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INTEREST in superconductivity has noticeably in-
creased recently because of the appearance of new
possibilities for practical application of superconduc-
tors. These possibilities have come into play after the
discovery of superconducting alloys with large critical
magnetic fields, reaching (1—3) x 10° Oe.L!] However,
superconductivity has been attained so far only at very
low temperatures, and this is the main obstacle to ex-
tensive use of superconductors in engineering. As is
known, the maximum critical temperatures for the
presently known superconductors approach only 20°K.
This raises the question of the possibility of obtaining
superconductors with much higher critical tempera-
tures, on the order of room temperature.

According to the microscopic theory of supercon-
ductivity, which, as is well known, is based on the no-
tion that the attraction forces between electrons, which
give rise to the superconductivity, are the result of
phonon exchange, the expression for the critical tem-
perature is[%3]

To=1.140pe—1/5.

Here 6p is the Debye temperature and g is the effec-
tive constant of the electron-phonon interaction between
the electrons multiplied by the density of states on the
Fermi surface. The condition for stability of the lat-
tice leads to the inequality [4~%]

1
g<?1

that is, T, is approximately one order of magnitude
lower than the Debye temperature. Thus, the possi-
bility of increasing the critical temperature is limited
primarily by the Debye temperature. If the attraction
between the electrons is connected with spin-wave
rather than phonon exchange, then a similar role is
played not by the Debye temperature, but by the ef-
fective energy of the spin waves (magnons), which
usually turns out to be of the same order or some-
what higher than the Debye temperature (781
Little[%1°] has recently proposed for the inter-
action between electrons of molecular chains in
polymers a new mechanism, which can lead to critical
temperatures much higher than in the case of the pho-
non or magnon mechanism. In (%] he considers a
special model of a polymer, consisting of a central
molecular chain to which side chains are connected
on both sides. It is assumed that the ¥ functions of
the electrons in molecular chains have the form of

modulated plane waves. It is easy to see that the
Coulomb repulsion between the electrons of the cen-
tral and side chains, in second-order perturbation-
theory approximation, leads to attraction between
electrons of the central chain (since the correction

to the energy in the second approximation for the
ground state is always negative ). If these attraction
forces exceed the Coulomb repulsion forces, then the
electrons of the central chain can turn out to be super-
conducting. The matrix element of the attraction
forces obviously differs from zero for energies of the
two interacting electrons (reckoned from the Fermi
surface ) —of the order of the average energy of tran-
sition for the electrons of the side chains (the energy
denominator in the expression for the correction to the
energy in the second approximation). It is just this
quantity —the scale of interaction in the energy space
AEeg —which now enters in the expression for the
critical temperature T; in lieu of 6p. The ratio of
fp to the electron energy AEg is obviously of the
order of (1rn/rn1)1/2 (m and mj are the masses of the
electron and ion, respectively). Therefore T will
be larger for such a superconducting polymer than for
superconductors in the case of the phonon interaction
mechanism. According to Little’s estimate for the
polymer model considered by him, the critical tem-
perature is of the order of 2 x 10% °K.

However, the possible existence of superconductivity
in one-dimensional systems, such as molecular chains
in polymers, meets with serious objections, as shown
by Ferrelll!!]  According to [!!] the superconducting
state of infinite one-dimensional systems is unstable
against fluctuations. Ferrell’s reasoning is physically
very lucid but not fully rigorous. Therefore Ferrell’s
objection to the superconducting polymer model pro-
posed by Little is argued against in a paper by Gor’kov,
Dzyaloshinskii, and Bychkovt!?] where the calcula-
tions for the interaction of the superconducting polymer
are carried out not by perturbation theory, as in Lod,
but exactly, on the basis of summation of all the dia-
grams which are significant in this case. The final
answer to the question of the feasibility of supercon-
ductivity in one-dimensional systems will apparently
require more detailed research. It should be noted
that even if superconductivity of infinite molecular
chains is possible, the macroscopic magnetic and
electric properties of a real polymer, consisting of
individual relatively short molecular chains, will differ
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essentially from the properties of ordinary supercon-
ducting metals (absence of resistance in a constant
electric field, etc.).

It can be shown, however, that a pure electronic
mechanism, similar to the Little mechanism for poly -
mers and leading to the same high critical tempera-
tures, can exist in principle in the case of ordinary
three-dimensional metalst'3], This eliminates all the
difficulties indicated above. In %3] there was consid-
ered an electronic superconductivity mechanism con-
nected with the presence of two groups of electrons,
for two cases of three-dimensional systems: 1) a pure
transition-group metal with two overlapping unfilled
bands (s and d or s and f) or else an ordered alloy
of a metal with a metal (compound ) with comparable
concentrations of the two components and an identical
structure of the electronic spectrum; 2) an ordered
alloy of a metal with a nonmetal, with comparable con-
centrations of the components, in the case when the
electrons of the upper unfilled shell of the atom of the
nonmetal are not ‘‘collectivized.”’

Of greatest interest is the first model. Just as in
the case of the polymer considered by Little, the Cou-
lomb repulsion between the electrons of the first and
second bands leads in the second (and higher ) approx-
imation of perturbation theory to the appearance of at-
traction forces between each pair of electrons in the
first band and each pair of electrons in the second
band. It can be stated that these attraction forces re-
sult from the interaction between the electrons of the
given band with the charge-density vibrations of the
electrons of the other band.

The total effective interaction between the s-elec-
trons and the d(f)-electrons, not limited to the second
perturbation-theory approximation, can be obtained by
summing the diagrams in the so-called high-density
approximation. For a simple but close-to-reality
model of weakly coupled s electrons and strongly
coupled d(f)-electrons the calculations become much
simpler, for in this case the attraction between the s-
electrons exceeds the repulsion. In the general case,
the investigation is more complicated but under cer-
tain conditions the attraction can exceed the repulsion
for real metals, too. The critical temperature for the
resultant superconducting state is of the order 10%—
10%°K. In another model (alloy of a metal with a non-
metal ) the attraction between the conduction electrons
is the result of the Coulomb interaction with the elec-
trons of the nonmetal. In this case conditions for the
appearance of superconductivity turn out to be more
stringent, and the critical temperature is lower.

FIG. 1

We shall investigate here in greater detail the pos-
sibility of realizing superconductivity in these two
models.

1. EFFECTIVE INTERACTION OF ELECTRONS IN
THE MODEL OF TWO OVERLAPPING BANDS

We consider first the model of a metal with two
overlapping bands. We assume that one of these bands,
which we arbitrarily call the d-band (actually it can
also be the f-band or some band with a different an-
gular momentum ) is noticeably narrower than the
other (s-band) (Fig. 1). At first we disregard the
phonon-exchange attraction forces between electrons,
so that only Coulomb repulsion forces will act on each
pair of electrons (two s-electrons, two d-electrons,
and s- and d-electrons).

Let us obtain for this case the total interaction between the
electrons in each band. To this end we consider first matrix ele-
ments of Coulomb interaction between s- and d-electrons. These
matrix elements can be of different types. If two electrons interact
and the first is in the s-band and has a quasimomentum p,, and re-
mains in the s-band after the interaction but acquires a quasimo-
mentum p,, while the second electron is in the d-band and has a
quasimomentum p, before the interaction and remains in the d-band
and acquires a quasimomentum p, after the interaction (Fig. 2), then
the matrix element will be

sd; sd . e? s d s d
Vo= | o Wa (1) ¥, (1) Wy, (1) Wi (59) dry s,

Pi+pP.=p3+p,+2aib )

(we shall henceforth disregard umklapp processes, that is, we shall
put b = 0 (see the Appendix); b is the integer reciprocal-lattice vec-
tor). In the expression for the matrix element, the first two indices
denote as usual the initial state of two interacting electrons, and
the last two denote the final state. We shall henceforth write in lieu
of V[S,?[;,zsg)am simply Vgq;sd; Vg and ‘I‘g are single-particle func-
tions of the s- and d-electrons, that is, the Bloch functions. In ad-
dition to Vsd;sd: there obviously exist the following matrix ele-
ments: Vss;dd = Vﬁd;SS! Vsd;ds: Vsd;dd = Vﬁd;dsx and Vds;ss =
V’és;sd. Let us estimate these matrix elements using the approxi-
mate expressions for the single-particle W-functions. For the s-
electrons we confine ourselves to a plane-wave approximation

s __y—te i) o
W=V " k=p/h
(V is the volume of the crystal, which will henceforth be assumed
equal to unity), and for the d-electrons we shall use the so-called
strong-coupling approximation:

d_ w— i(k,Rpy)
Yo=N"2 3 Ny R,
n

W, (1) is the function of the electron in the isolated atom, R,, the

S a
4 Vea ;sa %
z 2,
3, a

FIG. 2
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integer radius vector of the lattice point, and N the number of par-
ticles. If we neglect the overlap of the ¥ -functions of the neigh-
boring atoms in this case, then

rdr’ 2 1(k9 ki, R )
Vdd;dd='32§ [‘P‘o(r)M‘FO(r)P———l ZR n

—1|

n is the particle density. When | k, - k, | d << 1 (d is the lattice
constant) the summation with respect to n can be replaced by inte-
gration; then

4me?

4me?
14 —_—
| kz—ky 2

dd; dd ™ TR TR @

Vss', ssT

Let us now find Vgq4;5q and Vgq;ss, likewise neglecting the over-
lap of the W -functions of the neighboring atoms

4me2

Ve 0= T, T g Hka—Ky, r) [ W, (r) [2dr,

dr’

R 4 i(kg—Kki, Rp) _ dr
Vaa; 5s=¢ ZJ € " S A n (ke )‘Fo(") Yo (v') - [T—r"+ B

n
i(kg—K1, Rpy)

e Zw“ o TR (1—8, o1 J

LKL T)—(iKa, 1)
=8y, ¢+ 0y, 0l r—1 ||

X W, (r) ¥, (') drdr’. 3)

k, ~ k, and k, ~ k, (8k, is the momentum on the Fermi surface), so
that the argument of the exponential in (3) is of the order k1, (r, is
the radius of the atom); k., << 1. In view of this, we can replace
in the zeroth approximation the exponential by unity:

i(kg—ki, Ry) g‘
e

Vag; ss~ €2 D) Yo (r) dr S W, (r') dr’.

n==0
Usually ¥, (r) does not correspond to the s-state (in the case of d-
and f-functions there can be only a small admixture of s-functions).

Then

B
Rn

K ¥, (r) dr=0 and Vaa; ss==0.

On the other hand, if we take into account the difference between
the exponential and unity, and expand this difference in powers of
&k, - r) + (, - r"), then we obtain for the internal electrons with
angular momeritum [ (/ = 2 for the d-electrons)

Vad: ss ~ (ot Vyg: gq-

Indeed, in the case of d-electrons ¥, (r) contains the spherical

function Yy, (4, ¢); therefore, only the I-th order term yields a
non-vanishing result in the series expansion of the exponential.
We obtain in this manner

i(kg—ky, Rp) _
Vag, gs = e~ k& 2 ¢ Ty

n
x S W, (1) TE (1) ¥, (') ¢ VD gr gy,

that is,

Vdd; ds ™ (kOrO)l Vdd; ddr Vds; ss (kOrO)l I/ss; ss8? Vsd; sd T Vdd; s8° @

From (2) and (3) we see that Vgs.55, Vag;ads Vsda;sa depend

only on the momentum k = k, - k, transferred during the interaction.

Consequently, in the approximation under considera-
tion, when I = 0 the only matrix element of the inter-
action of the s- and d-electrons to be retained is
Vsd;sd- This gives rise in the second perturbation-
theory approximation to an additional interaction for
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each pair of s-electrons (owing to the interaction be-
tween the s-electrons and the d-electrons):

3s; 88

sd; sd
Vk1k2 kgky =

Y sd; sd
k\k’ Vklk kgk’ Vi ‘kg; kklnk’ (1 —_ nk)
)

< (B, — by —EK 4 &) & & (5)

(and an analogous interaction for the d-electrons).

T (B Bk

Here nﬂ are the occupation numbers for the d-elec-
trons (n d" d) and ¢ and gk are the single-

particle energies of the s- and d-electrons reckoned
from the Fermi surface. Owing to the factor

ng,(l —ng) we set gﬁ—gf{‘, > 0, and consequently
Vgs;ss < 0 for small 518{3—515{1, that is, Vgg;ss CO-

responds to attraction. No account is taken in the
matrix elements Vgq.sd, Vss:ss:» and Vyq;qq of the
Debye screening, which plays a decisive role in sys-
tems of particles with Coulomb interaction whenever
the particles can move through the entire volume. As
is well known, the Debye screening causes the effec-
tive radius of the forces to become finite: in the case
of electrons in metals it is of the order of (rg/n!/?)V2
(rg = hi2/me? is the Bohr radius and n is the particle
density ). Therefore the screening can be taken ap-
proximately into account by substituting for Vgg;sg
the quantity

e 4r1e2
Vss; §8 7 2 2
[ kg—kq| +MOD

Rop ~ ()'B/nl/a)—l/z

and by introducing similar changes in Vgq,g5q and
Vdd;ad- However, in a consistent approach, the screen-
ing effect and the effective interaction with the d-elec-
trons must be taken into account simultaneously, since
this screening is in part also determined by the inter-
action between the s- and d-electrons. Such a con-
sistent calculation, which is furthermore accurate for
the model in question and not limited to the second
perturbation-theory approximation, can be carried out
on the basis of the method of diagram summation (see
the Appendix). We then obtain for the total matrix ele-
ment of the resultant interaction (the so-called four-
pole), for two s-electrons with initial quasimomenta
pi and p, and final momenta p3 and p;, the expres-
sion (A.6)

S = 1 - Vss; Ssnss _Vdd; ddHJ(lststd (Vfd; «d _Vss; erdrl; d(l)v

rss; 85 = [Vss; s nd(l (V;ld; sd Vss; ssrdd; a’d)}/S7 ]
[
Yaa, aa=[Vag. aa -+ (Via, l

sd— Ves: 55V ag: aa)l/S.

(6)
The analogous expression for the four-pole I'sd;sds
which determines the effective interaction of the s-
and d-electrons, is (see (A.6))
Psd; sd = Vsd; /S (7)

here Ilgg and IIjq are the so-called polarization op-
erators (see (A.5) and (A.8)),
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ng {9)—ng (g-+k)

; (8)
e—td (q+k)+E4 (q)

Hdd =

k=k;-k; and € = {5— £, are the quasimomentum and
the energy transferred during the interaction. It is
easy to see that if Vgg,g5llgg < 1 and Vgg;qdllgg < 1
we obtain from (6) for I'gg;gg an expression of the
same type as the expression obtained in the second
perturbation-theory approximation (see (5)):

Fss; ss O Vss; ss (1 + Vss; ssHss) ~- Hddvgd; sde

From (6) and (8) we see that IIgq depends little on €
(when k ~ kg) if € < [gd(q+k) —gd(q)]aV and con-
sequently also the second term in (6}, tends to zero
when € » [¢d(q+k) - £%(q) Jlay. It is obvious that
[¢d(q+k)-£d(g)lay ~ AEq, where AEq is the dis-
tance from the Fermi surface to the top of the d-band.

Let us consider I'gg;s¢ for small k. From (2) and (3) we see
that when k - 0 we have V4q4;dd ~» Vss;ss = 4me’/k* and Vgq,5q -
Vgs;ss. This is physically understandable, for at small values of k
(i.e., at large wavelengths (kd << 1)), the periodic potential of the
lattice (i.e., the crystal structure) does not play any role, and con-
sequently, Vgq;54 and V44,44 should have the same form as the
matrix element Vgg.q for free electrons. From (2) we see that the
ratio Vgq4;qq/4me’k”” which depends on k?, begins to differ notice-
ably from unity when kd = k/k, ~ 1 and tends to zero when k >> k,,
and from (3) we see that Vsd;sd/4ne2k'2 begins to differ appreciably
from unity when kr, ~ 1 and also tends to zero when k, >> 1,7,
Therefore near k — 0 (we distegard the anisotropy effect for non-
cubic lattices):

4n

Vg, dg = 'kf (h—agqk?/k3 4 Paa k4/ES),
/me 2.2 X
Vsd; sd = g2 (1 —agqk?rd +Bsaktrd), C)

where agq ~ 1, agd ~ 1, Baa ~ 1, Bsd ~ 1, adqa > 0, and agq > 0. Let
us determine the so-called static interaction between the s-elec-
trons (neglecting retardation), i.e., the four-pole I'gs.g55 in the limit
e/k -0, k-0, Fls‘s;ss; we retain in the denominator only the term
of first order in k?, It will be shown below that FSS .ss plays the
decisive role in the occurrence of pairing. We denote lim Il by
(-11%); as will be shown below, I1¥ > 0. Then we get fiom (g) and
)

I3 4"182
ss; 88 o

[1 —Hddrtezk 2 (add‘Zasdkgrg)]/(/ﬂ—f—Mﬁ) (10)

where

ep = 1 — A dme2hy? [agy -+ TR 4rteleg® (Byg+-02kdrg 4+ 2Beghird)],

2
dne?, (TR 4 1% T TR Ane2hg® (g — 2004k378)] > 0,

“
</ ).

Since kg, << 1, we can neglect the terms with (kot,)* and (kor)’.
If £=(p® - p2)/2mggs, i-e., in the so-called effective-mass approxi-
mation, we can use for the polarization operator an expression an-
alogous to that for the free electrons (see (A.9)):

Iy — Pod™d L __Bma_ g ledhkpggimg !
dd Zh3 2hkpoq e—Tikpogimg
inleimg o 7h Icpod \)]
2N kpog
1, >0
o(z)=1{ :
@=10 z<0 (1)
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(mq is the effective mass of the d-electrons, mg = m), then

r _ komg

dd ™ (i) ! kg = kog. azn
Here
4”'(62 4m ga,
R AMma9gq 2
[ss; 06 2 £p \ :rtm/tor )/(k +u
(in rléd;dd we use mg in lieu of my)
_q___4mg 4msByq
ep=1 amkgrg (add + nm/c&E) ’
2 4msk0 mkd 4mdudd
%p = nmrgen (1 + mg - }Lir;kaorB> (13)

We see that I‘lés .gs represents the screemng inter-
action with a screening radius equal to KD, which
differs somewhat from the ordinary screening radius
Kaf), but has the same order of magnitude. We assume
further that ep > 0. Then the first term
4re’en) (k2 +xh) ! gives the usual screened Coulomb
repulsion, with €p playing the role of the dielectric
constant, while the second term
16e*myaggl epmkorg (kK +kh 17! gives attraction with
the same screening radius. Although kirp < 1, both
terms in 'gg;gg are of the same order, since agq
can be sufficiently small. In addition, greatest inter-
est is attached to the mean value of Fls{s;ss’ that is,
the value of Fls{s;ss when k ~ kp. Then the expansions
(9) will no longer be valid and the effective value of
agq(k) for k ~ kp will be smaller than the constant
aqq- Analogous considerations make the case of
€p > 0 more probable. In principle, however, the
case when ep < 0, that is, the dielectric constant is
negative, is also possible. In this case the first term
in Fls{s;ss corresponds to attraction and the second to
repulsion. In a more general sense we can assume
that in any case when the attraction exceeds the re-
pulsion, even when €p > 0, the generalized dielectric
constant is negative, for in this case the resultant in-
teraction between electrons has the character of at-
traction. It must be borne in mind here, however, that
the sign of the resultant interaction is not determined
by the sign of Fss .gg» Since the behavior of the first
and second terms of Fss;ss as functions of the energy
transferred ¢, is essentially different. The second
term tends to zero when € > AEJ as a result of the
factor Ilgg; when € < AEq, the second term is prac-
tically constant.

It is easy to see that if the s- and d-electrons
were to have identical ¥-functions, particularly in the
case of free s- and d-electrons, the difference
std;sd — Vgs:ssVdd:dd and consequently also the sec-
ond term in I'gg.gq would be equal to zero.

We see that occurrence of attraction between s-
electrons, as in the Little model for a polymer, is
connected with the interaction between the electrons
of the main group (s-electrons or electrons of a cen-
tral chain in a polymer), and oscillations of the elec-
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tron charge density of the auxiliary group (d-electrons
or electrons of the side chains).

We see from (12) that IIgg is approximately pro-
portional to the effective mass mg, that is, it is the
larger the narrower the d-band. Therefore the condi-
tions for attraction to exceed repulswn in I'dd;dd even
when ED > 0 are less favorable (HSS < Mgas

ls{d ~ HSS) although both terms in FSS,SS’ Fdd;dd’
I'sd;sd are of the same order when mg = m.

So far we have used the model of strongly bound
d-electrons and free s-electrons. Real metals may
noticeably deviate from this model. If, as before,
Vss;ss» Vdd;dd, and Vgd;sd are noticeably larger than
all the remaining matrix elements, then the expressions
6) and (7) for Pgs:ss» 'dd;ada, and I'sd;sq remain in
force. Since the general character of the dependence of
IIgq on k and € (in particular, the negative sign of

y [144) does not depend essentially on the
€/k—0
model, in order for the second term in I'gg.gg to

correspond to attraction in the case when ey > 0, it
is necessary that the difference (Vi4.qq

~ Vss;ssVdd;dd )ay have a positive sign (in the
model considered above, this condition was satis-
fied automatically, since kyry «< 1 and agq > 0). If
€p < 0, then both terms correspond to attraction
when (ng;sd ~ Vss;ssVdd:dd)av < 0-

It must be noted that even if Vgg.5d, Vdd;ds: Vss:dds
and Vgd;ds are not very small compared with Vgg.gg,
Vdd;dd’ or Vsd;sl' the expression for the second term
in gg;gs in (9), describing attraction when €p > 0,
will be sufficiently accurate, since the discarded last
two terms in the first two equations of Fig. 6 contain
gy, which is smaller than Ilg4 by a factor ~mg/mg.

We note that in the model in which the s- and d-electrons are
described by strong-coupling W-functions, the matrix elements
Vad;ss» Vdd;ds, Vds;ss, and Vsd;ds are even smaller than in the
model considered above; for example,

€2\ i (kg—k1,Rp)
Vdd;ss"";z € " B

n

dr dr’
[r—r" R, |

XWEs (r) Woq (1) W (') ¥oa (') = 0.

In this model, however, the difference Vig.qq ~
fers from zero only in the case when the W-functions overlap.

Vss;ssvdd;dd dif-

On the other hand, if both overlapping bands are
sufficiently broad and their width is of the same order,
and consequently also the coupling of the electrons in
them, then obviously we cannot neglect all the matrix
elements other than Vgg.gg5. Vdd;dd: ©F Vsd;sd- In
this case the expression for I'gg,g5 can likewise be
determined in a sufficiently simple manner; as shown
in the Appendix, it is necessary for this purpose to
solve a system of four linear algebraic equations (see
Fig. 6). This can be easily done if one knows the ex-
pressions for the Coulomb matrix elements. We do
not present here the expression for [gg;s5) MOT do
we investigate the criterion for the occurrence of at-
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traction in this case. It will be shown below that if
the matrix element Vg4,qg is of the same order as
Vss:ss» Vdd;dd» OF Vsd;sd» then an additional pairing
mechanism arises, connected with the four-pole
T'dd;ss:.

We have assumed above that only Coulomb forces
act between the electrons. Actually, there are always
also attraction forces connected with phonon exchange.
In this case the effective interaction will be sufficiently
well approximated by expressions (6) and (7) for the
four-poles, to which we add terms corresponding to
the interaction via the phonons.

2. PAIRING AND CRITICAL TEMPERATURE IN THE
MODEL OF TWO OVERLAPPING BANDS

If attraction exceeds repulsion for electrons of the
s-bands, the latter form Cooper pairs and the system
of s-electrons turns out to be superconducting (see [2]).
We shall assume for simplicity that there is no pairing
in the system of d-electrons, although a consideration
of the case when pairing exists in both bands likewise
entails no great difficulty (see the Appendix). In spite
of the presence of superconductivity, absorption of
radio waves will not have a threshold character in this
case.

In the case of weak interaction, the energy spectrum
of the excitations for the system of s-electrons can be
obtained in simplest fashion with the aid of the well-
known u,v transformation of Bogolyubov [®],

Let the Hamiltonian of the s-electrons have the form

~ a
H=H—pN =D\ gt a0

1
—l-? 2 V(€ &) alt’a a;,,_o Oy tq.6 krmq, —0

_4. (14)

ato and a) . are the second-quantization amplitudes satisfying
the commutation relations
g% g+ 2 g0k g = O Opus

+ gt + + = —
af i gr T g gt = O g g Tt A g O g =0

We change over to new second-quantization amplitudes
ay, and a;;o, which make it possible to take into account the
rearrangement of the Fermi surface connected with the possible
formation of Cooper pairs:

a

a =uU,a
1 k K, —

UL —rat
K TR

1 Hoet
2 k 2 *2

: kL
2 '3 '3

[N

where' u; and v, satisfy the condition uj + v} = 1, which ensures

conservatlon of the Fermi commutatxon conditions for g, and
kU Let us find the mean value of H over the new occupation

numbers ny_

= akoaka
H=B=2 3 g+ D h g— R (0 Fn )
' 3 ' =3
+2 V(&> Ee) uvg (1—n 1 — 1)
k5 k, -3
X Uy, (1—n —n ). (15)




THE ELECTRON MECHANISM OF SUPERCONDUCTIVITY

Minimizing E with respect to u; and v, we obtain the condition

Beur=—(ui—d) NV (&, ) (—n » (16)

1Ank' NE

(1]

We introduce the notation

As (k) = A=)V (& &) wprye (1—n o

We then obtain from (16) expressions foru, and v,
B (FE /(A5

rﬁrg<1;§k/<A2+aa>”2>- an

From the condition of the maximum entropy of the excitation gas

S= 3 [ Inng g+ —n ) In (1 —ny )]
kg

(kg==1),
as a function of “ka for a specified energy E, we get
= (e€®)/T 1 1)™ where

SF
e (k)= Snn

From (15) we obtain
e)=Va K2+,

Substituting (17) and the expression for n; in (16),
we obtain an expression for the energy gap A:

Ak)= — 5 N AK)V (B &) th (e (K)/2T)e (k). (18)*
At absolute zero nyg; = 0 and we get from (18)
Ak = —5 S AK)V e S (K). (19)

It is shown in the Appendix that in the case when the
interaction is not weak, Eqs. (18) and (19) retain their
form (see (A.11) and (A.12)), but they contain in lieu

of V(£x, £x’) the four-pole I'gg.gq. For an approxi-
mate estimate of A we assume, as in C2, 5], that the
different terms in ¢k are constant in a definite region
of | £k |, and that outside this region the following quan-
tities vanish: (a) the term connected with phonon ex-
change when | ¢k |, | £kl < hwp (when | £k, | £x/|

> hwp the matrix element of the interaction between
electrons via the phonons is, as is well known, very
smallt'd; wp is the Debye frequency); (b) the attrac-
tion connected with the second term in (6) {(for €p > 0)
when | £k, | £x’] < AEg (see above) and the Coulomb
repulsion when | k|, | k| < €5 ( €y is the Fermi energy
for the s-electrons).

Going over in (19) (with I'gs,s¢ replacing V(&y, &) from sum-
mation to integration with respect to k, and then by means of a
change of variables to integration with respect to £, we calculate
the integral with respect to & and obtain a system of equations
(we disregard here the anisotropy of A)

Ay=(g1+g2—83) My 1ﬂﬁ+ (g2—ga) A ln———ggAgln—, ]l

Ap=(g2—2.) LAiln -ATJrAz 1na}_g353 1%;, 1(20)
2, . ws

Ag= —gs [AilnTT—i—Azlnai—-[»Agln a;] ; J

*th = tanh.
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here

1 =
0= 5 (0+ Vi +4}), mb—f(co1+Vm2+A)

w=hop, w=A4F;, ws=gy, A=A (k) for |§ |<wy

Ay=A (k) for wp>1E | >y, Az=A(k) for &, |> oy
g,, g, and g, are the products of a state density on the Femi sur-
face N_ (this factor appears on going over from integration with re-
spect to k to integration with respect to Ek) and the absolute value
of the corresponding term I"_ . (_ (their sign is taken into account
in (20)), i.e., respectively, the phonon-proper term, the second term
in (6), and the Coulomb repulsion.

A solution of (20) can be readily obtained when
Ay < wy and Ay K wy. The solution exists only under
the condition

— = . - o] .
g>0, go=g,+(g gs)/[1 (& g3)1llm1},

g’.e:gs/<1 + &3 111%2) and A, = 2w,e” /%,

o) ]

—I +8— ga} (21)

Let us obtain now the critical temperature T, at which
the energy gap A(k) vanishes. To this end we put in
(18) T = T, -0, assuming that A(k) = 0 in the expres-
sion for e(k) the integration with respect to £y is
easily carried outt2:6] and we get from (18)

Ay = (g1 §2—8s) 4y 1n(1.140,/T,)
+ (82— 83) Ae 1n~—g~A ln\

= ——1n —
82—83

A= 20" 1/g0/[1+g1<

Bo= —E: 20,07 [ {g, [1—(0— )1

(22)*
Ay={g, [Ailn (1240 /Te) + Ay In 22 _-g3A31n2)L3,
2
As= [A In (1.040,/Tc) + Ay 122 +A31n J
Ay dym b0, (% dr— —ln(ym),  lny=0.577.
[1}

Equating to zero the determinant type system (22), we
obtain

T = 1. 14w /80 = TEeE1/80l&8y) (23)

where T§ = 1.14 w,e 1/(82783), Since g, contains g,
the effective Coulomb repulsion is weakened by a fac-

tor 1/(1 + g4 In &8 3 ) which can be noticeably smaller

W,
than unity if AEq < €, (see [5),

Expression (23) can be written in a different form:

Te=T2 exp{gng“ - gag* (1—g In 22 )] Ny
where

TP — 1. 140~ /0189

(24)

i: /(1 g 1n®2
8. g3< + 8 nﬁ)i)'
g*:g1<1 +Z’31U?—)T>““E3-

*ch = cosh.
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Thus, when g, < (g*)? - g,g*(1—g; In gg) we set
1

T = Tgh. A similar expression for T¢ is obtained,
as is well known, when the phonon mechanism is effec-
tivet®%8], On the other hand, if g; <« g, (g, —g;), then
Te = Tg, corresponding to predominance of the elec-
tronic mechanism. Since w; » w; (AEg > hwp) and
gy ~ g1, the critical temperature will in this case be
considerably higher than in the case of the phonon
mechanism. For example, when AEg ~ 0.3—1 eV we
have T¢ ~ (102—10°%) °K. In the intermediate case when
g1 ~ gy the dependence of T¢ on w; and w, will be
very complicated, as we see from (23). A rapid growth
of T¢ should be observed when g, —g; = 1/In (wy/wy ).

We see that the attraction between the s-electrons
due to their interaction with d-electrons can lead to
superconductivity with a critical temperature much
higher than the critical temperature in the case of
the phonon mechanism.

There exists also one electronic mechanism, which
is close in its character to that considered above and
which, in principle, can lead to high critical tempera-
tures. We have seen so far that one of the two over-
lapping bands is much narrower than the other. Let
us assume now that the widths of both overlapping
bands, and consequently also the coupling between the
electrons in them, are of the same order. Then we can
no longer neglect, as above, the matrix elements
Vdd;ss> Vdd;ds, Vds;ss, and Vgd;ds compared with
Vgs;ss» Vdd;dd, and Vgd;sd; by virtue of this (see the
Appendix ) we cannot neglect the four-poles I'gd;ss,
Fdd;ds, I'ds;ss, and I'sd;ds compared with I'gg;ss,
T'dq;dd, and I'sd;sd-

The equations for the energy gaps of the s- and &-
electrons Ag and Ay can be readily obtained in the
case of weak interaction with the aid of a u,v trans-
formation on the amplitudes af and aﬁ (see [1#1), In
the case of an arbitrary interaction, the equations for
Ag and Ag are similar in form, but in lieu of the
matrix elements the equations will contain the corre-
sponding four-poles (see the Appendix); these equa-
tions are generalizations of (18):

As = "Ast (Fss; ss)av Rs’_Ade (Fdd; ss)asz‘h
Ad = Ade (Fdd; dd) ade_ Ast ([‘ss; dd)avR;v
AE,

[ deoth Az +8)"201/88 + 8D
0

R, = (25)

the indices s and d have been interchanged in Ry, and
in Ry and Rq the upper limit of the integral is equal to
AE,. It is assumed here that there is no phonon mech-~
anism and that I'gg;gs = const when | £k |, | ¢k/| < AEq,
Pgg;ss = 0 when | & l, | &l > AEg, Tgq;dq = const
when | &k, | ksl < AEg, T'dd;ad = 0 when | x|, | £k

> AEg, T'gg;dd = const when | & |, | éx| < AEg, and
T'gs;dd = 0 when ¢k, | £k’ > AEc. It is easy to see
that even when Igg:55 = I'dd;dd = 0 the system (25) has
a nonvanishing solution for Ay and Ay regardless of
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the sign of I'gg.qq, i.e., even when I'gg.qq corresponds
to repulsion:

Ass - AsstNd (Fss; dd)av(Fdd; ss)avR;R;i- (26)

This effect, which favors pairing, has the same nature
as the occurrence of attraction in Vgg;gs in the sec-
ond perturbation-theory approximation in accord with
(6), but is connected with Vgg;dd and not with Vgq.ed.
However, the conditions for the occurrence of pairing
in this case are apparently less favorable than in that
considered above—with bands of essentially different
widths—since the attraction effect described by (26),
is no longer intensified by a large factor of the type of
the polarization operator Mgg, as in (6). Therefore
the probability that the attraction will exceed the Cou-
lomb repulsion is lower in the case of bands of equal
width than in the case of bands with essentially differ-
ent widths, but this possibility cannot be completely
excluded. The pairing effect connected with Vgg.qq
was known even before Little’s paper (15,187 How-
ever, the papers of Kondo and Perretti did not attract
much attention, for this effect was considered in them
only for an explanation of properties of certain super-
conducting alloys with ordinary critical temperature
(on the basis of the u,v transformation, i.e., assum-
ing weak interaction) and sight was lost in this case
of the possibility of obtaining high critical tempera-
tures.

This raises the question of the extent to which the
possibility of obtaining superconductors with high
critical temperatures, such as room temperature and
above, is indeed realistic. In the most favorable model
with two overlapping bands of different widths, the nec-
essary condition for pairing, as shown above, is the
inequality

(ng; sd— Vss; schld; dd)av> O;

in addition it is necessary that the attraction exceed
the repulsion, i.e., g; >g;. In order for the critical
temperature to be sufficiently high, i.e., to be deter-
mined by the electronic mechanism, it is necessary to
satisfy the condition g, —g3; ~ 1 (when
explgi/go(go—g1)] ~ 1). Thus, although in principle
the production of superconducting metals with high
critical temperatures is possible, this is a very com-
plicated task. In the case of pure transition-group
metals, the electronic mechanism of superconductivity
is apparently either not realized or realized only in the
form of a small admixture to the phonon mechanism.
Superconductors with high critical temperatures, in
which the electronic mechanism prevails, should be
sought among the alloys. These searches are made
very difficult by the fact that the electronic spectrum
and the single-particle ¥-functions of the electrons in
the alloys, are unknown and are difficult to calculate.
Of course, in the case when the electronic mechanism
predominates, the isotropic effect is almost completely
missing.
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Further research is necessary also in connection
with the question of stability of the superconducting
state in the case of the electronic superconducting
mechanism. It can be assumed, however, that the
superconducting state is stable: although the energy
gap A can now be of the same order as the Debye fre-
quency, the pairing is connected not with the interac-
tion between the electrons and the phonons, but with the
interaction between the electrons themselves; there-
fore, the realignment of the ground state of the system
of the electrons cannot apparently disturb the stability
of the lattice. On the other hand, the stability of the
superconducting state against collective excitations
does not depend on the physical nature of the attrac-
tion forces between the electrons (see[”]).

3. ALLOY OF METAL WITH NONMETAL

We now consider the alloy of a metal with a non-
metal (for example, with C, N, Si, S, Se, Sb, etc.) with
comparable concentrations of the two components. Such
alloys are well known. We assume that the alloy is
well ordered and that the upper shell of the nonmetal
atoms, like the upper band of the metal electrons, is not
filled and the electrons of the nonmetal are not collec-
tivized. This is possible only in the case of strong
coupling between the electrons of the nonmetal with
their atoms, and in the case when the upper filled level
of the nonmetal atom is lower than the Fermi surface
of the metal electrons. It is difficult to say at present
to what degree such an idealized model with non-col-
lectivized electrons of the nonmetal atom can be real-
ized. The electrons of the nonmetal will play in this
case the role of auxiliary electrons, which induce at-
traction between electrons of the metal, i.e., the same
role as the d-electrons in the model of the metal with
overlapping bands. However, unlike the d-electrons,
the nonmetal electrons will be described not by Bloch
functions, but by atomic functions. The pairing for the
electrons of the nonmetal is missing in this case, and
therefore the calculations are greatly simplified. In the
four-pole I'gg.qq, the term connected with the interac-
tion between the electrons of the metal and the elec-
trons of the nonmetal can be obtained by perturbation
theory (or else, in the case of two close atomic lev-
els, by perturbation theory with account of degener-
acy ). On the other hand, the screening of the con-
duction-electron potential will be determined only by
the conduction electrons themselves, since the elec-
trons of the nonmetal are localized. Then the four-
pole I'gg.gg, if we disregard the phonon mechanism,
will have the following form (see (5) and (6))

A , "

I $8; 88 Fss; 88 + Fss; 889

rlss; 85 = Vss; ss/,(1 - Hssvss; ss)«
" . ) sd; «d

FSS; §8 T R %_7\ Vkl, nh; k3, niA’

ed

¢ [(Eky — By — B Enar) - (B, — By — B+ Ena) s

sd; sd
Vn?»', ko; nA, kg Zni’ (1 —nnk)

i
’>(27)
v
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here the indices s and d correspond to the conduction
electrons and to the nonmetal electrons, and A is the
aggregate of the quantum numbers of the electron of
the nonmetal atom situated at the crystal lattice point
with integer radius vector Ry. If, as before, we use
for the conduction electrons the plane-wave approxi-
mation, then we get from (1)

4me2exp [i (kz—ky, R))

Vsd;sd
[ ky—kq |2

k1, nA; kg, nA” =

x 3 ¢ ka—k1. ) W, (1)) Wiy (1) dr.

The argument of the exponential under the integral
sign is of the order of kyry < 1. If we replace the ex-
ponential by unity, then the integral vanishes. There-
fore, as shown above,

T (koro)? ne?
r AExSD

Vkl, nk; kg, nh* ™~ korovss; ss 1.€., (28)
In order for the second term in (27), corresponding to
attraction, to outweigh the repulsion it is obviously
necessary to have

AEd£ nkoro (Vsd; sd)avln (So/AEd); (29)

account was taken here of the logarithmic attenuation
of the Coulomb repulsion (see (21)). At the same time,
the condition of applicability of perturbation theory
leads to the inequality AEg 2 n(Vgq;sd)ay, that is,

it is necessary to have

In (eg/AEg) = (koro)™. (30)

The corresponding small values of AEq are pos-
sible in the case of fine-structure levels or in the case
of Stark-effect splitting of atomic levels in the electric
field of the crystal. The critical temperature is de-
termined as before by formula (23), but now AE(q is
equal to the distance between the upper filled level in
the nonmetal atom and the nearest unfilled level. Since
AEq is much smaller in this case than in (23), even
when condition (30) is satisfied, the critical tempera-
ture in the case of an alloy of a metal with a nonmetal
will be smaller than for a metal with two overlapping
bands. The same considerations are applicable appar -
ently in the case of a dielectric film which covers the
surface of the metal; as indicated in [18], such a film
can produce more favorable conditions for the occur-
rence of superconductivity surfaces.

Let us consider in conclusion a metal with impuri-
ties, that is, an alloy with low concentration of one of
the components when the levels of the atom of even the
metallic impurity have a local character. In this case
it is possible to use for an estimate formula (27) but,
the second term of (27) must be multiplied by the im-
purity concentration Cimp < 1, which greatly reduces
the effect of attraction (in addition, the coordinates
Rp will now be randomly distributed). It can be as-
sumed that the increase of T in certain known alloys
is connected with the additional attraction which is
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caused by the presence of impurities. A similar ef- also in the case of two s- or two d-electrons). This condition can
fect in the case of ferromagnetic impurities was con- be realized (for both the electronic and phonon mechanisms) only
sidered earlier in (%1, when the occupation and structure of the two bands have a different
character, and in definite regions of directions in k-space. We shall
henceforth assume that Agq = F;d = 0. In this case Ggq will also
APPENDIX

Let us find the Green’s function, and also the expression for
the energy gap and for the four-poles for the system of s- and d-
electrons without assuming that the interaction between electrons
is small.

In this case we can introduce the following Green’s functions
and F-functions: Ggg, Gaq, Gsd, Fss, Faq, and Fgq, with

Goa=—i( T (¥a (@) ¥E @)y,  Fla=—i (T (¥ (2) ¥ @),

and the remaining G and F or F* are defined in similar fashion. If
we do not write out the terms containing the self-energy parts 2qg,
344, and 2.4 with one incoming and one outgoing ends (these
terms lead essentially only to renormalization of the chemical po-
tential), then the system of equations for Ggg, Ggqg, F;S, and F;d
has a graphic form indicated in Fig. 3. A similar form is possessed
by the system of equations for Ggq, Ggs, Fdd, and Fq4g. In analytic
form, in the representation of the single-particle functions Wx(r)
W) = eitkn) u;(r)), the equations for Gss, Gsd, Fis, and Fig
(the Dyson equation) are written in the form

=, (A%1Csen+ A%upCsan) (6—ED) Goar=0aq Agart i
+AgarFsin)r —(E+ED Flun=aq (340 Cear+B%,Gs01),
(G)pn, =0 n-as (E—E5 +idsgnE5)~1, Gyp - =Cadys .
Fiar = Fida

(€ —E3) Cosr=as (1 + AsaFran+ AanFhan), —(e+E3) Fa, }
I} (A.1)
J

ag < 1 and a4 < 1; the spin vectors A have the form [*°] Aag = ia’&lgx
A (A is a number). We shall henceforth assume for simplicity that

ag = aq = 1. We assume by the same token that not only Ags and

Ag4q but also Agq4 differ from zero. Since the values of | k| on the
Fermi surface differ for the s- and d-electrons, this is possible

only when the umklapp processes are taken into account. Indeed,

for a delta-function interaction in the second perturbation-theory
approximation, with umklapp taken into account, the correction to
the amplitude for the scattering of an s-electron by a d-electron is

of the form [}

f=ge § 18 00+ 8 k) — 2 (@ — 8 (ks ky + 20D — )] L g
=) 2 rre ‘

We assume that |k, + k, + 27b | << q, and obtain in the usual fash-
ion [*] an expression for f which diverges logarithmically when

|k, +k, + 2zb| - 0. Consequently, pairing of the s- and d-electrons
is possible only if |k, + k, + 27b| = 0 (such a pairing is possible

be equal to zero if we take into account the 2 4, g, and 244
which were not written out in (A.1), since kg # kg + 2rb. Then the
solution of (A.1) will take the form

Gys=(e+E&)/Ds, Flo= —Ag/Dg,

Gaa=(e+E/Da, Fiy=—Aa/Da; (A.2)
here
a=QAI+E)2 &= (AZ+ 5DV
Ag= Aggy Ag = Agar Ag=A%F, Ag=A% (A.3)

The poles of the Green’s functions determine the energy spectrum
of the excitations: ¢ = ¢, and ¢ = ¢,. At nonzero temperature, the
system of equations for the temperature functions G and F is simi-
lar to (A.2), except that ¢ + i8 sgn & must be replaced everywhere
by iwn (wn = (2n + 1) #T). We now find equations for the self-en-
ergy parts, i.e., the energy gaps Ag and A4. These equations are
shown graphically in Fig. 4, i.e., their mathematical form (with
symbolic notation) is

—_ ks "+ — + A
Ass =Ty, ool ds+Taq; ssF b0 Baa=Taq; aaFda+Tes; aal -

The four-poles I which enter in the equation cannot be cut into
two parts joined only by two lines of identical direction, since F
and F* already take into account the corresponding diagrams (see
[*D. It was shown above (see (4)) that the matrix elements Vgg, 44,
Vssisd» Vdd:ds, and Vggq,4s can be neglected compared with
Vss;ss» Vdd;da, and Vgg;sq. We shall show below that we also
neglect in this case the four-poles I'gg;qq, I'ss;sa, ['ad;ds, and
I's4;ds, compared with I'gg; g5, T'da;ad, and I'sg;sq- Then we can
retain only the first terms in the equations of Fig. 4. In mathemati-
cal form they become (when T = 0)

R
TTEnt
1

Ag (P):i(ﬁ—

As (p) )
i g dp'Tyg. qq (P', 2’5 Py P) Fig (0'): I}
J

\ BT s (0, B B 0) FE (P,

he=t, for 70 @it { desT 3, o> iop.

@y

When calculating the four-poles I" in the case of Coulomb forces,

[ . .
sNssiss A, Tdd;ss { P /_dd,a’dd P Tss;aa [z
AJS: + 3 Ada= +
N S a d d d 5 s
£ss iz Fia 5%
FIG. 4
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the principal role is played, as is well known, by diagrams of the
chain type (Fig. 5). For highly compact systems, the remaining dia-
grams make a negligibly small contribution. But even for such high-
ly compact systems like metals, allowance for the chain diagrams
only is a sufficiently good approximation, especially for small val-
ues of the momentum transfer k (see (10)). If we neglect the loops
made up of the F- and F*-functions, compared with the loops of the
G-functions (the loops of the first type yield terms of order A%/¢l),
then we obtain for the four-poles I” the system of equations indi-
cated in Fig. 6, which has an analytic form

P os™
+ Vr{s; ssHSdrss; sat Vss; sdHSdFds; ss?

I‘sd; sd = Vsd; sa T Vsd; sdHSSrss; ss T Vdd', ddedFsd; sd
+ V(I(I;r!sHSdI‘ss; sat Vsd; ddHS(les; 589

Fss; sd:Vss; sat Vss; sdHSSrss; st Vsd; ddnddrsd; sd

Vss; ss T Vss; ssHsSFss; s+ Vsd; sdedFsd; sd

+ Vsri; dsHSdrss; ca T Vss; ddHSdrds; 851
Fds; ss T V(Is; st Vds; ssHsSFss; s Vdd; dstdFsd; sd
+ Vda'; ssHSdFss; sd T Vsd; dsHSdFds; $8y

and an analogous system for ['g4.qq (which contains I'sg, 44,
Iss.sdr U'sa;adar and I'sq;ds); [ad;ad is obtained from I'sg;ss and
Tad;ss from ['sg;qq by permutation of the indices s and d. It was
shown above (see (A.4)) that one can neglect all of the matrix ele-
ments except Vgg,gs, Vdd;dd, and Vgg;s4. We then see from the
equations of Fig. 6 that the four-pole I'¢g;5q can be neglected (it
is easy to show analogously that the remaining four-poles can also
be neglected) compared with I's5.ss, 'sd;sd, (and ["qq;qq)- In math-
ematical form the system of equations for I'gg;ss and ['gq;5q is

1-‘ss; ss Vss; ss 1 Vss; ssHSSFss; st Vsd; sdedFsd; sd?

N
l-‘sd; sd:Vsd; sd Vsd; sdHSSI ss; ss Vdd; ddnddrsd; sd»

(A.5)
{ apGes () Gao (p+-10.

2
Mo 0= oy

For I'yq.4q and I's4,s4 we obtain an approximate system of two
equations, similar to (A.5). The solution of the system (A.5) is
rss; ss:[Vss; ss+ndd (ng; sdAVss; ss Vdd; dd)]/S’
S=1— Vss‘. ssllos— Vdd; aallaa—ssllaq (ng; sd_Vss; ssVdd; adr (A.6)

that is, (see [**])
I‘ss; ss:[Vss; s Vsd; cdllaa (1_Vdd; dded);1 Vsd; sdl (1+Hssrss; ss)

Pog. sa="Vsa; salS-

Analogously we obtain

Vag; aa=1Vqa; aa+ Tes (Vi sa—Ves; 55V aa; dadl/S- (A7)
In calculating the polarization operators [lg¢ and [lqq we can use
the Green’s function in the absence of pairing, since in the inte-
gral with respect to p for Il an important role is played by the en-
ergy ~ ¢, and not by A. For estimating purposes we use G’ in (A.1),
which contains no regular parts (when T £ 0 ¢ » icwg):

2 S ng (p)—na (P+k)
@m* e — g (p k)& ()

Usually | k| << k,; then the integrand in (A.8) can be expanded in

powers of |k |:
S ( )m|=po’ k )

In the effective-mass approximation we obtain from (A.9) the ex-
pression (11)[*!]. To obtain in explicit form expressions for Ag and
Aq we substitute F{ and F;d from (A.2) and (A.4). In integrating
with respect to ¢' by means of the residue theorem, the principal
role will be assumed by the poles of F;s and ng. On the other
hand, the poles of I'g ;s and I'qq;4q, corresponding to the fre-
quency of the plasma oscillations [*!]

Haq (B)=

(A.8)

dp.

2

—_2 dp
@)

E—< E)\p‘;po ’ k) |

op
(A.9)

ong

Mag ()= -
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4e2
W} = 50 (P2, /ms+Plalma), (A.10)

will make a very small contribution, since wp is much larger than
Ag and Ag4. This contribution can be neglected, and we can substi-
tute in (A.4) the four-poles I" for ¢ = ¢' = 0, i.e., we can neglect re-
tardation. Inasmuch as different terms in I, as shown above, can
be approximately regarded as constant in a definite region of &
when k ~ xp, and as equal to zero outside this region, we shall re-
place these terms by the constant terms which enter in 'k

(T'% (&, &) in the case of k ~ kp).

We assume for simplicity that ['qq;qq exceeds the repulsion;
then A4 = 0, i.e., the pairing exists only in the s-band. For Ag we
obtain the equation

1

8o )= — g § AKTE; 1 (G 80 A, (Ve ()

o (A.11)

When T # 0 the summation over wg gives an extra factor
tanh (e(k ")/2T) (seel?']):

dk'T!

1
0= =70 ) T,

ss (Bxor Exd Bs (k") th (g (R7)72T)/ey (7). (AL12)

If both Ag £ 0 and Aq # 0, then we obtain for Ag and Ay the system
of equations (25) (see Fig. 4).

For simplicity, we have considered above a model of free s-elec-
trons and strongly bound d-electrons. If we know the expressions
for all the Coulomb matrix elements, we obviously can readily ob-
tain a solution of the equations of Fig. 6, and then of the equations
of Fig. 4 in the general case.
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