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1. INTRODUCTION

THE purpose of this survey is to familiarize the
reader with a class of radiation effects that can be
combined under the title of ‘‘diffraction radiation.’’
This type of radiation has various specific features
that distinguish it from the well known radiation effects
such as radiation from a source in nonuniform motion,
Vavilov-Cerenkov radiation and transition radiation.

At the start of the survey we give a brief descrip-
tion of the well known radiation effects and a definition
of diffraction radiation. This is followed by a discus-
sion of the character of the field of moving sources of
different types. Then there is a brief presentation of
the mathematical techniques for getting exact solutions
of problems of diffraction radiation. The major part
of the survey is devoted to considering various cases
of diffraction radiation.

The radiation from a moving charged particle can
be divided into several types, depending on the physical
conditions under which the radiation occurs.

By diffraction radiation we shall mean the broad
class of phenomena associated with the radiation from
field sources moving uniformly in the neighborhood of
some optical homogeneity, provided this radiation does
not reduce to Vavilov-Cerenkov radiation or to transi-
tion radiation.

To explain the physical nature of diffraction radia-
tion we consider a simple example. Suppose a point
charge moves uniformly in a straight line in free
space past some ideally conducting body, which here
plays the role of an optical inhomogeneity. The field
of a uniformly moving charged particle can be repre-
sented as a superposition of plane waves of different
frequencies. All of the waves are damped exponentially
as we move away from the trajectory of the particle.
This corresponds to the familiar fact that there is no
radiation during uniform motion of a particle. The
presence of the optical inhomogeneity leads to scatter-
ing of the partial waves. Now the total field is given by
the sum of the field of the particle alone and the scat-
tered electromagnetic field. Even though the particie’s
own field is expanded in damped components, the scat-
tered field may contain undamped waves, and this
corresponds to radiation.

We can give another explanation of the nature of dif-
fraction radiation without resorting to an expansion of
the field in plane waves. During the motion of a charge
past an ideally conducting body, varying currents are
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induced on the surface of the body. These currents are
the source of the diffraction radiation.

From our remarks it follows that the solution of
problems of diffraction radiation involve the same dif-
ficulties as the solution of problems of diffraction of
electromagnetic waves by fixed optical inhomogenei-
ties. The two problems are closely related. Neverthe-
less, the use for diffraction radiation of methods that
have been developed and applied successfully in the
mathematical theory of diffraction meets with difficul-
ties. In diffraction theory the use of approximate
methods usually means that severe restrictions are
imposed on the frequency of the scattered field, or,
more precisely, on the ratio of the characteristic di-
mension of the obstacle to the wavelength. For diffrac-
tion radiation, on the other hand, an essential feature is
that the sources excite a continuous spectrum of fre-
quencies, so that the width of the spectral region is
such that the criterion for validity of any approxima-
tion is not satisfied over the whole region. For this
reason we shall devote most of our attention to exact
solutions of problems of diffraction radiation. Rigor-
ous solutjons of problems of this type were first ob-
tained in"*7. Mathematically the solution of these
problems is very similar to that of classical problems
of diffraction, with the field of the moving source tak-
ing the place of the incident electromagnetic wave. We
shall consider the character of the field of moving
sources in Sec. 2. For what follows it is important to
know the main features of the well-known radiation ef-
fects, such as the radiation from a charge in nonuni-
form motion, Vavilov-Cerenkov radiation and transition
radiation.

a) Radiation in nonuniform motion. This is the electromagnetic
radiation that accompanies a change in velocity of the particle.
There is no electromagnetic radiation from uniform motion of a
charge in free space. But if the motion of the particle is not uni-
form, radiation occurs whose character can be judged from the ex-
pression for the vector potential A  of the field of the particle at

large distances from its line of motion.['] Suppose that the law of
motion of the particle has the form r = r(t). Then
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where q is the charge on the particle, u(t) = dr(t)/dt is its velocity,
R, is the distance from the point of observation to the trajectory. If
we have a line instead of a point source, Ay, is given by
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where u and r are two-dimensional vectors in the plane perpendicu-
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lar to the line of the source. The integral in (1.1) has the dimen-
sions of length. We call it the length of formation of the radiation or
simply the shaping length. This quantity characterizes the length of
path over which the particle is in phase with the radiation. For a
uniformly moving particle, for example, the shaping length is
fes]
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- 1.2
where u is the velocity of the particle, and 8 is the angle between
the direction of radiation and the velocity. Since u/c is always
less than unity, the shaping length is always zero for a particle in
uniform motion.

Let us consider the expression for the shaping length in the
case of instantaneous stopping of a particle. Suppose that fort <0
the velocity of the particle was u, while at the instant t = 0 the
particle stops, so that for t > 0 the velocity is zero; then
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The term containing the § function is zero by the same argument as
was used for the case of uniform motion. Thus, except for an unim-
portant phase factor i,
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This same result can be obtained from simple qualitative argu-
ments. Let us define the shaping length for radiation of frequency
w, propagating at an angle 6 to the velocity of the particle, as the
length over which the phase of the radiated wave changes by n.
This length is easily calculated using Fig. 1. Suppose that a par-
ticle with velocity uradiates, at the beginning and end of the segment
1, a wave el(@t = k1) of frequency @, at an angle 6 to the direc-
tion of its motion.

(1.4)
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FIG. 1.

The phase difference between the waves radiated at the begin-
ning and end of the segment is
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Equating it to n, we find for [ the value
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which is close to (1.4). This simple qualitative derivation is due to
I. M. Frank.

We also give the expression for the shaping length when the ve-
locity of the charged particle changes abruptly. Let the velocity of
the charged particle be u, for t <0, and u, for t > 0. Then, again
dropping the factor i, we get

(1.6)
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In this case the shaping length is equal to the difference between
the shaping lengths cotresponding to instantaneous stopping of the
particle. We mention that when we speak of instantaneous stopping
of the particle we mean that the velocity is changed during a finite
time interval At, and that we are considering radiation frequencies
small compared to 1/At. Using the concept of shaping length, we
can rewrite (1.1) for the field of a particle moving according to an
arbitrary law in the form
¢HhRo

Ao=9"3R,

1. (1.8)

The energy radiated by the moving charge into the angle range
df dg in the frequency range dw is given by the formula
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b) Vavilov-Cerenkov radiation. The source of this radiation is a
charged particle in uniform motion. We know that in free space a
uniformly moving charge does not radiate (the shaping length is
zero in this case). But, as we see from (1.2), when

(1.10)
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the shaping length becomes infinite. This means that the particle is
in phase with its radiation over its entire path. Equation (1.10) can-
not be satisfied in free space, since u < c. But if the particle moves
in a refracting medium, the velocity of light in vacuum should be re-
placed by the phase velocity in the medium, c/n; then, if
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the shaping length becomes infinite. This means that the particle
radiates uniformly over its whole path. The radiation has a char-
acteristic directionality, determined by the optical properties of
the medium and the velocity of the particle (cf. (1.11)). A neces-
sary condition for radiation is that the velocity of the particle ex-
ceed the phase velocity of light in the medium.

If the dielectric constant of the medium is €(w), while the ve-
locity of the particle in the medium is u, the loss of energy in
Vavilov-Cerenkov radiation is given by the Tamm-Frank formula [*]

aw - g2 ¢
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where the region of integration includes frequencies for which the
radiation condition

c2
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is satisfied.

c) Transition radiation. As for Vavilov-Cerenkov radiation, the
source of transition radiation is a uniformly moving charged parti-
cle. Here the velocity of motion may be smaller than the phase ve-
locity of light in the medium through which the particle moves. The
important thing for transition radiation is the change in the optical
properties of the medium along the particle trajectory. The simplest
and at the same time the most important example for the principle
of transition radiation was first treated by V. L. Ginzburg and I. M.
Frank.[®] They considered a uniformly moving charge, crossing
along the normal between two dielectric media with dielectric con-
stants €,(w) and €,(w). They determined the field and the energy
loss in radiation in the backward direction (into the medium in
which the charge was moving initially). Later G. M. Garibyan [*]
calculated the energy loss in transition radiation in the forward
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direction, and showed that it increases linearly with energy. We
shall give the formula for the energy of the transition radiation at
angle @ to the particle velocity and for frequency «. We shall re-
strict ourselves to the case of forward radiation. Suppose that a
particle moving uniformly emerges from a medium with dielectric
constant €(w) into vacuum. Then the energy of the transition radi-
ation in the vacuum at angle 0 to the particle velocity has the form

(e—1) (1—p2—B Y/
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(1.14)
where (3 denotes the ratio u/c. This expression not only describes
the true transition radiation but also the Vavilov-Cerenkov radiation
(if it is present) emitted by a particle in a medium and emerging into
vacuum after refraction at the boundary.

The polarization of the transition radiation (in the case of nor-
mal incidence of the charge on the boundary of separation) is simi-
lar to the polarization of the Vavilov-Cerenkov radiation. In both
cases the electric vector lies in the plane containing the trajec-
tory of the particle.

The qualitative features of the transition radiation can be ex-
plained pictorially, following I. M. Frank. To do this we write a
different form of (1.7) for the shaping length in the case of a jump
in velocity:
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from which we see that the quantity [, and consequently the inten-
sity of the radiation, is determined by the change in the parameter
u/c during the motion of the particle. Formula (1.15) is valid for the
motion of a particle in empty space. If the particle moves in a ma-
terial medium with dielectric constant €{w), we should consider the
parameter uy/€/¢ instead of u/c. The quantity uy/é/¢ can change,
even though the particle velocity does not, if the optical properties
of the medium change along the path of the particle. Thus the pa-
rameter u\/é%, which determines the radiation, can change both
because of changes in the particle velocity u and changes in the
dielectric constant € of the medium. This crude treatment shows
that radiation arising from nonuniform motion of a charged particle
in an optically homogeneous medium is analogous to the radiation
that appears for uniform motion of the particle, but in an optically
inhomogeneous medium. In the case of transition radiation that was
considered above, where the particle emerges from the medium into
vacuum, the parameter changes from its value uy€/c in the medium
to the value u/c in the vacuum. In accordance with our remarks, the
transition radiation here is analogous to the radiation from a parti-
cle moving in empty space, whose velocity changes from w/€ to u.
The shaping length in this case is
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Substituting this value of [ in (1.9), we find for the energy of the

radiation

(1.16)
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This expression is in good agreement with that obtained from
the exact formula (1.14) in the limiting case of large particle energy
u ~c, high frequencies and small angles of the radiation. Under the
conditions enumerated, one can disregard the reflection and refrac-
tion of the radiated light at the boundary of separation, which sim-
plifies the treatment. For relativistic velocities of the particle, the
transition radiation forward may contain extremely high frequen-
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cies. To determine the upper limit of the spectrum of the transition
radiation, we use the asymptotic expression for the dielectric con-
stant € at high frequencies

w2
R -
& (w) w2’ v m

(1.18)

Substituting this expression for €(w) in (1.17), we find that the
spectrum of the transition radiation forward extends out to frequen-
cies

(o1

Vi (1.19)
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and then drops off rapidly. Thus the total loss in transition radia-
tion in the relativistic case is proportional to the limiting frequency
O1im: ]
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From (1.20) we also see that the ultrarelativistic case the energy
loss in radiation is proportional to the particle energy .

We note an interesting feature of the transition radiation. From
formula (1.19) we see that the limiting frequency in the spectrum of
the transition radiation increases proportionally to the particle
energy, and for sufficiently high energies may lie in the region of
hard x- or y-radiation. It might seem that in this case the classical
treatment becomes invalid. But, as we see from (1.16), the shaping
length also increases with the particle energy, and is proportional
to the square of the energy. Thus as the energy of the particle in-
creases, we arrive at the paradoxical situation where the radiation
has a very small wave length (less than interatomic separations),
but is formed over very large macroscopic segments of the path.
This indicates that the classical approach is valid.

(1.20)

2. THE ELECTROMAGNETIC FIELD OF UNIFORMLY MOVING
SOURCES.

We shall need expressions for the field of a source moving uni-
formly in free space or in a homogeneous refracting medium. We re-
strict our treatment to sources of the simplest kind—line sources
(charged wire and current-carrying wire) and point charges.

The electromagnetic field in free space satisfies the Maxwell

equations
.1 on
rof E== — P T }
1 08 | 4a .
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rotHl=—— -+ = j } 2.1)
div E=4mngp, ‘
divH=-.. 0, ‘

Here E and H are the electric and magnetic field intensities, and

p and j are the charge and current densities produced by the source.
Usually one goes over from the system (2.1) of Maxwell equa-

tions to equations for the scalar potential ¢ and vector potential

A, in terms of which the fields are given by the formulas

E= —grad ¢ — L oA
¢ ot
H=rot A. (2.2
The equations for the potentials have the form
4 1 o2 N A,
(A= ge JA= =k
1 a2 >
A= r g ) o= — e, 2.3)

*rot = curl.
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where the potentials A and ¢ are related by the Lorentz condition

divA+—i—@_ —o.

y 2.4)

To describe the electromagnetic field of uncharged current-car-
rying sources (for example, a neutral wire with current), where one
can set ¢ =0, it is convenient to use the vector potential A. In
other cases, where one must know both the vector and scalar poten-
tials for a description of the complete field, and where both poten-
tials must satisfy suitable boundary conditions, it is more conveni-
ent to determine the field by means of the Hertz vector I

We shall describe the field sources by a function ®, in terms of
which the charge density p and current density j are given as fol-

lows:
o= —div P,

ENT
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(It is obvious that this definition does not violate charge conserva-
tion.) We also introduce the Hertz vector II, which is related to A
=nd ¢ by _iom
¢ ot

¢=—div IL. (2.6)

As a result we arrive at the following equation for the Hertz vector:

1 o2
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From (2.2) and (2.6) it follows that the electromagnetic field vec-
tors are expressed in terms of the vector Il by the relations

= P 2.8
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We shall obtain explicit expressions for the Hertz vector for
electromagnetic field sources of the simplest type: a charged wire,
a line current and a point charge, moving uniformly in free space.
We note that these elementary solutions are the Green’s functions
respectively for the d’Alambert equation in two dimensions (line
sources) and three dimensions (point charge). The solution for an
arbitrary distribution of charges and currents can be expressed in
terms of these functions.

a) The field of sources moving uniformly in vacuum. We consider
a wire parallel to the x axis (Fig. 2), carrying a charge with linear
density q, and moving with constant velocity u = {fuy, uy} in the y,
z plane. We denote the distance from the origin to the trajectory
by a. The charge density p and the corresponding current density j
are given by the expressions

0=gd (r—a—uy), j=qud (r—a—uz). (2.9)
The source density vector @, defined by (2.5) is equal to
i dk, dk
. . qu ik(r—a— x %y
* = G § e S0 219

where we have used the well known expansion of the 8 function in
(2.9) in plane waves

1 Kl
d(r—a—uw)= _(Z*I_)Z_- g (ik(r—a—ut) dky dky.
The solution of the inhomogeneous d’Alambert equation with right
side of the form (2.10) is given by the formula
eik(r—n—ul) dk'xdky

_qui e
o= 1 § — e (2.11)
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We change to new integration variables «w and x, using the relations

ka
K=,
a

w=ku, (2.12)
With this substitution we take as new variables the components of
the wave vector k along two mutually perpendicular directions:
along the trajectory of the wire (the vector u) and along the normal
to the wire (the vector a):

(2.13)

k=05 +xo.

FIG. 2.

The quantity @ = k - u determines the frequency of the plane waves
appearing in the expansion (2.11). The Hertz vector is written in
terms of the new integration variables as follows:*

L@ fur .. far (2.19)
«© i— ——ut)tin (——a
IIO_«iqus e”(“ ) (“ ) dx dw
T aw ) w? ’
28wty (1—p?) ¢
Performing the «x integration by using residues, we get
. . .0 fur ar
1 8 G () [ g0 (2.15)
yu ko
where we use the notation
k=2, gty VISP (2.16)
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We have obtained the frequency resolution of the Hertz vector.
For elementary sources one could also carry out the o integration
and get the explicit dependence of the Hertz vector on the coordi-
nates and time. We shall not do this, since later we shall define
the characteristics of the diffraction radiation in terms of just
these spectral resolutions. As we see from (2.15) the field of a
charged wire is a superposition of waves of the form

These are ‘‘inhomogeneous’’ plane waves of frequency w, propa-

gating in the direction of motion of the source and damping expo-
nentially with damping coefficient ky as we move away from the
trajectory of the source.

To describe the field of a line current moving uniformly in free
space, one needs only the vector potential A, which is determined
by the first equation in (2.3). We introduce a spectral resolution for
the vector potential, analogous to (2.16):

@ W (ur

i ar ;
oo )
uy

(2.17)
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where j, is the current along the wire.
We now proceed to determine the field of a uniformly moving

*This expansion for the Hertz vector II° diverges at low frequen-
cies. But this divergence has no physical significance and disap-
pears when we go over directly to the electromagnetic field vectors.
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point particle with charge q. Let the velocity of the particle be u
and the distance from the origin to the trajectory of the particle be
a. After calculations similar to those described above, we get the
following expansion of the Hertz vector in plane waves:

« 0

Pl
__ iqu e ¥
T 2n2u

(%»—ul)«]—in(r—a)
- dx, (2.18)

oo 5
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where « is the component of the wave vector perpendicular to the
particle.

Expression (2.18) can be integrated over «, which gives the
spectral resolution of the Hertz vector describing the field of a
point charge. It has the form

(o] ur
iqu i-— (*——ut) . do
o==—" S e WU Ko(kyir—ai ) —

(2.19)
where (r — a)| is the projection of the vector r — a on the plane
normal to the particle velocity, and K is the MacDonald function.
Formula (2.19) gives the expansion of the field of a point charge in
cylindrical waves which damp exponentially as we move away from
the path of the particle. The distance R from the particle’s path at
which the wave of frequency w damps by a factor e is given by the
formula
o1 u

T
We note that this same estimate is valid for the plane waves in
terms of which the field of a line source is expanded (formula (2.15)
for the Hertz vector of a charged wire and (2.17) for the field of a
line current). As the velocity of the particle increases, R increases,
and when the velocity of the particle approaches the velocity of
light, the waves in terms of which the field is expanded become un-
damped. The properties of the field of a particle in the ultrarelativ-
istic case approach those of a transverse electromagnetic wave.
This enables an approximate determination of the field of diffrac-
tion radiation by using the methods of geometrical optics.

In many cases it is necessary that one not carry out the integra-
tion over « in (2.18) completely, but rather represent the Hertz vec-
tor as a superposition of plane waves for which one is given not
only the frequencies but also the projections of the wave vector on
a selected direction. Usually the need to do this is related to the
symmetry character of the optical inhomogeneity. We give such an
expansion for the two most interesting specific cases.

(2.20)

Suppose that a point particle moves in the y, z plane (cf. Fig. 2).

the geometry of the problem requires that the field of the particle
be written as a superposition of waves of given frequency with a
given projection of the wave vector on the x axis. Integrating (2.18)
over the components of the vector «, perpendicular to the x axis,
we get

. 1

tgu w Vo

no=— EL
2nu

“;“ dug. (2.21)

This expression is convenient to use if the scattering obstacle has
cylindrical symmetry with its symmetry axis parallel to the x axis
(in other words, if the optical inhomogeneity is a cylindrical sur-
face all of whose generators are parallel to the x axis). Formula
(2.21) can be regarded as the representation of the field of a point
particle in terms of the fields of infinitely long line sources whose
charge density is modulated according to a harmonic law.

If the scattering obstacle has axial symmetry, and the particle
moves parallel to the symmetry axis, it is conveneient to expand
the field of the particle in harmonics of a given frequency and with
a given value of the azimuthal component of the wave vector. Let
the optical inhomogeneity have a symmetry axis coinciding with the

z axis, and let the particle move parallel to the z axis at a distance
a from it. We introduce a cylindrical coordinate system r, @, z, set-
ting the z axis along the symmetry axis of the obstacle (optical in-

homogeneity). Writing (2.19) in the new coordinate system and using
the addition theorem for Bessel functions, we get

1:‘% =) [ Jo (kya) Ko (kyT) 1_ j?fx)

T kyr) K hya) o (22D

HU“* Lq N eim(p \‘ ¢
= B} ‘—., B
n
Here the upper line in the curly brackets applies for r > a, and the
lower for r < a.
b) Field of a source moving in a refracting medium. The Maxwell

equations are written for a refracting medium in the form

1 B

) Dl

rot PRl Tl I[
| 8D | 4=

L e R LI T | 2.23)
rot H=— R} (
divD=-4ng, [
div B=0. )

E and H are the electric and magnetic field intensities, D and B
are the corresponding electric and magnetic inductions. The sys-
tem (2.2) must be supplemented by material equations relating the
fields and the inductions. We take the material equations in the
following form:

D=-fE, B=—pl, (2.24)
where € and p are linear operators. For monochromatic fields, in
which all quantities are proportional to e ¥*t, the act on of the
operators € and ji reduces to multiplication of the spectral compo-
nents of the fields by certain functions €(w) and pw):

D (w)= ¢ () E (o), B (w) - (w) H (0). (2.25)
If we assume that € and p depend on ® but not on k, we automati-
cally eliminate treating spatial dispersion.

The potentials A and ¢ in the refracting medium are given by

the relations

H:,i rot A,
g 2.26)
E= —grad ¢— oA @
c Ot
and satisfy the equations
e 92 dag .
(A g ) == @.27)

epn 02 4o
(a—Fam)o=—"70

which are valid if the potentials satisfy the supplementary condition

divaE g (2.28)

oL

The equation for the Hertz vector has the form

. ew 0% N\
A L A
< ¢t G2 ) 1 R

where the vector @ is defined by (2.5).
The potentials A and ¢ are expressed in terms of the Hertz vec-
tor by the formulas

_poon 1 ..
Af’T_aT’ = div 1T, (2.29)
and the fields by the formulas
(10
I rot I,
E— L gradaivp— & 211 (2.30)

e & atE
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For simplicity we shall consider nonmagnetic refracting media and
set p= 1.

The field of a line charge in a refracting medium is described
by the following formula:

i{‘} (%‘1 ——ut) +in (‘:Tr —a)

e dx do

[0}

o .l1% (2.31)

Wy

w2
W O (1—ef?)

This formula is very similar to the expression for the Hertz vector
of the field of a line charge in vacuum (2.14) and differs from it
only in the replacement of 1 — 3% by 1 -~ €3% in the denominator.
Integrating over , we get the spectral resolution of the Hertz
vector
HY=iqu K ei% (‘;’ kui) - i’iﬂ vimes ?-‘r uﬂj do
o w2V [—ep?
From formula (2.31) we see the essential difference between the
field of a source moving in a refracting medium and the field of a
source moving in vacuum. If € 3% < 1, then, as for motion in vacuum,
the field of the moving source consists only of damped waves. But
if the condition € 8% > 1 is satisfied, i.e., if the source moves with
a velocity exceeding the phase velocity of propagation of electro-
magnetic waves in the medium, undamped harmonic waves appear.

(2.32)

This is the so-called Vavilov-Cerenkov radiation, which is pro-
duced at the expense of the energy of the source.

By using these formulas one can easily obtain the Hertz vector
for a line current or point charge moving uniformly in a refracting
medium. In all cases when the condition €8? > 1 is satisfied we get
Vavilov-Cerenkov radiation, which goes out to infinity (if the me-
dium is not absorbing), while the direction of propagation of the
Vavilov-Cerenkov radiation makes an angle 6, satisfying (1.11),
with the direction of the velocity of the charge.

When €3? > 1 the sign of the quantity y/1 — € 3% should be taken
so that the resolution of the Hertz vector contains only outgoing
waves.

3. MATHEMATICAL METHODS FOR OBTAINING EXACT
SOLUTIONS OF THE PROBLEM OF DIFFRACTION
RADIATION.

To get exact solutions of problems of diffraction radiation we
shall use the same method as was developed in the mathematical
theory of diffraction for solving problems of scattering of an elec-
tromagnetic wave by obstacles of a special type. This method,
which is called the Wiener-Hopf-Fock method, has been used to
get rigorous solutions of many problems of diffraction theory.[*"]

The problem of diffraction radiation differs from the classical
problems of diffraction theory in having an incident wave which is
a superposition of damped waves. We shall see what changes this
difference causes in the results.

We shall illustrate the use of the Wiener-Hopf-Fock method on
the example of the diffraction of a plane electromagnetic wave
incident on an ideally conducting halfplane.

Suppose that a plane electromagnetic wave is incident on the
ideally conducting halfplane y =0, z > 0. For simplicity we shall
assume that the wave vector of the incident wave lies in the y, z
plane.

We shall consider the case where the magnetic field of the inci-
dent wave is parallel to the edge of the screen, i.e., to the x axis.
Following L. A. Vainshtein, {°] we shall call such a polarization of
the incident wave (one can see that the scattered wave will have
the same polarization) magnetic polarization.

The incident wave can be described by a Hertz vector II° with
the one nonzero component

0l = ¢t (ke —ot), 3.1)

where k and r are two-dimensional vectors in the y, z plane.
We shall describe the scattered field by a Hertz vector
Hi==T1t (y, 2).
Thus, the total field, including both incident and scattered
waves, is described by the Hertz vector
=110 1. 3.2)
The total field must satisfy the following requirements:
1) be a solution of the wave equation (2.7) with zero on the right
hand side;
2) satisfy the boundary conditions on the ideally conducting
halfplane:

E,=0 for y=0, z2>0: (3.3)

3) satisfy the radiation condition at infinity: the energy flux in
the scattered field must be directed away from the edge;

4) finally, satisfy the so-called screen edge condition: the
energy density near the edge of the screen must be integrable over
space.

We now proceed to solve this problem, which was first solved
by A. Sommerfeld by a different method.[®}

The incident wave induces on the halfplane variable currents
j = iz(2), which are the source of the scattered field.

The Hertz vector of the scattered field can be expressed in
terms of the induced currents as follows:

P, kR
m=_ \ L j(ey ds.

o\ (3.4)

The integration is over all of the halfplane, R is the distance from
the point of integration (x”, y "= 0, z ") to the point of observation
(x, y, 2)

BR=V(z—z )2+ (z -2 (3.5)
Carrying out the x ” integration by using the formula
, 4
1P @D =", _ -, (3.6)
we get
e B L A Ea e S TP 37
0

We represent the unknown current distribution j(z) as an expansion
in a Fourier integral in z:

f@=\ f@endu, (3.8)

Substitution of this expression in (3.7) and integration over £ gives

X0

2
e 2 §
[0)
—

etviyl
- f (W) e'% dw,

3.9

v

where

v="1 k" (Im» > 0). (3.10)

We note that this expression shows an important propetty of the
scattered radiation. The Hertz vector of the scattered field is an
even function of y. It is easily seen that this is the cause of the
symmetry of the angular distribution of the scattered radiation rela-
tive to the plane of the screen. This statement is valid for diffrac-
tion by any plane screen. We shall therefore from now on look at
the scattered field on only one side of the screen.

It is easy to see that (3.9) is a solution of the homogeneous
wave equation (3.7). To determine the explicit form of the function
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f(w) we use the boundary condition (3.3) on the halfplane. As a re-
sult we get the following inhomogeneous integral equation:

O

\‘ ef (i) et dip = —

-

whyk,
T gt for

2> 0, 3.11)

21

where
fiy==—kcos0.

Here 7-0 is the angle between the direction of propagation of the
plane wave and the positive direction of the axis (cf. Fig. 2).

To solve the problem we must still add to this equation a condi-
tion determining the behavior of f(z) on the extension of the scat-
tering halfplane. For this condition we choose the obvious equation
i(z)y= \ flw)edw -0 for <0, (3. 12)
which states that there are no currents on the extension of the half-
plane. Thus the function f(w) is determined as the solution of the
pair of integral equations (3.11) and (3.12), of which the first is
valid for positive z, and the second for negative z. The solution of
such equations is accomplished by the Wiener-Hopf-Fock method,
[*] and we shall use the technique for solution developed in the
papers of L. A. Vainshtein.[?] We write the kernel of (3.11) as a
product of two factors:

v Ly () L) I . (3.13)

w2 -k
where the function L (w) is holomorphic and has no zeros in the
upper half of the complex w plane (Im w > 0), while the function
L_ (w) has similar properties in the lower half of the w plane
(Im w < 0). For the function v defined by (3.10), this splitting is
done in elementary fashion:

f. )=V w (w0 - k). L) = VE-w i —ks), (3.14)
where it is understood that the wave number k has a small positive
imaginary part.

From (3.12) it follows that the required function f(w) must be
holomorphic in the lower w halfplane. Thus we must look for a solu-
tion of the form

Jlw) == I (—w) . (3 15)
where C is a constant independent of w.

With such a choice of the solution Eq. (3.12) is satisfied iden-
tically. To determine the constant C we substitute (3.15) in Eq.
(3.11). Calculating the integral on the left side by residues, we get

il ks iwkyk

VR

CSRILL (kT (.16)
Formulas (3.8), (3.15), and (3.16) completely determine the scat-
tered field arising from incidence of the plane wave (3.1) on the
ideally conducting halfplane. As shown in [¢], the integral repre-
sentation of the solution found here is identical with the well-
known representation of the solution of this problem found by Som-
merfeld. We mention that the problem of the diffraction of a wave
packet consisting of homogeneous plane waves, which was first
treated in [?], can be solved in similar fashion.

As one sees from the method described for solving the pair of
integral equations, the decisive point in finding the solution is to
split the kernel v (w) into factors. This splitting is not unique.
Multiplying L, (w) by an entire function and dividing L_ (w) by the
same function, we get a new decomposition of the kemel. Expres-
sion (3.15) for f (w) with the new function L_ (w) is again a solu-

tion of the system of equations (3.11)-(3.12). A unique choice of so-
lution is achieved by using the ‘‘edge conditions.”’ According to
these conditions, near the sharp edge of an obstacle the component
of the current density normal to the edge is proportional to 2, and
the tangential component is proportional to r™%2, where 1 is the dis-
tance from the edge. Using well known formulas relating the asymp-
totic form of a function to the asymptotic form of its Fourier trans-
form, we obtain the requirements that are imposed on the behavior
of the Fourier components of the current density for w > «~. For the
current component normal to the edge we have the condition
F) -,

w2

for w > 0. 3.17)

In the example we are considering only the current component
normal to the edge is excited. Obviously the solution (3.15) satis-
fies the ‘‘edge condition’’ (3.17).

If the component of the current density tangent to the edge is
different from zero, the ‘‘edge conditions’’ requite that the behavior
of its Fourier components at infinity be
for

u ~ Q0.

-t (3.18)

we
We also give without proof the solution of the more complicated
pair of integral equations:

\ vl () e W dw == gy (2) 2 >0,
o

o

\ F(w) el02 i == gy (2)

—un

for
for

z<7 0,

|
i (3.19
|

The method for solving this system of equations is described in the
monograph ["] and leads to the following final form of the solution:

oo "
1 —i ) N /e
! 7 { 4 \\ el gy \ g (508 L)m}; a3

Fow) e -

ATy S
20V | —w Y 0 Ve
w0 "
A T ih(s-3) 9%
Y \ dae —ie—i) 2 o\ e gy e ihG-n 8 1 (3.20)
) dz ) 1

— 0

It is easy to see that the solution of the system (3.11)-(3.12)

is obtained from (3.20) if we get g, = 0, g, = ~ wkyk, ek, z,
2

4. TWO-DIMENSIONAL PROBLEMS OF DIFFRACTION
RADIATION IN FLIGHT OF A SOURCE PAST A
SEMI-INFINITE CONDUCTING SCREEN

It is convenient to begin the treatment of diffraction
radiation with two-dimensional problems. Such prob-
lems are obviously simpler mathematically than three-
dimensional ones, and this simplifies the explanation
of the physical picture of the phenomenon. In addition,
two-dimensional problems may have a definite prac-
tical value. One problem in this class is that of the
excitation of radiation by a plane modulated electron
flow.

a) Radiation from a charged wire or current-carry-
ing wire moving at constant velocity past the edge of
an ideally conducting half-plane.l%] Suppose that an
infinitely thin, ideally conducting halfplane is located
aty =0, z > 0 (cf. Fig. 2). A uniformly charged wire,
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parallel to the x axis (the edge of the halfplane)}, moves
past the edge at constant velocity u = (u,, uy). We first
consider the case where the wire during its motion
does not intersect the halfplane. As in Sec. 1, where
we calculated the field of a charged wire moving in
vacuum, we denote the charge density per unit length
of the wire by q, the distance from the edge to the tra-
jectory of the wire by a, and the angle between the
velocity vector u of the wire and the positive z axis

by m-0. We assume that 8 varies between 0 and 7.

The charged wire moving past the halfplane induces in
it variable currents that are sources of radiation. We
represent the total field as a superposition of the field
of the wire in free space and the field of the induced
currents. Correspondingly we set

=141, (4.1)

where I1° is the Hertz vector describing the field of
the charged wire in free space, and is given by (2.15).
In the case we are considering it is clear that the
induced currents have only the one nonzero component
jz- It is therefore convenient to describe the radiation
field by the one-component Hertz vector I}, of which
the integral representation is given by formula (3.9)
Ml —2n 3

-0

g0 lyl

F (w) etw:

it Gw do .
©

(4.2)

We remind the reader that F(w, w) is the Fourier com-
ponent of the current induced on the screen, and has to
be determined from the conditions of the problem.

For the boundary conditions we take (3.3), requiring
the vanishing of the tangential component of the total
electric field on the halfplane, and (3.12), which ex-
presses the obvious requirement that there be no cur-
rents on the extension of the halfplane. As a result we
get the following pair of integral equations for the
quantity F(w, w):

é-/vB

F (w) vets dup i
i

_ g_ﬁ_ L%sin@‘r iy cosgr" e—hya—iz (zcose—ihvsine)
% Fw)e dw=0 for z<O.

—o |

(4.3)

From now on we shall deal with quantities at a fixed
frequency w, and abbreviate F(w, w) to F(w). The
system (4.3) is similar to the pair of integral equa-
tions (3.11)—(3.12) in the Sommerfeld problem. The
difference is that the right hand side of the equation
valid for z > 0 now contains an inhomogeneous plane
wave that damps exponentially with increasing absolute
value of z. Physically this difference corresponds to
the previously observed fact that the field of a moving
source is a superposition of damped waves. The solu-
tion of (4.3) is carried out in the same way as in Sec.
3, and gives

for z>0,

q
Fw) = 2
(% sin 64ty cos 6> e~ hve
X —_— .
V k—»ﬁ— cos -+ iky sin O Vk—w ( w-ﬁ-%cos 0—ikysin 6)

(4.4)
In this formula we take the branch of the expression

vk —w that is positive for w — —<, Formulas (4.2)
and (4.4) completely determine the scattered field
arising from uniform motion of the charged wire past
the conducting halfplane. To get the total field we
must add to the scattered field the field of the wire
moving in vacuum.

As we see from (2.8), the nonzero components of
the scattered field are Hy, Ey, E,. We give as an ex-
ample the expression for Hy:

HY = —L}L_ay- = —E}Signy S eivly| F(w)eiw: dw. {4.5)

The expressions for Ey and E, have a similar struc-
ture, so we shall consider only Hg in more detail.

First we note the following point. If we introduce the
angle 6, defined by the equations

VIR
B (4.6)

1 c . .
€08 By = —, sinBp =iy =1

p
the expression (4.4) for ¥(w) can be rewritten (for
w > 0) in the form

6+ 6y
eV oS5

~kya S 4.7
¢ Vi—w [w+ k cos (0t 0)] 4.7)

4n?

F(w)=

In this form F(w) coincides, except for a factor, with
the solution (3.15)—(3.16) of the problem of diffraction
of a plane wave incident on a halfplane at angle 6 + 6,.
From (4.6) we see that this similarity is purely
formal, since the angle 6, is imaginary. But the
physical significance of such a coincidence can he
understood if we consider the case where the velocity
of the wire exceeds the speed of light, as occurs for
the Vavilov-Cerenkov radiation in a medium with in-
dex of refraction n > 1. Then the quantity 8 = u/c be-
comes B’ = (u/c)n, and the angle 6, becomes real; it
is the angle between the direction of propagation of
the Vavilov-Cerenkov radiation and the direction of
the velocity of the wire. This problem will be dis-
cussed in more detail below.

Formula (4.7) acquires a physical meaning in still
another case. When 8 = 1, as we see from (4.6), the
angle 8, goes to zero and formula (4.7) coincides to
within a factor with the solution (3.5)—(3.6) of the
Sommerfeld problem. This also follows from the fact
that when 8 = 1 (y = 0) the field of the charged source
is expanded in plane undamped electromagnetic waves
whose propagation direction coincides with the direc-
tion of the velocity of the source (cf., for example, the
expressions (2.15) and (2.17), which determine the
field of a charged wire and of a wire carrying current).
The problem of the diffraction of such waves by a half-
plane is just the Sommerfeld problem.
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By using formula (4.7) the integral representation
(4.5) of the field Hé( can be rewritten in the form

1 . q —‘/2/€ 0 + 90
Il - i AV 2T e—hvacpps 7Y
F x = P signy T € cos 5

Uiy itiwz (4_8)

P — dw.
[tk cos (0+ 69)] Vb +w

[

X

—0

This expression is valid only for positive w; when

w < 0 one should take the complex conjugate expres-
sion. The expression (4.8) for the magnetic field can
be transformed and expressed in terms of a Fresnel
integral with complex argument, as is done in the
theory of diffraction of a plane electromagnetic wave
with “‘electric’’ polarization.8]

We give the expression for H;w that is valid at
large distances from the edge of the halfplane. We
write z=r cos ¢, y =1 sin ¢, 0 < ¢ =7 and, using
the method of steepest descent for the integration over
w, we get

i(k7~'r- Z) ¢ 0+00

COS —— « CO8 ——'

— . (4.9)

e»—h\'a
cos @+cos (U+4-0)
Let us discuss the limits of validity of this formula.
They are determined by the limits of validity of the
saddle-point method by which the integral expression
(4.8) was evaluated. The integrand in (4.8) has a pole
at w = —k cos (0 + 6;). The saddle point w = k cos ¢
must be sufficiently far from this pole. If this is not
the case formula (4.9) gives an infinite value for H;@
at arbitrarily large distances r, which is physically
meaningless. This condition can be written as an in-
equality requiring that the denominator in (4.9) be large
compared to unity:

|1 2akr [cos @ - cos (0 --0,)]

s 1.

(4.10)
By using the definition (4.6), this inequality can be

transformed to

Vst y/ L:B,,s‘g% CE] l/ ,I:Q;Ef;(;? =00 4

(4.11)

or
1 2B 2B

T g [5-Beos (p+ 0) {4 fFcos (¢g—0) (4.12)

This inequality determines the distances at which the
asymptotic expression (4.9) for the magnetic field is
valid. For small velocities of the wire, 8 < 1, the ex-
pression (4.9), which was gotten by the saddie point
method, is valid starting after a distance from the
screen edge of the order of the wave length of the
radiation. Now suppose that the velocity of the source
moving past the edge of the conducting halfplane is
close to the velocity of light. Then the denominator of
one of the factors in (4.12) may be small. The angles
¢ near which this occurs are given by the equations
1-+PBeos(p-1-0)=0,

=~ 1). (4.13)

1-+Bcos(g—0)=10

from which we get

Here the plus sign corresponds to satisfying the sec-
ond equation (4.13), and the minus sign to the first
equation. Near these angle values one of the factors

on the right of (4.12) is large, while the other is of
order unity. Thus the inequality (4.12) can be rewritten
as two inequalities:

u

TP eIt Peos GO -

(4.15)

Denoting by @ = 7 + 8 the angle between the positive
direction of the z axis and the direction of motion of
the wire (Fig. 3), we get

TP meli—per @zl (4.16)
4
» u
\\
anr ™\ ¢

FIG. 3.

The expression on the right of (4.16) is, except for a
factor, just the shaping length of the radiation, as de-
fined by formula (1.6). Thus the expression (4.9) for
the magnetic field of a charged wire moving past a
conducting halfplane is valid at distances from the
edge of the screen that exceed the shaping length of
the radiation. We note that in the ultrarelativistic
case (8 — 1) the distance from the screen edge given
by (4.16) must be large in two directions: in the direc-
tion of the forward radiation, ¢ = ¢, and in the direc-
tion of the mirror reflection of the radiation, ¢ = —¢.
The fundamental point is that for all values of 8 less
than unity there should exist such large distances
from the screen edge that at these or larger distances
the expression (4.9) for H;{ (and also the asymptotic
expressions for all the other nonzero components of
the field) are valid for all values of the angle ¢. We
note that in the problem of the diffraction of a plane
electromagnetic wave incident on a semi-infinite con-
ducting screen there exist angles at which the asymp-
totic expression for the scattered field is not valid,
no matter how large the distance from the point of ob-
servation to the edge of the screen. These are the
directions of the incident and the specularly reflected
rays (the region of transition from light to shadow).
We can arrive at the inequality (4.16), which deter-
mines the conditions for applicability of the method of
steepest descent, by a different method, by requiring
that the distance from the saddle point to the pole ex-
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ceed the characteristic size of the region of steepest
descent, which in this case is not greater than
\/E/—; sin ¢ in order of magnitude. This requirement
gives

| kcos gt keos (089 3}/ £ sing,
i.e., we arrive at an inequality that coincides with
(4.10).

From the integral representation (4.8) for the mag-
netic field component H!, we see that the magnetic
field has a different character in different regions of
space. This follows from the behavior of the integrand
in (4.8) in the plane of the complex variable w. For
the region y > 0, z > 0 (the space above the halfplane)
the integral reduces to the residue at the pole
w = —k cos (6 + 6 and to an integral along a cut in the
upper w halfplane. Cuts arise because the function
v = Vk? — w? has branch points at w = +k. Accordingly
the function v is determined uniquely on the plane with
cuts extending out from the branch points, as shown
in Fig. 4. The residue at w = —k cos (8 + 8;) gives the
so-called “image field”’, i.e., the field of a source of
opposite sign, whose trajectory is obtained by reflect-
ing the trajectory of the original source in the plane
y = 0. The integral over the cut determines the radia-
tion field of the charged wire. For y < 0, z > 0 (the
region below the halfplane), the residue at the pole
w = —k cos (6 + 0)) compensates the primary field
given by the Hertz vector %, This region corresponds
to the region of geometrical shadow in the Sommerfeld
problem, where only the radiation field of the charge
exists. Finally, when z < 0 (the space to the left of
the halfplane) the integral (4.8) reduces to an integral
along the edges of the cut in the lower halfplane. In
this case the total field is made up of the field of the
source in empty space and the field of the radiation.

It is obvious that in calculating the integral (4.8) by
the saddle point method we do not get the image field,
since it is damped exponentially as one moves away
from the image trajectory. Thus the expression for
H;w (4.9), obtained by steepest descent from (4.8)
describes only the field of the radiation.

The magnetic field H;( at large distances from the
edge of the screen consists of diverging cylindrical
waves. As we see from (4.9), the amplitude of these

Imw

Rew

FIG. 4.

waves depends on a number of parameters: the veloc-
ity of the charge, the angle of observation, the impact
parameter a, etc.

Let us calculate the intensity of the radiation at
frequency w in the angular interval d¢. The flux of
the Poynting vector through the surface element r d¢
at large distances from the edge is
1(g)dp==rc| Hy, * dg
P

cos2-I- d
g o—2kva 1+PeosH o e

A <coscp+%cns®)2+y2sin26 '
. (4.17)

As we see from (4.17), the angular distribution is es-
sentially different at small and at large velocities of
the source. For small velocities of the charged wire
(8 < 1, v > 1) the radiation is proportional to
cos® ¢/2. At large velocities (8 — 1, ¥ — 0) the
radiation has maxima along the directions ¢ = + (r + 9).
These angles correspond to radiation in the directions
of motion of the wire (radiation forward) and radiation
in the mirror image direction relative to the conduct-
ing halfplane. The width of the maxima of the angular
distribution is of order ¥ in the ultrarelativistic case.
Let us consider the dependence of the radiation in-
tensity on frequency. As we see from (4.17), the spec-
tral dependence is essentially given by the factor

(4.18)

R Tammr-v
—2¢ % VITpe
e—2hva 20y VTP

The spectrum of the radiation is bounded above,
where the limiting frequency of the radiation is of
order

u

Omax & T/fi‘ﬁf .

(4.19)

Accordingly we may speak of the duration of the burst
of radiation

At z_inqu?i , (4.20)

Omax
We can arrive at the estimate (4.20) for the duration
of the burst of diffraction radiation in a different way.
To do this we determine the time dependence of the
field H:

H(t)=2Re { H,e-0t do.
[t}
Using the approximate expression (4.9) for H,, which
is valid at large distances from the edge of the
screen, we find that the time dependence of the field
H is given by the factor
1

0o )~ = o sy

From this we see that the spatial extension of the
wave packet of diffraction radiation is of order ya and
the duration of the burst of radiation is of order vya/c.
In empty space the wave packet of diffraction radiation
propagates without spreading.
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The presence of the factor e 2kya (4.18) can be
explained as follows. As we see from (2.15), the field
of a charged wire falls off exponentially as we move
away from its path, with the decrement ky. Thus the
amplitude of the currents induced on the screen by the
wire is proportional to e~ kY2, The same exponential
dependence also appears in the expression for the
radiation field determined by the currents in the
screen (cf. (4.4)). The intensity of the radiation is
proportional to the square of this factor.

As we see from (4.19), the limiting frequency of the
radiation increases proportionally to the energy of the
moving source. So, for ultrarelativistic velocities of
the source the spectral region will extend out to hard
Y radiation. But for such high frequencies the screen
can no longer be assumed to be ideally reflecting.
This limits the region of applicability of the above
treatment.

Integration of (4.17) over angles gives the expres-
sion for the spectral density of energy loss per unit
length of a linear source,

I

Wo=2 | I (9)dg— -2 =2k
0

(4.21)

The result is independent of the angle of incidence
of the wire. This can be understood pictorially by using
geometrical optics. If the source velocity is suffi-
ciently high, the field has properties similar to those
of the field of plane free electromagnetic waves. The
diffraction radiation from the moving source can then
be described approximately as the specular reflection
of these waves by the halfplane. Thus, for example,
the radiation in the upper halfspace reduces to the
reflection of the part of the field of the wire that im-
pinges on the screen. The energy of the field incident
on the screen is independent of the angle of incidence
of the wire and is determined only by the impact
parameter a. A calculation of the energy of the radia-
tion in the approximation of geometrical optics leads
to a result that differs from (4.21) only by a factor
(c/w?.

The fact that the total energy of the radiation is
independent of the angle of incidence 8 of the wire was
gotten on the basis of asymptotic formulas, which are
not always applicable. Thus, in the special case when

=7 and the velocity of the wire is equal to the veloc-
ity of light (3 — 1), the exact expression for the radia-
tion field goes to zero. Physically this is explained by
the fact that in this case the electric vector of the
incident field is normal to the halfplane, so that there
are no currents induced in the screen.

To find the total loss to radiation from a moving
source, we must integrate (4.21) over the whole spec-
tral range. It is obvious that the integral of W, (4.21)
diverges logarithmically at low frequencies. This is
explained by the character of the field of a moving
wire at large distances from its path: the field of the
wire falls off inversely with distance from it. Conse-
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quently the energy in the field of the moving wire
diverges logarithmically. The energy in the radiation
field has the same kind of divergence.

We mention that taking account of the finite conduc-
tivity and the finite thickness of the screen removes
the divergence in the radiated energy at low frequen-
cies. Our treatment is then valid only for those fre-
quencies for which the skin depth is smaller than the
thickness of the screen.

If the source of the diffraction radiation is a wire
carrying current, the determination of the field, as in
the case of a charged wire, reduces to solving a pair
of integral equations. Physically this case differs
from the previous one only in the polarization of the
field of the source and, consequently, of the radiation
field. In the case of the charged wire the electric field
was perpendicular to the wire, and the magnetic field
parallel to the wire and the screen edge. In the case
of the current-carrying wire the electric field is
parallel to the wire (the screen edge), while the mag-
netic field is perpendicular to the wire. Thus the
problem of finding the field of a current-carrying wire
moving near the edge of a conducting screen is analog-
ous to the Sommerfeld problem for the case where the
magnetic vector of the incident wave is parallel to the
edge of the screen. We give the result of the calcula-
tions of the spectral and angular distributions of
radiation energy from a wire carrying current:

sin? é} dg
—'[13— cos 0 >2—i— y2sin20
(4.22)
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where j, is the current in the wire and all the other
notations have been used earlier.

The main characteristic features of the angular dis-
tribution in this case are similar to those already dis-
cussed for the charged wire.

Integrating over the angle of observation, taking
account of the symmetry relative to the plane of the
screen, we find for the total loss in radiation at fre-
quency w the expression

{ 1@ dp=—_10 emome, (4.23)

w,;zy
In the case of the current-carrying wire the radiation
losses depend more strongly on source velocity than

for the charged wire. The reason is the stronger de-
pendence of the incident field on u, as can be seen by

comparing (2.15) and (2.17).

The angular distribution of the radiation and the
energy loss from the wire can be estimated approxi-
mately by using a pictorial method. We know that the
field of a source moving above a plane screen is
equivalent to the field of the source and its image,
both moving in free space. If the screen has an edge,
then when the source gets to the edge, the image ap-
pears or disappears, depending on the direction of the
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velocity of the source. For certain angles of observa-
tion the source also may be visible from behind the
screen or be covered by it. We know that vanishing or
appearance of a uniformly moving source is accom-
panied by a burst of radiation whose energy can be
estimated from (1.1a). For high velocities we get re-
sults that differ from the exact results obtained here
because they lack the factor exp (—2kya). This factor
takes account of the influence of the diffraction on the
process of appearance or vanishing of the source and
its image.

b) Radiation from a charged wire which penetrates
a semi-infinite screen during its motion. Suppose that
during its motion the source of the electromagnetic
field passes through an optical inhomogeneity. We then
get a field with a complex diffraction structure with
contributions from both fransition and diffraction
radiation. We shall consider the simplest case of this
kind: the passage through a semi-infinite metal screen
of a line source of field. We shall assume that the
charged wire intersects the semi-infinite screen at a
distance d from its edge (Fig. 5).

FIG. 5.

In this case the problem again reduces to a pair of
integral equations for the unknown current distribution
F(w) on the screen:

S F (w) vet®* dw:% [ sign (é_d) sme—rzycose—l )

~i9 2 cos 8—kysind z—d|
Xe ¥ for

SF(w)e“‘”dw:O

20, (4.24)

for z<0. )

Unlike the problems treated previously, in which
the source did not penetrate the screen, the right side
of the first equation in (4.24) has different analytic ex-
pressions depending on the sign of the difference
(z — d) (the electric field tangent to the screen falls
off exponentially toward both sides from the point of
intersection of the halfplane by the source). Thus
there are difficulties in using the method applied ear-
lier for finding a solution. It is more convenient to use
the results of solving (3.19), which were given at the
end of Sec. 3. Setting g,(z) = 0 in (3.20) and equating
g,(z) to the right side of the first of Eqs. (4.24), we get
the required expression for F(w):
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Before analyzing this formula we rewrite it in a more
convenient form, using the definition of the complex
angle of incidence 6, from formula (4.6):

qke s 1‘
4in® 2V k—w

sin (6 L 8q)

sin (0--0q)
v L[w+kcos(6+90) !

w -k cos (6—0p)

F(w)=

« i (_ cos §—w )d 1(k+w)§d—§,
e S VE
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w—k cos (84 6) J
sin (0 —8q) —hydsin@ 2ih st —- 13 dg
VE + w+k cos (6—0g) € S -V—
(4.26)

Formulas (4.26), (3.9) and (2.30) completely deter-
mine the field of radiation of a linear source intersect-
ing a screen. Let us compare (4.26) with the simpler
formula (4.7) which gives the radiation field for the
problem where the wire moves without intersecting
the screen. In contrast to (4.7), where the angles 6
and 6, appear only in the combination & + 8y, the cur-
rents given by (4.26) also depend on § — 6;,. The reason
is that when the source penetrates the screen both of
the ‘‘Cerenkov’’ waves accompanying the source suf-
fer diffraction. One of them is incident at angle 6 — 6,
the other at angle 6 + 6,. But, if the source does not
intersect the screen, only the one which is incident at
angle 6 + 6, is diffracted. We state once more that it
is largely a matter of convention to call the incident
waves Cerenkov waves, since for uniform motion of
the source in vacuum the angle &; is imaginary.

Let us consider the field in the wave zone. As in
the preceding problem, we restrict our consideration
to calculating the components of the magnetic field Hy
at large distances from the screen. Using the method
of steepest descent, we get

(p
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@ d . ]
i(— cos B—k cos q}) d (- 2ihcos? —-% dE
Xe ‘¥ S e 2 -
d VE

» 8480
2

sin (B 0q) sin(8—8p)

Hy= { l_cos -+ cos (0 )—90)+ c0s P -+ cos (B8 —Bp)

N
(*  2iksin
ehydsin @ \ e e

L _sin@+0)
cos @ +cos (0 0g)

d 0—9 <
" 0
e—hydsin@ & 62171 sin® 2 : dg }

p Vi

sin (6—6p)

+ cos @ - cos (68— 0g)




DIFFRACTION RADIATION 85

The field of the radiation from a charged wire,
given by (4.27), has a complex diffraction structure.

In the two limiting cases of d — 0 and d —*, the ex-
pression for the field simplifies considerably and the
result can be understood pictorially. If the point where
the source penetrates the screen approaches the edge
of the screen (d — 0), formula (4.27) goes over into
(4.9), which gives the radiation field from a source
passing near the edge of the halfplane but not inter-
secting it; for comparison with (4.9) we should set

a = 0. Thus the solution depends continuously on the
impact parameter.

We also consider the behavior of the field when the
point of intersection z = d is far from the edge of the
screen, d —*. Then (4.27) becomes
o, _a eikr—)—i %-}—i(%’— cos 0—k cos (p)d
¢V 2akr

i sin (84 0g)
X l_ c0s ¢+ cos (04 8;)

sin (0—6p)
cos @ +-cos (B—8p) !~

+ (4.28)
The expression found for the field coincides with the
field of the transition radiation that appears when a
linear source is incident on an ideally conducting
screen. Formula (4.27) enables us to determine the
effect of the distant edge of the semi-infinite screen
on the transition radiation, i.e., to compute the cor-
rection terms in (4.28) for large values of d. From
the asymptotic form of the Fresnel integral it follows
that these corrections have relative order 1/\/15.

This result is not obvious beforehand. Since the field
of a moving charge falls off exponentially with distance
from its trajectory, one might expect that as the point
of intersection moves away from the edge of the screen
the field scattered by the edge would also fall off ex-
ponentially. This is just the dependence of scattered
field on impact parameter that holds when the source
does not intersect the screen during its motion. But

if the trajectory of the particle intersects the screen,
as shown above, the amplitude of the field scattered
by the edge of the screen is damped much more slowly,
according to an algebraic law. The reason for this
difference in the field scattered by the screen can be
given as a pictorial argument. The point of intersec-
tion of the screen by the charged wire is a source of
transition radiation. This radiation goes outward in
the form of cylindrical waves whose amplitude falls
off inversely as vkr. At the edge of the screen the am-
plitude will be of relative order 1/@ The correc-
tions to the transition radiation caused by the scatter-
ing of waves at the edge of the screen will be of the
same order of magnitude.

The diffraction radiation from a current-carrying
wire has similar features in the case where the trajec-
tory of the source intersects the screen. We shall not
discuss that case separately.

c¢) Diffraction of Vavilov-Cerenkov radiation in the
motion of a line source near a semi-infinite screen.[23]
To conclude Sec. 4 we consider the special features of

the diffraction radiation when the source moves in a
refracting medium. We shall assume that the velocity
of the source exceeds the phase velocity of propagation
of electromagnetic waves in the medium. Then uniform
motion of a source is accompanied by radiation of
electromagnetic waves, whose propagation direction
makes an angle with the direction of motion of the
source that is given by (1.11). The field of a uniformly
moving source in an unbounded refracting medium is
determined from the Hertz vector (2.31) through
formulas (2.30). We shall restrict our treatment to
the case where the source does not intersect the semi-
infinite plane screen during the course of its motion.
Suppose that the screen is located within an unbounded
refracting medium with dielectric constant €. For the
case of a charged wire (or a modulated plane electron
beam) we shall describe the radiation by means of the
Hertz vector ', which has components only along the
z axis:

(4.29)

oo
2 iv’|y| .
m=_—=r S ¢ — fw)e™ dw,

where

V=) Se—wr=VF—uwt,  Imv'>0. (4.30)
The quantity v’ defined here differs from the v intro-
duced previously (3.10) in having k = w/c¢ replaced by
k' = w/c)Ve, i.e., by taking account of the refracting
properties of the medium. Without writing down the
pair of integral equations for the function f(w), to which
the problem reduces, we give the expression for the
Fourier components of the currents induced in the
halfplane:

. @ =T
- 0+0, o Vepz—1a
g VIR 08— e ®
4nti Y/ gy wEE cos (8+69))

f (w) = (4.30")

Right from the start we assume that the velocity of
motion of the source exceeds the phase velocity of
propagation of electromagnetic waves in the medium
i.e., €82 > 1. Then the angle 6, given by the equation

cos B,= (4.31)

.
pVe '
is the real angle between the direction of propagation
of the Vavilov-Cerenkov radiation and the velocity of
the source.

From formulas (4.29) and (4.30) we get the follow-
ing expression for the magnetic field of the radiation:

. qVw 0408, i aVep-1
Hx= —goos——p—e *
s S 10’y Hiwz 2 4.32)
{ 81gn — . .
gny VE —wlw-+k cos (0401 v (

Let us compare this expression with (4.8) for the mag-
netic field of the radiation from a source moving in
vacuum (€ = 1). The presence of the refracting med-
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ium results in the appearance of various new physical
features of the problem of diffraction radiation. We
have already pointed out one of them: the angle 6,
given by (4.31) becomes real for superlight velocities.
The second difference is that for superluminal veloci-
ties of the source the exponential falloff of the radiated
field with increasing impact parameter is not present.
This is related to the fact that the field of a superlight
source has wavelike character, i.e., is not damped as
one moves away from its path. Thus the intensity of
the diffraction radiation, which is proportional to |H!|2,
is independent of the impact parameter a.

The scattered field H! (4.32) can be expressed in
terms of the Fresnel integrals, well known from the
theory of diffraction:

B4tV (4.33)
=TV
—V2k'r cos (p—92—90
5 {e—ik'r cos (p—8—6g) S eit? J¢
[es)
V' 2k’r cos ——q’+ez+e°
—— e—ik’r cos (9-+6846¢) S eit? dt} .

o

We mention that if we take as the limit in the first
integral in the curly brackets —= instead of <, the
formula will describe the total field, which is the sum
of the field of the source and the scattered field. Ex-
pression (4.33), aside from the factor in front of the
curly brackets, coincides with the solution discussed
above for the Sommerfeld problem of diffraction of a
plane electromagnetic wave whose magnetic vector

is parallel to the edge of the screen and which is inci-
dent on the screen at an angle 6 + 6,. Thus, in the
case of superluminal motion of the source the scat-
tered field is the result of diffraction of the Vavilov-
Cerenkov radiation that accompanies the motion of
the charge.

We also note that the losses of energy from a line
source to radiation in the presence of the screen re-
main the same as in an unbounded refracting medium,
because the source runs ahead of the scattered
Vavilov-Cerenkov field and does not interact with it.

A completely analogous solution exists for the dif-
fraction by a halfplane of Vavilov-Cerenkov radiation
for the case of a uniformly moving line source of cur-
rent. We give the expression for the scattered electric
field for this case:

F cos 22870
i+ o veprTi —Vircos Ty

foe ™ i i
Et = — N e {e—lk r cos (p—6—8q) g eit? Jf
Vi Vep2r—1 2
VT cos 2T 0400
2
L eih'r cos (@40+80) ( eit? dt} X (4.34)

Formulas (4.33) for the scattered field H! of a
charged two-dimensional source and (4.34) for the

scattered field E! of a current source are exact. As
we see from these formulas, the scattered fields de-
pend on the argument VK'r cos {1/21¢ + (8 + 90)]}. For
large values of these arguments one can use asymp-
totic expressions for the Fresnel integral

L \ RE
S eitdt e b (4.35)
which gives the approximate dependence of E and H

in the far zone.

5. RADIATION OF A LINE SOURCE MOVING NEAR
THE OPEN END OF A PLANE WAVEGUIDE

It is of interest to consider the properties of the
diffraction radiation when the scattering bodies form
a resonant system in which normal modes can be ex-
cited. Under these conditions the passing source ex-
cites within the scattering system a discrete set ofits
norm modes, while outside we get a radiation that is
characterized by a continuous spectrum of frequen-
cies. We shall consider the excitation of the simplest
scattering structure of this type—a plane waveguide
with an open end. The treatment is of additional inter-
est because we are here dealing with one of the few
exactly solvable problems of excitation of electromag-
netic oscillations in an open resonator. The geometry
of the problem is clear from Fig. 6.

54

-a
FIG. 6.

The plane waveguide is formed by two semi-infinite
thin plates (y = xa, z > 0). We first consider the case
when the wire, parallel to the x axis and carrying a
current with linear density jy = jy, moves into the
wave guide with constant velocity u, = u. The distance
of the trajectory of the current-carrying wire from
the axis of the waveguide is b (b < a). The one-com-
ponent vector potential A = {Ay, 0, 0} describing the
total electromagnetic field is conveniently written in
this case as a sum

Aoy, 2)= A4y, 2)+4a (Y, 2), (5.1)
where
i 12z
Aoy, 2) = s e v {emtvbity gt
“ch (kyy) ch (kyb) , sh (kyy) sh (kyb) *
X [_ ch (kya) + sh (kya) _I } (5.2)

*ch = cosh, sh = sinh.




Al

DIFFRACTION RADIATION 87

is the vector potential describing the field of the
current-carrying wire moving in an unbounded plane
waveguide. This choice of A‘l) is not necessary. We
could choose for Agd any other solution of the inhomo-
geneous problem, for example, the vector potential

(2.17) of a current-carrying wire moving in free space.

The vector potential Aiw describes the required free
field which must be added to A‘Zu in order to satisfy
the boundary conditions on the walls of the semi-
infinite waveguide. The vector potential of the free
field A1w can be expressed in terms of currents j1w(z)
flowing in the walls of the waveguide and caused by
the presence of the open end:

Al N 1 (}ihR 4o R
s = (it @ ds. (5.3)
Formula (5.3) enables us to reduce the determination
of the vector potential Alto finding the currents in-
duced on the plates of the wave guide by the moving
source.

The currents jl(z) drop with increasing z and can
be expanded in Fourier integrals. The currents on the
top plate (y = +a), j;l(z), and those on the bottom plate
(y = —a), j‘_a(z), can be written in the form

e (@) =7+ (3) +j- () Jla(2) =] (2)—j-(2)s

where

je(2)= \’ Fy () e du. (5.4)
The subscripts + and — denote, respectively, the even
and odd parts of the currents and their Fourier trans-
forms.

The condition for vanishing of the tangential elec-
tric field E, on the walls of the waveguide and the
requirement that there be no total current on the ex-
tension of the walls leads to the following independent
system of equations for determining F,(w) and F_(w):
)
|

( Fo@)Le@)e™ dw=0  for >0,

o . (5.5)
\ Fie™dw—Bye »° for z<0,
ER J
where
1 + ei2av _ jo ch (kyb) _Jo sh (kyb)
Liw)=—— Bi=gummag P 7 shiya
v=)k—uwt (Imv>0). (5.6)

The solution of the system of integral equations
(5.5) is found in precisely the same way as the solu-
tion of the system (4.3). The result is
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F_(w)= (5.8)
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The functions ¢ and ¥ appearing in the solution are
determined by splitting the kernel L, (w) of the system
(5.5) into factors analytic in the upper (¢ and ¥4) and
the lower (¢, and ¢,) halfplanes of the complex varia-
ble w:
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Ly (w)=— H"‘qui = ‘l'L(Ei)J%ZﬂC)

Lo () = 1= _ 1) @a ()

v v

(5.9)

The explicit expressions for the functions ¢ and ¥ are
quite involved, but since the properties of these func-
tions determine the character of the diffraction radia-
tion, we give them:
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(5.11)

Formulas (5.7) and (5.8) give the expressions for
the Fourier components of the even and odd parts of
the currents induced on the plates of the waveguide.
In going from the Fourier components F,(w) and F_(w)
to the currents j,(z) the contour of integration in (5.4)
should be chosen so that it circles above the pole at
w = w/u. If we choose A in the form of (2.17) instead
of (5.2), the expressions for F_ (w) would remain the
same, but the contour of integration in (5.4) would then
have to go around below the pole at w = w/u.

The vector potential Aiw(y, z) of the radiation field
is expressed in terms of F.(w) and F_(w) as follows:

2mi

Ay, )= 5 § e F, () (el eitiver)

dw

v

+ F_ (1) (ewlv—al — giolta)] (5.12)

The nonvanishing components of the radiation field are
expressed in terms of Aiw by the formulas

. 84} 1 OF}
EL =ikAL, }{%,zfﬁ(‘i:i;f \az_’f_ ,
94} 1 O£}
1_ o 1 x 1
H:= 7y oy (5.13)

As we see from (5.13), all the components of the radia-
tion field for the problem considered here (‘‘electric
polarization’’) can be expressed in terms of E;: We
therefore limit our investigation to this one electric
field component. We start by studying the field inside
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the waveguide, |y| < a, z > 0. Then formulas (5.12) and

(5.13) give

# S etwztiva [F () cos (vy) —iF - (w) sin (vyl) —"—;5
(5.14)

This expression is also valid outside the wave guide

(z < 0), so long as |y| <a.

The field inside the waveguide is determined by the
analytic properties of the integrand in the upper half-
plane of the complex variable w. One finds that the
only singularities of the integrand of (5.14) in the upper
halfplane are poles. The function F.(w) has poles at
the points wy, = k sin 74, (the zeros of the function
¥,(w)), while F_(w) has poles at the points
Wm = Kk sin o (the zeros of the function ¢,(w)). The
quantities oy, and Ty are determined by formulas
(5.10) and (5.11) and represent the angles made by the
wave vectors of the asymmetric and symmetric wave-
guide modes with the y axis. The expression (5.14) for
the field thus reduces to a sum of residues at these
poles. Physically this corresponds to the excitation of
a discrete spectrum of norm waveguide modes when
the source passes in through the open end of the wave-
guide. By calculating the integral (5.14) using resi-
dues, we get the radiation field inside the waveguide
in the form

Ey = —

EL(y, 2)= 2 [Rimet 518 m2) cos (k cos Trmy)

m

{5.15)
meth sin(Om2) gin (k cos opy)],

+R.

where the respective coefficients of excitation for the
symmetric magnetic waves, R, . and the asymmetric

magnetic waves, R—-m’ are
. @
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From formula (5.15) we see that the diffraction field
inside the guide is a superposition of normal mode
waves coming from the open end into the body of the
waveguide. The total flux of energy radiated into the
waveguide can be determined by integrating the longi-
tudinal component of the Umov-Poynting vector over
the cross section of the waveguide. The result is
We=c¢c & EyH oy dy =ac Z {|Rim 28in Ty 4| Ry [25in 0p}.
-a " (5.17)

(5.16)

This last expression is valid only if we are at a dis-
tance from the open end of the waveguide that exceeds

the shaping length of the radiation for the lowest
harmonics (i.e., the waveguide modes with the small-
est values of m). With increasing harmonic number
the size of the region of shaping decreases. Thus, if
the distance from the open end of the waveguide ex-
ceeds the size of the shaping region for the lowest
harmonics, this condition is also satisfied for the
higher harmonics. The characteristic linear dimen-
sion of the shaping region, which is given by (1.4), is
of order

l u

sh™ G (T —p sin )

(5.18)

for the symmetric waveguide modes; for the asymme-
tric modes, 7., should be replaced by 0y,. The sum-
mation in (5.17) should be taken only over those values
of m for which sin 7, or sin oy, is real at the par-
ticular frequency. Physically this means that contri-
butions to the loss in radiation inside the waveguide
come only from waves propagating without damping.
Formula (5.17) determines the losses of energy of
such a source in exciting a plane waveguide, as a func-
tion of the sign and absolute value of the source veloc-
ity. We examine the dependence of the energy loss on
source velocity for the example of excitation of the
symmetric harmonic with index m (the Hy, wave).
Losses to excitation of this harmonic are described
in expression (5.17) by the term proportional to iRm]Z.
Dropping the factor independent of source velocity,
we get

~ 1Bl 2 ch? (kyb)
W (B) ~ (1= psin ’ ‘P" ) ‘ “hikya) - (9-19)
As u— 0 the function ¢, (w/u) tends to unity[63 and we
get

(a—b)

(5.20)

2k
W () =~ B e Bl (f—0),

i.e., at low velocities the losses in radiation of the
m-th symmetric harmonic are exponentially small.
The dependence on velocity is the same as for the
passage of a current-carrying wire at a distance
(a — b) from an ideally conducting halfplane. As we
see from (5.20), the energy radiated in this case is
independent of whether the source moves into or out of
the waveguide. With increasing velocity of the source
a dependence on the sign of u appears. When | 8] — 1
the energy radiated into the waveguide depends essen-
tially on the sign of u. If the velocity of the wire is
close to light velocity and the wire moves out of the
waveguide,

;g ¢h? (kyb)

sz“lb(_‘l)\ Lh“(]lyar)i . (5-21)
If 3 = 1 and the wire moves into the waveguide
W, ~ B2 ch? (kyb) (5.22)

—B) (1 —B sin 1,,)2 ¢h? (kya) *

We see that the excitation of the waveguide is greater
when the source moves in than when it moves out.
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The functions |[¢;(w)|2 and |¢,(w)|? can be expressed
in closed form, without infinite products. For those
frequencies at which only the first harmonics are ex-
cited in the waveguide, the expressions for |R+1|2 and
|R.4|? become simple. For example, the square modu-
lus of the excitation coefficient R,y for the fundamental
symmetric harmonic is
(R, 2 AblBla

e

(1 —sin 1y) ch2 (kyb) *70(1 B sin Ty)—hya (1—sign u)

X 1By (I_Ppsin®1y) che (kya)

(5.227)
Thus, the passage of a uniformly moving source
through the end of the waveguide is accompanied by
the excitation of normal waveguide modes, which move
from the open end into the body of the guide. At low
source velocities the amplitudes of the excited waves
are exponentially small and independent of the sign
of the velocity of the source. At relativistic velocities
a marked asymmetry in the dependence on the sign of
the velocity develops. Excitation of the guide on entry
of the source is greater than on its emergence. In all
cases the intensity of the radiation drops off exponen-
tially at high frequencies according to the law

(ky(a—b) > 1).

W‘D ~ e—ZIcv (a—b)

(5.23)

The asymmetry of the radiation intensity as a func-
tion of the sign of the source velocity is analogous to
the corresponding asymmetry for the transition radia-
tion.

We now consider the field excited by the motion of
a current-carrying wire outside the waveguide. From
formula (5.12), with y > a, we find the field in the
space above the waveguide:
- X LR () cos (va) — iF_ (w) sin (va)] # .

' (5.24)
The field in the space below the waveguide y < —a is
given by a formula that is obtained from (5.24) by
changing the signs in front of y and F_(w). We calcu-
late the radiation field at large distances from the
open end of the waveguide. To do this we change to
polar coordinates r, ¢ according to the formulas
z=rcos ¢,y =r sin ¢. Evaluating the integral
(5.24) by the saddle-point method, we get the following
expression for the radiation field in the far zone:

B Ak

c

(Jnk ‘/ - (hr—i 1F+(kcoscp)coc(kasm(p)

(5.25)

E,—Ho— —

—iF_(kcos (p) sin (ka sin @)].

This formula is valid over the whole space external
to the waveguide, at distances from the open end ex-
ceeding the shaping length of the radiation (1.4).

The energy radiated into the angular range from

@ to ¢ + dy is written in the form
W (9)dp = c| By Pr dg, (5.26)

where Ey is given by (5.25).

In the special case where the current-carrying wire
enters or emerges along the axis of the waveguide
b = 0) and the excited field is symmetric with respect
to the plane y = 0, we have

loﬁ“rlzf“hk \‘ [y (kcosyg) |2
4c2—[m(l—[3)(1—ﬁcosq: 2¢h2(kya), *

W)= (5.27)

At large frequencies w — « the function ¥, goes to
unity and (5.27) coincides with (4.22), which gives the
radiation loss for the case of a semi-infinite screen.
At low frequencies, where the wave length of the radia-
tion is comparable to the height of the waveguide, the
angular distribution of the radiation is determined by
the type of wave excited in the waveguide. For exam-
ple, when 7/2 < ka < 3r/2, which corresponds to the
condition for undamped propagation only of the funda-
mental symmetric mode Hy, we have

cos pFsin T .
PASITL o (kasing).
cos @ —sin 14

[py (k cosg)!?— 2e—kacose = (5.28)

Substituting this value in (5.27), we get the angular dis-
tribution of the radiation in this frequency range.

As we see from (5.27), the radiation from a current-
carrying wire into the external region depends on the
sign of u, i.e., on the direction of motion of the source.

Diffraction radiation arises not only when the
source passes through the open end of the guide, but
also when the source moves in free space past the
open end of the waveguide.[”’l?’] Suppose, for exam-
ple, that a current-carrying wire is moving along the
straight line characterized by the impact parameter b
and the angle 6 (Fig. 7). We assume that the trajectory
of the wire does not intersect the walls of the wave-
guide. The currents induced by the wire on the guide
walls are found by the same method as in the preceding
problem of entry or emergence of the wire. We shall
give the expressions for the Fourier components of
the even and odd components of the induced current,
F.(w) and F_(w):

F _ lovo —hyb-Hiavy Ve—w pa(wg) 1
+w)= w2Poy ¢ VE—w, Y2 (w) w—wpy’
— 1% o mybtic Vi—w @wo) 1
F-(w) 8a2foy B Vi—w, $2w) w—uw ' (5.29)

where we use wy, = —k/B cos 6 + iky sin 6, vy = v(wg)
= —k/B sin 0 — iky cos 6. The quantities wy and v, are
the components of the wave vector (along the z and y
axes respectively) associated with the source of the

1

a

bly

-a

FIG. 7.
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inhomogeneous plane wave incident on the plates of
the waveguide. The vector potential of the scattered
field is again given by (5.12). By now we must assume
that the contour of integration circles the pole at

w = wy from below. The reason is that we have chosen
for A?,u in (5.1) the field (2.17) of the moving wire in
free space. Analysis of the expressions for the radia-
tion field in the far zone, and of the coefficients of
excitation of normal modes of the waveguide in the
region between the plates gives the same qualitative
conclusions as for the problem considered above of
motion through the open end of the waveguide.

If the separation of the plates of the waveguide
goes to zero, the odd component F_(w) of the current
density on the plates goes to zero, while F,(w) gives
the Fourier component of the current density induced
in a semi-infinite screen.

The case where the source of the field is a charged
wire (or a plane modulated wave of charge density)
differs from the problem considered here in the fact
that the excited waves have a different polarization
(the waves excited are not ‘‘magnetic’’, but ‘‘electric’’
waves, for which the magnetic vector is parallel to
the edges of the plates forming the guide). Since the
method of solution and the physical features of the re-
sulting radiation are similar to that considered ear-
lier, we shall not present the results, but rather refer
the interested reader to the papers.-12:13]

We note, in conclusion, that the diffraction radia-
tion arising when a source passes by the open end of
a waveguide can be used to detect beams of charged
particles.

6. RADIATION FROM A SOURCE MOVING UNI-
FORMLY IN THE NEIGHBORHOOD OF A
DIFFRACTING LATTICE FORMED BY A SYSTEM
OF EQUALLY SPACED IDEALLY CONDUCTING
HALFPLANES

If the optical inhomogeneities are arranged periodi-
cally in space, the diffraction radiation is character-
ized by definite resonance properties. We explain
these properties for the example of a diffracting lat-
tice formed by equally spaced ideally conducting
parallel halfplanes. In this case, in contrast to most
of the examples previously considered of the radiation
from uniformly moving sources in linear periodic
media,[i‘HB] the problem admits of an exact solu-
tion.[19:20] The treatment of this problem is also of
interest from the point of view of possibly generating
electromagnetic radiation by beams of charged parti-
cles.

Consider the system of parallel ideally conducting
halfplanes, described by the equations z =na, y > 0
(n=0, £1, £2, ...) (Fig. 8). Suppose that a uniformly
charged wire with linear charge density q moves past
this system with constant velocity u. We denote the
distance from the trajectory of the wire to the system
by b, so the equation of the trajectory of the wire is

|

y =—b, z = ut. The problem is to determine the fields
E and H excited by this source and satisfying the
boundary conditions on the plates of the system (which
is sometimes called a ‘‘comb’’).

The field for this problem is conveniently des-
cribed by the Hertz vector II,,. We write I, as a sum

-a aé{Za Ja z

[P S —
u

FIG. 8.

I, = II), - T3, (6.1)

where, in accordance with (2.15), the field of the wire
in vacuum is described by the Hertz vector
]

H&:H&ZZ*‘T@(]AW hvly+bl+1uz. (6.2)
The vector IIlw describes the free field that should be
added to l'[ow in order to satisfy the boundary condi-
tions on the metal plates. The vector I'Ilw can be ex-
pressed in terms of the currents induced by the source
on the plates. From the geometry of the problem we
see that the induced currents will have only a y com-
ponent; thus

- ihRm
Ly a)= 5 2 Van V& 5" jmm,  (6.27)
m=—mx 0 —oo

where Ry, is the distance from the observation point
(X, y, z) to the point (£, n) on the surface of the plate
with index m:

Ry =V (=5 + (y— )+ (z—am)?, (6.3)
while j, (n) is the spectral component of the current
in that plate. These formulas differ from (3.4) for the
problem of the halfplane, because the field is deter-
mined by the currents induced on all of the planes.
Since the currents in the plates are induced by the

source, whose velocity is u, we have the relation

m () =jo (=722 (6.4)
This relation enables us to express the currents in-
duced in any plate in terms of one of them, say, the
zeroth. In Fourier components (6.4) has the form

., W

imo(Y) =€ ¥ joo (y). (6.5)
Using this relation and representing j;, (y) by its
Fourier integral expansion in y (cf., for example,
formula (3.8)), we can bring the expression (6.2) for
the Hertz vector to the form

oy
Ty = —22 S F (w)

—0 m=—o0

etwy

<« wl—am|4id
Wwiz—am 1— am
> e “ Udw.  (6.6)
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The summation over m in the integrand can be per-
formed if we restrict our investigation of the field to
some one fixed period. Let us choose the (n + 1)-st
space period, i.e., let us consider the range of values
of z, limited by the inequalities

na<z << (nd-1)a.

(6.7)

Then the summation over m gives
[=b)

z)y= —- 2(—;[—!; 5 F{w)

-0

Wy (v,

.0

¢ Sl e sinle (e an) ) e do

coslau)~cos< » ) *;;-.(

By imposing the requirements of vanishing of the tan-
gential component of the electric field on the plates
(for z = an, y > 0) and the absence of current on the
extensions of the plates (y < 0), we arrive at a system
of two integral equations for the Fourier amplitude
F(w) of the current induced on the zeroth plate

6.8)

S F (w) e dw =0 for y-<0, i
- f
B F(w) L(w) ¥ dw = 2(.11?5 e~y (yh) for y >0, {
— 1(6.9)
where
Lw)== —- pbsinve

®
CO8 V— (0SS a ——
12

R O
a va si.le :Qu~ -— \ ]Sm L

2 ,sinva
= - U

(6.10)

The solution of the system (6.9) can be obtained by the
same method as in the earlier examples. We write
the kernel L(w) in (6.9) in the form

L2 eEs,

wi-— /L'.’\-Z

(6.11)

where L; (w), as usual, is holomorphic in the upper
halfplane of the complex variable w and has no zeros
there, while L, (w) has these same properties in the
lower halfplane. Then the solution of the system (6.9)
can be represented in the form

. 0(](1)\
indiu (1 +iy) L

{

e~hivd - .
(F—w) Lo ()

F(w) = (6.12)

1 (Fky)
We note that, in contrast to the problems considered
earlier, the kernel (6.10) has poles at w = + iky, while
the expression (6.12) for the Fourier component F(w)
of the induced current is regular at these points. We
recall that in the earlier problems the poles of the
function F(w) corresponded to the image of the moving
source.

The functions L; (w) and L, (w) appearing in the de-
composition (6.11) can be written as infinite products:

o ik

7 L uwo
‘/ R ___1\ @il ni
\ //

n=1
]// BN \chﬂaig(w—%)
(,H,L K r),”c \ 2nau J

[ -1

[y
(oo s y/ (4 s P e}
Znn 2n T / 2n’tu ’

(6.13)

where the upper signs should be taken for L; and the
lower signs for L,. In the representation (6.13) it is
assumed that the values of the radicals are chosen so
that the conditions

Im ‘/( \'\ - >0,

/ TTae N2

l .

In ) — Lt ,“ 0
.- -TL J SFT [U m

(n=-1, 2,...). (6.14)

o Ty
/7 a
Im §

are satisfied. Relations (6.12) and (6.13) determine
completely the required function ¥(w) and, conse-
quently, the radiation field of the charged wire. The
components of the radiation field are expressed in
terms of H;w(y, z) by the formulas
r,fﬂnl,

1
‘?HJL o R ml 4 12
oz T “wz gz (‘U ’ J_)ZI \\ \

u-\I

e . (6.15)

From here on we calculate only the one nonvanish-
ing component of the magnetic field H;( For the
regions an = z = a(n + 1) we get, from (6.8), (6.12)
and (6.15), the expression

©
—hkyb4a -an
23

W ghye
iy, z) = —

R (L) L, \ {cosfviz—a(n-i1)

t/.‘r\’)_ A

. ——
i—a R k-

« " cos v (z—an}]} L1 ()

k~u, sin (va)- (w24 A2y Y dw.
(6.16)

The integral representation (6.16) for the radiation
field can be changed to a representation in the form of
a series of residues at the singularities of the inte-
grand. The different sets of poles in the upper and
lower halfplanes of the complex variable w correspond
to a different character of the field in the region be-
tween the metallic plates (y > 0) and in the free half-
space (y < 0).

When y > 0 the quantity H; is determined by the
first-order poles of the integrand in (6.16) in the upper
w halfplane:

I

w=iky
and

. /*‘:‘Vﬂl‘t 2 _

W=} k* ( /\ (m=0,1, 2,...). (6.17)
The residue at the pole w = iky cancels the contribu-
tion Hg( in the expression for the total field, which thus
is a superposition of symmetric electric waveguide

modes, coming from the open end of the cell:

,
N m
>, Ity cos == ze mY.

n=0

H.(y, 2)= (6.18)
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The coefficients for excitation of waveguide modes are

—kyb+i—m— an i o a
Ry = (— Ay, 2800 (hbwom) Ly om) [1—(—yme ]
™ ™ ua (14 2y) wm (Wi + k2y%) Ly (iky) ’
1
oty = { -3 for m =0,
[ 1 for m==0.

(6.19)
We note that among the waveguide modes excited is
the fundamental TEM mode, which propagates between
the plates at the velocity of light. The field of this
wave (corresponding to the term with m = 0 in the sum
(6.18)) is independent of z. A wave of the TEM type
is excited and propagates without damping into each
waveguide cell no matter how small the frequency.
We note that the excitation coefficient Ry, contains
the factor 1 — (—1)M el(w/u)a, which can vary from
zero to a maximum value of two, depending on the
quantity wa/u. This last quantity has a simple physical
meaning. The factor a/u is the time during which the
source passes over one period of the structure. Thus
the quantity aw/u is proportional to the ratio of the
time for passing through one period of the comb to the
period of the radiated wave. Obviously this ratio de-
termines the work done on the source of the field by
the excited wave in a period of the structure. This
work is a maximum when

(k- 1)n (6.20)

(o]
—a-+-mn=
u

where k is an arbitrary integer, and goes to zero when

2L - ma =2k (6.21)
In particular, the fundamental wave (m = 0) will not be
excited if the time for passage of the source through
one period is equal to or a multiple of the period of
the radiated wave.

From formulas (6.18) and (6.19) we easily see that
the field in neighboring plane waveguides, like the cur-
rents in neighboring plates, differ by the phase factor
ela/u)  The total flux of energy radiated into the

“waveguide’’ can be found by computing the integral

(nt+t)ea

Wy=c HopFlydz=5 D wm|Bul’,  (6.22)

where the summation extends only over those values
of m for which the longitudinal wave number wyy, is
real at the particular frequency w.

Now let us look at the radiation field of the charged
wire in the free halfspace (y < 0). In this case the
radiated field is determined by the poles of the inte-
grand that lie in the lower w halfplane:

w=—iky, Wp= ‘/W

2num
(

(6.23)
Calculating the integral (6.16) using residues at the
indicated singularities, we get for the radiation field
in the free halfspace the expression

m==1, £2, . ..).

HY — _ 9 —RY Ly (—iky) ehyy+1~—z
Tu (1+iy)2 TLg (iky)
o 2am
2ighye~h¥0 Z ResLy(wy) v a  ibmyti (7_ - 2_’;7_”),
T u(lFin (ifey) TR k—aom 620

where Res L; (Wp) is the residue of the function Ly (w)
at the pole w = v’\‘rm. This quantity can be written in
the form

_ k2
2winLy (usm>

Res Ly (wp) = lim [(w—1wp) Ly ()] (6.25)

w—wm

The expression (6.25) is more convenient for com-
puting radiation intensities, since the square modulus
of (6.25) can be written in closed form.

The number of plates does not appear in (6.24), so
it represents the field in the lower halfspace for any
value of z. The first term, corresponding to the pole
w = —iky, determines the surface wave whose electro-
magnetic field propagates at the speed of the source
and damps exponentially as it moves away from the
edges of the plates. The terms in the sum over m
correspond to the poles '\i‘zm of (6.23). For real values
of Wm they describe plane electromagnetic waves
radiated by the source in moving along the “comb.”
For each of these waves the projection of the wave
vector on the z axis is given by the equation

o = © 2nm
m — u

(6.26)

=k cos B,

where 0, is the angle that the wave vector makes with
the z axis. From the last equation we can get the
following expression for the frequency w radiated
when one observes at a given angle 0y

(6.27)

This expression has a simple physical meaning. The
time for passage of the source through one space
period of the structure is T = a/u. We introduce the
“frequency of passage’’ @ = 2r/T = 27 u/a. It is easy
to see that an integer multiple of the frequency of
passage appears in the numerator in (6.27). The
denominator contains a characteristic factor giving
the Doppler frequency shift of the moving source.
During uniform motion of the source along the system
of equally spaced plates there is a periodic induction
of currents in the plates that are nearest to the source.
The induced currents are again the source of periodi-
cally varying flashes, where the frequency of the
brightness variations is equal to the frequency of
passage 27 u/a or integer multiples of it, while the
velocity coincides with velocity of motion of the
charged wire.

From the treatment presented it follows that at a
given frequency w, a finite number of waves are radia-
ted, whose directions of propagation make different
angles 0y, with the velocity of the source. The number
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FIG. 9.

of waves radiated can be estimated from the simple
requirement

1 2
—1 < cos 0, = (F—"}f;m‘><’1’ (6.28)
from which we get
ka /1 ka 1
(gt >m>4 (g—1)- (6.29)

Thus the number of lines Am radiated at the frequency
w is given by the integer part of the quantity

e
s

=2 (6.30)

’

>[=a

where A = 2rc/w is the wave length of the wave radia-
ted at the frequency w. It is interesting to note that at
a given frequency w the number of propagating har-
monics radiated into the free space is equal to the
number of waveguide modes excited in the resonant
region between the plates. If we assign an ‘‘order’’ of
the spectral line, m, formulas (6.27)—(6.29) give an
inequality which determines the frequency band for a
given velocity of the source:

(6.31)

This inequality can be given a simple graphical inter-
pretation. In Fig. 9 the ordinates are the values of

B8 = u/c, and the abscissas are the values of ka/2w.
The range of values of these parameters for which the
radiation of spectral line m is possible is limited by
the two curves bearing the label m. From the graph
we see that a point corresponding to a fixed value of

B and ka/2m may be common to the regions of radia-
tion with different values of m.

The simple relations given above, which determine
the frequency of the radiation, the number of spectral
lines and the characteristic dependence of the proper-
ties of the radiation on the velocity of the source
(formula (6.27) et seq.) do not depend on the specific

form of our model, but are common to all linear
periodic media, i.e., media whose properties vary
periodically when some one coordinate, say z, is
changed. Let us consider the radiation of a charge in
such a medium. Suppose that a charge moving in a
periodic medium radiates a light quantum with momen-
tum hk and energy hw. In the radiation process the
periodic medium can take up any integer multiple of
the elementary momentum hk;, where k; is a recipro-
cal lattice vector

k= o 2o

(6.32)

a is the period of the lattice, z; a unit vector along the
z axis. In the radiation process, energy and momen-
tum are conserved:

p1—P2 = Ap =1k + nik,

Ey—Ey = AE =1o. (6.33)

We multiply the first of Egs. (6.33) by u. Using the re-
lation u - Ap = AE, which is valid if the velocity of the
particle does not change much because of the radia-
tion, we get

ulAp =AE =1ku -+ nikju = ho. (6.34)

If the propagation of the radiated light in the periodic
medium can be characterized in terms of some dielec-
tric constant € averaged over a period,

k=21, (6.35)
and we get
n (kou)
0= —220_
1——'3- Ve cos 0 (6.36)

If the velocity vector u of the particle is parallel to
the reciprocal lattice vector k, and € = 1, we get
formula (6.27). Despite the quantum derivation we
get a purely classical expression for the radiated
frequency.
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When wa/u <« 1 all the terms in the sum over m in
(6.27) are damped faster than the first term, which
determines the surface wave. In this case the so-
called ‘‘impedance approximation’’ is applicable: the
field in the free space can be determined by replacing
the ““‘comb’’ by the plane surface y = 0 with an as-
signed impedance (the ratio of the tangential compon-
ents of the electric and magnetic fields). The exact
formula (6.24) enables us to find the limits of validity
of this approximation. From (6.24) one can easily
calculate the intensity of the radiation in the free
space.

We have considered the radiation from a charged
wire (or a plane modulated electron wave), moving
along the ‘‘comb.’” The problem of the radiation from
a line current (or a plane modulated wave of current)
is solved similarly. The physical difference between
these two cases is the difference in polarization of the
sources (and the radiation fields).[19:20]

In conclusion we consider still another problem of radiation from
a linear source, entering or emerging from the comb along the axis
of one of the semi-infinite waveguides that form the periodic struc-
ture.[?!] In this case the source does not possess a periodicity
along the structure and there is therefore no resonant radiation in
the free space. The transition of the source from the region occu-
pied by the comb into free space is accompanied by a characteris-
tic burst of radiation which is very much like the transition radia-
tion. In the limiting case when the period of the structure becomes
much less than the wave length of the radiated field, we get the so-
lution of the problem of transition radiation for a plane surface with
anisotropic conductivity.

The geometry of the problem is shown in Fig. 10. The equations
of the plates forming the comb are y >0, z =a(n -%), n =0, 21,
12, ... The source moves into the system along the y axis; its posi-
tion is given by y = ut. We limit our treatment to the case of the
charged wire.

7\
u
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FIG. 10.

Because of the periodicity of the structure along the z axis, all
the quantities characterizing the field can be written as a superpo-
sition of functions of the form

frw 45 =", @, 2), (6.37)
where the quantity p is contained within the limits —= to 7, f,,

(v, z) depends periodically on z with the period a of the structure,
n numbers the cell of the lattice corresponding to a variation of z

between the limits
1 .
<n—?> a<lz< <n+%> a.

The function fn u satisfies the relation

(6.38)

fn+1,u (v, Z):eiufn,u(% z). (6.39)
Similar relations hold for the currents j induced on the plates during
entry or emergence of the source. We shall try to find the current in-
duced on plate n in the form

h4

fa =\ %o, @) dp.

-~

We shall describe the total field by means of the Hertz vector

(6.40)

I, =14, n -+ Do, (6.41)
where the symmetry of the problem permits us to choose all the
vectors along the y axis; here*

Iy, n(y, 2) = -;Rei“"l'lo (y, s—an), (6.42)
while II° (y, z) is the Hertz vector describing the field of the
charged wire in free space:

g —hvlzirily

0= _2
IT kYme

(6.43)
With such a choice of the ‘‘incident wave’’ the field in the central
wave guide —a/2 < z < a/2 coincides with the field of the source in
free space, while the fields in the other waveguides are gotten by
periodic continuation of II° along z. Since the function I (y, 2)
which determines the ‘“‘incident’’ wave in cell n, satisfies the rela-
tion

& 11
0 ] 1 ipnyyo
a(y, 2)=\ Hun(y, 2) dp:ﬂ M0 (y, z—an)dp,

n -1

(6.44)

which is analogous to (6.40), this function is different from zero
only for the central waveguide. Thus the assumed form of the inci-
dent wave should be regarded as a convenient mathematical device,
enabling one to write the incident and scattered fields in a single
form.

The Hertz vector of the radiation field is expressed as an inte-
gral of the induced currents, where (6.40) enables us to express
the Hertz vector II' in terms of the current induced on the zeroth
plate:

; pag
HLIL,n: —%:—)—L eiun \ Fy,ow)

o

" sin{u [z——a(n—\—%) —] }_eiusin{u ;Lz—a(n-—é—) —l} oy d_w

COS av—Cos [

((ee=(eed)).

where F,, , is the Fourier component of the current induced on the

(6.45)

zeroth plate, and the contour of integration over the variable w
circles below the point w = w/u.

The requirements of vanishing of the tangential components of
the total electric field on the plates and the absence of current on
their extensions leads, as usual, to a pair of integral equations for
the functions F, , (w). The solution of this system of equations is
obtained by standard methods and has the form

©
g My (7) ch (kya)—cosp 1 e—kvg (6.46)
8n3i My (w) sh (kya) w9 ) :

122

In this formula the function M, , (w) satisfies the relations

Fu,o(w):

*Writing the zero order field in the form (6.42) is permissible
since after summation over y between the limits (-7, 7) we get
(6.43)
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My, (w = Dz (zL , (6.47)  formula
e 1,(0)= 2/%f2e2 c0s2 0 6.51)

while the functions L, , (w) are defined by the equation

1
1 sin (l a) 2 (u-+va) B “Lyw) (w ) Lo(w)
112 T ! R T T ! wz
,(;,2;_ sin [72 LL+L11) sin [_ 5 (uw—va) ] IL?—-EZ
(6.48)

The function L, is holomorphic and does not vanish in the upper w
halfplane, while L, has these same properties in the lower w half-
plane. The splitting of (6.48) into factors L, , is very reminiscent
of the factoring of the kernel L (w) in (6.10) in the problem of par-
allel flight of the source past the comb. This is easily verified by
making the substitution aw/u - ¢ in (6.10). We shall, therefore not
give the explicit expressions for the factor functions L, and L,
satisfying the relation (6.48).

The integral representation (6.45)-(6.48) obtained for the solu-
tion completely determines the radiation field arising from entry or
emergence of the linear source from the periodic structure. Let us
note the main features of the radiated field. In the region between
the plates (y > 0), the field in each of the waveguides is a super-
position of normal waveguide modes, propagating from the open end
into the body of the waveguide. Thus, in waveguide number n the
magnetic field component Hy can be written in the form

(2m —1)

o
%l g
Ny = }__ {anSln [

m=1

( __a”) ] Comm—1Y
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where the longitudinal wave numbers are

X “ma 2
—V =)
and P, and Q,, are the coefficients of excitation of the normal
modes. We also note that the amplitudes of the excited waves con-
tain exponential factors exp (~kya/2), that are characteristic for all
problems of diffraction radiation.

The radiation field in the free space (y < 0) at large distances
from the periodic structure is in the form of cylindrical waves di-
verging from the open end of the central waveguide.

We give the expression for the intensity of the radiation accom-
panying the entry of the charged wire into the periodic structure, in
the limit as a » 0. This limiting case is of interest because then
the structure becomes equivalent to a certain conducting surface
at y = 0. The conductivity of this surface is anisotropic; it is infi-
nite in the x direction and equal to zero along the z axis:

o @)= 200 (LB

T (1—p?cos? 6)2

'}'Omn cos l ’2:[am (649)

ctg? 0 (1—cos )2

(6.50)

The angle 6 is measured from the y axis. Expression (6.50) gives
the intensity of the transition radiation from a charged wire inter-
secting an anisotropically conducting plate. When 3 » 1 the inten-
sity of the transition radiation (6.50) goes to zero, in contrast to
the case when the charge enters an isotropic metal. The explana-
tion is that the electric field of a charged wire moving with rela-
tivistic velocity along the normal to the surface has a component
only along the direction in which the conductivity of the surface is
zero. Thus no currents are excited on the surface and so there is
no radiation. We note that formula (6.50) also describes the radia-
tion when the source emerges, if we make the substitution 8 - —f.
The case where the source of the radiation is a current-carrying
wire is treated similarly. Here in the limit as a » 0 the expression
for the radiated intensity in the external region is given by the

no  (1—pZcos?()® -

This expression coincides with the formula for the intensity of the
transition radiation accompanying the entry or emergence into
vacuum of a current-carrying wire from a homogeneous metallic me-
dium. The reason for the identity of the formulas is that the elec-
tric field of the current wire has one nonzero component E, | which
is parallel to the axis having infinite conductivity.

We have considered various two-dimensional prob-
lems of diffraction radiation that can be solved ex-
actly. This radiation occurs during uniform motion of
a source of field past an optical inhomogeneity. As
field sources we have considered uniformly charged
wires or line currents (or, what is the same thing,
plane harmonically modulated current distributions).
The optical inhomogeneities considered were ideally
conducting surfaces of various forms (plane screens,
waveguides and periodic structures). Let us enumer-
ate the characteristic properties of the diffraction
radiation that are common to all cases.

1. The energy of the radiation is independent of the
mass of the particle, but is determined by its velocity
and charge. This property of the radiation is common
to all problems where one considers the radiation
from particles moving according to some given law,
for example, for the Vavilov-Cerenkov radiation or
the transition radiation.

2. The character of the diffraction radiation de-
pends on the form of the scattering obstacle. The
electromagnetic field of the radiation in free space at
distances exceeding the size of the shaping region has
the form of cylindrical waves diverging from the edge
of the scattering body. If the obstacles are arranged
periodically along the direction of motion of the
source, the interference of the cylindrical waves
diverging from individual inhomogeneities leads to
the formation of plane waves of radiation.

If the scattering bodies form a resonant system in
which normal modes can be excited, the passing
source excites a discrete set of normal modes in the
scattering system.

3. The angular and frequency distributions of the
radiation are determined by the velocity of the source
and the shape of the scattering obstacle. In the uitra-
relativistic case the main part of the radiation is at
high frequencies. The radiation occurs within narrow
angular ranges determined by the direction of motion
of the fast-moving source and the direction of motion
of its mirror image.

4. The intensity of the radiation at high frequencies
falls off as exp (—2w/uVv1l — 8% a) where a is a charac-
teristic impact parameter. This factor determines
both the limit of the radiation spectrum and the de-
pendence of the radiation on impact parameter.

5. The energy losses in diffraction radiation from
line sources are proportional to the first power of the
velocity when the velocity is low. In the relativistic
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limit the energy loss to radiation depends on the form
of the line source and the shape of the obstacle.
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