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1. INTRODUCTION

J.HE discovery and detailed study of tunneling effects
in superconductors in low temperature physics is
surely one of the most interesting developments of
recent years.

The fact that two normal metals separated by a
thin insulating layer will have an electric current
flowing between them because of ordinary quantum
mechanical effects was already known in the early
years after development of quantum mechanics. E1»2]
But the study of this phenomenon in superconductors
has revealed a whole series of features which make
it a very convenient and effective device for studying
many characteristics of superconducting metals.

We shall consider only one, but possibly the most
interesting of the tunneling effects in superconductors
—the so-called Josephson effect (for other tunneling
effects cf. the detailed survey of Douglas and Fali-
c o v , ^ which also gives an extensive bibliography).

We may assume that in a superconductor at T = 0
all the electrons with energies near the Fermi sur-
face are paired so that the total momentum of each
pair is equal to zero. (A detailed presentation of the
microscopic theory of superconductivity can be found
in various books and reviews, for example, C4~6H.) The
presence of such a "long-range order" in momentum
space results in a correlation in coordinate space also.
The characteristic length |0> over which there is an
effective smearing of the wave functions of individual
pairs is called the coherence length (or the size of a
pair); for most superconductors it is of the order of
£0 ~ 1СГ4 cm. The usual tunneling effects are associa-
ted with the breaking up of a pair and the transfer of
the individual electrons from one metal to the other.
Since the breaking of a pair requires a finite energy,
equal to the binding energy of the pair, the usual
single-particle tunneling effects have a threshold: a
tunneling current begins to flow only when a finite
voltage is applied. By this means one can measure
directly the magnitude of the so-called energy gap in
a superconductor. ^

The Josephson effect,'-'-' on the other hand, is a
tunneling of coupled electron pairs from the ground
state (the Fermi surface) of one superconductor to
the Fermi surface of another. Since no energy need
be expended to break up the pair, the current can flow
with zero difference of potential between the metals
(Fig. l,a). It is intuitively clear that occurrence of

this effect requires that the thickness of the insulat-
ing layer be substantially less than the coherence
length £0. There is then an overlap of the electron
wave functions in the two metals, so that exchange of
superconducting pairs can occur. The required thick-
ness is of order 10—20 A.

Experimentally the effect was first observed by
Anderson and Rowell.M w n o passed a current through
a very thin sheet of dielectric (tin oxide with thickness
~ 10~7 cm ) between two superconductors. They found
that if the total current through the barrier did not ex-
ceed some value (several milliamps), the current
flowed through the dielectric without producing any
voltage drop in the insulating layer. The resistance
of the layer is obviously zero, as is characteristic for
superconductors. (We mention that the resistance of
the same layer when the metals on both sides of the
layer were in the normal state was 0.4 ohm.) The
superconducting nature of the current through the bar-
rier is also demonstrated by experiments L9"1]J in

which one observes a stationary undamped current in
a ring of superconductor split by a tunneling layer.
Sometimes these properties of the passage of a cur-
rent through a thin insulating layer are described as
"weak superconductivity,"'-12^ as contrasted to the
properties of true superconductors.

Coupled electron pairs can also go over from one
superconductor to the other when there is a nonzero
voltage across the layer. The only requirement is
that the excess energy 2 eV gained or lost by the pair
of electrons in crossing the potential difference V be
emitted (or absorbed) as, for example, electromag-
netic radiation of frequency v (cf. Fig. l,b), where
he = 2 eV, or more generally,

nhv = 2eV (?i = l, 2, 3, . . . ) , (D

\eV

'-FZ

b)

FIG. 1. Quasiparticle picture of the Josephson current, a) Con-
stant current of superconducting pairs when V = 0; b) Variable cur-
rent when V Ф 0, accompanied by radiation of photons (or absorp-
tion of photons when external microwave radiation is present).
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if more than one photon is absorbed or emitted. It has
been observed experimentally'-13'14-' that when micro-
wave radiation of a given frequency v is incident on
the tunneling layer, a voltage drop is established
across the barrier through which the Josephson cur-
rent flows, with constant voltage steps as given by
formula (1) (cf. also C53~ss]). Recently there has also
been a direct observation of the corresponding electro-
magnetic radiation from a barrier'-15"17-' subjected to
a voltage V. We shall see later that when V * 0 and
when electromagnetic radiation is present, the current
of superconducting pairs through the barrier should
have a nonstationary, time-dependent component, os-
cillating at frequency w= 2eV/h. A direct measure-
ment of the variable component of the current has not
been achieved as yet. The Josephson current also de-
pends on the magnetic field across the barrier in a
very remarkable way.» We shall discuss this effect in
detail.

Before proceeding to the theoretical description of
the Josephson effect, we mention one fact that we shall
need. In the Ginzburg-Landau phenomenological theory
of superconductivity,'-18-' which also follows from a
microscopic treatment of the problem,'-19-' the super-
conducting electrons are described by a wave function
ф, and the expression for the current in the supercon-
ductor has the form

— 4 A | * | » , (2)

where q is the effective charge of the current car-
riers (in our case q = 2e is the charge of the coupled
pair of electrons, m is the effective mass, and A is
the vector potential of the electromagnetic field. Writ-
ing ф as tp = -fp& where p represents the density of
superconducting electrons, and в is a phase, we re-
write (2) as

If we imagine a closed contour to be drawn inside the
bulk superconductor, we must satisfy the condition
J = 0 or KV0 = qA along it. Then by integrating along
the contour we get

= q &A ds = (4)

where Ф is the magnetic flux through the contour. The
requirement that the wave function be single-valued
forces the phase в at any point to change only by
amounts 27rn after circling the contour. We then get
from (4) the condition

= иФ0, Зй2-10-7 G/cm2 (5)

where Фо is the magnetic flux quantum. In a simply-
connected bulk superconductor the field inside the
metal is zero; in formula (5) this case corresponds
to n = 0.

The superconductor may also be multiply connected,

i.e., there may be holes through it containing a mag-
netic field. Relation (5) says that the magnetic field in
a hole through a bulk superconductor can take on
only discrete values, a fact that was first noted by
London'-20^ and later confirmed experimentally.* If
the superconductor is simply connected, from the con-
dition div J = 0 (in the gauge div A = 0) we find from
(3) the relation V29 = 0, from which, by using (4), we
get 9 = const. In a multiply connected superconductor
the phase in general depends on the coordinates.

2. PHENOMENOLOGICAL DESCRIPTION OF THE
JOSEPHSON EFFECT

The wave function of the superconductor plays a
very important role in the phenomenological descrip-
tion of the Josephson effect. Its importance is em-
phasized by the fact, following from the general prin-
ciples of quantum mechanics, that the phase of the
wave function в and the number of electrons N are
canonically conjugate variables. In particular, from
gauge invariance (i.e., from invariance with respect
to a change of phase), there follows the conservation
of the particle number, just as invariance under ro-
tations leads to conservation of angular momentum.
We also have the usual indeterminacy relations be-
tween canonically conjugate variables!

д#.де>1. (6)

From our discussion it follows, in particular, that
the number of superconducting pairs and the phase of
the wave function of the superconductor also satisfy
relation (6). If we have a piece of superconducting
metal with a fixed number of electron pairs, it follows
from (6) that the absolute value of the phase is unde-
termined. If we imagine the superconductor split into
two parts, the number of superconducting pairs in each
half cannot be fixed exactly, since fluctuations may
cause a certain number of pairs to go over from one
half to the other or vice versa. Consequently the dif-
ference in phase of the wave functions in the two
halves of the superconductor has a definite meaning,
according to (6), even though the overall phase for the
superconductor was not defined before hand.

As already stated, in the Josephson effect one ob-
serves a tunneling current of coupled electron pairs
between two superconductors separated by a thin in-
sulating layer (Fig. 2).

Following Feynman, E25H it is convenient to write the

*We restrict our treatment to bulk superconductors. Concerning
the nature of the quantization of the field in hollow cylindrical
superconductors with wall thickness comparable to the penetra-
tion depth, cf, for example,С20'23].

tCf. also[24], where the meaning of the uncertainty relations
for particle number and phase is made more precise and where
the whole question is discussed.
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FIG. 2

following system of equations, giving a phenomenologi-
cal description of the Josephson effect:

(7)

Equation (7) is the Schrodinger equation for a coupled
quantum mechanical system with two states. Here ipi
and >p2

 a r e the wave functions of superconductors 1
and 2 (cf. Fig. 2); U4 and U2 are the energy terms
which act as Hamiltonians for the individual supercon-
ductors, К is some matrix element providing the cou-
pling between the wave functions of the system.

Suppose that there is some difference of potential V
between the superconductors, so that Ut - U2 = qV,
where q is the charge of the current carriers. Choos-
ing the zero of energy appropriately, we can write (7)
as

(8)

Introducing the notation ipij2 = VPI > 2 e i et.2, q> = в2

we find from (8) four equations for the quantities

P2> #i> ^ 2 :

Since the current J from 1 to 2 is p"i (or -p*2)> and
noting that 02 - ej = ip, we get from (9)

= Jmax Sin ф, • V = Vo + T\V(t)dt. (10)

Here cpo is some random phase difference.
Formula (10) describes the essential features of

the Josephson effect. When V = 0 the value of the
current J is related to the initial phase difference
cp0, which in turn depends on external conditions (the
material of the superconductor, the presence of a mag-
netic field, etc ). Since | sin cp0 \ < 1 always, it follows
from (10) that the Josephson current is bounded by the
value J m a x - Unfortunately the phenomenological ap-
proach does not enable us to calculate J m a x . since we
do not know the value of K.

Figure 3 shows a diagram of the experiment for ob-
serving the tunneling current, while Fig. 4 shows the
characteristic dependence of J on V, observed on an
oscillograph when a low frequency ac voltage is applied
to the sample. The central solid line corresponds to
the stationary Josephson current passing through the
sample when V = 0. In the experiment one measures
Jmax directly.

FIG. 3. Diagram of tunneling experiment. The superconduct-
ing film 1 is deposited on a backing and then oxidize^ in an
oxygen atmosphere, forming a dielectric layer 10-20 A thick. A
second superconducting layer 2 is deposited perpendicular to 1.
Current leads are attached to two ends of the sample, while the
difference of potential across the barrier is taken from the other
two.

•'max

2A

FIG. 4. Schematic of oscillogram of J vs. V obtained when a
low frequency voltage is applied to the sample. The central verti-
cal line gives the Josephson current J m a x . The curve for V ф 0
corresponds to the usual single-particle tunneling current. The
scale is arbitrary.

When there is a constant difference of potential Vo

between the superconductors, the phase cp in (10) de-
pends linearly on t, and the Josephson current J
shows an oscillatory dependence on time, so that the
average value of J is zero. Let us assume the de-
pendence

where Vo corresponds to a constant voltage component
across the barrier, while the second term corresponds
to some additional periodic electric field (for example,
an external electromagnetic wave). Assuming v « Vo

and expanding sin cp in (10) in series: sin (x + a)
s sin x + a cos x + . . ., a « 1, we get

[sin(<po+-f7ot

Фо + -f Vot
q V .

• -7 sin at cosn со

The time average of the first term gives zero, while
the second gives a finite result when the resonance
condition fiw = qV0 is satisfied, corresponding, as
pointed out above, to an exchange of energy between
the superconductor and the external electromagnetic
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radiation. In the experiment,1"-1 when external radia-
tion of frequency v = w/2ir fell on the sample, one ac-
tually observed currents when the voltage across the
barrier had values V = nh^/2e.

The effects associated with the presence of a mag-
netic field can be included in this treatment by gener-
alizing the expression for the current J = Jmax s m f
so that the resulting expression is gauge invariant.
This reduces to adding to the phase the term
(q/fic)jA-ds, where the integration is along some
path joining the two superconductors. Later we shall
consider the problems related to the presence of a
magnetic field.

So far we have given some qualitative arguments
enabling us to give an intuitive approach to the de-
scription of the Josephson effect. It is important to
give the derivation of the fundamental relations, start-
ing from a more detailed microscopic picture. It is
convenient to start from the following expression for
that part of the Hamiltonian for the system of two
superconductors that describes the tunneling transi-
tions between them:^26]

t = = 2л \ kq^ko^qa ~T * qk^qo^ko), (H)
k, q, a

where a^a and Cq>(7 are the usual electron operators
for the two metals (k and q are the momenta, and a
the spin), and T is some matrix element describing
transitions of electrons from one metal to the other
(a more general expression for Hj is used in i-27^).

Because of the interaction (11) between the two
superconductors, the total energy of the system is less
than the sum of the energies of the separate supercon-
ductors. The binding energy can be found from ordi-
nary second order perturbation theory:

Ag<2) = V ' . (12)
пфй

Here Ша is the ground state energy, and Шп the ener-
gies of the excited states of the system. When T = 0
the important states are the virtual states in which one
of the electrons of a pair has gone over from one metal
to the other, so that there is one "excitation" in each
of the metals, with £n -%о = Ek + Eq where Ep
= Vep + Ap is the energy of a single particle excita-
tion, Др is the energy gap parameter, €p is the Bloch
energy of the electron measured from the Fermi sur-

In calculating the matrix element appearing in (12)
it is convenient to express the operators aka and cqcr
in terms of the Bogolyubov quasiparticle operators.!-29]
A simple computation, which we shall not reproduce
here (cf. C12]) gives (for T = 0)

k,q

1 —
ЛкД

(13)

restr ict our treatment. The generalization to finite
temperatures involves no difficulties (cf., for exam-
ple,'-30-' where the expression for the Josephson cur-
rent for finite T is derived using the Green function
method, and also C 3 1 ] and [ 1 2 ] ) .

We know that in the microscopic approach the gap
parameter Д plays the part of the wave function ip of
the Ginzburg-Landau theory. If we assume that Дк
and Д„ do not depend on к and q, and set

Дк = Д1ехр(г91), Дч = Д2ехр

where Д1 and Д2 are real constants, we can write the
term in (13) that depends on the phase difference in the
form

I Тщ i2 ) a vcos ( 6 2 -

Here Nj and N2 are the densities of electron states on
the Fermi surfaces of the two superconductors.* Cal-
culating the integrals, we find^12'20^ when Д1/Д2 <̂  0.5,

(14)

or

(15)

where q>0 = в2- 0^, and RN is the barrier resistance
in the normal state. We shall see later that the mag-
nitude of the Josephson current is closely related to
the value of the binding energy (15).

3. THE EFFECT IN THE PRESENCE OF MAGNETIC
AND ELECTRIC FIELDS

From arguments on gauge invariance^ 7 ' 8 ' 1 2 ' 2 5] one
can generalize the dependence (15), writing in the gen-
eral case

•-=--• — g 4 o o s f\V(l.)dt)^-

(16)
where <p0 is some initial difference of phase between
the superconductors 1 and 2, A is the vector potential,
and V(t) is the potential difference across the tunnel-
ing layer.

From (16) it follows that in the general case the
phase difference <p depends on the magnetic field be-

*The density of electron states N (e) appears automatically
when we go over from a summation over momenta and spins to an
integral over the energy:

All of the basic features of the Josephson effect al-
ready appear for the case of T = 0, to which we shall

k, a

where, for a free electron gas N (к) = л.~2т Л/2т (Л> — t).
Since only the electrons lying near the Fermi surface (with ener-
gies e ~ 0) participate in superconductivity, one usually assumes
the density of states to be constant N = N(0) and removes it from
under the integral sign.
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tween the superconductors and on the resulting voltage
between them: cp = <p(A, V). Differentiating the phase
cp with respect to t, we get the relation

d<f 2eV (17)

From this equation it follows that the presence of a
potential difference across the tunneling layer is asso-
ciated with a change of the phase with time, i.e., cor-
responds to the nonstationary case.

For the case of uniform magnetic field H in the
plane of the barr ier and perpendicular to the direction
of the current, we find from (16) (cf. also'-32-')

(18)'

Here n is a unit vector in the direction of the current,
d is the effective thickness of the layer in which the
field H is different from zero, d = I + \± + \2 where Л.
is the depth of penetration of the field into the super-
conductor, and I is the thickness of the insulating
layer. Equation (18) shows that the presence of a mag-
netic field in the barr ier is accompanied by a change
in the phase from point to point.

We have seen that the presence of a finite transition
amplitude T^q for the electrons on both sides of the
barr ier leads to the appearance of an additional "bind-
ing energy" and the establishing of a corresponding
phase difference <p0 between the superconductors. It
is not hard to see that the binding energy Д Ш in (16)
actually represents the phase-dependent part of the
free energy of the system, taken per unit area of the
barr ier . There is also another additional energy that
depends on the phase, namely the energy associated
with the passage of current through the barrier. This
part of the energy has the form (cf. ' 3

(19)

where J is the current through unit area of the bar-
rier, and the integration constant is taken so that, in
accordance with (17), when V = 0, we have <p = const
= cp(O). So the total energy of the system as a func-
tion of the phase cp has the form

da_ (20)

where the integration is over the surface of the bar-
r ier and Sfc, is the area of the barr ier .

The phase difference cp0 obviously must adjust so
that the total energy of the system is a minimum. The
condition dS/dcpo = 0 leads to a relation between cp
and the current through the barrier,

(21)

It is clear that we can write the current density as

7 = ^g 1 s in9, (22)

where cp and also J in general depend on the coordi-
nates in the plane of the barr ier . The maximum cur-
rent value is

2 eT - 2e g — (23)

where we have used (15). In other words, the maxi-
mum Josephson current J m a x is equal to the current
that flows through the barr ier in the normal state when
the difference of potential is V = жAtA2/(Д4 + Д2 ).'-30^

The measured values of the maximum current are
always less than the theoretical values, sometimes be-
ing 95% of the predicted value and sometimes much
less (by a sizable factor). One possible cause of the
discrepancy is the presence of a magnetic field on the
barrier and the resulting "effect of self-limiting of the
tunneling current."^ 3 2 ^ Let us discuss this point
briefly.

To get the estimate (23) of the maximum Josephson
current we set sin cp = 1 in (22). We are obviously
neglecting the spatial variation of the phase in the
plane of the barr ier if we assume cp = const. Actually
one cannot neglect the dependence of the phase on the
coordinates and the corresponding distribution of the
current over the area of the barr ier, so that integra-
tion of sin <p over the barr ier surface in (21) gives a
smaller effective value of the current per unit area
than follows from (23).

In fact, suppose that we are dealing with the sta-
tionary case V = 0, and suppose that there is no ex-
ternal field on the barr ier . There will nevertheless
be a magnetic field in the barr ier, associated with the
current J flowing through the barr ier . The usual Max-
well equation*

rot H = 4rtc-!J,

where J = Jmax s m 4>> together with Eq. (18), which
gives the law of variation of the phase difference <p in
the plane of the barrier, leads to the following equation
for the phase:

\ 1/2
-r

8ne7m a s. d J
(24)

Here V2 is the two-dimensional Laplace operator,
acting in the plane of the barrier, and d = l + \i + X2.
The length \ j plays the role of a penetration depth,
which is clearly seen for small cp, when Eq. (24)
takes the form V2<p = ' ̂ j2<p, analogous to the equation
describing the penetration of a magnetic field into a
superconductor. A typical value is Xj ~ 1 mm. These
equations were solved by Ferrel l and Prange'-32^ for
the case of a tunneling barrier between superconduc-
tors, in the form of a layer of thickness d, finite in

*[Hn]s H x n. *rot = curl.
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width and infintely long. The qualitative conclusion
from this analysis is that in the case of a thin layer
the current and the associated field are uniformly dis-
tributed over the cross section, but if the width of the
layer begins to exceed Xj, the current and field are
restricted to a region of width Aj from the edges of
the barrier. Thus the whole area of the barrier does
not contribute to the total current, but only an effec-
tive area with the characteristic size Aj. The conse-
quence is that the maximum current J m a x i n actual
tunneling layers, which frequently have transverse
dimensions ~ 1 mm, is less than the value found theo-
retically.

It should be mentioned that the model of Ferrell and
Prange is quite idealized and that in actual experi-
ments the distribution of current may be even more
unfavorable as compared to this model. In principle,
in order to get a realistic estimate of the effect of
self-limiting of the current, one would have to solve
the differential equations for the actual geometry of
the sample, find the space dependence of the phase
difference, after which an integration of sin cp in (11)
over the barrier surface gives the total current.

Interesting effects occur when there is an external
field H in the tunneling layer. Suppose that we have
the stationary case V = 0, and that the current flows
perpendicular to the plane of the barrier, and that a
homogeneous field H is in the plane of the insulating
layer, with the coordinate x giving the position in the
plane of the layer perpendicular to the direction of H.
According to (16) and (20) the free energy density of
the system that depends on the phase difference has
the form

203

(26)

where Ф = Hwd is the magnetic flux through the cross
section of the barrier, Фо = hc/2e is the quantity (5)
introduced earlier, which is called the magnetic flux
quantum. Since in the stationary case the total current
has a definite sign, it is convenient to introduce the sign
of the modulus in (26) and take 0 < cp0 < п. From (26)
we see that the presence of the external field on the
barrier leads to a modulation of the total current
through the tunneling layer and that for values of the
magnetic flux equal to Ф = пФ0, when there are an in-
tegral number of flux quanta in the barrier, the current
goes to zero.

500

(x)= — 1 COS f{\
he 2e •P°-TFJ (25)

where <p0 is the phase difference when H = 0. The
total energy associated with the barr ier and the cur-
rent flowing through it is obtained by integrating (25)
over the surface of the tunneling layer. If the layer
has the form of a strip of width w and length L (Fig. 5),
the total energy takes the form

то/2

= -1Л COS
2ed „ \ ,

— .7— Нх dx 5 10
Field, gauss

го

w/2

2e
-w/2

Zed dx.

An elementary integration gives

•n (2edH w

g t o t =-wLnt cos <f0—2J
lC J Ь JffffvL

2e

To obtain the expression for the total current we again
equate to zero the derivative 9iftO(./3(p0 = 0, and de-
fining I t o t = JwL, we find*

*Of course one gets this same result by integrating the current
density (22) over the surface of the barrier.

FIG. 6. a) Dependence of maximum Josephson current on field
for Pb-I-Pb barrier at 1.3°K;[33] b) schematic of the tunneling bar-
rier.

Figure 6 shows the experimental results of
Row ell, t3 3] who studied the dependence of the Joseph-
son current on magnetic field. The periodic variation
appears most clearly for barriers with very small di-
mensions transverse to the field, when the field in the
barrier may be assumed to be uniform. The data of
Fig. 6 correspond to a barrier between two thick layers
of lead, one of which, parallel to the field, had a width
of 0.04 mm. The size of the region within the barrier
carrying the field is Ŝ  = 0.04 mm x 2Л a 3 x 10~8cm2,
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where \ = 390 A is the depth of penetration of the field
in lead. The minima on the curve of Fig. 6 at H = 6.5,
13 and 19.5 are in very good agreement with the values
of the flux through the barrier Ф = пФ0 for n = 1, 2, 3,
showing good agreement with formula (26). The depen-
dence of the Josephson current on magnetic field and
temperature has also been studied in [34,51,58,59]_

Let us present the interpretation of the results fol-
lowing from Eq. (18), giving the differential law of
variation of the phase difference in the plane of the
barrier, by using the notion of quantized magnetic
flux. '-35-' The external field penetrates into the space
between the superconductors in the form of a magnetic
sheet of thickness d = I + \ t + Л2. Let us consider two
points P and Q on opposite sides of the barrier (out-
side the region of penetration of the field) and join
them by two curves that intersect the barrier at points
A and В (Fig. 7). According to (18) the change in the
phase difference ip from point A to point В is pro-
portional to the magnetic flux between the two curves,
where one flux quantum corresponds to a change of
phase of 2тг.

(26), which was obtained for a rectangular barrier:

sin (Я/Яо)
Я/Яо

(26')

1

1
1

в

А

[

Л, Н е *•!

FIG. 7

The detailed behavior of the two superconductors
coupled by the tunneling layer depends on the trans-
verse dimensions of the barrier. Barriers with di-
mensions exceeding A.j behave like superconductors
of the second kind, l-36^ In a weak magnetic field the
diamagnetic currents screen the field, and it pene-
trates into the barrier only along the edges, over a
distance of order \j from the edges. When a critical
field (cf. C32.3S]̂  w n i c n j s usually of order 1 gauss is
reached, there is a phase transition of the second kind,
and quantized lines of magnetic flux begin to penetrate
into the barrier, the separation between the lines de-
creasing as the field increases.

The behavior of barriers with dimensions less than
Xj is somewhat different. As in the case of very thin
superconducting films, the magnetic field in the bar-
rier is almost uniform. In this case, as we have seen
above, the most interesting point is the dependence of
the maximum Josephson current on field. The presence
of the field causes a change of the phase difference <p
from point to point. Consequently, because of the de-
pendence J = Ji sin (p, at sufficiently large fields the
barrier splits up into regions in which the currents
have opposite signs, and the total current through the
barrier is sharply reduced. The dependence of the
critical current on field is given by a formula like

where H0/27r is the field at which there is one flux
quantum hc/2e in the barrier.

The last formula is similar to the one in optics
giving the Fraunhofer diffraction by a slit. It is clear
from our argument that this is not an accident, since
the Josephson effect owes its origin to the quantum
mechanical interference of the phases of the wave
functions of the individual superconductors, so the
analogy with interference phenomena in optics is en-
tirely correct. This analogy goes much further in the
example given next of the Josephson effect in two tun-
neling barriers connected in parallel.

4. JOSEPHSON EFFECT IN BARRIERS CONNECTED
IN PARALLEL

An extremely interesting effect was discovered re-
cently by Jaklevic, Mercereau, et al.'-37^ They studied
the Josephson current through two tunneling barriers
connected in parallel, as a function of the applied mag-
netic field. To understand the origin of the effect we
consider the diagram of the experiment shown in Fig. 8.

J/i=lt=iiL

We assume that the cross sections of the barriers a
and b are small compared to the cross section of the
whole superconducting ring. This assumption allows
us to neglect the spatial variation of the phase in the
insulating layer. We shall also assume that the trans-
verse dimensions of the barriers are small compared
to the characteristic Josephson length Xj. This means
that the current density through the barrier is uniform.
For simplicity we further assume that the two insulat-
ing layers are identical and arranged symmetrically,
and that the field H is perpendicular to the plane of
Fig. 8. We shall assume that the main body of the ring
is sufficiently thick so that we can choose a continuous
contour inside the ring on which the superconducting
current J = 0. Then according to (4) and (5) there can
only be an integral number of magnetic flux quanta in-
side the contour.

The total currents through each of the individual
barriers a and b are

/ o = /sincpa, /(, =/j sin фь,
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where ср% and <ръ are the jumps in phase at the re-
spective barriers. The total external current I pass-
ing through the system is the sum of the currents
through the barriers. The wave function of the system
must be single-valued when we go around the ring.
Consequently, the phase difference when we go from
point P to point Q along the contour PaQ, passing
through barrier a, must be the same (to within a
term 27rn) as the phase difference along the contour
PbQ, passing through barrier b. In other words,

2e
-i—be

2e f
- i — \

be ,)
A as -\ 2nn.

or, rewriting the terms in a different order,

фа — фь = - A ds + Inn.

To give the result a symmetric form, we write

Ф а -

Ф = = \ H da;

then

/ tot — • + ^Ф + sia ((ро—

! cos (27)

where <p0 is a phase jump which depends only on the
total current through the system, Фо = hc/2e is the
flux quantum and Ф is the magnetic flux through the
ring.

If the dimensions of the barriers transverse to the
field are not small compared to the area of the ring,
which is closer to the actual experimental case, the
result (27) must be changed somewhat. We must sum
the currents in different parts of the barrier, in ac-
cordance with the local phase difference, as was done
for the case of a single tunneling layer (cf. (26)). For
the case of two symmetrical identical barriers the re-
sult obtained for the dependence of maximum current
on magnetic field is analogous to "interference modu-
lated diffraction" in optics:

/ = • sin ф0

! s\n(nH/H0) j ]

I
nff (28)

where Hi is the field corresponding to one quantum of
flux through a contour lying in the ring and passing

through the centers of the barriers, while Ho is the
field corresponding to one flux quantum in each of the
barriers, taking account of the depth of penetration of
the field.

Figure 9 shows schematically one of the experimen-
tal curves,'-37-' in which both of these periodic variations
of the field can be seen. The large-scale minima and
maxima correspond to modulation of the phase within
each barrier, while the fine ones are due to interfer-
ence effects. In principle these effects allow one to
use a double Josephson junction as a sensitive device
for precise measurements of magnetic field.

In the original experiment'-37^' the distance ДН be-
tween successive fine maxima was 10~2—10~3 gauss.
Obviously the greater the area S lying within the ring
shown schematically in Fig. 8, the closer together are
the maxima and minima and thus the greater the ac-
curacy with which one can measure the magnetic field.
In one of the experiments'-38-' they succeeded in reach-
ing a resolution of ДН a 3 x 10~4 gauss (cf. also [39>523).
The main difficulty to date has been the preparation of
tunneling samples of large size. But, as pointed out by
Feynman,'-25-' if one has a sample with a ring area S
~ 1 cm2, the resolution will be ДН = #0/S s 10~7 gauss.
H, however, one considers the possibility of preparing
not two, but 10 or 20 or 100 parallel Josephson bar-
riers, the resolving power of the apparatus will be
even greater. One is struck by the analogy with the
optical diffraction grating, which allows very accurate
measurements of wave lengths of light. We may hope
that development of techniques for preparing tunneling
samples will allow the attainment of precisions in mag-
netic field measurement comparable to those of optical
measurements. '-25-'

Another interesting experiment done by the same
authors'-38^ was to bring the magnetic flux into the
ring (cf. Fig. 8 ) by means of a long thin magnetic
solenoid, so that the field outside the solenoid was
negligibly small. Despite the fact that the magnetic
field in the superconducting leads and tunneling bar-
riers remained equal to zero, the Josephson current
through the system showed the characteristic periodic
dependence on the total flux Ф = ф A«ds in the ring.
In other words, the magnitude of the current was de-
termined by the values of the vector potential along
the contour. The authors of ^3 8^ remark that this ex-
periment seems to allow one to count the vector po-
tential A among the truly observable physical quanti-

-1000 -500 О 500

Magnetic field, milligauss

1000

FIG. 9. Dependence of Josephson current on
magnetic field for two barriers connected in paral-
lel, showing the interference effects. The interfer-
ence maxima are separated by an amount
AH = 4.8 x 10~3 gauss. The maximum Josephson
current is about 10"3 amp.
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ties, like the magnetic and electric fields, which are
derivatives of A (concerning this, cf. C40>52J). ц j s

also clear that we are not falling into a contradiction
with the gauge invariance of the electromagnetic field.
Actually in this experiment one observes the depen-
dence of a physical quantity (the current) not on the
vector potential A itself, but on its integral around a
closed contour, which, because of the relation

makes the gauge invariance obvious.
In conclusion we emphasize once more that the ex-

periments described here demonstrate interference
effects (and also phase coherence) in a quantum me-
chanical system over large distances (up to 3.5 m
cf. also C57.61"63]). They confirm the picture proposed
by London'-20^ of the superconductor as a single quan-
tum state, characterized by coherence over macro-
scopic distances.

5. THE NONSTATIONARY JOSEPHSON EFFECT

We now consider in somewhat more detail the non-
stationary effects associated with the presence of a
finite difference of potential V on a barrier and the
corresponding time dependence of the phase. Most of
the effects give only an indirect proof of the existence
of an ac Josephson current. We have already men-
tioned the experiments^13>u-' where a barrier is placed
in an external microwave field and one observes volt-
age steps in accordance with Eqs. (1) and (17) (cf. also
[ ]

Another indirect experiment, 1-413 illustrating the
presence of a varying current component, is based on
the fact that the presence of ac fields in the barrier
leads to a typical resonant dependence of the constant
component of the current on the voltage across the
barrier. In order better to understand this effect, we
give a simple computationL4^ in which the tunneling
sample is considered to be two semi-infinite super-
conductors separated by a thin oxide layer of thickness
I. We shall also assume that there is an external field
Ho on the barrier, parallel to the у axis (Fig. 10).

We write the equations describing the Josephson
current:

г, о. ж = ^'/ (г- 0 = иsir

V<p = ~ [ H n ] , (29)

where H is the total magnetic field in the barrier,
V = Vo + v(t), d = I + 2Л., jj is the current through the
barrier in the normal state for voltage !/2тД, <Р is the
phase difference in the barrier. For V = Vo and H = Ho,
(29) gives cp = cot - kz, where со = 2eV0/K, к = 2eHod/Kc

To take account of the effect of the varying electro-
magnetic field in the barrier on the Josephson current
we must add to (29) the Maxwell equations

l dH _ „ : i5_ j + _e^E ( 3 0 )

FIG. 10

(where e is the dielectric constant of the oxide layer).
The layer thickness is usually of order 10—20 A, so
that the dependence of the field in the layer on x can
be neglected. The field component E x is screened and
does not penetrate into the superconductor. Integration
of the first of Eqs. (30) over the surface abed (Fig. 10)
gives

(31)dz с dt '

where E x and Ну are the fields in the oxide layer.
Similarly, taking the normal to the surface parallel to
the z axis, we find

2%+imJ
at "l ^ = - (32)

From the second equation in (30) we find

4я . е дЕхdH°y

~W
(33)

From (31) —(33) one gets an equation for the variable
component of the voltage across the barrier, v = ZEX:

\ dy* + aZ2 -2 № ) v ~ T^ ~sf 'f (34)

where с = c(Z/ed) J ' 2 is the velocity of propagation of
electromagnetic disturbances in the insulating layer.
Since v « Vo in the experiment, the right side of (34),
which acts as a driving force, can be written as
(4rf/ec2 )jiw cos (cot -kz ). Introducing the quantity Q,
which characterizes the losses in the system (to both
dissipation and radiation), we find the solution:'-7-'

v = v0 cos (Ш — kz + 6),

(4лг/еи) h 6 = tan" 1

1 —(ftc/a)2
(35)

Since the total V = Vo + v appears in (29), the phase
shift <p is changed by the amount (vo/V) sin(wt-kz)
and the current density takes the form

(36)= /i sin [at — kz -(- (уЛ sin (a>t — kz -f 6)].

The appearance of the additional time dependence
in (36) is caused by the interaction of the ac component
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FIG. 11. One of the experimental curves,[41] showing the
resonance structure of the dependence of I on V.

of the current with the normal vibrations in the tunnel-
ing layer and is analogous to the effects of an external
microwave field.'-14-' To first order in vo/V the con-
stant part of (36) is

[ l — ( )2]2+ (1/(3)2
(37)

i.e., the resulting constant current has a resonance
structure (Fig. 11), where the current maximum oc-
curs at w/k = c. Using the values of к, с and w given
above, we get the following linear relation between the
potential difference Vp, at which there is a current
peak, and the applied magnetic field:

Id y
J

!я 0. (38)

Figure 12a shows a comparison of formula (38) with
the experimental data^41^ for a tunneling barrier of
lead-lead oxide-lead with \ = 400 A, I = 15 A, and
€ = 3.8.

From (37) we can also find the dependence of the
peak current on voltage. At resonance the current
density is

(39)

and, since u> = 2eVp/R, the right side of (39) varies
like 1/Vp. In Fig. 12b we give a comparison of (39)
with the experimental data. The best agreement is
gotten for Q = 3.5. The simple model used gives a
surprisingly good description of the data. A more de-
tailed discussion of these questions can be found in L41^.

In the work of Giaever,'-15^ the presence of radiation
accompanying the nonstationary Josephson current was
demonstrated in the following elegant way. A special
tunneling sample was prepared with the cross section
shown schematically in Fig. 13. A layer of tin 1 was
deposited on a backing; the surface was subjected to
oxidation for a long time, forming a thick oxide layer
(shaded region). Then another layer 2 of tin was de-
posited and subjected to a short-time oxidation, so that
the dielectric layer was quite thin. Finally still another
layer 3 was deposited, as shown in Fig. 13. The film
between 1 and 2 was quite thick, to emphasize the
Josephson effect, while one could observe the Joseph-
son current on the film between 2 and 3.

With a voltage Vi2 applied between layers 1 and 2,
a volt-ampere characteristic was taken for the usual
one-particle tunneling current (curve 1 in Fig. 14). If
now a Josephson current is passed through layers 2 and
3 so that there is a voltage V23 across the barrier , and
we simultaneously take the volt-ampere characteristic
between layers 1 and 2, the latter will have the form
shown in Fig. 14, curve 2. The current steps on this
curve occur at voltage values Vi2 = ( l / e ) (2Д ± 2neV23)
where 2Д is the gap width for tin (in Fig. 14 it corre-
sponds to the start of the rapid rise in the usual one-
particle current). The energy 2eV23 is just equal to
the energy fiw of the photons emitted from the Joseph-
son barr ier (2,3) and absorbed in the tunneling struc-
ture (1, 2). Here we have the complete analog of the
experiment of Dayem and Martin, i-4^ who found the
same kind of steps in the one-particle current when
the barr ier was irradiated with external electromag-
netic radiation.

Finally, in the experiment of Yanson, Svistunov, and

3.6

3.2 <
О

2.8 "
CO

2.4 S.

2.0
FIG. 12. Experimental data and theoretical curves, M

1.6 giving: a) dependence of peak position V on applied magnetic
field H°; b) dependence of peak height on V .

0.8

0.4

0
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Oxide layer.

FIG. 13. Schematic diagram of tunneling sample.tiS].

Dmitrenko'-16] the Josephson tunneling sample was
placed in a waveguide; using a sensitive receiver they
recorded electromagnetic radiation at 3 cm with an
output power of 10~14 watts, accompanying the ac
Josephson current. In the work of Dmitrenko and
Yanson,^56^ an order of magnitude greater power
was obtained. This paper contains interesting data
about the width and shape of the Josephson line, by
means of which one may possibly be able to study the
energy distribution of the superconducting electron
pairs. The investigation of the structure of the Joseph-
son radiation is continuing.

Thus the occurrence of a nonstationary Josephson
effect should be considered as definitely established.
In principle one could try on the basis of this effect
to construct variable-frequency microwave generators,
but the power so far obtained is insufficient for prac-
tical purposes.

In conclusion we give some additional references to
papers where the Josephson effect is treated within the
framework of the Ginzburg-Landau theory (cf. C*3»**]),
where one uses the quasispin approach, E45^ and where
one considers the influence of paramagnetic impurities
in the superconducting sample,'-46-' etc. A discussion
of possibilities of practical applications of the tunnel-
ing effects can be found in the survey t 4 7 ] . We also
mention a number of papers that are not yet pub-

We can be sure that the number of papers devoted

to this interesting effect will continue to grow.
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