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INTRODUCTION

JtvEACTIONS in which several particles are produced
have been recently under intensive experimental inves-
tigation. These reactions are for the time being the
only source of information regarding the scattering
amplitudes of unstable particles. In particular, their
investigation has led to observation of many reso-
nances. Yet the methods of theoretically interpreting
these experimental data are very limited. To observe
resonances, one usually analyzes whether the spectrum
of the produced particles agrees with the Breit-Wigner
or Watson-Migdal formulas.'-1'2^ In the nonresonance
situation, attempts are sometimes made to use the
Chew and Low method of analytic continuation in the
momentum transfer, which necessitates, however,
very detailed experimental data. The latter method
makes it possible in principle to determine the scat-
tering amplitudes of unstable particles at arbitrary
energies.

We shall consider in this paper another approach
which allows us to find the scattering amplitudes of
unstable particles at zero energy. This approach is
based on an investigation of processes connected with
production of several particles near the threshold. It
turns out that in this case it is possible to develop a
consistent theory that describes reactions with crea-
tion of low-energy particles in terms of a certain num-
ber of independent parameters and in terms of the
scattering amplitudes of the pairs of produced par-
ticles. For the case when two particles are produced,
this theory is the well-known theory of the deuteron
effective radius.

We shall be interested essentially in reactions in
which three particles are produced, although a simi-
lar analysis can be carried out also for a larger num-
ber of particles. The existence of a consistent theory
of reactions in which low-energy particles are pro-
duced is of interest also regardless of the possibili-
ties that are connected with the determination of scat-
tering amplitudes of particle pairs.

The first steps in the creation of the theory de-
scribed below were made essentially by G. V. Skornya-
kov and K. A. Ter-Martirosyan W, who considered the
quantum-mechanical problem of three resonantly in-
teracting particles, and by V. N. Gribov, who investi-
gated the angular correlations in K-^37r decay ^_.
Gribov's latest paper served as the basis for further
development of the theory.

Questions connected with production of three low-
energy particles were considered further by several
workersC5~193. Since the understanding of the situation
has deepened from investigation to investigation, it has
by now become quite difficult to study the theory from
the original articles. This is the reason for writing
the present review.

In certain recently published papers, problems re-
lated to those discussed here were investigated in a
manner which is not quite correct. Some authors have
very recently'-20"22^ noted errors in earlier papers.
Within the framework of the nonrelativistic threshold
approach of interest to us, the results contained in
these papers overlap for a greater part with the re-
sults of'-3"16-'. We have therefore taken the liberty of
not discussing these papers.

Many of the results presented below were initially
obtained by a quantum-mechanical analysis. It will
turn out more convenient in the future to use a method
based on the study of the analytic properties of the am-
plitudes. From this point of view we shall consider
consecutively the entire theory of reactions in which
particles are produced near a threshold.

In the first section of the paper we give some kine-
matic relations which will be useful in what follows.
In the second section, we consider general problems
connected with the selection of the essential diagrams.
The third section is devoted to an illustration of our
method, using as an example the scattering of two
particles at low energy. In the fourth section, we give
the expansion of the amplitude for creation of three
particles in powers of the states with different total
angular momenta. Since further calculations are es-
sentially connected with the use of the unitarity condi-
tion, we show in the fifth section how to use the unitar-
ity condition to calculate the discontinuities in the am-
plitudes near the singularities of interest to us. In the
sixth and seventh section we obtain an expansion of the
amplitude with zero total angular momentum in terms
of the momenta of the produced particles, accurate to
third-order terms. In the eighth section we consider
the amplitude for the production of three particles in
a state with unity total angular momentum. The ninth
section is devoted to a study of reactions in which two
of the produced particles interact resonantly. In the
tenth section the developed theory is applied to certain
concrete reactions (7r + N ^ N + 7r + 7r, y + N — N + 7T + 7T,
and K — 3n decay ). In this review we barely touch
upon the question of reactions in which three reso-
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nantly interacting particles are produced (for example,
N + D—-N + N + N). These reactions are treated in
[17-19] ^ i n which more detailed references can be
found.

1. KINEMATICS

Li this section we introduce the principal symbols
employed and write out several useful kinematic re la-
tions. The amplitude for the transformation of two
particles into three (Fig. 1) depends on five invariant
variables* which can be chosen to be two momentum
transfers and three relative particle energies of par -
ticles in the final state. Let pj and p2 be the 4-mo-
menta of the colliding particles in the center-of-mass
system, and let k t, k2 and k3 be the 4-momenta of the
produced particles in the same system. Then the re la-
tive energies in the three particles in the final state,
Vjŝ _, - / s ^ , and Ss^ and the momentum transfers
V-t j and V-t2 can be written in the form

(1)
where ki0, pi0 and kj, pj are the time-dependent and
space-dependent components of kj and pi.

All other invariant variables characterizing the
amplitude under consideration can be expressed in
terms of the five invariants which have been written
out.

In the nonrelativistic approximation, near the par-
ticle production threshold, the quantities s±i are ex-
panded in series in the relative momenta of the pro-
duced particles k^:

(2)

where mj are the masses of the particles in the final
state.

The kinetic energy E which is released in the r e -
action is connected with the total energy

by the relation

From the equality

—- mi -\- m2 - m3 - j - E. (3)

FIG. 1.

*This statement pertains, strictly speaking, to the case of neu-
tral spinless particles. We shall verify later that the presence of the
spin and the isotopic spin does not complicate the situation in
principle.

3—m\ — ™\ — m\

it follows that

¥23" "
(4)

This quantity can also be represented in a different
form

(5)

The change over from the momenta k12 and k3, for
example, to the momenta k13 and k2 is by means of
the formulas

mi-\-m2

k3—k12,

k,.,= -
(m, + m2) m3)

(6)

Other analogous equations are obtained by cyclic
permutation of the indices.

Near the creation threshold, expressions (1) for tj
and t2 can be rewritten, accurate to the linear terms
in the momenta of these particles, in the form

(7)

ti (0 ) t < 0 >Here t}u ' and t2
lu' a re the threshold values of the in-

variants tj and t2, p{ } is the absolute value of the
momentum pj at the threshold energy, and Zj and z2

are the cosines of the angles between the vectors
Pi, kj and pj, k2.

In what follows it will be frequently convenient to
use in place of the variables k^ the variables

(8)

We introduce a special symbol for the frequently en-
countered mass combination

o _ m
~(m

m, 0)

(/32 and /33 are determined in similar fashion). In this
notation, we present a relation, which will be useful in
what follows, between the quantities Xi3, x12, and z —
the cosine of the angle between the momentum k12 (or
x12) and the momentum of the third particle in the
c.m.s. of particles 1 and 2:

2. FUNDAMENTAL PRINCIPLES OF DIAGRAM
SELECTION

We are interested in the amplitude of the conversion
of two particles into three near the threshold of the
reaction, that is, in the condition when the total r e -
leased kinetic energy is much smaller than the mass
of any of the particles. In this case we can attempt
to expand the reaction amplitude in a series in powers
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of and where and a r esik ~ sik a n a li ~ H"' w n e r e v s ik """ * "i
the invariant variables (the relative energies and mo-
mentum transfers) on which the amplitude depends,

while and V-t|0) are the threshold values. It

is obvious that such an expansion is hindered by the
amplitude singularities near the threshold values of
the invariants. However, after separating these sin-
gularities we can expand the amplitude in powers of

|0sik ~~ sik anc^
p

- t|0>. By near singularities of the
amplitudes we mean either singularities which lie ex-
actly at the threshold values of the invariants, or sin-
gularities which are separated from the threshold by
a distance which is much smaller than the square of
the mass of any of the particles. Here, of course, we
must take into consideration the singularities which
are located both on the physical and on the unphysical
sheets. The remaining singularities ("far singulari-
ties") are located at distances of the order of the par-
ticle mass squared (~ m2), so that after separating
the near singularities the expansion is essentially
carried out in powers of ( s ^ - sj^' )/m2 and
(tj - t{0))/m2. In other words, after separating the
near singularities we deal with expansion in powers
of (kr0)2, where k is the momentum of any of the
produced particles and r0 is the interaction radius.

Let us examine first the amplitude singularities
that correspond exactly to the threshold values of the
invariants. In this simple case the location and char-
acter of the singularities can be obtained directly from
the unitarity condition in the s-channel (/s" is the
total energy). The situation here is simpler than in
the derivation of the Landau curves for the unitarity
condition, where, as shown by Mandelstam, continua-
tion in the momentum transfer is also necessary.*

The reaction amplitude has no singularities in the
momentum transfer at the threshold values tj = t|0),
and the appearance of singularities in s and stf is
connected with the appearance of new terms in the
unitarity condition. The singularities arise at energy-
squared values Sj£ and s equal to the squares of the
sums of the masses of all possible intermediate states.
If we are interested in singularities lying at the thresh-
old values of the energies, we must consider those
unitarity-condition terms which are connected with
the intermediate states with the same three particles
as in the final states. In the unitarity condition these
terms correspond to the Feynman diagrams shown
symbolically in Fig. 2.

All other diagrams which do not contain three-
particle fission, have no singularities at the threshold
of the interaction in question (provided, of course, that
the sum of any two other particles does not accidentally

*A reader who is not familiar with the Landau rules [26] for de-
termining the singularities of Feynman diagrams can read first the
appendix to this review, where we present a simple derivation of
the Landau rules and write out the concrete formulas used subse-
quently for the case of a triangular diagram.

FIG. 2.

coincide with mi + m2+m3; this case will not be con-
sidered). The amplitude for the transformation of
three particles into three, which enters in the diagram
of Fig. 2, includes cases when one of the particles does
not interact with the two others (Fig. 3).

FIG. 3.

If the interaction within the six-point diagram ac-
tually takes place between all three particles, then the
corresponding Feynman diagram has a three-particle
singularity in the square of the total energy s when s
= (mt + m2 + m3)

2 (E = 0). In the case of the degen-
erate six-point diagram shown in Fig. 3, a two-particle
singularity in s^ occurs at s^ = (ml + m^)2 (kj/ =0).
It is clear that many diagrams can have simultaneously
either type of singularity. Such diagrams are shown,
for example, in Figs. 4,b,d and f. Let us now imagine
that we have separated from the diagram of Fig. 2 all
the possible scatterings of particle pairs in the final
state and the transformations of three particles into
three.

We then arrive at the diagrams shown in Fig. 4,
where the shaded irreducible blocks no longer contain
transformations of two particles into two or three par-
ticles into three. The singular terms of the amplitudes
are obtained from these diagrams in those cases when
all the lines are real (q^ = mj). This, for example,
follows from the Landau rules (see the Appendix). In
calculating the singular terms in this case, the irre-
ducible blocks of Fig. 3 go on the mass shell, and since
they no longer contain transformations of two particles
into two or three particles into three, they have no sin-
gularities at the threshold values of their invariants.

We shall therefore expand from now on these blocks
in powers of the deviations of the invariants from the
threshold values. The constant term in the block for
the transformation of two particles into two is obvi-
ously the scattering length in the S-state, and the suc-
ceeding terms are connected both with the interaction
radius in S-scattering and with the higher partial
waves. As will be clear from what follows, if we are
interested in not too high terms in the expansion of
the entire amplitude in powers of s ^ - sjj^ and
tj - t|0), then we can confine ourselves to the expan-
sion of the irreducible blocks in their own invariants
to the first few terms.

So far we have investigated only singularities lo-
cated exactly at the threshold values of the invariants.
We are really interested also in other near singulari-
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d)

ties, which are situated at much shorter distances
from the threshold than the square of the mass of any
of the particles. Such singularities can result, first,
from the existence of "compound particles" with low
coupling energy, such as the deuteron. In particular,
the amplitude of the reaction 7r + D ^ N + N + 7r has,
for example, near-threshold singularities in the mo-
mentum transfer, not connected with diagrams of the
type shown in Fig. 4, Such singularities arise in the
diagrams shown in Fig. 5. In situations of this type
it is necessary to take into account, besides, the dia-
grams of the type in Fig. 4, also diagrams in the ver-
tices of which there occur "almost real" transforma-
tions of a deuteron into two nucleons. It is clear that
the positions of the singularities connected with these
latter diagrams will be very close to the diagrams of
the physical region, since the coupling energy of the
deuteron is low.

Second, such singularities can be situated on other
sheets, where they are not determined directly by the
unitarity condition. In order for these singularities to
be located not far from the physical region they should,
of course, be under cuts that go either from the point
si/ = (mj + ml)2 in the su plane, or from the point
s= (mi + m2 + m3)

2 in the s plane. Since such cuts
are contained only in the diagrams shown in Fig. 4,
the singularities of interest to us can also arise only
in diagrams of the type of Fig. 4. The singularities
on other unphysical sheets defined by other cuts (con-
nected with remote singularities ) will of course not
influence the expansion of the amplitudes near thresh-
old.

We thus arrive at the following final conclusion. In
order to separate correctly the singularities in the ex-
pansion of the amplitude of transformation of two par-
ticles into three near threshold, we must investigate
the diagrams connected with the scattering of particles
and with the transformation of three particles into
three, of the type shown in Fig. 4. The irreducible
blocks must in this case be replaced by their series
expansion near the threshold values of the invariants.
In the presence of weakly bound particles of the deu-
teron type, it is also necessary to take into account
diagrams with almost real decay of such particles. The
foregoing diagrams contain all the singularities which
are close to threshold, both on the physical and on the
unphysical sheets.

In conclusion we wish to emphasize the following
important circumstance. Since all our expansions
converge in the regions defined by the position of the
"remote" singularities, the totality of the diagrams
under consideration determines the amplitude of the
reaction in the form of some series in powers of (kr0)2,
where r0 is the interaction radius and k is the momen-
tum of any of the produced particles. Here, of course,
it is understood that the analytic terms (the powers of
the quantities s ^ - s^' and tj - tj0>) which result
both from the diagrams under consideration and from
all other diagrams, must be added to the contribution
of the separated diagrams. As will be shown later, the
summation of the selected diagrams will cause the am-
plitude to acquire singularities whose positions are
connected not with the effective interaction radius r0,
but with the particle-pair scattering amplitudes. If
these amplitudes coincide with r0 in order of magni-
tude, a ~ r0 (nonresonant situation), the reaction am-
plitude must be expanded further in powers of (ka). It
becomes possible in fact to confine oneself in this case
only to the simplest diagrams shown in Fig. 4. This is
precisely the procedure which we shall use in Sees. 4—6
to calculate terms of different order of magnitude in
the threshold momenta. On the other hand, if a » r0

(resonant case), as is the situation, for example, in
the scattering of low-energy nucleons, then all the dia-
grams of Fig. 4 must be taken into account. A simplest
example of this kind (scattering of two particles) is
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presented for illustration in the next section. In the
case of three particles we arrive, generally speaking,
to the Skornyakov-Ter-Martirosyan equations C3],
which were investigated in detail by Danilov'-17^. A de-
tailed examination of these equations is beyond the
scope of the present review.

3. SCATTERING OF PARTICLES NEAR THRESHOLD

The consideration advanced in the preceding section can be ex-
tended, of course, without modification to the case of an arbitrary
number of particles in the final state. We shall now consider by way
of illustration the simplest case of scattering of nucleons by nu-
cleons at low energies and we shall show that the rules for select-
ing diagrams, formulated in the preceding section, lead us immedi-
ately to the well-known Bethe-Peierls effective-radius theory.

The expression for the amplitude of the low-energy nucleon-
nucleon scattering is best obtained in the following fashion. The
partial amplitude for the scattering it (k) = k"1 exp (iS;) sin S; with
angular momentum / satisfies the unitarity condition

lmft=0

2 k*
(14)

Putting ĥ  = -l/f(i w e have

]mhl =

that is,

(11)

The function a ; (k
2) (the real part of h() should be an analytic

function of k2 at k2 = 0, for otherwise a ; (k
2) could not be a real

function simultaneously when k2 > 0 and when k2 < 0. It follows
from (11) that

(12)

It is obvious that in S-scattering at low energies the function ao(k
2)

can be replaced by a constant a0 (0) = a0, which is the amplitude of
nucleon scattering at zero energy; then

/o=-r-^r • (13)

Formula (13) yields the well-known expression for the low-energy
nucleon-nucleon scattering amplitude. If we retain the next higher
term in the expansion of the function a0 (k2) in powers of k2, we
immediately obtain an expression for f0 in the effective-radius ap-
proximation.

We shall now show that the diagrams shown in Fig. 6 with nu-
cleons in the intermediate state also lead to formula (13). These
diagrams have a singularity at low nucleon energy and therefore, in
accordance with the statements made in the preceding section, they
should be considered for the separation of the singularity in the
amplitude. When separating the singularity, the blocks in the ver-
tices of the diagrams can be expanded in powers of the invariants,
and in the lowest approximation they should be replaced by a0,
which is the scattering amplitude at zero energy.

The latter condition makes the vertices of the diagrams of
Fig. 6 pointlike, after which the calculation becomes exceedingly
simple. Let us calculate the contribution of the simplest diagram
shown in Fig. 6. Its imaginary part is obviously equal to ka2,, and
consequently, the entire diagram can be written in the form of the
dispersion integral

In formula (14) subtraction was effected at the point k2 = 0 and
the computational constant has not been written out, since it per-
tains to the nonsingular part of the amplitude. It is furthermore easy
to note that the integration over the individual loops in the highest-
order diagrams shown in Fig. 6 is carried out independently. There-
fore, a diagram consisting of n loops contains the term a"+ ' (ik)n

and the terms connected with the interference between the terms of
type ika0 and the analytic terms. The entire amplitude of nucleon-
nucleon scattering (S wave) can be written in the form

"0+ •• • (15)

The terms written out constitute the contribution of the diagrams
of Fig. 6, while the remaining terms are due both from the diagrams
of Fig. 6 and from all other diagrams. According to the statements
made in the preceding section, when the powers (kr0)

2 are neglected
the entire contribution of the terms which were not written out can
be replaced by a constant C. Its value is C = a0, so that by defini-
tion f0 = a0 when k2 = 0. Summing the geometric progression (15) we

FIG. 6.

arrive directly at (13). In accord with the statements made at the
end of the preceding section, we obtain a singularity at k = l/ia0.
The pole obtained can lie on the physical sheet when a0 < 0 in
which case it corresponds to the case of a deuteron; it can also be
on the physical sheet not at a0 > 0, and then it constitutes a singlet
virtual level in the nucleon-nucleon system. If the quantity a0 were
of the order of r0, it would be necessary to rewrite (13) in the form

As indicated in the preceding section, this expression would
reduce to a contribution (containing a singularity) from the simplest
diagram (Fig. 6). Finally, we note that allowance for the analytic
term = k2 would bring us to the effective-radius approximation.

4. EXPANSION OF THE AMPLITUDE IN STATES
WITH DIFFERENT TOTAL ANGULAR MOMENTA

In the second section we indicated that reactions
with production of three particles are divided into two
types, the study of which calls for several different ap-
proaches. One type includes reactions in which "com-
pound part icles" such as the deuteron are present in
the initial state. In this case the singularities in the
square of the momentum transfer - tj are located not
far from the physical region of the solution, near the
threshold. An example is the reaction 7 r + D ^ N + N + 7r.
The second type of reaction, which is dealt with in this
article, is one in which the singularities in tj lie far
from the physical region (at distances ~ m 2 ) . In this
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case, the amplitude for the production of three par-
ticles can be expanded near threshold in powers of
tj - tf or else in powers of kjZj (see formula (7)):

A (AJJ, kla, k2a, tt, t2)

CO

= 2
p, s=0

,, *»„ (16)

The terms of this expansion with large p and large s
are small, so that the expansion is essentially in pow-
ers of kj/m.

It will be more convenient to rewrite (16) in the
form of a series in the states with different total an-
gular momenta. Since the c.m.s. momenta of the pro-
duced particles satisfy the relation kt + k2+k3 = 0,
they all lie in one plane. We introduce a coordinate
system in which the Z axis is perpendicular to this
plane and the X axis is parallel to kt. The direction
of the momentum of the incident particles pj is char-
acterized in this coordinate system by two angles $
and <p. z± and z2 are then expressed in terms of S-
and (p in the following manner:

z1 = sinii>coscp, z2 = sin •& cos (cp— y), (17)

where y is the angle between the vectors kj and k2,
expressed in terms of energy of the particles in the
final state.

Substituting (17) in (16), we obtain a function of the
angles $ and <p, which can be expanded in a series in
the spherical functions

L

(18)

The coefficients &IM. a r e the amplitudes of the tran-
sition with total momentum L and projection M on
the Z axis.

It is obvious that inasmuch as the expansion of a
polynomial of degree p + s (of trigonometric functions
of the angles & and <p) contains only spherical func-
tions with L < p + s, the coefficients A ] ^ are ex-
pressed in terms of the quantities TpSkjk2 with

p + s > L. This means that the amplitudes ALM are
of the order (k^/m)1", that is, they are small when L
is large. By reflection in the XOY plane and total r e -
flection of the coordinate frame, we can easily verify
that the parity of the numbers L and M is the same,
and that the ALM are expressed in terms of those T p s

for which the parity of p+s is the same as the parity
of L.

The amplitudes ALM(ki2, kj3, k23) constitute, es-
sentially, the amplitudes of decay of a particle with
spin L and with a mass equal to the total energy of
the incoming particles Vs". Accordingly, they can be
represented graphically by the diagram shown in Fig. 7.
In the following sections we shall consider in detail the

FIG. 7.

amplitude A00(ki2, k^, k|3) which we shall denote
henceforth by A(k?2, k23).

5. UNITARITY CONDITION AND CALCULATION OF
THE DISCONTINUITIES

In calculating the amplitude of the reaction near
threshold we shall make extensive use of the unitarity
condition. In the simplest form, the unitarity condition
for the partial wave was already used in Sec. 3 to de-
termine the amplitudes of nucleon-nucleon scattering.

We shall also find useful in what follows the three-
particle unitarity condition and expressions for the
amplitude discontinuities connected with one definite
singularity. We present now some of the necessary
relations.

If, as usual, we introduce in lieu of the S matrix
the T matrix, S= 1 + iT, then the unitarity condition
SS+ = 1 for the S matrix is rewritten for the T matrix
in the form - i ( T - T+) = TT+.

It is convenient to use the invariant amplitudes M
connected with the matrix elements of the T matrix
by the relation

(19)

Here Mf j is the amplitude of the transition from the
state | i ) into the state |f), S4(2pi-Zpf) is a four-
dimensional 5-function which expresses the energy-
conservation law, and u>n are the energies corre-
sponding to all the initial and final particles. It is easy
to see that the unitarity condition for the amplitude Mf j
then takes the form

lmM,, =

( Pi - 2 In) 6 (q\- mi)

(20)

where N is the number of particles, qn are their 4-
momenta in the intermediate state, and Mjn and M n̂

are the amplitudes of the transition from the interme-
diate state into the final state and into the initial state,
respectively.

We shall need in what follows the two-particle and
the three-particle unitarity condition (N=2) and (N=3).
In the first of these cases we can readily transform (20)
to the usual form

dQ
in M,nMtn. (21a)
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Here V1T is the total energy of the two particles,
q the c.m.s. momentum of the particle in the inter-
mediate state, and dtt the solid-angle element of the
momentum q.

In the case when only elastic scattering is possible,
it is frequently convenient to use states with definite
total momentum I in place of states with definite mo-
mentum. We then get in place of (21a)

(21b)

The Mj coincide, apart from a factor of course,
with the partial amplitudes fy = eil5^ sin <5j /q, where 6;

2
is the scattering phase shift.
have

Since Im fy = q|f; | , we

(22)

At zero energy (q=0) the quantity f0 goes over into
the particle scattering length a12. (The indices 1 and 2
denote the numbers of the scattered particles.) If we
denote the value of Mo at zero energy by gJ2, we ob-
tain from (22) the connection between g12 and a12:

where m t and m2 are the masses of the scattered
particles. The quantity g12 plays the role of a "charge"
in the Feynman diagrams which will be used in what
follows. This means that the factor i(27r)4g12 cor re-
sponds to the vertices of the diagrams in which par-
ticles 1 and 2 are scattered.

As an example, we present an expression for the
diagram shown in Fig. 8, which we shall need later.
The quantity Mfj corresponding to this diagram is

^ m2) (m, -f
(24)

where qj is the particle momentum in the interme-
diate state.

3 •

FIG. 8.

Let us imagine that the unitarity condition (20) con-
tains the terms corresponding to two- and three-par-
ticle intermediate states. The amplitude Mfi has then
two threshold singularities in the square of the total
energy s at the points s = (Mj + lV^)2 and s
= (m1 + m2+m3)2 (Fig. 9), where Mj and M2 are the
masses of the particles of the two-particle interme-
diate state, and mj, m2, m3 are the masses in the
three-particle state. Assume that (m1 + m2 + m3)2

M2)2. The expression (20) for the imaginary
2

b a

a)

b)

FIG. 9.

termines simultaneously the discontinuity of this am-
plitude on going around both branch points (Im MJJ is
equal to the difference between the values of the am-
plitude Mjj at the points a and a' in Fig. 9, divided
by 2i). To separate the singular part of the amplitude,
connected, for example, with the three-particle thresh-
old, we shall need to know the value of the discontinuity
on the cut that begins with the three-particle singular-
ity, that is, the difference between the values of the
amplitude at points b and b' (Fig. 9,a). We are inter-
ested here in the case when the amplitude is taken on
the upper (physical) edge of the two-particle cut. In
order to illustrate the resultant situation, we have
shifted in Fig. 9, a a part of the two-particle cut into
the lower half-plane. Thus discontinuity can be con-
veniently found in the following manner. We continue
analytically the amplitude M^ in terms of the masses
Mj and M2 so that the two-particle threshold is to the
right of the three-particle threshold (Mj + lV^)2

> (m1 + m2 + m3)2, as shown in Fig. 9,b. Then the dis-
continuity of interest to us at the points b and b' can
be calculated from the unitarity condition in which
there remains one three-particle division. The am-
plitudes M*, which appear in (20), represent in this
case the values of the amplitudes on the lower edge of
the three-particle cut, at the point b ' . The unitarity
condition (20) can therefore be rewritten, for
(m1 + m2 + m3)2 < s < (

± [Mn (b)-Mtl {b')\ =

in the form

X &(ql-m.l)Mfn(b)Min{b'). (25)

part of the amplitude Mfj for s > (m1 + m2 + m3)2 de-

Expression (25) has been written in analytic form
(it does not contain the complex-conjugation sign) and
can therefore be continued directly into the region
(MJ + M J ) 2 < (m1 + m2 + m3)2. We see then that the dis-
continuity of interest to us, on the three-particle sin-
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gularity, is determined by an integral in a form cus-
tomary for the unitarity condition with respect to the
three-particle phase volume, of the product of the am-
plitude Mfn, taken on the upper edge of both cuts (at
the point b in Fig. 9,a), and of the amplitude Mm ,
taken on the upper edge of the two-particle cut and on
the lower edge of the three-particle cut (at the point b '
in Fig. 9,a). The value of M m at the point b ' differs
from the quantity Mfn in (20).

We have considered by way of an example a definite
case when two- and three-particle singularities are
present. The generalization of the obtained rules to
the calculation of the discontinuity on an arbitrary
singularity is perfectly obvious.

In the following sections we shall investigate in de-
tail, with the aid of the unitarity condition, diagrams
connected with the scattering of particles in the final
state. The parameter used in all the expressions will
be the constant A —the constant for the production of
three particles at zero energy. The quantity A can be
complex, but it is easy to see that its real and imagi-
nary parts are connected by the unitarity condition. To
verify this it is sufficient to write out the unitarity con-
dition at an energy corresponding directly to the
threshold reaction

Im X — ei6 sin 8- X*. (26)

Here 6 is the scattering phase of the incident (initial)
particles at threshold energy in a state with zero total
angular momentum. The three-particle term in the
unitarity condition vanishes at the threshold because
of the vanishing of the phase value. We see from (26)
that

show that it is these simplest diagrams which contri-
bute to the terms that are linear and quadratic in the
threshold momenta or, more accurately speaking, to
the linear and quadratic terms which are nonanalytic
near the threshold.

The simplest diagrams are connected with single
scattering of particles in the final state (Fig. 10). In

X = (27)

where p is a real number (positive or negative). For-
mula (27) illustrates essentially the Fermi rule for
the determination of the phases of matrix elements.

6. LINEAR AND QUADRATIC TERMS OF THE EX-
PANSION OF THE AMPLITUDES WITH L = 0
IN TERMS OF THE THRESHOLD MOMENTA

In this section we consider the amplitude
Aoo(ki2> ki3> k23) = A(ki2, kj3, k23) corresponding to
zero total angular momentum, and calculate it with
accuracy to terms that are quadratic in k12, k13 and
k23. The scattering lengths of the pairs of produced
particles a12, a13 and a23 will be assumed to be not too
large: ajk £ r0 (r0 is the interaction radius). In other
words, we assume that there is no resonance situation
in the scattering of the produced particles at the zero
energy.

Let us consider first the simplest diagrams of par-
ticle scattering in the final state, which, as explained
in Sec. 2, have singularities at threshold values of the
invariants. We investigate now in detail the analytic
properties of these diagrams, calculate them, and then

FIG. 10.

calculating those singular parts of these diagrams
which are largest in the threshold momenta, we should
replace their vertices by the scattering amplitudes of
the particle pairs at zero energy a^, aj3, and a23 and
replace the quantity A by the amplitude for the trans-
formation of the initial particles into three particles
at the threshold value of the energy. This procedure
is perfectly analogous to that used in Sec. 3. The sin-
gular part of the diagrams in Fig. 10 can then be cal-
culated in the same manner as the contribution of the
diagrams in Fig. 6. Using the result (14) of the third
section, we obtain directly the singular part of the
diagrams in Fig. 10:

i}.ai2ki2 + iXal3k13 (28)

We now proceed to consider diagrams of the type
shown in Fig. 11. There is obviously a total of six
diagrams of this type, differing in the permutation of
the final and intermediate states. The vertices of the
diagrams in question are again paired scattering am-
plitudes of the particles at zero energy and the ampli-
tudes for the production of three particles with zero
kinetic energy. The diagram of Fig. 11 depends on
two variables, kf2 and E = VsT - m 1 - m 2 - m 3 . To
calculate the contribution which contains a singularity

FIG. 11.
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in k\2 at small k^, made by the diagram of Fig. 11,
it is convenient to use the dispersion relation in terms
of k\2. The diagram of Fig. 11 is essentially a " th ree-
point diagram" with decay masses VT. In this situa-
tion it is difficult, generally speaking, to write out di-
rectly the dispersion relation in terms of k\2. It can
be obtained, however, by starting from a simple d is-
persion relation in kj2 at low values of s, and then
carrying out analytic continuation in this variable.

For small s the dispersion relation in kj2 is

E) + -
E) (29)

where the subtractional constant 1(0, E) does not de-
pend, of course, on kf2 and therefore does not pertain
to the terms that are singular in k\2.

One might think that the diagram of the type in
Fig. 11 could have, besides trivial threshold singu-
larities, also singularities of the Landau type, cor re-
sponding to the vanishing of all the Feynman denomi-
nators. We stipulate immediately that there are in
fact no Landau singularities in the case in question. To
understand the reason for the absence of these singu-
larities, we must recall the usual situation in triangu-
lar diagrams. At normal values of the two external
mass Mj and M2, triangular diagrams usually have
two singularities of the Landau type in the Landau
mass M3, located on the unphysical sheet. These sin-
gularities are simultaneously singularities of the ab-
sorption part in M3. If one of the external masses
(for example, Mj) increases, then one of the indicated
singularities of the absorption part in the third mass
links with the integration contour, as a result of which
the dispersion relation acquires a nontrivial form, and
the singularity of the amplitude in M3 goes itself
onto the physical sheet. In the case of the diagram
shown in Fig. 11, the positions of the two indicated
singularities in M3 coincide. In fact, this causes these
singularities to cancel each other. This will follow
rigorously from our subsequent calculation of the mag-
nitude of the diagram in Fig. 11, but for the time being,
we confine ourselves to the following remarks. The
position of the singularities referred to above is de-
termined by the Mandelstam relation (see the Appen-
dix) Zj + z2 + z | - 2zjz2z3 - 1 = 0 between the three co-

masses at the vertices of the triangular diagram.
(Each cosine is equal to (M1 + M2 - M I M 2 ^ / ^ ) " 1 where
Hi and n2

 a r e t n e masses of the internal lines, while
/u3 is the mass of the external line.) For the diagram
shown in Fig. 11, the cosine connected with the vertex
at which scattering of particles 1 and 3 takes place is
equal to unity, as a result of which the position of the
point suspected by us (corresponding to the usual
presence of the Landau singularity) is determined by
the relation

m:,)
2\. (30)

We see that r e g a r d l e s s whether th is point is indeed
a s ingular point of the absorpt ion pa r t or not, it un i -
formly moves from left to r ight with increas ing s and
does not deform the integrat ion contour in the d i s p e r -
sion integral (29). Thus, the d i spers ion re la t ion (29)
re t a ins at any r a t e i ts form, a fact which we shall
make use of in what follows.

We now proceed to calculate the absorption pa r t
Ii(k2

2 , E ) . We shall show present ly that it actually has
no s ingular i t ies at the point defined by (30), but it t u rns
out he r e that I i (ki2 , E ) has a non-Landau s ingular i ty in
kj2 (or s1 2) nea r threshold , that i s , a s ingulari ty which
does not cor respond to the vanishing of the denomina-
t o r s of the Feynman diagramLio-203 _ p^ sma l l values
of s we can obtain I i(ki2 , E) with the aid of the u n i t a r -
ity condition in the channel where Sj2 is the energy:

dz
(31)

sines z1; z2 and z3, which are connected with the

The normal iza t ion of the unitari ty condition which
we have wri t ten out follows from (21) and (23); B( s i 3 )
is the amplitude for the t ransformat ion of the initial
par t ic le into th ree pa r t i c l e s , shown in Fig. 11 to the
left of the dashed l ine. It depends, of cour se , only on
s j 3 —the square of the total energy of re la t ive motion
of pa r t i c l e 3 in the final s tate and of par t i c le 1 in the
in te rmedia te s ta te , z is the cosine of the angle b e -
tween the momentum of the thi rd pa r t i c le in the final
state in the c .m . s . of pa r t i c l e s 1 and 2 and the re la t ive
momentum of pa r t i c l e s 1 and 2 in the in termedia te
s ta te . It is easy to wr i te out the connection between
the invariant s{3 and the var iab le z:

2s,. -ty i-«
We go over in (31) with the aid of (32) to integra-

tion with respect to s}3. The integrand B(s}3) has
obviously a single singularity in the s}3 plane at s{3

= ( m ^ m j ) 2 (Fig. 12). Integration with respect to sj3

in (31) for small values of s (s < (Vs12 - m 3 ) 2 ) is along
the segment of the negative axis between the values
s73 and sj3 (contour 1 in Fig. 12,a). To obtain the
correct expression for large values of s, it is neces-

i3f\ [s —( m.,)2 (32)

sary to carry out analytic continuation in s, assigning
to s (the square of the external mass) a positive imag-
inary increment: s —• s + ie. When s = (Vs^ - m 3 ) 2 ,
the quantities s73 and Sj3 go over into the complex
plane, and when s > (/si2 - m 3 ) 2 the integration is
carried out between the complex-conjugate points
(contour 2 in Fig. 12,a). We note that the point s

f - n i 3 ) 2 is not singular, since the continuation
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FIG. 12

from s — s + ie gives here the same result as from
s —- s + ie. This is connected with the fact that the
changes in the direction of integration, resulting from
these two continuations, are canceled by the change in
the sign of the root in the factor that relates dz with
ds^ . When s = (Vsi2 + m3 )

2 the limits of integration
s^3 and Si3 fall on a cut of the function B(s{3) going
from the point (m.j + m3)2 along the positive real axis.
Then s^ falls on the upper edge of the cut, SJ3 on the
lower one, and the integration contour encompasses the
cut, as shown by contour 3 in Fig. 12,a. As can be
readily seen from (31), the point where Sj3 and sl3

coincide in the si3 plane always lies to the right of
(mi + m3)2, provided, as is assumed, s^ > (mi + m3)2.

^ 2

in B(sJ3) leads again to expression (28), so that an
account of this term reduces essentially to a renor-
malization of the constant A. So long as this constant
is taken to be the already observed value of the ampli-
tude for the production of three particles at zero en-
ergy, the constant term in B(sJ3) should be discarded.
We now consider the term of B(s{3) which is linear
in k}3. It is easy to see from the subsequent calcula-
tions that terms of higher order in k{3 of B(sJ3) lead
to terms of higher order in the higher threshold mo-
menta in the final expression for the amplitude. With
the accuracy indicated, B(s'13) must be replaced by
the quantity (see formula (28))

The point s = (Vs^ + m3)2 is singular, for in the case
of the continuation from s —• s + ie the upper limit of
integration Si3 moves along the real axis to the right
with further increase of s, while sl3 moves to the left
(Fig. 12,b, contour 4), whereas after circuiting the point
s = (Vsi2 + m3 )

2 with negative imaginary increment
(s — s + ie) , S13 moves to the left and SJ3 to the right.
In addition, these continuations correspond to different
signs of the factor relating dz with dsj3 (different

signs of the root V s - (-/s^ + m 3 ) 2 ) . In the absence
of a cut in the function B(s}3) the change in the sign
of the root would offset the permutation of the integra-
tion limits, as was the case at the point s = (/si^ -m 3 ) 2 ,
However, owing to the presence of a cut in B(s{3), c i r -
cuiting of the point s = (Vsi2 + m3 )

2 with positive and
negative imaginary additions leads to different results,
and therefore the point s = (Vsj2 + ni3)2 is singular.
With further increase in s, the point Sj3 circuits the
start of the cut (m1 + m3)2 and falls on the upper edge,
after which integration contour assumes the form 5 on
Fig. 12,b. The point Si3 coincides with the start of iSje
cut precisely when s is given by relation (30). The
value of s corresponding to (30) could, generally
speaking, be a singular point of the absorption part
(coincidence of the end of the integration contour with
the singular point of the integrand). As already noted,
this point is in fact not singular, as will be seen di-
rectly from the explicit expression for the absorption
part which we shall derive below.

We now proceed to calculate Ii(k2
2, E) directly.

The function of B(sJ3) under the integral sign in (31)
contains a certain constant part, a part linear in ki3,
and terms of higher order in k[3. The constant term

B (s[a) = iXai3ki3. (33)

Going over to the nonrelativistic approximation
with the aid of the formulas of Sec. 1 in expression
(32), we obtain the connection between kj | and z.
This connection is expressed by (10) of Sec. 1, where
xl3 = k13/V2jUi3E must be replaced by xj3 = kJ3/V2jUi3E
Substituting (33) in (31), we get

h)-

(34)

The limits of integration x^ = V ^ d -x 2
2 )

± V (1 -j3 t)x2
2 in the integral of (34) are obtained in

the following manner. The integration with respect to
z reduces directly to integration with respect to x'13

between the limits (V/^d-x 2 ^) ±V (l-p\)x\2 )2. On
going over to integration with respect to xj3, the ques-
tion arises of the choice of the sign of the root when
the new limits of integration are determined. This
choice should be made in accordance with the above-
described continuation of the unitarity condition in s
(see Fig. 12). We see from this continuation, in par-
ticular, that at large values of s (large E, small x12)
both limits of integration with respect to x j | lie on the
upper edge of the cut, and accordingly both limits of
integration in xj3 should be positive. This condition
is indeed satisfied in the integral of (34).

The expression (34) for the absorption part Ij(x2
2, E)

has a singularity at x2
2 = 1, i.e., at k2

2 = 2jUi2E. This
singularity, as already mentioned, has a non-Landau
character and means that the integration limits for the
absorption part fall on the cut (the position of this sin-
gularity was given above in the form s = (-/s^ + m3 )

2).
The obtained singularity is located on the boundary of
the physical region at the point where the momentum of
the third particle vanishes. On the other hand, as stated
above, (34) does not contain a characteristic Landau-
type singularity corresponding to the vanishing of all
denominators of the Feynman diagram. Such a singu-
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larity, were it to exist, should be located at a value of
s12 given by formula (30), that is, at Xj2 = fiz-

To calculate the special contribution to the ampli-
tude made by the diagram of Fig. 11, we must now sub-
stitute (34) in the dispersion integral (29). This raises
the question of the correct circuiting around the singu-
larity kj | = 2/Ji2E(xi2 = 1) when integrating with r e -
spect to kjl- The expression (34) is obviously valid
both for E > 0 and E < 0 when the singularity kj2

= 2ju12E lies outside the integration contour. A correct
analytic continuation from the region E < 0 into the
region E > 0 will be one in which E receives a posi-
tive imaginary increment (since E plays the role of
the external mass) . Therefore the singularity kj2

= 2!U12E is located above the integration contour with
respect to kj|.

If we substitute (34) in (29) we readily see that the
resultant integral diverges logarithmically. This di-
vergence is a result of the expansion of the absorption
part in powers of k}2, whereas the exact expression
would cut off the integral at a value of k\2 of the order
of the particle masses. It is meaningless to make
more precise the character of this cutoff by starting
from the form of the concrete diagram, since the cut-
off can also result, for example, from the decrease in
the exact amplitudes, which we have replaced by con-
stants at the vertices of the diagram. On the other
hand, two results obtained at different cutoffs, differ
from each other by an amount Ckj2, where C is a
certain constant. Terms of this type are analytic, they
are contained in a large number of diagrams and, in
accordance with the developed approach, they cannot
be calculated but should be added to the amplitude with
arbitrary coefficients. By virtue of the foregoing, we
shall cut off the integral (29) at kj2 ~ m, where m is
a quantity of the order of the masses of the particles
encountered in the reactions.

Taking the foregoing remarks into account, we can
carry out the integration of (29) in a rather simple
manner, and obtain the following expression for the
terms that are singular in k 2̂ and are connected with
the diagram in Fig. 11:

£) —7(0, E) = — 2kaiZa13E

• ( P i H Q — a « . ) 3it

2r12 arccos x12

(35)

We have thus separated the terms containing the
singularity in k\2 from the total contribution to the
amplitude of the diagram of Fig. 11. The first terms
in (35) have, as can be seen, a characteristic root-
type threshold singularity at ki2 = 0 and a curious
singularity in k\2 at k 2̂ = 2^12E, which, however, is
located on the unphysical sheet connected with the cut
drawn from the point k\2 = 0. In fact, when x12 > 0
(on the upper edge of the cut) arccos xi2 behaves as
x\2 —' 1, like the root V2(l -x\2 ), which cancels out
the root in the denominator. On the lower edge of the

cut, however, where x^2 < 0, we get x\2 —- 1 when
arccos xj2 —• IT, and we have a singularity of the type
(1 -x^ )" 1 ^ 2 . The last term in (35) does not contain
singularities in k\2, although it does have a singularity
of the type kj2 In E at E = 0. Inclusion of this term in
(35) is somewhat arbitrary and is justified by the fact
that our next task is precisely the separation of terms
containing the singularity at the total energy E in the
diagram of Fig. 11. We shall now show that, in addi-
tion to the last term in (35), such a contribution is con-
tained also in the subtraction constant 1(0, E). This
contribution behaves like E In E and reflects the p res -
ence in the total energy of an ordinary logarithmic sin-
gularity connected with the three-particle intermediate
state.

In calculating 1(0, E) (or, more accurately, in cal-
culating the singular contribution), it is convenient to
use the three-particle unitarity condition in the chan-
nel where E is the energy (Fig. 13). We are calculat-

FIG. 13.

ing here in this case, of course, the discontinuity only
on the three-particle cut (we recall that X has "i ts
own complexity" connected with scattering of particles
in the initial state (see formula (27)). This discontinu-
ity is determined, in accordance with (25), by the ex-
pression

M0, E)=-

l-ml). (36)

The notation in this formula is quite obvious. The
meaning of the 4-momenta q1( q2, q3, q[, and P is
explained in Fig. 13. The momentum P has only a
time-dependent component, equal to p0 = V¥" ~ m1 + m2

+ m3+ E. In formula (36) we take into account only the
contribution from the cut shown in Fig. 13 by the
dashed line. The contribution to the three-particle
jump, connected with the division shown by the wavy
line, is missing, since the relative momentum of par-
ticles 1 and 2 is equal to zero. The normalization fac-
tor in (36) is obtained from (25) and (24).

Calculation of the interval (36), although somewhat
cumbersome, is quite elementary. It is convenient,
for example, to proceed in the following manner. After
integrating with respect to d4q3 with the aid of a four-
dimensional S-function, we can carry out the following
integrations with respect to d4qt in the c.m.s. of par-
ticles 1 and 3. These integrations then yield the two-
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particle phase volume of particles 1 and 3. It is ex-
pedient to introduce next additional integration with
respect to the mass (total energy) of particles 1 and 3:
<5((q! + q3)2 - mi3)dm13, and carry out integration over
d4q2 in the common center-of-mass system. The inte-
gration d4q26(qj;-m!) -<5( (P-q 2 ) 2 - m^3 ) is in this
case again integration over the two-particle phase
volume of the particles with masses m2 and mi3.
After the last integration with respect to dnii3, we
arrive at the following result, which is obtained, of
course, by going over to the nonrelativistic approxi-
mation:

/2(0, £) = Xa12«I3 (37)

Expression (37) makes it possible to obtain the sin-
gular part of the function 1(0, E) in terms of E, with
the aid of the dispersion relation

1(0, E)- E") (38)

The subtraction constant 1(0, 0) contributes only
to the amplitude of the process at zero energy. This
constant term should be included in X, the observed
value of the amplitude for the production of three par-
ticles at zero energy. Taking this into account, we
shall leave out 1(0, 0) and present only an expression
for 1(0, E), which contains a singularity in E. Substi-
tution of (37) in (38) yields a logarithmically diverging
integral, which we cut off at a value of the order of the
particle mass m, using the same considerations as in
the derivation of formula (35) from the dispersion
integral (29). We thus have

7(0, -1' n\ in £-
(39)

The last term in (39) does not contain any singular-
ities in E and is therefore included in (39) somewhat
arbitrarily. We shall see, however, that similar imag-
inary analytic terms, unlike the real terms in 1(0, E),
occur in our problem only as a result of diagrams con-
nected with multiple scattering of particles, so that
they have a unique meaning.

We have calculated the nonanalytic terms which are
linear (formula (28)) and quadratic (formulas (35) and
(39)) in the threshold momenta and are connected with
the diagrams shown in Figs. 10 and 11. By quadratic
terms we mean here also terms of the order of E In E
(or k\2 In E). We shall now explain why the nonana-
lytic and quadratic terms which we have obtained enter
in the amplitude only as a result of diagrams of the
type considered (the three diagrams of Fig. 10 and the
six diagrams similar to that shown in Fig. 11). We r e -
call first that nonanalytic terms can arise only in dia-
grams which are connected with the scattering of the
produced particles. If we consider diagrams connected
with double scattering of any pair of particles
(Fig. 14,a), and we separate the linear terms from both

a) b)

c) d)

FIG. 14.

loops, then we can readily see that their contribution
is equal to -Akj2ai2, which is an analytic expression
in kf2. Therefore the contribution of such diagrams
cannot be separated from other analytic terms. Let
us consider further diagrams connected with a large
number of scatterings (for example, the diagram of
Fig. 14,b, where the produced particles are rescattered
three t imes). From the calculations given in the p res -
ent section we see, in fact, that each additional scatter-
ing leads to an extra power of the threshold momentum
in the expression for the amplitude. Thus, the diagram
of Fig. 10 gives linear terms and the diagram shown in
Fig. 11 leads to quadratic terms. In the next section
we shall verify that diagrams with triple scattering
(for example, Fig. 14,b) give cubic terms. The reason
for this fact is perfectly clear. Each additional scat-
tering gives an extra power of the momentum in the
absorption part of the diagram. This momentum rep-
resents, in essence, the phase volume of the scattered
particles near threshold. The region which is always
important in reconstructing the singular terms in the
amplitude from the absorption part of the dispersion
integral is that of small momenta (or energies), since
large momenta correspond only to analytic terms. In
other words, in any dispersion integral we can make a
sufficient number of integrations such that small inte-
gration momenta become important in the case of small
external momenta. On the other hand, the resultant
subtraction polynomial gives an analytic dependence,
and terms of this type are anyway included separately.
Thus, we arrive at the conclusion that the diagrams
with a large number of scattering events (for example,
of the type shown in Fig. 14,b) make no contribution to
the nonanalytic linear and quadratic terms.

Singular terms can arise in diagrams describing
the scattering of particles, in which the blocks cor-
responding to scattering or transformation into three
particles are not replaced by a constant. One such
diagram is shown symbolically in Fig. 14,c. Let us
expand the blocks contained in the diagram in powers
of the deviations of the corresponding invariant from
the threshold values (we recall that after separating
all the scatterings these blocks depend near threshold
on the invariants in analytic fashion). The constant
terms in these expressions lead us precisely to one
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of the diagrams which we have taken into account,
shown in Fig. 10. The next terms introduced into the
absorption part are at least cubic in the threshold mo-
menta. As already explained, the corresponding non-
analytic terms in the amplitude itself turn out to be
in this case also at least cubic.

Finally, let us turn to consider the diagram shown
in Fig. 14,d, which includes a block for the transfor-
mation of three particles into three. We recall that
diagrams of this type contain terms which are non-
analytic near threshold, regardless of whether they
contain particle-pair scattering. If the block for
transformation of three particles into three is a con-
stant, then the absorption part of such a diagram is of
the order of E2 (the phase volume of three particles
near threshold), and the amplitude itself contains a
nonanalytic term of the order of E In E. In other
words, in this case the diagram contributes only to
terms of fourth order of smallness in the threshold
momenta. The block of transformation of three par-
ticles into three can, however, become infinite at small
particle momenta. This occurs, for example, if the
amplitude for the transformation of three particles
into three has a pole-like character (Fig. 15,a). In this
case we arrive at the already-investigated diagram of
Fig. 11. Inasmuch as the magnitude of the pole "s ix-
point diagram" is of the order of E"1, the magnitude
of the absorption part turns out to be of the order of E,

FIG. 15.

as is also seen from formulas (34) and (37). The entire
amplitude likewise turns out to be of the order of E
(or E In E) . The amplitude of the transformation of
three particles into three becomes infinite also in a
slower manner. As can be seen from the following
section, the "six-point diagram," as seen in Fig. 15,b,
will be of the order of E"1'2 near threshold. Accord-
ingly, the contribution to the amplitude from the dia-
gram of Fig. 14,b which includes such a "six-point dia-
gram," is, as already mentioned, of the order of E3^2.
Since the amplitude for the transformation of three
particles into three cannot become infinite faster than

"1

the following type: A. (amplitude of the reaction thresh-
old energy) and a^k2^, 012̂ 13, a^k2^. The latter are ana-
lytic terms which should be added to the amplitude with
certain unknown coefficients. Since these terms char-
acterize the contribution of the remote singularities,
the order of magnitude of the coefficients is Vm2 ,
where m is a quantity of the order of the masses of
the particles encountered in the reaction. Accordingly,
we put cti = ACj, where Cj ~ l /m2 . Thus we have

A (A-J,, kl
13, k2

23) = X [1 + iki2ai2 + iki3ai3 + ik23a23 + anau (74 (xl2,E)

+ 1 , (x13, E)) + ana23 (/, (xl2,E) +12 (x23,E)) + ai3a23 (I3 (x23,E)

+13 (xl3,E)) + C.ftJ, + C2k\, + C3k\X (40)

and

2x arccos x ;'

(41)

We recall that and, for example,
Lj+ms)"1. The ex-

pression for Ii(x12, E) was obtained in formulas (35)
and (39), in which Ij(x12) was denoted as I(x2

2, E).
Formula (40) contains three undetermined con-

stants Ci, C2, and C3; in addition, each of the IQ/(X, E)
contains a term in the form E In m, so that In m is
also a certain undetermined constant. Since, however,
E is the sum of the squares of kf2, k

2
3, and k23 (for-

mula (4)), the expression (40) contains essentially only
three undetermined constants.

From (40) follows directly an expression for the dif-
ferential cross section of the reaction:

\kl2kl3 +It (xl2,E) + It (xl3,E)]

(42)

The phase volume element dF can, of course, be
represented in a different form, for example, dF
~ dk12dkj3 or dF ~ kj2dkj2dfik3 (d^k3—element of
solid angle of the momentum of the third particle in
the common center of mass) . Expression (42) for the
differential cross section has one curious property.

At the end points of the spectrum, for example, as
k12 —» 0, the cross section does not contain a term lin-

0
E , to calculate the amplitude with quadratic accuracy ear in k12. This follows from the fact that in the phys-
it is sufficient to consider diagrams of Fig. 11.

We can now present a complete expression for the
amplitude, accurate to terms that are quadratic in the
threshold momenta. From the statements made above
we see that this expression is obtained from a contri-
bution of three diagrams shown in Fig. 10 (linear
terms ), six diagrams of the type shown in Fig. 11
(quadratic nonanalytic terms ), and analytic terms of

ical region of the reaction we have x2
3 — pl as kt

(see formula (10)), that is, k13 — V2/3iiUi3E . On the
other hand, the function Ii(x12, E) contains at small
values of k12 a term of the form -k12V2/31/^13E which
exactly cancels out the term linear in k12. This be-
havior of the cross section at the edge of the spectrum
is quite general. The point is that for any total energy
E (even if it is not small compared with the particle
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\

FIG. 16.

masses) the amplitude of the reaction at the edge of
the spectrum, for example as k12 —* 0, takes the form

A (*;„ = A (0, (43)

It must be borne in mind here that this property is
satisfied only in the physical region of the process. In
Fig. 16 is shown the Dalitz diagram for the reaction
in question. The physical region is a circle inscribed
in a triangle. In the physical region k\2 = 0 corre-
sponds to one point a, shown by the arrow in the fig-
ure. Expression (43) is applicable precisely in the v i -
cinity of this point, and therefore the variables kf3 and
k|3 in (43) are expressed in terms of the total energy
E. Formula (43) is easiest to derive in the following
manner. For arbitrary total energy E but small k\2,
the terms that are singular in k\2 must be sought in
diagrams of the type shown in Fig. 4,a. It is convenient
to seek again the singular term with aid of a disper-
sion relation in k\2. In calculating the singular part of
the amplitude for small k^, a major role will again be
played by small momenta of integration in the disper-
sion integral with respect to ki2. For small k\2 it is
necessary to replace the particle scattering block in
the absorption part by the particle scattering amplitude
at zero energy, after which there enters in the unitar-
ity condition the amplitude for production of three par-
ticles integrated over the angle of one of the particles
in the intermediate state. For small k\2, the region of
integration with respect to the angle corresponds to the
very small region of variation of the invariants on
which the amplitude depends. For example, for the
case of transformation of one particle into three, the
integration over the angle corresponds to integration
along the dashed line in Fig. 16, when the invariants
k\3 and k23 vary within narrow limits. Therefore the
amplitude for particle production can be replaced by
its value at the point a, and taken outside of the inte-
gral sign. This leads us directly to (43). We see from
(43) that the cross section (the square of the modulus
of (43)) no longer contains a term linear in k12. This
property changes radically if charge exchange of par-
ticles 1 and 2 is possible. This circumstance can play
an essential role, for example, in interpretation of the
experimental data for the reactions 7r + N—*N + ir + n
or y + N—-N + 7T + 7T. We shall return to a discussion of
this question later. From (42) we easily obtain an ex-
pression for the total cross section of the reactions:

a = const -E- f~l + .4£ln-

+ a12a23(l — p2)
(44)

The constant B is not calculated, since it is connected
with the constants C t which enter in (42). The near-
threshold dependence of the cross section (44) on the
energy may not take place in the presence of charge
exchange between the produced particles. This case
will also be discussed later in an examination of the
reactions TT + N—-N + 7r+7r and y + N—-N + 7r + 7r.

7. CUBIC TERMS IN THE EXPANSION IN THRESH-
OLD MOMENTA AND GENERAL STRUCTURE OF
THE EXPANSION OF THE AMPLITUDE WITH
L = 0

We have derived an expression for the amplitude
of the reaction with production of three low-energy
particles with zero total momentum, accurate to
terms which are quadratic in the threshold momenta.
The general character of the foregoing analysis al-
lows us to describe qualitatively the complete s t ruc-
ture of the expansion of the amplitude with L = 0 near
the threshold. It is obvious that the amplitude can be
represented by the sum

k;3), (45)

where each of the quantities A^ is of the order of
(E /m) n ' 2 , E is the kinetic energy of the particles,
and m is a quantity of the order of the particle mass.
When n = 0 we have Ao = A, which is the amplitude
for the production of three particles at zero energy.
When n = 1, the value of A(1)(k^2, k\z, k23) is given by
the expression (28) of the preceding section. A char-
acteristic feature of these terms (which are linear in
the threshold momenta) is that they all contain as pa-
rameters only the scattering amplitudes of the par-
ticle-pairs.

We recall that the reason for this is that the linear
terms are, by definition, nonanalytic if regarded as
functions of the complex variables k\2, k\3, and k23.
The quadratic terms in the expansion of the amplitude
(n = 2 in formula (45)) already contain new unknown
real parameters Cit C2, and C3. The physical mean-
ing of these parameters is obvious: they characterize
the interaction of the particles at short distances. The
introduction of the constants Cj in the expression for
the amplitude is equivalent to introduction of the inter-
action radius in the problem of low-energy particle
scattering. When considering the quadratic terms, we
encounter for the first time the complicated functions
of dimensional relations of the type x\2 = ki2/2/K12E,
the existence of which is due primarily to the exist-
ence of several different variables of one order of
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magnitude. The appearance of such functions is closely
related with the existence of simplest threshold singu-
larities for the following reason. Each of such functions
should, obviously, have singularities in its own variable
(x\i) for certain numerical values of x\i (for exam-
ple, when x\i = 1, as is the case with the quadratic
terms). In the opposite case, these functions would
be simply polynomials or would have an essential sin-
gularity at infinity. Any singularity of the tvpe x\i = 1
is simultaneously a singularity in the k\i plane when
k\i = 2/ij/E and a singularity in the E plane when E
= kf//2jUi/. Such singularities cannot be present on the
physical sheath and should be "hidden" under cuts
connected with the threshold singularities.

What are the parameters that enter in the terms of
higher order in (45), and foremost in the cubic terms?
As explained in the preceding section, the cubic terms
must be sought in diagrams that are connected with not
more than triple scattering of particles in the final
state. The absorption terms of the corresponding dia-
grams will, obviously, always be expressed in terms
of the paired scattering amplitudes and the amplitude
for production of three particles, calculated accurate
to quadratic terms. The latter contains, besides the
paired amplitudes, the constants Cj, C2, and C3, which
will thus enter in the final expression for the cubic
terms. However, no new unknown constants will ap-
pear, and this constitutes the manifestation of the non-
analyticity of all the cubic terms.

The fourth-order terms contain a large number of
new unknown parameters. Their number indeed be-
comes so large in this case that the calculation of the
fourth-order terms is no longer meaningful. First of
all, we get the terms of the type Bjk^, B2kj3, . . . ,
Diki2kj3, D2kj2k23, etc., which cannot be calculated. In
addition, it is necessary, as already explained in the
preceding section, to take into account in this order
the diagram shown in Fig. 14,d. This diagram gives
a term of the form E2 In E, which is nonanalytic in
the total energy and has a coefficient proportional to
the constant part of the amplitude for the transforma-
tion of three particles into three—a quantity not en-
countered in the lower-order terms.

The remainder of the structure of the expansion
(45) is clear. The fifth-order terms, for example, do
not contain any new unknown parameters compared
with the terms in the first to fourth orders. In gen-
eral, however, with increasing order there appears an
ever increasing number of constants that cannot be
evaluated, and their presence deprives the series (45)
of any practical meaning.

We now proceed to a detailed calculation of the
cubic terms in the three-particle production ampli-
tude. However, we shall not calculate all the third-
order terms, but only the real cubic terms.

The point is that only these terms interfere in the
expression for the cross section, and add to it a con-
tribution of third-order of smallness in the threshold

momenta. The imaginary cubic terms, on the other
hand, interfere only with the linear (imaginary) terms
and make a fourth-order contribution to the cross
section. We stipulate first that such a situation takes
place only in the absence of charge exchange of par-
ticles in the final state, and in a few other cases of
practical interest, which will be analyzed later
(K —• 3TT-decay, pion production in collisions between
a positive pion and a proton). In some other cases
(TI~ +p — N + 7r + 7r, y + p ^ N + 7r + 7r) the third-order
terms appear in the cross section of the reaction also
as a result of imaginary cubic terms in the reaction
amplitude. It is essential, however, that for reactions
of the first type (the neutral case, etc.) the expression
for the cross section does not contain linear terms, so
that the cubic terms are here the first correction to the
fundamental, quadratic terms. In the second case, how-
ever, the quadratic terms themselves already consti-
tute a correction to the linear terms present in the
cross section. Therefore the calculation of the cubic
terms is of lesser interest here.

The amplitude of the process can contain complex
terms connected with the scattering of particles in the
final state, and a complexity results from interaction
of the particles in the initial state. Thus, in particu-
lar, in the absence of possible intermediate states
other than the initial and final states, the amplitude
for transformation of two particles into three contains
a factor ei<5(E), where S(E) is the phase of the par-
ticle scattering in the initial state.

We shall now be interested only in the interaction in
the final state, and will separate the real and imaginary
terms in the expression for the quantity e~i^E)
x A(kj2, ki3, k

2^), and not in the amplitude itself. Later
on, the results will be applied to the case of K — 3TT-
decay, where the complexity connected with the inter-
action in the initial state does not appear at all, and to
the case of pion production in collisions between a
positive pion and a proton, where it can also be shown
that the amplitude contains no essential cubic terms
other than those calculated.

Like all other nonanalytic terms, the real cubic
terms must be sought in diagrams connected with par-
ticle scattering. It is seen, for example, that we deal
with the diagram shown in Fig. 17, where for concrete-
ness the particles 1 and 2 are scattered. We assume
that the blocks entering in the diagram can also include
different particle scatterings. To obtain the cubic
terms in the expression for the reaction amplitude it
is necessary to take into account the linear and quad-

FIG. 17.
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ratic terms in the blocks Bj and B2. It is easy to see
that if account is taken of the linear terms in k12 in
both blocks Bj and B2, we shall arrive at pure imagi-
nary cubic terms for the entire amplitude.

In fact, in this case we immediately obtain for the
absorption part a real expression proportional to kf2,
and a cubic term in the amplitude, which itself is pro-
portional to iki2. If we choose from the block B2 a
term linear in ki2, and from the block B4 a term lin-
ear, say, in k^, then we arrive at the diagram shown
in Fig. 18,a. We shall investigate this diagram in de-
tail later. If the block Bj is replaced by its threshold
value \ and we separate from B2 the quadratic terms
proportional to k2

2, we again arrive at a pure imagi-
nary contribution to the amplitude. This follows from
the fact that the quadratic terms in the amplitude of
the scattering of two particles are always real (see
formula (12)), so that the absorption part turns out to
be real here, too, and the amplitude is pure imaginary.
Let us attempt now to take into account the quadratic
terms in Bj, by replacing the block B2 with the am-
plitude of the scattering of particles at zero energy.
We must bear in mind first that the block Bj contains
analytic and real terms of the type C3k

2
2, C2k

2
3, and

Cik23, which are not connected with any definite class
of diagrams. It is easily seen, however, that these
terms give a pure imaginary contribution to the am-
plitude of the process. This statement is obvious for
the term C3k

2
2.

On the other hand, if we replace the block B^ say,
by C2k

2
3 then the calculation of the diagram of Fig. 17

is analogous to the calculation carried out above for
the diagram of Fig. 11 (the only difference is that we
had there for the block Bj the expression ik13AaJ3).
The absorption part in k12 is found to be real, and the
contribution to the amplitude is pure imaginary.

Finally, we can retain in the block B t the nonana-
lytic quadratic terms or the pure imaginary terms
that are proportional to iE and are connected with the
diagrams of double scattering of the particles. We then

arrive at the two sets of diagrams shown in Fig. 18, a
and b. The first is readily seen to coincide with the
diagram obtained by separating the linear terms in B4

and B2.
It is also useful to note that the diagrams shown in

Fig. 18, c and d, make a pure imaginary contribution
to the amplitude. The diagram of Fig. 18,c was in fact
already discarded when we ascertained that retention
of the terms linear in kj2 in the two blocks B4 and B2

leads to an imaginary contribution to the amplitude,
while the diagram of Fig. 18,d can be considered in
perfect analogy with the contribution of the already
discussed term C2kj3.

So far we have always started out from diagrams
connected with the scattering of a particle pair (see
Fig. 17 ). We see readily that if we start the analysis
with an arbitrary diagram that contains the transfor-
mation of three particles into three (Fig. 19), we again
arrive at the diagrams of Fig. 18,a and b. In fact, in-
asmuch as the three-particle phase volume is equal in
order of magnitude to E2, the only possibility for ob-
taining a cubic term is the replacement of Bj in Fig. 19
by a constant (A.) and the separation from the block B2

of the contribution which behaves like E"1'2 at small
values of E. We can verify by direct calculation that
this property is possessed by the amplitudes of t rans-
formation of three particles into three, shown in
Fig. 20,a and b. There are no other "six-point dia-
g rams" possessing the required property. Substitu-
tion of the diagrams shown in Fig. 20,a and b for the
block B2 in the diagram of Fig. 19 brings us to the
diagrams of Fig. 18,a and b.

FIG. 19.

Thus we have shown that the real cubic terms of in
terest to us can be contained only in the diagrams of
Fig. 18,a and b. We now calculate these cubic terms.
Analysis of the diagram of Fig. 18,a, is perfectly ele-
mentary, since integration over the loop consisting
of particles 1 and 2 is independent of the other inte-
grations. This means that to obtain cubic terms we
need here only multiply the second-order terms that
depend on kj2 (and E) by the quantity ikj2a12. For the
contribution of the diagram 18,a we then obtain the
following expression (see formula (41)):

(46)
The analysis of the diagram 18,b is somewhat

more complicated. It is convenient to use for its ca l -
culation the dispersion relations in k|2 and E, in a
manner similar to that used in the calculation of the
quadratic terms.
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The absorption part in kf2 is determined by the
cross section of diagram 18,b. Part of the diagram,
situated to the left of this line, is the quantity Ii(x13, E)
calculated in the preceding section. We can show that
if we take the real parts of Ii(x13, E) then the corre-
sponding contribution to the absorption part is real
when k2

2 < 2^12E and imaginary when k2
2 > 2^12E. On

the other hand, the contribution to the amplitude itself
turns out to be pure imaginary in this case. A check
on the foregoing statement calls for rather cumber-
some calculations; we shall not present even the final
expression, since the explicit form of the obtained
imaginary cubic terms is of no interest to us at all.
On the other hand, if we separate from I1(x13E) the
pure imaginary terms, the final contribution to the
amplitude turns out to be real. The calculation of the
absorption part and of the dispersion integral is very
similar here to the corresponding calculation for the
quadratic terms. The final expression for the contri-
bution of diagram 18,b takes the form

- 22P.) (47)

To obtain (47) we can either use the dispersion r e -
lation in kj2 with two subtractions, or make no sub-
tractions at all but cut off the dispersion integral in
k|2 at a certain value A2. The diverging parts of the
integral, which depend on A2, turn out here to be pure
imaginary and of no interest to us. The latter remark
allows us to avoid calculations of subtraction constants
that depend on the total energy in the dispersion rela-
tion in k2

2. Direct calculation of these constants, simi-
lar to that made in the preceding section, also shows
that they are pure imaginary.

The complete expression for the cubic terms in the
amplitude is obtained by summing the contributions
from six diagrams that differ in the permutation of
particles of the type shown in Fig. 18,a, and twelve
diagrams of the type shown in 18,b.

8. PRODUCTION OF THREE PARTICLES IN A STATE
WITH UNITY TOTAL MOMENTUM

So far we have investigated the amplitude for the
production of three particles with total angular mo-

mentum L = 0. In this section we consider the am-
plitude with L = 1, accurate to terms quadratic in the
momenta.

The expansion of the amplitude of production of
three particles in powers of amplitudes with different
total angular momenta was carried out in Sec. 3. In
the same section we introduced the notation for many
of the quantities used in the present section, which we
shall now employ without further elaboration.

The amplitude for the production of three particles
with total angular momentum L = 1 is completely de-
termined, accurate to terms quadratic in the momenta,
by two terms of the series (16):

Ti0(k'l2, k*13)k2z2. (48)

This follows from the fact that the amplitude with
L = 1 is connected only with those T m n for which
m+n is an odd number. On the other hand, the next
terms of the series (16) with odd m+n, although con-
tributing to the amplitude with L = 1, are obviously
terms of higher order.

The terms linear in the momenta are obtained from
(48) by replacing Tlo and Tol by their threshold values.
The quadratic terms result from the fact that the am-
plitudes Tj0 and Tol contain nonanalytic terms that
are linear in kn. These terms, naturally, result from
the diagrams shown in Fig. 21. The purpose of the
present section is in fact to calculate these linear cor-
rections to Tlo and Tol. We note first, however, that
since kj+k2+k3 = 0, the following relation holds

,z2 + k3z3 = 0. (49)

=2=^^\

FIG. 21.

This means that expression (48) can be rewritten also
in the form of a linear combination of kjZj and k3z3 or
of k2z2 and k3z3. For concreteness, we shall use the
angles zj and z2 and we shall show at the end of the
section how to write down the answer in symmetrical
form.

We denote the threshold values of the amplitudes T lo

and Tol by at and az, respectively. The terms
linear, say, in k12 are then obtained by considering the
diagram shown in Fig. 21, in which the block to the left
of the dashed line should be replaced by o^kjZj +a2k2z2.

The diagram of Fig. 21 can be calculated with the
aid of the methods developed by us in the preceding
section. The linear corrections to this diagram, which
are of interest to us, are determined by the dispersion
integral in k2

2:

k2 (" 2 B Ik' )

-ir \ dk'i2 T72-7772 -J;l —r-r > (50a)
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where the absorption part B(kJ2) is equal to

B (k'12) = k"12a12
dz
IT (50b)

Here k' and k£ are the momenta of the intermediate
particles 1 and 2 in the c.m.s., z is the cosine of the
angle between the relative momentum of particles 1
and 2 in the intermediate state (kj2) and the momen-
tum of one of the incident particles (P) , zj or z2 are
the cosines of the angle between P and kj or k2, r e -
spectively. Multiplying in scalar fashion P by the r e -
lation (6) between kj, k2 and k3, k'12, we obtain directly

k'z —

where /3j, /32 and p3 are the threshold values of T1;

T2 and T3. Owing to the presence of the connection
(49) between kjz1? k2z2 and k3z3 the functions Tj in
(54) (and also /Sj) are not uniquely determined. In
fact, one of the quantities Ti is arbitrary; (53) cor-
responds to the choice T3 = 0.

9. RESONANT INTERACTION OF PRODUCED PARTICLES

The entire analysis in the preceding sections pertains to the
case of nonresonant interaction of produced particles, that is, to
the case when the scattering lengths of the produced particles are
of the order of the interaction radius a^ - r0. If the amplitudes a{l

are large (a^ » r0), then there exists an energy region in which the
— k'12z, (51) condition k.,r0 « 1 is satisfied, but nevertheless ] 1. Let us

which allows us to integrate directly with respect to
z in (50b); we get

B (k'^) = kzz3al2k[J - <v
771%

a2 (52)

From this it follows immediately that the integral in
(50a) is equal to iB(k12). By considering in similar
fashion the corrections connected with the scattering
of other pairs of particles, we obtain the following ex-
pression for the amplitude with L = 1, accurate to
terms quadratic in the momenta:

A;

i + ikl2ai2
m1al + m2a2

- k2z2 I a2 -f iki2ai2 ^ i m2a2 + ^ ^ ( a 2 _

+ m3 V J

(53)
The structure of the amplitude for the production of

three particles with L = 1 is thus similar to the s truc-
ture of the amplitude with L = 0. The first terms of
this amplitude are also determined by the unknown
constants aj (the amplitudes at threshold energy),
while the correction terms are determined in terms of
the same constants and in terms of the scattering
lengths of the produced particles. The imaginary and
real parts of the complex constant (just as the imagi-
nary and real parts of the amplitude A.) are connected
by the unitarity condition.

Expression (53) is asymmetrical in the indices 1, 2,
and 3. This is connected with the special choice of the
amplitude in the form (48). If we use from the very
outset a symmetrical notation for the amplitude in
the form

Tikizi + T2k2z2 + Tsk3z3,

then we readily obtain in place of (53) the following
answer, which is symmetrical in the indices:

(54)

=-- k,z, \ B, -1- ik23a.,3 f B, ^ — B2 ~3 — I

( 5 5 )

consider the simplest case when only one of the paired scattering
amplitudes is large, say a12. From an examination of the preceding
section it is clear that it is necessary in this case to take into ac-
count diagrams that contain an arbitrarily large number of scatter-
ings of particles 1 and 2. Whereas earlier, in the zeroth approxima-
tion, the amplitude was determined by the single diagram of Fig. 22,
to obtain the amplitudes in the zeroth approximation we must now
sum all the diagrams shown in Fig. 22. This summation obviously
is perfectly analogous to that carried out in Sec. 3 when consider-
ing the amplitude of two-particle scattering. As a result we obtain
for the amplitude in the zeroth approximation the well-known Migdal-
Watson formula

(56)

where A is the amplitude of the process at zero energy.

FIG. 22.

The corrections linear in the momenta to this expression can be
of two types: corrections of the order of k12r0 connected with the
effective radius of interaction of particles 1 and 2, and corrections
of the order k^a13 and k^a23 connected with single scattering of the
nonresonantly interacting particles. The corrections of the first
type are accounted for in a manner similar to that used in the case
of two-particle scattering. It can be shown that it is sufficient to
make in (56) the substitutions

fl]2 " - «io I I — 1 -T- khrna.

A rigorous proof of the foregoing substitution can be obtained,
for example, with the aid of a quantum-mechanical analysis ["].
The reason for the substitution A -> A (1 - \ k^a12r0) lies in the fact
that the three-particle wave functions pertaining to different values
of k12 turn out to be proportional to one another in the region of ac-
tion of the forces, with accuracy linear in r0, provided only a12 »
r0. We can present also the following explanation. Diagrams which
do not contain pair scatterings were replaced in the zeroth approxi-
mation by the constant A. We are now interested essentially in the
expansion of these diagrams in k\2. Let us consider, for example,
the process N + N ^ N + N + u. The other diagrams which do not
contain pair scatterings of the produced particles include, for ex-
ample, the diagram shown in Fig. 23. The block shown in the figure
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FIG. 23.

can be replaced, with accuracy linear in kr0, by the quantity
a12 (1 - | k2

2a12r0). From this we see that in order to take into ac-
count diagrams of the type shown in Fig. 23 the quantity A must be
replaced by \ (1 - i k2

2a12r0). On the other hand, the contribution of
these diagrams to X turns out be larger than the contribution of the
other diagrams if the quantity al2 is large (a12 » r0). Thus, we ob-
tain the following correction to the Migdal-Watson formula:

A-—
X I 1 — -;- k2

12r0ai2

\ — ikv,a<.

(57)
1

—-2-*12r0«12

As already mentioned, other corrections linear in the momenta
result from single scattering of the non-resonantly interacting parti-
cles. The situation reduces here to a calculation of a sum of the
diagrams shown in Fig. 24, a and b. The diagrams of Fig. 24, b
must also be multiplied by the quantity (1 - ik12a12)"\ since addi-
tional multiple scattering of particles 1 and 2 is possible in these
diagrams. (We do not show the corresponding diagrams to save
space.) The calculation of diagrams 24, a and b was carried out in
[*•"]. The results obtained in these papers are quite complicated
in form, and are therefore not presented here. We note, however, the
following curious circumstance . When dealing with a reaction in
which particles 1 and 2 are much heavier than particle 3, for exam-
ple, the reaction N + N -> N + N + n, all the corrections connected
with diagrams 24, a and b contain an additional small factor y/JI/M
(p. and M are the masses of the pion and the nucleon). Therefore,
for reactions of this type, the corrections connected with the inter-
action radius turn out to be more significant and the simple formula
(57) can be used in the analysis of these reactions.

We shall now deal briefly with the question of resonant interac-
tion of all three particles, where all three pair amplitudes are much
larger than r0. In this case it is necessary to sum all the diagrams
describing the scattering of the produced particles even in the
zeroth approximation. For the sum of these diagrams we can obtain
a certain integral equation [15|ls], previously derived by Skornyakov
and Ter-Martirosyan from a quantum-mechanical analysis of the
problem [3]. We can also obtain in similar fashion equations in an
approximation linear in kr0 [

17>18]. A detailed study of the question
of resonant interaction of three particles is beyond the scope of the
present review.

We should perhaps also note that the formulas derived in the
preceding sections (where a nonresonant interaction of the produced
particles was assumed) remain in force if a^ » r0 but the total ki-
netic energy is so small that k.,a^ « 1. The only circumstances
which must be borne in mind in this case is that when a i ( » r0

all the undetermined constants connected with the analytic terms
are also expressed in terms of the pair scattering amplitudes. The
reason for this is as follows. The analytic quadratic terms in (40)
were essentially the result of cutting off the integrals with respect
to the momenta at kfj ~ 1/rJ - m2. In the resonance situation this
cutoff occurs much lower, at k\i ~ 1/afj, since the blocks of the
pair resonances contain factors of the type (1 - ik22a12)"'.

10. THE REACTIONS Tr
AND K -* 377-DECAY

n- AND

We consider now certain real processes involving participation
of three particles at low energies in the final state, and discuss
the possibility of their experimental analysis from the point of view
of the theory developed above. One of the first questions arising in
this connection is to separate experimentally the states with defi-
nite total angular momenta. Although such a separation does not
raise any special difficulty in principle, we wish to note one sim-
ple circumstance. The expression obtained for the cross section of
the reaction with total angular momentum L = 0, accurate to quad-
ratic terms (formula (42)), can be used directly for an analysis of the
experimental data if the latter are averaged over the angles that de-
termine the relative orientation of the plane of particle production
and the direction of the incident beam. The complete expression for
the cross section of the reaction contains both terms with L = 0 and
terms corresponding to the angular momentum L = 1 (formula (53)).
If we average the square of the modulus of the sum of the terms (40)
and (53) over the angles •& and cp, then the interference terms, of
course, drop out and the entire contribution of the terms with L = 1
to the average cross section turns out to be

If we use the expressions (17) for z t and z2, then we readily see
that the foregoing integral contains terms of three types: k*, k2 and
k, • k2. By virtue of the equality k, A k2 + k3 = 0 all these terms can
be written in terms of a linear combination of kj2, k

2
13, and k23. We

see therefore that in the averaged cross section the terms with
L = 1 lead only to a redetermination of the constants Cu C2 and C3

in expression (40).
The theory developed in the preceding sections for neutral and

spinless particles can be generalized to include the case of creation
of real particles. It is sufficient then to bear in mind only that the
vertices of the diagrams in question can correspond not only to elas-
tic scattering of particles, but also to their charge exchange. Thus,
for example, to calculate the linear terms in the reaction TT + p ->
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FIG. 25.

n + 77 + n it is necessary to consider all the diagrams shown in
Fig. 25.

Whereas in the first three diagrams the vertices corresponding
to the transformation of two particles into three contain the ampli-
tude of the process n + p -> n + 77 + n at zero energy, the two
other diagrams contain the amplitudes of the processes n~ + p ->
n + 77° + 77° and n~ + p -> p + ir~ + n". We now proceed to consider the
concrete reactions.

a) The reaction 77 + N->N + 77+7r. We consider first the reaction
for the production of two pions when a pion collides with a proton:

Finally, we introduce numbering of the particles in the sequence
in which they have been written out in the reactions (58). Then, for
example, the quantity k12 for the first reaction will denote hence-
forth momentum of relative motion of the first and second particles,
that is, of the 77+ and 77" mesons, k23 for the third reaction is the
momentum of relative motion of 770 and p, etc.

If we disregard the dependence of the cross sections of the re-
actions on the energy of the incident beam, that is, on the total en-
ergy of the produced particles, then the terms of the type k^ x
ln(/i/E) and E In (///E) are included in the terms of the type Ck?;.
We then have for the squares of the matrix elements of the reactions
(58), accurate to quadratic terms,

^

H~ 11 (#13)] "I" P2 ['l'l2^'23~r 11 (^12) ~r -

+ /3(^23)]+P4[/l(^2) + A

Pi=-2(v"«+-2-M;)(*« +

[kl2kl3 + It (xi2)

3)1 + Ps 1*13*23 + h (*13>

2 — V2P13); J

(63a)

JI~-f-p - JT Jl~-j-fl,
ji° + n,

.-I-4-JIO4-P.

(58a) v

(58b)
(58c)

We denote the amplitudes of these reactions at zero energy re-
spectively by

and put

If we introduce the amplitudes of scattering of pions at zero en-
ergy in states with total isotopic spin T = 0 - a0 and T = 2 - a2,
normalized as the limit of the quantity k"'e lS sin S, as k -» 0, then
the different amplitudes for the scattering and charge exchange of
the pions at zero energy are expressed in terms of a0 and a2 by
means of the formula

= -3-«0 + -3-«2 = as

(60)

Here, for example, the quantity a++ denotes the amplitude for
the scattering 77 +77 -» 77 + 77 , while â °_ denotes the amplitude
of charge exchange 7r+ + 77" -> n° + 77°, etc.

The normalization of the amplitudes is chosen such that the
total cross section is a = An \ a j 2 for non-identical produced pions
and CT = 277 I a |2 for identical pions. Thus, for example,

= 2« I 2a2 |
2 = 8n | a2 |

2, a|8 = 4
(61)

The amplitudes for the scattering and charge exchange of a pion
with a nucleon can also be readily expressed in terms of the iso-
topic amplitudes b and b 3 / 2 :

— = 01

Y2 1*13*23

Y 3 = —

13+ *23) + 2/ ) + h

(63b)

5 = 9,- — <ps. (59) da (n~n
= 0l U +

*13)] + 62
+ 63

3 = 2 (fc, - - $M

[*i2*i

l +fi4 [I, (xu) — I

+ 85/3 (*

l —a3ia32 —p31p32],

6 = - 2 (6,)2 [a 3 ia 3 2+ p31p32]

(63c)

The functions lt and I3 are defined as follows:

M + 2

"1 2
- arccos x.

a; r»(Jlf+2)
iTI72 L

3 (M + i

(64)

Here E is the total kinetic energy of the three particles and M is
(62) the nucleon mass; the pion mass is set equal to zero.
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Formula (63) includes terms of the type const • k^. Here, how-
ever, there is no longer any need to include Ck23 in (63a) and (63c),
since k23 is expressed in terms of k2

12, k 3̂ and E, and the depend-
ence of the total energy will not be written out in these formulas.
In expression (63b) there is no need to write out both squares k23

and k2
13, since it contains only their sum which is expressed in

terms of k*2 and E.
Let us indicate immediately how to modify (63) in order to sep-

arate also the dependence on the total energy. In all three formulas
it is necessary to add the term const • E and to make the substitu-
tions

11 (x) -*• h (x) + K, (x), I3 (x) ~> I3 (x) -f K3 (x),
where

Ki(x)=- — ]

. . . . 2E ,

/sS
— (3M2 + 6M +

" 3 (JlT[~T)2~ x~
(65)

Expressions of the type k12k13 + ll (x12) + It (x13) which have
been separated out in formulas (63), behave at small values of k12

and k13 like k2
12 and k 3̂. It is more difficult to distinguish them ex-

perimentally from the terms C,k*2 and Ctkj3 than the terms that fol-
low them. Therefore, for example, the determination of the coeffi-
cients /3,, j32, and /33 is more complicated than that of /34 and /35 .
The latter, however, are always proportional to the product of
charge-exchange amplitudes, and therefore (like the linear terms)
they yield information not regarding the two pion scattering lengths
but only regarding the combination a2 - a0.

The quantities a.k and /3 i k in (63) can be expressed, owing to
the unitarity condition, in terms of the 77N scattering phase shifts
S n and S31 in the states p l / 2 with isotopic spin 1/2 and 3/2 at an
energy corresponding to the threshold of production of two pions.

If we write out the isotopically invariant matrix elements for
production of two pions in states with T = 0 (total isotopic spin
1/2) and with T = 2 (total spin 3/2) in the form

— F
~~ 1 11

then it can be readily shown that

(66)

11 ' 3 y5 31

11 + JyJ F'Me 31'
1

(67)

From this we readily find, for example, that

3 5 ^ ( 8 3 , - 6 1 ! )

x VlO + i/x VlO—2 cos (63i — 6n)

—cos (631 — <\i)a (2/*
(68)•yW— 2 cos (631 — 6,i)

'• = F u /F 3 1 , and also the connection between a12 and a13 or /312 and

linear in the momenta. Then the analysis of the experimental data
becomes much simpler. If we represent the experimental depend-
ence of the cross section, say, of the reaction n +p->77 + n + n
on k12 and k13 in the form

da
(70)

then, as seen from (63a) and (69), the coefficient ratio, A/B is de-
termined only by the amplitudes of the charge exchange of the pions
with one another and of the pions with the nucleon:

A
If

a2 — 0
(71)

Inasmuch as b t /2 and b3/2 are known, an experimental analysis
of the reaction n +p->n + 7r + n makes it possible in this man-
ner to determine the amplitude of the charge exchange of pions at
zero energy. The corresponding experiment is presently under way
in Dubna. The preliminary value of the amplitude for the charge ex-
change of pions turned out to be ["]

We proceed to consider the production of a pion in collisions
between a n+ meson and a proton. In this case two reactions are
possible:

re, (72a)

(72b)

Both amplitudes (72) can be readily expressed at zero energy in
terms of the previously introduced matrix elements for the produc-
tion of a pion in a state with total isotopic spin 3/2 (the pion spin
is 2). We have

(73)

Since these amplitudes do not have a relative phase shift, no
terms linear in k^ will enter in the expression for the cross section.
On the other hand, the expression for the cross section depends
only on the amplitude of nn and JZN scattering at zero energy. We
write out the result, expressed in terms of the isotopic amplitude
a, and b, /,, b, / , :

do (n+x+n) _ 4 ,

'3 0*l3) + '3 (*2

Ps=—£ (*,/,-&i/s>»;

—}f ~ } = TO f 31 ^ f ' + Vl U-12*

+ V2 [̂ 12*23

(74a)

*12) + h

*23>] + Y3 [*13*23+ hi (zi

h (̂ 23)] + Y4/3 (̂ 23) + °

— ~ b3/2

(74b)

a,2 = —y2a.Lo, 1 -f- pi2 = —y2 p13. (69)

If the kinetic energy of the produced particles is particularly low,
we confine ourselves in formula (63) only to the terms that are

The functions It and I3 are defined as before by means of formulas
(64), while Dt and D2 are unknown constants. If we are interested
in the energy dependence of the cross sections, then we must again
add to the right side of (74) a term proportional to E, with an un-
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determined coefficient, and make the substitution (65). Of the two
7777 scattering amplitudes, only a2, of course, enters in (74).

Finally, let us write out the expressions for the total cross sec-
tions of the reaction (58), retaining terms of order E1/2 and Ex
In (ji/E) compared with unity. The terms proportional to E include
already the undetermined constants and are not expressed in terms
of the scattering amplitudes. For the reactions occurring in n~
meson—proton collisions we have

a (it E In

32
15JI

32

M+l

4 / M M

> = WV M + 2M + 1

In collisions between a 77 meson and a proton the total cross
sections take the form

BE In ^

(76)

It is easy to show that the equality of the coefficients B and B'
is a simple consequence of isotopic invariance.

Inasmuch as for the reactions (72) the expressions for the cross
section do not contain linear terms, it is meaningful to calculate for
them the terms cubic in the momenta, which serve as the first cor-
rection to the quadratic term. The amplitudes of the reactions (72a)
and (72b) have no relative phase shift, and therefore the situation
with the cubic terms turns out to be very similar to the neutral case
considered in Sec. 7. An explicit expression for the cubic terms in
the cross sections of reactions (72a) and (72b) was obtained in ["]
and will not be presented here, to save space.

b) The reactions y + p->N + 77 + 7r. We now consider the reaction
for the photoproduction of two pions:

y+p-

Y + P -

(77a)

(77b)

(77c)

It is easy to note that since the charge states of the produced par-
ticles are obtained by substituting all the projections of the iso-
topic spin of the final states in reactions (58), formulas (63) and
(65) will be applicable also in this case if we adhere to the number-
ing of the particles in the same sequence as they are written out in
reaction (77). Now, for example, the momentum k13 for the reaction
(77a) is the momentum of relative motion of the pion and the pro-
ton, the momentum k23 in the third reaction pertains to the motion
of the pion relative to the neutron, etc.

The amplitudes for photoproduction at zero energy At have, of
course, nothing in common with the amplitudes of the reaction n +
N -• N + 77 + n. They can be expressed in terms of the matrix ele-
ments for photoproduction in states with total isotopic spin 1/2 and
3/2, namely, G^e"1'1 and G31e ia", for a total angular momentum
1/2:

from which we get in this case

_ 3sin(a31-
y V5 +1IV V'5 - 2 cos (a31 - a41) '

„ _ 2/y V5 — y V5 — cos(a31 — aH)
y 1/5 + 1/2/1/5 — cos(a31—aH) ' (78)

The phases a u and a31 can be related with the aid of the unitar-
ity condition to other processes. It is easy to note that relation
(69) remains in force between the quantities a12, a13 and /312, /313.

c) The decay K+ -» 3?7. The expression for the probabilities of
the decay K -» 3r7 was obtained, accurate to terms quadratic in the
momenta, by Gribov [']. Since the rule AT = 1/2, is satisfied in K+

decay, the produced pions can only be in states with unity total
isotopic spin. Taking this into account, we can readily rewrite the
formulas of ["] for the probabilties of the decays K+ -> 277+ + n~ and
K -» 277° + 77 in the following form:

dW
dY == 4X2

+ h 1*13*23

[ka (k13 + k23) + 2/ (x12) +

*13) + ! (̂ 2

(79a)

dW

+ Y2 [*13*2

(79b)

Here k^ are the momenta of relative motion of the i-th and l-th
pions. The indices 1 and 2 pertain to identical particles

1/3 2 x arccos x /" 8

= k/x, = MK—3=^0.56; (80)

MR is the mass of the K meson, the pion mass is equal to unity,
and A, a, and S are real numbers determined from experiment;
/3 and y; are numbers expressed in terms of the pion scattering
lengths a0 and a2:

5 . 1 . 10

Y 3 = g-(a0 — «2) J
(81)

Using formula (79a) and (79b) we can obtain expressions for the
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total probabilities of the processes K -+2n \ n and K -> 277° +
7r :

W =X2Q' {1+v.2 [2a-|- 5 + 0.0-',YI + 0.02Y2 —0.42Y3]}; (82b)

fi and fi' are the phase volumes of the produced pions. Since 2fin+ -
2fino ~ 9.2 MeV, fl ' i s somewhat larger than fi.

The ratio of the decay probabilities is

WIW =-().;UD [l+0.05(fl0 — a2)
2].

In this formula, terms of the order of unity take into account the
difference in the phase volumes of the produced pions [2<J.

From formulas (79a) and (79b) we can also obtain the energy
distributions of the produced pions:

I V =•; 1 -I-v? [Pi/', (x) + P2F2(x) + P ) - \ - ~ K - a 2

W'n+-.= (x)-2 (a-6)

(84a)

(84b)

(84c)

the quantity x2 is connected with the energy E of the meson under
consideration in the following manner: K2 = K2X2 + 3E/2.

In formulas (84) we can leave out all the constant terms of order
K2, since after including them in the normalizing factor they affect
only terms of order K4. The functions of Ft(x), F2(x), and F3(x) are
relatively easy to calculate, and it turns out that they can be well
approximated in the region 0 < x < 1 by the following polynomials
of x2:

-Pi (x) = -0.33 -f 0,74*2, F2 (x) =--0.42-0,74x2,

F3(x)—— 0,33 — 0.16*2. (85)

If we introduce e = E /E m a x then the formulas (84) can be re-
written in the form

/ifl0o2 — O.Sal — 0.5 (a — 0)]; (86a)

- 1 / 2 ) [ — O.lag — 0,2a0a2-|-0,2ai + 0.25(a-6)]

o-«2)![7(Vi^)+0.1]. (86b)

-V2) [-l>2«o + l/i«l +1.2 (a-6)]

+ l.Z(ao-a2)m(yT=~e)+ 0.1]. (86c)

The energy spectra in the reactions under consideration were
measured by several workers [25]. Experiment yields

R V = 1 + (e — 1/2) (0.53 ±0,07), H/
It+ = 1 — (e — 1/2) (0-26 ± 0.09),

(87)

Formulas (86) contain one constant a — S which is not known be-
forehand, and therefore an investigation of the energy spectrum of
one of the pions cannot yield any information concerning a0 and a2.
Since | I (n/(l - e)) + 0.1 | < 0.1 when 0 < e < 1, the last term in
(86b) is of the order of 10"2. We therefore have approximately (W _
- 1)/(W + — 1) = -2, which agrees with experiment. To obtain infor-
mation concerning a0 and a2 from the energy distributions, it is ne-
cessary to study both the reaction K+ -> 277+ + 77" and the reaction
K + ^ 277° + 77+.

Experimental data on the energy distribution of 77 mesons in
the reaction K+ -» 277° + 77+ are quite crude. They merely allow us to
estimate the combination of the quantities a0 and a2. The last term
in (86c) is of the order of 0.1. Neglecting this term, we can verify
that comparison of (86) and (87) yields a2, - aoa2 + 0.5a2 = 0.7 + 1.

Using formulas (79), we can also obtain the distribution with
respect to z (difference in energy between the identical mesons,
divided by its maximum value z = \J3K~2 (E t - E2)). For the reaction

+ +
(82a) K -. 277 + 77 this distribution is of the form

Experiment yields [25]

(88)

(89)

(83) It follows therefore that |a2 + 10a0a2| < 2.5. If a0 is not much larger
than a2, then \ aoa2 0.25.

Thus, we see from the foregoing analysis that the experimental
data on K+ -» 377 decay do not contradict the formulas derived under
the assumption that a0 and a2 are small. However, the experimental
accuracy does not allow us yet to determine a0 and a2 from an anal-
ysis of K+ -> 3T7 decay.

The terms that are cubic in the momenta of the produced parti-
cles were calculated in ["]. They turn out to be very small, and it
is presently meaningless to compare them with experimental data.

APPENDIX

In this appendix we present a simple derivation of the Landau
rules [26] for finding the singularities of Feynman diagrams. For
concreteness we shall consider the triangular diagram shown in
Fig. 26, although the analysis that follows has a general character.

FIG. 26.

Let the momenta of the external particles be p,, p2 and p3 and
let their masses be m1; m2 and m3, and by definition p? = m2 (1 =
1, 2, 3). From the momentum conservation law we have p1 + p2 +
p3 = 0. The momenta of the internal (virtual) particles will be de-
noted by qt, q2, q3, and their masses by /i,, fi2, [iz. Generally speak-
ing q- ^ Mi-

The Feynman integral for the diagram in Fig. 26 is, apart from
a factor,

T d49i
2 = ?1 — P3. ?3 =

We consider first integration with respect to dq10. The integrand
has in the complex q10 plane poles at

\
9io =

i.e.
i.e.

(A. 2)

One of the possible arrangements of these poles is shown in
Fig. 27. The dots, crosses, and circles denote respectively poles
written out in the first, second, and third lines of (A.2). It is obvi-
ous that the integral in (A.I) can have a singularity only when the
poles in the q10 plane of the integrand expression compress the in-
tegration contour, for example, when the position of the cross lo-
cated above the real axis coincides (apart from the sign of an infi-
nitesimally small imaginary part) with the position of the circle
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9,o

FIG. 27.

located below the real axis. Thus, the integral (A.I) has a singu-
larity only when at least two or all three denominators in (A.I) van-
ish simultaneously:

or else

??=u?

» = 1, 3,

(i = l, 2, 3).

i = 2, 3) (A.3)

(A.4)

The conditions (A.3) constitute essentially the conditions for
determining the singularities of the simpler diagrams, in which one
of the internal lines contracts to a point (as, for example, in Fig.
28). This can be immediately verified by writing out the expression
for such a simplified diagram. We shall now stop to discuss only
the singularities connected with the condition (A.4). Using a rea-
soning which is perfectly analogous to that which follows, we can
easily show that the conditions (A.3) lead to simple threshold sin-
gularities pj = (fi3 + n2y, p2

2 = (ft, + ii,)2, Pj = (//, + Mi)2-

FIG. 28.

Conditions (A.4) are certainly not sufficient for appearance of a
singularity, in fact, it is clear from the foregoing that it is also ne-
cessary that when the singularities of the integrand coincide, some
be located above and some below the real axis. Since the sign of
the infinitesimally small imaginary increment is opposite to the
sign of 1qi0 (see (A.2)), it is necessary for this purpose that one of
the three quantities qI0, q20, or q30 have a sign opposite to the other
two. In the more general case, when the large number q? - ^ van-
ishes, it is required that some of the quantities qlo have opposite
signs. We note that this requirement has an invariant character,
since the sign of the time-dependent component of a time-like vec-
tor does not depend on the choice of the reference frame.

We now consider three positive numbers a.,, a.,, a3, which we
shall determine later. We write out a three-dimensional vector
cci<h + a2i2 + a3i3 a n ^ choose a coordinate frame such that the momen-
tum vanishes in it.* Thus, by definition

(A.5)

We now consider the quantity a,q10 + a2q20 + a3q30. Since one of
the quantities q^ has a sign opposite to that of the other two, we
can always choose a,, c\ and a, in such a way that the combination

ai<ljo + a2<l20 + a3<33o v a n i s h e s :

*In this case the 4-vector a tq t + a2q2 +'a3q3 is assumed at first
to be time-like. Later, by choosing suitable values of a,, it becomes
identically equal to zero. It is obvious that such a zero vector can
always be obtained as a particular (limiting) case of a time-like
vector.

a2?20 + a3?30 = (A.6)

The conditions (A.5) and (A.6) can now be formulated in the
following invariant form. For those values of qi which correspond
to the appearance of a singularity in the integral (A.I) we can al-
ways find such positive numbers a{ that the 4-vector a ^ + a2q2 +
a2q3 vanishes:

3

2 a i 2 i = °- (A.7)

The conditions (A.4) (or (A.3)) and (A.7) have a perfectly general
character and are called the Landau rules. It can be shown that
when considering real singularities, these conditions are sufficient
for the appearance of a singularity. The statements that follow per-
tain to the concrete case of the diagrams in Fig. 26. Taking the
scalar products of (A.7) with q,, q2 and q3, we obtain the system

(A.8)

?s) = • 0 ,

«l (? W2) + a2<?l + a3 (q2q.j) = 0,

<*i (ills) + a2 (?2«3) + a3?s = 0.

(A.8) defines a i which differ from zero only under the additional
condition that the following determinant vanishes:

1%

= 0. (A. 9)

By virtue of (A.4) we have q? = JL\ and, for example, (q^j) =

- 5 [(tli " lif - 1i - if\ = ~2 [ms " Mi " fj] = -Mi/*2Z3- With the aid
of the variables z introduced in this manner, we can rewrite (A. 9)
in the form (see page 135):

? - M g - | - z § - 2 W 3 - l = 0 . (A. 10)

If we solve (A. 10) with respect to one of the invariants m], m2,
m3 or, which is the same, with respect to one of the quantities z,,
z2, z3, we obtain two solutions. We can show that only one leads to
positive a.. The corresponding singularity turns out to be the only
one on the physical sheets specified by the exact definition of ar-
rangement of the singularities in the integral (A.I), that is, by for-
mulas (A.2).
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