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JTHE nature of the charge carriers in liquid helium
has long remained unclear. At first, one might think
that owing to the low density and the small polariza-
bility of the liquid helium the electrons in the helium
should move like free electrons, and in particular,
their effective mass should be of the order of the mass
of the free electron, while their velocity of thermal
motion ~ V kT/m should exceed the velocity of sound
in liquid helium. One might also think that the trans-
port of positive charge is realized not by the drift of
He+ ions but by the jump of a hole from one atom to
another. If the probability of such a jump is sufficiently
high, then the effective mass of the hole can be of the
order of the mass of the free electron. The calcula-
tions of the carrier mobility made within the frame-
work of this model ̂  turned out to disagree strongly
with the experimental data^2"8^, which indicated be-
yond any doubt that the charge transport is effected by
macroscopic formations whose effective mass exceeds
by many times not only the mass of the free electron
but also the mass of the helium atom. A hypothesis
was advancedl-2'7'8^ that the charges ride on some
macroscopic inclusions in the liquid helium, but mea-
surements of the charge mobility, carried out by
Meyer and Reif^3'4^ by the velocity-selector method,
have disclosed incidentally a very high homogeneity of
the composition of the carriers. The selector recorded
up to ten maxima.

A satisfactory explanation of the structure of the
positive carriers was proposed in 1959 by Atkins ^ .
According to his model, the hole is fixed sufficiently
well in the He+ ion or in molecular ions of the HeJ
type, the existence of which has been reliably estab-
lished.

The electric field- % = e/r of a point charge polar-
izes the liquid surrounding the charge. From the con-
dition that the chemical potential is constant

where P = Na$ is the polarization and Na/V0 = 4.55
x 10~3 is the polarizability of the liquid helium, we
find that the pressure p increases in the direction
towards the charge like p = Nae2/V0r

4, and that at
each point of the liquid it produces an excess density

At a pressure p m = 25 atm. corresponding to r m = 7 A,
the liquid helium should solidify. The effective mass of

the positive carrier consists of the mass of the solid
nucleus

the mass due to the excess density of the liquid,

and the attached mass

The total effective mass is 75 Mjje4.
The physical basis for the Atkins model is the small

value of the pressure at which helium solidifies, such
that even weak polarization effects make possible the
formation of a solid core with dimensions of the order
of ten atomic radii. This model is not suitable for
negative carriers, since the interaction between the
electron and the atoms at the distances of interest to
us is strongly repulsive. There apparently are no for-
mations of the type of ions He", He^, etc., which could
localize the electron in a small region with dimensions
of the order r m ; no solid core can then be produced.

From the experimental point of view, the question
of the nature of the carriers was investigated by
Careri, Fasoli, and Gaeta^, who analyzed the data
on the flow of the current through the liquid-gas bound-
ary in helium and concluded that the structures of the
negative and positive carriers differ radically. They
propose that in liquid helium the electron is located in
the center of a certain spherical cavity of macroscopic
dimensions. A similar model was previously proposed
by Ferrel1^10^ to explain the anomalously large lifetime
of the positronium in liquid helium.

Recent papers are devoted to the determination of
the repulsion potential which prevents the electron
from penetrating into liquid helium. SommerC11], ob-
serving the entry of gas-discharge electrons into liquid
helium, estimated the potential barrier is approxi-
mately 1.3 eV. Boyce^12^ calculated Uo—the lower
energy of the excess-electron band in the helium crys-
tal—using a Fermi pseudopotential (in the form of a
sum of S-functions) obtained from data on the scatter-
ing of electrons by helium atoms. Inasmuch as for dif-
ferent lattice types the value of Uo depends only on the
average density of the atoms, Boyce assumes for the
liquid a value Uo = 1.4 ± 0.3 eV, which he obtains as a
result of calculations for crystals.
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Thus, the penetration of an electron into liquid he-
lium is energetically unfavored; a lower energy should
be possessed by the already mentioned system com-
prising an electron in a spherical cavity (potential
well) whose walls represent for the electron a poten-
tial barrier of height Uo. At the lowest values of the
well radius (we assume the well to be square) the low-
est energy of the electron is Uo. When the radius is
increased to a c r = V 7rh2/8mU0 a level appears whose
energy begins to decrease rapidly with further increase
of the radius, increasing asymptotically like 7r2h2/2ma2,
where m is the electron mass. The dashed curve in
Fig. 1 represents the energy of the lower state of the
electron as a function of the cavity volume V = 47ra3/3.

î*̂

FIG. 1.

The total energy of the system includes also the energy
lost to formation of the separation surface 47raa2,
where a = 0.145 dyne/cm2 is the surface tension of
helium. The corresponding plot in Fig. 1 is shown by
the dash-dot curve. The total-energy curve (solid
line) has a minimum which determines the dimension
a0 = 17.4 A and the energy E = 0.12 eV of the system.*

The effective mass of the bubble is obviously sim-
ply equal to the "attached" mass of liquid:

It is easy to calculate the carrier mobility by using
the described models of positive and negative carriers.

At high temperatures (T~ T\) it is necessary to
use the Stokes formula for the force of resistance to
the flow of a viscous liquid around a solid sphere

F = 6ni\a+v (1)

(positive charges) and the Rybchinskii-Hadamard for-
mula for flow around an empty cavity

(2)

Here i) = 1O~5 is the viscosity(negative charges).
of the liquid helium.

At low temperatures the mean free path of the exci-
tations (rotons and photons) is much larger than the

*These values were obtained by numerical calculation for a
square well of depth Uo = 1.3 eV. We can use with good accuracy
the asymptotic expression for the energy of the lower level which
yields a value a0 = 19.2 A, independently of Uo.

dimension of the carrier (the so-called Knudsen case).
The force exerted on the sphere by a gas moving with
velocity v and excited in the rest system of the sphere
can be obtained by calculating the momentum trans-
ferred by the excitations to the sphere per unit time.

The flux incident on a surface element of the sphere

FIG. 2.

(Fig. 2) a2da> (w is a unit vector in the direction nor-
mal to the surface ) is

(a%)nd3P-

Here n is the distribution function of the excitations
with respect to the momenta, normalized such that
Jnd3p = N is the total number of excitations per unit
volume. In the case of an elastic collision, the mo-
mentum transferred is

Thus, the unknown force is equal to

H f Se \
a2de> ( CO ^— \ • 2(0 (cop) n a3p.

For each specified a> we should, as seen from Fig. 2,
integrate with respect to d3p only over the hemisphere
from which the particles can reach the specified sur-
face element. It is convenient to extend the limits of
integration to include the entire sphere

de>
de

<0 3 - co (cop) n d3p,

to integrate first with respect to dw, and separate the
term linear in the velocity in the expansion of
n ( e -p -v ) with respect to v:

Integrating once by parts, we obtain

pn d3p

(if is the external electric field). The integration
must be carried out with respect to the phonon and
roton parts of the energy spectrum in the helium,
yielding

where p0 = 1.72
roton,

10 19 is the "momentum" of the
Np is the number of rotons per unit volume,
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and <Sph is the energy density of the phonon. The in-
elasticity of the collisions can be taken into account
by introducing an accommodation coefficient.

Thus, the carrier mobility in helium, \x - v/fe', can
be calculated in the entire temperature range by using
formulas (1) —(3). It must merely be borne in mind
that the values of the carrier radii are meaningful
only with accuracy to ±2 A (the "dimension" of the
roton), i.e., to 10—20%.
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FIG. 3

vortex energy and the velocity by eliminating from (4)
the radius of the vortex:

Ev m const.

Thus, with further increase of the charge energy, its
velocity decreases (Fig. 4). It is easy to obtain the
critical value of the velocity and the corresponding
vortex radius

—— )

As expected, the radius of the vortex at the instant of
its occurrence turns out to be of the order of the radius
of the carrier. For negative charges v c r « 11 m/sec
and for positive ones v c r « 28 m/sec.

Figure 3 shows the results of calculations by for-
mulas (1), (2), (3)+, and (3)~ and the experimental
points taken from the papers of Meyer and Reif ^3 '4^.
The data of Careri, Scarmuzzi, and Thomsont-5-' agree
with those of Meier and Reif. We see that the agree-
ment with experiment is quite satisfactory. One can
hardly expect better accuracy, since the objects under
consideration are too small to be regarded as wholly
macroscopic. This pertains in particular to the posi-
tive charges, whose radius is only 7 A. (We recall that
the distance between neighboring He atoms is 3.5 A.)

A unique phenomenon is the motion of the free
charges when the decelerating action of the thermal
excitations is weak—at low temperatures or in strong
electric fields. In this case, so long as the carrier en-
ergy is small, the velocity increases with increasing
energy, in accordance with the equation

E =
Mv*

which connects the velocity and energy of the particle
mass M. After the particle reaches a certain critical
energy, an annular vortex of unit circulation is ex-
cited, and subsequently the energy acquired by the
charge in the electric field goes to increase the dimen-
sions of this vortex, which the particle drags with it^13^.

The energy and velocity of the vortex are expressed
in terms of its radius r by means of the formulas'-13^

FIG. 4.

The negative carrier dimensions should depend
strongly on the pressure. This dependence is deter-
mined by the modulus of hydrostatic compression

- V-r^r, shown by calculations to be equal to 9.3 atm.
dV

At sufficiently high pressures, corresponding to the
inflection point M on Fig. 1, the bubble can "col-
lapse"; this effect corresponds to p ~ 20 atm and
a « 3 A. This effect would be observable only at high
temperatures, when the pressure cannot cause solidi-
fication of the liquid helium. Actually, a transition to
the structure of the type proposed by Atkins for posi-
tive charges should occur already upon compression
to a ~ 7 A.

The dependence of the dimensions and of the char-
acteristics of the Atkins structure on the pressure is
much weaker; it is determined by the modulus of hy-
drostatic compression of the helium K = pc2 ~ 10 atm.

here r\ = In 8r/a, a = 1.2 A.
It is possible to obtain the connection between the
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THE POMERANCHUK EFFECT AND INFRALOW TEMPERATURES

V. K. IGNATOVICH

Usp. Fiz. Nauk 88, 395-396 (February 1966)

IN "JETP Let ters" (Vol. 1, No. 6, Russ. p. 1, transl.
p. 155), Yu. D. Anufriev reported attainment of infra-
low temperatures with the aid of the Pomeranchuk ef-
fect. This effect, predicted by Pomeranchuk back in
1950, consists in the following. As is well known, all
bodies release heat upon solidification. Therefore, if
crystallization is effected under conditions of thermal
insulation (for example, by increasing the pressure) ,
the substance becomes heated. This is normally the
case, but not for He3 below a certain critical tempera-
ture. If He3 is made to crystallize at T < 0.3°K, it will
absorb heat, meaning that it will become cooled under
adiabatic conditions. The melting curve of He3 can be
drawn as shown in Fig. 1. It is seen from this figure
that below the point To the melting curve exhibits un-
usual behavior. This is the Pomeranchuk effect.^-2-'
It can be explained theoretically as follows.

P,.

To
FIG. 1.

It is known that the heat of melting at a specified
temperature is given by'-3-'

Q^T (S2 — S1); (1)

the subscript 2 denotes the solid phase and 1 the liquid
phase. If Q > 0, this means that on going from the
liquid to the solid state heat is absorbed. For ordinary
bodies S2 < S1; and therefore Q < 0; for He3 S2 > S! at
temperatures below To and therefore Q > 0. Why then
is S2 > St for He3 under these conditions?

It is known that the entropy of any system under spe-
cified conditions (specified energy and volume) is de-
termined by the formula

= klnN, (2)

where N is the number of possible states at the given
temperature. When the temperature tends to zero the
system goes over into the ground state, which is not
degenerate and therefore N = 1, i.e., S = 0 —the well-
known Nernst theorem. But different systems go into
the ground state at different rates. Let us consider
He3. Its atoms consist of three nucleons and have spins
V2- Since the spin of each atom can have two orienta-
tions, if the spins were not to interact with one another
they would form 2n possible orientations, where n is
the number of atoms, i.e., the entropy should be not
less than kn In 2 or R In 2 per gram-atom of helium.
However, there are two types of interaction between
the spins:

1) exchange—quantum-mechanical, and
2) magnetic, since the atoms have magnetic mo-

ments oriented along the spin.
Both interactions are quite weak and exert practi-

cally no influence on the random orientation of the
spins. At very low temperatures, however, they go
into action. The first to operate are the exchange
forces. Even at T ~ 1°K they begin to align the spins
antiparallel to one another, so that we obtain in lieu of
the 2-N possible states only one state, i.e., the entropy
starts to tend to zero already at T ~ 1°K. It is inter-
esting, however, that in the crystalline state these ex-
change forces do not come into play at all. The mag-
nitude of the exchange forces is determined by the
zero-point oscillations of the atoms, in other words,
by the smearing of the wave functions. Whereas in the
liquid state this smearing is large, in the solid, crys-
talline state at low temperature the atoms of He III
have clearly fixed positions and the amplitude of their
zero-point oscillations about the equilibrium position
is much smaller than the distances between the atoms.
Consequently, the entropy will tend to zero in the liquid,
but in the solid phase it will remain not smaller than R x
In 2 per gram atom. This can be represented as in
Fig. 2.

The temperature variation of the entropy is repre-


