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INTEREST in superconductivity has noticeably in-
creased recently because of the appearance of new
possibilities for practical application of superconduc-
tors. These possibilities have come into play after the
discovery of superconducting alloys with large critical
magnetic fields, reaching (1—3) x 105 Oe.'-1-' However,
superconductivity has been attained so far only at very
low temperatures, and this is the main obstacle to ex-
tensive use of superconductors in engineering. As is
known, the maximum critical temperatures for the
presently known superconductors approach only 20°K.
This raises the question of the possibility of obtaining
superconductors with much higher critical tempera-
tures, on the order of room temperature.

According to the microscopic theory of supercon-
ductivity, which, as is well known, is based on the no-
tion that the attraction forces between electrons, which
give rise to the superconductivity, are the result of
phonon exchange, the expression for the critical tem-
perature ^

Here dj) is the Debye temperature and g is the effec-
tive constant of the electron-phonon interaction between
the electrons multiplied by the density of states on the
Fermi surface. The condition for stability of the lat-
tice leads to the inequality E4~6]

that is, Tc is approximately one order of magnitude
lower than the Debye temperature. Thus, the possi-
bility of increasing the critical temperature is limited
primarily by the Debye temperature. If the attraction
between the electrons is connected with spin-wave
rather than phonon exchange, then a similar role is
played not by the Debye temperature, but by the ef-
fective energy of the spin waves (magnons), which
usually turns out to be of the same order or some-
what higher than the Debye temperature'-7'8-'.

Little C9'103 has recently proposed for the inter-
action between electrons of molecular chains in
polymers a new mechanism, which can lead to critical
temperatures much higher than in the case of the pho-
non or magnon mechanism. In ^ he considers a
special model of a polymer, consisting of a central
molecular chain to which side chains are connected
on both sides. It is assumed that the * functions of
the electrons in molecular chains have the form of

modulated plane waves. It is easy to see that the
Coulomb repulsion between the electrons of the cen-
tral and side chains, in second-order perturbation-
theory approximation, leads to attraction between
electrons of the central chain (since the correction
to the energy in the second approximation for the
ground state is always negative). If these attraction
forces exceed the Coulomb repulsion forces, then the
electrons of the central chain can turn out to be super-
conducting. The matrix element of the attraction
forces obviously differs from zero for energies of the
two interacting electrons (reckoned from the Fermi
surface)—of the order of the average energy of tran-
sition for the electrons of the side chains (the energy
denominator in the expression for the correction to the
energy in the second approximation). It is just this
quantity—the scale of interaction in the energy space
AEe —which now enters in the expression for the
critical temperature Tc in lieu of dj^. The ratio of
0j) to the electron energy AEe is obviously of the
order of (m/m;)1^ (m and mj are the masses of the
electron and ion, respectively). Therefore Tc will
be larger for such a superconducting polymer than for
superconductors in the case of the phonon interaction
mechanism. According to Little's estimate for the
polymer model considered by him, the critical tem-
perature is of the order of 2 x 103 °K.

However, the possible existence of superconductivity
in one-dimensional systems, such as molecular chains
in polymers, meets with serious objections, as shown
by Ferrell^11^. According to ^u^ the superconducting
state of infinite one-dimensional systems is unstable
against fluctuations. Ferrell's reasoning is physically
very lucid but not fully rigorous. Therefore Ferrell's
objection to the superconducting polymer model pro-
posed by Little is argued against in a paper by Gor'kov,
Dzyaloshinskii, and BychkovC12^ where the calcula-
tions for the interaction of the superconducting polymer
are carried out not by perturbation theory, as in M,
but exactly, on the basis of summation of all the dia-
grams which are significant in this case. The final
answer to the question of the feasibility of supercon-
ductivity in one-dimensional systems will apparently
require more detailed research. It should be noted
that even if superconductivity of infinite molecular
chains is possible, the macroscopic magnetic and
electric properties of a real polymer, consisting of
individual relatively short molecular chains, will differ

142



THE ELECTRON MECHANISM OF SUPERCONDUCTIVITY 143

essentially from the properties of ordinary supercon-
ducting metals (absence of resistance in a constant
electric field, etc.).

It can be shown, however, that a pure electronic
mechanism, similar to the Little mechanism for poly-
mers and leading to the same high critical tempera-
tures, can exist in principle in the case of ordinary
three-dimensional metals^13^. This eliminates all the
difficulties indicated above. In ^13^ there was consid-
ered an electronic superconductivity mechanism con-
nected with the presence of two groups of electrons,
for two cases of three-dimensional systems: 1) a pure
transition-group metal with two overlapping unfilled
bands (s and d or s and f) or else an ordered alloy
of a metal with a metal (compound) with comparable
concentrations of the two components and an identical
structure of the electronic spectrum; 2) an ordered
alloy of a metal with a nonmetal, with comparable con-
centrations of the components, in the case when the
electrons of the upper unfilled shell of the atom of the
nonmetal are not "collectivized."

Of greatest interest is the first model. Just as in
the case of the polymer considered by Little, the Cou-
lomb repulsion between the electrons of the first and
second bands leads in the second (and higher) approx-
imation of perturbation theory to the appearance of at-
traction forces between each pair of electrons in the
first band and each pair of electrons in the second
band. It can be stated that these attraction forces re-
sult from the interaction between the electrons of the
given band with the charge-density vibrations of the
electrons of the other band.

The total effective interaction between the s-elec-
trons and the d(f)-electrons, not limited to the second
perturbation-theory approximation, can be obtained by
summing the diagrams in the so-called high-density
approximation. For a simple but close-to-reality
model of weakly coupled s electrons and strongly
coupled d(f)-electrons the calculations become much
simpler, for in this case the attraction between the s-
electrons exceeds the repulsion. In the general case,
the investigation is more complicated but under cer-
tain conditions the attraction can exceed the repulsion
for real metals, too. The critical temperature for the
resultant superconducting state is of the order 102 —
103 °K. In another model (alloy of a metal with a non-
metal ) the attraction between the conduction electrons
is the result of the Coulomb interaction with the elec-
trons of the nonmetal. In this case conditions for the
appearance of superconductivity turn out to be more
stringent, and the critical temperature is lower.

We shall investigate here in greater detail the pos-
sibility of realizing superconductivity in these two
models.

1. EFFECTIVE INTERACTION OF ELECTRONS IN
THE MODEL OF TWO OVERLAPPING BANDS

We consider first the model of a metal with two
overlapping bands. We assume that one of these bands,
which we arbitrarily call the d-band (actually it can
also be the f-band or some band with a different an-
gular momentum) is noticeably narrower than the
other (s-band) (Fig. 1). At first we disregard the
ph on on-exchange attraction forces between electrons,
so that only Coulomb repulsion forces will act on each
pair of electrons (two s-electrons, two d-electrons,
and s- and d-electrons).

Let us obtain for this case the total interaction between the
electrons in each band. To this end we consider first matrix ele-
ments of Coulomb interaction between s- and d-electrons. These
matrix elements can be of different types. If two electrons interact
and the first is in the s-band and has a quasimomentum p,, and re-
mains in the s-band after the interaction but acquires a quasimo-
mentum p3, while the second electron is in the d-band and has a
quasimomentum p2 before the interaction and remains in the d-band
and acquires a quasimomentum p4 after the interaction (Fig. 2), then
the matrix element will be

ysd; sd _

(1)

(we shall henceforth disregard umklapp processes, that is, we shall
put b = 0 (see the Appendix); b is the integer reciprocal-lattice vec-
tor). In the expression for the matrix element, the first two indices
denote as usual the initial state of two interacting electrons, and
the last two denote the final state. We shall henceforth write in lieu
of V^2

s.d
p3p4 simply V s d ; s d ; V% and <P£ are single-particle func-

tions of the s- and d-electrons, that is, the Bloch functions. In ad-
dition to V s d ; s d , there obviously exist the following matrix ele-
ments: V s s ; d d = V d d . s s , V s d ; d s , V s d ; d d = V d d ; d s , and V d s ; s s =
V*s;sd- Let us estimate these matrix elements using the approxi-
mate expressions for the single-particle W-functions. For the s-
electrons we confine ourselves to a plane-wave approximation

(V is the volume of the crystal, which will henceforth be assumed
equal to unity), and for the d-electrons we shall use the so-called
strong-coupling approximation:

(r) is the function of the electron in the isolated atom, Rn the

si; sd

FIG. 1 FIG. 2
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integer radius vector of the lattice point, and N the number of par-
ticles. If we neglect the overlap of the W0-functions of the neigh-
boring atoms in this case, then

; **=* \w i £,+£ 2 s-
n is the particle density. When k3 - k, | d « 1 (d is the lattice
constant) the summation with respect to n can be replaced by inte-
gration; then

y dd; dd ' V — — _ — _ss; ss it L- 2 " (2)

Let us now find Vsd ;sd
 and Vd<j;ss» likewise neglecting the over-

lap of the W0-functions of the neighboring atoms

k » - k i ' r> j 0 (r) |

r J J . „ • — - €

i(kj-ki, Rn)
e

i(k3-k!, Ru)

drd

| r r j~ i n :

X ToWfot'V''*'- (3)

k, - k0 and k2 - k0 (fik0 is the momentum on the Fermi surface), so
that the argument of the exponential in (3) is of the order koro (r0 is
the radius of the atom); koro « 1. In view of this, we can replace
in the zeroth approximation the exponential by unity:

" dd; ss '
1 j-k!, R,,)

Usually "P,, (r) does not correspond to the s-state (in the case of d-
and f-functions there can be only a small admixture of s-functions).
Then

V0(T)dT=0aadVdd. ss =

On the other hand, if we take into account the difference between
the exponential and unity, and expand this difference in powers of
(k, • r) + (k2 • r'), then we obtain for the internal electrons with
angular momentum I (I = 2 for the d-electrons)

y (L r \2i y
dd; ss V 0 0/ ' dd; dd'

Indeed, in the case of d-electrons ¥„ (r) contains the spherical
function Y;m (•&, cp); therefore, only the Z-th order term yields a
non-vanishing result in the series expansion of the exponential.
We obtain in this manner

X \ ¥0 (r) YJ (r') Wo (r')e i (k l ' r ) dr dr',

that is,

dd; ds \no'oi v dd; dd' v ds; s s \nofof K s s ; s s > y sd; sd y dd; s s ' \*J

From (2) and (3) we see that V s s ; s s , Vdd;dd, V s d ; sd depend
only on the momentum k = k3 - k, transferred during the interaction.

Consequently, in the approximation under considera-
tion, when I * 0 the only matrix element of the inter-
action of the s- and d-electrons to be retained is
V s d ; s d . This gives rise in the second perturbation-
theory approximation to an additional interaction for

each pair of s-electrons (owing to the interaction be-
tween the s-electrons and the d-electrons):

;
k1k2;k3k4 =

/sd; sd
'kjk; k

d\nk)

5i£3 —£k i — (5)

(and an analogous interaction for the d-electrons).

Here njj! are the occupation numbers for the d-elec-

trons (n£ = a^+a^), and | | and £? are the single-

particle energies of the s- and d-electrons reckoned
from the Fermi surface. Owing to the factor

we set 0> consequently
vss;ss < ° for small £g - | ? , that is, v'ss;ss cor-

responds to attraction. No account is taken in the
matrix elements V s d ; s d , V s s . s s , and Vdd ;dd of the
Debye screening, which plays a decisive role in sys-
tems of particles with Coulomb interaction whenever
the particles can move through the entire volume. As
is well known, the Debye screening causes the effec-
tive radius of the forces to become finite: in the case
of electrons in metals it is of the order of (rg/n1/3)1/2

(rg = H2/me2 is the Bohr radius and n is the particle
density). Therefore the screening can be taken ap-
proximately into account by substituting for V s s ; s s
the quantity

and by introducing similar changes in V s d ; s d and
Vdd;dd. However, in a consistent approach, the screen-
ing effect and the effective interaction with the d-elec-
trons must be taken into account simultaneously, since
this screening is in part also determined by the inter-
action between the s- and d-electrons. Such a con-
sistent calculation, which is furthermore accurate for
the model in question and not limited to the second
perturbation-theory approximation, can be carried out
on the basis of the method of diagram summation (see
the Appendix). We then obtain for the total matrix ele-
ment of the resultant interaction (the so-called four-
pole), for two s-electrons with initial quasimomenta
Pi and p2 and final momenta p3 and pit the expres-
sion (A. 6)

T\s; ss = fl" ss; ss + ^dd (Vsd; sd F 8 S ; SST' fM; dd) J IS, \

s = i - F , S s s n s s — v d d . d d n J d — n s s n d d ( V ; d . ! d — F M ; s s v d d - , , d ) , \
r r T/ ' TT /1/2 T̂  1' \ l ' C I

dd; dd ~ I v dd; dd ~T Uss { * td; sd— r ss; ss*' dd; dd/J /" • .-'
(6)

The analogous expression for the four-pole r g d . s d ,
which determines the effective interaction of the s-
and d-electrons, is (see (A.6))

Fsd; sd = Vst(; ?d/S; (7)

here n s s and n d d are the so-called polarization op-
erators (see (A.5) and (A.8)),
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(8)

k = k3 -kj and e = £3-^1 are the quasimomentum and
the energy transferred during the interaction. It is
easy to see that if V s s . g s n g s « 1 and V^fj^^n^ « 1
we obtain from (6) for r g s . g g an expression of the
same type as the expression obtained in the second
perturbation-theory approximation (see (5)):

rss ; ss ~ vss. ss (l + F.SS; ssnss) + nddvii; sd.

From (6) and (8) we see that Il^d depends little on e
(when k - k 0 ) if e « [ | d ( q + k) - | d ( q ) ] a v and con-
sequently also the second term in (6), tends to zero
when e » U d ( q + k) - | d ( q ) ] a v - It is obvious that
U d ( q + k) - £ d ( q ) ] a v ~ A Ed- where AE<j is the dis-
tance from the Fermi surface to the top of the d-band.

Let us consider r s s ; s s for small k. From (2) and (3) we see
that when k -» 0 we have Vdd;dd -> V s s ; s s = 4n-e2/k2 and V sd ; sd ~>
V s s ; s s . This is physically understandable, for at small values of k
(i.e., at large wavelengths (kd « 1)), the periodic potential of the
lattice (i.e., the crystal structure) does not play any role, and con-
sequently, V s ( j ; s d and Vd d ; d d should have the same form as the
matrix element V s s ; s s for free electrons. From (2) we see that the
ratio Vdd.dd/4(7e2k~2 which depends on k2, begins to differ notice-
ably from unity when kd = k/k0 - 1 and tends to zero when k » k0,
and from (3) we see that Vsd;sd/4n-e2k"2 begins to differ appreciably
from unity when kr0 - 1 and also tends to zero when k0 » r0"'.
Therefore near k = 0 (we disregard the anisotropy effect for non-
cubic lattices):

Vdd; dd = - ^ I' - a

Vad; sd - ^ 2 ' (1 - « s j) , (9)

where add - 1, a s d ~ 1, 0dd ~ 1- /6sd ~ 1, add > 0, and asd > 0. Let
us determine the so-called static interaction between the s-elec-
trons (neglecting retardation), i.e., the four-pole r s s ; s s in the limit
e/k -> 0; k -> 0, r g s ; s s ; we retain in the denominator only the term
of first order in k2. It will be shown below that r | s ; s s plays the
decisive role in the occurrence of pairing. We denote lim II by
(-IIk); as will be shown below, IIk > 0. Then we get from (6) and
(9)

(10)

where

ED = 1 ~ ^ 2 [add 4ne2 V (Pdd - f a ^ M + 2psd/tJ

4ne2ki2 (add-2as((/f^g)] > 0,

Since koro « 1, we can neglect the terms with (k0r0)
2 and (k0r0)\

If £ = (p2 ~ Po)/2meff, i.e., in the so-called effective-mass approxi-
mation, we can use for the polarization operator an expression an-
alogous to that for the free electrons (see (A.9)):

~21,kp0d E — hkpod/md

(md is the effective mass of the d-electrons, ms = m), then

"(4~ydd ' ' /^'•i~\l>~ ' (12)

Here

nmkorB
xfo)

(in rjjjj.jjfl we use m s in lieu of

O-dd •
Ams

nmkn nmkorB

0, (11)

(13)

We see that r g g . s s represents the screening inter-
action with a screening radius equal to xjj, which
differs somewhat from the ordinary screening radius
KQD, but has the same order of magnitude. We assume
further that ej) > 0. Then the first term
47re2ef)1(k2 + KE>)~1 gives the usual screened Coulomb
repulsion, with e^ playing the role of the dielectric
constant, while the second term
16e2mdo:(j(j[ej3mk0rB(k2 + K:£)]-1 gives attraction with
the same screening radius. Although korB < 1, both
terms in FgS . s s are of the same order, since a^
can be sufficiently small. In addition, greatest inter-
est is attached to the mean value of rjJ s . s s , that is,
the value of r g S ; s s when k ~ KJJ. Then the expansions
(9) will no longer be valid and the effective value of

for k ~ Kj} will be smaller than the constant
Analogous considerations make the case of

en > 0 more probable. In principle, however, the
case when ejj < 0, that is, the dielectric constant is
negative, is also possible. In this case the first term
in r ^ s . s s corresponds to attraction and the second to
repulsion. In a more general sense we can assume
that in any case when the attraction exceeds the re-
pulsion, even when ep > 0, the generalized dielectric
constant is negative, for in this case the resultant in-
teraction between electrons has the character of at-
traction. It must be borne in mind here, however, that
the sign of the resultant interaction is not determined
by the sign of r^g .g s , since the behavior of the first
and second terms of r s g .Sg as functions of the energy
transferred e, is essentially different. The second
term tends to zero when e » AE^ as a result of the
factor n ^ ; when e « AE^, the second term is prac-
tically constant.

It is easy to see that if the s- and d-electrons
were to have identical ^-functions, particularly in the
case of free s- and d-electrons, the difference
vsd;sd ~ vss;ssvdd;dd a n d consequently also the sec-
ond term in r s s ; s g would be equal to zero.

We see that occurrence of attraction between s-
electrons, as in the Little model for a polymer, is
connected with the interaction between the electrons
of the main group (s-electrons or electrons of a cen-
tral chain in a polymer), and oscillations of the elec-
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tron charge density of the auxiliary group (d-electrons
or electrons of the side chains).

We see from (12) that Ildd *s approximately pro-
portional to the effective mass md , that is, it is the
larger the narrower the d-band. Therefore the condi-
tions for attraction to exceed repulsion in Tdd;dd even
when ej) > 0 are less favorable (rigg « n d d ;
n sd ~ nss)> although both terms in r s s ; s s , r d d ; d d ,
•^sd;sd axe °f the same order when m s = m.

So far we have used the model of strongly bound
d-electrons and free s-electrons. Real metals may
noticeably deviate from this model. If, as before,
v s s ; s s - vdd;dd> a n d vsd;sd a r e noticeably larger than
all the remaining matrix elements, then the expressions
(6) and (7) for r s s ; s s , r d d ; d d , and r s d ; s d remain in
force. Since the general character of the dependence of
n d d o n k and e (in particular, the negative sign of
lim n d d ) does not depend essentially on the
e/k—0
model, in order for the second term in r s s . s s to
correspond to attraction in the case when ej) > 0, it
is necessary that the difference (V |d . s d

~~ v ss ;ss v dd;dd)av n a v e a positive sign (in the
model considered above, this condition was sat is-
fied automatically, since koro « 1 and a^d > 0). If
<=D < 0> then both terms correspond to attraction
when ( V | d ; s d - V s s ; s s V d d ; d d ) a v < 0.

It must be noted that even if V s s ; s d , V d d ; d s , V s s ; d d ,
and V s d ; d s are not very small compared with V s s ; s s ,
V d d ; d d , or V s d . s ; , the expression for the second term
i n r s s ; s s i n (9)> describing attraction when ej) > 0,
will be sufficiently accurate, since the discarded last
two terms in the first two equations of Fig. 6 contain
n s d, which is smaller than n d d by a factor ~ m s / m d .

We note that in the model in which the s- and d-electrons are
described by strong-coupling f-functions, the matrix elements
vdd;ss, Vdd;ds, Vd s ; s s , and Vsd ;ds are even smaller than in the
model considered above; for example,

traction in this case. It will be shown below that if
the matrix element Vd d . s s is of the same order as
vss;ss- vdd;dd- o r vsd;sd- t h e n ^ additional pairing
mechanism arises, connected with the four-pole

We have assumed above that only Coulomb forces
act between the electrons. Actually, there are always
also attraction forces connected with phonon exchange.
In this case the effective interaction will be sufficiently
well approximated by expressions (6) and (7) for the
four-poles, to which we add terms corresponding to
the interaction via the phonons.

2. PAIRING AND CRITICAL TEMPERATURE IN THE
MODEL OF TWO OVERLAPPING BANDS

If attraction exceeds repulsion for electrons of the
s-bands, the latter form Cooper pairs and the system
of s-electrons turns out to be superconducting (see t2]).
We shall assume for simplicity that there is no pairing
in the system of d-electrons, although a consideration
of the case when pairing exists in both bands likewise
entails no great difficulty (see the Appendix). In spite
of the presence of superconductivity, absorption of
radio waves will not have a threshold character in this
case.

In the case of weak interaction, the energy spectrum
of the excitations for the system of s-electrons can be
obtained in simplest fashion with the aid of the well-
known u,v transformation of Bogolyubov^.

Let the Hamiltonian of the s-electrons have the form

Y 2 V &k> Ik') "k,a ak-,-a ak+q,a ak--q, _o

(14)

i (k3-k,,Rn) drdr'

a
k a and ak(j are the second-quantization amplitudes satisfying

the commutation relations

(r') ~ 0.

In this model, however, the difference V | d ; s d - V s s . s sVdd ;dd dif-
fers from zero only in the case when the f-functions overlap.

On the other hand, if both overlapping bands are
sufficiently broad and their width is of the same order,
and consequently also the coupling of the electrons in
them, then obviously we cannot neglect all the matrix
elements other than V s s ; s s , Vdd;dd, or V s d ; s d- In
this case the expression for r s s . s s can likewise be
determined in a sufficiently simple manner; as shown
in the Appendix, it is necessary for this purpose to
solve a system of four linear algebraic equations (see
Fig. 6). This can be easily done if one knows the ex-
pressions for the Coulomb matrix elements. We do
not present here the expression for r s s ; s s , nor do
we investigate the criterion for the occurrence of at-

We change over to new second-quantization amplitudes
ak(y and akcr, which make it possible to take into account the
rearrangement of the Fermi surface connected with the possible
formation of Cooper pairs:

K

where uk and vk satisfy the condition uk + vk = 1, which ensures
conservation of the Fermi commutation conditions for akff and
akf7. Let us find the mean value of H over the new occupation
numbers nkfJ = a+o«kCT:

i
k, 2

X uk,vk. (1—n i )- (15)
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Minimizing E with respect to û  and vk we obtain the condition here
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We introduce the notation

k ' 2 k

We then obtain from (16) expressions for uk and vk

•2 i

From the condition of the maximum entropy of the excitation gas

as a function of nkfJ for a specified energy E, we get
\a = ( e f ( k ) / T + I)"1 where

'• ( k ) = - . - — •dnk

From (15) we obtain

For an approxi-
^2.5] that the

0) 2

A2 = (g2—k

A 3 = — £

C02
(20)

A, = A(k) for

A(k) for | £k |

3 = A(k) for | E

g1( g2, and g3 are the products of a state density on the Fermi sur-
face Ns (this factor appears on going over from integration with re-
spect to k to integration with respect to fk) and the absolute value
of the corresponding term r s (their sign is taken into account
in (20)), i.e., respectively, the phonon-proper term, the second term
in (6), and the Coulomb repulsion,

A solution of (20) can be readily obtained when
Ai « u>\ and A2 « oij. The solution exists only under
the condition

go > 0, go = gi + {g2-g3) / [ 1 - ( & - i s ) In ̂ ] ;

^ J and A1 = 2

Substituting (17) and the expression for nk(J in (16),
we obtain an expression for the energy gap A:

A /K\ 1 X1 Klh-'WCZ ? *t th Ip tV\lc)T\lp t\r'\ (i &\ *
/ \ I K ) ^ ^ ,y" y i LI I IV I V ( ^ k ) & k ' ) t i l I t I K 1 / i i I / D l i t I . (loj

At absolute zero nkcr = 0 and we get from (18)

A (k) = - { ^ A (k') V (lk, |k-)/e (k#). (19)

It is shown in the Appendix that in the case when the
interaction is not weak, Eqs. (18) and (19) retain their
form (see (A.11) and (A.12)), but they contain in lieu
of V(£k, £k') the four-pole r s g .
mate estimate of A we assume, as in
different terms in | k are constant in a definite region
of | £k l> anc^ that outside this region the following quan-
tities vanish: (a) the term connected with phonon ex-
change when | £kl> I Ik'I < n w D (when I Ikl . I Ik'
> hcojj the matrix element of the interaction between
electrons via the phonons is, as is well known, very
smal lM; OJJJ is the Debye frequency); (b) the attrac-
tion connected with the second term in (6) (for £ Q > 0)
when | £k l> I Ik'l < ^-^d (see above) and the Coulomb
repulsion when I Ik l . I Ik'l < eo ( eo is the Fermi energy
for the s-electrons ).

Going over in (19) (with F s s . s s replacing V(fi(> fk')) from sum-
mation to integration with respect to k, and then by means of a
change of variables to integration with respect to fk, we calculate
the integral with respect to ^ and obtain a system of equations
(we disregard here the anisotropy of A)

/ Jgl r i _ f e _£ 3 ) i n .<*>*.] + g 2 -gA (21)

Let us obtain now the critical temperature T c at which
the energy gap A(k) vanishes. To this end we put in
(18) T = T c - 0, assuming that A(k) = 0 in the expres-
sion for e(k); the integration with respect to | k is
easily carried out1-2'8^ and we get from (18)

—g3) A4 \n(i.UwJTc)

A2 = (g2—gj[^ In (I,14co1/rc) + A2ln^2] —g3A3l

A3= —g3 A1ln(1.14to./rc) + A2]n= ?+A,ln^ ,

M22)'

0, - dx = — In (4Y/JI), In 7 --- 0.577.

Equating to zero the determinant type system (22), we
obtain

Tc = 1.14(oie-
i/go = Tteei/go^o-«i\ (23)

where Tg = 1.14 c^2e~1//(S2-g3). Since g0 contains g3,

the effective Coulomb repulsion is weakened by a fac-

tor 1/ (1 + g3 In —̂  ) which can be noticeably smaller

than unity if AE,j « e0 (see '-5-').
Expression (23) can be written in a different form:

Tc = {g2 l _ g j In g (24)

where

*th = tanh. *ch = cosh.
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Thus, when g2 « (g*)2 - g2g*(l -g\ In — ) we set

Tc f= TQ . A similar expression for Tc is obtained,
as is well known, when the phonon mechanism is effec-
tive[2,5,6]_ O n t h e o t h e r hand, if gt « g0 (g0 -gt), then
Tc = T®, corresponding to predominance of the elec-
tronic mechanism. Since o>2 » wj (AEd >:> hcop) and
§2 ~ Si> the critical temperature will in this case be
considerably higher than in the case of the phonon
mechanism. For example, when AEd ~ 0.3—1 eV we
have Tc ~ (102—103) °K. In the intermediate case when
gi — g2 the dependence of Tc on cot and OJ2 will be
very complicated, as we see from (23). A rapid growth
of Tc should be observed when g2 - g 3 « l/ln (w2/w1).

We see that the attraction between the s-electrons
due to their interaction with d-electrons can lead to
superconductivity with a critical temperature much
higher than the critical temperature in the case of
the phonon mechanism.

There exists also one electronic mechanism, which
is close in its character to that considered above and
which, in principle, can lead to high critical tempera-
tures. We have seen so far that one of the two over-
lapping bands is much narrower than the other. Let
us assume now that the widths of both overlapping
bands, and consequently also the coupling between the
electrons in them, are of the same order. Then we can
no longer neglect, as above, the matrix elements
vdd;ss» Vdd;ds. VdS;ss. and Vsd;ds compared with
vss ;ss ' vdd;dd> and Vsd ;sd; by virtue of this (see the
Appendix) we cannot neglect the four-poles rdd ;ss»
rdd;ds> rds;ss> and r s d ; d s compared with r s s ; s s ,
rdd;dd> and r sd ; sd-

The equations for the energy gaps of the s- and d-
electrons Ag and Ad can be readily obtained in the
case of weak interaction with the aid of a u, v trans-
formation on the amplitudes a | and a^ (see tul). In
the case of an arbitrary interaction, the equations for
As and Ad are similar in form, but in lieu of the
matrix elements the equations will contain the corre-
sponding four-poles (see the Appendix); these equa-
tions are generalizations of (18):
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A s = — ASNS (

Ad = - A d N d (

Rs d (Tdd; ss)avRd,

d; dd)avRd-AsNs

(25)

the indices s and d have been interchanged in Rd, and
in Rg and Rd the upper limit of the integral is equal to
AEC. It is assumed here that there is no phonon mech-
anism and that r s s ; s s = const when | |k I, I Ik'I < AEd>
r s s ; s s = ° when | | k | , | | k ' | > AEd, r d d ; d d = const
when | Ik I, I Ik'I < A E s> r d d ; d d = ° w h e n I l k I. I Ik ' I
> A E S , r s s ; d d = const when | | k l> l l k ' l < A E e > and
r s s ; d d = 0 when | | k l , I Ik ' l > A E c - It is easy to see
that even when r s s ; s s = Tdd;dd = ° the sys tem (25) has
a nonvanishing solution for A s and A d r e g a r d l e s s of

the sign of r s s ; d d , i.e., even when r s s ; d d corresponds
to repulsion:

s = AssNsNd (TSS; dd)av(Tdd; (26)

This effect, which favors pairing, has the same nature
as the occurrence of attraction in Vss;ss in the sec-
ond perturbation-theory approximation in accord with
(5), but is connected with Vss;dd and not with Vsd;sd-
However, the conditions for the occurrence of pairing
in this case are apparently less favorable than in that
considered above—with bands of essentially different
widths—since the attraction effect described by (26),
is no longer intensified by a large factor of the type of
the polarization operator Ildd. a s *n (6). Therefore
the probability that the attraction will exceed the Cou-
lomb repulsion is lower in the case of bands of equal
width than in the case of bands with essentially differ-
ent widths, but this possibility cannot be completely
excluded. The pairing effect connected with V s s . d d

was known even before Little's paper E16>16], How-
ever, the papers of Kondo and Perretti did not attract
much attention, for this effect was considered in them
only for an explanation of properties of certain super-
conducting alloys with ordinary critical temperature
(on the basis of the u,v transformation, i.e., assum-
ing weak interaction) and sight was lost in this case
of the possibility of obtaining high critical tempera-
tures.

This raises the question of the extent to which the
possibility of obtaining superconductors with high
critical temperatures, such as room temperature and
above, is indeed realistic. In the most favorable model
with two overlapping bands of different widths, the nec-
essary condition for pairing, as shown above, is the
inequality

in addition it is necessary that the attraction exceed
the repulsion, i.e., g2 > g^. In order for the critical
temperature to be sufficiently high, i.e., to be deter-
mined by the electronic mechanism, it is necessary to
satisfy the condition g2 - g 3 ~ 1 (when
exp[g1/go(go-g1)J ~ 1). Thus, although in principle
the production of superconducting metals with high
critical temperatures is possible, this is a very com-
plicated task. In the case of pure transition-group
metals, the electronic mechanism of superconductivity
is apparently either not realized or realized only in the
form of a small admixture to the phonon mechanism.
Superconductors with high critical temperatures, in
which the electronic mechanism prevails, should be
sought among the alloys. These searches are made
very difficult by the fact that the electronic spectrum
and the single-particle *-functions of the electrons in
the alloys, are unknown and are difficult to calculate.
Of course, in the case when the electronic mechanism
predominates, the isotropic effect is almost completely
missing.
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Further research is necessary also in connection
with the question of stability of the superconducting
state in the case of the electronic superconducting
mechanism. It can be assumed, however, that the
superconducting state is stable: although the energy
gap A can now be of the same order as the Debye fre-
quency, the pairing is connected not with the interac-
tion between the electrons and the phonons, but with the
interaction between the electrons themselves; there-
fore, the realignment of the ground state of the system
of the electrons cannot apparently disturb the stability
of the lattice. On the other hand, the stability of the
superconducting state against collective excitations
does not depend on the physical nature of the attrac-
tion forces between the electrons (see'-17-').

3. ALLOY OF METAL WITH NONMETAL

We now consider the alloy of a metal with a non-
metal (for example, with C, N, Si, S, Se, Sb, etc.) with
comparable concentrations of the two components. Such
alloys are well known. We assume that the alloy is
well ordered and that the upper shell of the nonmetal
atoms, like the upper band of the metal electrons, is not
filled and the electrons of the nonmetal are not collec-
tivized. This is possible only in the case of strong
coupling between the electrons of the nonmetal with
their atoms, and in the case when the upper filled level
of the nonmetal atom is lower than the Fermi surface
of the metal electrons. It is difficult to say at present
to what degree such an idealized model with non-col-
lectivized electrons of the nonmetal atom can be rea l -
ized. The electrons of the nonmetal will play in this
case the role of auxiliary electrons, which induce at-
traction between electrons of the metal, i.e., the same
role as the d-electrons in the model of the metal with
overlapping bands. However, unlike the d-electrons,
the nonmetal electrons will be described not by Bloch
functions, but by atomic functions. The pairing for the
electrons of the nonmetal is missing in this case, and
therefore the calculations are greatly simplified. In the
four-pole r g S . s s , the term connected with the interac-
tion between the electrons of the metal and the elec-
trons of the nonmetal can be obtained by perturbation
theory (or else, in the case of two close atomic lev-
els, by perturbation theory with account of degener-
acy ). On the other hand, the screening of the con-
duction-electron potential will be determined only by
the conduction electrons themselves, since the elec-
trons of the nonmetal are localized. Then the four-
pole Tgg.gg, if we disregard the phonon mechanism,
will have the following form (see (5) and (6))

r — v -X- v"
J- ss; ss — J ss; ss \ l ss; ssi

r;s;ss---Fss;s8/(i —n s sy s s ; S 8),

n, X, \J
!, n?.; k3, n*.' Vn\\ k2; nA, k4

(27)

here the indices s and d correspond to the conduction
electrons and to the nonmetal electrons, and A. is the
aggregate of the quantum numbers of the electron of
the nonmetal atom situated at the crystal lattice point
with integer radius vector Rn. If, as before, we use
for the conduction electrons the plane-wave approxi-
mation, then we get from (1)

Fsd; sd
ki, n\; k3, n\

3 -k i , R,,)]

X \ e <".-*• '> Vox (r)) Wv (0 dr.

The argument of the exponential under the integral
sign is of the order of k̂ rQ « 1. If we replace the ex-
ponential by unity, then the integral vanishes. There-
fore, as shown above,

i.e., (28)

In order for the second term in (27), corresponding to
attraction, to outweigh the repulsion it is obviously
necessary to have

d- sd)avln(i0IAEd); (29)

account was taken here of the logarithmic attenuation
of the Coulomb repulsion (see (21)). At the same time,
the condition of applicability of perturbation theory
leads to the inequality AE^ > n (Vscj;sd)av' that is,
it is necessary to have

In (eo/A£d) > (30)

1 ; >

The corresponding small values of AE^ are pos-
sible in the case of fine-structure levels or in the case
of Stark-effect splitting of atomic levels in the electric
field of the crystal. The critical temperature is de-
termined as before by formula (23), but now AE^ is
equal to the distance between the upper filled level in
the nonmetal atom and the nearest unfilled level. Since
AE,j is much smaller in this case than in (23), even
when condition (30) is satisfied, the critical tempera-
ture in the case of an alloy of a metal with a nonmetal
will be smaller than for a metal with two overlapping
bands. The same considerations are applicable appar-
ently in the case of a dielectric film which covers the
surface of the metal; as indicated in I-183, such a film
can produce more favorable conditions for the occur-
rence of superconductivity surfaces.

Let us consider in conclusion a metal with impuri-
ties, that is, an alloy with low concentration of one of
the components when the levels of the atom of even the
metallic impurity have a local character. In this case
it is possible to use for an estimate formula (27) but,
the second term of (27) must be multiplied by the im-
purity concentration Cim p « 1, which greatly reduces
the effect of attraction (in addition, the coordinates
Rn will now be randomly distributed). It can be as -
sumed that the increase of T c in certain known alloys
is connected with the additional attraction which is
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d s d d

caused by the presence of impurities. A similar ef-
fect in the case of ferromagnetic impurities was con-
sidered earlier in P9].

APPENDIX

Let us find the Green's function, and also the expression for
the energy gap and for the four-poles for the system of s- and d-
electrons without assuming that the interaction between electrons
is small.

In this case we can introduce the following Green's functions
and F-functions: G s s , Gdd, G sd ; F s s , F d d , and F s d , with

d= - i < T (Vd (x) ¥ +

and the remaining G and F or F are defined in similar fashion. If
we do not write out the terms containing the self-energy parts £ s s ,
Xdd, and 2 s d with one incoming and one outgoing ends (these
terms lead essentially only to renormalization of the chemical po-
tential), then the system of equations for G s s , Gsd, F s s , and F s d

has a graphic form indicated in Fig. 3. A similar form is possessed
by the system of equations for Gdd, Gds, F d d , and F d s . In analytic
form, in the representation of the single-particle functions Vx(r)
C?A = e'<k'r)ukj(r)), the equations for G s s , Gsd, FgS, and Fgd

(the Dyson equation) are written in the form

(A.I)
as(A%,Gssl-{-A%dlGslIl), ( e - i

+ AsdxF+K), -(E + lbFtd

Ft

as < 1 and ad < 1; the spin vectors A have the form [20] A a/3 = ^y
a

A (A is a number). We shall henceforth assume for simplicity that
as = ad = 1- We assume by the same token that not only Ass and
Add but also A sd differ from zero. Since the values of j k | on the
Fermi surface differ for the s- and d-electrons, this is possible
only when the umklapp processes are taken into account. Indeed,
for a delta-function interaction in the second perturbation-theory
approximation, with umklapp taken into account, the correction to
the amplitude for the scattering of an s-electron by a d-electron is
of the form [6]

We assume that | kt + k2 + 2n-b | « q, and obtain in the usual fash-
ion [6] an expression for f which diverges logarithmically when
| k, + k2 + 2ub | -> 0. Consequently, pairing of the s- and d-electrons
is possible only if | k, + k2 + 2nb | = 0 (such a pairing is possible

also in the case of two s- or two d-electrons). This condition^ can
be realized (for both the electronic and phonon mechanisms) only
when the occupation and structure of the two bands have a different
character, and in definite regions of directions in k-space. We shall
henceforth assume that A sd = Fgd = 0. In this case Gsd will also
be equal to zero if we take into account the S s d , S s s , and S d d

which were not written out in (A.I), since ks ^ kd + 277b. Then the
solution of (A.I) will take the form

Ffs=-As/Ds,
F+d = -Ad/Dd; (A.2)

here

AS = ASS, Ad = Add, AS = A*, Ati = AJ. (A.3)
The poles of the Green's functions determine the energy spectrum
of the excitations: e = et and e = e2. At nonzero temperature, the
system of equations for the temperature functions G and F is simi-
lar to (A.2), except that e + iS sgn cf must be replaced everywhere
by i&jn (<wn = (2n + 1) J7T). We now find equations for the self-en-
ergy parts, i.e., the energy gaps As and Ad. These equations are
shown graphically in Fig. 4, i.e., their mathematical form (with
symbolic notation) is

F+s dd' ^dd; ddFdd~

The four-poles F which enter in the equation cannot be cut into
two parts joined only by two lines of identical direction, since F
and F already take into account the corresponding diagrams (see
[2°]). It was shown above (see (4)) that the matrix elements V s s . d d ,
VSs;sd> Vdd;ds. an^ V s d . d s can be neglected compared with
V s s . s s , V d d ; d d , and V s d ; s d . We shall show below that we also
neglect in this case the four-poles r s s ; d d , r s s ; s d , r d d ; d s , and
rsd;ds> compared with r s s ; s s , r d d ; d d , and F s d ; s d . Then we can
retain only the first terms in the equations of Fig. 4. In mathemati-
cal form they become (when T = 0)

r ^ i ) dp'Tdd-, dd (P'. P'; P. P) Ftd (P'); ( A 4 )

i = l, for T^=0 t2ni)-i [ de-+T , 8 —>- Win.

When calculating the four-poles T in the case of Coulomb forces,

X*!'

Flirt rdd

FIG. 4
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the principal role is played, as is well known, by diagrams of the
chain type (Fig. 5). For highly compact systems, the remaining dia-
grams make a negligibly small contribution. But even for such high-
ly compact systems like metals, allowance for the chain diagrams
only is a sufficiently good approximation, especially for small val-
ues of the momentum transfer k (see (10)). If we neglect the loops
made up of the F- and F -functions, compared with the loops of the
G-functions (the loops of the first type yield terms of order AVf2,).
then we obtain for the four-poles T the system of equations indi-
cated in Fig. 6, which has an analytic form

r —v 4-v n r -4-V , n ,JT
ss; ss ss; ss ' ss; ss s s 1 ss; ss • sd; sd " d 1

 sd-t sd

rsd; sd=Vsd; sd+Vsd; sdnSsr
Ss; ss + ^dd;

+ F,M;r , sn sdr s s . sd + y s d . d dn s ( ,rd s ; ss,

rss; sd = yss; sd + Vsa; sdnssr
Ss; ss+^sd; dd

+ Vsrl; dsnsc!rss; sd + Vss; ddnsdrds; ss

. sd

s^ddFsd; sd

+ vdd; ssnsdrss; sd + vsd. d s n s d r d s . SS)

and an analogous system for r s s ; d ( j (which contains r s s , d ( j ,
r s S ; s d . r sd ;dd . a n d r s d ; d s ) ; Tddidd is obtained from r s s ; s s and
Fdd;ss from Tss;dd by permutation of the indices s and d. It was
shown above (see (A.4)) that one can neglect all of the matrix ele-
ments except V s s ; s s , Vdd;dd> a n ^ Vs<j ;sd- We then see from the
equations of Fig. 6 that the four-pole r s s ; S ( j can be neglected (it
is easy to show analogously that the remaining four-poles can also
be neglected) compared with r s s ; s s , rs<j;sd> (an<^ Tdd;dd)- In math-

ematical form the system of equations for r s and r sd;sd i s

i Y ad- <tr1 ! '

sd'

id; sd'

nS8W=n?i (2n)i s (P) Gs

(A.5)

For Fdddd a n d Tsd;sd we obtain an approximate system of two
equations, similar to (A.5). The solution of the system (A.5) is

- F s s . ssFdd; dd), (A.6)

that is, (see [13])

rss; RS = [;/sS; ss+^sd; ,d

Analogously we obtain

(A.7)

In calculating the polarization operators TISS and Ildd we can use
the Green's function in the absence of pairing, since in the inte-
gral with respect to p for II an important role is played by the en-
ergy ~ to and not by A. For estimating purposes we use G° in (A.I),
which contains no regular parts (when T ^ O t - t i<un):

nd(p) — r, (A.8)

Usually | k | « k0; then the integrand in (A.8) can be expanded in
powers of | k |:

dp /IP|=Po '
rfp

(A.9)

In the effective-mass approximation we obtain from (A.9) the ex-
pression (11)[21]. To obtain in explicit form expressions for As and
Ad we substitute Fgs and Fdd from (A.2) and (A.4). In integrating
with respect to c' by means of the residue theorem, the principal
role will be assumed by the poles of Fss and F^d- 0° the other
hand, the poles of r s s ; s s and Fdd;dd> corresponding to the fre-
quency of the plasma oscillations ["]
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tfv = ~(plJms + pldlmd), (A.10)

will make a very small contribution, since &jp is much larger than
As and Aj. This contribution can be neglected, and we can substi-
tute in (A.4) the four-poles F for e = f' = 0, i.e., we can neglect re-
tardation. Inasmuch as different terms in F, as shown above, can
be approximately regarded as constant in a definite region of f
when k ~ KD, and as equal to zero outside this region, we shall re-
place these terms by the constant terms which enter in Vk

(Fk (fit, ft1) in the case of k - KD)'
We assume for simplicity that Fdd;dd exceeds the repulsion;

then Ad = 0, i.e., the pairing exists only in the s-band. For As we
obtain the equation

'). (A. 11)

When T / 0 the summation over
tanh (f (k ')/2T) (seet21]):

^ gives an extra factor

2 (2n)
dkT* |k.) As (k') th (El (k')/271)/e1 (k'). (A. 12)

If both As ^ 0 and Aj ̂  0, then we obtain for As and Aj the system
of equations (25) (see Fig. 4).

For simplicity, we have considered above a model of free s-elec-
trons and strongly bound d-electrons. If we know the expressions
for all the Coulomb matrix elements, we obviously can readily ob-
tain a solution of the equations of Fig. 6, and then of the equations
of Fig. 4 in the general case.
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