

M M
M,© •

stars/par sec3 - year.

Stars with mass larger than critical M > 1.6MQ have
an evolution time shorter than the age of the galaxy.
Multiplying (12.2) by the volume of the galaxy
~1013 parsec3 and integrating over a mass M > 1.6M_ ,
we obtain the number of stars in the galaxy with mass
larger than critical, which terminate their equilibrium
evolution every year:

F= (12.3)

It follows therefore that if each massive star were to
flare up ultimately as a supernova, there should be
several stars flaring up in the galaxy every year.

This is three orders of magnitude larger than the ob-
served number of flares, given by Zwicky. We see
thus that the observations argue against the assump-
tion that at the end of the evolution some nuclear ex-
plosion or some other catastrophe prevents the t rans-
formation of a massive star into a cooled star.

However, is it possible that the star still manages
to get rid of the excess mass, but not by means of a
catastrophic explosion, but by stationary escape of
matter from the surface or in the form of small dis-
crete ejections of mass over the duration of the equili-
brium evolution? The observational data are in this
case quite skimpy (a review is given in'-17^') and do not
make it possible to answer this question definitely.

There certainly exist stars for which intense out-
flow of mass from the surface is observed. These
include the so-called W—R stars (Wolf-Rayet). These,
however, are as a rule very massive stars
(M ~ 10M_ ), and as the mass decreases the discard-
ing of surface layers, as shown by observations, be-
comes weaker.'-17'54-' It is therefore not clear whether
the mass drops below the critical limit in the course
of time.

Another type of stars , which lose mass intensely,
are stars of the Be type, with bright lines in the spec-
trum. They rotate rapidly. The mass lost by them is
estimated to be (10~6—KT10)MQ annually. These esti-
mates are quite unreliable, and it is not clear whether
this mass loss, due to escape of the shell, exceeds the
loss due to photon radiation.

Strong escape of matter is observed also for the
P Cygni type stars. The supergiant P Cygni itself
loses 10"5M annually as a result of mass outflow

from the shell (data cited in [ 1 7 ] ) .
It must be noted that the foregoing stars are char-

acteristic members of stellar associations and are
undoubtedly young. '-55^ It is quite unknown what frac-
tion of the mass is lost by them as a result of escape
of matter during the course of the further evolution.
In addition, astronomers are observing already non-
young stars with mass larger than critical, which dur-
ing the course of their further evolution apparently
will not pass through the stages listed above, namely
Be and P Cygni and Wolf-Rayet, and cannot lose mass
in the indicated manner. Consequently, data on young
stars do not have decisive significance in the solution
of the problem, whether a "cooled" star is to be or
not to be.

As noted already by Shain, 6J conditions for the
ejection of matter from the stars are most favorable
during the evolution stage of red giants, when the
dimensions of the shell are large and the acceleration
due to the gravitational force on the surface of the
star is small. Observations show that the escape of

*We recall that the terms "giant" and "supergiant" are used in
astronomy to characterize the large luminosity of a star.
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matter during this stage is still 1.5 orders of magni-
tude lower than required for an appreciable decrease
in the mass of the star.'-57-' Finally, for the so-called
flaring stars of type UV Cet, which eject matter in
discrete fashion (the flares occur on the average once
every 1.5 days), the observations yield quite a negligi-
ble value [58: i: dM/dt ~ 2 x 1O~12M0 annually.

At the present time there are no reliable observa-
tional data to offer evidence of absolute necessity for
the star to get rid of an excess of mass above the
critical value in a "quiet" manner, without catastro-
phes.

On the other hand, the observations show decisively
that in clusters of stars the number of white dwarfs is
appreciably smaller than expected if the massive
stars, which had time to go through an evolution, were
to be converted into white dwarfs. Table VI lists the
data of [ 5 9 ] .

Table VI. Expected and actual number
of white dwarfs in clusters

Table VII. Double stars, one of the components of
which is a white dwarf

Cluster

Y and h Persei •
Pleiades
Coma Berenices
Hyades
Praesepe . . .

Expected
number
of white
dwarfs

0
2
9

23
20

Observed
number
of white
dwarfs

0
0
0
7
2

These data apparently offer evidence against the
statement that the s tar ' s evolution must unavoidably
terminate in the white-dwarf stage.^134^ Nonetheless,
if our general notions concerning the evolution of the
stars are true, the same white dwarfs allow us to con-
clude that, at any rate under certain conditions, a
massive star with M > 1.2M_ can get rid of an excess

mass and be transformed into a white dwarf. As was
already noted long ago in the literature, furthering
this hypothesis are the double star systems, one of
the components of which is a white dwarf. In two out
of three cases, when such systems are investigated in
detail (see Table VII), the mass of the component which
is not the white dwarf is larger'-55-' and this component
is a star of the principal sequence, i.e., one which did
not evolve far. However, the s tar ' s evolution is the
faster, the larger its mass [see formula (12.1)].

Since both stars were produced simultaneously (the
probability of capture is negligibly small)* and the
less massive one has already been transformed into
a white dwarf, the principal component should termin-
ate its evolution all the more. However, this is not

Star

Sinus A
Sinus B
(white dwarf)
Procyon A
Procyon B
(white dwarf)
O2 Endanus B
(white dwarf)
O2 Endanus C

Period
of

revolu-

years

/i9.94

40.65

247.92

Mass,
M/M.

2.28
0 98

1.76
0.65

0 45

0 21

Spectrum

A IV
A 5

F5 IV —V

B 9

Luminosity,
L/L.

0

38
0.0026

7.24
0.000705

0.0062

0 0125

*To be sure, there are grounds for assuming that the process
of formation of stars in clusters stretched over time intervals on
the order of the time of evolution of massive stars.[60]

the case. It is concluded therefore that the second
component had previously a larger mass, evolved
more rapidly, and then lost this mass.

It is possible that some role can be played here by
the duality of the system, although the mutual distance
between the components is at present very large.
Another explanation (in addition to the loss of mass)
can be the fact that the components were produced at
different times in the cluster in which they originated
(see the footnote).

According to observations of extragalactic astron-
omy, the ratio of the mass of galaxies to their luminos-
ity, M/L, is different for different types of galaxies
(see, for example, the review^-61-'). It changes from
~100 for elliptic galaxies to 10 for spiral ones, to
which our galaxy also belongs, and to ~1 for irregular
ones in units of M Q / L ^ =1.9 erg/g-sec. The large

value of the ratio M/L for elliptic galaxies, and also
data on their spectrum, offer evidence that they do not
contain a noticeable number of young bright stars and
that they contain a large quantity of non-luminous or
weakly-luminous matter.

In these galaxies there is usually little interstellar
diffused matter. In addition, if the galaxies, like our
own galaxy, have relatively few white dwarfs (see
Table VI), all this taken together is evidence in favor
of the presence of difficult-to-observe stars, such as
neutron stars and cooled stars, in elliptic galaxies
which are in a very advanced stage of evolution.

In the introduction (Sec. 1) we mention that the ob-
servation of galactic x-ray sources has suggested that
they might be interpreted as neutron stars . Later on,
however, Friedman, t62^ using the occultation of the
source in the Crab nebula by the moon, measured its
diameter, and found it to be ~ 1018 cm, thus showing
that it certainly is not a star. The entire continuous
spectrum of electromagnetic radiation from the Crab
nebula has the same nature and is attributed to synch-
rotron radiation of relativistic electrons in a magnetic
field. Even before Friedman made his measurements,
the hypothesis of the synchrotron-radiation nature of
the x rays from the Crab nebula was developed by
V. L. Ginzburg and S. I. Syrovat-skii .[63^ This might
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have been thought of as the end of the astronomers'
hope that they had finally found neutron s tars . How-
ever, I. S. Shklovskii ^135] called attention to the ag-
gregate of the following facts. As is well known, the
Crab nebula is a remnant of a supernova explosion.
We obtain from it x rays, visible light, and radio emis-
sion. In the locations of other x-ray sources, neither
optical nor radio objects have as yet been discovered.
This circumstance, along with the indication made by
American observers that the x-ray spectrum of the
source in the Scorpion constellation is quite steep,
makes the hypothesis that their radiation is of synchro-
tron origin little likely. In Shklovskii's opinion, the
radiation is more likely to have a thermal nature and
to arise from the surface of neutron stars, as was
thought before. According to this hypothesis, the
source in the Crab nebula is from the point of view of
the nature of its radiation an annoying exception. This
discovery could confuse the astronomers with respect
to the nature of other sources.

Another feature of x-ray sources, noted by
Shklovskii on the basis of preliminary communications
obtained at the Second Conference on Relativistic
Astrophysics (USA, December 1964), is their apparent
concentration in the galactic plane. From this fact it
follows that we see them at considerable distances, on
the order of the dimensions of the galaxy. In other
words, we see in any case an appreciable part of all
the x-ray sources which now exist in the galaxy. The
astronomers know of ten such sources, and therefore
their total number is not larger than 100 or 1000.

Let us compare this number with the expected num-
ber of neutron stars , which can be simultaneously
seen in the galaxy. The number of neutron stars Nn,
produced annually in the galaxy^36'37^ (if their forma-
tion is not prevented by nuclear explosions or other
causes), is determined m analogy with the determina-
tion of the expected number of supernova flares (see
the beginning of this Section). Only in this case is it
necessary to estimate the number of s tars which
terminate their evolution, in the mass interval
(1.2—1.6)M . Calculation yields a value of the same
order as for supernovas, namely several per year.

It was noted in'-1-' that a neutron star will radiate
for approximately 103 years after its formation.*
Thus, one can observe simultaneously in the galaxy,
as x-ray sources, approximately 103 neutron s tars .
This approximately coincides with the estimate given
above and obtained from observations.

Let us add to this hypothesis by Shklovskii the
following. The x-ray source in the Crab nebula is the
aftereffect of a supernova flare which occurred a
thousand years ago. Consequently, after the flare of

*At the present time calculations are being vigorously carried
out of neutrino cooling of a neutron star, the authors of[106] note
tentatively that the time of emission may be greatly reduced, but
there are still no final conclusions.

the supernova, an x-ray source acts at its location for
at least 103 years, i.e., as long as the neutron star.
Since the frequency of the supernova flares is approxi-
mately 100 times smaller than the expected frequency
of formation of neutron stars, approximately 1% of the
visible sources should be extended sources of the Crab
type, and the remainder should be neutron s tars . We
see thus that the observations are more likely to favor
the existence of neutron stars than to oppose their ex-
istence.

A neutron star cools and stops to radiate 103 years
after its formation, provided it is not immersed in a
sufficiently dense diffuse medium, the falling of which
on the surface may support the radiation. The mech-
anism of non-spherical accretion could also make a
cooled star " v i s i b l e " 1 ^ , this will be discussed later
(see Sec. 13).

Both neutron and cooled stars constitute clusters
of invisible s tars . How can the presence of such ob-
jects be observed?

Far from a cooled or neutron star, at r » rg, the
gravitational field is exactly the same as prior to the
collapse during the time of the normal evolution. Con-
sequently, in the dynamics of stellar systems the in-
visible stars manifest themselves in exactly the same
manner as ordinary s tars . Therefore in principle in-
visible stars can be observed in the following manner.
From the motion of the visible stars one calculates
the mass of the system, for example the mass of a
globular stellar cluster One then determines the
mass of all the visible stars, the gas, and the dust.
The difference between the first and second quantities
is the mass of the invisible component of the cluster.
We note that this includes not only the mass of the in-
visible s tars , but also the mass of other difficult-to-
observe forms of matter in the universe, such as neu-
trinos and gravitational waves. These forms of matter
are not concentrated especially in the galaxies and fill
the metagalaxy uniformly. Of course, for relatively
small systems (stellar clusters, galaxies) the mass of
the neutrinos and of the gravitons, even at the maxi-
mum density which they can have in the universe'-64-'
is negligibly small compared with the probable mass
of the invisible s tars .

Let us estimate the fraction of the mass of visible
stars of the galaxy that the invisible s tars constitute,
if their formation is not interferred with by catastro-
phes.'-36'37-' For the estimate, obviously, it is neces-
sary to divide the total mass of the stars with
M > 1 2M [since the total mass of NCS (see below)
is larger than the mass of the stars which do not
terminate their evolution, and we neglect the mass of
the latter], produced during the entire time of exis-
tence of the galaxy, by the mass of the stars with
M < 1.2M_ . In this estimate, proceeding in analogy
with the calculation of (12.3), it becomes necessary to
assume that the rate of star formation remained un-
changed during the entire lifetime of the galaxy. In
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addition, it is necessary to take into account the fact
that the minimum mass of the star, which can be pro-
duced within the time of existence of the galaxy from
a diffuse medium, is approximately 0.1M . Inciden-
tally, the result is decreased only by a factor of 1/3 if
we take the minimum mass to be 0.01M . Thus, the
sought ratio, with (12.2) taken into account, is

Minvisible
^visible = 0.6.

Thus, the invisible mass can constitute an appreci-
able fraction of the visible one. Unfortunately, the ac-
curacy of observation is so far insufficient to observe
the invisible stars in a similar manner.*

13. ACCRETION OF GAS BY NEUTRON AND COOLED
STARS

a) General Remarks

Stars in galaxies are always surrounded by inter-
stellar gas and dust. During certain stages of the evo-
lution, the s tars eject matter either in a continuous
stream, or via catastrophic explosions (see Sec. 12).
Finally, the composition may include also matter
which has never been part of any star, and which has
arrived in a gaseous stage during the course of expan-
sion of the cosmological primordial, almost homo-
geneous matter, which had a large density, in accord-
ance with the Friedman solution.

Such are the sources of interstellar matter in the
galaxy. The observations show that in the spiral arms
of our galaxy the average density of interstellar gas
is on the order of KT24 g/cm3, and in the cores of the
galaxy it can be much higher.

The neutron star, after it has cooled off, and also
a cooled (collapsing) star, cannot eject matter;
obviously, they are capable only of absorbing matter,
by drawing into the sphere of their action the sur-
rounding matter. This process is customarily called
"accretion."

Accretion is of interest because the mass of the
star gradually increases on account of it. In particu-
lar, a white dwarf may pass through the Chandrasekhar
limit and go over in a jump into the state of a neutron
star. In turn, a cold neutron star can reach the "OV"
limit ( s e e ^ ) and jump over into a higher class, into
a collapsing star, which soon cools down. The second
aspect of accretion is connected with the change in the
velocity of stars relative to the interstellar gas. The
velocity of the star changes in this case not only be-
cause of the momentum of the particles which adhere
to the star, but also principally because of momentum
exchange with the particles traveling past the star,

*It was noted([84' 136], Guseinov - private communication) that
an NCS can be observed more easily when such a star is a com-
ponent of a double system.

i.e., as a result of elastic collisions. The velocity of
the star relative to the gas influences in turn the rate
of accretion.

A curious new phenomenon was calculated by A. G.
Doroshkevich^126^ in the relativistic case. The gravi-
tational field of a rotating body, as was shown above
(see Sec. 9), differs in general relativity from the
field of a body of equal mass at rest . A rotating body
predominantly captures particles, the angular momen-
tum of which has a sign opposite to the momentum of
the body itself. During the course of the accretion of
particles isotropically distributed in space, the
momentum of the body decreases as a result of such
a selectivity.

However, the main stimulus for the study of accre-
tion lies in the energy released during accretion.
Particles incident on the surface of a neutron star
give up to (0.2—0.3) c2 of energy per gram, which is
much more than can be obtained from nuclear reac-
tions. Particles incident on a cooled star accelerate
to a velocity that approaches c. This raises a natural
question: what fraction of their kinetic energy can be
radiated to the outside? Connected with the accretion
phenomenon is the very possibility of observing neu-
tron and cooled s tars ; both types of stars will be
designated NCS.

In quantitative estimates it is necessary to bear in
mind the fact that NCS can be surrounded by a gas of
much larger density than the average interstellar den-
sity: the very formation of the NCS is connected with
catastrophic phenomena, in which part of the mass
could be broken off the surface and form a cloud of
gas around the star.

The energy released during accretion influences in
turn the accretion process itself, because of the inter-
action between the opposing light flux and the incident
matter, i.e., essentially as a result of the light p res -
sure. In the case when the interstellar matter has
sufficient density, this phenomenon leads to self-regu-
lation of the process. 5^

From the methodological point of view it is conven-
ient to consider problems of accretion in two limiting
cases: either as the motion of individual particles
(atoms, molecules, dust particles), or else as the mo-
tion of a continuous medium. Obviously, the choice of
the approximation depends on the particle mean free
path. The cross section of the atom is 10~16 cm2, and
at a density of 10"1 cm"3 this gives a mean free path of
1017 cm, much larger than the dimension of the neutron
star.

Depending on the conditions, both cases can be
realized. A small-scale magnetic field in an inter-
stellar plasma can be regarded on the average as a
term in the energy and in the pressure of the gas. The
influence of the overall magnetic field of the star on
the accretion will be considered in Sec. 14 which is
devoted to electromagnetic phenomena.

In the nonrelativistic approximation, the main prob-
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l e m s o f a c c r e t i o n w e r e c o n s i d e r e d i n t h e l a t e F o r t i e s .

T h i s c o n s i d e r a t i o n r e m a i n s s u f f i c i e n t l y w e l l a p p l i c a b l e

n o t o n l y t o w h i t e d w a r f s , b u t a l s o t o n e u t r o n s t a r s : a t

a g r a v i t a t i o n a l p o t e n t i a l ( 0 . 2 — 0 . 3 ) c 2 , w h e n t h e r a d i u s

o f t h e s t a r i s 3 — 4 t i m e s l a r g e r t h a n t h e S c h w a r z s c h i l d

r a d i u s r g , t h e c o r r e c t i o n s f o r g e n e r a l r e l a t i v i t y c a n

r e a c h 2 0 — 3 0 % . I n t h e p r e s e n c e o f o t h e r u n c e r t a i n t i e s

( p r i m a r i l y w i t h r e g a r d t o t h e d e n s i t y o f t h e i n c i d e n t

g a s ) s u c h c o r r e c t i o n s a r e i n s i g n i f i c a n t . H o w e v e r , i n

c o n n e c t i o n w i t h t h e q u e s t i o n o f c o o l i n g s t a r s , a d i r e c t

a c c o u n t o f g e n e r a l r e l a t i v i t y i s e s s e n t i a l f o r o b t a i n i n g

q u a l i t a t i v e l y c o r r e c t d e d u c t i o n s . T o m a k e t h e e x p o s i -

t i o n m o r e c o h e s i v e , w e r e c a l l s o m e u n i v e r s a l l y k n o w n

f a c t s .

b) F a l l i n g o f P a r t i c l e s o n a S t a r

W e c o n s i d e r p a r t i c l e s w i t h m a s s m , w h o s e v e l o c i t y

f a r f r o m t h e s t a r i s v 0 a n d w h o s e d e n s i t y i s n 0 .

H e r e t h e v e l o c i t y v 0 i s r e g a r d e d a s s m a l l c o m p a r e d

w i t h t h e p a r a b o l i c v e l o c i t y Vp o n t h e s u r f a c e o f t h e

s t a r :

/
2GM

- R - ' V p > Vo. (13.1)

The velocity of the particle at the surface, which is
equal to (v2 + VQ)1/2, can be replaced by vp, and the
maximum momentum is in this case I = mvpR. Away
from the star, where the motion of the particle is not
perturbed by the star, the momentum is expressed in
terms of the impact parameter

/ — mvob. (13.2)

From this we obtain the maximum value of bm ax> a *
which falling on the star takes place: b m a x = RVp/v0.
The flux of particles with b < b m a x is, obviously,
equal to j = nvonb2

max. Finally we obtain an expression
for the accretion rate (M—mass of the star):

dM 1GM „ GMR
—=— = Znmn

R Vr,

We substitute mn = p 0, and introduce
we obtain

( 1 3 . 3 )

= 2 G M / c 2 ;

dM , i R-7— = o0nr%cdl KU " i-0 rg

(13.4)

I t i s c u r i o u s t o c o m p a r e t h i s n o n r e l a t i v i s t i c f o r m u l a

w i t h t h e e x p r e s s i o n s f o r t h e c a p t u r e o f a p a r t i c l e b y a

c o o l e d s t a r . A s s h o w n i n S e c . 7, t h e c r i t i c a l v a l u e o f

t h e m o m e n t u m * i s 2 m c r g . A c c o r d i n g l y w e o b t a i n

• -± . (13 .4 ' )dM
- = < % > •

*In[23] and in Sec. 8 we consider the influence of gravitational
radiation on capture in the two-body problem. Here we do not take
gravitational radiation into account, because the mass of the
captured particles m is assumed to be negligibly small compared
with the mass of the capturing star. The gravitational radiation is
proportional to m2, whereas the interaction energy is proportional
to m; the radiation effects contain a factor m/M (see Sec. 8).

Consequently, when R/r g < 4, the use of the non-
relativistic formula is no longer valid. Formula (13.4')
is the lower limit; this formula can be used both for
cooled and for neutron stars . In convenient units, we
can rewrite it in the form:

—
d(t/l№ years)

_ ^
10-24 g / c m2

M
M,0 1 km/sec

W e n o t e t h a t f o r p a r t i c l e s w h i c h a r e s t r i c t l y a t

r e s t a t i n f i n i t y , t h e r e i s n o s e n s i b l e a n s w e r ; i n f a c t , i f

i n t h e r e g i o n o c c u p i e d b y t h e r e s t i n g p a r t i c l e s w e p l a c e

s u d d e n l y a m a s s w h i c h a t t r a c t s t h e p a r t i c l e s , t h e n t h e

p a r t i c l e s w i l l s t a r t a c c e l e r a t e d r a d i a l m o t i o n , a n d i t

i s e a s y t o v e r i f y t h a t t h e f l u x o n t h e s u r f a c e w i l l i n -

c r e a s e w i t h t i m e l i k e

dM
d T 3

i . e . , w h e n v 0 = 0 t h e r e i s n o c o n s t a n t s t a t i o n a r y f l u x .

W e h a v e c o n s i d e r e d t h e f l u x o f p a r t i c l e s , a l l o f

w h i c h m o v e i n t h e s a m e d i r e c t i o n a n d a t t h e s a m e

v e l o c i t y . O b v i o u s l y , i f f o r a g i v e n | v o | a l l t h e v e l o c i t y

d i r e c t i o n s a r e e q u a l l y p r o b a b l e , t h e n d M / d t w i l l n o t

c h a n g e ; i n a d d i t i o n , w e c a n s t a t e t h a t t h e f l u x i s u n i -

f o r m l y d i s t r i b u t e d o v e r t h e s u r f a c e o f t h e s t a r , w h i c h

w a s n o t t h e c a s e f o r u n i l a t e r a l m o t i o n o f t h e p a r t i c l e s

a t i n f i n i t y . F i n a l l y , i f t h e p a r t i c l e s h a v e a M a x w e l l i a n

d i s t r i b u t i o n f a r f r o m t h e b o d y , a l l f o r m u l a s w i l l c o n -

t a i n a f a c t o r

kT A- 1 /2

w h e r e a 0 i s t h e s p e e d o f s o u n d ( t h e c o e f f i c i e n t i s g i v e n

f o r a m o n a t o m i c g a s ) .

c ) H y d r o d y n a m i c S o l u t i o n

W e s h a l l r e g a r d t h e i n t e r s t e l l a r m e d i u m a s a g a s

w i t h a d e f i n i t e a d i a b a t i c e x p o n e n t y a n d w i t h a d e f i n i t e

s t a t e ( p 0 , P o ) a t i n f i n i t y ; t h e v e l o c i t y o f t h e g a s a s a

w h o l e t e n d s t o z e r o w i t h i n c r e a s i n g d i s t a n c e , a n d t h e

a v e r a g e v e l o c i t y o f t h e i n d i v i d u a l m o l e c u l e s a t i n f i n i t y

i s o f t h e o r d e r of a 0 = V y P o / P o -

W e s e p a r a t e a n a r r o w c o n e w i t h s o l i d a n g l e d£2. W e

w r i t e d o w n t h e c o n t i n u i t y e q u a t i o n — t h e l a w of c o n s e r -

v a t i o n o f m a t t e r ( d S — f l u x o f m a t t e r i n t h e c o n e d f i ) :

dS - qur- dQ - c o n s t , u - - . , . A - , = -^ --- ,

a n d t h e B e r n o u l l i l a w , w h i c h e x p r e s s e s t h e c o n s e r v a -

t i o n of e n e r g y

CM , »2 V P ,
. - r — - L — = const

1 ' 2 ' v - 1 g
Y - ! t'o

T h e r i g h t s i d e o f t h e f o r m u l a f o l l o w s f r o m t h e c o n -

s i d e r a t i o n o f t h e s t a t e a s r —• ° ° .

I t i s c o n v e n i e n t t o u s e i n l i e u o f P a n d p , a s a

v a r i a b l e , t h e s p e e d o f s o u n d a :
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In the (a, u) plane, the Bernoulli equation for different
values of r gives a family of ellipses

~2~ " ~~Y-l Y-l
2 i bM

al -\ ,
and the continuity equation gives a family of hyper-
bolas of fractional power

These hyperbolas depend also on the parameter A,
which is not known beforehand. This means that the
analysis of the problem should itself answer the ques-
tion of what the flux of matter at infinity is equal to
under specified conditions at infinity.

It can be shown* that in the presence of two points
of intersection of the given pair of curves (continuous
and dashed), the lower point of intersection cor re -
sponds to a subsonic flow mode, and the upper point to
supersonic flow (Fig. 14).

Tangency of a pair of curves must occur on the
bisector u = a in the critical-flow mode. If for a given
choice of A the curves do not intersect for any value
of r, this means that A was chosen to be too large and
such a flux is not realized. An analysis of the equa-
tions leads to the following picture: there exists a
critical value Ac, and when A > Ac there is no solution
at all (there is a region of r without intersections).

When A < Ac, there are two intersections for all r,
the flow at infinity is always subsonic (in the limit
r = °°, a = a0, u = 0), and therefore it remains subsonic
everywhere. Such a flow is possible only in the p res -
ence of sufficiently high pressure P s at the surface of
a star . In the limit with A > 0, we obtain a static

FIG. 14. Hydrodynamic accretion a — velocity of sound, b —
velocity of the matter. Solid lines — family of ellipses, given by
the Bernoulli equation (the parameter is the distance r). Dashed
lines — family of hyperbolas of fractional power, given by the
continuity equation.

*The exposition that follows is based on the assumption that
y < 5/3, which is always realized in the case of a monatomic gas
because of iomzation, the numbers pertain to y = 4/3.

picture, in which the interstellar gas is the continua-
tion of the atmosphere of the star.

When A = Ac the situation arising is qualitatively
new. Tangency takes place at a definite r = r c , and
for all other r, both r > r c and r < r c , the curves inter-
sect twice. Then far from the star, in the region
r > r c , subsonic flow is realized, at the point r = r c

the velocity is equal to that of the sound, and closer
to the star the flux is supersonic. Such a mode is
realized when the pressure on the surface of the star
is smaller than some value P c , with P c close to the
static pressure which maintains the interstellar gas.

Thus, if there is no high pressure on the surface
of the star, critical influx of gas with maximum pos-
sible flow is established. Without dwelling on the
simple calculations, we note that at the point of tran-
sition through the speed of sound

the velocity of flow and the velocity of sound are of the
order of their initial values (at infinity). This t ransi-
tion is realized at the place where the gravitational
potential is of the order a|j:

From this we can easily obtain an expression for the
flux of matter:

dM , , . , — » Y H - 5 " n

The structure of the expression for the flux differs
sharply from the case of independent particles, con-
sidered in the preceding section. The expression does
not contain the radius of the star. In particular, the
expression remains valid also in the case when we are
dealing with a cooled star: this is perfectly natural,
since the "bottleneck" of the flux is a sphere of rad-
ius r c , where the critical velocity is attained. (Of
course, the purely geometrical area of the sphere
only decreases when the radius is decreased, but in
the calculation of the flux it is necessary to take into
account also the change in the velocity and in the den-
sity, which depend on the gravitational field.)

The expression for the flux of matter can be written
in the form

dM
dt

It is convenient to compare this form with (13.4'):
for a cooled star the gas flux exceeds the flux of the
independent particles by (c/v0)2, where c is the veloc-
ity of light, v0 the particle velocity; in order of mag-
nitude the speed of sound a0 does not differ from the
velocity of the particles v0. The gas differs from in-
dependent particles in that the atoms of the gas fre-
quently collide with one another; these collisions limit
the increase in the tangential velocities of the atoms,
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but on the other hand they increase the radial velocity
which is directed towards the star.

Now a numerical estimate yields

d(t/\Ol<> y e a r s )
M

Q J 10-24g/cm3 V 1 km/sec

The effect is considerable even under "ordinary"
conditions:

M
M,

= 1, Q0 = 10"24g/cm3, a o = l km/sec.
©
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In an exact stationary solution for the gas flux, the
integral, which gives the total number of particles
contained between two spheres r = Rj and r - Rj
diverges when the lower limit tends to the gravitational
radius

n — const di

The denominator of the integrand contains r — r , so
that the integral diverges logarithmically. From the
point of view of a remote observer, it is possible only
to approach asymptotically the stationary flux*, and
the capacity of the layer adjacent to r is infinite, and
in the stationary solution the time necessary to fill it
is infinite.

It is even more important that in the case of super-
sonic radial flow of matter, only a very small portion
of the energy can be radiated to the outside. The
kinetic energy of translational motion is conserved
and is not converted into heat. In the case of ordered
radial falling, the individual elements of the gas do not
collide with one another and no shock waves are pro-
duced. In the layer adjacent to the gravitational radius
not only matter is accumulated but also energy, or
more accurately, matter accumulates possessing a
tremendous kinetic energy,t which, however, is not
converted into other forms of energy. Only the thermal
energy of the gas, which increases during the course
of the adiabatic compression, can be radiated. How-
ever, this source of energy is quite small compared
with the rest energy (pc2) and the kinetic energy,
since in supersonic flow the density (in the coordinate
frame falling together with the gas) remains finite
(see the expression given above for p m ) .

Thus, spherically symmetrical accretion of gas in
the gravitational field of a cooled star does not lead to
effective release of energy, in exactly the same way
(and essentially for the same reason) as spherically
symmetrical collapse.

*The time necessary to approach the stationary flux with speci
fied accuracy at a given point of space is the larger, the closer
this point is to rg.

tAs was already noted, from the point of view of a local ob
server, the velocity of the particle approaches c as r -> rg, so that
the energy E -> °°. Were a stationary body to be situated near rg,
then when struck by the particle an energy E » moc

2 would be re
leased However, if this energy is diverted to the outside (for ex-
ample, by means of quanta or neutrinos), the energy decreases on
the path to the observer, by virtue of the red shift, and becomes
close to moc

2 for a particle with rest mass m0 in the case of a re-
mote observer Actually, the energy is not released because there
is no stationary body for the particle to strike.

e) Asymmetrical Accretion in the Field of a Cooled
Star

The statements made above lead to the necessity of
considering collisions between falling particles. By
way of the simplest example we consider inelastic
collision of two particles moving along hyperbolic
orbits (Fig. 15). The kinetic energy of their relative
motion is transformed at the instant of collision into
other forms of energy (light), which is radiated in all
directions. Part of the light falls on the Schwarzschild
radius of the cooled star and is again captured, while
the remainder, overcoming the gravitational field,
goes to infinity. The colliding particles themselves,
losing tangential velocity, fall down. Calculation shows
that the maximum energy emitted to the outside
amounts to as much as 10—20% of the rest energy
(m0c

2) of the incident particles.

FIG IS Collision of particles with different momenta in the
field of an attracting center.

It would be possible to develop a detailed statistical
theory of the motion of the particles in the gravita-
tional field. Let us consider the case of motion with-
out collisions. The particles, which at infinity have
an isotropic distribution of velocity directions and
have an energy between E and E + dE, constitute a
microcanomcal ensemble. According to the Liouville
theorem, their density is constant everywhere in phase
space. But the volume of a layer in phase space can
be expressed (using the relations E - p2/2m, p dp
= mdE) in the form 47rpmdE Since dE is everywhere
the same, the particle density is at each point propor-
tional to the momentum p, i.e.,

Oo ~ = (
GMm
rE

If we neglect the particle loss by accretion, the
velocity distribution of the particles remains isotropic
at each point in space. Thus, we construct a first-
approximation particle distribution (without account of
collisions and accretion), which is used to calculate
the number and the energy ol the collisions and to ob-
tain the next order approximation. However, here we
shall not develop this picture further, and turn directly
to the opposite limiting case, to a consideration of gas
flow.

Thus, let us imagine that a cooled star is immersed
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in a gas, which is regarded as a continuous medium.
Let us assume further—and in this lies the difference
from the preceding section—that at infinity the gas
moves relative to the star with velocity u0. We con-
sider a limiting case u0 » a0: in the presence of
ordered motion (velocity u0), an account of the motion
of the gas molecules themselves is no longer signifi-
cant. Neglecting the speed of sound compared with the
velocity u0, we simultaneously also neglect the p res -
sure. But in the absence of pressure the motion of a
continuous medium does not differ essentially from
the motion of individual particles: the equations of
hydrodynamics constitute merely a different form of
the equations of particle mechanics. In the stationary
problem, the flow lines are merely particle trajector-
ies. Salpeter'-66-' gives the following general picture of
the motion (Fig. 16): the gas flows from left to right,
the flow lines bend in the gravitational field, and the
gas velocity increases in accordance with the law of
energy conservation, which in this case is named after
Bernoulli.

Shock
wave

FIG. 16. Hydrodynamic picture of accretion. The particles
lose in the shock wave the potential component of the velocity.
At an impact distance smaller than bc, the radial component of
the velocity is smaller than parabolic, and the particle ultimately
falls on the attracting center.

In the tail of the stream, adjacent to the surface of
the star (or the Schwarzschild sphere), is located the
elongated surface of a shock wave. The shock wave
replaces the collisions of particle pairs on the axis,
which we described above. Crossing the front of the
shock wave, the gas loses the velocity component per-
pendicular to the front. The velocity component paral-
lel to the front, i.e., directed along the radius, r e -
mains unchanged.

Using Kepler's laws, we can find the critical trajec-
tory (dashed) and the critical impact parameter b c .
When b > b c , the velocity after compression by the
shock wave remains larger than parabolic, and the
matter flows off to infinity; when b < b c , the matter
falls on the star after compression. It turns out that
b c , and with it the accretion rate, depend on the veloc-
ity of the gas u0 approximately in the same manner as
they depended on the velocity of sound a0 in the spher-

ical problem (see above). An important difference
from the spherical problem lies in the fact that an
effective conversion of kinetic energy into heat and
light takes place in the shock wave.

Salpeter presents the following estimates: a body
moving with supersonic velocity relative to the gas
slows down after a time in which the accretion changes
its mass little. Consequently, it is necessary to con-
sider the motion of the body relative to the gas with a
velocity of the order of the speed of sound, i.e., of the
order of the random velocity of molecules and the gas
clouds:

dU M*n
dt U3-3-10"

where u is the velocity in km/sec, M the mass in M Q
units, n the density of the interstellar gas (H atoms
per cm3), t is in years, and en is a dimensionless
number (0.1 < a < 1). The mass increases, becoming
infinite in less than 1010 years, if Mo > (u/25)(0.25/an)
x 2 x 10G.

Thus, bodies with mass 106M_ , i.e., heavier than
ordinary globular clusters, should produce in our
galaxy a catastrophic accretion process, accompanied
by a large release of energy. The energy release is
limited by the light pressure, a fact which will be dis-
cussed later. The asymmetrical picture of the motion
causes the particles to collide in the gravitational
field of the cooled star and can release energy of the
same order as in collisions with the surface of a neu-
tron star. Special notice must be taken of the impor-
tant limitation on the Salpeter model: in this model
the energy is released in the form of heat and light,
and there is no mechanism capable of transforming
the gravitational energy of the falling matter into the
kinetic energy of an ejected jet. In fact, according to
the Bernoulli theorem, in a stationary stream the law
of energy conservation is applicable in each individual
elementary jet bounded by the flow lines: in a stream
with low influx velocity at infinity, no jets that move
away from the body with large velocity can ever arise.
A possible way out is to consider a nonstationary situ-
ation, wherein a cooled star, approaching the boundary
of a gas cloud, causes motion of the gas which in turn,
closing in on the other side of the star, yields a cumu-
lative ejection of a jet. However, it is more probable,
that to obtain a real picture of the structure of quas-
ars it is essential to take the magnetic fields into ac-
count (see Sec. 13).

f) Regulation of Accretion by Light Pressure

We have seen in Sec. 5 above that at a definite
value of the light flux, corresponding to L/M
= 3 x 104 L_/M_, the light pressure balances the

force of gravitation. Consequently, in the case when
the release of energy during accretion exceeds this
limit, the accretion will stop. These considerations
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should be applied to accretion on a neutron star . As-
suming its mass to be M_, we obtain the limiting
luminosity L ~ 1038 e rg/sec . For a luminous surface
corresponding to a radius of 10 km, we obtain a flux
of 1O25 erg/sec-cm2 , corresponding to a black body
temperature 2 x io7 °K = 1.7 keV. If the flux is half as
large, the temperature is 1.3 keV. In either case the
temperature is sufficient for emission of x rays with

o
energy up to 10—15 keV (wavelength longer than 1 A),
which can be registered by apparatus placed outside
the atmosphere. In order to produce such a flux of
light it is necessary to have an accretion rate of
2 x 1017 g/sec = 3 x 10~9M~ annually. Near the surface,
the velocity of the falling gas is of the order of 0.5 c
and its density is p = 10"6 g/cm3, while the effective
thickness of the absorbing layer is ~pR ~ 1 g/cm2.
A calculation based on Thomson scattering shows that
such a layer transmits more than half of the primary
x rays from the surface. It is essential here that the
matter is at a temperature on the order of 1 keV
under the influence of the radiation, and therefore the
oxygen, nitrogen, and carbon are practically fully
ionized; therefore the absorption of x rays by the
matter is much lower compared with their absorption
by cold matter.

Finally, it remains to estimate the density of the
gas (atomic hydrogen) at infinity, which is at a tem-
perature on the order of 100°K and which ensures the
required flux of matter. The speed of sound is on the
order of 1 km/sec, the critical radius of the order of
1016 cm, and the density is of the order of 10~21 g/cm3.

In this picture, which could explain the x radiation
from a neutron star after the exhaustion of the thermal
energy of the internal layers, there are still some un-
answered questions: is the spherically symmetrical
flow of matter opposite the radiation flux stable? At
what distance does the ionization of the gas take place?
Is it necessary to consider accretion from a gas with
constant density at infinity or from a gas which is
produced by catastrophic transformation of an ordinary
star into a neutron s tar? In the latter case, the very
initial distribution and the initial temperature of the
gas are not arbitrary, and are determined by the p re -
ceding stage.

The main fact, however, is that the condition for
light equilibrium regulates the energy release at p re -
cisely the level corresponding to the x radiation; this
result depends on the relation between the mass and
the radius of the neutron star, and is not sensitive to
other circumstances. We note that the velocity of free
fall on the surface of a neutron star is quite large.
The proton energy is on the order of 200—300 MeV!
Therefore the radiation of the shock wave can differ
noticeably from the equilibrium radiation (the black-
body spectrum) of equal power. This problem still
remains to be solved, by methods analogous to the
analysis of the structure of strong shock waves /

The situation may become complicated by the mag-
netic fields frozen into the gas that is to be accreted.
As noted correctly by Parker,'-143-' any strong motion
of a plasma produces conditions for the generation of
cosmic rays. If the magnetic field were to change only
as a result of a similar contraction like p2 '3 , then its
role would remain small. However, entanglement may
intensify the field. Thus, accretion of a magnetized
gas may supply energy to relativistic particles that
produce synchrotron radiation. This group of questions
is still in the initial stage of study.

14. MAGNETIC AND MAGNETOHYDRODYNAMIC
PHENOMENA

V. L. Ginzburg^67^ was the first to call attention to
the fact that the collapse of a star should be accom-
panied by a strong increase of its magnetic field.
Later on this question was dealt with in a large num-
ber of papers.'-68"71^

In considering the collapse of stars and of ultra-
large masses of gas, a distinction must be made be-
tween the essentially different topology of the external
magnetic fields of these objects (Kardashev'-70-'). Ac-
cording to observational data and modern theories of
the origin of stars , the magnetic field of an ordinary
star (say the sun) has a quasi-dipole character. The
topology of such a field is shown in Fig. 17a. The mag-
netic force lines are closed, and in the main they do
not extend far from the star. The picture of the ex-
ternal field is different for galaxies and metagalactic
formations in general. According to contemporary
notions,'-72-' the magnetic force lines are not closed
and go practically to infinity, coupling the body with
the surrounding medium and with other objects (Fig.
17b).

a b
FIG. 17. Topology of the magnetic field, a) Star; b) metagalac-

tic object.

Recently the point of view gaining in prevalence has
been the one according to which the field is the result
not of self-excitation during the course of formation
and evolution of the galaxies, but of contraction of the
initial metagalactic field, existing prior to the occur-
rence of the galaxies. The first to mention this point
of view (but disagreeing with it) was Hoyle'-73^; the
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cosmological theory with "originally" existing homo-
geneous magnetic field is developed in'-74'75^'.

The magnetic processes occurring during collapse,
with account of the phenomena occurring in the sur-
rounding shell, are very complicated and have probably
been studied even less than the effects of rotation. We
therefore confine ourselves here only to the most
general examination of the problem. We begin with
the collapse of ordinary s tars . It is known from the
observations that the fields on the surfaces of the
stars can reach intensities of 1—104 G. In all cases,
the magnetic energy is much smaller than the gravi-
tational energy of the star. The conductivity of stellar
matter is quite large and for stars of the type of the
sun it amounts to o^. = 1016 sec"1. Therefore the decay

time of the field [14] is

dorg

R0-3 In

~ 7 • 1017 sec ^ 2 • 1010 years,t<3

which is much larger than the age of the sun (~ 5
x 109 years). During the course of contraction of a
star of any mass, this time is always much larger

' 'than the characteristic contraction time. '-67-' If the
star is transformed into a neutron star, then its con-
ductivity increases by many times and becomes ap-
proximately four orders of magnitude larger than the
conductivity of copper under ordinary conditions.'-76-'
In this case the time of attenuation of the field for
R « 106 cm is of the order of a million years.

Thus, we can always assume that the field is
"frozen in" into the matter of the star. Under these
conditions, upon contraction H ~ R"2 and the magnetic
energy is E m a g ~ H2R2 ~ R"1, i.e., it varies like the
gravitational energy upon contraction. But in ordinary
stars, as stated above, E m a g « E g r a v ; consequently,
the dynamics of the collapse of the star is not influ-
enced at all by the magnetic field.

How does the magnetic field vary during the time of
relativistic collapse, when the star becomes cooled?
This question was investigated by V. L. Ginzburg and
L. M. Ozernoi.C67 'G9]

It was emphasized above that the field is frozen
into the matter of the star and upon contraction to
dimensions ~ r g it should reach the colossal magni-
tude ~ 1010 G for an observer co-moving with the
matter. A different field will be seen as R—- re by a
non-moving observer. To find this field, the authors
Of[69] c o n s i d e r first the static problem.

We mentally decrease the dimensions of the gravi-
tating magnetized sphere and investigate its external
dipole magnetic field. The dipole moment of a sphere
d is proportional to R in classical theory: d = d0R/Ro,
where d0 and Ro are the initial dipole moment and the
radius, respectively. The moment d tends to zero if
R— 0. Ginzburg has shown'-67-' that in relativistic
theory, as R —- r g , the variation of d is given by

R-ra

Thus, d — 0 when R — r g .
We now find the variation of the magnetic moment

of a collapsing star with time. On the surface, the
magnetic field is calculated in the same manner as in
the stationary case. Knowing the dependence of R of
the star on the time (see*-1^, Sec. 15), we obtain ulti-
mately as t — °°

3Roct '

Thus, the magnetic moment for an external observer
attenuates in accordance with a power law.

How can we explain the difference in the behavior
of the angular momentum and the magnetic moment
in the case of collapse? The former, as shown in Sec.
9, remains constant, while the latter attenuates. After
all, both are produced effectively by the rotational
motion: the mechanical momentum by the rotation of
the mass, and the magnetic moment by the circular
motion of the current. The difference lies in the fol-
lowing. As R—*• rB the local collapse velocity v^ — c.
Owing to the attenuation of all the processes, the rota-
tional velocity v«, tends to zero, but the effective mass

yi_j,2/c2

and the momentum remain unchanged, K = mv^R
= const. Unlike the mass, the charge's, which produces
the current I = ev^, does not change; therefore as
V(p —- 0 the current attenuates: I — 0. The attenuation
of the current does indeed lead to the attenuation of
the external magnetic field of the collapsing star for
a Schwarzschild observer.

The change in the magnetic field upon contraction
causes the appearance of a vortical electric field. In
the near (non-wave) zone, this can lead to the occur-
rence of a current-carrying shell in the plasma sur-
rounding the star or (and) to the occurrence of mag-
netohydrodynamic waves.69-' These processes have
as yet not been investigated thoroughly, and we confine
ourselves only to some remarks concerning the far-
wave zone.'-68-' The characteristic time and the scales
of the phenomenon are respectively *v/c and rg.
Therefore the wave zone begins with R > rg. Let the
external magnetic field of the star contain a dipole
magnetic moment d = 3>R, where <& = const. We esti-
mate the radiation of the external magnetic field.
Since for R ~ rg the rate of contraction is on the
order of c, the radiated energy will be of the order of
the energy of the magnetic field, since there is no
smallness parameter for the amount of radiated en-
ergy. We shall carry out a more accurate calculation.
During the process of collapse, the matter falls almost
freely; therefore
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* = - £ - . * = / •D 2GM

The total flux of the radiated energy is

Substituting (14.1) in (14.2), we obtain

6r> \R

(14.1)

(14.2)

(14.3)

and the total amount of radiated energy, upon contrac-
tion to dimensions R, is

If $ ~ 3 x 10 , as occurs on the sun, and
x 105 cm, then

V'55-1041 ( ^ V' erg/sec,

contraction of the body upon oscillation, as well as in
the case of rotation of the type of a double star. For
an order of magnitude estimate of the gravitational
radiation we can use formula (11.4) in which we put
rg « rg2> At the indicated parameters of the system,
we find for the duration of the existence of the system

*The fall-off of the burst is due to the relativistic effect of the
cooling of all the processes as R -> rg (see above).

= JLH. J-Y %10~5 sec.16
(14.7)

j

(14.5)

(14.6)
The radiation is in the form of a single pulse with
duration « r g / c* The calculation was made for the
nonrelativistic theory, and the formulas cease to apply
near the Schwarzschild sphere, but they give the cor-
rect order of magnitude of the estimated quantities.

The total amount of radiated energy is small in this
case. Hoyle, Narlikar, and Wheeler'-71^ have proposed
that intense electromagnetic radiation can continue for
a long time if the rotating star with the magnetic field,
on cooling and contracting, reaches a quasi-equilibrium
state of the type, say, of a flat disc. Such a configura-
tion with nonspherical mass distribution, according to
the hypothesis of Hoyle and others, should oscillate
dynamically about an equilibrium position. We have
already noted, however, in Sec. 3 that such a configura-
tion is unstable and breaks up into clusters. Another
imaginable variant of an oscillating system may be,
for example, the rotation of a body such as a double
star which is almost merged. According to the sug-
gestion of the authors ofL71J, the dimensions of this
system for M ~ 5 M_ are of the order of 10s cm, i.e.,
~ rg, and the characteristic velocity is obviously some-
what smaller than c (~ c/3). The dimensions of the
star, compared with the initial ones, have decreased
by five orders of magnitude; consequently, the field has
increased by ten orders and reaches ~ 1010 G, while the
alternating component of the field reaches, say, 109 G.
Therefore the flux of electromagnetic radiation is
~ R2H2c ~ 3 x 1040 erg/sec. The authors ofC71] believe
that the energy flux can last ~ 103 years = 3 x 1010 sec,
and find for the total radiated energy a value 1051 erg.

However, we cannot assume so long an existence of
an oscillating system. The point is that along with the
electromagnetic waves the system will radiate also
gravitational waves both in the case of an isotropic

Obviously, no sensible account of the small parameter,
due to some particular distribution of the masses in
the system, will change this value significantly. In
order for the system to exist ~ 103 years, it is neces-
sary, as follows from (14.7), to have r / r g « 104. But
for such a choice of system dimensions, the intensity
of the magnetic field will not exceed 10 G and the elec-
tromagnetic radiation is negligible. Thus, the total
amount of radiated electromagnetic energy is small in
order of magnitude, and is determined by (14.6). We
shall show later that upon contraction of masses of the
order of (105—108) M^, the radiated energy increases
sharply. So far we have tacitly assumed that the
plasma surrounding the star does not interfere with
the occurrence of radiation. The radiation frequencies
co ~ c / r s are low, particularly for large masses. Even
at negligible plasma density, the proper oscillation
frequency w0 = [47re2Ne/m

2]1/2 ~ 2 x 1018 / N e sec"1 is
much larger thanoi, which it might appear should lead
to the conclusion that no radiation should occur at all.

However, in order for radiation not to occur, it is
necessary, in addition to the foregoing condition, also
that the maximum possible current Imax = ^ e e c

(Ne—electron concentration, e—electron charge), oc-
curring in the plasma when the magnetic field varies
in the non-wave zone, be in a position to compensate
this variation. Let us find the critical value of the
density of the surrounding plasma, at which the radia-
tion no longer arises.L68J From Maxwell's equations
we obtain

rotH = 1M. = 4itiVee. (14.8)

Let us make some order of magnitude estimates. We
consider a characteristic instant of contraction when
(R - re) ~ r™. Recognizing that | curl H| ~ H/r™ and

S o &
$/ r 2 , we obtain from (14.8)

H r ,
o

Consequently, if the inequality
(14.9)

is satisfied, then a wave zone is produced (starting
d

u
x 105 cm, we get

with distances L > rJ) even when c / r g « CJ0.
Substituting in (14.9) * ~ 3 x 1021 and r g = 3

.Ve<1015 cm"3. (14.10)

For comparison we indicate that the electron con-
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centration in the solar corona near the sun's surface
is ~10 8 cm"3.

Thus, if (14.10) is satisfied, the radiation moves
out of the star in the form of a single pulse, becoming
absorbed by the plasma far from the star m the wave
zone. We recall once more that the total radiation
energy is relatively small in the case of ordinary
stars .

Kardashev*-70-' called attention to the fact that under
certain conditions the rotational energy of the star can
be "pumped over" for a long time into the energy of
the magnetic field. The star, having contracted to the
dimensions of a white dwarf or to neutron density,
should in this case still not rotate fast enough to per-
mit a strong oblation of the mam mass to cause insta-
bility in the form of the formation of individual clusters
or formation of a double star.* The process of "pump-
ing" can be realized, for example, in the following
fashion. In the case of explosion of a supernova of the
first type, the external layers of the star which form
around it a nebula of the Crab type are ejected into
space.t This shell is coupled with the star by mag-
netic flux lines. The rotation of the contracting star
is accelerated and twists the field lines, giving up
rotational energy to the magnetic field and to the shell,
and transferring also momentum to the shell (the
Hoyle mechanism, see Sec. 11). Let us make, follow-
ing'-70^, some rough estimates. Let the initial param-
eters of the star be

fi0 10" cm, M = MO = 2 1033g, v0 =» 10" cm/sec

and Ho = 1 G. Owing to the condition for the f r e e z m g -
m, the flux of the field through the sur face of the s t a r
r e m a i n s unchanged. There fore , if the intensity of the
external field were not to i nc r ea se by the twisting, the
intensity H in a shell of average rad ius I would be
H = HQRQ/J 2 . If the s t a r executed n revolut ions after
the separa t ion of the shel l , then

H=^JWljn ( 1 4 # 1 1 )

The dimension of the s t a r at the t ime of the onset
of the escape of ma t t e r from the equator i s , as a r e -
sult of the action of the centrifugal force, R ~ 108 cm
~ 3 x 102 r g . Consequently, one revolution of the s t a r
l a s t s T = (27rR/vo)(R/Ro) « 0.6 s e c . Let us apply these
es t ima tes to a hypothetical s t a r in the Crab nebula,
produced by a supernova explosion t = 103 y e a r s ago.
In this case the number of revolut ions of the s t a r is
n ss t/V - 5 x 1010. The dimension of the nebula is
I ~ 2.5 x 1018 cm, and therefore H = (H0R|/Z2)n = 10"4 G,
in good agreement with the es t ima tes obtained for the
field from the observed synchrotron radiat ion of the
nebula e l ec t rons .

*For this it is necessary that the rotational energy be notice-
ably smaller than the gravitational energy.

tThe shell can also be produced in a different way, for example
by stationary outflow of matter from the surface, etc.

The growth of the field will continue until the m a g -
netic energy becomes of the o r d e r of the rotat ional
energy, o r until the magnetic coupling between the s t a r
and the shell i s des t royed. The la t t e r can occur e i ther
when the p r o c e s s becomes unstable, or e l se as a r e -
sul t of attenuation of the field. This t ime i s es t imated
to be^70^ s eve ra l thousand y e a r s .

We now proceed to col lapse of l a r g e r m a s s e s of
g a s . The gravitat ional contract ion of such clouds with
magnetic fields, has apparent ly led in the pas t to the
formation of different fo rms of galaxies and radio
galaxies , a fact especia l ly emphasized recent ly in the
papers of Piddington [ 7 7 ; l and S. B. P i k e l ' n e r . ™ If the
spher ica l symmet ry of the gas cloud is for some r e a -
son sufficiently good (for example in the c o r e s of
galaxies) , then the contract ion will continue until r_.
is reached.

Unlike in ord inary s t a r s , the topology of the field
is different he re , as indicated in the beginning of the
section (Fig. 17). The force l ines couple the con t rac t -
ing cloud with the surrounding medium. The magnetic
energy of the cloud is probably of the o r d e r of the
rotat ional energy even at the onset of the contract ion,
and the contract ion is continuously accompanied by a
loss of angular momentum. The contract ion gives
r i s e to the appearance of " n e c k s " in the magnetic
force l ines .* The p r o c e s s e s which a r i s e in this c a se
a r e l ikewise not very well known, and we p re sen t only
the roughest e s t i m a t e s . In in t e r s t e l l a r clouds the re
exis t magnetic fields of intensity 10"5 G. Assume that
the initial cloud with M = 108 M has n ~ 104 f ield-

homogeneity ce l ls with Hj = 10"5 G. Then the external
r egu la r field of the cloud is Ho « Hjn"1/2 » 10"7 G.
Upon contract ion to rg , the density of the cloud changes
by ~ 2 4 o r d e r s of magnitude (from ~ 1O~24 g / c m 3 to
1 g /cm 3 ) , the field i nc r ea se s by 16 o r d e r s of magn i -
tudes and r eaches H ss i o 9 G The inc r ea se in the field
energy is accompanied by an i nc r ea se in the energy of
the pa r t i c l e s frozen into the field.

Will field radiat ion a r i s e during the contract ion
p r o c e s s ? F rom the c r i t e r ion for the occur rence of
radiat ion (14.10), using the a l ready given initial value
Ho ~ 10"7 G on the surface of the cloud, we obtain

,"/» -3
cm (14.12)

If in addition we take into account the fact that more
likely Ho ~ n ' 2 ~ M , the exponent of the bracket in

•1011—1013 cm"3 for

(14.12) r i s e s to 3. Thus, the p la sma concentrat ion that
is c r i t i ca l for the occur rence of radiat ion va r i e s from
104 cm"3 for M
M ss 105 M .

If the p l a sma density sa t i s f ies the c r i t e r ion (14.12),
then radiat ion is produced. Let us es t ima te by means

108 M to

*See the papers of Mestel[78] on this subject.
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of formulas (14.5) and (14.6) the total flux and the
amount of radiated energy for M « 108 M,-^68^

£=-5

-S ) e r g / s e c ,

/• r p N 2 5

- ^ ) e r g .

•M -5/3 E 2/3

M 1 / 3 . T h u s , t h e

A s s u m i n g t h a t H o ~ M l / l , w e o b t a i n I

W h e n H o = c o n s t w e h a v e I ~ M ~ 2 / 3 , E

e l e c t r o m a g n e t i c r a d i a t i o n o f t h e e x t e r n a l f i e l d i n t h e

c o l l a p s e o f u l t r a l a r g e m a s s e s , u n l i k e i n t h e c o l l a p s e

of o r d i n a r y s t a r s , h a s a v e r y i m p o s i n g a p p e a r a n c e a n d

p e r h a p s p l a y s a n o t i c e a b l e r o l e i n t h e e n e r g e t i c s o f

q u a s a r s .

1 5 . Q U A S A R S

T h e d i s c o v e r y o f q u a s a r s w a s t h e m a i n f a c t o r w h i c h

h a s a r o u s e d i n r e c e n t y e a r s t h e t r e m e n d o u s i n t e r e s t

i n p r o b l e m s o f r e l a t i v i s t i c a s t r o p h y s i c s . T h e h i s t o r y

o f t h e d i s c o v e r y o f t h e s e o b j e c t s , t h e i r s t u d y , t h e

t h e o r i e s o f t h e i r s t r u c t u r e h a s b e e n t h e s u b j e c t o f

m a n y o r i g i n a l a n d r e v i e w p a p e r s . B e a r i n g t h i s i n

m i n d , w e s h a l l n o t d w e l l i n d e t a i l h e r e o n a d e s c r i p -

t i o n o f a l l t h e w o r k s a n d o n a l i s t i n g o f a l l t h e p r o -

p o s e d q u a s a r t h e o r i e s , a l l t h e m o r e s i n c e e v e n a s i m -

p l e l i s t i n g o f t h e s e t h e o r i e s w o u l d o c c u p y m o r e t h a n a

p a g e . T h o s e i n t e r e s t e d a r e r e f e r r e d t o , t o t h e r e -

v i e w b y G r e e n s t e i n ' - 7 9 ^ w h i c h h a s b e e n t r a n s l a t e d i n t o

R u s s i a n a n d s u p p l e m e n t e d b y L . M O z e r n o i , t o t h e

a r t i c l e b y S a n d a g e 1 - 8 0 ^ , a n d a l s o t o a c o l l e c t i o n o f

t r a n s l a t i o n s . ^ 8 1 ^ A m o n g t h e l a t e s t p a p e r s w e p o i n t

t o ' - 8 2 * 8 3 - ' , w h e r e a b i b l i o g r a p h y c a n b e f o u n d .

T h e r e i s n o g e n e r a l l y a c c e p t e d o r e v e n m e r e l y

s u f f i c i e n t l y c o n v i n c i n g t h e o r y o f q u a s a r s a t p r e s e n t

W e s h a l l r e c a l l b r i e f l y t h e e x p e r i m e n t a l d a t a o n

q u a s a r s a n d d w e l l o n s o m e o f t h e a t t e m p t s t o e x p l a i n

t h e i r n a t u r e , w h i c h , i n t h e a u t h o r ' s o p i n i o n , a r e t h e

m o s t p r o m i s i n g .

Q u a s a r s a r e o b s e r v e d i n t h e o p t i c a l b a n d a s p o i n t -

l i k e o b j e c t s o f l o w b r i g h t n e s s ( t h e b r i g h t e s t i s 3 C 2 7 3 ,

~ 1 3 m ) , s o m e t i m e s w i t h a d i f f u s e a u r e o l e . I d e n t i f i e d

w i t h t h e s e o p t i c a l o b j e c t s a r e r a d i o s o u r c e s o f s m a l l

a n g u l a r d i m e n s i o n ( a s e c o n d o f a r c o r l e s s ) . T h e n u m -

b e r o f d i s c o v e r e d q u a s a r s n o w e x c e e d s 2 0 .

T h e s p e c t r a o f t h e q u a s a r s c o n t a i n f o r b i d d e n l i n e s

o f h i g h l y i o n i z e d e l e m e n t s . T h e l i n e s i n t h e s p e c t r a

s h o w a s t r o n g r e d s h i f t i n t h e c a s e o f 3 C 2 7 3 w e h a v e

z - AX/X - 0 . 1 5 8 , a n d i n o t h e r q u a s a r s z r e a c h e s

0 . 4 — 0 . 8 . A t t h e M a y 1 9 6 5 c o n f e r e n c e i n D e n v e r ,

C o l o r a d o , i t w a s r e p o r t e d t h a t f o r t h e o b j e c t C T A 1 0 2

AX/X 1 0 3 a n d f o r C 9 t h e s h i f t i s [ 1 4 4 ] AX/X = 2 ( ! ) .

T h i s s h i f t c a n n o t b e g r a v i t a t i o n a l , i f f o r n o o t h e r r e a -

s o n t h a n t h a t t h e m a x i m u m g r a v i t a t i o n a l s h i f t o n t h e

s u r f a c e o f a s t a t i o n a r y s t a r i s z « 0 . 4 ( s e e ' - 1 - ' , S e c . 8 ) .

B o n d i ' - 1 4 4 - ' h a s s h o w n i n v e r y g e n e r a l f o r m t h a t t h e

g r a v i t a t i o n a l r e d s h i f t e m i t t e d b y t h e s u r f a c e o f a

s t a t i c b o d y d o e s n o t e x c e e d AX/X = 0 . 6 . C o n s e q u e n t l y ,

t h e s h i f t i s d u e t o t h e f a c t t h a t t h e o b j e c t s a r e m o v i n g

a w a y w i t h t r e m e n d o u s v e l o c i t i e s . O b j e c t s i n s i d e t h e

g a l a x y c a n n o t j u s t m o v e a w a y f r o m u s a n d s t i l l d i s -

p l a y a s t a t i s t i c a l r e l a t i o n b e t w e e n t h e v i s i b l e m a g n i -

t u d e a n d t h e r e d s h i f t . I t i s c l e a r t h a t t h e s h i f t i s d u e

t o t h e c o s m o l o g i c a l e x p a n s i o n o f t h e m e t a g a l a x y a n d

t h a t t h e q u a s a r s a r e l o c a t e d a t r e m e n d o u s d i s t a n c e

a w a y f r o m u s , a d i s t a n c e w h i c h c a n b e d e t e r m i n e d

f r o m t h e r e d s h i f t . K n o w i n g t h e d i s t a n c e a n d t h e o b -

s e r v e d f l u x o n e a r t h , w e c a n d e t e r m i n e t h e t o t a l e n e r g y

f l u x f r o m t h e q u a s a r . I t t u r n s o u t t o b e o f t h e o r d e r o f

1 O 4 5 — 1 O 4 6 e r g / s e c , w h i c h i s o n e o r t w o o r d e r s o f m a g -

n i t u d e l a r g e r t h a n t h e e n e r g y f l u x f r o m t h e b r i g h t e s t

g a l a x y . T a k i n g i n t o a c c o u n t t h e r e c e n t l y m e a s u r e d

i n f r a r e d r a d i a t i o n f r o m 3 C 2 7 3 , i t s l u m i n o s i t y r e a c h e s

L « 3 x 1 0 4 7 e r g / s e c .

H a v i n g m a d e t h e a s s u m p t i o n o f t h e a p p r o x i m a t e

s t a t i o n a n t y of t h e p l a s m a o f t h e o b j e c t u n d e r t h e a c -

t i o n o f t h e r a d i a t i o n g r a v i t a t i o n a l f o r c e s i n t h e r e g i o n

w h e r e t h e c o n t i n u o u s s p e c t r u m i s f o r m e d , * a n d u s i n g

t h e c o n s i d e r a t i o n s a d v a n c e d w i t h r e s p e c t t o o p t i c a l

e q u i l i b r i u m ( s e e S e c . 5 b ) , w e o b t a i n a n e s t i m a t e o f t h e

l o w e r l i m i t o f t h e q u a s a r m a s s M = ( 1 0 7 — 1 0 8 ) M . - . . F o r

a f l u x L « 3 x 1 O 4 7 e r g / s e c f r o m 3 C 2 7 3 w e h a v e a c -

c o r d i n g l y M = 3 x 1 0 3 M [65]
©

A n a n a l y s i s o f t h e

p h y s i c a l c o n d i t i o n s i n t h e s h e l l o f a q u a s a r w a s g i v e n

b y I . S S h k l o v s k i i ^92-' a n d b y G r e e n s t e i n a n d

S c h m i d t . [ 1 3 3 ]

T h e m o s t a m a z i n g i s t h e v a r i a b i l i t y o f t h e o p t i c a l

b r i g h t n e s s o f q u a s a r s , d i s c o v e r e d s i m u l t a n e o u s l y b y

S o v i e t ^ 9 3 ] a n d A m e r i c a n ' - 9 4 ^ a s t r o n o m e r s . I t h a s b e e n

r e l i a b l y e s t a b l i s h e d t h a t t h e b r i g h t n e s s o f t h e q u a s a r s

i n v e s t i g a t e d i n t h i s r e s p e c t v a r i e s m o r e o r l e s s

p e r i o d i c a l l y d u r i n g s e v e r a l y e a r s , a n d s o m e t i m e s

a b r u p t c h a n g e s i n b r i g h t n e s s a r e o b s e r v e d w i t h i n a

w e e k . T h i s m e a n s t h a t t h e l i n e a r d i m e n s i o n s o f t h e

r a d i a t i n g s u r f a c e d o n o t e x c e e d m o r e t h a n o n e l i g h t

w e e k ( ! ) . t

F i n a l l y , a n a n a l y s i s o f t h e c o n t i n u o u s s p e c t r u m

( a n d a l s o t h e p r e s e n c e o f r a d i o e m i s s i o n ) a r g u e i n

f a v o r o f t h e h y p o t h e s i s t h a t t h e r a d i a t i o n i s m o r e

l i k e l y t o h a v e a s y n c h r o t r o n n a t u r e .

T o u n d e r s t a n d t h e n a t u r e o f q u a s a r s i t i s n e c e s s a r y

f i r s t t o f i n d a s o u r c e o f e n e r g y w i t h t r e m e n d o u s p o w e r .

A s t r o n o m e r s h o p e t h a t t h e s a m e o r a n a n a l o g o u s

s o u r c e p r o v i d e s t h e t o t a l r e s e r v e o f e n e r g y i n t h e

p o w e r f u l r a d i o g a l a x i e s o f t h e t y p e A - C y g m , o n t h e

o r d e r o f 1 0 6 0 e r g , a n d a l s o c a u s e s t h e e x p l o s i o n s o f t h e

c o r e s o f s e v e r a l g a l a x i e s , t h i s i s e s p e c i a l l y p o i n t e d

o u t b y V . A . A m b a r t s u m y a n . ^ 8 5 ^

* 0 n e must not confuse t h i s r eg ion , which can p rov i s iona l ly be

c a l l e d the pho tosphe re of the quasa r with d i m e n s i o n s = 1016 cm,

wi th the outer s h e l l , in which t h e e m i s s i o n l i n e s a re produced and

which h a s apparen t ly a d imens ion of ^ 1 0 " cm and i s expanding . [ 9 2 ]

t R e c e n t o b s e r v a t i o n s by Soviet radio as t ronomers i n d i c a t e tha t

the q u a s a r CTA 102 i s va r i ab l e in t h e rad io band (A = 30 cm) with

a per iod of ^ 100 days . [ 1 5 2 ]
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At the beginning of the article we indicated that a
quasar cannot be a supermassive star with a nuclear
energy source, as was initially suggested by Hoyle
and Fowler.'-2-' Equally unproductive were other at-
tempts to use nuclear power (see'-86-'). It was already
noted above that the maximum possible yield of nuclear
energy is ~ 8 x 1(T3 me2, whereas the yield of gravita-
tional energy can in principle be me2. In 1961, V. L.
Ginzburg'-87^ proposed as a source of the energy of
radio galaxies the gravitational contraction of the gas.
It is necessary only to find a suitable mechanism for
the conversion of the kinetic energy of the contracting
mass into other forms of energy. In the preceding
sections we considered several mechanisms of this
kind. In the case of a spherical or nearly spherical
contraction, the energy yield, as we have already
shown, cannot be appreciable, owing to the self-closing
effect. The mechanism of gravitational radiation,'-5'88'23-'
cannot be sufficient, because the gravitational waves
practically do not interact with matter; therefore
gravitational waves can be regarded only as a channel
for the diversion of energy from the system. Suffi-
cient energy can be released upon accretion of matter.
However, it is probable that an appreciable role in the
quasar phenomenon is played by magnetic and magneto-
hydrodynamic processes. We shall consider the ap-
propriate hypothesis below.

Finally, there is still another possible point of view:
quasars may be galaxies in the course of their birth
(see, for example, the paper by Field'-89-'), or, con-
versely, in the process of their death—in the stage of
collapse.[9o:]

The evolution of a stellar system is accompanied
by "evaporation" of stars, which carry energy away
from the system, radiation of gravitational waves,
formation of double systems, and direct collisions of
s tars . All this leads to a loss of kinetic energy of the
stars of the system, to a gradual condensation of the
system, which leads to a critical state and then to
collapse within a time on the order of one revolution
of the peripheral stars.'-90-' A common shortcoming
of these hypotheses is that they do not explain directly
the magnetic fields and the relativistic particles in
the quasars, or the periodic oscillations in the light
yield.

In connection with these considerations, it is inter-
esting to note the following: a preliminary analysis of
the spatial arrangement of five quasars indicates that
in the remote past the formation of quasars was no
more probable than at present.'-91-' We now proceed
to hypotheses which are of particular interest at p res -
ent.

16. MAGNETOTURBULENT THEORY OF QUASARS

The emission of radio waves from quasars is the
most convincing proof of the presence of magnetic
fields and high-energy electrons, which rotate in these

fields. The unique form of the glowing jets ejected
from the core also offers evidence of the decisive role
of the magnetic field.

A large cycle of investigations of the equilibrium
and evolution of massive stars without account of the
magnetic field has essentially led to negative results.
Let us summarize the theory developed above. A
spherically symmetrical massive star becomes un-
stable at very low density and moderate temperature
at an instant when the gravitational potential is still
small and the nuclear energy has not yet had time to
be released. The loss of stability is followed by col-
lapse, in which the gravitational energy is released,
becoming converted into thermal and kinetic energy of
the matter, but all these forms of energy are not ap-
parent to the outside and are buried in the gravitational
field of the star after its self-closing.

An analysis of non-spherically symmetrical prob-
lems leads to the conclusion that in similar processes
there can occur a release of a sufficient amount of
energy in the form of thermal radiation and kinetic
energy of the jets. However, to construct the true pic-
ture it is necessary to take into account magnetohydro-
dynamic effects, since we cannot ignore the direct ob-
servational data concerning the magnetic fields.

V. L. Ginzburg and L. M. Ozernoi'-69-' analyzed the
magnetic field of a collapsing star; the field becomes
stronger during the course of contraction, in accord-
ance with the freezing-in condition ("stickiness," as
is sometimes stated) of the force lines. The relation
between the magnetic and gravitational energies does
not change here:

H-

The authors emphasize that the magnetic energy
constitutes a small fraction of the total energy of the
star and does not influence the dynamics of the con-
traction of the main mass of the gas. Account of
general-relativity effects shows that the gravitational
self-closing is accompanied by a drawing-in of the
magnetic field, which becomes compressed against
the Schwarzschild surface. The external magnetic field
disappears.

N. S. Kardashev^7^ considered the mechanism of
intensification of the magnetic field, connected with
the contraction of a rotating plasma cloud. The rela-
tive motion of parts of the cloud is accompanied by the
tangling up of the force lines of the magnetic field and
by an intensification of the field. Kardashev suggests
that the field energy can become equal in order of
magnitude to the gravitational energy of the cloud. He
considers further the formation of magnetohydrody-
namic waves in the plasma when the body contracts
rapidly.

Questions of magnetohydrodynamic phenomena, and
particularly the explanation of the periodic changes of
the brightness within the framework of the synchro-
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tron-radiation theory, were considered by L. M.
Ozernoi. [ 9 6 '3 4 ]

A logical continuation of this line of development is
an idea, most precisely formulated by D. Layzer.'-95-'
A quasar is regarded as a body in which the gravita-
tional field is balanced essentially by a randomly
turbulent magnetic field.

It is well known that the Maxwellian magnetic-field
tensor corresponds to repulsion in two directions per-
pendicular to the field and to contraction along the
field. Consequently, a random field, in which all
directions are equally represented, produces on the
average a repulsion corresponding to the average
pressure, equal to 1/3 the energy density. The char-
acteristic relation p = g/3 holds true for a magnetic
field which is stationary in the mean in all cases—also
for an aggregate of electromagnetic waves in vacuum,
i.e., for a photon gas, and for a random magnetic field
in the plasma, maintained by currents flowing in the
plasma.

Before we proceed to make such a model more con-
crete, let us clarify the general relations between the
mass of the star and the strength of the current pro-
ducing the magnetic field H necessary for the equili-
brium. In order of magnitude we have

- = /72/?3, H =MYG

The current is obtained from the equation

curl H -— 4nj = 4nne —,

where e is the charge of the electron in electrostatic
units, n the electron concentration, v—the average
velocity of the electrons producing the current. We
substitute |curl H| ~ H/r, where r is the characteris-
tic scale, and write M = Nm = nR3mp, where N is the
total number of nucleons in the star and m is the
proton mass. We obtain

v = c 1/ —

Thus, the expression for v contains the character-
istic ratio under the second square root, namely the
ratio of the gravitational interaction of two protons to
their electrostatic interaction:

v- 10"18 c

It is precisely because of the fact that the gravita-
tional interaction is negligibly small compared with
the electrostatic interaction, that it is sufficient to
have a negligibly ordered motion of particles of the
same polarity relative to particles of the other polar-
ity to produce a repulsion that balances the gravita-
tion.

The model of the object is incomplete in two r e s -
pects. 1) With the aid of the magnetic field it is diffi-
cult to balance gravitation not only in the mean, but
also locally, at each point. The magnetic force acting

on a volume element of the plasma, which is equal to
H x j ~ H x curl H, is not potential. The gravitational
force — p grad <p is, strictly speaking, potential only
in the case when p is constant or p = p(<p). It is not
clear whether exact equality of the two forces can be
attained at each point for an arbitrary density distr i-
bution. 2) The body on the whole is in a state of neu-
tral equilibrium, if there are no factors other than
gravitation and the magnetic field, since the magnetic
field has an adiabatic exponent y = 4/3 (with respect
to a similar contraction of the body).

These difficulties are resolved if we assume, fol-
lowing Layzer, that along with the magnetic fields
there is a macroscopic turbulence-type motion of
matter, and that the kinetic energy of the matter is of
the order of the magnetic energy. The turbulent mo-
tion occurs with nonrelativistic velocity, and its adia-
batic exponent is 5/3. Therefore the body as a whole
has an adiabatic exponent between 4/3 and 5/3 and is
in stable equilibrium.

As the energy becomes dissipated, the body con-
tracts slowly. Were there no dissipation, then the
kinetic energy would increase more strongly upon
contraction than the magnetic energy. The disturbed
equilibrium is restored by the conversion of kinetic
energy into magnetic energy at the expense of further
entanglement and stretching of the force lines of the
magnetic field. The volume currents which produce
the magnetic field may turn out to be unstable against
the pinch effect, i.e., the plasma may become com-
pressed in individual sections as a result of attraction
of parallel currents. This gives rise to electric fields
which accelerate individual groups of charged parti-
cles: such phenomena were observed also experimen-
tally in discharges in a rarefied plasma. The body in
question turns out to be a powerful source of cosmic
rays, and the energy acquired by the particle turns out
to be proportional to its charge, if the particles move
with equal velocity in the given electric field.

Finally, when the effects of general relativity are
included during the course of the contraction, collapse
takes place which, according to Layzer, is accompanied
by ejection of part of the mass. During the ejection,
the magnetic lines straighten out, the ejected matter
consists of individual jets or filaments, in which the
plasma is solidly connected to the magnetic field which
is frozen in it and which is stretched along the fila-
ment.

Layzer's paper is for the most part descriptive,
and has few quantitative estimates which are further-
more unreliable. This does not detract from its sig-
nificance: its main statements—the large role played
by the magnetic field in the overall energy balance,*
the slow evolution of an almost-equilibrium state, and
the creation of relativistic particles—are in good

*This point, as already mentioned, is contained also in
Kardashev's paper.



570 Y a . B . Z E L ' D O V I C H and I . D. NOVIKOV

agreement with the general picture of the phenomena
occurring in quasars.

What remains unclear is the question of the rate of
the evolution and the space scale of the magnetic tur-
bulence. We recall that Batchelor's fundamental
theorem concerning the equality of the magnetic and
kinetic energies in a turbulent highly conducting liquid
has not yet been proved.

It is possible that the greatest part of the energy is
contained in the turbulence having the largest space
scale. In such a case another approach is also possi-
ble, namely the analysis of stationary ordered fields
and ordered motion in a gravitational field. One variant
corresponds to convection with a r ise at the equator
and a descent at the poles. The observed data, and
especially the organized ejection of one or two jets
and the regular period of oscillations of the brightness,
favor more readily such an approximation. Another
possible variant is an axially-symmetrical solution
with toroidal magnetic field and rotation of matter
about the axis; the equilibrium state corresponds to
the minimum energy at a given distribution of the
specific angular momentum (per unit mass) and mag-
netic flux through the medium. In the state of minimum
energy, when the conditions for the freezing-in of the
magnetic field and the conservation of the momentum
are satisfied, the angular velocity of different jets may
be different. However, the fact that the energy is mini-
mal denotes the suppression of turbulence by the mag-
netic field in this situation, which leads to an increase
in the duration of such a state.

17. THE ANTI-COLLAPSE HYPOTHESIS

To conclude the article we consider a phenomenon
which is the direct opposite of collapse—anti-collapse.
According to the hypothesis developed in^97-', anti-
collapse may be a source of gigantic energy released
in the processes indicated in Sec. 15.

During collapse, the observer on the surface of a
contracting star will cross after a finite proper time
the Schwarzschild sphere and will reach the central
singularity. We shall consider this phenomenon in a
reversed time sequence. Then the surface of the star,
starting to expand from a point, will cross the
Schwarzschild sphere after a finite proper time and
will continue to expand further. Since, just as in the
case of collapse, the time of reaching the Schwarz-
schild sphere is infinite for an external observer, it
might appear that he will also see the inverse proc-
ess—the expansion from the Schwarzschild sphere—as
an infinitely long process and will, of course, not be
able to see what occurred prior to the emergence from
within the critical sphere.

Actually this is not so. The expansion picture is not
the time reversal of the contraction picture, but follows
in principle a different course.'-98-' The reason for this,
roughly speaking, consists in the following. The phe-

nomenon of attenuation of processes during the collapse
is explained by the joint action of two effects: the slow-
ing down of the flow of time in the strong field and the
(generalized) Doppler effect when the surface of the
contracting star moves away from the observer. Both
effects are so directed as to slow down the processes.
When the surface expands, the Doppler effect acts in
the acceleration direction for the external observer of
processes on the star . This effect turns out to be
stronger than the slowing down of the processes in a
gravitational field. The external observer will see the
evolution starting not from the cooled picture at
R = r g , but will see the entire expansion process,
starting from the point-like dimensions. A more de-
tailed description of the expansion can be found in'-98-'.
Some of the deductions of this work were later repea-
t ed in [ 9 9 ] .

The indicated singularities of collapse and anti-
collapse are connected with the following most impor-
tant property of the spherical gravitational field. The
physical continuation of space-time " ins ide" the
Schwarzschild sphere (T-region) is double-valued.
This was noted for empty space by Finkelstein,'-100-'
and inside a medium in papers'-43'44^. In the case of
one continuation, the motion of arbitrary trial part i -
cles and light rays is directed towards the inside from
the Schwarzschild sphere. In the case of the other
continuation, all motions are directed outward. As
shown in^43'44^, the choice between the two continuations
of the Schwarzschild solution in the T-region is not
arbitrary, and is determined physically by the condi-
tions for the occurrence of this region. If it occurs
when the sphere contracts to dimensions smaller than
the gravitational radius, then all motions in it will be
directed inward. If we specify velocities of matter with
dimensions smaller than rg directed outward from the
very beginning, then in the T-region all the motions
will be directed outward, the light rays will emerge
from within the Schwarzschild sphere and will reach
an external observer. Simultaneous realization in the
T-region of particles moving inward and outward is
impossible. In the T-region in the spherical problem,
the replacement of contraction by expansion is im-
possible. Therefore it is necessary to assume in the
anti-collapse model that the expansion begins from
point-like dimensions.

Let us see, how, in accordance with the anti-col-
lapse hypothesis, we can attempt to explain the quasar
phenomena and other giant explosions. Let us con-
sider a homogeneous isotropic cosmological Friedman
model. We assume that at the instant of infinite density
(in a solution which does not take quantum effects into
account) not all matter began to expand. Some regions
(cores) were retained and in the world time of the
model do not expand for a certain period. This time
delay can be of arbitrary duration and can be differ-
ent for different cores.

This is followed by expansion of these cores and
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the material emerges from within the gravitational
radius, and its energy, by interacting with the matter
which falls from the outside, goes over into energy of
cosmic rays and radiation. It is possible that not all
of the retained matter will expand immediately, but
expansion, of individual shells will take place, i.e.,
repeated explosions and a continuous outflow of matter
are possible. The matter falling from the outside can
be ejected by the core earlier, with a velocity smaller
than parabolic. In addition, in the mechanism for the
conversion of energy of the expanding matter into
other forms of energy, an important role may be
played by the magnetic field, as was pointed out by
B. V. Komberg. In'-97-', a mathematical model is con-
structed, which realizes the picture described above.

We emphasize that the "anti-collapse" hypothesis
is based on ordinary physical laws, without assuming
that they are violated, and to some degree is a de-
velopment of the ideas of V. A. Ambartsumyan con-
cerning the possibility of a prolonged existence of
massive D-bodies and their subsequent explosion.'-12-'
Some considerations in favor of this are advanced

On the other hand, the hypothesis proposed has
nothing in common with the concepts of Hoyle'-36'101-'
concerning the continuous creation of matter (increase
of the baryon charge upon expansion). The gravita-
tional action of the cores, whose expansion is delayed,
remains all the time unchanged.

Some considerations concerning the possible cau-
ses of the delay of the expansion of cores and what
happened to them prior to the onset of the expansion,
as well as other details, are advanced in'-97^. Solutions
of the cosmological Friedman type for a limited mass
were used by N. S. Kalitsyn'-102-' in connection with the
runaway of multiple galaxies; general-relativity ef-
fects during this stage are negligible.

In connection with the anti-collapse hypothesis, it
is advantageous to discuss the relation between
Ambartsumyan's conception and the viewpoint of many
other astronomers.

Ambartsumyan has maintained for many years that
the general trend of cosmological evolution concludes
in the expansion of matter from a certain superdense
state. He presents many observational facts confirm-
ing his theory. The opposite point of view, which is
widely prevalent at the present time, consists in the
fact that the stars of the galaxy are produced by con-
densation from a rarefied gas. Bearing in mind the
well known fact of the overall expansion of the meta-
galaxy (Friedman or Hubble; the choice of the name
depends on what is implied, theory or observations),
the usual point of view must be formulated more ac-
curately: the orthodox astronomer believes that matter
was actually 1010 years ago in a superdense state, but
at that stage the density was with tremendous accuracy
uniform in all of space. During the course of the ex-
pansion, matter reached a very low density

10 10—10 20 g/cm3. During this period the inhomo-
geneities of the density increased, but still remained
small.* Only at the later stage, which occupies the
lion's share of the 1010 years, did the matter condense
into stars and galaxies. Thus, each particle of matter
was originally in a superdense state, then went through
a minimum of density indicated above, and then again
arrived at a state of relatively large density in the
stars . From the point of view of Ambartsumyan, even
stars which are created at the present time are pro-
duced of matter which is in a superdense state. This
matter did not go through a low-density state prior to
conversion into a star .

The anti-collapse theory presented above shows
that this point of view does not contradict in principle
the physical laws of general relativity. The question
of what occurred and what occurs actually and, in par-
ticular, the choice of these two possibilities, should be
solved ultimately by observational data.

The indicated hypothesis can find application also
in cosmology, as a possible variant of the development
of gigantic systems of the type of a finite metagalaxy
(in the limit of an unbounded metagalaxy, cosmologi-
cal anti-collapse is identical with the Friedman model).
As regards the application of the hypothesis for an ex-
planation of quasars and explosions of galactic cores,
although it is capable of explaining the giant release of
energy and does not contradict either the observational
data or the laws of physics, nevertheless its initial
conditions are unusual (superdense state). The authors
believe at present that it is more probable that the
puzzle of quasars will be solved without using such
unusual assumptions concerning the delay of the ex-
pansion. We repeat once more that the last word be-
longs to the observational data.

APPENDIX

GENERAL RELATIONS OF THE ENERGY APPROACH
AND COMPARISON WITH THE FOWLER METHOD [5]

I. Newtonian Theory

Emden's solution with n = 3 is written with the aid
of a dimensionless function of the ratio of the " run-
ning m a s s " m to the total mass M:

r

0
n

= in \ Q/-2 dr,
0

We consider first formulas for a fixed entropy, for
example for S = 0. In this section we shall write

*The first fundamental paper discussing the entire process of
the incipience and development of an inhomogeneity, starting from
the superdense state when quantum fluctuations are important, is
that of A. D. Sakharov.P03] This work was preceded by[104'I05].
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briefly E(p) in place of E(p, S) and d/dp in place of

O/9p) s .
By specifying E(p) we determine the pressure:

y = 1/3 denotes that P = const • p4 / 3 . We write

We substitute this value of E in the general expression
for the energy of the star:

(1.12)

The in tegral in the r ight s ide of (1.12) can be wri t ten
in the following manner (see the definitions at the s t a r t
of the appendix):

^M ~ dm. (1.13)
Qc J Q

E dm-G \ ^ (1.2)

and specify the Emden distribution.
We obtain

J Qc A

F r o m (12.13) we get

( L 1 4 )

m dm
M_
Qc

(1.3)

(1.4)

and the expression for the equilibrium energy, substi-
tuting (1.14) in (1.11) and putting 1/p = v, is

Me0
<£<•=— 3 f — dm+ { fdm= { (AE—3vAP)dm. (1.15)

0
The f i r s t -approximat ion energy and p r e s s u r e satisfy
the re la t ion

where a and /3 are dimensionless numbers,

and, going over to the d imens ion less integrat ion v a r i -
able z,

elh, d.5)

(1.6)

We obtain the equilibrium mass Me0 (e for equilibrium,
0—without corrections):

(1.16)

Consequently, we can add (1.16) to the expression
under the integral sign; we obtain

%e= \ (E — 3vP
b

dm. (1.17)

We finally introduce, following Fowler, the dimension-
less quantity

6 = 3fe = S ' *-3«* = ^ = <e-l)*: (L18)

For a mass close to equilibrium M = Me + JX, we get,
expanding in a series,

the latter equality follows from the fact that we as -
sume that e — 1 « 1 and the entire theory is construc-
ted in first order in e — 1:

(1.8)
= (e —1) f E dm

where k denotes (2/3)|3GMe
/3 . We introduce an a r b i -

t r a r y smal l co r rec t ion to the equation of s ta te

\ (8 —

= (e— 1) \ Eo dm= (E— Gmdm (1.19)

This express ion coincides with the express ion of
Fowler . We p re sen t i ts derivation:

A£ = /(Q), AP = Q2/'(Q). (1.9)

The cor responding cor rec t ion to the energy of the s t a r
is

M M
f(Q)dm= \ f(Qcty(z))dm. (1.10)

o i

We a s s u m e the co r rec t ion to be smal l , and also pi = M
- M e to be smal l , calculate the co r rec t ion for M = M e 0 ,
and add it to the change in energy due to the deviation
of M from M e ; we obtain [the constant k is defined by
formula (1.8)]

We t ransform the f i r s t in tegral by p a r t s

E dm= \ EQdv = — f v d (EQ) = — 3 f y

U-21)

In the r ight side of the f i r s t in tegra l , Fowler subs t i -
tutes the express ion for d P from the equi l ibr ium equa-
tion

dP= QGmdr- Gmdm (1 99\

The second in tegral is neglected by Fowler , and the
final express ion is

Gmdm Gmdm Gmdm Gmdm

We obtain the equil ibrium condition: (1.23)
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When e = const, the expression coincides with ours,
but when e = e(m) neglecting 4TTJ r3Pde results in an
error of the same order as the effect in question; as
a result, the averaging of e in Fowler's answer leads
to an incorrect law, with a weight m dm/r in place of
the weight E dm ~ P dv. It is more important, how-
ever, that Fowler confines himself to an examination
of <f e(Pc). whereas the complete understanding of the
equilibrium, of its stability, and of other properties
calls for knowledge of the entire function, which is of
two or three variables % (M, pc) when S = 0 or
% (S, M, pc) near equilibrium.

II. GENERAL RELATIONS BETWEEN if e and g.

A general property of the problem is the fact that
in the zeroth approximation the energy is proportional
to p1//3, with the coefficient vanishing for the state of
neutral equilibrium. Thus, the general formulation of
the problem is as follows: for a cold star when S = 0
and y. = M — Me we have

p'(r), «.= - £ ,

and for a hot star when M = const and s = S — Se we
have

g=6seJ
/34-cp(ec). (II.2)

The function cp, if account is taken of only the correc-
tions for the equation of state, is given by the expres-
sion

<p (QC) = i — \)Edm , (11.3)

and the integration is carried out along the Emden
curve n = 3 of the zeroth approximation for M = Me

or S = Se, with a single free parameter p c , on which
it indeed depends. Taking into account the correction
for general relativity (see III below):

i— 3Pv)dm — 0.93 [ Qlh ^VoiQc) —const
(H.4)

the form of the function cp changes, but the character
of the Eqs. (II.2) does not change. In formula (II.4),
cp0 is the quantity calculated with the aid of (II.3) with-
out account of general relativity, and the meaning of cp
is seen from formula (II.4) itself. The formulation of
the problem consists in the following: we are given an
equation, for concreteness (II.2), with % (s, p c ) ; we are
required to find <f e (p c ) from the equilibrium condition
and to find the limit of the existence of equilibrium
configurations. It is convenient to introduce x = p1 '3

as the variable. We obtain*

*It is curious that the correction for general relativity is pro-
portional top^ ~ x2 and is negative for the given configuration"
AS = —nx2, therefore /S%e = —x cp1 + cp = + nx2. The correction for
general relativity in the equilibrium energy A$e is positive and
is equal in magnitude and opposite in sign to the correction to the
energy for the given configurationAig'.

Aif= — A£e.

e(X)= — X *)= — dx V x (II.5)

The condition for the limit of existence of the solutions
is a horizontal inflection:

dQ de2 dx ~~ dx* ~ '

<p" (*„) = ()

(H.6)

(II. 7)

(II. 8)

In this case (II.8) makes it possible to obtain x c r , i.e.,
the critical density, and after this (II. 7) gives the value
of the entropy on the critical curve (or the critical
value of the mass /i in the analogous problem with
fixed entropy and variable mass). We note that

= -zcp" (x)-q )= -zq>" (*)= -x 3^§

Consequently, the condition for a horizontal inflection
on the curve if (x, s) when s = const coincides with the
condition for the minimum of the curve in Fig. 5

ife(z) = g(z, se(x)).

The stability of the given equilibrium state depends,
obviously, on the sign of 92 if/9x2 at the point where
9 <£/9x = 0. It follows from the formula that on the
descending branch of the if e(x) curve the solutions
are stable: 9 5fe/9x < 0, 82if/9x2 > 0; this proves
formally the statement made in Sec. 2.

in. CORRECTIONS FOR GENERAL RELATIVITY

We present first an expression for the correction
for the energy in a given arbitrary configuration of
matter, which does not correspond, generally speaking,
to equilibrium. We assume that the matter is at rest
at any given instant, i.e., the instantaneous velocity is
equal to zero, but the instantaneous acceleration, gen-
erally speaking, is not equal to zero, since there is no
equilibrium.

We must take into account the dependence of the
density of the mass on the energy. The density of the
rest mass will be denoted by n, and the density which
includes the energy by p; then p = n(l + E/c2), where
E is the specific energy (in excess of the rest mass)
per unit rest mass.

We must take into account the fact that the space
is non-Euclidean:

r
= 4n \ r^ dr > j

where r stands for the "coordinate" radius, such that
the length of the great circle is 2TTT, and the surface
of the sphere is 47rr2. An invariant characteristic of
the configuration occupied by the given total number
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of baryons is the function n(V), where V is the running
volume. Equilibrium corresponds to the extremum of
the observed mass of the star

R

at a given rest mass
R

N — \ n(V)dV
0

and at a given entropy, which determines the relation

n).

Reckoning the energy from the rest mass of the
star, we obtain

This expression must be compared with the Newtonian
expression

where m' is the running "Newtonian" mass (calculated
without corrections for the energy dependence of the
mass), r'—"Newtonian or Euclidean" radius, and

v
dm'=ndV, m'= \ ndV, r ' = 1/ ~ V-

b
The correction for general relativity is defined as the
difference A $ = % - % n , and we calculate the first
nonvanishing term in the expansion in powers of G.
Obviously, the dimensionless parameter is

and the er ror due to this will be of higher order of
smallness:

m*dm

m dm

The integrals are taken over the entire mass of the
star, while the inner integrals in I3, I4, and I5 are taken
from the center to the running m or r . They are a r -
ranged in the order that follows naturally from formu-
las (III. 1)—(III.4). This expression for A% greatly
simplifies when applied to the equilibrium distribution
of the gas with adiabatic exponent y = 4/3, i.e., when
taking into account

~ Q ' dr ~ W '

In this case, after making several integrations by
parts, we obtain

and ultimately Ag = (2/3)Ij + 3I2. This expression,
coincides exactly with Fowler's co r r ec t i on^ taken
with the opposite sign A% = - A<£ e .

Using now Emden's function with n = 3 for the cal-
culation of the integrals, we obtain ultimately

The ratio E/c2 ~ P/pc2 is of the same order as r g /R .
The first-order terms in G have already been included
in the Newtonian approximation.

We use the only relation which is valid in the ab-
sence of equilibrium:

2CmV/i „ Gm
J 1

With the required accuracy, we obtain

m(r'—r) (III 2)

Using these relations, we obtain ultimately the correc-
tion in the form of a sum of five integrals, in which
we can always identify the density, volume, and radius
with the corresponding Newtonian-Euclidean quantities,
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