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1. INTRODUCTION

"URING the past few decades there has been a con-
siderable rise in interest in the theory of general rela-
tivity (GR). This has been due partially to lack of any
essential progress in other branches of theoretical
physics. Some physicists have turned to GR in the hope
that by combining it with quantum theory one will find
a basis for the theory of elementary particles. Others
regard GR as the model of a physical theory and try to
apply its geometrical concepts and methods to other
branches of physics. There are also attempts to re-
late the symmetry of elementary particles to the
asymptotic symmetry of gravitational fields. ^ On
the other hand, recent advances in experimental tech-
niques permit one to increase the accuracy of earlier
experiments and also to test new predictions of GR.'-5'6^
Astronomical discoveries of recent years indicate that
possibly it may be necessary to take account of cor-
rections for GR in astrophysics. The development of
radioastronomy and the impending use of extraterres-
trial telescopes will permit us to better determine the
distribution of matter in the Universe. This in turn
may enable us to make a choice among the competing
models of the Universe. There are indications that
secular effects of gravitational radiation may play an
important role for certain astronomical objects. Pre-
dictions have been made and experiments undertaken
to detect gravitational waves coming to the Earth from
the Cosmos.[I"s]

•Russian translation with a supplement by L. P. Grishchuk.

Beginning in 1955 there have been international con-
ferences every two or three years on the relativistic
theory of gravitation. The last such conference oc-
curred in 1965 in London. In addition, in a few coun-
tries that are in the forefront of research on GR, there
have been summer schools and local and more special-
ized conferences devoted to the theory of gravitation
and related problems. The last such conference in the
Soviet Union was in 1965 in Tbilisi.

This paper gives a survey of various results and
problems of GR, with particular attention to those that
were discussed at the conferences mentioned above.
We omit cosmology and relativistic astrophysics, since
there have been recent surveys of these in Uspekhi.^10'11^
Considerable space is devoted to controversial ques-
tions: the postulate of general covariance, the equiva-
lence principle, preferred coordinate systems, conser-
vation laws, and gravitational radiation. The presenta-
tion is elementary, but we assume that the reader knows
the basic facts about GR, as given in the book by Landau
and Lifshitz "The Classical Theory of Fields." Wher-
ever possible we shall follow their notation.

2. THE PRINCIPLE OF EQUIVALENCE

For some time after its appearance, the special
theory of relativity met with criticism from nonspe-
cialists and also from certain physicists, who welcomed
the "overthrow" of the ether, but could not reconcile
themselves with the relativity of time and length. At
present, Einstein's interpretation of the Lorentz trans-
formation is generally accepted. There are now no
disagreements (at least, serious enough to be discussed)
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about the meaning of special relativity. This is not the
case for general relativity: different views about the
physical interpretation of GR are still expressed. In
particular, physicists disagree on whether (and how)
gravitational energy should be defined, on which ref-
erence frame (if such exists) is preferred in GR, and
what is the meaning of the principle of general covari-
ance. These problems are closely related to one an-
other and to the equivalence principle, which is the
basis of GR.

Einstein assigned great significance to the principle
of equivalence, compared it to the relativity postulate,
and regarded it as the basis of the theory of gravita-
tion.'-12-' His position in this respect has been the ob-
ject of criticism.'-13'113'11*^ A partial reason for this
is that sometimes the Einstein equivalence principle
is formulated somewhat inexactly and in an unneces-
sarily crude way.

To arrive at a precise form of this principle and to
explain its significance, we need only consider New-
tonian physics. The Newtonian theory is based on a
series of hypotheses that are not always stated explic-
itly. Among them are: 1) space-time is a four-dimen-
sional manifold; 2) there is a scalar quantity t (called
the absolute time) such that the hypersurfaces t = const
are three-dimensional Euclidean spaces. The last as-
sumption means that in each space t = const there are
preferred (Cartesian) coordinate systems, but it says
nothing about the connection between these systems
for different values of t. Such a connection is estab-
lished by the first law of dynamics. This law can be
divided into two parts. The first part states that in the
absence of gravitation there is a preferred motion of
particles, called free motion. It is achieved in the
idealized case where all interactions are absent. The
second part of the law asserts the existence of inertial
reference frames: in space-time there exist coordinate
systems for which t is one of the coordinates, and if
we call the others x,y,z, the free motion is character-
ized by the fact that

dt*~dP~d~P~

It is easy to see that the first law of dynamics can be
formulated geometrically. The motion of a particle
corresponds to a world line in space-time, i.e., to a
curve that intersects each hyper surf ace t = const once.
Newton's first law is equivalent to the statement that
there is a preferred family of world lines correspond-
ing to free motion, that there is a symmetric affine
connection Г in space-time'-1*-' which is integrable
(flat) and such that the world lines are geodesies with
respect to it. It is clear that the last formulation is
sufficiently general to be applicable also to the theory
of special relativity. From the fact that Г is flat it
follows that there exists a coordinate system in which
the connection coefficients (Christoffel symbols) are
zero. These are the inertial coordinate systems; any

two such systems are related through linear (Galilean)
transformations. The situation becomes more compli-
cated if we try to explain gravitation. In this case free
motion does not exist. Experiments show that for all
bodies the mass is proportional to gravitational charge
("the equivalence of gravitational and inertial mass").
The best that we can do is to consider the free fall of
particles, i.e., motion in a gravitational field where all
other interactions are turned off. An appropriate gen-
eralization of>the first law of dynamics is the following:

1. There exists a preferred motion—free fall.
2. There exists in space-time a symmetric affine

connection Г such that the world lines of freely falling
particles are geodesies with respect to it.

This is equivalent to the following: freely falling
particles determine the affine connection in space-time.
In the Newtonian theory the statements made above must
be supplemented.

3. The connection coefficients have the form

(i, . . . .1 = 0, 1, 2, 3), (1)

о
where Г is the flat affine connection, , t is

the absolute time and h1! is the metric tensor of the
Euclidean space t = const. The metric tensor is co-
variantly constant with respect to Г. If (x, y,z) are
cartesian coordinates on the hypersurface t = const,

where

A l3=(grada;i)(gradx)),

grad = (d/дж, д/ду, d/dz);

the function <p is the Newtonian potential.
The decomposition of Г given by (1) is not unique:

if ip is any solution of the equation

Щ-, ы — ЗДз; и = 0,

then

dxl

is also a flat affine connection. It follows from (1) that
t can be normalized so that it becomes an affine param-
eter along geodesies. If this is done, the equation of a
geodesic is brought to the form of a Newtonian law of
motion in the gravitational field

d*xl Ai dxk dxl ,{j d(f

-d#+i*'-dFW=-fl -^f
о

The term with Г corresponds to Coriolis, centrifugal
and further forces of this type which arise when one
uses noninertial coordinate systems. In addition, the
reference system in space-time can be chosen so that

x° = t, x1 = x, x2 = y, x3 = z, and Tyj - 0. The equa-
tion of motion then takes the usual form

d*r ,

ш =-gradq>.
(2)
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But the group of transformations that preserve (2) is
much wider than the Galilean group. If the vector a( t )
depends on the time, the substitution

ф

(За)

(3b)

does not change (2). It is clear that formula (3b) r e -
flects the nontensorial transformation properties of Г

о
and the nonuniqueness of the decomposition of Г into Г
and a gravitational force. One usually considers gravi-
tational fields produced by bounded objects. One can
then normalize the potential ц>, using the requirement
that it vanish at large distances; this excludes the pos-
sibility of transformations of the type of (3b) and es-
tablishes a privileged role for the Galilei group. But
this cannot be done when the gravitational field extends
over all of space as it does in cosmology. We are then
faced with the choice: either we refrain from using the
concept of inertial reference frames or we say that all
systems in which free fall is characterized by (2) are
inertial.

This analysis of the Newtonian theory can be sum-
marized as follows. Local classical experiments with
particles freely falling in space determine, in the four-
dimensional space, a symmetric affine connection Г.
In general this connection is not integrable. In the case
of bounded material systems, by using experiments with
particles moving freely at infinity, one can determine

о
another affine connection Г, which is flat. It can be
used for selecting the class of inertial systems, which
is defined to within a Galilei transformation. In gen-
eral, when such nonlocal measurements are not avail-
able, Г is the only mechanically defined connection.

The considerations presented above included only
classical mechanics and were based on the equivalence
of gravitational and inertial mass. Now the following
question arises: can one, by means of nonmechanical
experiments, determine an inertial frame in the pres-
ence of gravitation? Or, more precisely; can one, by
means of nonmechanical experiments introduce a flat
connection in space-time as a supplement to the non-
integrable connection determined by moving bodies?
The principle of equivalence gives a negative answer
to this question. In fact, let us assume that there is a
phenomenon (e.g., electromagnetism) which establishes

a flat connection Г. The difference Г{^ - Г у is a
tensor and it is meaningful to assume that the corre-
sponding term in the equations of motion represents
the gravitational force. Thus we obtain an absolute
and local method by means of which we can distinguish
inertial from gravitational forces. But this contradicts
the principle of equivalence, in the formulation given
by Einstein.

The validity of the preceding remarks is not r e -
stricted to Newtonian physics. The following two as-
sertions summarize the role of the principle of equiv-
alence for the theory of gravitation.

1. Equality of gravitational and inertial mass. By
studying the motion of freely falling particles one can
introduce a symmetric affine connection in space-time.
The assumption that the geodesic lines relative to it
coincide with the world lines of freely falling particles
determines this connection uniquely. In the presence
of gravitation the connection is nonintegrable (curved).
This connection therefore cannot be used to determine
a global inertial reference system.

2. The principle of equivalence extends all the pre-
ceding arguments to all other phenomena that cannot be
reduced to the motion of classical particles. In accor-
dance with this principle, there is no way of establish-
ing the existence of a flat connection in a gravitational
field by using only data from local physical experi-
ments. All experiments lead to essentially one and the
same connection Г.

This is by no means obvious; it is not known to what
types of interactions a particular geometry of space-
time should give rise. As Fock has emphasized, in the
formulation of the principle of equivalence the bounded-
ness of the region of experiments is essential. As was
explained above, for weak fields, produced by isolated
sources, one can determine a global flat connection by
studying free motion at large distances. Finally one
should keep in mind the following possibility. The
equation of a geodesic is not changed if Г is replaced
by Г + T, where T is a valence tensor (1,2), anti-
symmetric in its covariant indices. Thus even if the
physical affine connection is not symmetric, simple
mechanical experiments can determine only its sym-
metric part. It is clear how one should generalize the
principle of equivalence in order to take account of this
possibility. E. Cartan was the first to understand that
the affine connection of space-time could be asymmet-
ric and that, if this was the case, its antisymmetric
part is somehow related to spin.'-17-' Similar ideas
have been proposed recently. E18,21]

It is easy to see the analogy between the principle
of equivalence and the Einstein postulate of relativity:
both are generalizations to all physical phenomena of
certain well-established facts of classical mechanics.

3. RELATIVITY, SYMMETRY AND INVARIANCE.

Another subject of controversy is the question of the
role of the principle of general invariance. Is it a sig-
nificant principle and does it really generalize the fun-
damental postulate of special relativity? Does the
Einstein gravitational theory contain more of relativity
than the special theory? According to Fock, the answer
must be negative, and one should even avoid the use of
the term "general theory of relativity."* The argu-

*The views of V. A. Fock about the role and the place of the
principle of equivalence, and about the term "general theory of
relativity" are given in detail in his talk "Principles of Galilean
Mechanics and Einstein's Theory," published in Uspekhi,[1I4l and
not listed in Trautman's bibliography. In publishing Trautman's
paper, the editor points out to the reader the existence of other
points of view about the theory of gravitation (Ed. note).
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ment would be simply one of terminology if it were not
related to the question of privileged reference systems
in GR.

To clarify the points of disagreement, let us con-
sider the concept of symmetry of a physical system.
In general, a symmetry is a recipe according to which
we put in correspondence with any physically admis-
sible state of motion of a system some other state of
the same system. One can formulate the notion of
symmetry more precisely as follows. In any physical
theory we consider the system E of all states and the
subsystem F c E of physical states, which can actu-
ally be realized. The elements of F are selected from
among the elements of E by what we usually call the
equations of motion. A symmetry is some one-to-one
mapping of E on E which takes F into F. Since F is
determined by the laws of motion, we usually say that
a symmetry is a transformation that leaves the equa-
tions of motion unchanged. This can be expressed in a
different way, which is convenient for our p u r p o s e . ^
All quantities that appear in any physical theory can be
divided into two groups: external or absolute quantities
and dynamical variables. Only the latter satisfy equa-
tions of motion and correspond to degrees of freedom
of the system. A symmetry of the theory is a trans-
formation that conserves the absolute quantities.
Whether to regard some quantity as external or dynam-
ical depends in many cases on the particular problem
and the approximations that are made. In the Newtonian
one-body problem the absolute quantities are the geo-
metrical elements of space-time and the potential. If
the potential is spherically symmetric and time-inde-
pendent, the symmetry group consists of time displace-
ments and spatial rotations. Now let us consider the
two-body problem. The absolute quantities are those
that refer to the space-time. The symmetry group be-
comes wider and includes, in addition to the rotations,
all displacements and the Galilei transformations.

One Can distinguish at least three different methods
of extending the symmetry group. First, certain of
the absolute elements can in general be eliminated
from the theory. Second, absolute quantities may take
on a dynamical character. The third method, which we
shall not consider here, consists in an extension of the
systems E and F.

An interesting illustration of the extension of the
symmetry group resulting from the elimination of un-
physical absolute quantities, is related to the special
theory of relativity. In Newtonian mechanics, the quan-
tities

The vector field u1 corresponding to these directions
can be normalized so that u t̂ĵ  = 1. In the presence of
the ether one can introduce the auxiliary metric tensor

and write the Maxwell equations in vacuum in the form

?ЕИл.^И.л.?£м = о pih = 0 (5)

where Fiy. is the electromagnetic field tensor and

t, hli and (4)

are absolute elements. We know that these are not
enough for constructing a Newtonian theory of electro-
magnetism. This theory requires, in some form or
other, the introduction of an ether. Generally speak-
ing, the ether can be defined as a field of directions in
space-time, intersecting the hypersurfaces t = const.

If the connection Г is flat and the ether is at rest,
u.j = 0, and in the reference frame at rest relative to
tlie ether (i.e., for u k = (1, 0, 0, 0 )), the system of
equations (5) reduces to the usual Maxwell equations.
Thus the absolute quantities in prerelativistic electro-
dynamics were the following:

t, u\ gij (or hij) andrL. (6)

More rigorously, the Maxwell equations are required
only for

gu and Г1ь (7)

while the absolute time and the Euclidean metric are
concomitants of Newtonian mechanics. The essential
step taken by Einstein in 1905 consisted in denying
any (absolute) physical significance to the Newtonian
elements t and h^, and also in reformulating the laws
of mechanics on the basis of (7). The Galilei group,
which is the symmetry group of Newtonian mechanics,
conserves the absolute quantities (4). After the ether
is added to these elements, the group is reduced to
time displacements and space rotations, but on elimi-
nating the absolute time, the ether and h4, we get a
bigger group, the group of inhomogeneous Lorentz
transformations.

The transition from special to general relativity is
different in nature. The absolute quantities (7) do not
disappear, but rather take on a dynamical character:
they now represent the gravitational field. (Actually,
the metric and the affine connection are not indepen-
dent. In Riemannian geometry the connection is uniquely
determined by the metric. This, however, is a second-
ary feature, that can be generalized as pointed out in
the preceding section.) In GR there are in general no
absolute elements. Thus the symmetry group consists
of all regular mappings of space-time into itself ("gen-
eral invariance"). bi this sense the Einstein theory of
gravitation is more symmetric than the special theory,
and the expression "general relativity" is not unjusti-
fied. It is interesting to note that the Newtonian theory
of gravitation contains traces of the general invariance.
Since the affine connection in that theory has a partially
dynamical character, the number of absolute elements
in the theory is less than in the theory without gravita-
tion, and the symmetry group is therefore bigger. This
is best seen from the appearance of the arbitrary vec-
tor a(t) in the Eqs. (3).
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The principle of relativity, or invariance, can now
be formulated as follows: within the framework of any
theory, the physical laws can contain only dynamical
variables and absolute quantities appropriate to the
theory.

The requirement that the laws of physics be formu-
lated properly, using only those elements which the
theory has at its disposal, is actually fundamental. This
requirement becomes nontrivial when, based on experi-
ments, we state precisely just what these elements are.
It is essential that the absolute elements (if there are
any) should be related to physical phenomena. By this
we mean the following. Whenever one introduces such
a quantity one must give a recipe, using at least ge-
danken experiments, for reducing the quantity to mea-
surements of one sort or another. If this cannot be
done the absolute quantity should be discarded. This
is precisely the way that Einstein disproved absolute
time and the notion of an inertial frame in a gravita-
tional field. According to our present physical knowl-
edge, there is no phenomenon that could be used to de-
termine a global inertial reference frame (i.e., a flat
connection) in a gravitational field. This is the reason
why linear theories of gravitation in a flat space-time
are physically unsatisfactory.^23^

The principle of relativity, when applied to GR, is
called the principle of general invariance. It asserts
that the metric is a dynamical variable and that there
exist no absolute quantities associated with space-time.
Almost from the moment of formulation of GR, this
principle has been the target of criticism. Regardless
of their motivation, all these attempts to overthrow it
reduce to the same idea: the introduction of an abso-
lute geometrical structure in addition to the dynamical
metric structure. The most extreme case is a theory
with two metrics.'-2'1-' The proposal of Fock to single
out harmonic coordinate systems also implies the pos-
sibility of introducing an auxiliary flat metric: it is
sufficient to say that the components of this metric in
harmonic coordinates have the values of the Minkowski
metric. The Lorentz transformations considered by
Fock leave this (absolute) flat metric invariant. In re-
cent years attempts have been made to define the grav-
itational energy by postulating the existence of certain
privileged fields of orthogonal basis vectors ("te-
trads"). E25~2?] There is nothing wrong in considering
such fields. But as soon as we select a class of fields
of local bases, such that any two representatives of the
same class are related to one another by a Lorentz
transformation with constant coefficients, we introduce
in a canonical way a flat metric in space-time. From
our point of view, to justify any such attempts one must
connect the second flat metric with physical phenomena
(for example, by showing how one can measure the
proper time corresponding to this new metric).

4. CONSERVATION LAWS

The connection between symmetry and absolute
quantities can be made more explicit for the example

of the conservation laws.E22'28^ On the other hand, the
problem of the energy is of interest in its own right in
GR, and has attracted considerable attention in recent
years, l-29^ For this reason a considerable part of this
survey is devoted to the conservation laws and their
connection with symmetry and the problem of gravita-
tional energy.

We shall begin with a short derivation of Noether's
theorem!-30^ about the existence of conservation laws
and identities in classical theories whose equations of
motion are derivable from an action principle. Since
the energy, momentum and angular momentum are of
more interest to us than "internal" conserved quanti-
ties like the charge, isospin and baryon number, we
shall make suitable simplifying assumptions. A more
general treatment can be found in other papers.

First we consider the classical theory of fields. We
denote the dynamical variables by ф, and use w for the
absolute quantities (each symbol can denote a system
of tensor fields). The field equations are derived by
varying the action

W= [bdQ
в

with respect to ф. Here fi is the volume of space-
time, and L denotes the Lagrangian (density). In order
for W to be defined correctly (in a coordinate-indepen-
dent way), L must be a scalar density. From the prin-
ciple of relativity, L can depend only on the functions
ф and ш and their derivatives. For simplicity we shall
assume that L depends on the functions ф and ш and
their first derivatives. (This assumption is not satis-
fied in GR. There L depends on 82gi./8xk Эх*. But the
treatment of second derivatives requires only minor
modifications of the formulas.) The field equations can
be written symbolically as

6W = 0,

where

аь and UN =

In the simple case that we are considering, the Noether
identities can be gotten as follows. Let X be an arbi-
trary vector field in space-time, and Xf the Lie deriv-
ative of the field f* (in the physics literature the Lie
derivative is often written as 6*f or 6f). For a scalar
density

= 0. (8)

If we sum over repeated indices and use

\dxl J dx1

the identity (8) can be written as

•Relative to the vector field X. (Ed. note)
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T-r Xit) + T— д а -] = 0, (9)

where

Every vector field on a manifold generates a one-
parameter group of transformations of the manifold.
The group corresponding to X is a symmetry group if
it leaves ш invariant; the necessary and sufficient con
dition for this is

Хш = 0. (10)

Thus we have established the connection between sym-
metry, field equations and conservation laws:

if Xo> = 0 a n d — = 0, t h e n — = 0. (11)

The conditions imposed on the symmetry of abso-
lute elements usually restrict them so severely that
only a limited number of linearly independent vector
fields X satisfy Eq. (10). In these cases the symmetry
is characterized by a Lie group. The solution of Eqs.
(10) gives a representation of its Lie algebra. The most
important example of this situation is the theory of a
field in a given Riemannian space-time. In this case
(which includes the theory of a field in a flat space-
time) ш coincides with the metric tensor gfe. For a
wide class of fields ф the Lie derivative has the form

0X1

where F | is a constant matrix with respect to the
summation indices of ф. As a further simplification
we assume that L does not depend on the derivatives
of the metric tensor. The symmetric tensor of the
energy-momentum density is

dgih

and (9) can be rewritten as

(12)

(13)

Since (13) is an identity for arbitrary X, the coeffi-
cients of the various derivatives of X̂  can be equated
to zero. This leads to the identities^3 2"3 4 ^

= 0, (14a)

(14b)

(НО

where

turn tensor. In the general case it is not symmetric. The
divergence of the vector t 1 and the vector

Г = TikXk (15)

are equal to zero whenever X generates a symmetry
transformation in space-time, i.e., whenever the Kill-
ing equation

i = 0. (16)

is satisfied. In addition the conserved quantities cor-
responding to T 1 and t* are equal if the field van-
ishes sufficiently rapidly at large distances. This
follows from the identity

8x1

which follows from (14). The physical meaning of the
conserved quantities depends on the geometric prop-
erties of the Killing vector X. For example, in Min-
kowski space, using cartesian coordinates (x*), we
can take

as the generator of a Lorentz transformation. Then
the vector t* becomes

where

I hi = %htl — %ltk-\~ $>il'— Sih

is the tensor density of the angular momentum. The
last two terms in the expression for I are usually in-
terpreted as the spin angular momentum. In four-
dimensional Riemannian space the Killing equation (16)
has at most 10 linearly independent solutions (for the
case of a space of constant curvature). In the most
general case of a completely asymmetric space, there
are no Killing vectors.

In the general theory of relativity there are in gen-
eral no absolute elements. Any vector field X gener-
ates a symmetry transformation. Equation (9) is an
identity with respect to X, i.e., there are an infinite
number of conservation laws. '-35-' In Addition, Eqs.
(9)'lead to a generalization of the "Bianchi identities"

(17)

which are valid-independent of the field equations. For
any specific X, Eqs. (11) give a "weak" conservation
law. But in the special case considered here (no abso-
lute elements, general invariance) each of these weak
laws can be transformed by using (17) into a strong

"']

эе*= 0, (18)

where

The tensor t^ is called the canonical energy-momen- (19)
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Equations (18) retain their validity irrespective of
whether the field equations are satisfied or not. This
implies the existence of an antisymmetric tensor den-
sity ("superpotential") U4 such that

6* = —
dx>

(20)

It is clear that the differential conservation law (11)
remains valid under the substitution

(21)

where V1^ is also an antisymmetric tensor. The total
conserved quantity*

(22)

is not affected by the transformation (21) if V1J tends
to zero sufficiently rapidly at large distances.

Now we consider in more detail the conservation
laws in a gravitational field. We denote the purely
gravitational action by Wg:

Setting

we get the equations of the gravitational field (we note
that G l k and T i k are tensor densities)

Gih=-8nTih.

The fundamental identity (9) is written as

£ = < > .

(23)

(24)

where т1 (in this special case) denotes what we previ-
ously called t 1. The Bianchi identities (17) have the
form

Gift A foc\

; f t = U. (25)

Equation (24) can be written in the form of (18) with

±
Finally, if we use the field equation (23),

(26)

(27)e* = t* + т\
where T 1 is defined by (15). An attractive interpreta-
tion of (18) and (27) is the following: in GR the total
conserved "energy flux" в1 consists of a gravitational
part т1 and a part T 1 connected with matter. But in
the general case of a strong gravitational field without
any special symmetry, no vector fields X can be pre-
ferred above any other. The corresponding conserva-
tion laws have no clear physical meaning.

*The labelling of the integrals is the same as in the book of
Landau and Lifshitz "The Classical Theory of Fields," 2nd ed.,
Pergamon, 1962, §6.

A possible form of superpotential, proposed by
Komar,'-37-' was derived from a variational principle
by M«Sller: [3"

8л
(28)

Applying Eqs. (20), (26) and (28), we get an exact for-
mula for т1.

In most cases we are interested in the gravitational
field produced by isolated bounded material systems.
At large distances from the system the field is weak
and the metric is almost flat. In the far region one
can consider the approximate symmetry of space-time
and expect that it will have the same order and the
same structure as for a flat space. There is justifi-
cation for assuming that one will find (leaving aside
the question of how this is to be done) 10 linearly in-
dependent asymptotic Killing vector fields. Since the
total conserved quantities can be expressed in terms
of surface integrals taken at infinity (Eqs. (22)), the
values of these quantities will be uniquely determined
from the known asymptotic symmetry. A formal proof
of this statement was first given by Einsteint-39-' and
Klein.C*°:

All the quantities considered so far— 0*, U4, т*,
etc, have tensor properties. Many investigators have
expended efforts to destroy the vector character of the
т*. (One then gets quantities that are called pseudoten-
sors or complexes of gravitational energy and momen-
tum.) To see how this is done we need only note that
the differential conservation law (18) is satisfied so
long as the quantity U4 is antisymmetric, and inde-
pendent of its tensor properties. Correspondingly,
neither V4 nor X* need necessarily be a tensor. For
example, by a suitable choice of v4 the Komar super-
potential can be transformed to the form given by
Bergmann:

(29)

where

g b , a /a (eimeil — e>mг11))

The quantities 0* and т* depend on gjj, X k and their
derivatives, where the dependence on X is linear. We
shall assume that in any coordinate system there are
given 16 functions ЛЛк (the \* k need not be the compo-
nents of a tensor; the position of the indices is unim-
portant) and constants c^. Let

(30)

Then

where в"*- is a system of 16 functions depending on X
and the metric tensor. One can apply a similar proce-
dure to т and to the superpotential. Since the 01 sat-
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isfy Eq. (18) for any X, while the quantities с are ar-
bitrary, we get

^ = 0.

Basically, all the gravitational pseudotensors and
complexes in the literature can be gotten by this
method. For example the complex proposed in 1958
by Miller C41] follows from the Komar superpotential
if we set Л* = 6 k (i.e., X* = c* = const). If we start
from the Bergmann superpotential, the same choice
for Л. leads to the canonical pseudotensor of Einstein.
On the other hand, the symmetric pseudotensor of
Landau-Lifshitz* can be gotten from (29) by taking
*ik = /3^- g ik F i n a l i y ) i f (лок Л1к 2̂к л зк } i s a

field of orthogonal basis vectors, the metric tensor
can be expressed as

з

a = l

and Eqs. (30) gives a true vector X. Thus, if we start
from (28), the four quantities (0o k, 0 l k 02 k 03 k) will
be vector densities, depending on the basis vectors and
their derivatives. "Strict" Lorentz transformations
of the basis vectors

},ik->L%*, L) = const

induce a similar transformation of the quanti-
ties 6>.i:25>2M2]

Although pseudotensors are not covariant objects,
they lead to sensible results for the total energy and
momentum if one uses a coordinate system that is
cartesian at infinity. This comes about because the
functions Xik are always chosen so that (at least at
large distances) they become constant in a Cartesian
system. Thus, for any cj the vector (30) is asym-
ptotically a Killing vector. Consequently, computations
based on pseudotensors calculated in an asymptotically
Cartesian coordinate system are equivalent to compu-
tations using asymptotic Killing vectors. Of course,
the concepts of asymptotic symmetry and asymptotic-
ally rectangular coordinate systems require precise
definition. It may prove necessary to revise these
definitions for the particular special case. An attempt
to define an asymptotically rectangular coordinate sys-
tem is described in Sec. 6.

This somewhat pedantic analysis of the conservation
laws shows that in GR the concepts of energy, momen-
tum, etc, are not as well defined as they are in special
relativity. In any case, the gravitational energy cannot
be localized.

In classical theory the concept of energy is insepa-
rable from the notion of force. The principle of equiv-
alence states that (at least locally) the gravitational
force cannot be defined satisfactorily.

5. ORDERS OF MAGNITUDE OF EFFECTS OF GEN-
ERAL RELATIVITY

A simple treatment that is based on the principle of
equivalence and dimensional analysis, and that uses the
weakness of the gravitational interaction, permits one
to draw a variety of conclusions about the magnitude
and nature of the effects of GR. For example, it is
well known that the magnitude of the red shift in a
gravitational field can be found in an elementary way
by using the correspondence between GR and Newtonian
theory. In this section we shall give in outline some
similar predictions; they will be gotten without using
the exact form of the Einstein equations.

First we consider the motion of a particle of mass m
in the gravitational field of a rapidly rotating body, hav-
ing mass M and angular momentum S. From these
quantities, the universal constants к and c, and the
separation vector г of the bodies, we can form the
dimensionless quantities

'£ • (3D

Thus, including the lowest order corrections due to
gravitation and relativity, the possible form of the
Lagrangian of the system is

L
me2

(32) <

The first two terms are the Newtonian terms, the third
describes the lowest correction from special relativity.
The remaining terms enter with unknown numerical co-
efficients. Their exact values can be determined by a
detailed treatment of the theory, but they must in any
case be of order one. On the basis of (32) we consider
the various relativistic corrections to the Newtonian
theory for a single body. If we neglect S, the shift of
the perihelion per revolution, obtained from (32), is of
order kM/c2r. The Einstein theory gives б7гкМ/с2р,
where p is the semimajor axis of the Newtonian ellipse.
Another effect of general relativity that is easily gotten
from (32) is the secular variation of the plane of motion
of a particle in the field of a massive rotating body. If
I is the angular momentum vector of the particle m
relative to the body M, Eq. (32) leads to

d l _ Ук ГТЧ1

If I and S are not parallel, the vector I will precess
about S; the Einstein theory gives the same formula
with y = 2 .

In most cases the magnitudes of general relativity
corrections are proportional to the ratio km/c2r,
formed with quantities m and r that are character-
istic of the particular problem. One therefore usually

*Cf. L. Landau and E. Lifshitz, Classical Theory of Fields,
2nd ed., Pergamon, 1962, §100. (Ed. note). *[Sr]s Sxr.
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says that GR is in no way connected with the structure
of elementary particles. If for r we take the classical
radius of the electron, then

where p is the mass density. Expansion in series of
the retarded solution of (35) gives

km krrfl
• 1 0 - 4 3 .

It is clear, furthermore, that on an atomic scale even
Newtonian gravitation plays no part; the ratio of the
gravitational interaction between a proton (mass M)
and an electron (mass m) to their electric interaction
is

kMm _ . < n _ 4 Q

The insignificant role of gravitation on an atomic scale
is best seen if one compares the size and energy for
an ordinary atom and a "gravitational atom" (two neu-
trons, bound by gravitation). The radius of an electri-
cal atom is of order

cm,

whereas the radius of a gravitational atom is

(33)

where Л = fi/Mc and

I = 1 / ^ = '•

Incidentally, we note that the radius of a gravitational
atom is of the same order as the "radius of the Uni-
verse," r = cH (where H is Hubble's constant).

If p is the density of the mass M, then on the sur-
face of the body

kM (34)

Consequently the effects of GR are significant for large
and dense bodies. These effects are undoubtedly im-
portant in cosmology: if we set r = cH, and take for p
the average density of matter in the Universe, we find
a value of the order of unity for the ratio (34).

Similarly, by using simple arguments one can esti-
mate the effects associated with gravitational radiation
and discuss their main properties, t43^ Elementary ar-
guments based on the Newtonian law of conservation of
mass and on the equivalence of inertial and gravitational
mass show that gravitational monopole and dipole radia-
tion do not exist.

Since gravitation exists as a classical (macroscopic)
field, one would expect that it is described by a tensor
field. From the fact that the gravitational force is pro-
portional to 1/r2 and is attractive, it follows that this
is a field of zero mass and even spin.^44^

Let <p be the component of the gravitational field
that goes over into the Newtonian potential in the non-
relativistic limit. We may expect that for not too large
velocities and not too strong fields q> satisfies the
equation

£ (35)

kM ftrP
<p= _ _ - higher multipoles. (36)

Here M and P are the total mass and momentum. For
an isolated system these quantities are constants. This
would not be the case if the source of the gravitational
field were not identical with the distribution of inertial
mass. From field theory it follows that the flux of radi-
ated energy is proportional to the squares of the first
derivatives of the potential. Correspondingly, one may
expect that the intensity of radiation of gravitational
waves is of order

Y§(V<f)2dS, (37)

where the coefficient c/k is introduced so that one
gets the right dimensions; the integration is extended
over a sphere surrounding the system. The deriva-
tives of the monopole and dipole terms in (36) behave
like l/r2 and give no contribution to (37). Quadrupole
radiation predominates; if T>ap (a,p = 1, 2, 3 ) is the
quadrupole moment tensor, then

(plus the contribution of higher multipoles). Formula
(38) is a simple consequence of (36) and (37) and is
independent of any specific theory of gravitation. W
Such a theory is necessary for fixing the magnitude
of the numerical coefficient in (38). Sometimes the
absence of dipole gravitational radiation is explained
as due to the absence of negative masses. The argu-
ments given above show that is not so and that the es-
sential part is played by the equivalence of gravita-
tional and inertial mass. There can be no dipole ra-
diation even when negative masses exist, provided that
the equivalence holds. One can also apply the argu-
ment for the reverse conclusion: the sources of a field
with spin 2 and mass 0 must be identical with a distri-
bution of energy and momentum. When applied to point
masses this gives the equivalence of gravitational and
inertial mass.^45^

The theory predicts that the energy carried by grav-
itational waves is extremely small. We have just seen
one of the reasons for this. A more important reason
is the smallness of the gravitational radius km/c2. For
a gravitating system consisting of two bodies of equal
mass m, moving in circular orbits of radius r, for-
mula (38) gives

r/c \c%r ) •

For a similar system in electrodynamics (two par-
ticles, of equal mass m and opposite charged e and
- e , moving in circular orbits under the influence of
their mutual attraction with velocity v « c), the inten-
sity of the electromagnetic (dipole) radiation is

т, m e 2
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while the intensity of the gravitational radiation is

P *? P

C 2 r

 re.m.'

As another example we consider the nonrelat iv is t ic
motion of a charge in an external constant magnetic
field. If v is the velocity and r the r a d i u s of the orbit,
then we find for the e lectromagnet ic and gravitational
energ ies , t 4 6 - 4 7 ^

"FJc mc'r and P- knfi

From these and similar examples one may conclude
that the strength of the radiation depends essentially on
the ratio of the gravitational (resp. electromagnetic)
radius of the source to a length characterizing the size
of the system. A double star may radiate a large
amount of gravitational energy if its components are
superdense bodies moving closely about one another.'-9^

As already mentioned in the Introduction, the general
theory of relativity has been applied to the problem of
the last stage of stellar evolution. This problem is
treated in tn,<8]_ guj. for completeness we give Chan-
drasekhar's formula^49} for the maximum mass of a
cold star (white dwarf) maintained in equilibrium by
the pressure of a degenerate electron gas. An elemen-
tary treatment'-50^ shows that for the stability of such a
star it is necessary that its mass not exceed a magni-
tude of order

(39)

where M is the proton mass. The numerical value of
(39) is of the same order as the mass of the Sun. This
result should warn us against hasty conclusions about
possible combining of different physical theories.
Chandrasekhar' s formula was derived on the basis of
the Newtonian theory of gravitation. The corrections
from GR are considerable when we deal with neutron
stars—hypothetical objects that are held in equilibrium
by the pressure of the degenerate gas consisting of
neutrons and other baryons. In this case the maximum
mass is also of order (39). The question of what hap-
pens to a star that has a mass considerably greater
than (39) is known as the problem of collapse.

Undoubtedly, gravitational phenomena like all others
have a quantum "background." The present "class i-
c a l " theory of gravitation of Einstein is of course only
an approximation to a more exact theory that takes into
account the quantum nature of the microworld. Prob-
ably all physicists will agree with this statement. Many
theorists have strong opinions on how one should con-
struct a quantum theory of gravitation. The opinion is
widely held that this should be done following the ex-
ample of electrodynamics, i.e., by treating the metric
tensor as a potential and replacing certain of its com-
ponents by operators, subject to certain commutation
relations, etc. Despite the difficulties that arise, be-
cause of general invariance and the nonlinearity of the

equations, such a program can be carried through. One
can calculate, at least to lowest order, gravitational
corrections to energy levels, and estimate cross sec-
tions for processes involving gravitons.'-51"53^ But
some physicists feel that not every physical theory
can be quantized in the same way as electrodynamics.
Of course this procedure cannot be applied to statistical
theories. On the other hand, it is difficult to think of the
present theory of gravitation as in some way analogous
to thermodynamics. The analogy between the theories
of Einstein and Maxwell is so patent that opponents of
the idea of quantizing the gravitational field are in the
minority. Sticking with this majority opinion, we esti-
mate the orders of magnitude of gravitational relativ-
istic quantum effects. Forgetting about the difficulties
of GR, we write the dimensionless action integral for
the field Ф of matter interacting with the gravitational
field in the form

Taking К = с = 1 and introducing Ф = <p/V~k~, we get

where I is given by (33) and plays the role of the cou-
pling constant. One may expect that gravitational quan-
tum effects will be proportional to powers of l/X, where
A. is a characteristic wave length for the particular
process. In other words, these effects can be sizable
only at extremely high energies. It appears that quan-
tization of the gravitational field in the accepted way
cannot lead to any significant effects, at least in the
energy range attainable now or in the near future. But
we must remember that GR is also a theory of space-
time. The basic hypothesis of the theory is the conti-
nuity of space-time, or, more precisely, the fact that
it is a differentiable manifold. This assumption would
appear to be well justified in the framework of classi-
cal physics. But it is by no means obvious that it will
be satisfied when quantum effects are included. In
theories based on the continuity of the space-time
manifold, it was assumed that arbitrarily close events
could be recognized and distinguished from one another.
If we consider the uncertainty relation and the finite
size of elementary particles, it becomes unclear how
this is to be done. One may imagine that it is actually
not possible. This impossibility should be explained
by the very structure of space-time, just as the local
indistinguishability of gravitational and inertial mass
was explained in GR. It is obvious that any change of
the fundamental assumption about the continuous struc-
ture of space-time will lead to a profound reexamina-
tion of all of physics.

Recently Zel'dovichE66] has predicted a new general
relativistic effect, which has been called the gravita-
tional Zeeman effect. In the gravitational field of a
rotating body the local inertial system of coordinates
rotates with respect to an inertial system located at
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infinity. For the reader who thinks mathematically,
we formulate this as follows: in a stationary, but not
static, space-time the Fermi displacement differs
from the Lie displacement, defined by the group of
timelike isometries.^5 6^ In accordance with our ear-
lier remarks, at a distance r from a body with angu-
lar momentum S, the angular velocity of rotation of
the local inertial coordinate system is of order kS/c2r3.
If a body of mass M has angular velocity w, on the
surface of the body

co/cM/cV. (40)

Thus a spectral line radiated by a source on the sur-
face of the rotating body will be split for a distant ob-
server into two components with frequencies differing
by an amount of the order of (40).

6. GRAVITATIONAL WAVES AND RADIATION

Some of the effects predicted by GR (for example,
the shift of the perihelion) give corrections to New-
tonian phenomena, others (for example, the bending of
light rays) can be derived from the principle of equiva-
lence. But there are also effects which depend essen-
tially on the new degrees of freedom of the gravita-
tional field. For example, the rotational effects men-
tioned in the preceding section depend on the "vector
par t " of the gravitational potential. The most inter-
esting prediction of this latter type is the possibility
of existence of gravitational waves. Some time ago
this problem had the opposite character. For example,
the point of view was developed that the field equations
of GR do not admit any solutions of the type of plane
waves, or that gravitational radiation was forbidden by
the equations of motion. The problem of existence of
gravitational waves is of intrinsic interest and is im-
portant for the quantization program. It makes no sense
to talk of gravitons if gravitational waves are excluded
by the classical equations. A large number of varied
and detailed papers written in the last decade show that
within the framework of the theory there can be no
doubt about the existence of gravitational waves. More-
over, it has become clear from these investigations
that the quantitative estimates and the basic properties
of the radiation are in agreement with the predictions
of the linear approximation. Е4П This section, which
is based on ti3^, gives a summary of some of the re-
cent theoretical work on gravitational waves.

By applying the theory of gravitation, one can give
a more precise estimate of the amount of energy car-
ried off from a bounded material system by gravita-
tional waves. This is quite easily done in the linear
theory of a field with mass 0 and spin 2. To determine
the energy flux we use the canonical energy-momentum
tensor. We then get the formula

The situation is not so simple in GR, where the
field equations are so complicated that exact, physi-
cally meaningful, wave solutions have not been found.
Moreover, as we established in Sec. 4, in this theory
the very notion of gravitational energy is confused to
some extent. To estimate the energy radiated one must
set up some approximate method of solving the field
equations and give a recipe for calculating the change
in the total energy of the system. The different ap-
proaches to the study of gravitational radiation can be
classified according to their methods for solving these
two problems.

Einstein^57-! proposed a method for obtaining approx-
imate solutions of the field equations for the case of
weak fields. He restricted himself to those coordinate
systems that are now called harmonic. We set gfe
= rjjk + hik and neglect all terms in Gjĵ  that are not

linear in h (from now on denotes the Minkowski

metric tensor of flat space-time). We take the re-
tarded solution of the linearized equations, substitute
it into the canonical energy-momentum pseudotensor,
and on integrating the resulting Poynting vector over
a large sphere, we arrive once more at (41). This ap-
proach has been criticized from several points of view:
the weak field approximation neglects the main feature
of the Einstein equations—their nonlinearity; it is es-
sentially equivalent to replacing GR by a linear theory
of gravitation in a flat space. Such an approach admits
strictly periodic radiation fields, whereas it is clear
that radiation in GR must be accompanied by secular
effects. In a different context, Synge^58! proposes the
following interpretation of the approximate solutions:
they may be regarded as exact solutions for another
matter distribution, which is determined from the Ein-
stein equations. If we apply this view to the wave so-
lution in the weak field approximation, we find that the
corresponding flux of matter precisely balances the
flux of gravitational radiation calculated from the
pseudotensor.

A healthy point of view seems to be that in which the
"weak field" solution is regarded as the first step in a
scheme of successive approximations (the method of
"fast motion approximations"). A basis of such a
scheme has been developed by many authors. [59>6°]
In EG1] radiative corrections to the motion of point
masses were found in the second approximation. But
it is in general by no means clear that this method
"converges," and even whether it can be carried past
the first step. As a basis for these doubts we may give
the following argument. A typical component hik has

the form of a diverging wave a(t - r )/r (where we as-

sume that a(t) vanishes outside the interval (t0, t t ) ) .

In harmonic coordinates, the equation for the second-
has the symbolic form(41) order corrections

We have neglected higher multipoles. * = <?(/!),
2 1

(42)
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where the expression Q(h) is quadratic in the func-

tions h and their derivatives, and • is the wave op-

erator in flat space. If we set h = j/i/r, introduce the

null coordinates t - r and t + r and neglect terms of
order O( l / r 3 ) in Q, we can write (42) as

£ + goo
2 4

dudv v — u '

where f ~ a2. Integration of this equation gives
u

y(u, v) = a(u) + b(v)+\ f (t) log (v-t)dt,
2 2 J

where a and b are arbitrary functions. We can
2 2

eliminate b on the basis that it corresponds to an

incoming wave. For u = const > t0 and u > v,

-t0)\ f(t)dt.

In other words, for large r and t - r = const, the sec-
ond order corrections may behave like (log r ) / r . If
the exact metric behaved in this way, it would contra-
dict the Sommerfeld radiation condition, and one could
not calculate the flux of radiation. It is highly probable
that this difficulty can be solved by choosing coordinate
systems other than harmonic.

The method of "fast motion approximations" is not
at all suited to systems consisting of freely gravitating
bodies, such as the planetary system. In first order the
equations of motion obtained in this way are trivial
(there is no interaction). Einstein, Infeld and Hoff-
mann^623 and Fock^63^ proposed a new method which,
in first approximation, gives the Newtonian equations
of motion. This is accomplished by regarding terms
such as

(43)

as quantities of the same order (second). Formally
this approach consists in expanding all functions in
series in powers of 1/c. This method is satisfactory
(i.e., converges rapidly) for those cases where both
quantities (43) are small. This means in particular
that we must have

km , „ .

where T = V c is a characteristic time interval for
the system. Consequently this method is unsuited for
estimates of the radiation made by using a surface in-
tegral of the type of (37): the Integration must be taken
over the surface of a sphere in the wave zone, i.e., for
r » X. From simple heuristic arguments it follows that
the first terms of the series for the components of the
metric tensor have the form

ga$ = t3 + ga» + gafi + • • •
2 4

and that the first terms that can correspond to gravita-
tional radiation are g ^ , goa, goo-'-64""67-' Whether these

terms are real or trivial (i.e., can be made to vanish
by suitable coordinate transformations) depends on
whether or not the linearized curvature tensor Raoo/3

vanishes. There is a great deal of arbitrariness in the
choice of wave fields; this corresponds to our freedom
in the choice of boundary conditions. As soon as the
field is given up to some order, one can introduce the
corresponding equations of motion. The wave fields
(ga/3. goa. goo) l e a d t o a damping force in fifth order

5 6 7

(where the Newtonian equations are regarded as being
of first order). A suitable choice of the wave terms for
a system of two bodies gives a damping force whose
magnitude agrees with the decrease in energy calculated
using (41). This result, which is due to Peres, ^-iB^ con-
firms the applicability of the "weak field" method for
studying gravitational radiation.

In order to give a satisfactory and convincing theo-
retical answer to the question of gravitational radiation,
one must find exact, or to some degree exact, solutions
of the Einstein equations for a physically acceptable
distribution of matter. In addition one must show that
the corresponding material system undergoes secular
changes, the cause of which may be assigned to the
gravitational waves radiated by the system. This is
still a difficult problem. In particular, it is difficult
to find interesting and physically understandable non-
static solutions of the internal problem and to connect
them with the appropriate external field. But many of
the important global properties of material systems
such as their mass or total angular momentum can be
found by studying the field at large distances. Thus, in
order to calculate the radiated energy by means of the
Poynting vector, it is sufficient to know the field at
large distances. The clarification of these facts is the
aim of a whole series of investigations of the asymptotic
behavior of gravitational fields.

As a first step we give a nonrigorous formulation of
the Sommerfeld radiation condition for the gravitational
field. Cis^e] g v analogy with electrodynamics we de-
mand that Riemannian space-time admit a coordinate
system (x*), an isotropic vector field with nonzero
divergence к*, and a parameter r along the trajec-
tories of the field such that

AAi = O(l/r), (44)

I, i w = O(l/r), (45)

A, = 0(1). ^ =
OXJ

(46)
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and

(47)

Equation (47) means that the coordinates are asym-
ptotically harmonic; Eq. (45) contains the Sommerfeld
condition:

km = O(l/r2).

The coordinate transformations

with

(48)

дх3
(49)

conserve (44), (45) and (47). In fact, it follows from
(49) that

d2ah , eh=O(l/r)
to I дхт

and (48) induces the transformations

ihi —> i'hi = iki + chkt + ctkh. (50)

In the asymptotic region the canonical energy-momen-
tum pseudotensor is

where

т — — — i i n

As a consequence of (47), т cannot be negative, and is
invariant under the coordinate transformations (50).
Thus we can obtain the total radiated energy and mo-
mentum by calculating the appropriate integral of the
T| Recently Cornish^70И has shown that for a wide
class of energy-momentum pseudotensors the integral
is independent of the form of т! if the boundary condi-
tions (44) —(47) are satisfied. In a recent paper Ko-

m a r [ 7 i ] has proposed a more satisfactory formulation
of the boundary conditions than that given here. He has
expressed these conditions in terms of the asymptotic
Killing fields.

From our boundary conditions we can also obtain
the asymptotic form of the curvature tensor. We set

and

fthlmn — 2 ' fcn] + О (1/r2), (51)

where the square brackets denote the antisymmetric
part. The part of the Riemann tensor that behaves like
1/r is algebraically of the same type as the Riemann
tensor for a plane wave (i.e., is of zero Petrov type*).

*It is also called the second degenerate Petrov type (cf. the
Supplement).

Since boundary conditions are imposed on the metric,
this means that the l / r part of the field equations is
satisfied asymptotically. To get more detailed infor-
mation about physics and the geometry of wave space,
one must solve the field equations to high accuracy.
The formulation given here is not well suited for this
purpose.

Bondi was the first to give a systematic treatment
of quite general metrics describing the radiation from
a bounded source. L'2,73] д е i i m i t e c } himself to axially
symmetric fields and postulated the form of the line
element

ds* = r 2 [ea (dQ — e-* s in 2 9 d<p2] — С du2 — 2Ddudr (52)

so that the area of the surface u = const, r = const,
0 < <p < 2тг, 0 < в < 7Г was 47rr2. Bondi assumed that
for sufficiently large values of r, the functions a, A,
С and D have the form

a =-£-+ О (1/r1),

4 = - + О (1/r2),
(53)

D = 1 + 7 + 0 (1/r*), )

where a, m, n, and d depend only on u and в. These
assumptions mean that (52) can be transformed to a
coordinate system that is cartesian at infinity and in
which the radiation conditions (44) —(47) will be satis-
fied. Bondi showed that the expansions (53) are com-
patible with the field equations in empty space and,
solving certain of these equations, he found that a = d
= 0, and obtained a relation between m and n

дй)
I d 1 3 1 д - o n

(54)

There are also other equations relating m and n with
terms of higher order, but we shall not consider them.
Their analysis makes it clear that m can be a com-
pletely arbitrary function of its arguments; its deriv-
ative with respect to u is called the information (news)
function. The function m is closely related to the total
energy of the system. In the static case 9m/3u = 0, it
follows from the other equations that Эт/дв = 0; con-
sequently m can be interpreted as the mass. In the
general case Bondi defines the mass as the average of
m over angle:

M (u) = ~ ^ m (u, 9) sin 9 dQ.
0

Equation (54) means that the mass decreases:

dMdM 1 ? /dn
- 5 - = =• \ ( j -du 2 ] \du

0

if and only if t h e r e is an information function. It is
clear that 9n/9u plays the ro le of the quantity which
we e a r l i e r denoted by i ^ . The genera l form of the
Riemann tensor is:'-76-!
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III (55)

where the indices are not given, and N, III and D de-
note the curvature tensors of the zeroth, third and de-
generate* Petrov types respectively (cf. Sec. 7). These
tensors have kj as a null eigenvector!, are covari-
antly constant along rays, and furthermore are propor-
tional to quantities that can be given a physical mean-
ing:

iV~-5-?, Ill ~ 3—̂Q n sin2 9, D — 2m + - i - .
QU£ Oil (70 0\j

Only the first of these results can be gotten from (51).
Another technique for solving the field equations has

been developed by Newman and Penrose.^74^ They in-
troduce a field of null basis vectors (tetrad), associ-
ated with a congruence of rays having nonzero diver-
gence and orthogonal to a hypersurface in V4. If kj
is a vector tangent to the ray, the null tetrad is
(kj, Zj, nij, m*). The vectors are normalized so that

kjZ1 = 1 = -mjm 1, while the other scalar products are
zero. With such a tetrad the Riemann tensor of empty
space-time can be written in the form

(56)

here N(k) denotes the tensor of zeroth Petrov type,
admitting kj as a wave vector; D(k,Z) is a degenerate
tensor, admitting two null eigenvectors kj and Zj (cf.
Sec. 7). Newman and Penrose introduce as one of the
coordinates the affine parameter r along the ray and
replace the Einstein equations by a system of first
order equations for the Ricci rotation coefficients cor-
responding to a null orthogonal basis. In general terms,
their result about the asymptotic behavior of the Rie-
mann tensor in empty space is the following: if N(Z)
= O( l / r 5 ) , then in(Z) = O( l / r 4 ) , D(k, I) = O( l / r 3 ) ,
Ш(к) = O ( l / r 2 ) , N(k) = O ( l / r ) . This is in agree-
ment with (55) and with earlier exact results on the
behavior of the curvature tensor for algebraically
special metrics. C75.76]

Another important result on the asymptotic behavior
of gravitational waves is the "wave-front theorem,"
which was proved independently in different forms by
Papapetrou, ^"3 Peres and Rosen, ^ Infeld and Ple-
banski^78^ and Misner.^8 0^ Papapetrou showed that
there are no periodic, nonstatic and asymptotically
euclidean metrics; only pulsating waves are possible,
with an excitation amplitude that falls off sufficiently
rapidly for t —- ± °° . Infeld and Plebanski showed that
the assumption

f£<*=O(l/r), but not О (1/т-г)
dxm

for t = const

(57)

(58)

leads to a contradiction with the field equations.
In the most general terms their argument is the

following. Let us assumed that, for a particular choice
of coordinates, on a certain spacelike hypersurface
t = const Eqs. (57) and (58) are satisfied. For certain
of the components gj^ for this problem, the field equa-
tions can be written symbolically as

Дф = const (Уф)г.

If the right side actually goes like l/r 2 , у contains a
term of the form log r, which contradicts (58).

Arnowitt, Deser, and Misner'-80-' have formulated
and given a rigorous proof of the wave-front theorem
in a stronger form: if (57) is satisfied, then for each
t = const one can introduce additional restrictions on
the coordinates

•This type of curvature tensor is also called the first degener-
ate Petrov type (cf. the Supplement).

tin place of the terminology used by the author: "null vector,"
"null surface," "null hypersurface," one also uses the terms
"isotropic vector," "isotropic surface," "isotropic hypersurface."
(Russ. transl. remark).

where e > 0 and Kap is the second fundamental form
for the hypersurface t = const.

7. GEOMETRY OF NULL ELEMENTS

It is easy to see that there is a close connection be-
tween waves and isotropic elements of space-time.
There are obvious physical reasons for such a connec-
tion. Electromagnetic and gravitational waves propa-
gate with the velocity of light. In four-dimensional
space-time the world line of the light is a null geo-
desic; the electromagnetic tensor for a plane propa-
gating wave is k|-.m.-| with isotropic k1; the Cauchy

problem cannot be formulated locally on a null hyper-
surface.

The possibility of transmission of information by
means of waves is also related to the isotropic char-
acter of the corresponding geometric structure. In
studying the asymptotic properties of wave fields we
have already seen the role that isotropic elements play.
In recent years a great many papers have been written
about Riemannian spaces with characteristic isotropic
structures. There are descriptive papers on this sub-
ject with a simple presentation, H81"84] There is thus
no need to go into detail here. We shall only briefly
enumerate some of the important results.

The paper of Pirani'-85^ on the physical meaning of
the classification made by Petrov of curvature ten-
sors'-8 6'8 7^ may be regarded as the starting point of the
present day tendency to use geometrical methods in
gravitational wave theory. The Petrov classification
itself is the object of numerous investigations and pre-
sentations. A description of various directions of de-
velopment and an extensive bibliography are contained
in the survey by Pirani.E81^ For our purposes it is
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sufficient to mention the spinor approach. ̂  There
is a one-to-one correspondence between directions in
spinor space (i.e., in the two-dimensional vector
space) and the null directions in Minkowski vector
space; every real tensor belonging to the irreducible
representation D(s,0) ® D(0, s) of the homogeneous
Lorentz group can be represented by a symmetric
spinor with 2s indices <PAB...K> every such spinor
can be factorized (the parentheses denote symmetri-
zation):

фАВ...К = 5(АТ1в • • • IK)-

Thus any nonnull tensor of the type D(s,0) © D(O,s)
determines 2s null directions (principal directions),
some of which may coincide. A multiple principal null
direction is called a direction of propagation. The
Petrov classification in Penrose's formulation con-
sists in enumerating all possible coincidences between
principal null directions. The Riemann tensor in the
case of empty space and the Weyl conform curvature
tensor for the arbitrary case correspond to s = 2.
They determine 4 null directions. The conform tensor
belongs to type I, if all the directions are different;
when two, three or four directions coincide, we get,
respectively, types П, III, or N (null). Type D occurs
when there are two different pairs of coincident prin-
cipal null directions. A space is said to be algebraic-
ally special if its Weyl tensor does not belong to type I.
For the electromagnetic field, s = 1, and there are
only two types of tensors. Plane waves and similar
simple forms of radiation belong to the null type, the
Schwarzschild metric belongs to type D; it is com-
pletely clear that physically real space-time belongs
to type I.

An algebraically special, conformally nonflat metric
determines a preferred field of null directions—the
directions of propagation (a D-metric determines two
such fields). This field of directions in turn determines
a congruence of rays in space-time. One might think
that these rays correspond to a special model of light
propagation. E893 In special cases, similar to the case
of plane waves, repeated principal null directions can
be interpreted as directions of propagation of gravita-
tional radiation. These remarks serve to illustrate the
interest that attaches to the properties of rays, particu-
larly to those that are related to algebraically special
metrics.

Suppose we are given a congruence of rays, i.e.,
null geodesies, which need not correspond to principal
null directions. The tangent vectors can be normalized
so that kj;jkJ = 0. Then from the first derivatives of
the kj we can form three and only three scalars: the
rotation coefficient

and the shear

а = 1/ -тг V-' — QK

at=\/ -n

These quantities can be given a simple optical inter-
pretation I-75^ by considering the null geodesies as rays
of light. Consider a small plane opaque object and a
flat screen placed at some distance from the object.
Let us assume that object and screen are oriented so
that in their rest system they are orthogonal to the
light rays, and their arrangement is such that the
shadow cast by the object can be observed on the
screen. By a parallel displacement along the rays
the object can be put in the position occupied by the
screen and compared to its shadow. Then the mag-
nification of the shadow is proportional to 9, its r o -
tation is proportional to a>, and <r characterizes the
shear (deformation).

The following theorem is due to Goldberg and
Sachs: t9 0^ the metric in vacuum is algebraically
special if and only if it contains a congruence of rays
without shear; a vector tangent to a ray of the con-
gruence belongs to a direction of propagation of the
conform curvature tensor.

Sachs interpreted certain of the field equations in
vacuum to find the exact behavior of algebraically
special tensors along rays .^ 5 ^ We mention only one
of his results: for an algebraically special empty
space-time with u> = 0 * в, the Riemann tensor has
the form

D лг , Ш , и (59)

the expansion

Here N, П1, II are tensors (covariantly constant along
the rays) of the same type as their designation; r is
the affine parameter. This result can be strengthened
by proving that the II tensor must belong to type D, and
finding the exact form for the line element. C91.92]

It is interesting to compare the exact result (59)
with the analogous formula obtained by approximation
methods (cf. Sec. 6). The agreement of the first three
terms in (56) and (59) can be regarded as an indication
that certain algebraically special fields are good ap-
proximations to real fields of radiation at large dis-
tances from the source. But all these fields are too
special to be realistic. An interesting connection be-
tween the wave equations of GR and null curvature ten-
sors was discovered by Zakharov>93-'

A superb method for treating problems of asym-
ptotic behavior for fields of zero mass has been de-
veloped recently by Penrose.L-94^ Without going into
details, the basic idea of this method can be summar-
ized as follows. When we say that a topological space
is "infinite," we mean that although the space is not
compact it is locally compact and can be made compact
by the addition of certain ideal (infinite) elements.
There are many ways of making a locally compact
space compact; some of these may be preferable if
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the space possesses other structures in addition to its
topology. For example, Minkowski space can be made
compact so that its conformal geometry can be ex-
tended continuously to infinite elements. Furthermore
the equations of motion of a field of mass zero are
conformally invariant in the sense that if we are given
two conformally related Riemannian space-times and
the solution of the equations for a zero mass field in
one of them, there is a natural way of mapping this
solution into the solution of the same equation in the
other space. According to Penrose's conclusions, in-
stead of treating the asymptotic behavior of a field of
mass zero in a noncompact space, one can study its
properties in the neighborhoods of certain elements in
a compact space that is conformal to it.

The construction of the Penrose manifold P in the
case of Minkowski space M was simple, but this is not
so simply done in the case of a Riemannian manifold,
even if its topology is euclidean. Sometimes even in
simple cases the conformal geometry cannot be ex-
tended beyond P. Such singularities occur for example,
in the Schwarzschild space-time. When the cosmolog-
ical constant is not equal to zero, the hypersurfaces
cease to be null at infinity. By means of the conformal
technique, Penrose gave a very simple proof of the
general theorem about the asymptotic form of fields of
zero mass (the peeling-off theorem). His method en-
ables one to apply the group of asymptotic symmetries
and gives rise to a new approach to the problem of
gravitational energy.

8. CONCLUDING REMARKS

For obvious reasons, such as lack of space and lack
of knowledge of the author, the present survey does not
exhaust the problems of the general theory of relativ-
ity. For the convenience of readers wishing to obtain
more complete information about the latest achieve-
ments in GR, we enumerate the most important ques-
tions not considered here, along with the main refer-
ences.

Relativistic astrophysics was already mentioned in
the Introduction. Aside from the surveys of Zel'dovich
and Novikov, this has also been covered by the Texas
symposium'-95-' and a monograph.'-96^

There has been no essential progress in cosmology
recently. Practically all the information on this sub-
ject can be found in the book of Bondi'-97^ and the sur-
veys by Heckmannand SchiickingC23^ and Zel'dovichJ10'98^1

An interesting paper on the comparison of observational
data with the conclusions of cosmological theory has
been written recently by Kristian and Sachs. ^

The problem of the motion of massive bodies, men-
tioned in Sees. 5 and 6, has been treated in detail in
the monographs of Fock^133 and Infeld and Plebanski.C79]

An interesting paper on the problem of stability of plan-
etary orbits within the framework of GR was presented
by Abdil'din at the Tbilisi conference. ^m^

Fundamental aspects of the quantization of the grav-
itational field have been treated by Bergmann and Ko-
mar,'-101^ Arnowitt, Deser and Misner, ^102^ and
DeWitt.'-103'104-' Among the most important papers on
the quantum theory of gravitation are those of Gupta,'-105-'
Dirac, E106^ Anderson, E107^ Komar^10^ and Feynman.^53^

Finally, various observational and experimental con-
sequences and tests of GR have been considered by
Ginzburg,£5>10^ Adam.t110} and Bertotti, Brill and
Krotkov. C111-! Dicke'-112^ has greatly increased the
accuracy of the Eotvos experiment. Shapiro'-6-' has
proposed a new experiment in GR, using the depen-
dence of the velocity of light on the gravitational po-
tential. The work of Braginskii and Weber has already
been mentioned in the Introduction.

Many physicists are very emotional about the Ein-
stein theory. Most of them admit that the general the-
ory of relativity is a beautiful theory, but then they add
that because of the weakness of gravitational forces the
theory of gravitation is on the sidelines relative to the
rest of physics. Some physicists go so far as to say
that GR should not be regarded as a physical theory.

A less extreme position consists in the assertion
that those who are at present developing the Einstein
theory are mathematicians rather than physicists. In
certain circles relativists are regarded as "socially
undesirable elements." Most discussions begin or end
with the reproach that GR has been subjected to too few
tests—as if this were a fault of the relativists. There
are many reasons for these misunderstandings. On the
one hand, certain relativists regard Einstein's theory
as standing in some higher relation to other theories,
and believe that in the last analysis it will combine all
the others (hence the search for "unified theories");
some of them are inclined to ignore quantum physics.
Such a position had its beginnings with Einstein who
regarded the quantum theory, with its statistical inter-
pretation, with mistrust. On the other hand, many
physicists working in other fields are not inclined to
study the fundamentals of Riemannian geometry that
are necessary for understanding GR, and blame the
theory because it is not included among the Lorentz-
invariant quantum fields.

At the present time the general theory of relativity
is the best of the existing classical theories of space,
time, and gravitation. It is an exceptional example of
a theory having a good logical foundation, but confirmed
by a small number of experimental data. Under such
conditions it is natural to develop the theory as far as
possible. Of course one can restrict the meaning of
the word "physics" by excluding many of the papers
on GR from the list of physical investigations. We
doubt whether such a restriction is useful. It would
undoubtedly be in contradiction with the general ten-
dency of present-day science, in which the boundaries
between different spheres of investigation become less
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and less sharp. Instead of continuing this discussion
of the character of investigations of questions in GR,
we should make the following remark: if there are
mathematicians who want to study the equations of a
physical theory, they should be welcomed, and not sub-
jected to ostracism by a refusal to regard their work
as part of physics.
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SUPPLEMENT*

TYPES OF GRAVITATIONAL FIELDS IN THE

CLASSIFICATION OF A. Z. PETROV

(by L. P. Grishchuk)

It makes sense to classify gravitational fields if this
can be done in an invariant way. The classification can
be developed from examination of various characteris-
tics, for example, according to the algebraic structure
of the curvature tensor or according to the group of
motions admitted by some field. We shall consider the
algebraic classification. We shall show that the analy-
sis of the algebraic properties of the curvature tensor

*In the survey by A Trautman the classification of gravitational
fields given by A. Z. Petrov is assumed to be known to the reader.
It is presented in full in the book of A. Z. Petrov "Einstein
Spaces." In order for the readers of Uspekhi to read Trautman's
article without having to go to the original literature, the editor has
persuaded L. P. Grishchuck (State Astron. Inst.) to write this
"Supplement" (Ed. note).
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can be related to a study of the algebraic properties of
matrices. Since we are interested in invariant proper-
ties of the matrices, we shall be dealing with the ele-
mentary divisors of A.-matrices (cf. below), which are
left invariant by four-dimensional coordinate transfor-
mations. Before proceeding to present the Petrov clas-
sification, we recall some facts from the theory of ele-
mentary divisors of matrices.

Let the elements of a matrix A(X) of rank r be
polynomials in a variable X. We say that A(X) is a
X-matrix. We denote by Di(X) the greatest common
divisor of the i-th order minors (i < r ) ; we shall as-
sume that the coefficient of the leading term in Dj(X)
is set equal to 1. Since each i-th order minor can be
expressed linearly in terms of the minors of order
(i - 1), the polynomial Dj(A) is exactly divisible by
the polynomial Di-i(X). The quotient from the division
of Di(A) by Di-^A.) we denote by Ei(X) (i= 1, 2, . . . , r;
we take D0(X) = 1).

Suppose that A1? A2, X3, . . . (which can be real or
complex) are the roots of the polynomial D r(X). Since
D r(X) is divisible by all the Di(X), Di(X) and conse-
quently Ej(A) will have as their roots quantities from
the sequence Xj, X2, X3, . . . . We set

Those factors

which do not reduce to constants are called the elemen-
tary divisors of the X-matrix.

We shall say that the numbers m^, m|, т £ , . . . de-
termine the type of the matrix, for which we use the
symbol

where the parentheses contain numbers corresponding
to a particular root (the basis of the elementary divi-
sor). This symbol is called the characteristic.

We note that the elementary divisors are invariant
under the following operations on the X-matrix: permu-
tation of rows (or columns) of the matrix; multiplica-
tion of the rows (or columns) by a constant different
from zero; addition to the elements of any row (or
column) of the corresponding elements of another row
(or column), all multiplied by the same polynomial in X.
An application of these operations is called an elemen-
tary transformation of the X-matrix.

The classification of gravitational fields, based on
a study of the algebraic structure of the curvature ten-
sor Rafly6* was developed for Einstein spaces, i.e.,

for Riemannian manifolds, in which the field equations

fla0 = Kgaf>- (1)

are satisfied. In physical investigations one deals
mainly with a special case of Einstein spaces: free
(or empty) space; its dimensionality n is 4, the sig-
nature of the metric is ( +), and the field equa-
tions have the form

Free space is denoted by the symbol T. Let us con-
sider the classification for this case.

The covariant components of the curvature tensor
satisfy the identities

(2)

which determine all the algebraic conditions on the co-
variant components of Raay6 ™ ^n e s e n s e that any
other identity is a consequence of these.

Since we are interested only in the algebraic struc-
ture of the curvature tensor, our investigation will be
based on relations (1'), (2) and (2'), and the treatment
will be carried out at some point P of the space T.

We associate with each skew-symmetric pair of
indices [iv a single collective index (the meaning of
this operation is explained later). Of two components
of the curvature tensor differing in sign and having
indices /xv and v\x, we fix only one. It is obvious that
the number of collective indices is 6. We renumber
all the collective indices, for example, as follows:
14 ^ 1, 24 — 2, 34 — 3, 23 — 4, 31 — 5 , 12 — 6.
Thus, to the curvature tensor R^gy^ of the space T,
given at the point P, there will correspond a tensor
Rab (a, b = 1, 2 , . . . , 6 ), given in a certain six-dimen-
sional space and associated with this point. We denote
this space by the symbol R6. It is clear that the sym-
metry of the tensor RQ/Луб with respect to interchange
of skew-symmetric pairs of indices leads to symmetry
of the tensor R ab.

To arbitrary four-dimensional transformations in
the space T there correspond not all admissible t rans-
formations in R6, but only a definite class of transfor-
mations.

We now must introduce a metric in Rg. This is
naturally and conveniently done by introducing a metric
tensor gab> defined as follows:

gab (3)

(with this choice, for example, raising and lowering of
indices in R6 corresponds to raising and lowering
pairs of indices in T). The tensor g ab is symmetric
and nondegenerate (| ga^, | * 0).

If we now associate with the tensor Rak a X-matrix

(Rah—>-gab) (4)
•Greek symbols take on the values 1, 2, 3, 4; Latin symbols 1,

2,3. and find its elementary divisors, the type of space will
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be determined by the characteristic of the Л-matrix
and will be conserved in the region, containing the point
P, where the characteristic does not change.

Thus, by introducing the six-dimensional space Щ
we have reduced the problem of classification to a
study of the Л-matrix (4).

We construct at each point an orthogonal axis frame
Ёа, with respect to which

(5)

(6)

then (gat,)p can be written in the form

- Е 0\

О £

where e is the three-dimensional unit matrix.
An extremely important point is that the matrix

(Rak) relative to the axes (5) is dual-symmetric, i.e.,
can be written in the form

(7)

where M and N are symmetric square matrices of
third order. This fact enables us to prove the theorem
that there exist three and only three types of gravita-
tional fields.

Let us show that formula (7) holds. Equation (1')
relative to the axes (5)

(where ej = - 1, e4 = 1) is now rewritten in terms of
collective indices. Then we get

(8)

(9)

The identity (2') gives

If we use the notation

а, 6+3 =

then from (8) and (9), we can write the matrix (R a D)
in the form (7), where M = (matj), N = (nab)
(a,b = 1, 2, 3 ), where the following relations hold:

3

S = 'i

We now prove the theorem. In accordance with the
equations (6) and (7), the Л-matrix (4) has the follow-
ing form:

(Rab—^?ab) = —M—U,

By applying elementary transformations we can bring
it to the form

/Af+iiV+^e О

\ О М—iN + %e/~\ О Q(X)

The corresponding elements of the three-dimensional
A-matrices Q(A) and Q(A) are complex conjugate,
consequently their elementary divisors are also con-
jugate, and their characteristics coincide. This means
that the characteristic of the A-matrix (4) splits into
two identical parts.

All the possible types of characteristics of the ma-
trix Q(A) are included in the following: 1) [111],
2) [21], 3) [3], which proves the theorem.

We shall attach a label to the space T to indicate
its type: Tj (i = 1,2,3). The spaces Tj and T2 can
be divided respectively into three and two subtypes,
by considering the possible coincidences of bases of
the elementary divisors. We picture the spaces Tj
together with the subtypes by means of a Penrose dia-
gram:

Л

т, т3 r,
Here I, D, and О are the subtypes of the space Tj.

Subtype I corresponds to the case when all three bases
are different. If two of the three coincide, we have
subtype D. Coincidence of all the bases corresponds
to subtype О (for free space it includes only flat space-
time). The "nondegenerate second type" II occurs
when the basis of the multiple elementary divisor (i.e.,
the one having degree greater than one; in the present
case the multiplicity is 2) differs from the basis of the
simple elementary divisor. In the opposite case we
have the "degenerate second type" N. The space III
(T3) has a single elementary divisor (its multiplicity
is 3). For the spaces N and 1П the bases of the ele-
mentary divisors must necessarily be equal to zero.

The derivation given above for the three types of
gravitational fields was obtained for the case of free
space. Is there an analogous result in the general case,
when Eqs. (1), and consequently, Eqs. (1'). are not
satisfied?

When the space considered is not an Einstein space,
the classification according to the algebraic proper-
ties of the curvature tensor is practically impossible,
since equations like (8) are not satisfied, and the ma-
trix (Rab) cannot be brought to dual-symmetric form.
But in this case one can construct a new tensor (called
the Petrov tensor) which has all of the algebraic prop-
erties of the curvature tensor and satisfies equations
analogous to (1). In fact, let the field equations have
the form

R^-\ g*v=bTal!, (10)

where X is a constant, and Та |д is the energy-momen-
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turn tensor of the matter. We construct the Petrov
tensor:

aygfri — SOLI

where

and a is a scalar. It is easy to see that the tensor
pafiy6 satisfies the identities (2) and (2'), while Pap
(because of (10)) satisfies the field equation Pap
= (R + 3a)gap.

Thus, in the sense of the algebraic structure of the
tensor Pap, we automatically arrive at a proof of the
existence of three types of gravitational fields.

For the classification of gravitational fields of gen-
eral type it is convenient to use the Weyl conformal
curvature tensor

The Weyl tensor satisfies the identities (2) and (2') and
in addition, Cap = 0, i.e., algebraically it behaves like

the curvature tensor for free space. It is clear that
the Penrose diagram retains its form in the general
case.

The physical interpretation of the different types
of gravitational fields is far from complete. The over-
whelming majority of solutions of the Einstein equa-
tions that are now known belong to the first type in the
classification. Possibly this is related to the fact that
people have mostly solved planetary problems, where
one assumes the existence at infinity of a metric for
a flat Minkowski space, which is typical only for spaces
of the first type. A characteristic feature of spaces T2

and T3 is that their curvature tensor is always differ-
ent from zero, i.e., they cannot be flat. This and other
properties permit us to regard them as fields of wave
type. But there are still no generally accepted invari-
ant criteria for gravitational waves. According to the
definition of gravitational waves, the fields of a par-
ticular class may or may not be waves. Recently more
and more people in the field have expressed their pref-
erence fox a definition which labels as gravitational
waves the fields of type N in the Penrose diagram.

Translated by M. Hamermesh


