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INTRODUCTION

JVLoST investigations of the asymptotic properties of
matrix elements at high energies either start out from
semi-phenomenological assumptions or are based on
certain hypotheses of particular character. Thus,
I. Ya. Pomeranchuk et al.'-1-' start from the premise
(based on analysis of experimental data) that the dif-
ferential cross sections of scattering processes with
charge exchange vanish at high energies. Some ad-
vance the hypothesis that elastic processes are diffrac-
tive at high energies (see, for example,'-2^).
Others'-3'4-' start from the premise that new symmetry
properties exist in strong interactions and should be-
come manifest only at energies much higher than the
particle mass. Finally, mention must be made of
studies in which the starting point is the hypothesis
that the asymptotic behavior of the scattering ampli-
tude is determined at high energies by a single Regge
pole'-5'7-'. The significance of each of these investiga-
tions depends on the results of the experimental veri-
fication. An experimental confirmation of the predic-
tions contained in papers of this kind would be most
valuable, since it would signify a discovery of a new
law in strong interactions. On the other hand, an ex-
perimental refutation of these results would signify
only the incorrectness of the special hypothesis or of
the theoretical speculations, and would not affect the
main principles of quantum theory. Since it is the
latter tendency, the tendency to refutation (especially
as regards papers on the "single pole Reggistics"),
that has been predominant lately, interest has natur-
ally increased in statements that are derivable only
from the general principles of local field theory. The
derivation of rigorous asymptotic relations between
the scattering amplitudes, and consequently relations
between the cross sections, polarizations, etc., at high
energies, is the subject of most of the present paper.
We pay particular attention to a discussion of hypothe-
ses on the basis of which the derived relations can be
proved.

We recall that basic among the principles of rela-
tivistic local quantum field theory are the following'-8'9^

1. Invariance relative to the inhomogeneous Lorentz
group.

2. The microcausality principle, which in the form
given by N. N. Bogolyubov states that:

for x

with (p4(x) and <p2M standing either for one and the
same field or for different fields.

3. The spectrality condition, according to which
there exists a complete system of physical states with
positive energy.

4. The unitarity condition

If we put S = 1 + iR, then this condition can be rewritten
on the basis of postulate 3 in the form

where £) denotes summation over the complete sys-
n

tern of intermediate states.
Besides these principles there is also a certain

requirement of mathematical nature.
5. It is required that the elements of the scattering

matrix be generalized functions with moderate growth
(that is, generalized functions on the class S)'-8""11-'.
This condition causes the Fourier transforms of the
retarded amplitudes to be polynomially bounded func-
tions. Since this requirement is essential in the study
of asymptotic properties of the scattering amplitude,
we shall discuss in Sec. 1 the connection between this
assumption and the micro-causality and unitarity prin-
ciples.

If we add to the general principles of local field
theory the assumption that the scattering amplitudes
do not oscillate but have a definite (power-law or
logarithmic) growth when the energy tends to infinity
at a fixed momentum transfer, then we can obtain
several experimentally verifiable relations between
the amplitudes of the different processes. The first re-
lation of this kind—the equality of the total particle and
antiparticle interaction cross sections at high ener-
gies—was obtained by I. Ya. Pomeranchuk'-12^. Differ-
ent generalizations and refinements of the Pomeranchuk
theorem were given in [13-18] To prove the Pomeran-
chuk theorem, Sugawara and Kanazawa'-18-̂  rediscov-
ered and proved again the following theorem: If the
function f(z) is analytic in the upper half-plane and
grows at infinity not faster than some power zn, then
it cannot tend to different limits along the positive and
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negative semi-axes. Meiman^18^ called attention to the
fact that this statement is the well-known classical
Phragmen-Lindelof theorem in the theory of analytic
functions'-19^. On this basis Sugawara et al.'-16'17-' and
Meiman'-18^ proved the Pomeranchuk theorem under
rather general conditions.

Several asymptotic relations are established

mL20-23] o n ^ e basis of the Phragmen-Lindelof theorem
not only between the total but between the differential
cross sections of different processes, and also between
different polarization effects. The present article is
devoted principally to a systematic exposition of the
results of these papers and also some of the results
are published here for the first time. Besides these
results, we present a brief review of the work of
Greenberg and Low'-24 , Froissart'-25-', Martin et
al.'-26-', Meiman'-18-', and Nambu and Sugawara'-17-' on
related problems, our work'-27-' on asymptotic rela-
tions in the process of higher symmetries in strong
interactions, and a paper^28-' in which processes with
particle production are considered. The asymptotic
equality of the differential scattering cross sections of
a particle and its antiparticle was also proved by Van
Hove[29].

1. UPPER ESTIMATES FOR THE GROWTH OF THE
CROSS SECTION AT HIGH ENERGIES

1. Limitations Imposed by the Microcausality Condi-
tions on the Growth of the Amplitude

As indicated in the introduction, in the existing
local field theory it is assumed that the elements of
the scattering matrix are generalized functions with
moderate growth. It follows therefore that the scatter-
ing amplitude is polynomially bounded in momentum
space, including also for complex momenta in the reg-
ion of analyticity of the amplitude. The postulated
moderate growth is essential for the derivation of the
usual dispersion relations with a finite number of sub-
tractions. This raises the natural questions: To what
degree is this requirement independent of the remain-
ing postulates of local theory, primarily the micro-
causality postulate? What properties must be pos-
sessed by an amplitude satisfying all the postulates of
relativistic quantum theory with the exception of the
moderate-growth requirement? These questions are
of interest from the point of view of investigations of
the renormalized theory (see, for example,'-30-'). The
behavior of the remaining terms of the perturbation
theory in nonrenormalized theory shows that the am-
plitude is either nonanalytic with respect to the coup-
ling constant, or increases more rapidly than any
polynomial when the energy tends to infinity, at least
on some sequence of points in the complex E plane.

It is easy to note that the microcausality condition
is not compatible with an arbitrary growth of the am-
plitude in the plane of the energy E1-31^. This circum-
stance is simplest to illustrate with a one-dimensional

model in which the amplitude depends only on the time
(energy) and the dependence on the spatial coordinates
(spatial components of the momentum) is omitted. In
this model the microcausality condition takes the form

F(t)= \ e-iEtT(E)dE = for t < 0. (1.1)

Condition (1.1) is equivalent to the condition of
analyticity and polynomial boundedness of the ampli-
tude T(E) in the upper half of the energy plane (that is,
for Im E > 0), if it is assumed that F(t) is a general-
ized function of moderate growth (that is, F £ S*,
where S is the space of rapidly decreasing infinitely
differentiable Schwartz functions)'-10-'. If we retain the
assumption that the amplitude T(E) is analytic in the
upper half-plane but assume that in some direction in
the upper half of the E plane the function T(E) increa-
ses faster than some exponential function (even if it
still remains bounded on the real axis), then the
microcausality condition (1.1) becomes violated. This
can be verified using as an example the functions
exp ( —iaE) or exp( —a2E2). In'-32-' there were advanced
certain arguments of more general character in favor
of the statement that the Fourier transform of the
causal amplitude should increase more slowly than any
exponential function in the complex energy plane

\T(s, for Im s
> 6 > 0, (1.2)

where e is an arbitrarily small positive number. In
this paper we employ inequality (1.2) as a constituent
part of the microcausality postulates.

It will be shown in the next subsection that by mak-
ing certain supplementary (sufficiently natural) as-
sumptions and by using the unitarity condition we obtain
from (1.2) polynomial boundedness of the amplitude.
This points therefore to the place of the possible
microcausal theory.

2. Condition of Polynomial Boundedness of the Causal
Elastic-scattering Amplitude

Let us assume that a cross section of a certain
process is polynomially bounded in energy in the phys-
ical region (in fact, the observed differential cross
sections do not even increase at all with energy).
Then the amplitude T(s, t) is polynomially bounded in
the entire complex s plane.

Indeed, if a function T(s, t)/(s + i)n which is analytic
in the upper half-plane is bounded on the real axis,
then according to the Phragmen-Lindelof theorem it is
either bounded in the entire upper half of the s-plane
or increases more rapidly than some exponential on
some sequence of points that tends to infinity. The
second possibility, however, drops out since it contra-
dicts the condition (1.2). We have thus proved the poly-
nomially boundedness of the amplitude T(s, t) in the
upper half of the s-plane. The polynomial boundedness
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of the function T(s, t) in the lower half plane follows
from this if we take into consideration the condition
that the amplitude be real

T(s\ t) = T(s, t)*.

We shall now show that the assumed polynomial
boundedness of the differential cross sections in the
physical region can be obtained from a weaker and
quite natural hypothesis. To this end it is necessary
to employ the unitary condition of the scattering am-
plitude and the analytic properties in the momentum
transfer t (or in the cosine of the scattering angles
z = cos 9). We recall that Lehmann'-35-' proved on the
basis of the general principles of the local field theory,
and with the aid of the Jost-Lehmann-Dyson integral
representation,'-33'34-' that the 7rN-scattering amplitude
regarded as a function of the momentum transfer at a
fixed energy is analytic in some ellipse (the Lehmann
ellipse). The Jost-Lehmann-Dyson interval represen-
tation was obtained by using the assumption that the
scattering amplitude is polynomially bounded. Subse-
quently, however, in>36'37J, the analyticity of the scat-
tering amplitudes in the momentum transfer was
proved without any assumption concerning the degree
of growth.

Let us assume that when t runs over the Lehmann
ellipse and s — +°° (along the real axis), we have

T(s, t)\ [Be' (1.3)

for a certain choice of the positive numbers B, a, and
N. The arguments presented to justify the inequality
(1.2) make quite probable the assumption that the
Fourier transform of the retarded amplitude satisfies
for complex t in the Lehmann ellipse the even stronger
inequality (1.2). Therefore the condition (1.3), if it can
be regarded at all as a hypothesis, imposes rather
weak limitations on the scattering amplitude. We shall
show that this hypothesis and the unitarity condition
lead to the polynomial boundedness of the amplitude
on the real s axis for physical t. From this, by virtue
of the Phragmen-Lindelof theorem and inequality (1.2),
follows the polynomial boundedness of the amplitudes
for all complex s.

We shall follow the reasoning of Greenberg and Low [24]. The
small Lehmann ellipse in which the elastic-scattering amplitude
of a particle of mass m by a particle of mass M is analytic (for ex-
ample, 77N scattering) has for s > (M + m)2 a center at the point
t0 = -2k2 where k is the c.m.s. momentum.

(M —
4s

and has semi-axes x0 and vx0
 + 4k2, where

J

(1.4)

(1-5)

Here ml and m2 are the masses of the lowest many-particle states
with quantum numbers of particles with masses m and M, respect-
ively, (in the case of 77N scattering, m, = 3m and m2 = M + m). We
employ the Cauchy theorem for some smaller ellipse D with a minor
semi-axis

c = k
— TO*) (ml — Af«)-|Va

( ) 2 J (1.6)

and a major semi-axis ^c 2 + 4k2 (in order not to assume continuity
of amplitude on the boundary of the Lehmann ellipse). Using the
formula

1

1=0
we obtain

where

t'

By virtue of (1.8) and assumption (1.3) we have

1 A easN

l («) I <
x5/2

(1.7)

(1.8)

(1.9)

where c is given by (1.6). On the other hand, from the unitarity con-
dition and from the fact that the metric is positive definite in the
state-vector space it follows that

| a , ( S ) | < l . (1.10)

Fixing s, we choose l0 as the largest integer which does not exceed

For the first /„ terms in the sum (1.7) we make u s e of the e s t i m a t e

(1.10) and for the remainder of inequal i ty (1.9). As a resul t we

obtain

| T(s, 0) | < const-sJV+2 (1.11)

and an analogous condition for t < 0. This proves the polynomial
boundedness of the amplitude.

The results can be summarized as follows. If in-
equality (1.3) holds in the microcausal relativistic
theory when t belongs to the Lehmann ellipse, then the
scattering amplitude is polynomially bounded in the
complex plane of the energy s (as s —~ °°).

3. Estimates of the Growth of the Cross Sections

We now assume that thc^scattering amplitude is
polynomially bounded for all t in the Lehmann ellipse,
that is, we can represent the exponential exp (as^) in
the right side of inequality (1.3) by the power sN. We
then obtain in lieu of (1.11) the estimates of Green-
berg and Low'-24-':

•T(s, 0) | < const -s* (Ins)2,

[ T (s, t)\^ const • -—^rp-—
1 1 ' 4 (1.12)

and consequently,

CTtot ( s ) ^ c o n s t • s (In s ) 2 ,

da(s, t)
< cons t - -—^

* i
t<ZO. (1.13)
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If we assume, for example, that the semi-axes of
the ellipse in the t plane in which the amplitude is
analytic, do not change with increasing energy (this
takes place in the case of the Mandelstam representa-
tion), then we obtain in (1.12) and (1.13) the results of
Froissart'-25-'

\T(s, 0) [< const-s (Ins)2,

0 ,3/.,

I J ys, t; | 5% ooiisu ~— , t<0, (1.14)

and consequently

dais, t) . u (Ins)3

—~—- < const • -—ff- (1.15)

Under the same assumptions, Kinoshita, Loeffel, and
Martin'-26-' obtained a different estimate for the limita-
tion of the growth of the amplitude for nonzero
momentum transfer:

and

da{'' < const ( 'n s ) 3^ const- ti , t<0.

(1.16)

(1.17)

If we consider the asymptotic behavior of the amplitude
for a fixed value of the angle (and not for a fixed
momentum transfer), then the estimate (1.16) is
stronger than (1.14).

2. ASYMPTOTIC PROPERTIES OF THE SCATTERING
AMPLITUDE OF SCALAR PARTICLES

1. The Phragmen-Lindelof Theorem and the Asymp-
totic Equality of Differential Cross Sections

We consider crossing scattering processes of scalar
particles

and

(I)

(II)

Let qt and pj be the momenta of the particles aj and b
in the initial state of each process, and q2 and p2 the
same quantities in the final state. The masses of the
particles aj and bj are denoted by mj and Mj respec-
tively. For the first process q2 = — m? and p? = — M?

and p? = -M 2 .

~P2)2-

9

-q f =-
9

mf,and for the second,
We put s = (Pi + qt)

2, u = - (pt - q2)'
i, t = - (

The matrix elements of processes (I) and (II) are of
the form

and the differential cross sections are equal to

(2.1)

(2-2)

where J = I, II denote one of the reactions under con-
sideration and kj is the value of the three-dimensional
momentum in the initial state of the process J in the
center-of-mass system. The amplitudes of the proces-
ses (I) and (II) for real s and t are connected by the
crossing symmetry relation

TI(u,t)^Tn(s,t)*, s-rt^-u=--Ml-\-Ml-:-ml-\-ml (2.3)

(the asterisk denotes complex conjugation). Relation
(2.3) is obtained from the equality

(U, t) = ru(s, t), (2.4)

which is valid for s and u from the analyticity region
of the functions T^ by taking the limit.

We assume that the masses mj and Mj and the inter-
actions of particles aj and bj are such that the princi-
ples of local theory lead to analyticity of the amplitude
T^(s, t) for fixed t in the complex s-plane with cuts
along the real axis. In addition to the cuts, T^ has as
a rule a finite number of poles on the real s axis. In
investigating the asymptotic behavior of the amplitude
as s -^°° it is convenient to subtract first from the
amplitude the pole terms, which have a known asymp-
totic behavior, like 1/s, and investigate the asymptotic
behavior of the function bounded at finite points of the
real axis. We shall henceforth use T^ to denote the
amplitude after subtraction of the pole terms.

To encompass the class of amplitudes with suffi-
ciently general asymptotic behavior, we introduce one
other auxiliary concept. We call a function cp(s, t) ad-
missible, if for fixed t (from a certain interval) the
function l/<p(s, t) is analytic and is smaller than any
exponential exp (e | s|), e > 0, when s — °° in the upper
half plane, continuous on the real axis, and in addition
if

''"•^'.V6""1"". (2-5)

where a(t) is an arbitrary real function. An example
of an admissible function is

q>(s, t) = > [In (s+ £)f "[hi

where a(t), /3(t) and y(t) are real .
The following theorem holds true:
Theorem I. Assume that for a certain admissible

function there exist finite limits

I/I / / \ i : _ ' l*> l) T/
cp(s, 0 ' - l Z w ^ - <2-6>

Then in the local theory these limits are equal to each
other:

Vl{t) = Vll(t). (2.7)

From this follows also the asymptotic equality of the
differential cross sections of the processes (I) and (II):

do11 (s, t)/dt = 1, or
da1 (s, t) da11 (s, t)

dt dt
(2.8)
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Proof. By a virtue of the assumptions made relative
to the amplitude T^fs, t), the function

(2.9)

only the limits

v ' ' <P(s, t)

is analytic, does not exceed e e s in the upper half-
plane of s, and is bounded on the real axis. In addition,
it follows from (2.3) and (2.6) that

lim F(s, t) = lrI(t), lim F (s, t) = Vu{t). (2.10)

Therefore we can apply the following Phragmen-
Lindelof theorem'-19-' to the function V(s, t).

Theorem II. Let f(z) be an analytic function of
t = rei# regular in the domain D enclosed between two
straight lines Lj and L2 forming an angle 7r/r with the
vertex at the origin, and bounded on these lines
(|f(z)| < C along Lj and L2). Then the following alterna-
tives exist: either |f(z)| < C at all points of the do-
main D, or else there exists a sequence zn ~* °° such
that

max | / (zn) | > ev •v>0. (2.11)

On the other hand, if the function f(z) is smaller in
absolute value than any exponential exp (erT) in the
angle D, then the first possibility should be realized,
that is , f(z) is bounded by a constant in the entire
domain D.

Let the function w = f(z) be regular and bounded in
the angle D. We denote by Ej (i = 1, 2) the set of limit-
ing values of w as z —-°° along the line Lj. Then either
the sets Ej and E2 have a common point, or else one
surrounds the other and separates it from the circle
w| = C. In particular, if these exist finite limits a* and

aH when z -~°° along Lt and L2, then a* = a^ = a so
that f(z) —- a as z —- °° uniformly in D.

The function V(s, t) satisfies all the conditions of
the theorem II (in our case D is the upper half-plane,
T = 1). Since this function is polynomially bounded, its
limiting values a s s ^ ± M should coincide. This
proves (2.7).

If the discarded pole terms decrease as s - " ° more
rapidly than the function TJ(s, t) itself, then formula
(2.1) remains valid as s -— °° for that part of the am-
plitude, and we obtain the asymptotic equality (2.8) of
the differential cross sections. On the other hand, if
the amplitude behaves at infinity like 1/s, then a direct
account of the pole terms shows that the equality (2.8)
remains in force in this case too. This proves
theorem I.

2. Case of Elastic Scattering. Equality of the Total
Cross Sections

In the particular case of elastic scattering (in this
case mi = m2 = m, and Mj = M2 = M) the corollary of
theorem I regarding the asymptotic equality of the
differential cross sections can be obtained under less
stringent requirements. We assume that there exist

64ns*2 daJ (s, t)1 • U-iJtA/l

dt
J=l, II, (2.12)

and that the imaginary part of the ratio T^(s, t)/V(s, t)
is not negative at fixed t and s —*-°°. This second a s -
sumption is natural since in the expansion of the im-
aginary part of V(s, t) in Legendre polynomials

•I \ I I " "i (s> (2.13)
1=0

all the coefficients Im a; (s)/<p(s, t) are non-negative
by virtue of the unitarity condition and the condition
that the metric is positive definite in the space of the
state vectors. In addition, z —- 1 when s —"*> and P(l)
= 1, so that each term of the series (2.13) becomes
non-negative for sufficiently low s. It does not follow
from this, however, that Im V(s, t) becomes non-nega-
tive at high energies, since the series (2.13) converges
non-uniformly with respect to s, and the non-negative
nature of Im V(s, t) as s ^ ° ° is hypothetical.

We note also that this assumption that Im V(s,t) is non-
negative is equivalent to the assumption that when s -» ~> the
main contribution to the series (2.13) is made by partial waves with
momentum I - ck. Indeed, for large k and / ~ ck we have

The first root of Jo (x) is equal to x0 = 2.4048. In the region £ x
\/-tx0 the function Jo (£\/-t) a n d consequently the Pi (z) are posi-
tive. If we assume that the main contribution is made in (2.13) by
terms with I ~ ck, then these terms will be non-negative when

t j < xj/c2, that is, for sufficiently small t.*

We shall show that under the assumptions made the
limits A-̂ (t) and A^(t) coincide. Indeed, the assumption
that the limits (2.12) exist signifies that the modulus
of the function (2.9) tends to definite limits when
s —* ±°°. The limiting sets Ei and E2 for the same
function V(s, t) therefore lie on two concentric circles:
V(s, t)| = ax(t) and | V(s, t)| = aIT(t). By virtue of the

second part of theorem II, either the sets El and E2

cross, which is possible only if a*(t) = sM(t), or one of
them surrounds the other, that is, consists of all the
points of the circle | V(s, t)| = max (a*, a^). In the
case in question, however, the second possibility is
not realized, for by virtue of the non-negativity of
Im V(s, t) when s —»°° each of the sets Ej can occupy
not more than a semicircle, meaning that it cannot
surround the second set. It follows therefore that
a^(t) = a**(t) and consequently the differential cross
sections (2.8) are equal.

Other conditions under which the differential cross sections are
asymptotically equal are given in Meiman's paper [38]. The results
of this paper can be formulated in the following manner. Let the
elastic scattering amplitudes T-1 (s, t) have no real zeroes, and let

*It is useful to note that since P; (x) > 1 for real x > 1, the
imaginary part of the amplitude is non-negative in this part of the
physical region, where the series (2.13) converges and t > 0.
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= I, II.

This leads to the convergence of the products

where sj[ (t) are the zeroes of the amplitude TJ (s, t) in the upper
half of the s plane. Assume further that the ratio of the absolute
values of the amplitudes of processes (I) and (II) has a limit as

lim
s~*co

(s, t)

Tu (s, t)
= y.

It is assumed that this ratio is bounded from above and from below
on the entire real s axis by positive functions of t. Then y = 1, if
the argument (phase) of the ratio

Tl (s, t)/nl (s, t)

Tu(s, t)/nlI(s, t)

increases (or decreases) more slowly than In s (or respectively,
—In s) when s -> oo; y has a finite positive value different from
unity if the phase of this ratio increases(decreases) like In s
(-In s), y = 0 or <» if the phase of this ratio increases (decreases)
more rapidly than In s (-In s).

We now proceed to a study of the forward scatter-
ing. If a(t) in (2.5) satisfies the condition

a (0) =- 1 (2.14)

and the real part of the amplitude increases no more
rapidly than its imaginary part, then theorem I leads
to the statement that the total cross sections of the
interaction of the particles and antiparticles are equal.
For this purpose it is sufficient to note that by virtue
of the optical theorem the total cross sections a^ As)
corresponding to processes (I) and (II) are expressed
in terms of the imaginary parts of the amplitudes of
these processes by means of the formula

~~ Im TJ («, 0), / = I, II.
s

(2.15)

Nambu and Sugawara'-17^ have proved the asymptotic
equality of the total cross sections of the interaction
of a particle and antiparticle without assuming the ex-
istence of limits of the cross sections. Here, however,
they have assumed that the elastic forward scattering
amplitudes become pure imaginary at high energies.
A second proof of the Pomeranchuk theorem was given
jnCi8] u n ( j e r tn e assumption that when s —-°° the total
cross sections tend to constant limits, and the differ-
ential cross sections forward are bounded. Asymp-
totic equality of the total cross sections for the inter-
action of a particle and an antiparticle was proved
also in the case when these cross sections increase
logarithmically^15'18^.

If a is a neutral, scalar (or pseudoscalar) particle
which coincides with its own antiparticle, then the am-
plitudes of the processes (I) and (II) coincide:

T l ( s , t ) = T u ( s , t ) = T ( s , l ) . (2.16)

On the other hand, in the case of forward scattering

(with a(0) = 1) the theorem I leads to the relation

It follows therefore that in the asymptotic case
(as s —•«>) the amplitude is pure imaginary:

(2.17)

(2.18)

From (2.1), (2.15) and (2.18) we get the following
asymptotic connection between the differential and
total cross sections of the process under consideration:

do(s, t)
dt «=0

(2.19)

3. ASYMPTOTIC PROPERTIES OF THE AMPLITUDES
OF MESON-BARYON SCATTERING

1. Symmetry Properties of the Amplitude

Let us consider the processes (I) and (II) for the
case when the particles a} have spin 0 and particles
bj have spin 1/2. Then the amplitudes of the processes
can be written in the form

TJ(Pu <?i; Pi, q2) = UbW[Fi{8, i) + i-*±±S*.Fi(t, 01 "6 (Pi),
(3.1)

if the relative parity of the particles in the initial state
Ij coincides with the relative parity of the particles in
the final state If, Ij = If, or in the form

(3.2)
if Ij = -If. In expressions (3.1) and (3.2) pj and qt are
the 4-momenta of the fermion and boson in the initial
state (bj and at for process (I) and bj and a2 for proc-
ess (II)) and p2 and q2 are the 4-momenta in the final
state.

The invariant amplitudes Ff (s, t) and F£(S, t) of the
processes (I) and (II) are related by equations of the
crossing-symmetry type.

Let us proceed to derive these equations. The am-
plitudes T are expressed in terms of the variational
derivatives of the S matrix by the equations

/>2. ft)

\ _j l!Zh,
(3.3)

= \ d*x(b2(p2) (3.4)

where

&s
a; (x)

•S+.

In the physical region each of the integrals (3.3)
and (3.4) must be understood as a limit when the vec-
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tor q( + q2 has a negative increment that tends to zero
and belongs to the future light cone. Therefore, when
the vectors pj and qi are in the physical region of any
of the processes (I) or (II), expressions (3.3) and (3.4)
are Hermitian adjoints of each other, that is,

T (Pi, qi\ p2, q2) = T (p;>, —<7t; p u —</,)*, (3.5)

where (I') is the process inverse to (I):

a2-\-b2 —> «, -\- b\.

Processes (I) and (I') are related by space-time r e -
flection. If

(Pi. qt; p2,

then

Pi, Vi) = p2,

where the matrix B has the properties

ByuB'1 = yl, BT = —B,

(3.6)

(3.7)

(3.8)

the upper index T denotes the transpose of the matrix,
and T7 denotes the phase factor, |TJ| = 1. In the case of
elastic scattering TJ = 1. From (3.5) and (3.7) we ob-
tain

M (Pi, g4; p2, q2) — r|Y4 [BMl (pit —q2; p2, —</i) -fl"1]* v4.

(3.9)
Relation (3.9) can be written in a more conventional

form by expressing B in terms of the charge-conjuga-
tion matrix C:

jj = o V5, f-' YM- ~^ Yn> ^ ~^ ^ • * ^-™i

By virtue of relativistic invariance we have

y5M
l(pt, —q2; p2, — ql)y5 = MI( — pl, q2, — p2, <7,). (3.11)

From (3.9) —(3.11) follows a crossing-symmetry rela-
tion for the total amplitude

Mn (pi, qc, p2, q2) =• TIY4 [C~1M1 ( —Pi , q2, — p 2 , ?i) C\* y^.

(3.12)
From this we can easily obtain crossing relations be-
tween the invariant amplitudes of FV(s, t) of processes
(I) and (II). Depending on whether the relative parities
of the particles in the initial and final states are iden-
tical or opposite, we obtain

F\ (u, /) = (—l) i+1 F]1 (s, t)*, if /; = /,,
FJ(u, t)=.{ — lYFVis, I)*, if / ; = — / , . (3.13)

We shall henceforth assume that r\ = 1, which does not
lead to a change in the final results, since the expres-
sions for the differential cross sections and polariza-
tions always contain the product TJTJ*.

Along with processes (I) and (II), we shall consider
for the case when bj are particles with spin, also the
process

(HI)

The amplitude of this process will be written in the
form

Tin (Pi, ?,; p2, 92) = u (p2) M
m (pi, g,; p2, q2) u (Pi). (3.14)

In analogy with the preceding, we can obtain the follow-
ing crossing-symmetry relation between the ampli-

Ml

Mni(Pu ?i; Pz. ft) = Y4M1 (p2, p,, -

or, in terms of the invariant amplitudes,

F\{u, s, 0*.

if

if

(3-15)

(3.16)

2. Asymptotic Equality of the Differential Cross Sec-
tions

The differential cross section of the process (I) is equal to

da1 (s, t) l

where

Gl (s, t

dt

= [{M2±Ml)*-t] I Fl (s, t) P

s, t), (3.17)

-ml)] Re ̂ ( s , t)Fl(s, t)*,

(3.18)

with the upper sign corresponding to the case of identical relative
parities, Ij = I f , and the lower to the case of opposite parities,
Ii = -If.

For fixed t and s -» ~, (3.18) takes the form

Gl(s, t)~\(M2±Mi)F
1

1(s, t)~sFJ(s, t) \*-t \ F\{s, () i2. (3.19)

The differential cross section of the process (II) is obtained
from (3.17) and (3.18) by replacing F} (s, t) and F2

X (s, t) by Fjx(s, t)
and F 2

! (s, t) and by interchanging the positions of mt and m2,
while the differential cross section of process (III) is obtained by
replacing F/ (s, t) and F} (s, t) by FJ n (s, t) and F2

In (s, t) and in-
terchanging the places of tl[l and M2.

Let us prove the asymptotic equality of the cross
sections of processes (I), (II), and (III) for fixed t and
s —-°°. If only one of two amplitudes Ff(s, t) and
F2 (s, t) makes the main contribution to the asymptotic
value of the cross section, then it is sufficient to con-
sider this amplitude, and the asymptotic equality of
the cross sections follows directly from theorem I.
We must therefore consider the general case when both
amplitudes F t (s, t) and F^(s , t) make contributions of
equal order to the asymptotic values of the cross sec-
tion. In this case, for some choice of the admissible
function cp(s, t) there exist finite limits

= lim *h?iJ)
S->±CO <P(«. 0

( 3 - 2 0 )

By virtue of theorem II the limiting values of (3.20)
are equal to each other:

Ut(t) = U-i(t), (3.21)

and, consequently, taking account of the crossing-sym-
metry relations (3.13) and (3.16), we get
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and

= ± (3.22)

where again the upper sign corresponds to Ij = If, and
the lower to Ij = —If.

From these asymptotic relations between the am-
plitudes of processes (I), (II), and (III) follows the
asymptotic equality of the cross sections of these
processes for fixed t and s —<x. For example, from
this follow the asymptotic equalities of the differential
processes

and it + P —»
and K'-{p —>
and AT~ + p —>

and /f0 -}- p —9

and p + He —>

n +p,

(3.23)

J

3. Asymptotic Relations Between the Polarizations of
Fermions in the Final State

We assume that the fermions are not polarized in
the initial state. We denote by n a unit space like
4-vector proportional to i e ^ ^ y Pio-qi/3 P2y» where
€aByu *s a completely antisymmetrical tensor. In the
c.m.s. we have n4 = 0, n = [pj ><P2]/| (Pi xp2]! • The polar-
ization state of the fermions in the final state is char-
acterized by a polarization 4-vector £ jj proportional
to the unit vector

Calculating P J (s, t), we obtain

PJ (s, *) = 2s V — t C (s, t) I m f ' {S' t] PJ* (S' °

(3.24)

(3.25)

where the function C-J (s, t) tends to unity for fixed t and s -» °o
(see [a2] and formula (2.35) below). For the process (I) the function
G1 is determined by formula (3.18), and in the asymptotic case by
formula (3.19), while for the processes (II) and (III) the functions
GJ are obtained from formula (3.18) by means of the method de-
scribed following formula (3.19).

As already shown, for fixed t and s -> oo the functions GJ (s, t)
are equal to each other for all processes (I), (II), and (III). There-
fore, in investigating the polarization it is sufficient to consider
the quantity Im FJ (s, t) F^ (s, t)*. From the asymptotic relations
(3.22) it follows that

Hm
I m Fi ,

I m s' 0 Fl (*• 0 *
, t) F 2

n i (s, t)*
(3.26)

where, as in (3.22), the plus sign corresponds to the case Ij = If

and the minus sign to the case Ij = -If.

Thus, for fixed t and s — °° the polarizations of the
fermions in the final states of processes (I), (II) and
(III) are connected by the asymptotic relations

_ pl

P'(s,

l(s, I ) ,

s, 0.

if

if 11 = - (3.28)

The results obtained are applicable, in particular, to
the processes (3.22) and (3.23). For example, the
polarizations of the recoil protons in the processes

JI+ -f p —> .i4" -|- p and ;r -|- p —> n~ -| - p,

K++ p - • K+-,-p and K' + p->IC + p

are equal in magnitude and opposite in sign for identi-
cal values of the energy s and of the momentum t rans-
fer.* For the polarizations of the 2+-hyperons in the
processes

n+ +p—>K+ + 2+ and K~ + p~>n" + 2+

there is also an analogous asymptotic relation regard-
less of the relative parities of the particles. However,
the asymptotic relations between the polarizations of
the nucleon and antihyperon in the last pair of proces-
ses (3.23) depend on the relative parity 1%\: the
polarizations of p and 2+ are equal in magnitude and
opposite in sign if this parity is +1, and equal both in
magnitude and in sign if the parity of I g \ is —1.

We have considered a general case when both in-
variant amplitudes contribute to the asymptotic values
of the cross sections. It is easily seen from (3.25) that
in this case the polarizations P tend to differ from
zero when t ^ 0. If only one of these two amplitudes
contributes to the asymptotic values of the cross sec-
tions, then the polarization p J tends to zero.

We shall now show that there are several processes
in which the polarizations of the fermions in the final
states tend to zero as s —*• °° and for fixed non-vanish-
ing t, independently of the relative behavior of the
invariant amplitudes. These are processes that go
over into themselves in the crossing transformation,
that is, processes for which a~2 = a t . In this case proc-
esses (I) and (II) coincide, that is, P :(s, t) = P n ( s , t).
On the other hand, according to (3.27), P I(s, t)

pII(S) t) independently of the relative parities of
the particles. Consequently, in this case P1 ~ P11 ~ 0.

Thus, for example, the polarization of the fermions
in the final states in the processes

and

(3.29)

(3.30)

(if the spin of the H-hyperon is equal to 1/2) tends to
zero when s —- °° and t is fixed, independently of the
relative parities of the particles, even when both in-
variant amplitudes contribute to the asymptotic values

PI(s,t) Pu(s,l) for both cases (3.27)

*The asymptotic connection between the polarizations of the
protons in these processes was first obtained in ["] under the as-
sumption that F^ and sF^ behave for s -» °o like s when t < 0.
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of the cross sections. If isotopic invariance is satis-
fied, then the polarization of the recoil neutron like-
wise tends to zero in the charge exchange process

ir-i-p—>n° + n. (3.31)

Indeed, we have seen that the polarization of the recoil
neutrons in this process and in the process for

JT° 1 p->n+ + n (3.32)

are opposite when s —* °° . However, it follows from
the isotopic invariance that the matrix elements of the
processes coincide (apart from the sign) and therefore
the polarizations of the neutrons should be equal in
both processes. It follows therefore that when s —* °°
the polarizations of the recoil neutrons of the proces-
ses under consideration tend to zero.

For an experimental verification of the obtained
asymptotic relations between the polarizations, it is
probably simplest to use a polarized nucleon target
and to measure the parameter of the left-right asym-
metry for the different processes, inasmuch as in the
case of equal parity (Ij = If) the asymmetry parameter
is equal to the polarization, and in the case of differ-
ent parities (Ij = —If) the asymmetry parameter differs
from the polarization only in sign'-39-'.

4. Complete Experiment in the Case of Elastic Scatter-
ing of a Meson by a Nucleon

In the case considered of the scattering of a meson
(with zero spin) by a nucleon (with spin 1/2) the com-
plete experiment should yield three real quantities (for
each value of the variables s and t)*. We can choose
these quantities to be the differential cross sections
(3.17) —(3.18), the polarization P J (s , t) of the fermion
in the final state when scattered by an unpolarized
target (3.25), and the polarization when scattered by a
polarized target with a polarization vector f.

In elastic scattering of a meson by a polarized nucleon target,
the three-dimensional nucleon-polarization vector in the final state
is given in the c.m.s. by

(3.33)

where PJ (s, t) is given by (3.25), and

\FJ(s,
GJ (s, t)

(3.34)

GJ (s, t) for J = I is given by formula (3.18). (GJ (s, t) for other
values of J is obtained by the method indicated following formula
(3.19)),

(3.35)

*In [4°] the complete experiment is confined to determination of
two quantities, for when the energy is lower than the threshold of
the inelastic processes the remaining quantities can be determined
from the two-particle unitarity condition.

For the third measured quantity (alongside with dcrJ/dt and PJ(s,t))
we can take, by virtue of (3.33), the quantity QJ (s, t). It is
easily seen that under the assumptions made above the asymptotic
value of the quantities QJ (s, t) as s -> <*> should coincide for proc-
esses (I) and (II).

In the case under consideration, that of elastic
scattering of a meson by a nucleon, the results ob-
tained can be derived under weaker assumptions: in
place of the existence of two complex limits (3.20)
(i.e., four real limits) it is sufficient to assume the
existence of limits for the three indicated experimen-
tally-measured quantities or, what is the same, the
existence of limits (as s —-00) of the quantities

11J (s, t) U, t)
and arg -1

L <f(s, I) J '

where

HJ(s, 0 = s, t) — (s — M2 — m2)FJ
2 (s, I), (3.36)

under the condition that Im [HJ(s, t)/<p{s, t)] a 0 as
s —•"*>. The latter assumption is natural since

virtue of the unitarity condition

• 0. (3.38)

and furthermore

A±)~

Under these assumptions the conclusions concerning
the asymptotic equality of the differential cross sec-
tions, the opposite signs of the polarizations (3.27),
and the equality of the quantities (3.34) for processes
(I) and (II) remain in force. This statement is proved
in analogy with the proof of the similar statements for
the case of scalar particles (Sec. 2).

4. ASYMPTOTIC PROPERTIES OF THE BARYON-
BARYON SCATTERING AMPLITUDES

1. Symmetry Properties of the Amplitudes

We now proceed to study processes (I) and (II) in
the case when all particles â  and bj have spin 1/2.
The matrix elements of these processes are of the
form

TJ (PI . 9i! Pz, (4.1)

ri0) (p) ua ) ub (Pl

, _ 91 + 92
P =

_Pl+P2

where Fj (p) can be chosen independently of the rela-
tive parities of the particle:

r ( i a ) (p)={l , 1, ip, ip, YS, Ys, ip\5, ipy;,},

and r ' ' (p) depend on the parities:

(4.2)
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r(ib)(<7) = {l, iq, iq, 1, Ys- J9Y5, Ys, i?Ys}. /( = //. (4.3)

r? '(g) = {Y5. J<7Ys, igYs. Ys. 1. & L »?}. / ; = — / / . (4.4)

The invariant amplitudes Fj (s, t) satisfy the crossing-
symmetry relations

F\{u, 0 = ± ( - «, 0*. (4.5)

2. Asymptotic Equality of the Differential Cross Sec-
tions

The differential cross sections of the processes in
question can be expressed in terms of the invariant
amplitudes F. (s, t). From these expressions and
from the crossing-symmetry relations (4.5) we can
prove the asymptotic quality of these differential cross
sections. To this end it is sufficient to apply the
Phragmen-Lindelof theorem and to repeat the entire
reasoning given in the preceding section. In particular,
for fixed t and s -— °° the differential cross sections of
the following processes are equal

+p
+p
+ n
+ 2+
+ X

and
and
and

and
and

P
2-

X

P
n

+ P
' + P
~\~~ P

~~\~ P

+ P

- > p
->2"
->2"

- > ! • •

—>2~

+ P,
' + P.
" + «,
• + 2 \
+ X.

(4.6)
(4.7)
(4.8)
(4.9)

(4.10)

We note that in the last two processes (4.9) and (4.10)
the momentum transfer t is measured between the ini-
tial proton and the final hyperon. This transfer is
usually denoted by u. Therefore in these cases the
differential cross section of the elastic or inelastic
backward scattering of a hyperon by a proton is in fact
equal to the differential cross section for proton-
antiproton pair annihilation by a hyperon-antihyperon
pair.

3. Asymptotic Properties of Polarization Effects

We denote by P J a or P J b the polarizations of the
particles a2, a~i, or b2, respectively, in the final state
of the process J = I, II with unpolarized initial part i-
cles, and by T?Ja or rjJb the parameters of the left-
right asymmetry in processes with polarized particles
aj, a2, or b1; respectively. Then, expressing P^ a ( s , t),
P J b ( s , t) and 77Ja(s, t), TjJb(s, t) in terms of the invar-
iant amplitudes and using the crossing-symmetry r e -
lations (4.5), we can prove the following asymptotic
relations

Pla(s,t) nUa(s,t), PUa(s,t) nla(s,t), (4.11)

Plb(s,t) Puh(s,t), r\U (s, t) r\m(s,t). (4.12)

If (I) and (II) are elastic-scattering processes, then it
follows from T-invariance that

In this case P J b ( s , t) and 7]Jb(s, t) also satisfy the
asymptotic relation (4.11), while P J a ( s , t) and 7jJa(s, t)
satisfy (4.12).

Let us present some examples. For fixed t and
s —-00 the polarizations of the recoil protons in proc-
esses (4.6) and (4.7), and also of the recoil neutrons
in (4.8), have equal magnitudes and opposite signs.
The polarizations of the hyperons in the final state of
the processes (4.9) and (4.10), of the proton and anti-
proton in (4.6), and of the hyperon and antihyperon in
(4.7) are also opposite. In concluding this section, we
note that whereas the dispersion relations for the
scattering of the pion by a nucleon have been proved
on the basis of general principles of local theory'-8-',
the analytic properties of the nucleon-nucleon scatter-
ing amplitudes, which are necessary to apply theorem
II, have been proved only in arbitrary order of pertur-
bation theory^41'42-'. As to the scattering of a hyperon
by a nucleon, as shown in'-43-' the general dispersion
relations are not valid in the lower orders of perturba-
tion theory even in the case of forward scattering. It
turns out, however, that in the physical region the am-
plitudes of the processes in question tend ass—" 3 0

to asymptotic amplitudes that are analytic functions of
the variable s, and the Phragmen-Lindelof theorem is
applicable to these functions. Therefore the asymptotic
relations obtained can be regarded as proved (for de-
tails see Sec. 8).

5. ASYMPTOTIC PROPERTIES OF THE PHOTOPRO-
DUCTION AND COMPTON EFFECT AMPLITUDES

1. Photoproduction of a Meson on a Baryon

We consider the crossing processes of photoproduc-
tion of a meson on a baryon:

Y + hi —> a + *2.

Y + b2 —> a, + bt,

(I)

(ID

where b4 and b2 are baryons, and a and a are the meson
and its antiparticle. We denote by Mj the mass of the
baryon b{, by m the mass of the meson a, by k and p t

the 4-momenta of y (photon) and the baryon, and by q
and p2 the 4-momenta of the final meson and baryon.
The matrix elements take the form

TJ (k, Pi; <?„ p2) = S ub (p2) Tiih (Pl) Fi (s, t), (5.1)

where the independent covariant matrices Fj are equal
to

2iyi\{PR) qk) — {Pk)

yb[t.(.qk)—~k (rye)],

(5.2)

PJa (s, 0. I). P = l/2(pj + p2), eu is the photon-polarization 4-vector.
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The invariant amplitudes Fj (s, t) of the photopro-
duction processes (I) and (II) satisfy the crossing-
symmetry relations

Fj(u, t)^FlJ(s, t)*,

(5.3)

The differential cross sections of processes (I) and (II)
can be expressed in terms of the invariant amplitude
F- (s, t). From these expressions and from the cross-
ing-symmetry relations (5.3) we can prove, with the
aid of the Phragmen-Lindelof theorem, the asymptotic
equality of the cross sections of processes (I) and (II)
for fixed t and s —~ °°. Thus, for example, the cross
sections of the processes

- n,

y + n —> n -t- p

(5.4)

(5.5)

are asymptotically equal. We note that this equality
was obtained without using the isotopic invariance of
strong interactions.

We denote by pJ(s, t) the polarizations of baryons
in the final states of the processes with unpolarized
initial particles and by T]J(S, t) the parameters of the
left-right asymmetry in processes with unpolarized
photon and initial polarized baryon. From the expres-
sions for pJ(s, t) and TJJ(S, t) and from relations (5.3)
we can prove the following asymptotic relation between
the polarization P^(s, t) in one process and the asym-
metry parameter TJJ(S, t) in the other

Pl(s, 0 ~ ~ 0. n{s, t). (5.6)

For the photoproduction processes which go over into
themselves in the crossing transformation (bj = b2,
a = a), we have in lieu of (5.6)

P(s, «)~ — n(s, I).

Examples of such processes are

(5.7)

y + n — >

2. Compton Effect

We now consider the elastic scattering of a photon
by a nucleon. This process goes over into itself under
the crossing transformation. When we investigated the
scattering of scalar particles by spinor particles we
have shown that in processes of this type the polariza-
tion of the recoil fermions tends to zero as s — °° and
fixed t. We shall prove that this takes place in this
case, too.

The amplitude of the process under consideration
can be written in the form

T (klt Pl; k2, p2) = 2 u (p2) Ti u (Pl) Ft (s, t),

1 P'2 ' " " P'2 m' l 3 =

r _ (EiJV) (e2iV) £ „ (e1AT)(e2P')-(eif')(E2jy) .
4 — AT2—~~ ' 5 = = : — — ^Y5?

r =
6

(5.8)
where pj and p2 are the 4-momenta of the nucleons in
the initial and final states, respectively, kt and ei and
the 4-momentum and 4-vector of the photon polariza-
tion for scattering, and k2 and e2 the same quantities
after scattering:

Na = ie (kt —

The amplitudes Fj have the following crossing-sym-
metry properties:

0 = ( - (5.9)

Using the expressions for the polarization of the
recoil nucleon, relation (5.9), and the Phragmen-
Lindelof theorem, we can easily show that the polariza-
tion of the recoil nucleon tends to zero when s —• °°
and t is fixed even in the general case when all the
independent invariant amplitudes make a contribution
to the asymptotic cross section.

6. ASYMPTOTIC RELATIONS BETWEEN FORWARD
ELASTIC SCATTERING AMPLITUDES

We have seen, using the processes between the
scalar particles as an example (Sec. 2), that in the
case of elastic forward scattering, under the additional
assumption a(0) = 1, we can obtain equality of the total
cross sections and also a few other asymptotic rela-
tions of the type (2.19). Let us show that in the case of
elastic zero-angle scattering of particles with spin it
is also possible (assuming a(0) = 1) to obtain some
new relations (in addition to the equality of the differ-
ential cross sections). The number of the experimen-
tally verified relations increases if account is taken of
the isotopic invariance of strong interactions.

We begin with a consideration of the elastic scatter-
ing of a pion by a nucleon. The amplitudes Fj(s, t)
and F2(s, t) of this process, (3.1) and (3.2), have the
following isotopic structure:

F?a (s, t) - F'i" (s, t) 8Pa + F'f > (s, 0 ~ [T,J, t j .

The amplitudes of the physical processes

ai) it+ + p—>jt+ + p, an) n- + p~>n~
bj) nr + p—>K<> + n, b n )

c) n° -\- p —> it" + n

(6.1)

(6.2)

and the processes obtained from (6.2) by making the
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substitutions p •** n and ir* ~» v are connected with the
amplitudes (6.1) by the relations

*?i(», t)=Fl
i»(s, t)-F\->(s, I), / r f i i ( S ) t) = F?>(s, t) + F\->(s, t),

F?i (s, I) = -F\n (s, t)=- Vm' (*, *), *"?(*. 0 = ^i+) (*. 0-
(6.3)

We note that in the case of forward scattering, the
differential and total cross sections are expressed in
terms of the same function

1 (s, t)
dt (=0 64ns*2

. 1
an,c, (6-4)

where H^s) is given by formula (3.36) with t = 0:

Hl (s) = 2MF\ (s, 0) — (s—M2 — m2)Fi(s, 0). (6.5)

We can apply to the functions H^s) the theorem I,
which with allowance for a(0) = 1 leads to the asymp-
totic relation

It follows from (6.3) and (6.6) that

Im #<-> (s) ---= 0, Re H<+> (s) = 0,

meaning that

- Im tf an ~ Im Hc, Im tfbi ~ Im tf bn ~ 0,

(6.6)

(6.7)

(6.8)

All the relations (6.8) can be experimentally verified.
Indeed, the equality of the imaginary parts for the
processes aj, ajj, and c leads to the asymptotic equal-
ity of the total cross sections

The first of these is the theorem of I. Ya. Pomeran-
chuk, while the second was proposed in'-1-' on the basis
of the analysis of the experimental data. Further,
noting that the amplitudes of scattering with charge
exchange H i and H H are real at large values of s,
and using (6.8), we can obtain the following interesting
relation between the differential and total cross sec-
tions:

s, t) 1 da ' (s, t)
dt dt

(6-10)

The relation (6.10) is a generalization of (2.19) and
includes the case of scattering of charged pions. We
see from (6.8) that (2.19) remains in force without
modification for the cross sections of the scattering
of a pion by a proton (process c); see (6.2). We can
demonstrate in the same manner the correctness of
(2.19) for the cross sections of the scattering of K?
and KJJ mesons by a nucleon (neglecting weak interac-
tions the amplitudes of these two processes are equal).
We note that if a(0) - 1, then the amplitude of the

p r o c e s s K° + p "— K° + p for t = 0 and s —- °° is a lso
pure imaginary .

The situation is somewhat more complicated in the case of
elastic particles with spin 1/2, when we deal with six independent
invariant functions (or with five functions in the case of nucleon-
nucleon scattering). In this case instead of using formulas (4.1)—
(4.4) with F/ (S, t) = F\ (S, t) = 0, it is more convenient to write
out the amplitudes of processes (I) and (II) in the form

6

TJ ( P I , qt; Pi, <?2)= S " 6 ( f t ) r i b ) (?) "b (Pi) «„ («2) r ' j " ' (p) ua (qt) I'fi (,-, t).

(6.11)
where

r ( i n )={l , Va.Ys, 1, 'P. ipl,

r\b)---{K\*, Y5, '<i, iq, i } .

(6.12)

(6.13)

In the case of nucleon-nucleon scattering FjJ = F^. The cross-
ing-symmetry relation remains in the same form (in this case Ij = If)
and in addition, the hermitian and antihermitian parts are given by

DJ(Pi, qi, Pi,

AJ in, ?i; PI, ?2)= S "b(PI) rf> (q)ub(pi,ua(q2)r^-) (P) ua

"b (P2> ^i'} (q) "b (Pi) ua (q2) 1^" ' (p) ua (<ji) R e FJ (s , t),

m/((.?, t).

(6.14)

The choice of the matrices (6.13) is convenient, in particular,
because it separates the amplitude FJ with the same matrix struc-
ture as the Coulomb amplitude. In the case of forward scattering
(under the asumption that a(0) = 1), theorem II enables us to prove
the following asymptotic relations:

(Pi, ?i; Pi, ?i) D11 (pi, qi, pu

(Pi. «i; Pi- qi) ^ T I ( P I , ?i; Pi,
(6.15)

The second equality leads to the asymptotic equality of the total
cross sections:

"tot (PP) ~ "tot (PP). "tot(Sp) ~ atot(Sp) etc. (6.16)

7. HIGHER SYMMETRIES OF STRONG INTERACTIONS
AND ASYMPTOTIC RELATIONS BETWEEN THE
AMPLITUDES OF MESON-BARYON SCATTERING
AND PHOTOPRODUCTION

1. Meson-baryon Scattering and Photoproduction in
Schemes with Higher Symmetry

Following the development of the Gell-Mann and
Nishijima scheme for the classification of elementary
particles, in which isotopic invariance holds, attempts
were made to construct schemes for strong interac-
tions with higher symmetries. At present much atten-
tion is being paid to unitary symmetry and to the sym-
metry of group G2 (see'-3-'). The possibility of experi-
mentally verifying these symmetries was already
discussed in several papers. In particular, some
relations were obtained for these models between the
cross section of the meson-baryon and baryon-baryon
scattering processes'-44"47-', and also between the
meson-nucleon photoproduction amplitudes'-44'48-'.

In the discussed schemes of strong interactions with
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higher symmetries, all the mesons and their antipar-
ticles belong to one and the same multiplet. If the total
cross sections of the meson-baryon interaction of the
particles and antiparticles tend to constant limits when
s —-°° , then, according to the Pomeranchuk theorem,
these limits are equal to each other. This circum-
stance reduces a number of independent scattering
amplitudes in the model with higher symmetries'-49>5<O.

As shown in the preceding sections, the differential
cross sections of the crossing processes for a fixed
momentum transfer and for high energies are asymp-
totically equal, and certain asymptotic relations hold
for their amplitudes. Inasmuch as in models with
higher symmetries the meson and baryon antiparticles
belong to the same multiplet and there are crossing
processes between the meson-baryon scattering in
processes, the asymptotic relations between the ampli-
tudes of the crossing processes together with the sym-
metry properties of the interactions lead to additional
asymptotic relations between the cross sections of the
processes under consideration.

We shall establish in this section several asymp-
totic relations between the cross sections of the
meson-baryon scattering processes and the triplet and
octet models of unitary symmetry and in the model
with symmetry group G2, and also asymptotic relations
for the polarization effects in meson-baryon scattering
and photoproduction of a meson on a nucleon. At low
energies, the higher symmetries under consideration
are broken. However, in all papers on higher symme-
tries of strong interactions, the hope is expressed that
this symmetry is restored at high energies and large
momentum transfers, or, at least, when one of these
quantities is large. The obtained relations between the
cross sections and the polarizations are the conse-
quence of higher symmetries at high energies. Com-
parison of these relations with the experimental data
can shed light on the discussed symmetry properties
of strong interactions at high energies.

We shall consider the following meson-baryon scat-
tering processes:

mesons on nucleons:

ItO-

K4

A'o-

-p—:

- /•'-

• A f - j

K» >-

* A + - | •

• Kr

<• A " +

;-p—>K°+k

+-\ E°
R--

(7.1a),
(7.2a),
(7.3a),
(7.4a),
(7.5a),
(7.6a),
(7.7a),
(7.8a),
(7.9a),

(7.10a),
(7.11a),
(7.12a),
(7.13a),
•p->K+-

71

Kr
K°
K-

K°-'p
A'o --- n

K-

-p-
-p —
- p - >

- p — > n- -; 2

\-p—>n'r-\-k

- p —> 7i° — 2 '

;-p->no -; 2 ' (7.12b),
i-p--A'o : Eo (7.13b),

(7.1b),
(7.2b),
(7.3b),
(7.4b),
(7.5b),
(7.6b),
(7.7b),
(7.8b),
(7.9b),

(7.10b),
(7.11b),

•5-(7.14),

Y-i-w—> A'o +
(7.15)
(7.16)
(7.17)

We note that in the crossing transformation the proc-
ess (7.ja) go over into processes (7.jb), while process
(7.14) goes over into itself. For convenience we con-
sider also some unphysical processes with TT° mesons
in initial states.

In addition to processes (7.1a, b) —(7.14), there ex-
ist the processes obtained by means of the substitutions
n — p, TT+ — TT~, K+ ~ K°, 2+ — 2" and S" — H°, whose
amplitudes coincide, apart from the sign, with the am-
plitudes of the corresponding processes in (7.1a, b) —
(7.14). The relations derived below are valid for these
processes, too. Exceptions are the processes with
neutral K mesons in initial states, for example proces-
ses (7.4a) and (7.4c) (see below). In place of these
processes we shall consider the corresponding mirror
processes

•KJ-+n, (7.4a')
(7.4b')

the amplitudes of which are equal to the amplitudes of
processes (5.4a) and (5.4b), respectively, and the phys-
ical processes

Kl + p->Kl + p, (7.4c)
Kl + p~^K\rp. (7.4d)

If we denote the invariant amplitudes of the processes
(7.4a) . . . (7.4d) by F|a(s, t), . . . , Fj

4d(s, t) respectively,
(i = 1, 2), and neglect weak interactions, then

(7.18)

Ffd(s, 0 = 2j 01-

and also the following processes of photoproduction of

In place of processes (7.5a), (7.8b), (7.9b), (7.12c),
and (7.13a) one observes experimentally only the
corresponding physical processes with KJ> mesons in
initial states:

^ ^ + n, (7.5c)
->n+ + 2°, (7.8c)
->JI+ + ^, (7.9c)

->JI° + 2+, (7.12c)
^A + +£°, (7.13c)

the cross sections of which are equal to the cross sec-
tions of corresponding processes with neutral K° or
K° mesons in the initial state, multiplied by 1/2. We
note that all the discussed symmetries include isotopic
invariance, which leads to the following relations be-
tween the amplitudes of the processes in question:
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i\j " («, t)-Fi\s, 0 = - , 0 = 1/2 Ffb(S) 0, (7.20)
fb(«, t)=Fs

i
a'b(s, t), (7.21)

'b(S, t)-Fla-b(s, t) = Y2Fs^h(s, t)=-V2Fl^h(s, t),

(7.22)

ta-hFta-h(s, t)+Fj'-h(s, t) =

s. 0=

s, t),

s, t).

(7.23)

(7.24)

(7.25)

These relations take place in all the models under
consideration.

2. Higher Symmetries and Relations Between Ampli-
tudes

We now proceed to establish relations between am-
plitudes of processes (7.1a, b) —(7.14). We consider
first the octet model. In this model the wave functions
of the initial and final state in processes (7.1a, b) —
(7.14) are products of two representations D8(l, 1).
These products are resolved into irreducible represen-
tations in the following manner:

D*(l,

Ds(i, l ) a+Z>1 0(3,

8(l, 1),
Z)»0+(0, 3) + Z)27(2, 2).

In the product under consideration there are two
, 1) representations. It will be convenient in what

follows to choose these representations in such a way
that the wave functions of one of them are even rela-
tive to R-reflection, where the wave functions of the
other are odd. We denote these representations by
D^(l, l ) s and D^l, l ) a . Invariance of the interactions
relative to unitary transformations requires that the
matrix elements between the states belonging to non-
equivalent irreducible representations vanish. Since
R-reflection does not enter into the group, the matrix
elements between the states of which one belongs to
D^l, l ) s and the other to D8(l, l ) a are not equal to
zero. Moreover, from the invariance to time reflec-
tion it follows that the matrix element with initial
state I)P(1, l ) a and final state D8(l, l ) s is equal to the
matrix element with initial state D8(l, l ) s and final
state D8(l, l ) a . Thus, the matrix elements of the proc-
esses under consideration are expressed in terms of
seven different independent amplitudes

F(0,0) r-(2,2) r-U, l)s pU.Da r O , Das

F[3'0) and M°' 3 ) .

The coefficients of all these independent amplitudes
can be calculated with the aid of the Clebsch-Gordan
coefficients of the SU3 group. From this we can obtain
the following relations between the amplitudes of the
processes (7.1a, b)-(7.14)[45"47]:

Fla'b(s, (s, t), (7.26)

s, t)-Fla-b(s, t)],

(7.27)

_ j d O a , b / .•. p 5 a , b , ,>
— r z VA' v r i V6> v»

(7.28)

/«, (S, l)—r% (S, I). (7.29)

If R invariance holds, then
r>(i, l)as r\ p(3, 0) p(0, 3)

and we obtain the additional relations:

^!a 'b(s, 0 = ^»-a'b(s- 0. (7.30)
F^b(s,t) = Fla-b(s,t), (7.31)

Fia(s, t) — Ffb(s,t) = Ffb(s, t), (7.32)
lb(s, t), (7.33)

F?a(s, t)—Fr(s, 0 = 1/3 [ ^ ( s , 0—^ib(*. 01. (7-34)

Ffa(S) 0+^ib(», 0 = ^ [^ ? a ( s , 0H-^?b(*.0]- (7-35>

Ffa(s, t)-F?b(s, <) =

?b(

The relations between the amplitudes of the proces-
ses in which nucleons and the A. hyperon participate in
the Sakata triplet model with unitary symmetry can
also be obtained in similar fashion. For these proces-
ses, the wave functions in initial and final states are
products of irreducible representations D3(l, 0) and
D8(l, 1). These products can be resolved into irreduci-
ble representations in the following manner:

(2.1)D3(l, 0) x D8(i, 1) = Z>3(1, 0) f Z)6(0, 2) f f l

Therefore the matrix elements of the meson-baryon
scattering processes with participation of nucleons and
A. hyperons in the triplet model of Sakata with unitary
symmetry are expressed in terms of the independent
amplitudes

The coefficients of these independent amplitudes can
also be calculated with the aid of the Clebsch-Gordan
coefficients.

As a result we obtain the following relations be-
tween the amplitudes in question'-44'47-':

Fla'h(s, t) =

5a, b .

(s, 0, (7.36)

(7.37)

(7.38)

We now establish the relations between the ampli-
tudes of the processes under consideration in the pres-
ence of the symmetry group G2. Since the X hyperon in
this model is a singlet, the wave functions of the final
states in the considered processes in which a A hyperon
participates, (7.9a, c) and (7.11b), belong to the repre-
sentation D7(l, 0). The wave functions of the other
states are products of two representations D7(l, 0).
These products are resolved into irreducible repre-
sentations in the following manner:

Z>7 (1, 0) x D1 (1, 0) •= D1 (0, 0) -! D- (1, 0)

-j-Z)"(O, !)-{-/)" (2, 0).
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Therefore the matrix elements of the processes with The coefficients of these independent amplitudes can
participation of the A. hyperon are expressed in terms be calculated with the aid of the Clebsch-Gordan co-
of the same amplitude F!1>0>. They are proportional to efficients of the G2 group'-46^. As a result we obtain
each other:

Flia(s,t)--=-Fllb(s,t).

(7.39)

(7.40)

• - 5 a , b

, 0=--/•?"• b(s, 0-
, * ) = - / f l b(s , t),

?la, b
(s, O-'f1" (*. * 1 b l " («.*)•

(7.41)
(7.42)
(7.43)
(7.44)
(7.45)

We recall that these amplitudes are connected by the
isotopic relation (7.24). As to the amplitudes of the 3 A s y m p t o t i c Relations for the Cross Sections and
remaining processes, they are expressed in terms of . . ^ •
the following four independent amplitudes:

On the basis of the relations that follow for the
andF\°-°\ F[UO\ -0) meson-baryon scattering amplitudes from the sym-

Relations Model and
method

n±p) — ,t=o

K+Z~) >• 0

/> (n~p

K+n) = a (n+p -+ A'+2+)

a (K-p OHO) = a (K~p

K±n)

A» = | a ( i - p - > .10/,)

a±p) = 0 (K§p -> ASp) + a (ASp -> Afp)

1
A ' 0 2 0 ) ( »)

a (.*i~p —>• A'"?.) — j - a (.T~P

o ( n * ? -»- n ± p ) = a ( K i p —>-

a (A'-p ̂ -~A~o») — a (n~p -

a (A'Op ->. A*») = a (K0p

Of (/v+« —> K+«) = o (K~n

Clot

P (A'*« - * K±n)=--T) (K-'n -y A'i/i)

a ( : T ~ P - > K0Z<>) - - a ( n - p ~> n««)

(T (yp ~> ^ + n ) = " (Y/> —> A " + ) 0

/ ' vY" ->- A'0>.)^ ; —11 (Y" —> A'°A.)

/ ' (YP —> A'<>2+) — — t) ( Y P - > A'l ' i+
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metry properties of the interactions, and the asymp-
totic relations between the amplitudes of the crossing
processes, we can obtain several simple asymptotic
equations for the differential cross sections, polariza-
tions, and asymmetry parameters of the processes.
For comparison we have tabulated all the relations ob-
tained in'-27-^ and in other papers. By <J(ir*p —• K+S+)
we denote the differential cross section of the process
T+ + p — K+ + 2+ for a certain t, while P(7r+p — K+2+)
denotes the polarization of the 2+ hyperon in this
process with unpolarized proton, P(yp —* 7r+n) denotes
the neutron polarization in the photoproduction process
y + p —- 7r+ + n with unpolarized initial particles, while
77 (yp — 7r+n) denotes the asymmetry parameter in this
process with a polarized proton. The table lists also
the model in which the given relation holds true and
shows whether the Phragmen-Lindelof (or the
Pomeranchuk) theorem is used in the proof of this
relation or not. We use the following symbols for the
models: I—isotopic invariance, O—octet model with
R-invariance, T—triplet model, G2—model with sym-
metry group G2, P-L—Phragmen-Lindelof theorem.

8. ASYMPTOTIC RELATIONS BETWEEN THE AM-
PLITUDES OF PROCESSES WITH A VARIABLE
NUMBER OF PARTICLES

1. Kinematics

We have obtained above the asymptotic relations
between the amplitudes of the binary crossing proces-
ses (scattering and photoproduction). On the basis of
these relations we have established asymptotic rela-
tions for the differential cross sections and the polar-
izations. In this section we establish asymptotic
relations between the amplitudes of processes with a
variable number of particles, and obtain, in particular,
asymptotic equality of the differential cross sections
for these processes.

For simplicity let us consider the production of
pions in meson-nucleon collisions:

(I)

(II)4- JV' —> it' + n" + N,

where IT, TT' or -IT" stands for one of the pions, and N
or N' stand for p or n. The reasoning presented below
can be applied, with slight modification of kinematic
nature, to any other process, such as

a-\-e —>

d')

(II')

The processes (I) and (II) or (I') and (II') will hence-
forth be called crossing processes. An analogous
definition of crossing processes in photoproduction
was given in Sec. 5.

Let us consider, for example, process (I). We de-
note the 4-momenta of the nucleons in initial and final
states by p and p' , respectively, and the 4-momenta
of the mesons by q, q', and q":

(8.1)

(8.2)

where M and m are the masses of the nucleon and the
meson. We introduce for convenience the following
more symmetrical notation for the momenta and their
squares:

>=—/>'. Pi=—q', (8.3)

Ps=~q", p)=-m).

The kinematics of the process in which five parti-
cles participate is characterized by five invariants,
which can be chosen from among the following ten
variables:

1,7 = 1 , 2 , 3 , 4 , 5 ; (8.4)

the quantities s.. and m2 are connected by five linear
relations

or

i = m\+'Z m%
3 = 1

i —sin =

£ = 1,2,3,4,5, (8.5)

J.6)

where i, j , k, I, or n is any permutation of the num-
bers 1, 2, 3, 4, 5 (only five of the 120 equations in
(8.6) are independent; they are equivalent to (8.5)).

Following'-51'52^ we choose the following independent
variables:

t = si3=— (p—p')\ t" = s25=-(q — qy,

co = ± _ , (8_7)*
4 ch J y M2 — -^

This choice of variables is convenient because by fix-
ing the variables t < 0 , t" =s 0, w2 > 4m2 cosh £, and |
we can let the energy variable w go to infinity while
remaining in the physical region. The three first
variables, t, t", and w2, have a clear-cut physical
meaning. The energy variable to is connected with the
total energy of the reaction in the c.m.s.:

(8.8)

When u> is large the variable £ determines the ratio of
the energy of the system comprising the nucleon and
one of the mesons in the final state, for example Vs^,
to the total energy of the process (VsTj. Indeed, it is
easy to verify that

*ch s cosh.



ASYMPTOTIC RELATIONS BETWEEN SCATTERING AMPLITUDES

u = s23 = — (q — p')2 = — 4M ch I y M2 — -jr -f M2 +

s' = s34 = — (g' -[- JD')2 :

47

M2 - -i + M2 + 2m2- "^\~ ,

t ' = s24 = — (? — g ' ) 2 = 3m2 + (— i" + 2i>2,

(8.9)

and

(8.10)

In place of the vectors q' and q" it is convenient to
introduce vectors Q and A which are orthogonal to
each other and are defined by the formula

<?=l(f-69'-i ,V) + ^ s h 2 | A . (8.11)*

We shall consider the processes (I) and (II) in the
Breit system for the nucleon

P :-p'=0. (8.12)

Then, of all the vectors p, p', Q and A, in terms of
which any 4-vector can be expressed (linearly), only
the vector Q depends on co.

We note also that for the chosen variables the dif-
ferential cross section will be

(/-to-7 (.,-. *, t", u;2, I)
Writ" dw2~rl'i '

2. Properties of the Asymptotic Amplitudes

The retarded amplitude of process (I) can be writ-
ten in the formL51~:j3-'

(p,

_

g;

f
J

yr

p'<

d*

et((o

7' .

4

q

\

)

i< •*•+ «"•»:") / n '
6 2 / ,

S<P.v (*')
(0)

V /

where

/n (^) -= i V T 7 T 5 + -

(8.13)

(8.14)

By virtue of the microcausality condition we have

Fret (x, y) ^ 0

only in the region

x>0, -

Introducing

m2

x<y<(l+-~sh2t)x. (8.15)2A2

dx., d:r3

we can write T r e t (a>) in the form

7"'eL (w) dx

m (J:, y), (8.16)

6'rel (r0, x,), (8.17)

where w0 is given by formula (8.18)

Sll2 I
sin2 u

^2 / ... 2

At sin2a

u , ' 2 ( « • ' - • • ( — m 2 )

4 | A ! | |Ji
i ;cosa
sin a

„ _ ( w m ^ e t e
(A - — — —

8 !8 ! A | | p i

(8.18)

(8.19)

Since the amplitude T r e t (a;) is regarded as a function
of OJ with the remaining variables fixed, coQ in (8.17) is
a constant.

Further, following^5 , we replace the amplitude
(8.17) by means of the following asymptotic amplitude:

TT (CO) - ij d.,0 dj, f i-txo-.r) G'-et (/.Oi ^y (8_20)

Denchev established general conditions under which Tret (OJ)
and i 1 (<D) coincide asymptotically, i.e.,

J'ret(»)
i (CO)

- = • ' •

This equality is certainly satisfied if the amplitude does not oscil-
late rapidly, and for arbitrary e > 0 and sufficiently large a it is
bounded by the inequality

iV~eiw!<: Tre[(a)\^A^<^. (8.21)

By virtue of the microcausality condition Gre*- (x0, Xj)
* 0 only when x0 > |xj . Therefore T^e^ (a>) is analytic
only in the upper half of the w plane (that is, when
Im w > 0) and the Phragmen-Lindelof theorem is ap-
plicable to it.

We now establish the crossing-symmetry relations
between the amplitudes of processes (I) and (II). We de-
note by p and p' the 4-momenta of the nucleons in the
initial and final states of process (II), and by q, q',
and q", respectively, the 4-momenta of the mesons.
The amplitude of this process takes the form

7 ' n (p,q;p',q',q")

sh = sinh.
" S d V dV«
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Let us consider the amplitude (8.22) in the unphysi-
cal region T11 (p(, -q ; p, -q ' , -q") . For these values
of the momenta we have also the conservation law
(8.1). Then

(p'> —<i\ p, —q', —q")

= j { d V dlx" e-Wx'+i"*") n (0)
fn. (x') 6q>n* {x") P}\ ,

(8.23)

that is, we obtain the crossing-symmetry relation be-
tween the amplitudes of processes (I) and (II)

T1(P, q; P', q', q") = Tu(P', -q; p, -q', - ? ' ) * . (8.24)

3. Asymptotic Equality of the Differential Cross
Sections

From invariance considerations, it follows that the
amplitudes T J (p, q; p', q', q") are of the form

TJ(p, g; p ' , q', q") = 2 u (p1) 1 > (p) Ff (co, t, I", w\ £), (8.25)

where

i=yb, M2=i(gl+"g2)y5, M3 = i (gt — q2) ys,

(8.26)

Substituting (8.25) and (8.26) in (8.24), we obtain the
crossing-symmetry relations between the invariant
amplitudes

F\ (-co, t, t", w2, I) = — F\l (co, t, t", w2, I)*, i = 1, 2, 3,

F\ ( — co, t, I", w\ | ) = F" (co, t, t", w2, I)*, i = 4.
(8.27)

The differential cross sections of processes (I) and (II)

dt dt"

are proportional to the quantities

4

where asymptotically (s, OJ -> °°)

^ Re f t ̂ r . (8.28)

2) (s ' - s " ) - t's'

—s"2) , v424 = 8 M ( s ' —

s' + s") (w2 — 4m2).

s")

(8.29)

Using expressions (8.28) and (8.29) for the cross
sections and the crossing-symmetry relation (8.27),
we can prove by means of the method developed above
the asymptotic equality of the differential cross sec-
tions of processes (I) and (II). In particular, the dif-
ferential cross sections of the processes

n+-\-p—-> Ji+ + n° +

are constant when s

and n- +

°° and t, t"

—> n~ + n° •[ p (8.30)

w2 and | are fixed.

In the case when systems of two pions are produced
in a resonant state with J = 1, I = 1 (p meson), we have
equality of the differential cross sections for the proc-
esses

and (8.31)

Let us discuss possible generalizations of the ob-
tained results. We have considered above the case
when the total energy w of the system of two pions
(in the c.m.s. of these two particles) is fixed, and the
total energy w -̂̂  of the system comprising the nucleon
and one of the mesons (in the c.m.s. of these particles)
tends to infinity together with the total energy of the
reaction vs (| is fixed). We can also consider in sim-
ilar fashion the case when w is fixed and the energy
W^N tends to infinity together with Vs , and prove the
equality of the differential cross sections. When
nucleon-meson systems are produced in the resonant
state, we have equality of the differential cross sec-
tions of the processes, for example,

it+ + A+ and n~

'—• p + JI°

p

3t+ + n —» JI+ + A°

•p + rt

it- + A+ ,

'-—• p + JI°

(8.32)

and JI- + p —;> n~ + A0

' =• p-\-n~

(8.33)

We can further consider also the case of mesons
with different masses and obtain, in particular, asymp-
totic equality of the differential cross sections for the
processes

(8.34)

(8.35)

+p. (8.36)

and K-

and K~-

it- + p - > K + + K- + n and n+

In the case of production of two-meson systems or
meson-nucleon systems in the resonant state, we have
respectively the equality of the differential cross sec-
tions for the processes

i t - - f p —> cp - j - n

or

and K~ + p
and ii+ + n

and

cp -(- p

(8.37)

(8.38)

I
K+ + p->#+-;-A+

I > p + n° I > p + jt0

(8.39)
We can consider analogously the photoproduction of
two mesons and the production of mesons in nucleon-
nucleon collisions, for example,

and y-\- p, (8.40)
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p + p—>n + n+-fp and n + p—>p + n+ + p, (8.41)

p4-p—>p + n°4-p and p4-p —> p + n« + p, (8.42)

and in the particular case

Y + p->e++n and y + n-^Q + p, (8.43)

p + p—>re-|-A++ "and n4-p—>p4-A++

' > p -{- ix+ ' * p 4- n+

(8.44)

p-l-p—>p-|-A+ and p-j-p—> p-|-A+
I I
1 > p -f- n" i > p + n°

(8.45)

9. ASYMPTOTIC BEHAVIOR OF THE FORM FACTORS

For the electromagnetic and weak interactions we
can use perturbation theory and confine ourselves to
the lowest order, since in these cases the interaction
constants are small and the higher approximations are
insignificant (at least at the energies now attainable).
Allowance for the contribution of strong interactions
leads to the appearance of form factors. The analytic
properties of the form factors and the Phragmen-
Lindelof theorem make it also possible to draw cer-
tain conclusions concerning the asymptotic behavior of
these form factors.

We consider first electromagnetic scattering of an
electron by a proton

e--j-p—>e~-fp

and the annihilation of a proton-antiproton pair into an
electron-positron pair

p + p —> e+ 4- er.

In the e2 approximation both processes are described
by two form factors Fj(t) and F2(t). In place of the
form factors F4(t) and F2(t) it is convenient to use the
form factors

where t = — (pi — p2)
2 is the momentum transfer for the

first process and t = — (pt + p2)
2 is the square of the

energy for the second. The differential cross sections
of the processes in question are expressed in terms of
the square of the moduli of the form factors Gj? and

A similar situation obtains in the theory of weak
interactions. For example, in the lowest order of per-
turbation theory in weak interactions the matrix ele-
ments of the two processes

v -j- p —.- e+ 4- n,

n 4- p —> e+ -| - v

are also expressed in terms of the same form factor

The dispersion relations for the electromagnetic
form factors and for the form factors of the weak in-
teractions were established in several papers. These
dispersion relations were proved by starting from the
general principles of local quantum field theory. How-
ever, on the basis of perturbation theory it can be
stated that the form factors Fj(t) and Hj(t) under con-
sideration are analytic functions in the complex t
plane, with a cut along the positive real axis^5^. In
local quantum field theory the form factors increase
in the complex t plane no faster than a polynomial.
Let us assume that when t -—• ±°° the form factors have
a definite growth rate and do not oscillate. Then from
the Phragmen-Lindelof theorem it follows that the
modulus of the ratio of the form factors Gj(t)/Gi(-t)
(i = ti, E) or Ej(t)/Hi(-t) tends to unity when t — «.
This makes it possible to relate the cross sections of
the scattering and annihilation processes, if the lowest
order of perturbation theory in electromagnetic weak
interactions describes the processes in question well.

In connection with the asymptotic equality of the
moduli of the form factors when t —• ±°°, special in-
terest is attached to the case when the form factors
tend to constant values when t —• ±°° . Let us assume
that this takes place with a certain form factor Fj(t).
It follows from theorem II that the limiting values of
this form factor when t —*• ±x should coincide, that is,

lim
i-H-oo

-^ lim
f-_co

(9.1)

But the form factor does not have an imaginary part
on the negative real axis. Therefore when t —- +°° the
imaginary part of Fj(t) tends to zero and the integral

f — t
(9.2)

converges. The integral along a large circle of radius
R is equal to

dtp. (9.3)

According to theorem II, F^e^R) tends uniformly to
Fj(°°) when R —"x>; therefore the interval along the
large circle tends to a finite limit Fj(°°) and the dis-
persion relations take the form

/-'; (0=-=^ (oo)-j-

10. CONCLUSION

Ira/''; (co)-0. (9.4)

We now summarize our results. On the basis of
the fundamental principles of local quantum field
theory and some general assumptions concerning the
behavior of the scattering amplitudes when s —* °° and
t is fixed, we obtained asymptotic relations between
the amplitudes of the crossing processes. From these
relations for the amplitudes it is possible to establish
similar asymptotic relations between the differential
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and total cross sections, and also between the polar-
izations, asymmetry parameters, etc.

The method used in the proof is described in detail
in Sec. 2, where the crossing of scalar-particle
scattering processes (I) and (II) is considered. These
processes are characterized by invariant amplitudes
T (s, t) and T^(s, t), which are connected by the
crossing-symmetry relation. If at fixed t and s —-°°
these amplitudes do not oscillate, but have a definite
(power-law or logarithmic) growth, then the asymp-
totic equality of the differential cross sections of
processes (I) and (II) follows from the Phragmen-
Lindelof theorem and from the crossing-symmetry
relation.

In the case of elastic scattering this asymptotic
equality can be obtained from weaker assumptions. In
this case there are grounds for assuming that when
s —*• =°, and t is fixed and belongs to a certain interval,
the imaginary parts Im T J (s, t) are non-negative.
Under this assumption it has been proved that if the
differential cross sections of processes (I) and (II)
do not oscillate, but have a definite growth when
s — °° and t is fixed, they are asymptotically equal.

In addition to asymptotic equality of the differential
cross sections for the forward elastic-scattering am-
plitudes, there are several other asymptotic relations.
For example, if for s —- °° the differential cross sec-
tion for forward scattering (t = 0) and the total cross
sections of the interaction tend to constant values,
these total interaction cross sections are equal for the
particle and the antiparticle. This is the well-known
theorem of I. Ya. Pomeranchuk. Moreover, in this
case the forward elastic-scattering amplitudes for the
processes which go over into themselves in the cross-
ing transformation (that is, the forward elastic-
scattering amplitudes of truly neutral particles) are
purely imaginary, and the differential cross section
for forward scattering and the total cross section are
connected by the asymptotic relation

dt 16.-X (10.1)

The Phragmen-Lindelof theorem also makes it
possible to draw a certain conclusion concerning the
behavior of the form factors Fi(t) when t —• ±°°. If for
t —* ±°° they do not oscillate, then the moduli of the
ratios Gj(t)/Gj(— t) tend to unity. In particular, when
Gj(t) tend to constant values Gi(°°), on the positive axis
the imaginary parts tend to zero and we can write the
dispersion relations in the form

imGjJt') , , = 0. (10.2)

The asymptotic relationship between the amplitudes
of the crossing processes of meson-baryon and
baryon-baryon scattering were considered in Sees. 3
and 4. From the obtained asymptotic relations be-
tween the invariant amplitudes of the crossing proces-

ses we established the asymptotic equality of the dif-
ferential cross sections of these processes when
s —' °° and t is fixed, the equality of the total interac-
tion cross sections of the particle and antiparticle,
and also some asymptotic relations between the polar-
izations and the asymmetry parameters.

It was shown, in particular, that at high energies
and fixed momentum, the differential cross sections
of the processes are asymptotically equal for each of
the following pairs:

K+ + p—> K+ -f p
and n~-j-p —> Ji--;-p,
and K--\-p~> K-~p,

n+ -]- p —> K+ f 2+ and K~ f p —> n~ -;- 2+ ,

n- _j_ p __> /fo j _ x and K° f p — > jt+ -\-X,

K~ + p —» K° -f- Ho and jP- i -p —> K+-\- E°,

2+ + He —.> p -;- Hex and p -f He —> 2+ -j- He*

P + P --•* p-\-p and p -\- p —> p -j- p,

2+ + p - ^ 2 + + p and 2+-f-p —> 2+ + p,

2- + p --> X + n and X-r p -> 2~ -|- n,

2+ + p—>p + 2+ and p-\- p —.> 2 f + 2+,

2- -;- p .-> n -}- A and n -|- p -> 2- + A

(10.3)
(10.4)
(10.5)
(10.6)
(10.7)
(10.8)
(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

etc.
In all these processes t is defined as the momentum

transferred between the first particle in the initial
state and the first particle in the final state. For the
last processes (10.12) and (10.13), this momentum
transfer is frequently denoted by u. Here the differen-
tial cross section for the backward scattering of the
hyperon and the differential cross section of the
nucleon-antinucleon pair annihilation into a hyperon-
hyperon pair are asymptotically equal.

If the total interaction cross sections tend to con-
stant values on s —"*>, and the differential cross sec-
tions for elastic scattering forward are bounded, then
the following asymptotic equalities hold between the
total interaction cross sections of the particles and
antiparticles:

°tot (1 P) ~

a tat (K+p) -

tftot (PP) -

tftot (2+p) -

-<Jtot(TP).

-0tot (K~p),

~ °tot (PP)<

-0 tot(2+p).

(10.14)

(10.15)

(10.16)

(10.17)

The differential cross section of the process

(10.18)

and the total cross sections for the interaction between
a K\ meson and a proton are asymptotically equal

dt
1

16n

If we take into account the isotopic invariance in
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the case of irN scattering, there is also the asymptotic
equality

da (r 1 da (n~p -> n%)
rfT

1 . ( ± v »

16.^ [ < T t o t <" p>] •

(10.20)

Certain asymptotic relations were obtained also be-
tween the polarizations and the asymmetry parameters
in the processes in question. If the protons are not
polarized in the initial states, then the polarizations
of the recoil baryons in the processes of each of the
pairs (10.3)—(10.7) are equal in magnitude and opposite
in sign, independently of the parities of the particles
(for inelastic processes). The asymmetry parameters
in the corresponding processes (10.3) —(10.7) with
polarized protons in the initial state are also equal in
magnitude and opposite in sign. It follows from this,
in particular, that for processes which go over into
themselves in the crossing transformation, for exam-
ple, (10.18), the polarizations (for initially unpolarized
particles) and the asymmetry parameters should tend
to zero as s — °° and for fixed t, independently of the
relative behavior of the invariant amplitudes. This
conclusion is valid also for the process

p— > n ° - L it, (10.21)

if charge symmetry holds. The relation between the
polarizations of the baryons in the initial states de-
pends on the relative parity of the A and 2 hyperons;
if this parity is positive, then the polarizations of the
proton and the hyperon are opposite in sign and are
equal in magnitude, and if this parity is negative, then
the polarizations are equal both in magnitude and sign.
A similar conclusion holds for the asymmetry parame-
ters in the processes (10.8) with polarized hyperons and
antihyperons in the initial states. In addition, for each
process, the polarization in question and the asymme-
try parameter are equal to each other if the parity is
positive, and are of opposite sign if the parity is nega-
tive. Therefore the polarizations in one process and
the asymmetry parameter in another, are subject to
the following asymptotic relation, regardless of the
relative parity of the particles: they are equal in mag-
nitude and opposite in sign.

For meson elastic-scattering processes, the ob-
tained asymptotic relations between the observed and
physical quantities can be established on the basis of
weaker assumptions. Indeed, it is sufficient to assume
for this purpose that the observed physical quantities
which enter in the complete experiment (differential
cross section, asymmetry parameter, and correlations
between polarizations) do not oscillate, and the imag-
inary parts of the amplitudes without spin flip are not
negative when s ̂ ° ° and for certain values of t.

For the polarizations and the asymmetry parame-
ters in baryon-baryon scattering processes, it is also
possible to obtain certain relations. In particular, if
the protons in the initial states are not polarized then
the asymptotic polarizations of the recoil protons in

the processes (10.9) and (10.10), the recoil neutrons
in (10.11), the recoil 2+ hyperons in (10.12), the recoil
A. hyperons in (10.12), and the recoil A hyperons in
(10.13) are equal to each other respectively in magni-
tude and opposite in sign. A similar conclusion is
valid also for the asymmetry parameters in processes
(10.9)—(10.13) with polarized targets. These asymp-
totic relations hold independently of the parities of the
particles (for inelastic processes). In the elastic-
scattering processes (10.9) and (10.10) there are
analogous asymptotic relations between the polariza-
tions of the first proton in the first process of (10.9)
and the antiproton in the second (with unpolarized par-
ticles in the initial state), between the polarizations of
the 2+ and S* hyperons in (10.10), and between the
asymmetry parameters in these processes with polar-
ized incident particles. The polarizations of the first
particles in the final states of the inelastic processes
(10.11) —(10.13), namely, the A. and 2T hyperons in
(10.11), the proton and S+ hyperon in (10.12), and the
neutron and 2" hyperon in (10.13) (with unpolarized
initial particles) are related with the corresponding
asymmetry parameters by the following asymptotic
relations: the polarizations of the first particle in one
process and the corresponding asymmetry parameter
in the second process are equal in magnitude and oppo-
site in sign for each pair, regardless of the parity of
the particles. This relation holds true, of course, also
for elastic processes (10.9) and (10.10). We note that
they hold also for meson-baryon scattering and photo-
production.

The asymptotic relations between the amplitudes of
the crossing processes of meson photoproduction on a
baryon were considered in Sec. 5. From the relations
obtained for the amplitudes we established that the
differential cross sections of the processes are equal
and found the following relations for the polarization
effects: the polarization in one process with unpolar-
ized initial particles, and the asymmetry parameter
in the other process with polarized initial baryon, are
asymptotically equal in magnitude and opposite in sign.
These conclusions hold, in particular, for the proces-
ses

and

Y ••:•- n — •• n ~

(10.22)

(10.23)

We note that we do not assume isotopic invariance
here. For photoproduction processes of truly neutral
mesons, that is, which go over into themselves in the
crossing transformation, for example,

(10.24)

and

Y + n-.-.-io-i-H, (10.25)

the following asymptotic relations hold: the polariza-
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tion (for unpolarized initial particles) and the asym-
metry parameters (for a polarized initial nucleon) a re
equal in magnitude and opposite in sign.

The relations obtained in Sec. 3 can be applied to
the study of the possibility of experimental verification
of higher symmetries of strong interactions. In the
strong-interaction model with higher symmetr ies ,
connections exist between the different scattering am-
plitudes. These connections, however, are in general
ra ther complicated, and not much information can be
obtained from them, generally speaking. In these
models, all the mesons and their antiparticles belong
to the same multiplet, and therefore there a re several
crossing processes among the meson-baryon sca t ter -
ing and photoproduction processes . With the aid of the
asymptotic relations derived in Sec. 3 between the
amplitudes of the crossing processes , it is possible to
simplify the relations that follow from the higher sym-
metr ies , and obtain therefrom certain additional equali-
t ies between the cross sections of the meson-baryon
scattering processes , and also relations for the
polarization effects in these processes and in the
photoproduction processes .

In Sec. 8 we developed a method of proving asymp-
totic equality of differential c ross sections of p roces -
ses with variable number of par t ic les . By way of an
example, we considered the case of creation of a pion
in pion-nucleon collisions. In particular, we proved
the asymptotic equality of the differential c ross s e c -
tions of the processes

-̂ -p and -f p. (10.26)

In the case of production of two pions in a resonant
state with J = 1, I = 1 (p meson), we have equality of
the differential cross sections for the processes

and (10.27)

and in the case of formation of nucleon-meson systems
in a resonant state we have equality of the differential
cross sections, for example, of the processes

it+-!--p— >n+ + A+ and n~ + p —> n~ + A+

I——> p + JI° I > p + n°'
(10.28)

and also

and n~ + n —> n~ + A0n+ + n —> 3x+ + A0

i
I >p-\-n~ ' >p-\-n~

(10.29)

We can consider further the case of mesons with
different masses, and obtain, in particular, asymptotic
equality of the differential cross sections of the proc-
esses

K+-\-p—.>

and K-+p—>K- + n° + p, (10.30)

and K~-\-p — > K<>->-n~ + p, (10.31)

and n+-\-n—>K~-\-K++ p. (10.32)

In the case when systems of two mesons are pro-
duced, or nucleon-meson systems in the resonant
state, we have accordingly equality of the differential
cross sections for the processes

ii- + p —• cp + n

L_

and

and

and

—>K+- -\-p, (10.33)

—>cp + p, (10.34)

p + ' > p + «°
(10.35)

We can obviously consider also the photoproduction
of two mesons and the production of mesons in nucleon-
nucleon collisions. For example,

and y + n —

and n + p —

and ~p + p-p + p—>p +

, (10.36)

ji+ + p, (10.37)

, (10.38)

(10.39)

(10.40)

and in the particular case

y + p —> Q+ -f- n and -y -|- n —> Q- + p,

p + p—>n + A++ and n + p —>p + A++

| > p a n + |

p + p - > p - | - A 0 and p"+p—>p"J-A°

(10.41)

It is natural to expect the asymptotic behavior to
come into play in the region of energies above the
masses of the particles and of the resonance. If we
do not have equality of the cross sections of particles
and antiparticles in this energy region, this will p ro-
vide weighty arguments for assuming that the micro-
causality principle is violated at small distances. It is
therefore very important to check experimentally the
asymptotic relations with sufficiently high accuracy.
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