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1. INTRODUCTION. THE PROBLEM OF CREATING
TUNABLE GENERATORS OF COHERENT OPTICAL
RADIATION

ONE of the most important problems of laser phys-
ics is to extend the frequency range of generators of
coherent optical oscillations. Many possibilities un-
covered by the invention of lasers remain unrealized
because coherent optical emission generators, which
employ single-photon transitions in inverted quantum
systems, can operate in principle only at a relatively
small number of rigidly fixed frequencies. The fore-
going pertains in particular to powerful generators,
which make it possible to carry out research in prob-
ably one of the most interesting field of scientific re-
search and application, namely nonlinear optics. In-
deed, power on the order of 10—100 MW, at which
strong nonlinear effects are produced in solids, liquids,
and gases, can be obtained at the present time only with
the aid of ruby lasers (A = 0.7 ) and with neodymium-
glass lasers (A = 1.06 u). Although many important
researches on the features of the interaction between
powerful radiation matter have been carried out with
these lasers, they must obviously be regarded only as
the first step in the development in this field of phys-
ics. So far there has been very little study of resonant
nonlinear interactions in the visible, ultraviolet, and
especially in the infrared. The latter is of particular
interest, for it is precisely in the infrared range where
the resonant vibrational frequencies of molecules lie.
Therefore we can expect that powerful generators of
coherent infrared radiation will exert very strong ac-
tion on substances. Some progress in the extension of
the range of powerful coherent optical oscillations was
reached by means of nonlinear optics itself. Mention
should be made here first of work on the generation of
harmonicsti™*J and on the stimulated Raman scattering
(see, for example, (5% and also the reviews of H7J),
which have made it possible (by using various combi-
nations of these effects ) to cover by means of a set of
discrete lines the range from 0.26 to 1.1u at powers
not lower than 100 kW —5 MW in individual lines. The
possibility of using these lines for physical research
was demonstrated, for example, in [4,6-3] At the same
time it must be emphasized that such frequency con-
verters for laser energy are far from capable of solv-
ing the problem. Indeed, the problem of covering the
optical band with generators of greater oscillations

can be regarded as solved only when the frequencies

of the coherent oscillations will be made continuously
variable just as, for example, in the microwave band
of the electromagnetic spectrum. It is obvious that
only if tunable generators of powerful coherent radia-
tion become available will it be possible to investigate
fully and to realize the capabilities of the strong ac-
tion of magnetic radiation on matter. It must also be
emphasized that the development of continuously tun-
able generators of coherent optical radiation (espe-
cially continuously -tunable continuous-emission gen-
erators) can revolutionize also the experimental tech-
niques used in linear optics: it can greatly increase
the accuracy of the absorption spectral analysis. light
measurements, etc.

An effective method for producing continuously tun-
able generators of coherent optical radiation is the
use of the so-called parametric interactions of light
waves in an optically transparent medium. The pos-
sibility of producing parametric light generators that
can be continuously tuned in a wide range, and data on
the tuning devices, were predicted by the authors[10]
and by Krollt1] jn papers published in 1962; questions
concerning parametric amplification and generation in
the optical band were discussed also by Kingston[12],
Somewhat later Siegman[“] proposed to use a para-
metric generator as an active amplitude limiter for
optical oscillations. The theory of parametric ampli-
fiers and light generators was developed in greater
detail in papers[¥-16:481*  The first result of experi-
ments in which it was possible to observe parametric
amplification and generation of optical waves was re-
ported at the All-union Symposium on Nonlinear Optics
in Minsk (4—11 June, 196551%J) and the Conference on
Quantum Electronics in San Juan, Puerto Rico (28—30
June 1965; see [8:19-21])  The operating principle of
parametric amplifiers and light generators produced
to date consists in the following. In an optically trans-
parent nonlinear medium, whose polarization P is

P =xE - yEE (1)

(here « is the linear susceptibility and ¥ is the non-
linear susceptibility of lower order), the energy of a
powerful light wave (so-called pump of frequency wp)
can be transferred by means of weak oscillations of
frequencies w; and w,, satisfying the relation

*We note that the theory of wave interactions of the parametric
type as applied to microwave devices was developed inl[*3s%¢],
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Dp= @ T Wy, @)

This can be readily verified by representing, in ac-
cordance with (1), the action of the pump wave on the
nonlinear medium as a modulation of its dielectric
constant in accordance with the traveling-wave law:

¢ (0, r)=2go{l-+m (0p) [exp (i (0pt — kpr))
+exp (— i (wpt — kpr))1}, @)

In a nonstationary medium, whose properties are de-
scribed by formula (3), the waves at frequencies wy
and w, satisfy (2)

E,=A exp [,i (ot —k1)] +c.c.,
E, = Ay exp [i (0t —kor)] + C.cC.

(4a)
(4b)

no longer propagate independently, as would be the
case in a linear medium with constant parameters, but
interact with each other. Indeed, the induction D(w;)
at the frequency w; is

D (0,) == &E; + gqmAj] exp {i |0t — (kp—k,) r]},
D (w,) = gEy + egmAT exp {i [wyt — (kp—ky) r]}.

(5a)
(5b)

The second terms in (5) characterize the interaction
of the waves in a medium with variable parameters; it
is obvious that the interaction will be maximal (will
accumulate with increasing distance) if these terms
have the same spatial periodicity as the first terms in
formulas (5), that is, if

kp:k1+k2. (6)

The meaning of the last condition can be easily under-
stood: it is equivalent to stipulating that the phase re-
lations (and consequently also the character of the en-
ergy relation) between the waves be maintained con-
stant over the entire extent of the nonlinear medium.
Condition (6) is frequently also called the synchronism
condition.

When conditions (2) and (6) are satisfied, the non-
stationary medium performs work on the waves at
frequencies wy and wy, whose amplitudes then in-
crease. To determine the growth rate of these waves,
let us consider for simplicity the scalar problem. (A
more accurate and more consistent analysis will be
deferred to Sec. 2.) We consider a semibounded me-
dium with variable parameter (3), direct the z axis
along the pump-wave vector and along the normal
to the separation boundary; then, obviously, the am-
plitudes A; and A, can depend only the coordinate z.
Substituting in Maxwell’s equations

AE—5 2D _o, (7)
D=¢tE (8)
the field E in the form
E=A,(2) exp [i (01t —k;1)]
4 A, (2) exp [i (0t — kor)] - c.cC. 9)

and using (2), (3), and (6), we obtain a system of two
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coupled wave equations for the fields E4 and E;. The
latter can be greatly simplified by using the fact that
for the cases of practical interest the coefficient of
modulation of the dielectric constant is small (m

= 4mxAp/€) = 107°~107%) and consequently the varia-
tions of the complex amplitudes A; and A, over the
wavelength are small. This enables us to write

d24; dA;
e <k

(10)
and consequently, the system of second-order equa-
tions can be replaced by a simplified system of first
order equations

day __ __ imky A* dA3 - imks A, 1)
d 2 cos (k/l\kp) : dz 2cos (E;kp)
which reduces to a single second-order equation
d2A m2hyk
= 12 A4, (12)

4 cos (l/{:kp) cos (Kgkp)

Equation (12) has obviously solutions which increase
exponentially with the coordinate z

Ay (z) =45 (0)eT?,  Ay(z)= 4, (0)el, (13)

where the growth increment is

r—=1 l/ mymokyky .
2 cos (k;f(p) cos (k/zi(p)

The foregoing signifies that the stationary medium,
whose properties are described by (3), acts as an am-
plifier for the waves at frequencies w; and w,. How-
ever, if we place mirrors in the paths of these waves
(with amplitude reflection coefficients Ry and R,) in
such a way that the corresponding optical cavities res-
onate at frequencies @; = w; and £y = w,, then oscil-
lations can become self-excited in the medium, by vir-
tue of (13) at frequencies w; and w, if (the case of
exact resonance £y = w; and £y = wy)

Ry (@) By(0) e >1, Ry(w;) Ry(ayp) el >1.

For I'd < 1 the last conditions can be written in the
form of a single inequality which has a very lucid form

m 1

7 Vel

(14)

where

Q=g ok

1— Ry (w;) Ry (01)

are the Q-factors of the resonators at frequencies w;
and

=t

cos (kikp)
are the lengths of the corresponding resonators.

A very important circumstance here is that at a
fixed pump frequency, as follows from the foregoing
analysis, the frequencies w; and w; can generally
speaking be arbitrary. Thus, use of parametric inter-
actions makes it possible in principle to convert co-
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FIG. 1. One-dimensional patametric interaction
in a uniaxial crystal and diagram of tunable parame-
tric light generator using such an interaction.

E Figure a) shows, in the first quadrant of the z',
3 x* plane (z* is the optical axis), the cross sections

E, .E.E, of the surfaces of the wave numbers kio), k(zo)

crystal

herent oscillations at a fixed frequency (for example,
coherent oscillations of a ruby laser, a neodymium-
glass laser, or their harmonics ) into coherent oscilla-
tions with tunable frequency.

Using (14) we can readily estimate the pump power
necessary to excite parametric oscillations. Putting
X = 3 x 107 cgs esu (this value is characteristic of
the KH,PO, crystal which is extensively used in non-
linear optics) and Qq,, = 10, and recognizing that m
= 41rxAp/€0, we find the threshold pump field corre-
sponding to satisfaction of the self-excitation condition
avalue Ap = 10% cgs esu, that is, the pump power flux

P, = 8—(;-A%, corresponding to the threshold of para-

p
metric excitation should be several MW/cm?. Such
power levels can be readily obtained with modern
lasers.

The phenomenon of amplification of waves at fre-
quencies wy and w, in a medium with variable param-
eters has much in common with parametric resonance
in a system of two cavities tuned to frequencies £, ,
and coupled by a capacitance that varies like C
= Cyl1 + m cos wpt], where wp = Q4 + Q,, a case very
thoroughly studied in the theory of oscillations. The
time variation of the oscillation amplitudes of such
resonators is described by equations of the type (11)
{see, for example, l:22:'), s0 that the process of am-
plification of the waves (4), which develops in space,
has a perfectly clear temporal analog. Such an anal-
ogy can make it easier for the radiophysicist and the
radio engineer, who operate with circuits with lumped
parameters, to understand the nonlinear optical pro-
cesses; for a more detailed discussion see (23], There-
fore, if we use the language of radiophysics, a nonlin~
earity of the type (1) can be called reactive; it is anal-
ogous to a nonlinear capacitance or inductance, justi-
fying the use of the term ‘‘parametric’’ for the optical
phenomena considered here. We note, finally, that
condition (14) has the same form as the condition of
parametric excitation of a two-loop circuit with lumped
constants. Yet attention must be called to an important
circumstance, which noticeably distinguishes optical
parametric phenomena from the corresponding phe-
nomena in circuits with lumped constant. In optics,

(solid circles), and k(pe.). The point of intersection

of circle radius k(lo) + k(20) (dash) with the curve

k(: ) (6) defines the direction along which

Rplw,) =1,
ﬁz(wz)gf

0
N k(lo) + k(2 ) k(pe). Figure b) shows schematically

a tunable generator and two methods of frequency
tuning (by rotating the crystal or with a static
electric field).

parametric excitation has a wave character, and there-
fore its variation is determined essentially not only by
the temporal (frequency ) but also by the spatial rela-
tions: to obtain self-excitation of parametric oscilla-
tions in the optical band, it is necessary to have not
only ‘‘optical’’ tuning of optical resonators, but also

to satisfy relation (6) (‘‘wave tuning’’) between the
wave vectors, thus imposing rather stringent require-
ments on the dispersion properties of the medium.
Satisfaction of the synchronism condition (6) during

the frequency tuning of an optical parametric generator
is in general one of the technical problems which arise
when working with such generators. Of course, even

in frequency tuning of resonators of an optical para-
metric generator there are certain problems specific
of this band and connected with the multimode char-
acter of the pump (actually, usually one excites in
place of (3) the entire spectrum of waves of the dielec-
tric constant ), and the multimode nature of the oscil-
lations in the optical resonators.

The requirement imposed by (6) on the dispersion
properties of the medium can be easily determined,
considering for simplicity the so-called degenerate
regime of the parametrie generator, in which w; = w,
=w=wp /2. We can then conclude from (6) that for
effective interaction of the waves the medium should
have anomalous dispersion. We can write for the re-
fractive indices, if (6) is satisfied,

ny (©) > ny (2w). (15)

This, as is well known, is also the condition for effec-
tive generation of optical harmonics (see [17¢]), I the
region of optical transparency, the anomalous disper-
sion can be imitated by allowing waves of different po-
larization to interact in an anisotropic medium. This
circumstance was established by Giordmaine(?] and
by Terhune and co-workers (253; its use is essentially
the basis of many successes attained in experimental
nonlinear optics. Figures 1 and 2 show possible vari-
ants of accumulating parametric interactions in uni-
axial negative crystals (z’ and x’ are the symmetry
axes of the crystal) and the circuits corresponding to
the parametric light generators.

The interaction shown in Fig. 1,a can be called ac-
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FIG. 2. Two-dimensional parametric interaction in a uniax-
ial crystal and diagram of tunable parametric generator employ-
ing such an interaction.

Figure a) (plotted for the case of a degenerate parametric

. (] .
interaction w, = w, = ~2—p) shows the sections of the surfaces

of the wave vectors k(lo) and kff)/z in the first quadrant of the KI{W / o N\
x', 2* planes. In figure b) is shown the diagram of the parame- / 23
tric generator with two-dimensional interaction. The frequency
is tuned here by varying the positions of the optical resonators 8,/ )
relative to the crystal. K
‘z'l
7

cumulating one-dimensional parametric interaction

(ky Il ky 1l kp). If the double refraction in the crystal
is sufficiently large, and the dispersion is relatively
weak, then anomalous dispersion may be simulated,
for example, upon interaction of the extraordinary
waves at the higher frequencies with the ordinary

ones at the lower ones. Figure 1,a shows a method

of graphically determining the directions in which the
ordinary waves at frequencies w; and w,; can increase
exponentially in the field of an extraordinary pump
wave; along this direction k{+ k' + Kkj (the indices o
and e will denote here and throughout the ordinary and
extraordinary waves). Figure 1,b shows a tunable pa-
rametric generator and light amplifier in which such a
one-dimensional interaction is used. The frequency
and direction of the wave vector of the pump wave are
fixed here. The mirrors R; and R, have simultane-
ously a high reflection coefficient at frequencies wq
and wy; the resonance at the pump frequency is not es-
sential (at sufficiently high values m ~ QY2 one can
forego also the use of a resonator at one of the gener-
ated frequencies ).

The generated frequencies can be tuned by rotating
the crystal in the manner shown in Fig. 1,b (of course,
this should not bring the resonator out of adjustment;
the corresponding technical details are not shown in
the figure), by applying a static electric field which
changes, as a result of the electro-optical effect, the
optical properties of the crystal (this method was pro-
posed in [10]; it was used in [25%7] for modulation of
optical harmonics), and finally, by changing the tem-
perature of the crystal (see [2°J). Figure 2,a shows
the diagram of an accumulating parametric interaction
which can be called two-dimensional, while Fig. 2,b
shows the corresponding parametric generator. As be-
fore, the waves at frequencies w; and w, are ordinary
waves, and the pump wave is extraordinary, but the
vectors kf, kf, and k§ are not parallel. We note that
this choice of wave types is not obligatory. In many
crystals the synchronism condition (6) can be satisfied
also in the case when the wave at frequency w; is or-
dinary and extraordinary waves are excited at fre-
guencies wy and wp, that is, the satisfaction of the

condition k¢ +k§=kp is possible. In the case of two-
dimensional action the resonators for the frequencies
wy,, are separated in space and the tuning is effected
by varying the position of the resonators relative to

the position of the crystal (the frequency and position
of the wave vector of the pump, as in Fig. 1, are as-
sumed fixed). In the papers cited above, both indicated
types of parametric interaction were effected.

One-dimensional parametric interactions in the
crystals KHy,PO; (KDP) and LiNbOj; (lithium niobate)
are reported in %17’19’203, and two-dimensional para-
metric interaction in a KDP crystal in (18], The am-
plification realized in [1"2%] was sufficient to satisfy
the self-excitation condition (14) for parametric os-
cillations and, consequently, to trigger the tunable
light generator. In the parametric generator described
by Giordmaine and Miller (291, using the highly efficient
nonlinear crystal LiNbOs, the wavelength of the para-
metric oscillations varied from 0.97 to 1.15 y; the
pump wavelength was Ap = 0.529 u (the pump was the
second harmonic of a calcium-tungstate laser acti-
vated with neodymium ). The experimentally deter-
mined threshold power of the pump, corresponding to
the self-excitation of the oscillation was P, = 4
x 10° W/cm?, and the efficiency of the generator was
n= Pm/Pp = 0.1%.

The parametric generator operating in our labora-
tory, based on a scheme described in [”], used a KDP
crystal; by virtue of the lower value of x in this crys-
tal, the threshold pump power (the pump generator
used in [ had Ap = 0.529 1) was approximately 12
x 10% W/cm?; the frequency tuning was by rotating the
crystal and had a range ~ 600 A; the powers Py
reached 200—300 W; the range of frequencies was
limited by the properties of the mirrors. Parametric
interaction was observed in 15191 in a field of a pump
generator with Kp = 0.35 u (second harmonic of ruby -
laser emission) and, in [2!3 with the aid of gas lasers
(to be sure, the pump power in these experiments re-
mains still appreciably below threshold). The results
of these investigations thus offer evidence that the
present-day level of laser technology makes feasible
tunable generators of coherent optical emission on an
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experimental basis. At the same time, these results
should be regarded as preliminary, merely illustrating
the possibilities of experimental realization of the
principle of parametric amplification and generation

in the optical band, but by no means exhausting all the
possibilities mentioned here. A discussion of these
possibilities, based on a more complete and more
consistent theory, will be presented in Sec. 2, where
we shall also discuss in greater detail the experimen-
tal results.

It should be noted that in a strong pump field the
parametric interaction can occur not only between the
light waves themselves, but also between light waves
and acoustic waves, light waves and spin waves, etc.
Processes of this kind are called induced scattering.
The wave picture of the processes of induced scatter-
ing is perfectly analogous to the wave picture of the
parametric amplification discussed above. Therefore,
many results of the theory of wave parametric inter-
actions are directly applicable to induced scattering.
An examination of the induced-scattering phenomena,
from the point of view of ‘‘parametric’’ concepts, on
the other hand, makes it possible to analyze the pos-
sibility of creating tunable generators for hypersound,
using optical pumping (using induced Mandel’ shtam -
Brillouin scattering in crystals cooled to liquid-helium
temperature ), parametric generators for millimeter
and submillimeter wavelengths with optical pumping,
ete. It is interesting that in some cases intense co-
herent oscillations in a scattering medium, excited in
the course of induced scattering of intense optical ra-
diation, can themselves serve as a pump for lower-
frequency of electromagnetic waves, acoustic waves,
etc. (see, for example, [28]),

A brief discussion of these questions is the subject
of Sec. 3 of the present article.

2. AMPLIFICATION AND GENERATION OF SUB-
HARMONICS IN THE OPTICAL BAND

In this section we discuss first in greater detail
the theory of parametric interactions in the optical
band. In the general case, we must take into account
here quantum effects; we note, incidentally, that when
(2) and (6) are multiplied by Planck’s constant they
acquire a clear quantum meaning—the first of these
relations becomes the energy conservation law and
the second the momentum conservation law. There-
fore, in quantum language, the process of parametric
amplification can be treated as the process of coherent
decay of the pump photons following interaction with
the photons of frequencies w; and w,. However, most
problems connected with optical parametric processes
can be solved in the quasiclassical approximation, in
which the field is not quantized and quantum theory is
used only to investigate the nonlinear polarization of
the medium. Exceptions are problems involving the
noise properties of parametric amplifiers and the
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pre-oscillation noise of parametric generators; for
lack of space, however, we shall not discuss these
questions. An analysis of quantum fluctuations in
parametric processes is given in [2932],

2.1. Principles of the Theory of Parametric Light Gen-
erators

We first write out the equations for the parametric
action of traveling light waves in a more general form
than in Sec. 1. The need for such a generalization is
connected with the following circumstance. The ideas
concerning a medium with variable parameters, used
in Sec. 1, have obviously a limited region of applica-
tion. They can be used only so long as the amplitude
of the pump wave greatly exceeds the amplitude of the
wave at frequencies wy and wy (Ap > Ay, A;). At the
same time, the exponential growth of the amplitudes
Ay and Ay in the medium with polarization of the type
(1) can be limited only by the reaction of the waves A
and A, on the pump wave. Therefore, in constructing
a theory of parametric light generator, one of the most
important problems of which is the determination of
the efficiency of the generator, the waves at the fre-
quencies wy, wy, and wp should be considered on a
par. The presence of feedback, which is determined
by the mirrors, makes it necessary, in general, to
take into account the change in the complex amplitudes
both in space and in time. Finally, in constructing a
more exact theory it is necessary to take into consid-
eration the redistributed losses in the nonlinear me-
dium (connected with the imaginary part of the linear
susceptibility «) and the possible deviation from the
exact synchronism condition (6). Taking the foregoing
into account, we seek the solution of the nonlinear Max-
well’s equations in an anisotropic medium (as shown
in Sec. 1, this is precisely the case of greatest inter-
est)

4 g2p(D)
et ot

1 a2E

gep(nl)
rot rot E+§_5ﬁ—+ An L1 =

P =0, 1)

where
@

P(l):_—gfc(t’)E(t—t’)dt’, % (@) =% (@) —i 22,
0

P - yEE,
in the form
E=E 4+ E,+Eg=e 4, (¢, r)exp [{ (o —kyr)]
+ €4, (1, ) exp [i (wyt — kor)]
+epdp (2, ryexp [i (wpt —kpr)] + c.C.; (17)

here ey, e,, and e; are unit vectors describing the po-
larizations of the waves; in the first approximation the
nonlinear interaction does not change the polarizations
of the proper waves of the anisotropic medium.

*rot = curl.




PARAMETRIC AMPLIFIERS AND GENERATORS OF LIGHT

In accordance with the foregoing we shall now write
in place of (6) 2 more general relation in the form

(18)

where A is the so-called detuning vector (‘‘wave’’ de-
tuning ). Then, substituting (17) in (16) and discarding,
as before, the second derivatives (the changes in the
complex amplitudes in space and in time can be re-
garded as slow), we arrive at a system of first-order
simplified equations

ki 4k =kp+ A,

si (er (kieud] 2t 4 fe; ke ]} V4,

+ (ea5e,) A+ ifoleidrA AT =0, (19a)*

04
s, [e; [koes]] th +[e, [kqe,]] VA,

+ (eya5€;) Ayt iaieibTA AT =0, (19b)

spleplkpepl] 212 1 [eplkpe,]] VA,

+ (ep&pep) Ap—+ifope=tAr4 A, = 0; (19¢)

here
__0u/dk
(00/0k)2
are the ray vectors of the waves, whose absolute val-
ues are equal to the reciprocals of the group veloci-
ties at corresponding frequencies,

~ __231(1),-3 (w;)
a; = T

are the attenuations and
2n ~ 2n ~
="z erx (0p— 1) epe; = —5- ey (0p— 1) €pe;

2 ~
= c—g epy, (01 + ;) ege, (20)

are the coupling coefficients, while ¥(wj * wk) are
the spectral components of the nonlinear susceptibil -
ity tensor (of third rank); relation (20) is valid by vir-
tue of the special symmetry properties of the tensor
(see, for example, [#:37]). The case of parametric
amplification of weak unmodulated waves at frequen-
cies wy and w, in the field of a strong unmodulated
pump wave is described by equations (19a) and (19b)

in which 8A;/8t = 8A,/8t = 0. If we regard a bouhd-
ary-value problem similar to that of Sec. 1, then

[es[kie )]V =R N
= ky cos (kys,) cos (s,7)) %’
[ey[koe5]]1V ¢ (21)

=k, cos (lgs2) cos (STZ;O) %’ ‘

and, using standard methods for stability analysis of
the system of equations (exponential growth of the
amplitudes A; and A, with the coordinate can be re~
garded as ‘‘instability in space’’), we can determine

*k,el=k, xe.
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Ap
7

g 4
FIG. 3. Regions of parametric amplification of traveling light
waves; The abscissas represent the wave detuning A, and the
ordinates the pump amplitude A_. In a lossless medium the region
of amplification lies between the two straight lines drawn from the
origin; in a lossy medium, for the same detuning, larger values of
Ap are necessary; the corresponding region is shown shaded.

in terms of the coordinates Ap and A the region in
which parametric amplification of traveling light
waves is possible. The regions of amplification are
shown in Fig. 3 for the case of zero losses and non-
zero losses*. It is seen from the diagrams in Fig. 3
that the larger the modulus of the wave detuning and
the larger the damping decrement the more pump
power is necessary to obtain the exponential-growth
regime.

Equations (19), but now written out in full, should
also be used to construct a theory of the processes
occurring in a parametric generator; to this end they
must be solved with the boundary conditions on mirrors
located at z= 0 and z = d. The characteristic param-
eters of the problem are in this case:

1) the nonlinearity of the medium defined by the pa-
rameter S,

2) the pump amplitude Ap,

3) the damping decrements ej&iei,

4) the wave detuning A, defined by formula (18), and

5) the relative frequency detuning

wp —Qy— Q9
= ©2)
where §2; and £, are the resonant frequencies of the
modes of the optical resonator in which the parametric
oscillations are excited, and hy and h, are the widths
of the spectrum of these modes: hj = j/Qj.

It should be noted that a solution of the system (19)
with boundary conditions defined at z =0 and z =4 is
in general a very complicated problem, since even the
simplified equations (19) are partial differential equa-
tions. The problem is also much more complicated
because practical interest attaches primarily to an
investigation of the transients in the parametric gen-
erator. We recall that the pulse duration in the high-

*It is easy to see that the amplification regions shown in Fig.
3 have the same form as the instability regions of a linear oscil-
lating circuit with variable capacitance or inductance; in the
latter case the abscissas represent the frequency detuning.
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power lasers customarily used as the pump generator
in optical parametric devices does not exceed Tp = 2

x 1078 sec, so that the stationary parametric oscilla-
tions may not have time to settle within a time Tp in
those cases when the threshold of the parametric self-
excitation is exceeded by a small margin. We describe
here briefly two possible variants of the solution of the
equation of a parametric generator.

2.2. Transient and Stationary Processes in a Para-
metric Generator—The Method of Successive
Steps

One of the simplest methods, one especially conve-
nient for digital-computer calculations, is the method
of successive steps, in which the establishment of the
parametric oscillations can be broken up into a series
of successive stages, described by equations for a
semi-bounded medium. The time derivatives in (19)
can then be disregarded. Indeed, in such an approach
inclusion of the time derivatives is essential only
when the time of the group delay of the pump pulses
and of the parametric oscillations

T=Nd<—1———1— (23)

ip Uq,2

(here N is the number of reflections, up and uy,,; are
the group velocities at the corresponding frequencies)
becomes comparable with the duration of the pump
pulse Tp. In the cases of practical interest 7, ~ T
only when N = 200—300, so that this effect can cer-
tainly be neglected.

Let us illustrate the calculation procedure and
some of the results, using a very simple example of
a degenerate parametric generator (wy = wy; =
= wp/2) and one-dimensional interaction (see Fig. 1).
Going over in (19) to real amplitudes and phases, we
arrive for the case in question at a system of equa-
tions for the amplitude of the subharmonic A, the
pump amplitude Ap, and the phase &:

dA

55+ 0Apdsin® 64 =0, (24a)

e g4sin® +8,4,=0, (24b)
do A? L
W—}—A—{—o(2AP—2;> cos® =0, (24c)

Here & = 2¢ —¢p—Az, where in turn ¢ is the phase
of the subharmonic, ¢y is the phase of the pump, A
the z component of the wave detuning vector A, 6 and
6p are the damping decrements of the corresponding

wave, and ¢ is the coupling coefficient. For the case
2

2 .
considered here we have o= ——l:) B.* The calculation
1

procedure consists of breaking up the process of es-
tablishment of the parametric oscillations into a se-

*Here o is a scalar and of course has no connection with the
conductivity tensor o used in[*°].
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quence of steps described with the aid of the equations
in (24). The boundary conditions for each succeeding
step are determined by the results of the preceding
step and by the properties of the mirrors. Introducing
the real amplitude reflection coefficients of the mir-
rors Ry and R; and the phase shifts ¢ 5 of the re-
flection from the mirrors, we can establish the con-
nection between the amplitudes and the phases for the
successive steps. It should be noted that even for the
simplest variant of the parametric generator consid-
ered here the problem can be formulated in several
ways. In particular, a distinction is made, generally
speaking, between processes in a system in which the
optical cavity resonates simultaneously at the pump
frequency and at the subharmonic frequency, and in a
system in which the optical cavity is practically trans-
parent to the pump wave. Comparison of the different
generator schemes can be found in (1], We shall pre-
sent here the results of a calculation for the scheme
of a generator which has been experimentally realized
(see [173 and [20]) and for which the reflection coeffi-
cients Ry and Ry are small at the pump frequency:
R1(wp) R Rz(wp) ~ 0. The boundary conditions on the
mirrors for the amplitude of the subharmonic and the
phase & are

AR (d) = Ry (0) AR’ (d), AR (0) =Ry (0) ANZ( (0),
OF (d) = OF (d) + ¥,, OF (0)=0OK-1 (0)+ ¥y

(25a)
(25b)

here N is the number of the step, the plus sign de-
notes quantities pertaining to the waves moving from
left to right (forward), and the minus signh quantities
pertaining to the backward waves.

The conditions for self-excitation of the generator
and the transient time can be determined by using only
Egs. (24a) and (24b), in which the pump amplitude can
be regarded as a parameter; Ap = Apy, where Apg is
the amplitude of the forward pump wave at the entrance
to the resonator. It must be borne in mind that when
A = 0 and 6 = 0 the variation of the amplitude of the
subharmonic with the distance has a more complicated
form than for the simplest case considered in Sec. 1.
When A/0Apy < 1 and 6 < 0Ap, we have

A(z) = Ay exp [GAPO]/1—2—G%;_6] z.

Thus, for A >20Ap, (see also Fig. 3) the exponential
amplification gives way to damped oscillations. Using
(26) we can obtain a more accurate self-excitation
condition (cf. Sec. 1); for the settling time 75 we have
approximately

(26)

2d -1, 4
o222 [0dpod /1—23?4—“_5(1] In5>,

(27)
where Ag is the steady-state amplitude; the larger the
ratio Ag/Ay, the more accurate is formula (27). (If
the generator is self-excited by fluctuations, then
Ag/Ay ~ 108-10%.)
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FIG. 4. Theoretical transient curves of degenerate parametric
oscillations in a resonator transparent to the pump. The curves
were plotted for the following values of the parameters: ¢ =1 cm™,
8=08,=0,R(x)=Ry(w)=0.99,d=1cm, A, = 107%, Ap, = 1,
Curves 1, 4, and 9 represent the quantities Al(\;‘)(d), AE’?&)(O)’
and A&%\I)(d) for A/2¢ =5 x 107%; curves 2,5 and 8—for
A/20 = 0.5; curves 3,6 and 7—for A/20 = 1.
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To determine the stationary amplitude, it is neces-
sary to solve the complete system (24). The results of
such a solution, carried out by numerical means, are
shown in Fig. 4, which contains plots of the amplitude
of the forward wave of the subharmonic at the output
mirror of the resonator Af\;’(d), the amplitude of the
forward pump wave at the output mirror A(*()N)(d ), and
the amplitude of the backward pump wave at the input
mirror A;()-()N) (0) (this wave occurs even when Ry(wp)
= Rz(wp) = 0 as a result of the frequency doubling of
the backward wave of the subharmonic ), normalized
to the value of Apy. We see from Fig. 4 that the effi-
ciency of the parametric generator can be quite high;
the generator in question is simultaneously an active
limiter of the amplitude of the pump wave passing
through the resonator. An interesting fact is that the
parametric generator is a unique nonlinear mirror for
the pump wave; as can be seen from the plots in Fig. 4,
the nonlinear reflection coefficient R(1D) = AI()_)( 0)/ Apy
can be quite high. A more detailed exposition of the
results of the parametric-generator theory based on the
method of successive steps can be found in [16],

A similar analysis can be carried out for a nonde-
generate generator. A qualitative picture of the pro-
cesses considered above remains the same here, and
the power distribution over the frequencies is de-
scribed by the simple relation
A _ A4 28)

) ®g
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2.3. On the Theory of the Stationary Regime of a Para-
metric Light Generator. Parametric Amplifica-
.tion and Generation in Real Beams

Another possible approach to the theory of the pa-
rametric generator, one particularly fruitful in the
analysis of the stationary generator regime, is to rep-
resent the oscillations of the subharmonic in the form
of a standing wave with complex amplitude, which de-
pends only on the time. A basis for this is the fact
that the amplification of the subharmonic during one
passage is small and the amplitudes of the forward
and reflected waves of the subharmonic can be as-
sumed equal in the succeeding steps. In this case,
considering the degenerate mode, we can seek the
subharmonic field in the form (we use real notation):

E=eA4 (t)sin (%z) sin (ot + @), (29a)

where n is the number of the longitudinal mode ex-
cited in the optical resonator, and the pump field, as
follows from the results obtained above, must be
sought in the form of a superposition of the forward
and the reflected waves, with amplitudes that depend
generally speaking on both the coordinate and on the
time:

Ep=epA™)(t, z) cos [opt—kpz+f

FepAy’ (t, z)cos[wpt--kpz+¢F]. (29b)
Substituting (29a) and (29b) in (16) we arrive at a sys-
tem of equations of the type (19). In view of the length
of these equations, we shall not write them out here;
we shall merely indicate that for the stationary case

9
(8—t = 0) it is possible to analyze them in the phase

plane and obtain analytic results for some particular
cases. We note that the nonlinear-loss mechanism,
connected with the frequency doubling of the backward
wave of the subharmonic, has no analog in circuits with
lumped constants; therefore if Apgr >4, allowance for
the linear losses in the parametric generator of light is
immaterial also from the fundamental point of view.
Using such an approach, we can analyze the dependence
of the amplitude of parametric oscillations on the pump
amplitudes, on the wave and frequency detunings, etc.

In a nondegenerate parametric generator the thresh-
old pump intensity depends on A like A%*d%/ (1 —cos Ad)
and on ¢ like 1+[28(Qy + 9,)/hy + hy]%. A similar
analysis can be carried out also for a nondegenerate
parametric generator. One of the interesting questions
here is that of the frequency stability of the parametric
oscillations. Indeed, in the nondegenerate regime (un-
like the degenerate one, in which the relation w = wp/z
is exactly satisfied) the frequencies w; and w, can
vary with the resonator parameters, etc. ¥ the station-
ary amplitudes of the parametric oscillations are de-
termined by the final pump power, then the frequencies
wy,7 are equal to
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0y =89 +8hy, 0y =wp—o, =Q,+Eh,,

where ¢ is given by (22).

Using the foregoing formulas, we can analyze the
dependence of the frequencies of the tunable paramet-
ric generator on the resonator parameters, that is, de~
termine the technical width of the spectral line of the
generator. It is interesting that under certain condi-
tions unilateral deviations of the optical-resonator
parameters do not influence the generated frequencies;
the frequency stability of the parametric generator of
light can exceed the stability of the partial frequencies
of the optical resonators.* In this sense, a parametric
light generator can be similar to two-loop parametric
generators used for frequency stabilization in the
radio (38381 and microwave bands[#°]. In this connec-
tion it is appropriate to turn attention to the fact that
one of the essential difficulties that arise in realiza-
tion of tunable parametric generators in the radio band,
connected with the mutual synchronization of the oscil -
lations at frequencies wjy and w, (see, for example,[‘“’])
does not appear in the optical band. The generation of
the harmonics nw; and mw,, which is responsible for
the mutual synchronization, is ineffective here because
of the large wave detunings. Exceptions are near-de-
generate regimes for which difficulties arise during
the course of frequency tuning near w = wp/2; this
has apparently taken place in the experiments de-
scribed in 203,

To determine the tuning range of a parametric light
generator and the corresponding orientations of the
crystal (in one-dimensional interaction) or optical
resonators (in two-dimensional interaction) there is
no need to use the equation of the generator. These
quantities are determined by the linear dispersion
properties of the working crystal. By specifying the
form of the nonlinear interaction (as already indicated,
the synchronism conditions in typical nonlinear crys-
tals can be satisfied for the interaction k{+ k; = kp
and sometimes for the interaction k?+ k2e= kS) and
the values of the frequencies wy, wy, and wy (in prac-
tice it is convenient to specify wp and the ratio
= wi/wp), and by using the dispersion properties of
the crystals, it is possible to determine from the spe-
cified value of the angle 0p = (k;z(,) (zy is a unit vec-
tor along the optical axis) the values of the angles 6,
= (K;2§) and 6, = (k/;z(,). Figure 5 shows such a con-
struction for the interaction k{+ k§= k§ in a KDP
crystal at Ap = 0.35 u (second harmonic of a ruby
laser ). The vertices of the curve correspond to the
direction of the one-dimensional interaction for a
given k = wy/wp. It follows from the presented
curves that for given Gp and k there exists only one
pair of angles 6; and 0, satisfying the synchronism
condition.
~ *Moreover, a regime is also possible in which the frequency

stability of the parametric generator exceeds the stability of the
pump frequency.
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FIG. 5. Tuning curves of optical parametric genetator using
the interaction ki + k] = k¢ in a KDP crystal. The abscissas rep-
resent the angle 8 = (k_z,) and the ordinates the angles
0, = (k,z}) and 6, = (k,z!). The parameter of the curves is the
quantity « = ml/mp. The curves were plotted for )\p =0.35 p

Of course, for effective utilization of a nonlinear
crystal as a working medium in a parametric light
generator, the crystal must have not only suitable
dispersion characteristics in the frequency band of
interest, but also ensure satisfaction of conditions for
parametric excitation at not too high pump powers.
The latter imposes limitations on the magnitude of the
nonlinear-susceptibility tensor and on the damping
decrement.

At present there are four sources of powerful co-
herent optical oscillations that are suitable for use as
pump generators in optical parametric generators.
These are the ruby laser, the neodymium-glass laser,
and their second harmonic generators. Typical data
on pump generators and a list of nonlinear materials,
suitable for production of the appropriate parametric
generators, based on the results of papers published
up to November 1, 1965, are listed in the Table (we
present here also the values of the nonlinear suscep-
tibilities for KDP, ADP, and LiNbO; crystals).

In concluding this section, we must emphasize that
the parametric-generator theory presented above was
developed for the case of plane quasi-monochromatic
waves. It is advantageous to discuss, albeit qualita~
tively, the question of the corrections that must be in-
troduced in this theory to interpret data obtained with
real laser beams. If we deal with unfocused beams
(such beams are customarily used in experiments with
solid-state pump generators) we use the geometric-
optics approximation.* In this case the most important

*At the same time, allowance for the diffraction effects is of
interest in connection with experiments in which the pump genera-
tors used are gas lasers[?]; to satisfy the self-excitation condi-
tions, focusing of the pump is necessary in this case. A procedure
for calculating nonlinear optical effects in focused beams is given,
for example, inl[*!].




PARAMETRIC AMPLIFIERS AND GENERATORS OF LIGHT 219
Average
) wavelength .
Nonlinear . Parameters of nonlinear
Pump generator material 8‘§cp2reizfa- materials
tor
Ruby laser LiNDO; 1) KDP:
Ap=~0.7 p, NH,D,PO, A=1dp dzg=3.10"% CGSE
Pp=100 Mw (DADP) at A=1.06 p
Nd' t-glass laser LiNbO; 2) LiNBOy2:
Ap=1,06 y, A=2p dgy=3-10-8 CGSE
Rp=100 Mw 3) ADP:
dag=2-10"% CGSE
Second harmonic of KH,PO,(KDP) A==07p
ruby laser NH,H.PO,(ADP)
Ap=20.35 p,
Pp=17-8 Mw(**] Damping decrements
for ADP:
Second harmonic of KH.PO,(KDP) A=1.06 u { at A=1.06 p
glass laser NH,H,PO,(ADP) 28-=0.151" cm*?

Ap = 0.53 p, LiNbOj at A=0.53 p
Pp=~25 Mw['] 28=0.024 cm-1[+2)

differences between the beam generated by the laser
and the model considered above are its finite aperture,
divergence, and mode structure. Within the framework
of the geometric-optics approximation, the effect of the
finite aperture of the pump beam is connected with the
difference in the directions of the wave and ray vectors
in an anisotropic medium. If we denote by v the aniso-
tropy angle, ¥ = (ks), the effects of the finite aperture
will come into play at lengths I3 = MLy™!, where L is
the beam diameter and M is a dimensionless coeffi-
cient, the magnitude of which is determined by the
properties of the spatial coherence of the pump. If the
pump generator operates at the lowest transverse
mode, M = 1, and for ordinary conditions realized in
experiments, then Iy = 10—15 ¢cm. Using the value of
l5 calculated in this manner, we can then estimate the
number of reflections in the resonator of a parametric
generator N, for which the influence of the aperture
effect is still immaterial: I, ~ Nd.

In order to analyze the question of influence of the
divergence of the pumping, it is necessary to take into
account the fact that the wave detuning A depends on
the angle between the ray in question and the optical
axis (see, for example, Fig. 1,a); for small deviations
from the synchronism condition (6) we have

A=K (6—8,). (30)

Using (26), we can determine the critical divergence
angle (it is sometimes called the capture angle), at
which exponential growth of the subharmonics is still
possible:

(31)

Thus, if we deal with amplification of traveling waves,
the influence of the beam divergence g can be ne-
glected if o < agp.-

In an optical resonator, waves can be regarded as
plane if oy < ap —the angular aperture of the central
maximum of the resonator. Thus, the beam divergence

does not influence processes in parametric light gen-
erators if

Oy < Ugp < Q.

Processes in parametric light generators are strongly
influenced by the mode structure of the time spectrum
of the pump. For a generator with one-dimensional in-
teraction (see Fig. 1), the condition for existence of
resonance simultaneously at the frequencies w; and

wy is equivalent, obviously, to the condition of synchro-
nism of the pump-generator modes and the modes of
the parametric-generator optical resonator. Therefore
a pump in the form of a solid-state laser is as a rule
inefficiently used in a parametric generator.

The angular dependence of the signal with A = 1.06
amplified in a degenerate parametric amplifier of
traveling wave (Ap ~ 0.53 ) is shown in Fig. 6. A
KDP crystal 3 cm long and a pump-power flux Pp
~ 100 MW/cm? were used in these experiments[17].
The angular width of the amplification curves was de-
termined by the value of ;. Different curves corre-
spond to different experiments (their different position
is connected with the phase selectivity of the degenerate
parametric amplifier ); the average power gain was
2—3, which exceeded the threshold of parametric exci-
tation. The introduction of mirrors led to regenerative
amplification and self-excitation of the oscillations
(the characteristics of the generator are given in
Sec.1).

The threshold of parametric excitation is always
clearly pronounced. A study of the spectrum of the an-
gular structure of parametrically excited oscillations
offers evidence of a high degree of their spatial and
time coherence. In the experiments described in [20],
the divergence of the pump was op & (2—3) x 107° rad,
and the divergence of the radiation of the parametric
generator was a; , ~ 3 X 1073 rad. The width of the
pump spectrum was 6Ap ~ 1.54 A, and that of the para-
metric was in some cases not worse than OAg,9 = 0.3 A

The frequency tuning of the parametric generator in
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FIG. 6. Experimental plots (taken from[*"]) of the
intensity of the signal (in relative units) amplified in an
optical parametric amplifier vs. the direction. The angle
6, corresponds to the synchronism direction. The differ-
ent experiments, and the horizontal line drawn through
unity corresponds to the pump turned off.
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[20] was realized by changing of the temperature of
LiNbOj crystal used as the nonlinear medium. The
length of the crystal amounted in this case to d

= 0.53 cm and the reflecting coatings were deposited
directly on the crystal. Experimental tuning curves
obtained in %] are shown in Fig. 7.

It must be noted that in the experiments carried out
to date, no attempt was made to optimize the efficiency
of the parametric generators, therefore the efficiencies
of ~0.1—0.05%, obtained at the present time, cannot
be regarded as the limits.

In experiments with Ap = 0.35 4, described in [18:19],
the threshold of parametric excitation was not exceeded;
we note that the registration of the different frequen-
cies, carried out in [19], does not of necessity prove
the existence of exponentially growing waves (for more
details see [17J). A distinguishing feature of (18] is
the fact that it is devoted to a study of two-dimensional
interaction. It is of interest to note that in two-dimen-
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FIG. 7. Experimental dependence of the frequencies generated
by a tunable parametric generator with /\p = 0.529 y, on the tem-
perature of the working LiNbO, crystal (the plot is borrowed
from[*°]),

sional interaction the phase selectivity of degenerate
parametric amplification drops out; this effect had no
analog in the radio band.

3. PARAMETRIC INTERACTION AND INDUCED
SCATTERING

The parametric interactions of light waves, consid-
ered in Secs. 1 and 2 were but one of the examples of
a broad class of wave interactions of a similar type.
Acoustic and light waves, spin and light waves, plasma
and light waves, etc. can also interact effectively in the
field of an intense light pump. Here, exactly as in the
interaction of light waves and interactions of waves of
different nature, exponentially growing waves can oc-
cur (instability in space; see Fig. 3), and hence, if
suitable feedback is introduced, parametric excitation
of acoustic, plasma, etc. waves can occur under the
influence of light pumping. To explain the foregoing
let us write out, for example, the equations for the
parametric interaction of acoustic and light waves in
an isotropic medium in the field of a powerful optical
pump (called induced Mandel’shtam—Brillouin scat-
tering). The connection between the acoustic and light
fields is determined, on the one hand, by the presence
of an electrostiction force

i [Pe e 62
where p is the density (action of electromagnetic
waves on sound waves ), and by the presence of a term
in the polarization of the form

1 0de dg
W g op P

(33)

where p is the sound pressure (this term describes
the action of sound waves on light waves). Then, in the

field of a powerful pump wave
Ep=Ap(t, r)exp [ (wpt—kgr)] (34)

the interaction of the acoustic wave
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p=p(t, r)exp[i(Qt—ker)] (35)
and the light wave
E,=A, (¢, r)exp[i (0t —kr)], (36)

whose frequencies and wave numbers satisfy the re-
lations

0, +Q=wp, kit+ko=kp+A, (37)
are described by the equations
ky 0A . . e 39 o[k kA i
(k1V)A1—|—7:—/d—ti+6lA1—-ledz—‘a§—ml[-‘—£k%c—2pﬂp ¢iar — 0,
(38a)
kp AA . . Ae 8 kp [kpA .
(ko) Ap-+ (2 TP+ EpAp—ige GL 0p PELELILE o —,
(38b)
ko o . . a . ;
KoV Pt G + 0P +i g 0 g (ka—8)* ApAeior—0.
(38c)

It is easy to see that Egs. (38) have the same form as
(19); to be sure, unlike (19), they are vector equations,
for in an isotropic medium the polarizations of the
natural waves are not defined.

Just as the system (19), the system (38) has an ex-
ponentially growing solution at pump power above
threshold. Therefore nonlinear medium in which
acoustic and light oscillations interact can serve as a
parametric generator of hypersound with optical pump-
ing. It should be noted that although induced Mandel’ -
shtam ~Brillouin scattering has already been observed
many times experimentally (for example, see (433) in-
tense hypersonic oscillations were not registered di-
rectly. It can be expected that irradiation of optically
transparent crystals (for example, quartz) with power-
ful laser pulses at helium temperatures, will make it
possible to excite intense sound oscillations with power

P = S Pp. (We note that similar amounts of power

are transferred to hypersonic oscillations also in
liquid, but there, owing to the large attenuation of the
hypersound, they are dissipated in the form of heat.)
An interesting possibility of recording intense hy-
personic oscillations arising during the course of in-
duced scattering is the use of the piezoeffect in a scat-
tering medium. In this case the scattering medium be-
comes an optically -pumped microwave generator; it
then becomes possible to generate oscillations in the
millimeter band. Parametric submillimeter genera-
tors with optical pumping can be constructed, appar-
ently, by using induced scattering by spin waves. We
note, finally, that intense oscillations of a scattering
medium, arising during the course of induced scatter-
ing, can themselves serve as a pump for lower-fre-
guency oscillations (for example, acoustic oscilla-
tions ). Interesting possibilities are uncovered by the
use of coherent molecular oscillations produced during
the course of induced Raman scattering (induced Raman
scattering is described by equations of the type (38), if
the damping decrement for the sound is assumed to be

sufficiently large). V. T. Platonenko and one of the
authors of this article have shown[?8] that coherent
molecular oscillations at frequency £ can excite in-
frared waves at frequencies w; and w, satisfying the
relation Q = w; + wy at a pump-laser power not much
higher than the threshold for induced Raman scattering.
Recently V. Akanaev observed such an interaction ex-
perimentally in our laboratory in strongly compressed
hydrogen.

4. CONCLUSIONS

The material presented in this review offers evi-
dence of the possibility of experimental realization of
the principle of parametric amplification and genera-
tion in the optical band. We can expect further prog-
ress in the development of nonlinear materials, reso-
nator systems, and pump sources to lead to the crea-
tion of parametric generators in different regions of
the visible and infrared bands. Especially promising
is research aimed at creating tunable optical paramet-
ric generators of continuous action, using gas lasers
as pump generators.*

It must be noted that parametric interaction in a
medium with polarization of the quadratic type and
with a pump frequency exceeding the frequency of the
parametric oscillations (‘‘high-frequency’’ pump), are
not the only parametric interactions which is possible
in the optical band. In principle, there are definite
prospects for observing parametric effects with ““low-
frequency’’ pumping (see, for example,[“]); also in-
teresting are parametric interactions in a medium with
nonlinear polarization of the cubic type P = YEE-E. In
such a medium (for example, in CaCO; crystals), the
energy of the powerful pump oscillations of frequency
wp can be transferred to parametric oscillations at
frequencies wy and w, satisfying the relation 2wy,
= w; + w, (see [1]), With such an interaction it is
especially easy to satisfy the synchronism conditions.

It is of course too early to speak of all the applica-
tions of parametric generators; it is appropriate to
note, however, that they can apparently be used effec-
tively in optical information-processing systems, in
analogy with their radio-frequency counterparts. In
conclusion, it should be noted that recently definite
prospects have arisen for constructing tunable optical
generators using multi-photon processes?t in inverted
quantum systems. A. M. Prokhorov and A. S. Seliva-
nenko have proposed using such transitions for the
construction of powerful lasers with tunable frequen-
cies.[*6] At the already mentioned Quantum-elec-
tronics Conference in Puerto Rico it was reported
that such a fransition, in which a photon and a phonon
took part, was experimentally observed.

" *Most promising from this point of view are argon and CO, las-
ers.
TA comprehensive review of the literature on multi-phonon

processes was presented by A, M. Bonch-Bruevich and V. A,
Khodovoil+s].
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