
SOVIET PHYSICS USPEKHI

532.5

VOLUME 9, NUMBER 2

MAGNETOHYDRODYNAMIC WAVES

SEPTEMBER-OCTOBER 1966

R. V. POLOVIN and K. P. CHERKASOVA

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R., Khar'kov

Usp. Fiz. Nauk 88, 593-617 (April, 1966)

INTRODUCTION

L L F V E N ' S idea that magnetic force lines are "glued"
to particles M has made it possible to explain the dy-
namics of sun spots. This approximation turned out to
be too crude under terrestr ial conditions, but it served
as the basis for engineering applications of magneto-
hydrodynamics (electromagnetic measuring instru-
ments and pumps, magnetohydrodynamic generators,
and plasma accelerators).

A the focus of magnetohydrodynamic r e -
search has shifted towards an exact account of all the
concomitant phenomena: viscosity, thermal conductiv-
ity, final electric conductivity, Hall current, inhomo-
geneity of the medium, nonequilibrium phenomena, etc.
The solutions obtained in this case for the magnetohy-
drodynamic equations are cumbersome and difficult to
visualize.

On the other hand, some new and unexpected results
were obtained in recent years in magnetohydrodynam-
ics. The present review is aimed at a description of
these results, but still within the framework of an ideal
medium, and is devoted to magnetohydrodynamic waves
in a homogeneous medium. Even under such a limita-
tion, in order to keep the review to a reasonable size,
we had to omit almost all proofs. Cumbersome formu-
las have been purposely left out of the text, and we
present principally qualitative results. The lack of
proofs is compensated in part by references to the
original articles.

Investigations of the stability of electromagnetic
flow call for the use of the evolutionality conditions.
These conditions have made it possible not only to dis-
card the unrealizable solutions of the magnetohydrody-
namic equations, but also to explain from a unified
point of view several subtle questions in ordinary hy-
drodynamics (flow in nozzles, transonic flow around
bodies, oblique and conical Shockwaves).

1. LINEAR WAVES

We begin our investigation of magnetohydrodynamic
waves with small-amplitude waves in a stationary ho-
mogeneous medium. Linearizing the magnetohydrody-
namic equations and assuming that the perturbed quan-
tities depend on the coordinates and on the time like
exp [ i(kx - wt)], we find that the perturbations break
up into seven waves ^2 '3^:

1. Two fast magnetic-sound w a v e s ^ , in which the

non-vanishing perturbations are 6vx, 6vy, 6p, 6p, 6Hy

(v —velocity, p —density, p —pressure, H —magnetic
field; the coordinate frame is chosen such as to make
the unperturbed magnetic field H z equal to zero). The
phase velocity w/k of such waves is equal to ± V+,
where

у _ (1.1)

(с —speed of sound, U = HV/UO/P —Alfven velocity,
9 —angle between the x axis and the vector H).

2. Two slow magnetic sound waves, in which the
nonvanishing quantities are also 6vx, 6vy, 6p, 6p, and
6Hy, and the phase velocity is ± V_, where

_

The magnetic-sound waves are plane-polarized;
this means that there exists a reference frame in
which 6vz = 6HZ = 0.

3. Two Alfven waves C1], in which the nonvanishing
perturbations are 6vy, 6vz, <5Hy, and 6Hz, and the
phase velocity is ± U x , where

(1.3)

The Alfven wave has circular polarization; this
means that the quantity Ну + н | remains constant.

4. Entropy wave, in which only the perturbation of
6p differs from zero, and the perturbations of all the
other quantities (6p, <5v, 6H) vanish. The phase veloc-
ity of the entropy wave is zero.

The phase velocity of propagation of magnetohydro-
dynamic waves depends on the angle в between the di-
rection of the magnetic field and the direction of prop-
agation of the wave. A plot of this dependence, called
a phase polar Cs~73( is shown for the fast and slow
magnetic-sound waves in Fig. 1. In this figure

= mm(U, c), = max(U, c),

ОС = ]/"£/2 + c2 .

The internal curves (ОАО and the curves symmetrical
to it) are called the slow phase polar and the external
curve ВС, the fast phase polar.

An arbitrary perturbation of magnetohydrodynamic
quantities can be represented in the form of a super-
position of linear waves of the type exp [ i(kr cos в
- cot)]. The propagation velocity of the magnetic-sound
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FIG. 1. Phase polars. V+—fast polar; V—slow polar. The mag-
netic field is directed along the polar axis.

perturbation does not coincide, however, with the phase
velocity of the wave w/k = V±, but is equal to the group
velocity M

(1.4)

In the one dimensional case, when the quantity 9 is
the same for all waves (r cos 9 = x), the phase and
group velocities coincide (i.e., there is no dispersion).

In the two- and three-dimensional cases the phase
velocity does not coincide with the group velocity. In
fact, it follows from (1.4) that

u± cos e =
dm

(1.5)

Substituting in (1.5) ш = V±(0)k, к = V k£ + ky , we ob-
tain the parametric equation of the group polars'-6 '7 '9"10^

x = U± (9) cos 6 = V± (9) cos d~V± (9) sin 9,
y = U± (9) sin 9 = V± (9) sin 9 -4- V'± (9) cos 9 (1.6)

(see Fig. 2; the plus sign corresponds to the fast group
polar and the minus sign to the slow polar). In this
figure

OB = max (U, c),

OA = mm (U, c),

Uc

(1.7)

(1.8)

(1.9)

The perturbations emitted from a point source at the
instant t = 9 will be situated at the instant t = 1 in the
region contained inside the fast group polar. We note
that in the two- and three-dimensional cases no split-
ting of the initial perturbation into fast and slow mag-
netic-sound waves occurs. All the perturbations prop-
agate with the fast group velocity U+ (0 )• On the other
hand, as shown by calculations^12'13^, the perturbations
inside the slow group polars are equal to zero.

At an arbitrary instant of time t, the perturbations
will be different from zero in the region enclosed be-

tween the lines r = U+ ( 9 )t and r = U. ( 9 )t," which we
shall also call the fast and slow group polars corre-
sponding to the instant t.

We note also that in magnetohydrodynamics, unlike
ordinary hydrodynamics, the Huygens principle is not
satisfied for three-dimensional waves. According to
this principle the hydrodynamic perturbations emitted
at an instant t = 0 from a point x = у = z = 9 will be
different from zero at any succeeding instant t > 9
only on the surface of the sphere (in ordinary hydro-
dynamics )

x2 -[- y2 + z2 = c2t2 (1.Ю)

and will be identically equal to zero inside this sphere.
To the contrary, in ordinary hydrodynamics the Huy-
gens principle is not satisfied for two-dimensional
waves; the perturbations will differ from zero at all
points inside the circle

x2 + y2<c42. (1.11)

In magnetohydrodynamics the Huygens principle is not
satisfied for either three dimensional or two dimen-
sional waves'-14-'. The perturbations are different
from zero at any point contained between the fast and
slow group polars.

2. CHARACTERISTICS

We confine ourselves to two-dimensional stationary
flow. The characteristics are defined as lines on which
infinitesimally small discontinuities of magnetohydro -
dynamic quantities are possible. These lines can be
regarded as shock waves of infinitesimally small in-
tensity.

In ordinary hydrodynamics the characteristics exist
only if the velocity of the medium is supersonic. They
form with the velocity vector, an angle a defined by
the relation sin a = c/v (a is the Mach angle).

In magnetohydrodynamics the situation is much
more complicated.

First, there are two types of two-dimensional waves
—fast and slow magnetic-sound waves. Therefore there
exist two types of characteristics—fast and slow. In
addition, in many cases the perturbations propagate
not only downstream, as in ordinary hydrodynamics,
but also upstream'-15-'.

In the case of stationary flow, the characteristic is
the front of the wave emitted from a pointlike source
moving with the same velocity v as the medium.
Therefore the characteristic is the envelope of a
family of group polars U±(0)t, whose centers are
located at the points vt (the parameter t runs through
the values from zero to infinity).

Figure 2 shows the group polar corresponding to
the instant of time t = 1. In the course of time the
dimensions of the group polars increase, and the sym-
metry centers are displaced with the same velocity v
as the liquid. If the liquid moves parallel to the mag-
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FIG. 2. Group polars. U+—fast polar; U_ — slow polar. The mag-
netic field is directed along the polar axis.

netic field, then at the instant of time t = 1 the center
of symmetry is shifted to the right along the x axis by
a distance which is numerically equal to the velocity v
of the liquid (the liquid flows from left to right). In
other words, the point at which the perturbation was
situated at the instant of time t = 0 constitutes at the
instant t = 1 the end of the vector (- v) drawn from
the symmetry center (in Fig. 2 these are the points M
and N for two different values of the velocity). There-
fore the characteristic coincides with the tangent to
the group polar r = U± (в )t drawn from the point (- v)
[7,12] jjj pjg_ 2 the characteristics are the straight
lines N F L NF2, and MEj, ME2. The characteristics
NFj and NF2 are drawn to the left, i.e., upstream, and
the characteristics MEj and ME2 to the right, i.e.,
downstream.

If one cannot draw a tangent to the group polar from
the point (-v), then there are no characteristics. Such
a flow is called elliptic. If the characteristics exist,
then the flow is called hyperbolic.

Let us determine the conditions for hyperbolicity in
the case when the velocity of the medium is parallel to
the magnetic field C1S~19]. We see from Fig. 2 that when
v and H are parallel, the vector (-v) is directed
along the ray OB'. Since the fast group polar is con-
vex, the fast characteristic exists when v > OB' (see
the point M on Fig. 2). From (1.7) follows the condi-
tion for the existence of fast characteristics

matx(U, c)<v. (2.1)

Since the slow group polar is concave, the slow char-
acteristic exists if OD' < v < OA' (see point N on
Fig. 2). From (1.8) and (1.9) follows the condition for
the existence of slow characteristics

Vc - < v < min (U, c). (2.2)

Conditions (2.1) and (2.2) coincide with the condi-
tions for Cerenkov generation of magnetic-sound
waves'-20-'.

We note that if the velocity of the medium is parallel

to the magnetic field, simultaneous existence of fast and
slow characteristics is impossible. In addition, fast
characteristics are directed downstream, and slow
ones upstream. If on the other hand the velocity is
not parallel to the magnetic field, then this rule is not
satisfied—existence of fast and slow characteristics
is possible; in addition, fast characteristics can be di-
rected upstream and slow ones downstream.

In contrast to stationary flows, for which character-
istics may not exist, in the case of nonstationary flows
the characteristics always exist. Thus, for example,
for one-dimensional flows in ordinary hydrodynamics
the characteristics in the (x, t) plane are the lines de-
fined by the differential equations

dx_ __
dt x'

dx

(2.3)

(2.4)

dx_
dt l

(2.5)

Perturbations of the entropy and of the curl of the
velocity propagate along the characteristic (2.3), a
sound wave moving downstream propagates along the
characteristic (2.4), and a sound wave moving upstream
along the characteristic (2.5).

3. TRANSONIC FLOWS

In ordinary hydrodynamics the term "transonic"
designates flow in which the velocity of the medium
goes through the speed of sound. In magnetohydrody-
namics the role of the speed of sound is played by the
velocities of propagation of small perturbations.

The speed of sound is exceeded in nozzles and in
flow around various bodies. We start with flow in a
nozzle. Averaging all the quantities over the trans-
verse cross section of the nozzle, we arrive at a one-
dimensional problem, in which all the quantities depend
only on the distance x along the nozzle axis.

In ordinary hydrodynamics infinitesimally small
perturbations of the velocity, pressure, and entropy
propagate along the characteristics (2.3) —(2.5). The
characteristics (2.3) and (2.4) are always directed
downstream (dx/dt > 0). The characteristic (2.5) is
directed downstream for a supersonic medium
(vx > с) and upstream for subsonic velocity (vx < с).

If the transition through the speed of sound in one-
dimensional flow is with acceleration (see Fig. 3a; the
index 1 pertains to the entrance to the nozzle, the in-
dex 2 to the exit), then the perturbations that arise on
the sound line (v = с) travel into the upstream (v4 <c4)
and downstream (v2 > c2) regions. Therefore the flow
ahead and behind the sound line (v = c) can be "tuned"
to the perturbation'-21-'. This explains why a Laval
nozzle is stable. Flow having the number of waves
necessary to move the perturbations from any point
are called evolutional. Otherwise we speak of non-
evolutional flow.

On the other hand, continuous passage through the
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= Ус2 + U2, (3.2)

v=c
Ъ

FIG. 3. Characteristics of one-dimensional flow with passage
through the speed of sound: a) with acceleration, b) with decelera-
tion. The index 1 pertains to the entrance to the nozzle and the in-
dex 2 to the exit from the nozzle, v = с is the sound line.

speed of sound with deceleration (supersonic diffusor)
is impossible. This is explained by the fact that dif-
ferent perturbations which occur at the entrance and
exit of the nozzle are transported to the sonic line and
" s t i c k " on it (see Fig. 3b). Since these perturbations
are independent, a discontinuity occurs on the sound
line'-22-', i.e., a shock wave is formed. (This idea was
first advanced by Reynolds (see C23]). The formation
of discontinuities on the sound line was demonstrated
in t 2 4 " 2 7 ] by an investigation of the evolution of small
perturbations.)

Similar arguments can be advanced in the case of
magnetohydrodynamics'-28-]. The magnetic field and the
velocity of the medium will in this case have two com-
ponents: Hx and Vx along the nozzle axis, and Ну and
Vy in the transverse direction (the coordinate system
is chosen such that H z = 0 and v z = 0). Such a flow
cannot be realized in an ordinary nozzle, for the trans-
verse velocity component Vy will make the particles
strike the wall. A flow of this type can be realized in
an annular nozzleС2Э-31Ц _ гр^е x a x ^ s j g ̂  ^ ig c a s e

directed along the nozzle axis, the у axis in the azi-
muthal direction, and the z axis radially. We note two
cases in which magnetohydrodynamic flow in an ordi-
nary (non-annular) nozzle is possible:

1) the velocity is parallel to the magnetic f
2) the velocity is perpendicular to the magnetic

field.
In the second case the magnetohydrodynamic equa-

tions reduce to the equations of ordinary hydrodynamics
if the pressure p and the internal energy per unit mass
e are replaced by the quantities

where U is the Alfven velocity.
In the case of magnetohydrodynamic flow in nozzles,

two limiting cases are possible, depending on the value
of the electric conductivity cr.t33.34-!

1. И the magnetic Reynolds number R m

s lv/vm (I —
characteristic dimension, y m = l/ix^cr —magnetic vis-
cosity ) is large'-34""36-', then there exist three phase
velocities of propagation of infinitesimally small dis-
turbances: the Alfven velocity U x and two velocities of
propagation of magnetic-sound waves V± (if the mag-
netic field is perpendicular to the velocity of medium,
then U x = V- = 0 and V + = V c 2 + U2 ).

2. If the magnetic Reynolds number is small'-3 4 '3 5 '
3 7 ~ 4 2 3, then the magnetic field induced by the motion of
the plasma can be neglected. The change in the mag-
netic field constitutes then an external action, and in-
finitesimally small perturbations will propagate with
the usual speed of sound.

In the case of large magnetic Reynolds numbers,
the following types of flow are possible without going
through the characteristic velocity:

1) "s low" flow:

(3.3)

(3.4)

(3.5)

(3.6)

2) "pre-Alfven" flow:

V.<vx<Ux,

3) "super-Alfven" flow:

Ux<vx<V+,

4) "fast" flow:

V+<vx.

(3.1)

and the speed of sound is replaced by

When R m « 1, as in ordinary hydrodynamics, two
types of flow are possible without going through the
characteristic velocity:

1) subsonic flow: v x < c,
2) supersonic flow: v x > c.
Continuous passage through any characteristic ve-

locity is possible with acceleration and is impossible
with deceleration (shock waves are always produced).

We now proceed to transonic flow around a body. We
start with ordinary hydrodynamics.

Let a stationary bounded body be situated in a sub-
sonic gas stream. Since the gas velocity on the surface
of the body exceeds the velocity at infinity, at some
critical value of the Mach number at infinity the veloc-
ity of the gas reaches the speed of sound near some
point on the surface of the body. Starting with this
value of the Mach number, shock waves can appear.
This raises the question: what will occur if the veloc-
ity of the incoming gas is increased—will shock waves
appear or is continuous flow around the body possible
such that the velocity of the gas at infinity is subsonic,
but limited regions of supersonic velocity exist at the
surface of the body?

Such continuous flows exist formally ^43^, but in
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practice shock waves are always produced on going
over from supersonic to subsonic velocity *-u~46-'.

The impossibility of continuous transonic flow
around a body can be readily explained by noting that
near the body the flow can be regarded as one-dimen-
sional. In this region the conclusion made above with
respect to flow in nozzles, that a continuous transition
from supersonic to subsonic flow is impossible, also
holds true.

The same conclusion was reached by Kuo^47^ in an
investigation of the evolution of small perturbations.

The impossibility of continuous transonic flow
around the body in the case of an infinitesimally change
in the contour of the body was demonstrated in several
papers H43>48-58]_ Bers raised the following objection to
this proof!-S6^: the influence of the boundary layer
makes it necessary to consider in the theory of an
ideal medium not the true profile, but some effective
profile formed by the boundary layer. Therefore not
every deformation of the profile is admissible.

Bers' objection does not pertain to the work of
Morawetz"-57^, in which it is shown that an infinitesi-
mally small change in the Mach number makes a con-
tinuous transonic flow impossible.

Sometimes the impossibility of transonic flow
around a body is attributed to changes in the boundary
layer, i.e., to viscosity. If this explanation were true,
then transonic flow could be realizable by pumping out
the a i r W .

Some authors have related the impossibility of
transonic flow to formation of limit lines'-54'58"60^—
envelopes of characteristics. Further investigation
has shown, however, that transonic flows without limit
lines are also possible. L54»6i,62]_

We now proceed to transonic flow in magnetohydro-
dynamics.

As noted earlier, if the flow velocity is perpendicu-
lar to the magnetic field, then the flow coincides quali-
tatively with the flow in ordinary hydrodynamics.
Therefore, passage of the velocity of the medium
through the phase velocity of the magnetic -sound wave
(3.2) with deceleration is unstableE26^. For arbitrary
orientation of the magnetic field, any decelerated tran-
sition of the velocity of the medium through the phase
velocity of the magnetic-sound wave or the Alfven ve-
locity is unstable C283.

Transonic magnetohydrodynamic flow was investi-
gated in C32.63~67] without consideration of stability, for
a medium with velocity parallel to the magnetic field.

We note that the transitions which occur in this
case, from the region of ellipticity into the region of
hyperbolicity of the stationary flows and vice versa,
have nothing in common with the possibility of realiz-
ing such flows. The realizability of such flows is de-
termined by the evolutionality conditions, which are
obtained from consideration of nonstationary perturba-
tions.

Let us proceed, finally, to two-dimensional tran-

sonic flow. In ordinary hydrodynamics arbitrary two-
dimensional perturbations can be represented in the
form of the superposition of the perturbation of the
velocity curl, the perturbations of the entropy, and of
the potential isentropic sound perturbation. The latter
is described by the equation

Ф» + 2 (ФяФ*, + Ô OV) + (Фх - с2) Фхх + (Ф* - с2) Фуу

ЙФХ 1, = О, (3.7)

where Ф is the velocity potential.
Let us see how the perturbations behave near the

sonic line v = с Directing the x axis parallel to the
velocity, we obtain

фх = с, Фу = 0. (3.8)

Assuming that on going from the supersonic velocity
to the subsonic the characteristics that fall on the
sound line cannot leave this line, let us differentiate
(3.8) with respect to t:

(3.9)

Substituting (3.8) and (3.9) in (3.7), we obtain the
equation

the solution of which is

(3.10)

The function (3.10) is a superposition of two waves
that move apart from the plane у = 0 in the positive
and negative у directions. Thus, two converging
waves correspond to two diverging waves, i.e., the
transition through the speed of sound is evolutional.

This reasoning no longer holds if the sound line
bears against a solid wall at a point at which the ve-
locity vector has a definite direction. Then only one
wave can move out of the point x = 0, у = 0, and the
flow is non-evolutional.

If on the other hand the sound line bears, say,
against a conical point, then the transition through the
speed of sound with deceleration is evolutional. Such
flows were observed experimentally'-68^.

4. SELF-SIMILAR PLANE WAVES

The equations of magnetohydrodynamics constitute
a system of nonlinear partial differential equations. An
investigation of such a system entails great mathemat-
ical difficulties even in the one-dimensional case, when
all the magnetohydrodynamic quantities depend only on
a single spatial coordinate x and the time t.

The investigation becomes much simpler if the ini-
tial data do not contain a parameter with dimension of
length. The magnetohydrodynamic equations are then
invariant against the change of variables x — Cx and
t —• Ct. Therefore a change of variables x/t = £ trans-
forms these equations into a system of ordinary non-
linear equations which do not contain implicitly the in-
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dependent variable | . Solutions of such a system of
equations are called self-similar wavesE69J.

Self-similar waves arise during the decay of an ar-
bitrary initial discontinuity of magnetohydrodynamic
quantities. The piston problem and the problem of the
collision of shock waves reduce to this problem.

Fast and slow magnetic-sound linear waves corre-
spond to fast and slow self-similar waves. In these
waves the variables are v x , Vy, p, p, and Ну (the wave
moves in the x direction).

The velocities of propagation of the fast and slow
self-similar waves are determined by formulas (1.1)
and (1.2). These formulas determine the velocity of
propagation of the wave in a medium at rest. In a
moving medium, the velocity of propagation of the
wave is v x ± V±. Unlike linear waves, in which v x is
constant, in self-similar waves v x will be different at
different points.

The main difference between self-similar waves
and linear waves is that in linear waves all the mag-
netohydrodynamic quantities — v x , Vy, p, p, and Ну —
executes small oscillations about equilibrium values,
whereas in self-similar waves these quantities vary
monotonically.

Let us see now how the different magnetohydrody-
namic quantities vary in a self-similar wave. First of
all, self-similar waves are rarefaction waves^ 7 0 ' 7 1];
До < 0, Др < 0. The variation of the quantities Ну, v x ,
and Vy in self-similar waves is shown in the table:

Variation of Hy, vT, and v in waves of different types. D+ and
D~—detonations (fast and slow); I , I""—ionization (fast and slow);
C f, C s, Cp, Csl—combustion (fast, super-Alfven, pre-Alfven, and
slow); S+ and R+-fast waves (shock and rarefaction); A-180° Alf-
ven discontinuity; S~ and R~—slow waves (shock and rarefaction).
It is assumed that the wave moves to the right and that Hx > 0 and
H > 0. In the opposite case ДН , Avx, and Avy must be replaced
by sign Ну-ДНу, rvx, and f sign(HxHy>Avy, where f = +1 if the
wave moves to the right and с = - 1 if the wave moves to the left.

D +

D -

1 +

I -

c f

c[

**.

—

+

A-,

—

0

—

4-
_̂_

—

S +
R+

A
s-
R-

A fast self-similar wave corresponds to the second
line of the table (see R + —"rarefact ion" in the right
side of the table). The slow self-similar wave corre-
sponds to the lowest line (see R~ in the right side of
the table). For concreteness, the coordinate system
is chosen such that the wave moves in the positive x
direction (relative to the medium) and the conditions
H x > 0 and Ну > О are satisfied.

Self-similar waves are plane-polarized: if H z = 0
and v z = 0 in front of the wave, then this relation will
be satisfied at all points of the self-similar wave.

A particular case of a self-similar wave is a per-
pendicular wave in which the projection of the mag-
netic field on the direction of propagation of the wave
is equal to zero: H x = 0.

We note that Alfven and entropy waves cannot be
self-similar.

5. DISCONTINUITIES

In the preceding sections we have neglected dissi-
pative effects—viscosity, heat conduction, and electric
resistance, assuming the corresponding coefficients to
be small. This is incorrect for those regions in space
where the gradients of the magnetohydrodynamic quan-
tities are large. Within the framework of the theory of
an ideal medium, such regions must be regarded as
surfaces on which p, p, v, and H experience disconti-
nuities.

The values of the magnetohydrodynamic quantities
on both sides of the discontinuity surface are connected
by boundary conditions obtained not from the equations
of magnetohydrodynamics, but directly from the laws
of conservation of the mass, momentum, energy, and
from the continuity of the tangential component of the
electric field and the normal component of the mag-
netic field C3>723.

It follows from the boundary conditions that there
are two different types of discontinuities'-2 '3 '5 '7 2^:

1. Shock waves, on which the quantities v x , Vy, p, p,
and Ну are discontinuous (the coordinate system is
chosen such as to make the x axis directed along the
normal to the surface of the discontinuity, v z = 0, and
H z = 0).

Shock waves are either fast or slow, depending on
whether or not they exceed the Alfven velocity. How-
ever, the propagation velocity of shock waves is deter-
mined not only by the parameters of the medium in
front of the wave, but depends also on the intensity of
the shock wave.

We note that if the velocity and the magnetic field
are parallel to each other in front of the shock wave,
they will also be parallel behind the shock wave.

Two particular cases of shock waves are of interest:
a) Parallel wave, in which the transverse component

of the velocity and of the magnetic field are equal to
zero on both sides of the discontinuity surface:

Vy = vz = 0, HV = HZ = 0.

From the boundary conditions it follows that the dis-
continuities of the quantities v x , p, and p on a parallel
shock wave will be the same as in the absence of a
magnetic field.

b) Singular wave, on one side of which the magnetic
field and the velocity are directed normal to the dis-
continuity surface.

2. Alfven (or rotational) discontinuity, on which the
quantities v x , p, and p are continuous, while the mag-
netic-field vector experiences a rotation through a cer-
tain angle about the x axis. The propagation velocity
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of an Alfven discontinuity in a stationary medium is
equal to the Alfven velocity U = | H | V^o/p •

An Alfven discontinuity, generally speaking, is not
plane-polarized: if H l z = 0 and v l z = 0 ahead of the
discontinuity, then H2Z * 0 and v2 z * 0 behind the dis-
continuity. However, if the magnetic field is rotated
through 180° the Alfven discontinuity is plane-polarized.
The character of variation of the magnetic field and
velocity on such discontinuity is shown in the table.

3. Contact discontinuity, in which the quantities p,
v, and H are continuous, and only p experiences a
discontinuity. The propagation velocity of a contact
discontinuity in a stationary medium is equal to zero.

In the case when the normal component of the mag-
netic field vanishes, the propagation velocities of the
Alfven discontinuity and of the slow shock wave also
become equal to zero. Therefore these discontinuities
merge with the contact discontinuity, which is also at
rest relative to the medium. Such a combined discon-
tinuity is called tangential. Unlike shock waves, on
which it is possible to specify arbitrarily the disconti-
nuity of one of the magnetohydrodynamic quantities, on
a tangential discontinuity it is possible to specify arbi-
trarily the discontinuities of five quantities.

6. CONDITIONS FOR THE EVOLUTIONALITY OF
DISCONTINUITIES

Specification of the boundary conditions at the dis-
continuity is not enough to define in unique fashion the
discontinuous solution. This difficulty is encountered
also in ordinary hydrodynamics. Thus, for example,
when a piston moves out of a tube there are two pos-
sible formal solutions: 1) self-similar rarefaction
wave, 2) shock rarefaction wave. The second solution
is discarded in ordinary hydrodynamics, since the en-
tropy decreases in a shock rarefaction wave.

In magnetohydrodynamics rarefaction shock waves
are impossible, since the entropy decreases on them,
too^7 3 '7 4]. However, in magnetohydrodynamics there
exist too many compression shock waves and the prob-
lem of the motion of a medium with specified initial
and boundary conditions frequently has several solu-
tions (see, for example, ^li^ and ^7 6^). Thus, the in-
creasing entropy criterion, by which it is possible to
exclude "excessive" discontinuities in ordinary hydro-
dynamics, is much too weak in magnetohydrodynamics.

Actually, however, not all shock waves on which the
boundary conditions are satisfied and the entropy in-
creases are realizable.

For a solution to be realizable it is necessary that
it be stable. Investigation of the stability is usually
carried out in the following manner. Infinitesimally
small perturbations бщ, би 2,... are superimposed
on the unperturbed values of the density, velocity,
magnetic field, etc. Linearization yields a system of
differential equations with constant coefficients, a so-
lution of which is a superposition of plane waves

exp [ r (kx - wt)]. The system of differential equations
reduces in this case to a homogeneous system of linear
algebraic equations:

= 0,

+ Ann8un = 0,
(6.1)

where Aik are functions of ш and k. The system (6.1)
has a nontrivial solution if its determinant is equal to
zero, i.e., if ш and к are connected by a relation
called the dispersion equation:

F((o, fcJ = 0.

By specifying a real value of к (i.e., by specifying
the wavelength Л. = 27r/k of the perturbation), it is pos-
sible to obtain from the dispersion equation the corre-
sponding value of из. Real w means that the solution
is stable against perturbations with a given wavelength
Л. Complex w (with positive imaginary part) is evi-
dence of an exponential growth of the perturbation with
time, i.e., of instability of the initial solution.

In many cases, however, the scheme described
above for the investigation of stability is not applicable,
since it may happen that the number of equations in the
system (6.1) is not equal to the number of unknowns.*
Then the solutions either do not exist, or their number
is infinitely large.

On the other hand, in ordinary hydrodynamics and
magnetohydrodynamics the Cauchy problem (the prob-
lem of finding the values of the magnetohydrodynamic
quantities for t > 0, if the values for t = 0 are known)
always has a unique solution. The absence or non-
uniqueness of the solution constitutes a violation of the
causality principle.

Since the only assumption made in the derivation of
the system (6.1) was that linearization is possible, it
follows therefore that perturbations which are infini-
tesimally small at t = 0 cannot become large immedi-
ately .

For example, if the initial solution is the Shockwave
shown in Fig. 4a, then infinitesimally small perturba-
tion splits it into two shock waves. The perturbation

FIG. 4. Splitting of a shock wave, a) Initial wave; b) splitting
wave; 8p — density perturbation. The shock wave moves from right
to left.

•The number of equations is equal to the number of independent
boundary conditions on the discontinuity surface, and the number of
unknowns is equal to the number of waves of infinitesimally small
amplitude, which diverge on both sides of the discontinuity surface.
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6p then immediately becomes large, although for small
values of p this perturbation is localized in only a
small region (Fig. 4b).

Such solutions, in which infinitesimally small per-
turbations cause a finite change in the solution, will be
called, following I. L. Gel'fand'-77-', non-evolutional*
(in other words, unstable against the appearance of
new discontinuities).

An investigation of evolutionality is much simpler
than an investigation of ordinary stability, since it re-
duces simply to counting the number of outgoing waves.
At the same time, the evolutionality conditions make it
possible to explain from a unified point of view the
non-realizability of many solutions of the equations of
ordinary hydrodynamics and to predict the non-realiz-
ability of many solutions of the equations of magneto-
hydrodynamics. Without the use of the evolutionality it
is impossible to solve the magnetohydrodynamic prob-
lem in the presence of shock waves.

In magnetohydrodynamics there exist two regions of
evolutionality of shock waves'-76'89^:

1) Fast shock waves, for which

У1 +<;У1 3 С, # 2 Х < V2X^-V2+ (6.2)

(V+, U x —phase velocities of the fast magnetic-sound
and Alfven waves in the direction of the normal to the
surface of the discontinuity, v x —normal component
of the velocity of the medium in a reference frame in
which the discontinuity is at rest; the subscript 1 per-
tains to the region ahead of the discontinuity and the
subscript 2 to the region behind the discontinuity).

2) Slow shock waves, for which

у м < У 2 _ (6.3)

(V_ is the phase velocity of the slow magnetic-sound
wave in the normal direction).

A certain discussion arose in connection with the
conditions for evolutionality of singular Shockwaves'-9^.
Behind a fast singular shock wave the relation v 2 x = U2X

is satisfied, and in front of a slow singular wave VjX
= Uj x. Therefore, according to the evolutionality con-
ditions (6.2) and (6.3), singular shock waves are non-
evolutional. On the other hand, an infinitesimally small
transverse magnetic field Hy is sufficient to realize an
evolutional shock wave that is close to singular. Since
the magnetic field cannot be specified with absolute ac-

curacy, the question of evolutionality of singular shock
waves has no physical meaning—such waves must be
regarded as the limit of evolutional shock waves when
the transverse magnetic field tends to zero. Therefore
singular shock waves must be classified as evolu-
tional №.

From the evolutionality condition it follows E92^ that
Shockwaves are always compression waves (До > О,
Др > 0). Using this result, we can determine the char-
acter of variation of the remaining magnetohydrody-
namic quantities in shock waves (see the first and
fourth lines of the table). We note that in slow shock
waves the transverse magnetic field Hy decreases but
does not reverse s i g n ^ (reversal of the sign of Hy
takes place in unrealizable non-evolutional shock
waves).

7. EXOTHERMAL AND ENDOTHERMAL DISCONTI-
NUITIES

Let us consider discontinuities on which energy is
released (exothermal discontinuity) or absorbed (en-
dothermal discontinuity) as a result of chemical reac-
tions, phase transitions, radiation or absorption of
photons, dissociation, ionization, or recombination.
The boundary conditions on such discontinuities are
obtained by including the reaction energy in the energy
conservation law.

In exothermal discontinuities the temperature in-
creases rapidly in a narrow layer. The medium is
heated by thermal conduction or else in a shock wave.
In the former case we speak of conduction waves
(which include condensation discontinuities'-78'9^,
photoionization discontinuities, E94>9S3 and recombina-
tion discontinuitiesC9e^) and in the latter case, of deto-
nation waves. The propagation velocity of a combus-
tion wave is determined by the characteristics of the
medium. To the contrary, the propagation velocity of
a detonation wave depends not only on the character-
istics of the medium but also on the intensity of the
shock wave.

The only endothermal discontinuities known are
shock waves accompanied by dissociation, ionization,
and radiation.

It follows from the evolutionality conditions that in
ordinary hydrodynamics the combustion waves can be
of two types;

1) subsonic combustion

*The idea of evolutionality was first advanced in connection with
a study of discontinuities in ordinary hydrodynamics by L. D. Landau
and E. M. Lifshitz (["] p. 405), and also by Curant and Friedrichs
( M p. 215); the origin of the idea dates back to HugoniotM
(see["L p- 99). and JouguetM (see ["]). The evolutionality condi-
tions for the general case, which includes also the equations of
magnetohydrodynamics, were formulated in an article by Lax["J. It
is surprising that following Lax's article, the possible existence of
non-evolutional shock waves was admitted in several paperst85"88]
on the basis of the premise that the entropy increases in such waves.
The impossibility of the existence of non-evolutional shock waves
in magnetohydrodynamics was demonstrated inl* J.

VI < Cu V2 < C2,

2) supersonic combustionE

(7.1)

(7.2)

For shock detonation waves and for shock waves
accompanied by ionization, the evolutionality condi-
tions in ordinary hydrodynamics are

(7.3)
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Let us proceed to magnetohydrodynamics. The re-
gions of evolutionality of detonation waves and of shock
waves accompanied by ionization^98'99] coincide with
the regions (6.2) and (6.3) of evolutionality of shock
waves.

A special role is played by detonation in the Chap-
man—Jouguet regime, for which the velocity of the re-
action products relative to the discontinuity is equal to
the phase velocity of propagation of small perturbations:

2̂x = F 2 ± . (7.4)

In the opposite (v2 x < V2±) the detonation is called
overcompressed.

In the case of detonation in the Chapman-Jouguet
regime, the medium is heated at the expense of the re-
leased reaction energy. The amplitude of the detona-
tion wave does not depend in this case on the velocity
of the piston bounding the tube in which the detonation
takes place. This amplitude is determined by the
properties of the medium.

In the case of an overcompressed detonation, the
medium is heated both by the released reaction energy
and by the kinetic energy of the piston. The amplitude
of the detonation wave will then be larger than in the
Chapman-Jouguet regime, and depends on the velocity
of the piston.

Detonation in the Chapman-Jouguet regime is stable
in the sense that small changes of the medium param-
eters do not cause it to become overcompressed. A
change in the parameters of the medium causes a
change in the amplitudes of the magnetohydrodynamic
waves accompanying the detonation in the Chapman-
Jouguet regime (see Sec. 8).

As is well known, in ordinary hydrodynamics the
Chapman-Jouguet regime is represented on the deto-
nation adiabat by a point at which a straight line drawn
from the point of the initial state is tangent to the deto-
nation adiabat. Let us see how the Chapman-Jouguet
detonation is plotted in magnetohydrodynamics. Figure 5
shows the magnetohydrodynamic detonation adiabat C100J
(the connection between the total pressure p* = p

and the specific volume V behind the discon-
tinuity). The initial state (pj\ Vj) is represented by
the point 4. The vertical and horizontal straight lines
drawn through the point 4 intercept on the detonation
adiabat the segment 18—0, which cannot be realized,
since it corresponds to an imaginarity mass flux den-
sity Piv l x. The straight lines 4—19, 4—10, 4—15, and
4—16 are tangent to the detonation adiabat at the points
19, 10, 15, and 16, at which the velocity of the discon-
tinuity relative to the reaction products is equal to the
velocity of propagation of the small perturbations. The
points 19 and 15 correspond to detonation in the Chap-
man-Jouguet regime for the fast and slow waves. The
sections 19—20 and 15—14 correspond to fast and slow
overcompressed detonation. The line 4—14 has a slope
-pjUjx relative to the abscissa axis. At the point 14
the velocity of propagation of the discontinuity in the
stationary medium is equal to the Alfven velocity.

Let us proceed to magnetohydrodynamic combustion.
From the conditions of evolutionality it follows that
four regimes of magnetohydrodynamic combustion are
possible [1О1.Ю2]:

1) slow combustion:

vlx<V1., v2x<V2-, (7.5)

2) pre-Alfven combustion:

Vl-<vix<Uix, V2.<v2x<U2x, (7.6)

3) super-Alfven combustion:

Uix<vix<Vi+, U2x<v2x<V2+, (7.7)

4) fast combustion:

Vi+<vix, V2+<v2x. (7.8)

These regimes correspond to segments 0—10, 15—4,
4-16, and 19-18 on Fig. 5.*

The character of variation of the magnetic field and
of the velocity in magnetohydrodynamic detonation and
combustion waves is shown in the table.

We have assumed that the magnetic field makes an
acute angle with the direction of wave propagation. In
the case of transverse wave propagation (H x = 0) the
magnetohydrodynamic detonation is qualitatively simi-
lar to ordinary detonationС39,Ю2-Ю4]_

The results presented above are applicable, strictly
speaking, only to a thermonuclear detonation, since the
medium ahead of the detonation wave is assumed to be
ideally conducting. In the case of chemical detonation
the temperature of the medium ahead of the wave
should be smaller than the ignition point; this contra-
dicts the premise that thermal ionization causes the
conductivity of the medium to be large.

It is of interest to develop a detonation theory for
the case when the conductivity of the medium ahead of

FIG. 5. Detonation adiabat in magnetohydrodynamics.

*We note that when the reaction energy is sufficiently large the
slow detonation, ionization on a slow shock wave, and also pre-
Alfven and super-Alfven combustion are impossible!"].
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the discontinuity is equal to zero, and is equal to infin-
ity behind the discontinuity'-105-'. In this case the hy-
drodynamic waves do not interact with the electromag-
netic waves in the region ahead of the discontinuity.
Consequently, the discontinuity surface can radiate
forward an electromagnetic wave whose amplitude is
not determined by the conservation laws and can be
obtained only from an analysis of the structure of the
discontinuity С 1 0 6 ' 1"] (see also C«e,ioe:)#

8. SEQUENCE OF WAVES

From the evolutionality conditions it follows that
the number of waves that can move simultaneously in
one direction is limited.

In ordinary hydrodynamics, if two shock waves, two
self-similar waves, or a shock and self-similar wave
move in one direction, then they must ultimately come
together. Therefore if these waves were produced si-
multaneously, not more than one wave can move in one
direction.

No waves can move ahead of the wave of supersonic
combustion and behind the wave of subsonic combustion.
At the same time, a shock or self-similar wave can
move behind a supersonic combustion wave. In exactly
the same way, a shock or self-similar wave can move
ahead of a subsonic combustion wave.

In magneto hydrodynamics one of two shock waves
of the same type (both fast or both slow) also over-
takes the other. As regards the waves of different
types, the Alfven discontinuity overtakes the slow
wave, and the fast shock wave overtakes all types of
discontinuities. In similar fashion, the shock wave
overtakes the self-similar wave™9^ if the latter be-
longs to the same type as the shock wave, or if it be-
longs to the slower type. A self-similar wave over-
takes a shock wave of the same type and a shock wave
of a slower type.

Thus, if all the waves were produced simultane-
ously, then not more than three waves can move in
one direction: a fast wave (shock or self-similar) in
front, followed by an Alfven wave, and finally a slow
wave (shock or self-similar).

Let us determine now the magnetohydrodynamic
waves that can accompany detonation and ionization
waves.

Since the evolutionality conditions of the ionization
and overcompressed-detonation waves coincide with
the evolutionality conditions of the shock waves, the
fast ionization wave or the overcompressed detonation
wave cannot be accompanied by a fast shock wave or a
fast self-similar wave (the same holds for the slow
wave). Thus, not more than three waves can move in
either direction.

If the overcompressed detonation or the ionization
occurs on a fast wave, then the sequence of the waves
will be as follows: first the overcompressed detona-
tion (or ionization) wave, followed by the Alfven wave,
and finally the slow wave (shock or self-similar).

In the case of a Chapman-Jouguet detonation, the
velocity of the wave relative to the products of the r e -
action is equal to the velocity of propagation of small
perturbations, therefore a fast self-similar wave can
follow behind the fast wave in the Chapman-Jouguet
regime (the same holds for a slow wave).

If the Chapman-Jouguet detonation occurs on the
fast wave, then the sequence of the waves will be as
follows: first the fast detonation wave in the Chapman-
Jouguet regime, followed by the fast rarefaction (self-
similar ) wave, and then the Alfven wave, followed fi-
nally by a slow wave (shock or self-similar).

Some of the foregoing waves may not be produced.
The character of the waves accompanying the deto-

nation depends on the boundary conditions. If the deto-
nation occurs in a tube closed on one end by an ideally
conducting piston, the character of these waves de-
pends on the normal and tangential components of the
piston velocity Uy and u x . This relation is shown in
Fig. 6.

FIG. 6. Possible detonation regimes on the fast wave. The
abscissas represent the longitudinal components of the piston
velocity ux, and the ordinates of the transverse components u .
The letters D+, Dj, S", R+, R~ and A denote respectively the pre-
sence of a fast overcompressed detonation wave, fast detonation
wave in the Chapman-Jouguet regime, slow shock wave, fast and
slow rarefaction waves and the Alfven discontinuity.

As seen from Fig. 6, if the piston is at rest, then
the detonation occurs in the Chapman-Jouguet r e -
gime C".110»111!). We note that a one-dimensional deto-
nation with the piston at rest is qualitatively similar
to a spherical detonation (since the velocity of the
medium at the center vanishes, from symmetry con-
siderations). It is therefore to be expected that a
spherical magnetohydrodynamic detonation also oc-
curs in a Chapman-Jouguet regime.

Let us proceed to determine the possible types of
magnetohydrodynamic waves accompanying combustion
waves.

It follows from the evolutionality condition that the
fast-combustion wave moves ahead of the magnetohy-
drodynamic waves of all types, the super-Alfven com-
bustion wave lies between the fast (shock or self-
similar) and Alfven waves, the pre-Alfven combustion
wave lies between the Alfven and the slow waves, and
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finally, the slow-combustion wave moves behind all
these magnetohydrodynamic waves. For example, in
the case of slow combustion, the fast wave (shock or
self-similar) moves in front, followed by the Alfven
wave, then by the slow wave (shock or self-similar),
and finally the slow-combustion wave.

9. BREAKUP OF DISCONTINUITY

When two shock waves collide, a discontinuity is
produced, on which the boundary conditions are not
satisfied. Therefore such a discontinuity breaks up
into a series of discontinuous and self-similar waves.
The number of produced waves is seven: three waves
moving to the right (fast, Alfven, and slow), three sim-
ilar waves moving to the left, and between them a con-
tact discontinuity which is at rest relative to the me-
dium. The fast and slow waves can be either shock or
self-similar.

The breakup of the discontinuity of low intensity
was investigated in £84,112] Breakup of non-evolutional
shock waves in several particular cases was consid-
ered in C113-I163. A qualitative investigation of the gen-
eral problem of breakup of arbitrary magnetohydrody-
namic discontinuity and of a non-evolutional shock
wave of arbitrary intensity was carried out in E116^.

A particular variant of the breakup of the disconti-
nuity of the initial conditions is the piston problem. If
a piston begins to move at the instant t = 0 with con-
stant velocity, then a discontinuity occurs between the
piston velocity and the velocity of the medium. The
problem of the piston was solved for different cases

Et = 0. (10.1)

in
[75,86,117-121]

Problems involving the collision of shock waves and
the reflection of shock waves from a wall and from the
region of a strong magnetic field likewise reduce to the
problem of breakup of a discontinuity [122>1233

10. SELF-SIMILAR STATIONARY WAVES

In supersonic two-dimensional flow the plane of flow
can be divided into a constant-flow region and a region
of self-similar waves. If the angle of flow differs little
from 180°, then the self-similar wave will have low in-
tensity, and the region occupied by the self-similar
wave contracts to the characteristic of the stationary
flow. In stationary self-similar waves, all the quanti-
ties depend only on the angle ц> (in a polar coordinate
system r, cp ). Such waves arise in the case of flow
around a corner of angle less than 180° (the angle is
measured in the region occupied by the corner) .

We confine ourselves to the two dimensional case
when v z = 0. The boundary conditions on the surface
of the body in the stream depend on its electric con-
ductivity. The magnetohydrodynamic effects appear
most strongly when the body in the stream has infinite
conductivity. The tangential component of the electric
field on the surface of the body is then equal to zero:

If the fluid flowing around body also has infinite con-
ductivity, then the electric field E' is equal to zero
in a reference frame in which the fluid is at rest.
Using the Lorentz transformation, we can express E'
in terms of an electric field E in the laboratory frame:

E' = E + no[vH] = O. (10.2)*

From (10.1) and (10.2) follows the boundary condition
on the surface of the conductor in the stream

[vH], = 0. (10.3)

Since the body is in a stream of an ideal fluid, we have
vt * 0. Therefore it follows from (10.3) that the normal
component of the magnetic field is equal to zero:

Я п = 0. (10.4)

The boundary condition (10.4) is satisfied in two cases:
1) The velocity lies in the (x, у) plane and the mag-

netic field is directed along the z axis. This case r e -
duces to ordinary gasdynamics.

2) The velocity and the magnetic field lie in the
(x, y) plane are parallel to each other.

According to the results of Sec. 2, in this case two
types of self-similar waves are possible, bounded by
the characteristics from the region of constant flow:

a) Slow waves, if cU(c 2 + U 2 ) " 1 / 2 < v < min (U, c ) .
The slow waves move upstream.

b) Fast waves, if max (U, c) < v. The fast waves
move downstream. Stationary self-similar waves are
rarefaction wavesE6>1243.

11. OBLIQUE SHOCK WAVES

In the case of flow around a corner larger than 180°,
or the flow around a wedge, the turning of the velocity
of the medium is realized in many cases in an oblique
shock wave which is attached to the vertex of the cor-
ner.

Let us consider first oblique shock waves in ordi-
nary hydrodynamics.

Knowing the velocity of the medium ahead of the
shock wave ( v l x = v t, v y = 0), we can determine from
the mass, momentum, and energy conservation laws
on the shock wave the possible values of v 2 x and v 2 y

behind the shock waves. The corresponding points are
located on a curve called the shock polar ^125^ (Fig. 7).

To determine the state (v 2 x, v 2 y ) behind the shock
wave if the half-apex angle в of the wedge is speci-
fied, it is necessary to draw from the origin О а
straight line making an angle в with the abscissa axis.
This line crosses the shock polar at two points, S and
W, corresponding to two possible oblique shock waves.
The point S which is closest to the origin determines
the shock wave of the strong family, and the other point

*[vH] =vxH.
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№

0 A 8

FIG. 7. Shock polar. A—Normal wave; B—oblique shock wave of
infinitesimally small intensity; в—half the wedge apex angle; S and
W—oblique shock waves of the strong and weak families; Co—point
corresponding to maximum possible Q; Cac—point at which the
velocity of the medium behind the shock wave is equal to the veloc-
ity of sound.

W the shock wave of the weak family. If a tangent OC0

is drawn to the shock polar, then the point of tangency
separates the waves of the strong family (correspond-
ing to the points on the arc AC0) from the waves of the
weak family (arc C0B). If the half-apex angle of the
wedge is larger than 0O (corresponding to the point Co),
then no oblique shock wave can exist.

Near the point Co is located the point Cac (corre-
sponding to a half-apex angle of the wedge 9 ac). such
that the velocity of flow behind the shock wave is equal
to the velocity of sound E126J. On the section AC a c we
have v2 < c2, and on the section C a c B we have v2 > c2.
(The difference between 60 and 0 a c is less than half a
degree for air; see C62], p. 398, and £Ш ], р. 432.)

In spite of the fact that the shock waves of the strong
family are formally possible, they do not occur in
practice.

The impossibility of existence of shock waves of the
strong family follows from the evolutionality condi-
tions. This idea was first advanced in vague form by
Prandtl^-46^: if v2 < c2, then the perturbations are car-
ried to the corner, and this leads to a breakup of the
shock wave; on the other hand if v2 > c2, then the per-
turbations are carried out of the corner.

The proof of Prandtl's statement consists in the fol-
lowing'-128-'. Since the flow ahead of the shock wave is
supersonic, the perturbations cannot penetrate up-
stream. Therefore the state of the medium ahead of
the shock wave cannot change. If the state of the me-
dium ahead of the shock wave is specified and also its
apex half-angle в, then according to Fig. 7 the state
behind the shock wave is defined. Consequently, a per-
turbation produced at the instant t = 0 at the apex of

the corner should be "swept out" by any instant t > 0.
In the two-dimensional case the perturbations in a
moving medium at the instant t fill the circle (Figs.
8a and b)

(x — vxt)
z-{-(y — vllt)

2^.c42. (11.1)

The condition for the perturbation to vanish at the
point x = у = 0 is v2 > c2. When this condition is not
satisfied, detachment of the shock wave takes place.
Experiments on the collision of metallic plates ^129J
indicate that the oblique shock wave becomes detached
when в < 0O.

We now proceed to magnetohydrodynamic oblique
shock waves.

Like the characteristics, the magnetohydrodynamic
oblique shock waves can be directed not only down-
stream but also upstreamE130^ (see also C64»65'131"135]).

Let us consider in greater detail the case when the
velocity of the medium is parallel to the magnetic
field t 1 2 8 ] . Allowance for the evolutionality conditions
(6.2) and (6.3) greatly narrows down the number of pos-
sible solutions t 1 3 6 - 1 3 ^.

We determine first the angle at which an oblique
magnetohydrodynamic shock wave can be inclined.
From the boundary conditions it follows that when the
medium passes through a shock wave the normal com-
ponent of the magnetic field does not change. We see
from the table that the tangential component of the
magnetic field increases in fast shock waves and de-
creases in slow Shockwaves (without reversing sign).
Therefore in fast shock waves the angle between the
vector of the magnetic field and the normal to the dis-
continuity surface increases, while in slow ones it de-
creases. Since the velocity vector is directed parallel
to the magnetic field, it is refracted by the shock wave
in the same manner. Therefore in flow around a cor-
ner larger than 180° the discontinuity line can be lo-
cated only in the sector shown in Fig. 9. It is clear
from Fig. 9 that the fast shock wave is directed down-
stream and the slow one upstream.

The limits of the regions F and S (corresponding
to the angles of inclination 90° and 90° + 6 in Fig. 9)
are reached in the fast and slow singular shock waves.

It can be shown that when the velocity vector is par-
allel to the magnetic field not more than one wave can
be attached to the apex of the corner (this statement is
not valid if the velocity and magnetic-field vectors are
not parallel, as can be seen from the fact that in this

FIG. 8. Sweep-out conditions. The perturbed re-
gion is shown dotted, a) v2 > c2-perturbation is swept
out from the apex; b) v2 < c2—perturbation is not swept
out.
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FIG. 9. Sectors in which a discontinuity line is possible.
F—Sector in which a fast shock wave is possible; S—sector in
which a slow shock wave is possible; A—direction of the Alfven
discontinuity. The medium moves in the unshaded region from left
to right, the velocity vector is parallel to the magnetic field.

case several characteristics can emerge from a single
point, which can be regarded as shock waves of infini-
tesimally low intensity).

We now proceed to the sweep-out conditions.
From the evolutionality conditions it follows

that E128^ in front of the shock wave the condition
satisfied is

i>1>(max#i, ct). (11.2)

This means that the perturbation cannot penetrate up-
stream. Therefore they should be swept out from the
region near the vertex of the angle behind the shock
wave. Consequently the velocity vector should lie
either outside the fast group polar or inside the slow
group polar, i.e., one of the following conditions should
be satisfied: either

v2 > max (U2, c2)

or

< v2 < min (U2, c2).

(11.3)

(11.4)

It can be shown that condition (11.4) contradicts the
conservation laws for the fast shock wave.

For the slow shock wave, condition (11.2) is impos-
sible. If the condition

• <v1<min(Ul, (11.5)

is satisfied ahead of the wave, then no perturbations
can occur upstream. Therefore the perturbations
should be swept out from the corner behind the shock
wave, i.e., the condition (11.4) should be satisfied. If
condition (11.5) is not satisfied, then condition (11.4)
should likewise not be satisfied.

12. CONICAL WAVES

In the case of supersonic flow around a cone, con-
ical shock waves are produced. Conical shock waves
in ordinary hydrodynamics and magnetohydrodynamics
differ noticeably because the Huygens principle holds
in ordinary hydrodynamics but not in magnetohydrody-
namics.

Let us start with ordinary hydrodynamics. Conical
flow is three dimensional, therefore a perturbation
produced at the instant t = 0 at a point x = у = z = 0
will change the flow at an arbitrary instant t > 0, by
virtue of the Huygens principle, only on the surface of
the sphere

(x - vjf + (y - vyty + (z - vzt)* = c4\ (12.1)

but not inside the sphere. Consequently, the perturba-
tion is always swept out from the apex. Thus, the flow
behind the conical shock wave can be subsonic, as was
indeed observed experimentally^-138^. As regards con-
ical shock waves of the strong family, they are impos-
sible'-139'140^. This can be proved in the following man-
ner С14*]. j£ у ^ v e i 0 C i t y behind the conical shock wave
is subsonic, then in the case of flow around a cone the
equation of the discontinuity surface in a spherical co-
ordinate system (r,<p, 0) is of the form

= к)ш-\-ЛГ - р . . . , \L£.&)

where 9W, A, and m are constants. As shown by a
numerical calculation E1413, for shock waves of the
strong family m < 0, and for shock waves of the weak
family m > 0, From this it follows directly that the
conical shock waves of the strong family are impos-
sible, since the discontinuity surface (12.1) does not
pass for them through the point r = 0.

An investigation of the discontinuity of hydrodynamic
quantities on conical shock waves is reported in C142 .̂
Conical shock waves are always accompanied by con-
tinuous conical flows. Their investigation is the sub-
J6C ь OI •

The motion of a cone at an angle of attack is inves-
tigated in C 1 4 6 " 1 4 9 ] .

We now proceed to conical shock waves in magneto-
hydrodynamics (such waves have been considered in
[150,151] i n t n e c a s e w n e n t n e velocity of the medium at
infinity is parallel to the magnetic field).

In magnetohydrodynamics oblique and conical shock
waves are qualitatively similar, since the Huygens
principle is satisfied for neither two-dimensional nor
three-dimensional waves. Therefore for conical shock
waves there should be satisfied the same sweep-out
conditions as for oblique ones, namely, conditions (11.2)
and (11.3) should be satisfied for fast conical shock
waves (which are directed downstream); for slow shock
waves (which are directed upstream) there should be
satisfied either both conditions (11.4) and (11.5), or
none at all.
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