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INTRODUCTION

A characteristic feature distinguishing a plasma
from other media is the strong dependence of its
properties on the external fields. The presence of an
external magnetic field in the plasma gives rise to
anisotropy of its electrodynamic properties; this
anisotropy is manifest in dispersion and polarization
of the waves propagating in the plasma.

Owing to fluctuations, various waves are always
present in the plasma; under thermodynamic equilib-
rium, the amplitudes of such fluctuation waves are de-
termined by the temperature of the plasma. In the
non-equilibrium case the amplitudes of the fluctuation
waves can be determined only if the distribution func-
tions of the plasma particles are known.

The interaction between the waves (manifest in the
nonlinearity of the equations describing the plasma)
makes it possible for the waves to become scattered
and for some types of waves to be transformed into
others. In a non-equilibrium plasma the intensities
of the scattering and transformation processes can
become anomalously large if the state of the plasma
is near the borderline of the instability region.

A study of the scattering and transformation of the
waves can serve as method of plasma diagnostics (de-
termination of the parameters that characterize the
state of the plasma).

The study of the foregoing processes is important
also in connection with a number of astrophysical and
radiophysical problems (sporadic radiation from the
sun, radio emission from planets, scattering of radio
waves in the ionosphere, etc.).

The investigation of the electrodynamic properties
of a plasma in a magnetic field has been the subject of
a large number of papers (see l-1"8^). This exclusive
interest is connected essentially with the possible ap-
plications of a magnetoactive plasma for numerous
purposes.

The present review is devoted to a theoretical in-
vestigation of the electrodynamic properties of a ho-
mogeneous magnetoactive plasma. Kinetic theory is
used to analyze the propagation of waves and the exci-
tation of waves by external currents in a magnetoac-
tive plasma, to investigate the fluctuations of various
physical quantities characterizing the state of a mag-
netoactive plasma, as well as the scattering of waves
and their mutual transformation by fluctuations in the
plasma.

1. ELECTRODYNAMIC PROPERTIES OF A MAG-
NETOACTIVE PLASMA

1. Dielectric Tensor

The behavior of a homogeneous plasma in an exter
nal magnetic field, neglecting collisions, will be de-
scribed by kinetic equations for each species of par-
ticles making up the plasma,

d\

and the system of Maxwell's equations
> г 1 анrotE = —,

с dt '

divH = 0,
1 in

с

(1.1)'

(1.2)t

where F(v, Г, t) is the distribution function of the par-
ticles of the particular species, e and m the charge
and mass of the particles, E and H the electric and
magnetic field intensities in the plasma, and p0 and j 0

the densities of the external charges and currents. The
densities of the induced charges and currents are

(1.3)

(the summation is over the particle species).
Confining ourselves to small-amplitude waves in

the plasma, we represent the function F in (1.1) in the
form of a sum of the initial distribution function F0(v)
and the deviation f (v, r, t) connected with the propa-
gating wave:

F = F0 + f, f«F0. (1.4)

Expanding the distribution-function and field deviations
due to the wave in Fourier integrals in terms of plane
waves:

r ' ^ =
'~ia1 dkda> 1 • 5 )

etc., we obtain from (1.1) the following linear differen-

tial equation for the Fourier component of the d i s t r i-

bution function fko)(V) :

i ( a . - kv) / t o + -L ( Е к и + i [vHku)]

- = 0;
(1.6)

*[vH] = v x H.
trot = curl.
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Ho is the intensity of the external constant and homo-
geneous magnetic field. Integration of (1.6) yields

mag

dv

exp [-i- ^ (kv-co)dcp] jj (Ek ( 0 + -i-[v[kEk(0]])
н о

[ ~~J-\ (kv~w)dq>] dq, (1.7)

where шц = eH0 /me is the cyclotron frequency for
the particles, and q> is the angle between the planes
(k, Ho) and (v, Ho). In (1.7), the value of the integral
is taken at the upper limit, and it is easy to verify that
the periodicity condition fko>(<P + 2тг) = fyiu>(<p ) is
satisfied.

Substituting (1.7) in (1.3), we obtain the Fourier
component of the density of the partial current

j k w = - i « £ t o (1.8)

where к = KJJ( w, k) is the polarizability tensor* com-
ponent due to the particles of a given species:

ф

x,-) (со, к) = i —— \ vt exp Г —— \ (kv — со) dw 1

(1.9)

exp \ (kv — со) riqp йф dv.

Integrating in (1.9) by p a r t s and using the expansion

eia sin « = 2 / n (a) e i n *
n

( J n ( a ) —Bessel function), we can represent the par-
tial component of the polarization tensor in the

f o r m [ i o , u ]

3F0 dFa

dv i

X
>> v)

(0 — Пии — /
dy j~- , (1.10)

where fi2 = 47rnoe
2/m is the square of the Langmuir

frequency for particles of a definite species, vy and
vi are the components of the particle velocity parallel
and perpendicular to the magnetic field Ho, respec-
tively, h is a unit vector in the direction of the exter-
nal magnetic field Ho, and the components of the ten-
sor IIij(n,v) are

Uu(n,y) =

and

; -In
П(ЛН

JnJ'n V\j •
\

v^^-Л

n = Jn (a), J'n =

(1.11)

SJn (a)
da И a =

к | v.

*The dependence of the polarizability on к was first introduced
inW.

The tensor (1.10) is expressed in a coordinate system
in which the z axis is directed along the external mag-
netic field Ho and the x axis lies in the plane of the
vectors к and Ho.

The path-direction rules for the integrals in the ex-
pression for the polarizability tensor (1.10) can be
easily established by introducing in the right side of
the kinetic equation (1.1) a collision integral in the
form - y ( F - F 0 ) , where v is the effective collision
frequency, and letting v go to zero in the limit. For-
mally such a procedure leads to substitution of w + io
for w in (1.10).

The system of Maxwell's equations (1.2) can be
transformed with the aid of (1.8) to

r i ^ - = _ i ^ ^ < L , (i.i2)

in which the vectors
relation

D and E are connected by the

Dk 0 ) = eEk w, (1.13)

where e = £ц(и>, к) is the dielectric tensor of the
plasma:

tij (со, к) = 6;7- + 4л 2 и а ( ш ' к)- (1.14)

The dielectric tensor defines completely the elec-
trodynamic properties of the plasma. If we know the
explicit dependence of the dielectric tensor on the fre-
quency of the wave vector, then we can use (1.12) and
(1.13) to find the dispersion equation, which deter-
mines the types of waves propagating in an unbounded
magnetoactive plasma and their characteristics.

2. Dielectric Tensor in the Case of a
Maxwellian Particle Distribution.

It is easy to calculate the dielectric tensor in ex-
plicit form for an equilibrium plasma or for a noniso-
thermal plasma in which the particles are character-
ized by Maxwellian distributions with different tem-
peratures. Choosing as the unperturbed distribution
functions in (1.10) the Maxwellian functions

,)V^ ( 1 Л 5 )

with different temperatures for different plasma com-
ponents, and integrating over the velocities, we obtain
ultimately the following expression for the dielectric
tensor of a magnetoactive plasma'- -I:

(со,

where

) = 6jj — 2
_Q2_

(1.16)

(1.17)

In-h)

- in (/;_/„) - i

Vj nz«I" JT-\ VW*n (In -
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<p (2) = ex* dx,

(1.18)

!n = M/ 3 ) —modified Bessel function, I n = 9In(/3 )/Э/3,

V/3~ = kj_s/V 3WJJ, s = V 3T/m —mean-square particle
velocity, and

3. Dispersion Equation

The different types of plane monochromatic waves
propagating in a plasma, E(r,t) = E exp (ik-r - iwt),
differ from one another in the frequency dependence of
the phase velocity (dispersion) and in polarization. To
find the dispersion and polarization of the waves in a
magnetoactive plasma, we shall use Eq. (1.12), in which
we put j 0 = 0. Introducing the refractive index 77 = kc/o>
and the unit vector к = к/к in the wave propagation di-
rection, we can write the wave equation in the form

where

Л,;(ш, k) = - 8tJ) + etJ (ш, к).

(1.19)

(1.20)

The vector equation (1.19) has solutions that differ
from zero if the determinant made up of the elements
of the matrix (1.20) vanishes:

Л(ш, к) = | = 0.

The condition (1.21) is the dispersion equation. The
roots of this equation determine the dependence of the
refractive indices TJ on the frequency, or else the nat-
ural frequencies of the different waves in the plasma.

Using (1.20) we can represent the dispersion equa-
tion in the form

(1.22)

where

A = е и sin2 ft + 2e13 sin ft cos * + e33 cos2 ft,

В = — (еие22 + e2

2) sin 2 ft + 2 ( e ^ e ^ — 822613) sin * cos ft —

— (622833 + e|,) cos4 ft — еибзз + е*„

С = ] j 2

t? is the angle between the wave propagation direction
к and the magnetic field Ho.

In the general case the determinant A is a com-
plex function of ш and k, and therefore the condition
(1.21) reduces to the requirement that the real and
imaginary parts of A vanish separately:

ReA(co, к) + ПтЛ(о), k) = 0. (1.23)

In the transparency region of the plasma (the region
of ш and к in which the antihermitian part of the di-
electric tensor is small compared with the hermitian
part), the imaginary part of A is small compared
with its real part. Therefore, neglecting damping of

the waves, the dispersion equation can be approxi-
mately written in the form

Re A (to, k) = 0. (1.24)

By determining from (1.24) the natural frequency ш
of the wave and assuming the damping to be small
(y « w) we can easily find the damping coefficient
of the wave with the aid of (1.23):

Im A (a), k)
(1.25)

We introduce a matrix \ц, whose elements are the
co-factors of the elements of the matrix Ajj. By defi-
nition,

The elements of the matrix A.jj are expressed in terms
of the elements of the matrix Ajj by means of the for-
mula

i
™ij = = "o~ &ihl£'jmn**-mhi*nli (1.^7)

where €jy is a fully antisymmetrical tensor. It is
easy to verify directly that Im A can be expressed in
the transparency region of the plasma in terms of the
hermitian part of the matrix Xjj and the antihermitian
part of the dielectric tensor ejj:

(1.28)

4. Wave Polarization

Comparing (1.26) with (1.19), we see that for a wave
with dispersion law (1.21) we can choose as the polari-
zation vector

et = (1.29)

where a is an arbitrary unit vector and С is a con-
stant determined from the normalization condition
e-e*= 1.

We shall show that relation (1.29) determines the
wave polarization vector accurate to a phase factor.
We note first that at all frequencies the matrices A.jj
and Л^ are related by

hj^hi = Kihj + AzthmeJlnAnm. (1.30)

(The correctness of (1.30) can be readily verified by
multiplying the left and right sides of the equality
Acabc = CmnpAmaAnbApc by (l/A)\ajA.bZekic.)

At frequencies satisfying the dispersion law A = 0,
relation (1.30) simplifies to

hfihi = hi i^kj. (1.31)

Neglecting in the transparency region of the plasma
the antihermitian part of \jj, we can readily derive
from (1.31) the equality

(1.32)
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where a and a' are arbitrary vectors. We note also
that for the arbitrary vectors a and a' the scalar
products (a\a) and (а'Яа') have the same sign:

2. (1.33)

(In particular, the signs of the diagonal elements of
the hermitian part of the matrix \jj are identical.)

Using (1.31), we can write for the normalization
constant in (1.29)

C = {(aAa)SpX} 2.

Consequently the normalized polarization vector for a
wave with dispersion (1.21) is

Jla

У (a5ia) Sp X
(1.34)

According to (1.32), the product ejej is invariant to
change of the vector a, therefore an arbi t rary r o t a -
tion of the vector a can lead only to a change of the
phase factor in (1.34).

5. Energy Flux Density

Other important characteristics of waves in a plas-
ma are the average energy density W and the average
energy flux density in the wave propagation direction S.
In a dispersive medium, the energy density is given

by [12]

We see that neglecting the thermal motion of the plas-
ma particle leads to the absence of spatial dispersion.
According to (2.1), a plasma in a magnetic field is an
anisotropic and gyrotropic medium even in the absence
of spatial dispersion.

Neglecting thermal motion of the particles in the
plasma, the dispersion equation is of the form

= 0, (2.3)

Ao = e, sin2 ft + e3 cos2 ft,

fi0=-[(e?-82

2)sin2ft + e1e3(l + cos2ft)], } (2.4)

where the coefficients Ao, Bo, and Co are independent
of 7} by virtue of the absence of spatial dispersion.
Therefore (2.3) can be directly solved with respect to
7), and this yields by the same token the dependence of
the refractive indices of the electromagnetic waves in
the plasma on the frequency and on the wave propaga-
tion direction. Equation (2.3) has two different solu-
tions:

n 2 — -
T l o , e

(ef — e|) sin2 ft + ets3 (1 + cos2 ft)

± У(ef — e | — e i e 3 ) 2 sin* ft + 4e!e! cos^ft

2 (ei sin2 ft + e3 cos2 ft)
(2.5)

The average energy flux density is connected with W

by

S = uW, (1.36)

where u = dw/dk is the group velocity of the wave.

2. WAVES IN A MAGNETOACTIVE PLASMA

1. High-frequency Waves in a
Magnetoactive Plasma

Both high-frequency and low-frequency weakly -
damped waves can exist in a magnetoactive plasma.
To determine the frequency spectrum of weakly damped
waves in a plasma it is necessary to use in the general
case the expression (1.16) for dielectric tensor.

At high frequencies w » ks, the thermal motion of
the particles can be neglected. The dielectric tensor
of the plasma takes then the form

— ге2 0\
8, 0 , (2.1)

0 e,/

where

which determine the refractive indices of the ordinary
(TJQ) and extraordinary (TJ!) electromagnetic waves
in the plasma.

In the general case, for an arbitrary propagation
direction (relative to the magnetic field), the electro-
magnetic waves in the plasma are not transverse and
are characterized by elliptic polarization. For elec-
tromagnetic waves with specified frequency, the com-
plex polarization vectors can be chosen in the form

e2
*12 sin ft cos ft

(2.6)

(<p is the azimuthal angle of the vector* k).
If thermal motion of the particles is neglected, the

tensor (2.1) is hermitian and there is no damping of
the waves. Taking into account the antihermitian part
of the tensor (1.16), we easily obtain with the aid of
(1.25) the imaginary part of the refractive index, which
determines the damping of the waves in the plasma:

if = у e*ee). (2.7)

In the presence of a magnetic field, the electromag-
netic waves in the plasma do not separate, strictly
speaking, into longitudinal and transverse. However,
if A = (кек ) — 0, then the longitudinal component of
the electric field will be much larger than the trans-

*We shall henceforth find it more convenient to use non-normal-
ized polarization vectors.
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verse component. This can be readily verified by
multiplying (1.19) by K:

(2.8)

We see therefore that for purely longitudinal oscilla-
tions in a plasma (Ex = 0) two conditions should be
satisfied: Л = 0 and A = 0. In the general case these
conditions are not satisfied simultaneously. However,
in the frequency region for which rf is very large, it
is necessary to retain in the dispersion equation (1.22)
only the term with the highest power of rj2, and then
the dispersion equation reduces to the condition A = 0.

Using (1.16) we can write the dispersion equation
for longitudinal waves in a magnetoactive plasma in
the form
A =! + S -ш {*-«""''2 it

(2.9)

If kx = 0, then /3 = 0 and the dispersion equation (2.9)
has the same form as in the absence of a magnetic
field; consequently, the magnetic field does not influ-
ence the longitudinal waves propagating in the plasma
along the field.

Neglecting the thermal motion of the particles, the
dispersion equation for longitudinal waves takes the
form

-

°—
sin2fl —=Vcos2d = 0. (2.10)

From (2.10) we get the natural frequencies of the lon-
gitudinal waves in the plasma:

>s2d. (2.11)

These frequencies correspond to Langmuir oscilla-
tions of a plasma in a magnetic field.

The dispersion of the Langmuir oscillations can be
found by taking into account the thermal corrections to
the dispersion equation. The refractive index of the
Langmuir waves is

41=4-. (2Л2)

where
со*

(со2—о

Ю 2 6(0* — ЗйАо]

s i n 4 *

(CO2 —CO?,) 3 (2.12')

1 — e0>

2 = eo{ 1 — | - ^ [«p (z)

Щ [ i f ^

Using (2.9), we can also readily find the damping of
the Langmuir waves:

з = 3e 0

«is = 0,

«23 =

у _
со

(2ЛЗ)

By virtue of the longitudinal character of the Lang-
muir oscillations, the polarization vector is equal to

e = x. (2.14)

Let us determine also the average energy flux den-
sity in the propagation direction of a high-frequency
wave in a plasma. For the ordinary and extraordinary
waves, the spatial dispersion is immaterial, therefore
S can be determined directly by calculating the projec-
tion of the Poynting vector on the wave propagation
direction K:

S = ~ т|£ | E |2, (2.15)

where f = |e |2 - | к - e | 2 .
In the case of Langmuir waves, the energy trans-

port is connected with spatial dispersion, therefore to
find S it is necessary to use the general relation (1.36).
We note that for Langmuir waves the group velocity
and the energy density are equal to

dm
У — 8я El (2.16)

We thus obtain for the energy flux density in the wave
propagation direction

(2.17)

where
dA0

dco2

and r? and Ao are determined by (2.12) and (2.10).

2. Low-frequency Waves in a
Magnetoactive Plasma

In a magnetoactive plasma there can exist also
weakly damped waves in the low-frequency region of
the spectrum C13~16]. To find the natural frequencies
of the plasma in the indicated region, we shall use the
low-frequency values for the components of the tensor
€.. (ш « uiU. ks.. « a)!,):

)] sin2fl},

1 ) J cos"2 fl,

2)] tg 0,

(2.18)1

*tg s tan.
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where

Qf м

We present also expressions for the components of the
electronic part of the plasma polarizability tensor in
the low-frequency region

4л Л/
e0

4л

4я

= 3 -

" " - * 4 Я со

Substituting (2.18) in (1.21) we can represent the
dispersion equation in the low-frequency region in the
form

(T)2 COS2 ft — eu) [(if — E22) e33 — e^] + 2т12е12£2з s i n © c o s ©

+ E * 2 E 3 3 + . . . = 0 . (2.20)

It is easy to verify that in (2.20) the second and third
t e r m s are smaller than the first by a factor (w/oijj)2

and (ksj/wjj) 2, respectively. In the case of a suffi-
ciently strong magnetic field these t e r m s can be ne-
glected, and then the dispersion equation breaks up
into two independent equations:

•n2cos2fl — в и =
2 — 622)^33 — 633 = (2.21)

The first equation of (2.21) determines the refrac-
tive index of the Alfven wave:

fi 1 (2.22)

Expressing rj in terms of к and w, we can rewrite
(2.22) in the form

со2 = k2v\ cos2 ©, (2.23)

Taking into account the discarded terms in (2.20), we
can find the thermal corrections to the phase velocity
and the damping of the Alfven wave:

CO • О ,It I cos ft I

(2.24)*

The polarization vector of the Alfven wave is

e = 1, -i-
at? sin ft cos ft

(2.25)

The second equation of (2.21) determines the r e -
fractive indices of the magnetic-sound waves. The
roots of this equation depend in essential fashion on
the relations between the thermal velocities s and S
of the electrons and ions and the Alfven velocity уд.

(2.19)

cos'

If s 2 « у д « s 2 then, using (2.18), we obtain from
(2.21) in first approximation the dispersion of the fast
magnetic-sound wave:

2 * 9 7 9 2 to Ofi\

The thermal corrections to (2.26) can be obtained by
successive approximations:

ш2 = /cVA + - | /c2s? (\ + 4Л sin2 0. (2.27)

The damping of the fast magnetic-sound wave is

со
sin2 ft

2 V 6 M vA I cos ft I

The polarization vector is given by

s
" A

(2.28)

{ ft) i f S? OJ 1

— г '~Г^тт5> 1, — г 4 " ^ - —i~ s i n ̂  c o s * Г • (2.29)СОд Sin2 ft ' 3 v\ b>H J V

When T e » Tj. the second equation of (2.21) has
one more solution, corresponding to weakly damped
nonisothermal soundwaves (slow magnetic-sound
wave). Assuming that Sj « w/k | cos £ | « s, we can
obtain from (2.21) the following solution:

1
COS2 ft '

T
~ M

(2.30)

(2.31)

(2.32)

(2.33)

The average energy and energy flux density for low-
frequency waves in a plasma can be easily obtained on
the basis of the general relations (1.35) and (1.36). In
the case of the Alfven and fast magnetic-sound waves,
almost all the energy is connected with the electromag-
netic field of the wave.

or else

со2 = k2v\ cos2 ft.

The damping of the nonisothermal sound is

X= л/jLIL
со V 8 M '

The polarization vector is given by

) , COS ft

*ctg = cot. (2.34)
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1 c I V I

= 8л-1А-|Е1
= -±- — |E| 2. (2.35)

In the case of the slow magnetic-sound wave, the kinet-
ic energy of the plasma particles is larger than the
field energy by a factor vA/v|. The average energy
and energy flux density are determined by the expres-
sions

W = - * " . cos 0 . (2.36)

3. EXCITATION OF WAVES BY EXTERNAL CUR-
RENTS IN A MAGNETOACTIVE PLASMA

1. Excitation Intensity

Electromagnetic waves can be excited in a plasma
by external current whose energy is transformed into
energy of the electromagnetic field and kinetic energy
of the plasma particles. The determination of the in-
tensity of excitation of various waves by external cur-
rents may be of practical interest in connection with
a study of the feasibility of high-frequency heating of
a plasma and the use of a plasma pierced by a beam
of charged particles as a source of microwaves.

In analyzing the excitation of waves in a plasma, we
start from Eq. (1.12), assuming that the external cur-
rent j 0 is specified. With the aid of Maxwell's equa-
tions it is easy to determine the increase of energy in
the entire plasma volume per unit time, i.e., the inten-
sity of the excitation of the waves in the plasma:

In the case of an unbounded plasma, the surface inte -
gral in (3.1) vanishes. Using complex notation, we can
write the excitation intensity for an unbounded plasma
in the form

/ = - • ^ jJErfr. (3.2)

The total energy transferred from the current to
the plasma is determined by integrating (3.2) with re-
spect to the time:

P = - i - R e (3.3)

Expanding the external current j 0 and the electric
field of the excited waves E in Fourier integrals in
plane waves, we represent the transferred energy in
the form

(3.4)

The electric field intensity, is connected according to
(1.12) with the exciting current by

4л:
Г Я jkffl."*«>- a>A(co, k)

Since the external field excites plasma waves for
which the following relation holds

(3.5)

Xij = e,e* Sp X,

we get

( 3 - 6 )

Since Sp Л is real, we can rewrite this formula in the
form

The quantity Im Л can be related to the magnitude
of the electric loss in the plasma, defined by the ex-
pression ^

Indeed, according to (1.28) and (1.34) we have

( 3 - 8 )

(3.9)

Since, by virtue of the increase of entropy, Q > 0 for
thermodynamically stable systems, it follows from a
comparison of (3.9) with (3.8) that

(3.10)

Taking this condition into account and noting that
| Im Л | / | Л | 2 — 7гб/А in the transparency region of
the plasma, we ultimately obtain for the total energy
transferred from the current to the plasma

The case of greatest interest is when the external
current depends harmonically on the time

jo(r, t) = jo(T)e-™°1.

In this case the Fourier component is equal to

j K o , = 2ji6(ci> — (O 0)j k. (3.12)

Noting that

T
б 2 (со — co0) —>• ~^ б (со — co0),

where T is the interaction time (T — °° ) we obtain
from (3.11) for the average energy transferred by the
external current to the plasma per unit time:

/ = т=~k 11 ¥ 11ej£ |2 6 {A(w°'k» dk- ( злз )

With the aid of this formula we can consider the exci-
tation of both low- and high-frequency waves in a mag-
netoactive plasma'-17'18-'.

2. Excitation of High-frequency Waves

By way of an example, let us consider excitation of
high-frequency waves by an external current in a mag-
netoactive plasma. For high-frequency waves
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(3.14)

therefore the total excitation intensity (3.13) is the
sum of the excitation intensities of the ordinary, ex-
traordinary, and Langmuir waves:

(3.15)

The radiation conditions in (3.15) reduce to the re-
quirement that the squares of the refractive indices be
positive for the excited waves. We note that in the case
of excitation of the Langmuir waves it is essential to
take into account the spatial dispersion (the dependence
of A on k). Let us consider several particular
cases'-19-'.

a) Surface current. If a surface current j 0 (r)
= jo6(z ) flows in a plane perpendicular to the external
magnetic field, the waves excited by this current prop-
agate only along the external magnetic field Ho. Then
к • j 0 = 0 and consequently no Langmuir waves are ex-
cited. The intensity of excitation of the ordinary and
extraordinary waves, per unit surface current, are
equal to

(3.16)

From the condition rjo.e > 0 it follows that for ex-
citation of the ordinary wave the frequency w0 of the
external current should be either smaller than шц, or
larger than wH/2 + (шд/4 + п2)1^2, whereas the ex-
traordinary wave is excited by a current whose fre-
quency satisfies the inequality

The excitation intensity, defined by (3.16), becomes
infinite when rjo,e ~~* °- T h i s condition is satisfied at
frequencies

Шо= V -г (3.17)

Formula (3.17) determines the frequencies at which
strong transfer of energy from the external current to
the plasma takes place.

b) Linear current. If a linear current jo(r )
= jo6(x)6(z) flows in a plane perpendicular to the
intensity of the external magnetic field, then the ex-
cited waves will propagate in a plane perpendicular
to the direction of the external current j 0 . No Lang-
muir wave is excited by the current, and the differen-
tial intensities of excitation of the ordinary and extra-
ordinary waves per unit length are equal to

(&l 0. R Т~п '
COS2 d +

(18, e -

sin* ft cos" d
- E 3 ) 2

, (3.18)

where T)o,e is determined by expression (2.5) with
w = w0. We recall that the frequency of the external
current o)0 should satisfy the condition т)о,е > 0.

The intensity of excitation of waves along the mag-
netic field U = 0) is

(3.19)

If t̂  = тг/2 and e2 - €2 - £i€3 > 0, then the excitation
intensity of the ordinary wave is twice as large as
the intensity (3.19), and the excitation intensity of the
extraordinary wave is equal to zero. In the case when
el ~ e2 ~ е1ез < ° t n e situation is reversed.

c) Radial current. Assume that a current whose
density is given by the expression

jo(r)=
0,

where J is the total current flowing through any circle
concentric with a circle of radius r0, flows in a plane
perpendicular to the magnetic field Ho.

The intensity of excitation of the ordinary or extra-
ordinary wave is

^О^-Я^Гз^е

(3.20)

where J0(x) —Bessel function of zero order.
The radial current excites also Langmuir oscilla-

tions. The excitation intensity of the Langmuir wave
is equal to

Л do, (3.21)

where TJ^ is the refractive index of the Langmuir
wave (2.12) at ш = w0. According to (3.20) and (3.21)
the intensity of excitation of the Langmuir wave is
c2/s2 times larger than that of the ordinary or extra-
ordinary wave.

4. FLUCTUATIONS IN A MAGNETOACTIVE PLASMA

1. Correlation Functions

We proceed now to consider random fluctuations of
various physical quantities in a plasma situated in an
external magnetic field. We assume that the plasma is
homogeneous and stable. We consider first the fluctua-
tions of the current in a magnetoactive plasma. Let us
define the partial current density by means of the re-
lation

(4.1)

where r(t) and v(t) are the radius vector and the ve-
locity of some particle at the instant of time t, and the
summation is over all the particles in a unit volume.
We assume that the mean value of the current is zero
in the absence of external influences.
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To describe the fluctuations, one usually introduces
correlation functions, defined as the mean values of the
products of the fluctuation of the quantities at different
points of space at different instants of time. If the me-
dium is spatially homogeneous and we consider station-
ary states of the system, then the quadratic space-time
correlation function will depend only on the relative
distance and the absolute value of the time interval be -
tween the points at which the fluctuations are consid-
ered

ih ('i. h) jj (r2, t2)) = inii)*, t, (4.2)

where Г = r 2 - r t and t = t 2 - t t . The brackets ( . . . )
in the right side of the equation denote the operation
of statistical averaging. Formula (4.2) should be r e -
garded as a definition of the space-time correlation
function (Ji j j)r ) t .

The spectral distribution of the space-time corre-
lation function is defined by means of the equation

(4.3)

It is obvious that the mean value of the squared prod-
uct of the Fourier components of the fluctuating quan-
tities is connected with the spectral distribution of the
correlation function by the relation

(jt (к, со) /,• (к', о')) = (2я)4 б (и - и') б (к - к') </(/iW (4.4)

If we neglect the interaction between the electrons
and the ions in the plasma, then the correlation func-
tions for the electron and ion currents can be easily
obtained on the basis of a direct microscopic calcula-
tion C5>20'21]. Indeed, in this case the separate particles
move in the plasma along helical lines:

R(0

(4.5)

where r 0 is the radius vector, V^ and Уц are the ve-
locity components perpendicular and parallel to the
magnetic field, and a is the phase at the initial instant
of time t = 0.

Substituting (4.1) in (4.2) and noting that the mean
value of the current is zero, we get

</̂ )?< = <Se2^(0)^(<)6{ro + R(0)}6{r-r 0 -R(0}). (4.6)

Introducing the single-particle distribution function
FQ(V), we can rewrite the correlation function (4.6)
in the form

(UU)°rt = e2 J vt (0) v} (t) б {r - R (0 + R (0)} F, (v) dv. (4.7)

The spectral density of the correlation function, ac-
cording to (4.3), is

v. (4.8)

Щ (n, v) б (ш —псоя—Л,, vn) Fo (v) dv, (4.9)

where the tensor II^j is defined by (1.11).
To find the correlation functions with allowance for

the self-consistent interaction between the charged
particles in the plasma, we introduce extraneous elec-
tron and ion currents into the material equations (1.8):

Since the extraneous currents should not depend on the
self-consistent interaction, the correlation functions
will be the same for them as for the currents of the
non-interacting particles (4.9). Eliminating the self-
consistent field E from (4.10) with the aid of Max-
well's equations, we get^5'22^

V

(4.11)
where Afj1 = A.jj/A.

Formula (4.11) establishes a general connection be-
tween the correlation function for the current fluctua-
tions with allowance for the self-consistent interaction
between the charged particles in the plasma, and the
correlation function for the fluctuations of the current
of the independent particles.

The spectral distributions of the fluctuations of the
total current and of the electric field in a magnetoac-
tive plasma are determined by the formulas'-5'23-'

in— inXjiATn) (jm}n)L, (4.12)

0
> — ~^2^ Iv'h IyH (4.13)

Using (4.5) and integrating with respect to t, we get

It is easy to obtain in similar fashion the correlation
functions for the fluctuations of all other quantities in
the plasma.

In the equilibrium case, when the plasma particle

distribution functions are Maxwellian, the correlation

function for the fluctuations of the total current of the

non-interacting particles is expressed in terms of the

dielectric tensor of the plasma:

4]i/ча = I ~r~ * (8?j — EH)- (4.14,)

In the case of a Maxwellian nonisothermal plasma, the
correlation functions for the fluctuations of the elec-
tron and ion extraneous currents can be expressed in
terms of the electronic and ionic polarizabilities of
the plasma:

(jifykm = г'бацГа (xf/ — Xjj). (4.15)

In the general case, in the absence of thermodynamic
equilibrium, the correlation functions (jfjf )fjW are
not expressed in terms of the ionic and electronic
polarizabilities of the plasma к&, and therefore in a
nonequilibrium plasma mere specification of к^ is not
sufficient for a complete description of the fluctuations,
unlike the case of an equilibrium or quasiequilibrium
nonisothermal plasma.
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2. Collective Coherent Fluctuations.
Effective Temperature

The spectral distributions of the correlation func-
tions in the transparency region of the plasma have
sharp delta-like maxima at frequencies w and vectors
к satisfying the dispersion equation Re Л(ш, к.) = 0.
It is easy to establish the form of the spectral distribu-
tions of the correlation functions near such maxima.
Since Im Л « Re Л in the plasma transparency re -
gion, we have

л -1* л -1
A i k A j l

Noting further that the relation \jj = eje* Sp Л. is valid
for o> and к satisfying the dispersion relation, we can
represent the spectral distribution for the electric-
field fluctuations in the form

SpX б{Л(со, к)},

where T is defined by

7p _ 2я Sp X
(o Im Л

(4.16)

(4.17)

In the case of an equilibrium plasma, using (4.14)
and (3.9), we can easily verify that T* is equal to the
plasma temperature T. In the general case T can be
regarded as an effective temperature characterizing
the rms amplitude of the fluctuation oscillations of the
electric field in the plasma. In a nonequilibrium plas-
ma, the effective temperature can take on large values.
If the state of the plasma approaches the borderline of
the kinetic instability region, then Im Л — 0, and the
effective temperature increases without limitC2*>25^.
Using (3.9), we can represent the effective tempera-
ture (4.17) in the form

(4.18)

In particular, for a nonisothermal plasma the effective
temperature is

f = ° , „." „.* . • (4.19)

The spectral distribution of the correlation function
for the partial currents in the plasma transparency re-
gion is expressed directly in terms of the correlation
function for the electric field:

{ЕкЕ,)ш (4.20)

This connection between the correlation functions can
be obtained for the partial currents and the electric
field on the basis of (4.10) from which we leave out the
extraneous current. This indicates that the fluctuation
oscillations in the region of the maxima are charac-
terized not only by dispersion and polarization, but also
by connections between the different quantities, the
same as for free waves in the plasma. For example,

the magnetic field, the partial current, and the partial
charge are connected with the electric field of the fluc-
tuation wave by the relations

e a = — ikx°E. (4.21)H = T|[xE], j a = — im;

Therefore the correlation functions of all the quanti-
ties in the region of the collective fluctuations are ex-
pressed in terms of the correlation function of the
electric field.

3. Fluctuations in an Equilibrium
and Nonisothermal Plasma

Let us determine the explicit form of the correla-
tion function of the electric field for various fluctua-
tion waves in the plasma transparency region. Since
the damping due to the ion motion is negligible com-
pared with the damping due to electron motion for both
high- and low-frequency waves (when w « w^), the
effective temperature will be equal to T e . Therefore
the spectral distribution for the electric-field fluctua-
tions (4.16) will assume the simpler form

б {Л (со, к)}. (4.22)

Using in the high-frequency region the relation
(3.14), we obtain the spectral distributions for the
fluctuations connected with the ordinary and extraor-
dinary waves in the form

(EiEj)va = 8я2 -,—4Щ—Г5 т ^ б (TI2 — Tin c), (4.23)

where the polarization vectors are determined by the
expression (2.6). The spectral distribution for Lang-
muir fluctuations are determined by the expression

{6 (a-co+) + б (со + c

+ б(со —со-) + 6(со + со_)}

or else

f Q 6 ( П 2 - r\i),

(4.24)

(4.25)

if account is taken of the dispersion of the Langmuir
waves.

It is easy to obtain similarly the correlation func-
tions for the electric field in the region of low-fre-
quency fluctuations. Thus, the spectral distribution
for Alfven fluctuations is of the form

(EiEj)ka = in2e*ejTe - ^ {6 (со — kvA cos ft) + 6 (со + kvA cos

(4.26)

where the vector ед is determined by (2.25). The
magnetic-sound fluctuations of the electric field are
characterized by the spectral distributions

(EiEj)ka =
2

Te - ^ {б (со — kvA) + б (со + kvA)}, (4.27)
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(EtEfiba = 4n2elejTea
2k? {6 (ш — kvs cos ft) + 6 (w + kv, cos ft)},

(4.28)

where the vectors e^j and e s are respectively equal
to (2.29) and (2.33). We note that the spectral distri-
butions for the low-frequency fluctuations are propor-
tional to the square of the ratio of the phase velocity
of the corresponding wave to the velocity of light in
vacuum.

4. Fluctuations in a Nonequilibrium
Plasma

By way of an example of a nonequilibrium system,
let us consider a plasma through which passes a com-
pensated beam of charged particles, with a velocity u
directed along the magnetic field. If the particle dis-
tributions in the stationary plasma and in the beam
are Maxwellian with temperatures T and T', then the
components of the dielectric tensor are

- p 2

X

where

(4.29)

Ш — n c o j j — A M "

The primes denote quantities pertaining to the beam.
The spectral distribution of the fluctuations of the

free-particle current is determined by the expression

(4.30)

Using (4.29) and (4.30) we can find, in accord with
(4.16), the spectral distribution of the field fluctuations
in the plasma + beam system. We confine ourselves to
a beam of low density (nj « n0). In this case the in-
fluence of the beam on the dispersion of the waves in
the plasma can be neglected. The beam will, however,
greatly affect the effective temperature of the fluctua-
tion oscillations.

In the high-frequency region, when considering
wave dispersion, we can neglect also the thermal mo-
tion of the particles. The spectral distribution of the
field fluctuations is determined in this case by the
formula

X-

(4.31)

Since there is no wave damping in a cold plasma it is
necessary, in calculating the effective temperature
that enters in (4.31), to take into account both the ther-
mal motion of the electrons in the plasma and the pres-
ence of the beam. (The thermal motion of the ions
in either the beam or in the stationary plasma can be
neglected.)

Using (4.29) and (4.30), we can represent the effec-
tive temperature for the high-frequency fluctuation
oscillations in the form ^263

Д (ш, k)
(4.32)

where

In the case of Langmuir fluctuation oscillations the
value of К is given by

'» №')«"
(4.34)

For ordinary and extraordinary electromagnetic fluc-
tuation waves we have

(4-35)

The quantity ff plays the role of a critical velocity,
which when reached causes the fluctuations in the
plasma to increase without limit, so that the plasma
becomes unstable. In the limiting case when rf » 1
expression (4.35) coincides with (4.34). We note also
that when rf » 1 the spectral distribution for the fluc-
tuations of the ordinary and extraordinary waves coin-
cide with the distribution for the Langmuir fluctuation
oscillations.

The effective temperature for low-frequency fluc-
tuation oscillations in a magnetoactive plasma pierced
by a beam of charged particles is determined by the
formula „

f = - (4.36)
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in which the critical velocities for the Alfven and fast
and slow magnetic-sound waves are respectively

} (4.37)

The spectral distributions of the low-frequency fluctu-
ations in a nonequilibrium plasma will be determined
by formulas (4.26)—(4.28), in which T e must be r e -
placed by the effective temperature (4.36).

5. SCATTERING AND TRANSFORMATION OF ELEC-
TROMAGNETIC WAVES IN A MAGNETOACTIVE
PLASMA

1. Field of Scattered Waves.
Scattering and Transformation

Cross Sections.

Electromagnetic waves propagating in a plasma may
become scattered by thermal fluctuations. Since the
spectrum of the fluctuations is characterized, besides
the main maximum at low frequencies, also by maxi-
ma at frequencies corresponding to the natural oscil-
lations of the plasma, combination (Raman) scatter-
ing, accompanied by a change in the scattered-wave
frequency by an amount equal to the natural frequency
of the plasma oscillations, is possible in addition to
the incoherent scattering of the electromagnetic waves
in which the frequency change is small'-27'22-'. The in-
teraction of the propagating waves with the fluctuation
oscillations can lead also to mutual transformation of
the waves. The intensities of the Raman scattering and
of the wave scattering are determined by the magni-
tude of the fluctuations. Under nonequilibrium condi-
tions, these intensities can increase anomalously if the
plasma is situated near the region of kinetic instability.

The electromagnetic field in the plasma is deter-
mined by the system of equations (1.1) —(1.2). If we
neglect the nonlinear terms in the kinetic equation and
assume that there are no external currents ( j 0 = 0),
then the system (1.1)—(1.2) reduces to the following
linear equation for the electric field:

(5.1)

The solutions of (5.1) satisfy the superposition princi-
ple and describe different oscillations that propagate
independently in the plasma.

Actually, owing to the nonlinearity of the system
(1.1) —(1.2), different oscillations do not propagate in
the plasma independently, but interact with one another.
The interaction between the oscillations leads to dif-
ferent processes of scattering and transformation of
the waves in the plasma C28"33J.

Let us denote the field of the incident wave by
E 0 (r, t ) . We assume that this field satisfies Eq. (5.1).
Owing to the interaction between the incident wave and
the fluctuation field, scattered waves are produced.
The summary electric field is represented in the form

E s u m = Eo -j- ^E + E,

where 6E is the fluctuation field and E is the field of
the scattered waves. Taking into account the nonlinear
terms in the kinetic equation (1.1), we obtain for the
field of the scattered waves the equation

where J is the current due to the field of the incident
wave and the fluctuations in the plasma. For an inci-
dent plane monochromatic wave

Eo (r, t) = Еое^ог-шо',

the Fourier components of the current J are

X e

— ( (kv-w) dcp Ф
H 0 I ,

(kv—a

d<p V dv,

q = k — k0, Дш = ш — (5.3)

Taking into account the large difference between the
masses of the electrons and the ions, we can confine
ourselves in (5.3) to allowance for the electronic com-
ponent only.

Equation (5.2) describes all the processes of scat-
tering and transformation of waves in a magnetoactive
plasma. Using the results of Sec. 3, we can easily find
the average increase in the energy of the scattered-
wave field per unit time. Noting that

<«А«>«=Г7 <«>*.. (5.4)

where the angle brackets denote statistical averaging,
V the volume of the plasma, and T the interaction
time, we can represent the average radiation intensity,
in accord with (3.11), in the form

I = - (5.5)

Dividing the radiation intensity I by the energy flux
density in the propagation direction of the incident wave
So and by the value of the scattering volume V, we can
obtain the cross section (coefficient) for the scattering
or transformation of the waves:

I (5.6)
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We note that the cross section can be defined dif-
ferently, taking So in (5.6) to mean the total energy
flux. The results will differ only by a normalization
factor.

2. Excitation of High-frequency Waves

If high-frequency waves are produced as a result of
the scattering or the transformation, then the radiation
intensity is equal to

=Ш \ l^'.

+ 6 On2 - 4l)] + « (A) | da, dk. (5.7)

The first term in the curly brackets of (5.7) describes
the increase in the energy of the high-frequency elec-
tromagnetic waves in the plasma, and the second the
increase in the energy of the scattered Langmuir
waves. From the energy and momentum conservation
laws

(5.8)

it follows that the high-frequency waves can be excited
by either high-frequency or low-frequency incident
waves. On the other hand, if the incident wave is of
low frequency, it can be transformed into a high-fre-
quency one only by interacting with high-frequency
fluctuations.

Since the phase velocities in high-frequency waves
in a plasma are much higher than the thermal velocity
of the electrons, the expression for the current 3^ш

can be simplified by expanding the integrand in (5.3)
in powers of k-v/o). As a result we get

+ Л- [ кЧ6к1 - бдА?- 4я -g- (x%k, 6vt (q, Am)

(q, Дсо) ] } К,

(5.9)

where <5n and 6v are the fluctuations of the density
and of the macroscopic velocity of the electrons, and
6E and 6H are the fluctuations of the electric and
magnetic fields in the plasma. Expression (5.9) also
follows directly from hydrodynamic considerations.

It is possible to investigate with the aid of (5.9) the
following processes of scattering and transformation
of high-frequency waves in a magnetoactive plasma:
scattering of electromagnetic (ordinary and extraor-
dinary) waves, transformation of electromagnetic
waves into Langmuir waves, scattering of Langmuir
waves, and transformation of Langmuir waves into
electromagnetic waves. In addition, it is possible to
investigate on the basis of (5.9) the transformation of
low-frequency waves into high-frequency ones.

3. Scattering and Transformation of
Electromagnetic Waves by

Incoherent Fluctuations.

The scattering of electromagnetic waves with small
change of frequency (Дш « w0) in a plasma in the
presence of a magnetic field, just as without the field,
is produced primarily by fluctuations of the electron
density. Neglecting scattering by the fluctuations of
the velocity and of the electric and magnetic fields,
we can write for the differential scattering cross
section

(5.10)

where

N = if | e* (e, - 1 ) e0 |
2/% (i e01

2 - |х„е„ I2) (e're),

e 0 and e are the polarization vectors of the incident
and scattered waves. The factor N depends on the
directions of propagation of the incident and scattered
waves relative to the magnetic field (angles ti>0 and i?),
and also on the difference of the azimuthal angles of
the wave vectors Ц) and к (angle <p).

It is easy to t race the transformation of formula
(5.10) into the corresponding expression for the dif-
ferential c ross section for scattering in an isotropic
plasma E22^. Indeed, when Ho = 0 we have

Consequently N= (П4/«о)е1о (eo± i s *°е component
of the polarization vector e0 perpendicular to k) and
expression (5.10) goes over, after averaging over the
different orientations of the vector e0, into formula
(10.20) of w .

The spectral distribution for the electron density
fluctuations in the general case of a non-isothermal
magnetoactive plasma is determined by the expression

= ~ Im {Te (qm -

X (qn - X

(5.11)

If Дш2 « q 2 c 2 , then the correlation function (5.11)
greatly simplifies and takes the same form as for a
free plasma

{Te Im xe Im *<

(5.12)

where к and e must be taken to mean the longitudinal
components of the corresponding tensors .

If the change of the wave vector q is parallel to Щ
during scattering, then the spectrum of the scattered
radiation has the same characterist ic frequencies as



WAVES IN A MAGNETOACTIVE PLASMA 443

in an isotropic plasma. The scattering intensity de-
pends essentially on the magnitude of the magnetic
field. If the direction of q does not coincide with that
of Ho, then the magnetic field influences also the spec-
trum of the scattered radiation.

In the case of an isothermal plasma, the spectrum
of the scattered radiation, for angles other than 7r/2
between q and Ho, is characterized by a sharp mini-
mum at Aw = 0, just as in the absence of a magnetic
field. This maximum is due to the interaction between
the incident wave and the incoherent fluctuations of the
electron density in the plasma. The interaction between
the incident wave and the fluctuations of the electron
velocity and of the electric and magnetic fields can be
neglected at small frequency deviations. Although the
scattering is by the electron-density fluctuations, the
Doppler broadening of the main maximum is deter-
mined by the thermal velocity of the ions, since the
electrons and ions interact via the self-consistent
field.

When T e = Tj and ш0 » ui± (ш± are the frequencies
of the Langmuir oscillations of the plasma in the mag-
netic field) we can find the integral scattering coeffi-
cient of the electromagnetic waves in the plasma by
using the dispersion relation for (5.11). The integral
scattering coefficient turns out to be

When a2q2 » 1, formula (5.13) can be regarded as a
generalization of the well-known Rayleigh formula to
include the case of a magnetoactive medium.

In a nonisothermal plasma, the maximum in the
spectrum of the scattered radiation, due to interaction
with incoherent fluctuations, is greatly reduced. In a
strongly nonisothermal plasma (T e » Tj) the height
of the maximum is (M/m)1'2 times smaller than in
the isothermal case.

Owing to the interaction between the electromag-
netic waves and the density fluctuations in the plasma,
these waves can also be transformed into Langmuir
waves. According to (5.7) the differential cross sec-
tion for the transformation of the ordinary or extra-
ordinary wave into a Langmuir wave is, when Дш « wQ,

е2

(5.14)

Just as in scattering, the principal role in the transfor-
mation of electromagnetic waves with a small change
in frequency is played by the interaction with the in-
coherent fluctuations. As Ho — 0 formula (5.14) goes
over into expression (10.40) of '-5-'.

The ratio of the transformation coefficient (5.14) to
the scattering coefficient (5.10) has an order of mag-
nitude c3/s3. Therefore in the region of frequencies
w0 close to co+(iJ0) and ш-(д-0) the absorption con-

nected with the transformation of electromagnetic
waves into Langmuir waves is more important than
the scattering of the electromagnetic waves.

We note that formula (5.14) can be derived directly
from (5.10) by taking the scattered wave in the latter
to mean a Langmuir wave with r\ = TJL a n d e = K.

4. Scattering and Transformation of Waves
by Coherent Fluctuations.

In addition to the main maximum at Дш = 0, the
scattered-radiation spectrum contains also maxima
connected with the scattering and transformation of
electromagnetic waves by coherent (collective) fluc-
tuations in the plasma.

The current that induces the scattered waves (5.9)
can be expressed in the case of coherent fluctuations
by using (4.21), in terms of the fluctuations of the
electric field only. Thus, the current correlator,
which enters in the general formula for the intensity
(5.7) of the radiated waves, can be expressed in the
form

l e J * B I 2 < i 6 E l f > « A . I E o I 2 , (5.15)

where
В = e*Xij

— 4т (5.16)

Here e°, к0, and т>° are the polarization vector, the
unit vector in the direction of propagation, and the re-
fractive index of the incident wave; e, к, 77 and e, к, т)
are the corresponding quantities for the fluctuation and
scattered waves. We recall that the frequencies and
the wave vectors of the incident, scattered, and fluctu-
ation waves are related by

k = ko + q, (5.8)

which represent the energy and momentum conserva-
tion laws. Knowing the spectral distributions of the
coherent fluctuations, and also the properties of the
incident and excited waves, it is easy to separate in
(5.15) the main terms responsible for transitions of
a definite type.

5. Scattering and Transformation of
Electromagnetic Waves by Langmuir Fluctuations

Let us consider first scattering and transformation
of electromagnetic waves by high-frequency Langmuir
fluctuations. We assume that the refractive index of
the fluctuation Langmuir oscillations is rj » 1, where-
as the refractive indices щ and TJ of the incident and
scattered waves are of the order of unity. From the
conservation laws (5.8) it follows that w = w0 » Дш.
It can be readily verified here that the main role is
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played by the interaction of the incident wave with the
density fluctuations of the electrons (first term in
(5.16)). Therefore the electromagnetic-wave scatter-
ing cross section will be determined by formula (5.10).
The spectral distribution (5.12) in the case a2q2 « 1
has delta-like maxima at frequencies w+(5) and u>_($
where i? is the angle between q and Ho and is con-
nected with the angles t?0. «?» and <p by the relation

do+fc2sin2Q+2ftofc sin dp sin О cos q> /,- 1 7 v

The cross section for the scattering of the electro-
magnetic waves ,̂ at frequency deviations close to the
frequencies ш±(^) of the Langmuir oscillations, is

|ДСР"-(ОН|

X {б (Дш — ш+) + б (Дш + ш+) + б (Дш — 5_)

(5.18)

The cross section for the transformation of e lectro-
magnetic waves by Langmuir fluctuations into Lang-
muir waves is

и?ша . , Iz, I *QLeo I2

X Т * ~ а

н 1 {б(Аш —5+) + 6(Ao) + t

+ б (Аш — ш_) + б (Дсо + <о_)} da do, (5.19)

where

. — в 1 т

— 6*/) х г х т (ej,j,j —

In the case of a nonequilibrium plasma (for exam-
ple, a plasma pierced by a beam of charged particles)
it is necessary to take into account in the cross sec-
tions (5.18) and (5.19) and additional factor
R(l - (u/u) cos 3)" 1, due to the replacement of the
temperature T by the effective temperature (4.32).

The relative contribution of Raman scattering by
Langmuir fluctuations (5.18) to the integral scattering
cross section (5.13) in an equilibrium plasma is a
quantity of the order of a2q2. However, under non-
equilibrium conditions the cross section for the trans-
formation of electromagnetic waves into Langmuir
waves may increase anomalously in the case when the
plasma is near the region of kinetic instability C34-S7H
(see also С и ^ ) .

6. Scattering and Transformation of Electro-
magnetic Waves by Low-frequency Fluctuations.

In a magnetoactive plasma, Raman scattering of
electromagnetic waves can also be produced by low-

frequency magnetic-sound and Alfven fluctuations.
Using the general expression (5.7) for the intensity and
formulas (4.26) —(4.28) for the spectral distributions of
the low-frequency fluctuations, we can easily investi-
gate different concrete cases of scattering and t r a n s -
formation.

In a nonisothermal plasma, the most important are
scattering and transformation of electromagnetic waves
by slow magnetic-sound fluctuations. In this case the
principal role is played in (5.9) by density fluctuations.
The cross sections for the scattering and transforma-
tion of electromagnetic waves by slow magnetic-sound
fluctuations are determined by the expression

X {б (Дм — gv, cos Щ + 6 (Дш + qvs cos Щ} d<o do, (5.20)

where JJ and e stand for the refractive index and po-
larization for the ordinary, extraordinary, or Langmuir
waves respectively. The differential scattering cross
section (5.20) differs from the corresponding cross
section in an isotropic plasma (see formula (10.32)
of l-s^) only in the form of the dispersion for noniso-
thermal fluctuations.

The ratio of the cross section for the scattering of
electromagnetic waves in a strongly nonisothermal
plasma by slow magnetic-sound fluctuations, integrated
over the frequencies, to (5.13) is a quantity of the order
of unity. Therefore in a strongly nonisothermal plasma
the main line in the scattered-radiation spectrum splits
into two lines, connected with scattering by slow mag-
netic-sound fluctuations.

In the case of scattering and transformation of e lec-
tromagnetic waves by fast magnetic-sound fluctuations,
it is necessary to take into account, besides the density
fluctuations, the fluctuations of the magnetic field. The
corresponding cross sections for the scattering and
transformation of the electromagnetic waves are

П4

X {б (Аш — qvA) + б (Дш + qvA)} d(a do,

where

(5.21)

The ratio of the scattering cross section (5.21), inte-
grated over the frequencies, to (5.13) is of the order
of v | / v A .

In the case of scattering and transformation of e lec-
tromagnetic waves by Alfven fluctuations, the principal
role is played by fluctuations of the magnetic field,
since Alfven oscillations are not accompanied by a
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change in density. The cross sections for the scat-
tering and transformation of electromagnetic waves
by Alfven fluctuations are

{ б ( А ш _ c o s § )

б (Дм + qvA cos Ф)} dco do, (5.22)

where

— 6,,-).

Formula (5.22) is valid for both the isothermal and
the nonisothermal case.

The ratio of the cross section for the scattering of
electromagnetic waves by Alfven fluctuations, inte-
grated over the frequencies, to (5.13) is of the order
of s7c 2 .

The cross sections for the scattering and transfor-
mation of electromagnetic waves by low-frequency
fluctuations, just as in the case of Langmuir fluctua-
tions, can increase strongly in a nonequilibrium
plasma that is near the region of kinetic instability.

6. SCATTERING AND TRANSFORMATION OF LANG-
MUIR WAVES Ш A MAGNETOACTIVE PLASMA

1. Scattering and Transformation by
Incoherent Fluctuations

The general formulas (5.7) and (5.9) make it also
possible to investigate the scattering of Langmuir
waves and the transformation of Langmuir waves into
high-frequency electromagnetic waves. Choosing as
the incident wave a Langmuir wave and using for the
density of the incident energy flux expression (2.17),
we can et ily obtain with the aid of (5.7) concrete ex-
pressions for the cross sections of the various scat-
tering and transformation processes.

In the case of scattering and transformation of
Langmuir waves by incoherent fluctuations in an iso-
thermal plasma, just is in the case of interaction of
an incident wave with density fluctuations, the princi-
pal role is played by the interaction of the incident
wave with the density fluctuations. The cross sections
for the scattering and transformation of Langmuir
waves by incoherent fluctuations are

Й*
Л3|е«(е-1)х0|

2

е*ее)
дш da) do.

r

'V,
(6.1)

where TJ and e are determined by (2.12) and (2.14) in
the case of scattering and by (2.5) and (2.6) in the case
of transformation. When Ho = 0 formula (6.1) goes
over into formula (10.44) of *-b^.

The spectral distribution of the incoherent fluctua-
tions is characterized by a sharp maximum in the re-
gion of small frequency shifts. The width of this max-
imum is determined by the thermal velocity of the
ions. Formula (6.1) is valid only in the region of the
incoherent maximum. The ratio of the coefficient of
transformation of the Langmuir wave into a high-fre-
quency electromagnetic wave to the coefficient of scat-
tering of Langmuir waves with small change of fre-
quency is s3/c3.

2. Scattering and Transformation by
Coherent Fluctuations

The scattering and transformation of Langmuir
waves by coherent fluctuations can be readily investi-
gated on the basis of (5.7) and (5.15).

In the scattering and transformation of Langmuir
waves by low-frequency fluctuation oscillations, only
the fluctuations of the electron density and of the mag-
netic field are of importance. The cross sections for
various types of scattering and transformation of
Langmuir waves are similar to the corresponding
cross sections for scattering and transformation of
electromagnetic waves. We present the final expres-
sions for the cross sections of different types of scat-
tering and transformation of Langmuir waves.

The cross sections for the scattering and transfor-
mation of Langmuir waves by slow magnetic-sound
fluctuations in a strongly nonisothermal plasma are

dl, -Ч. Л! |e«(e—

e*ee)

X {6 (Ato — qv, cos ft) + 6 (Дсо + qvs cos ft)} da> do. (6.2)

The cross sections for the scattering and transfor-
mation of Langmuir waves by fast magnetic -sound
fluctuations are

L~Mi

x 0 !2

X {6 (Дш — qvA) + 6 (A« )} da> do. (6.3)

The cross sections for the scattering and transfor-
mation of Langmuir waves by Alfven fluctuations are
equal to

1
6 ° Ло£о(е*ее)

X {б (Ла> — qvA cos ft) + S (Дш + qvA cos ft)} da do. (6.4)

The quantities Q M and Q A are defined by expres -
sions of the same type as in the case of scattering of
electromagnetic waves. We note that the ratio of the.
coefficient of transformation of the Langmuir wave
to the coefficient of transformation of all types of low-
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frequency fluctuations is of the order of sVc2.
In the case of interaction between a Langmuir wave

and high-frequency fluctuations, it is essential to take
into account the fluctuations of the electron density and
of the electric field. The incident Langmuir wave can
interact with either the Langmuir fluctuations or the
high-frequency electromagnetic fluctuations.

The scattering of Langmuir waves by Langmuir
fluctuations is impossible, by virtue of the conserva-
tion laws (5.8). The transformation of a Langmuir
wave by Langmuir fluctuations into a high-frequency
ordinary or extraordinary electromagnetic wave is
characterized by the cross section

ee)

X | A ^ "

+ б (До + (o_)} da do,

?« = («,*—6,0(6/ (6.5)

This cross section is c/s times larger than (5.13).
The frequencies of the waves produced in this process
are close to the sum of the modified Langmuir fre-
quencies W±(I?Q)± O)±(?).

The cross sections for the scattering and transfor-
mation of Langmuir waves by electromagnetic fluctu-
ations are

L-2'

| eQE

X {б (Дсо —£-) + б (Дш + 4=-) } da do,

where

- 6,»)

(в«*-в«) { « w -

(6.6)

}-8mJ)

The cross sections for the scattering and transfor-
mation of Langmuir waves in a nonequilibrium plasma
are characterized by the same anomalies in the region
of critical fluctuations as the corresponding cross
sections for electromagnetic waves.

7. TRANSFORMATION OF LOW FREQUENCY WAVES
BY LANGMUIR FLUCTUATIONS IN A MAGNETO-
ACTIVE PLASMA

In conclusion let us discuss also the transformation
of low-frequency waves into high-frequency waves by
Langmuir fluctuations in a magnetoactive plasma. In
the case of an incident low-frequency wave, the most

essential terms in the expression (5.9) for the current
are those connected with the magnetic field and with
the electron density in the incident wave. Using for-
mula (5.7) for the intensity of radiation of high-fre-
quency waves, and dividing it by the energy flux den-
sity connected with the incident low-frequency wave,
we can easily find explicit expressions for the cross
sections of the different wave-transformation pro-
cesses.

The cross sections for the transformation of a slow
magnetic-sound wave by Langmuir fluctuations with ex-
citation of ordinary, extraordinary, or Langmuir waves,
are equal to

'X

e% V
J
V m 4

J Qi | c o s flo | ( e

I Д Ш 2 — m 2

X ^ - = r — ^

i
— со_)

(7.1)

The cross sections for the transformation of a fast
magnetic-sound wave by Langmuir fluctuations with
excitation of ordinary, extraordinary, or Langmuir
waves are

V
«>A (e*ee)

x , | Д ^ 2 f ^ {о (Дсо + a>+) + 6 (Дсо + ш+) + б (Дсо -

+ б (Дсо + ш-)} dm do,

= (в» - • — - 6 ! m) ^ . } .

(7.2)

The cross sections for the transformation of an
Alfven wave by Langmuir fluctuations with excitation
of ordinary, extraordinary, or Langmuir waves are

A->Z
*ee)

\ r

* 1X | ! -
— и !

+ б (Дш + о)_)} da do,

— 6,m) X

We note that the process with the largest cross sec-
tion is the transformation of a slow magnetic-sound
wave into a Langmuir wave. The ratio of the cross
section of this process, integrated over the frequen-
cies, to (5.13) is of the order of cVs4.
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