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1. INFLUENCE OF SPIN-ORBIT INTERACTION ON
RESONANCE EFFECTS

J.F we neglect spin-orbit interaction, then an elec-

tron moves independently in its configurational de-

of freedom, on the one hand, and in the spin

of freedom, on the other. Let us consider

these motions in succession.

For a band electron (hole) with isotropic quadratic

dispersion law, situated in a constant homogeneous

magnetic field H, the classical picture of configura-

tional motion is rotation along a helix with an axis

parallel to H, with a revolution frequency

eH
me

(1.1)

where m—effective mass. In the quantum description,

the well-known Landau quantization picture arises,

with the neighboring orbits spaced Ra.c apart.

When an external high-frequency field is superim-

posed, the electron is acted upon by a Lorentz force

which leads to transitions between the stationary

states. In the electric-dipole approximation, which

in practice is absolutely sufficient, the interaction of

the carrier with the electromagnetic field is purely

electric; it excites quantum transitions between the

neighboring Landau levels (Δη =1), corresponding

to the usual cyclotron resonance at a frequency OJC.

The characteristic quantity, with dimension of length,

determining the dipole moment of the transition, and

consequently the intensity of the cyclotron absorp-

tion, is ΓΗ = (cfi/eH)1'2—radius of the first quantum

orbit. In the of magnetic fields employed in
ΓΗ ~ 1(Γ5— 1(Γ6 cm.

If the carrier dispersion obeys a complicated

the cyclotron resonance picture becomes much more

complicated. The cyclotron frequency ω0 becomes

a function of the magnitude and orientation of the

magnetic field Η and of the number of the cyclotron

orbit; transitions with Δη > 1 become possible. How-

ever, the main attributes of cyclotron resonance—the

electric character of the excitation and the invari-

ance of the spin state—remain in force.

The two spin orientations of the electron (hole) in

the field Η correspond to two spin levels,

tions between them—paramagnetic resonance-

excited by the magnetic component of the

quency field and occur at a frequency

here β0 is the Bohr magneton and g0 « 2 is the g-

factor of the free electron. The characteristic length

defining the intensity of the paramagnetic resonance

is the Compton length λ 0 = h/moc 2/30/e ~ 4 χ

ΙΟ"11 cm (m0—mass of free electron).

It is obvious that rjj » λ0, and it is seen from the

foregoing estimates that these quantities differ by ap-

proximately five orders of magnitude. Consequently,

cyclotron resonance is stronger than paramagnetic

resonance by approximately ten orders. However,

this simple and lucid picture is greatly complicated

when spin-orbit interaction is taken into account.

First, the interaction leads to a change in the nu-

merical values of the band-structure parameters,

primarily the spectroscopic splitting factor. Under

these conditions, the band carrier is a quasiparti-

cle, which has an effective spin magnetic moment

containing besides the pure spin an orbital part,

which frequently is dominating; we shall henceforth

take the carrier spin to have this generalized mean-

ing. The difference between the g-factor and g0 is

largest in crystals consisting of medium and heavy

elements.* For example, in InSb the g-factor of the

band electrons is 25 times larger than the value for

free electrons and has an opposite sign. In addition,

the g-factor changes usually from a scalar into a

tensor, the symmetry of which is determined by the

*In such cases, strictly speaking, the c
• be taken to be not i 0 , but %= | g | i o/2. For the sake of

simplicity, however, recognizing that such a change can always
be made and is significant only in individual cases, we shall not
introduce the new parameter % in what follows.

823



824 Ε. Ι. RASHBA

group

In spite of the great importance of this renormali-

zation of parameters, the most radical change is ex-

perienced nevertheless by the quasiparticle dynam-

mics. Namely, the autonomy of the configurational

and spin motions is lost and a "coupling" is pro-

duced between them. We must emphasize from the

very outset that the strong atom-core electrostatic

field in which the band electron moves in a crystal

causes the spin-orbit effects to be larger by many

orders of magnitude for the band electrons than for

the free electrons.

The coupling between the configurational and spin

motions makes it impossible to separate the quantum

transitions into purely configurational and purely

spin ones; we can speak only of predominantly con-

figurational and predominantly spin transitions. But

this changes appreciably the conditions for the exci-

tation of the different transitions. Namely, it be-

comes possible to excite spin transitions by the elec-

tric component of the electro-magnetic field, and the

orbital transitions by the magnetic component; this

effect will henceforth be called combined resonance.

The electron interacts with the electric component

of the high-frequency field much more strongly than

with the magnetic component; a manifestation of this

fact is the already-mentioned disparity between the

intensities of the cyclotron and paramagnetic reso-

nances. Therefore only the first of these two possi-

bilities is of importance in semiconductors, though it

can cause the electric excitation of the spin transi-

tions to prevail over the magnetic excitations even

in the case of a relatively weak spin-orbit coupling.

Combined resonance was investigated by us for the

first time '-1'2-' for band carriers, as applied to a

special type of band structure particularly favorable

for the production of high combined-resonance inten-

sities, and serving as a convenient model for a theo-

analysis; by now many other cases have been

nd the first experimental confirmations

of the existence of this resonance obtained.

In the next two sections we present an exposition

of the theory of combined resonance of band carriers

in crystals of various types, and an analysis of the

first experimental data. It will be shown that in many

cases, particularly in crystals without inversion

centers, the combined resonance intensity should pre-

vail (sometimes by many orders of magnitude) over

the paramagnetic-resonance intensity.

The wave functions of the local centers of large

can be represented as relatively narrow wave

3, made up of the wave functions of the band

states, which are energetically close to the edge of

the band. It is therefore natural to expect that the

high intensity of the combined resonance with the

band carriers should make it possible for an analo-

effect to exist for bound carriers. A more de-

analysis shows that combined resonance of

bound electrons can actually occur, but under ordi-

nary conditions it should be much weaker than for

the band carriers. The reason for it is that the

radius of the center is much smaller than the radius

of the orbit. Nonetheless, in certain cases, the com-

bined and paramagnetic resonances may be compar-

able in intensity, and the former may even be much

larger for local centers. A discussion of these

questions is contained in the two last sections of the

2. COMBINED RESONANCE WITH BAND CARRIERS
(GENERAL ANALYSIS)

The motion of a band electron in a constant homo-

geneous magnetic field Η with vector potential A ( r )

is described by a matrix Hamiltonian ^ which depends

on the quasimomentum operator

£ = - i V + ^ - . (2.1)

The order of the matrix is equal to the number of

contacting (or neighboring) bands at the symmetry

point k0, in the vicinity of which the Hamiltonian of

the effective-mass method is constructed. We confine

ourselves here to the case when account of the spin

leads to twofpld degeneracy at the symmetry points;

it is precisely under such conditions that the phe-

nomenon becomes clearest and the physical picture

is the most lucid. This analysis covers at the same

time the majority of the most interesting cases which

can be investigated experimentally.

It is convenient to transform the matrix Hamilton-

ian H(k) in such a way, that it contains only sym-

metrized products of the quasimomentum components.

All the resultant commutators should then be ex-

pressed in terms of the components of the magnetic

field intensity Η with the aid of the well-known com-

mutation relations

[ka, (2.2)

The triplet of indices a, a', and a" constitutes

cyclic permutation of x, y, and z. The matrix Ham-

iltonian

Η (£) = || H,; (k) || (2.3)

is transformed here into a series in powers of Η

where the term

H(k)= lH ( i ) (k , H),
i=0

H ( i ) is of the order of H*.

(2.4)

Inasmuch as the quantum radius in k-space is kjj

= rjj ~ Η , the expansion of (2.4) in powers of Η is

effectively also an expansion in powers of k, and in

the spirit of the effective-mass method it is cus-

tomarily sufficient to retain only the first few terms.

We retain in what follows the first two terms. If we

adhere to the formal procedure of taking into account

terms of one order in the powers of the quasimomen-

tum, we must, for example when retaining in H ^
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terms up to Hk2 inclusive, confine ourselves in IT

to terms of order k4. However, in those cases when

the actual values of k (k char = radius of the Fermi

surface, mean thermal k) greatly exceed kn. it is

advantageous to distinguish between the orders of

the parameters k c n ar a n d kf[. We note also that in

the case of a narrow forbidden band, when strong

non-parabolicity obtains, it may be advantageous to

transform the series (2.4) in such a manner as to

collect terms with identical symmetry from among

the different order in H.

The individual terms H ( l ' of the Hamiltonian Η

are best expanded in terms of basis matrices, and in

the case of two-dimensional matrices considered

here we can take the basis matrices to be the unit

matrix σ0 and the Pauli matrix σ = (σ χ, σν, σ ζ )

= (σι, σ2, σ 3); we shall assume these matrices to be

chosen in the usual representation (ay = σ2—imagi-

matrix). Then

c, H) = R-m(KJk, c, - Η ) σ 9 . (2.7)

H' 0 ) (k)= 2ff | f ,(k),

H(1) (£, H) = σ0 (HB (k)) + -P" (ag (k) Η),

(2.5)

where B(k) is a pseudovector and g(k) a tensor.

The spatial symmetry of the crystal and the sym-

metry with respect to time reversal impose several

limitations on the function fj(k), B(k), and g(k).

These limitations can be obtained for each concrete

type of crystal symmetry, for example, by a method

developed by Pikus^ . We, however, will be inter-

ested only in limitations that are general for all

crystals with inversion center.

If we denote by ψ} (i = 1, 2 ) the Bloch spinors

corresponding to the considered twofold degenerate

state with quasimomentum k0, then, by successive

application of the operations of inversion J and time

reversal K, these spinors will be transformed in

terms of one another

/Τ/ψ^Λψ; = £ / ? ; * , (2-6)
i

where R—unit matrix. This relation will hold both for

one-dimensional small representations, when two-

fold degeneracy is the consequence of T-symmetry,*

and for two-dimensional small representations, when

the T-symmetry does not lead to additional degener-

acy.t Applying to both sides of (2.6) the operator KJ

and recognizing that K2 = -1 and J2 - 1, we get RR*

= — 1, which in conjunction with unitarity of R gives

R = -R, where R is the transpose of R. We can

therefore assume R - σ ν ·

The condition of symmetry with respect to the

transformation KJ, for the matrix Hamiltonian writ-

ten in the basis φ{, is of the form

a and b according to
sidering a quasiparticle with spin 1/2.

tCase c according to Wigner [*].

[5]; note

If we return to the expansion of Η in the matrix basis

σ0 and σ, then it follows from (2.7) that σ0 can be

as a real scalar (KJa0 = σ0), σ as an imag-

pseudovector (KJa = -σ), k as an imaginary

vector (KJk = k), and Η as an imaginary pseudo-

vector (KJH= -H).

Applying the invariance condition (2.7) to (2.5), we

obtain

/i(k)=0 for i = l, 2, 3, B(k)=O; (2.8)

we are con-

No limitations whatever are imposed on fo(k) and

g(k). If k0 is equivalent to —k0 (in particular, if

k0 = 0), then H(k, H) should be invariant against the

inversion J, and in this case f0 and g will be even

functions of k.

The first condition in (2.8) denotes that the matrix

H^0' is a multiple of the unit matrix; this leads im-

mediately to the well-known fact that in crystals with

inversion center the bands are doubly degenerate in

all of k-space. The second condition of (2.8) shows

that in the presence of an inversion center the Ham-

iltonian term describing the different displacement

in the magnetic field of two conjugate valleys van-

ishes; since we are interested in what follows only in

the intravalley transitions, this term will be left out

completely.

We now return to the Hamiltonian (2.5) and ana-

lyze in greater detail the roles of the individual

components.

The term H^o) does not depend explicitly on Η and

is determined by the same parameters which enter

in the dispersion law and govern the form of the

equal-energy surfaces. Consequently it is natural to

regard the motion which is determined predominantly

by this part of the Hamiltonian as being a generalized

configurational motion.

The off-diagonal elements of the matrix H^0' are

as a rule much smaller than the diagonal elements,

since they describe the divergence of the bands near

the point k0 due to the spin-orbit interaction. This

divergence of the bands, which always takes place in

crystals without inversion center, does not occur in,

the presence of an inversion center.

In a constant homogeneous magnetic field the term

Η'1' in (2.5), in the" lower approximation in which the

dependence of g(k) on k can be neglected, is a con-

stant matrix analogous to the spin Hamiltonian.

Therefore the motion determined by this term can be

naturally regarded as generalized spin motion.

The configuration and spin motions can be re-

garded as independent when the Hamiltonian consists

of two terms (which, of course, commute), one of

which depends only on the "configuration" operators

(k components), and the second only on the spin

operators (σ components). This is precisely the

case that occurs when the matrix H ( o ) is ι
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as diagonal and the g-factor does not depend on k.
Any deviation from this condition leads to non-

autonomy of the configurational and spin motion in
a homogeneous magnetic field; it is clear from the
foregoing that the type of coupling between them is
different, depending on whether the crystal has an
inversion center.

In crystals with inversion center H ( o ) is always
diagonal, and therefore the only cause of the coupling
is the dependence g ( k ) .

To the contrary, in crystals without an inversion
center, we have besides this effect also coupling due
to the off-diagonal nature of H^0'. As a rule, it is
precisely the latter effect which predominates, since
it is connected with terms that can be of the same
order as k c har (in crystals of the corresponding
symmetry groups), whereas the dependence of the
g-factor on k is connected with the terms ~k2jjkchar
or of even higher order of smallness (for k0 equiva-
lent to —k0, starting with terms ~k 2Hk 2

char)·

The matrix Hamiltonian in the presence of an al-
ternating electromagnetic field with vector potential
A in the electric-dipole approximation is obtained
from the Hamiltonian written out above by making the
substitutions

A->A -μ A, H->H + H.

In the approximation linear in A, two terms are
added to H ( k ) :

H2 = -^-(ag(k)H).

(2.9)

(2.10)

(2.11)

In a standing wave, where the electric and
netic high-frequency fields have different spatial

3, their effects can be separated. Inas-
as the former is proportional to A, the per-

turbation H] in the electric-dipole approximation
reduces to the action of the electric component of the
field (in the general case one should speak of the ef-
fect of the Lorentz force), whereas H2 describes the
action of the magnetic component of the field on the
effective spin moment.

In the approximation in which the configurational
and spin motions can be separated, Hj is the cause
of cyclotron resonance and H2 of paramagnetic reso-
nance. Because of the coupling between the configura-
tional and spin motions, the operator Hj begins to
excite transitions which are accompanied by a
in the spin state; among these will be both a
tion connected with only the change in the spin quan-
tum number, and transitions accompanied by simul-
taneous change in the spin and configuration quantum
numbers. In accordance with the statements made in
the preceding section, all these transitions will be
classified as belonging to combined resonance, and
we shall neglect the combined resonance induced by
H2-

By way of a measure of the intensity of the spin
transitions, it is convenient to choose the paramag-
netic-resonance intensity; we shall consequently
compare the intensity of the combined resonance
with that of the paramagnetic resonance. As will be
shown later on, the combined-resonance intensity is
in many cases of the same order as the paramagnetic-
resonance intensity or appreciably higher, and under
certain conditions it may even approach the intensity
of the cyclotron resonance.

Notice should be taken of the following circum-
stance. In the usual relativistic formula for the en-
ergy of the spin-orbit interaction of the electron

the alternating electric field Ε is contained twice,
once explicitly as part of the total field E, and also
implicitly in terms of the vector potential, which is
contained in k. The scheme of the matrix Hamilton-
ian in the form described above corresponds to an
account of Ε only via the vector potential. We must
therefore verify that the explicit dependence of VgQ
on Ε is negligible. Indeed, it is connected with a
term of the order of /30 (h"k/moc ) Ε ~ β0 (v/c ) Ε which
is smaller by a small factor v/c than the interaction
with the alternating magnetic field (/30H), and can
give rise only to transitions which are much weaker
than in paramagnetic resonance.

A general investigation of the singularities of the
combined resonance can be made if the terms causing
the coupling between the configurational and spin
motions are small and can be regarded as a pertur-
bation. Then in the zeroth approximation Hamiltonian

Ho = ao/o(k)+{po( f fg(O)H) (2.13)

the configurational and spin motions can be separated
and the eigenfunctions can be chosen in multiplicative
form. If we confine ourselves in fo(k) to quadratic

3, which is usually sufficient, then the equal-
surfaces are spheres or ellipsoids, and the

eigenfunctions are Landau functions. The second
term in (2.13) determines the spin function. It can
always be reduced, by transforming the coordinate
frame, to the diagonal form ( V̂  )/30g (Ω ) σ ζ Η , where
g (Ω ) is determined by the orientation of H; we shall
assume in the present section that this transformation
has been made.

It is convenient to carry out canonical transforma-
tion of all the operators

i-->e T ie- T (2.14)

with the aid of an operator Τ such that all the terms
that are off-diagonal in the spin vanish as a result of
the transformation from the total Hamiltonian Η = Ho

+ Hj. Then the terms proportional to Ht in the
diagonal part, which lead to corrections to the

*[E, :EX|
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levels but which do not influence the combined reso-
nance intensity, can be neglected in the defined ap-
proximation. The transformed Hamiltonian then co-
incides with Ho.

In first order in Hj, the matrix elements of the
• Τ are equal to

1 ; ~ ~'H .—E (2.15)

for the states π and n' corresponding to different
spin orientations; all the matrix elements which are
diagonal in the spin can be set equal to zero. In the
same approximation, the transformed velocity oper-
ator is

r, IIoK-[r, Η , Ι - Η Π Γ , (2.16)

The first term in (2.16) describes cyclotron reso-
nance, and the last two combined resonance.

The indices η in (2.15), which number the states,
incorporate four quantum numbers: three orbital
(discrete oscillator quantum number η and two con-
tinuous numbers k x and k z ; see, for example, L6^ )
and one spin number σ. Using the usual properties
of motion in a homogeneous magnetic field, we can
readily verify that the operators H t, r x Ho, and Τ
are diagonal in k x and k z . In addition, the operator
r x H| can be broken up into three parts which act on
the Landau functions and lead either to conservation of
η or to an increase or decrease of η by unity while
the remaining quantum numbers remain unchanged;
the corresponding parts of r will be denoted by ra

( a = 0, - 1 , +1). Using this notation, we can easily
verify that for transitions with change of the spin
state

<n'! [7\K, Ho]] | „> = ^ _ | ^ L <n' [ K , Hll|n>, (2.17)

where wc (U)—cyclotron resonance frequency for the
chosen orientation of H. Thus, the matrix elements
of the two operators responsible for the excitation of
the combined resonance are proportional to each
other, and to obtain a qualitative picture of the effect
it is sufficient to consider only the first operator.

Whereas the form of the equal-energy surface is
determined predominantly by the operator Ho, the
intensity of the combined resonance is determined
by the operator Hj, which, as a rule, contains in the
symmetrized combinations k components raised to
a higher power (which we denote by s) than Ho.
Therefore the angular dependences of combined
resonance are usually less symmetrical than the
equal-energy surfaces.

As can be seen from (2.16), the part of the opera-
tor ν responsible for the combined resonance is a
form of degree s - 1 in the component k. Taking
into account the known selection rules for the momen-
tum matrix elements, we can easily see that the
combined-resonance spectrum should consist of
2s — 1 bands (pure spin transition) and 2 (s — 1)
bands corresponding to spin flip with simultaneous

change of η [by ±1, ±2, . . . , ± (s - 1) ]. The
the order of the perturbation Ht in the effective-
mass method appears, the richer the combined-
resonance spectrum; at the same time, however, the
intensities decrease rapidly and experimental ob-
servation of the individual bands becomes accordingly
more difficult.

The individual bands correspond to different com-
binations of the operators k a ; they therefore have a
different dependence on the orientation Η and on the
quantum numbers. This leads to a difference in the
angular dependences of the combined-resonance in-
tensity as a function of the orientation of H, and also
to different dependences on H, on the electron con-
centration (in the presence of degeneracy), and on
the temperature (for a nondegenerate electron gas).
Along with the monotonic dependence of the intensity
of combined resonance on Η in the presence of de-
generacy, oscillations of the de Haas-van Alphen
type appear. The excitation of combined resonance
is possible both when Ε 1 Η (transverse resonance)
and when Ε II Η (longitudinal resonance).

The entire analysis of combined resonance, given
above, was based on the assumption that the correc-
tions to the Hamiltonian Ho, which give r ise to the
combined resonance, are small. For crystals with in-
version centers, this reduces to the requirement that
the corrections to the g-factor, necessitated by its de-
pendence on k, be small compared with the g-factor
itself; this condition is in practice always satisfied in
semiconductors. The corresponding criterion is much
more stringent in semiconductors without inversion
centers, where it is required that the spin-orbit diverg-
ence of the bands δ (k), at quasimomenta on the order
of kchar> be much smaller than the cyclotron energy
η"ωο(Ω) (or the Zeeman energy Τ5ω8(Ω) = | g (Ω | β0Η);
when these quantities become of the same order of
magnitude, the resonant frequencies common to all the
electrons vanish, and the absorption bands should
broaden greatly. This criterion, which imposes an up-
per bound on kc nar> simultaneously limits, in the case
of a fixed operating frequency, the carr ier density for
the degenerate electron gas, and the temperature for
the nondegenerate gas.

It is easy to estimate the ratio of the matrix ele-
ments of the velocity operator for combined and cy-
clotron resonance. According to (2.16), its order of
magnitude is

"CoR H l( A char) H, (irchar)

"C7R H ^ C W ) ~ E ^ T " (2.18a)

As was just noted, pronounced resonance is observed
when

and therefore

Αω,(Ω),

ω, (Ω)
(2.18b)

The quantity on the right side is of the order of unity
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only in the case of the quantum limit, when

in all other cases it is always smaller than

To conclude this section we shall dwell briefly on

the widths of the combined resonance bands. We can

introduce two relaxation times: τ—the relaxation time

within each of the two spin subsystems, and TS—the

spin relaxation time. If they are of the same order of

magnitude, then the widths of all the resonance absorp-

tion bands are comparable with one another and are of

the order of τ"1 on the frequency scale. Usually, how-

ever, τ » τ, and the paramagnetic resonance band,

which has a width ~7g', is much narrower than the

cyclotron-resonance band, which has a width ~τ~1.

This raises the question: what will be the widths of the

different combined-resonance bands?

Naturally, the bands corresponding to the combina-

tion transitions with frequencies ncoc (Ω) ± ω 8 (Ω) will

have a width ~τ-1, since they are accompanied by

change in the number of the cyclotron orbit by η ^ 0 .

The pure spin-transition band occupies a special

position. To verify this, it is convenient to consider

the case when the operator Hj contains ka linearly;

consequently v s, which is the relativistic part of ν

[see (2.16)], does not contain fia and depends exclus-

ively on the spin operators. If we neglect further the

spin interactions in the total Hamiltonian of the system,

then the Hamiltonian can be written in the form Η = H r

+ H s, where H r is the configuration part of the Hamil-

tonian, which includes the interaction with the scatter-

ers, and Hs is the spin Hamiltonian which enters into

(2.13). Using the fact that H r commutes with v s and

Hs, we can easily transform the well-known formula

for the real part of the conductivity:

GO

σ α β (ω) ~ Re [ dteia> ( [e iHii;°e- iH', νξ])
ό

σο

= Re \rf/e iMi([e iH^«e- iH^, υξ\) ~ δ (ω—ωβ). (2.19)
ο

Consequently, the width of the band of the pure spin

A

+

An / *

FIG. 1. Plot of ECk̂ ) for semiconductors with extremum loop.
Δ — depth of loop, k0 — radius of loop. The signs + and - indicate
the branches of the dispersion law (3.2). The arrow designates
transitions corresponding to combined resonance of carriers with
extremely low ι

transition is determined by corrections to the levels of

Hj, which have not yet been accounted for here,

the spin relaxation. No analogous analysis was

made so far for the more complicated case when v s de-

pends on k. However, an approximate theory, based

on a generalization of the Karplus-Schwinger method

to include the case of two relaxation times, leads to

the conclusion that in the general case the spin band

has a width ~τ§1 at arbitrary τ.

It must be noted that the entire analysis made in

this section of the combined resonance picture is based

on a Hamiltonian which does not include scattering, and

is therefore valid when ωτ,ωτΒ » 1.

3. COMBINED RESONANCE WITH BAND CARRIERS

IN CRYSTALS OF DIFFERENT SYMMETRY.

DISCUSSION OF FIRST EXPERIMENTAL RESULTS

We consider now the distinguishing feature of com-

bined resonance with band carriers for several basic

types of band structure, corresponding to the most

thoroughly investigated semiconductor groups.

As follows from Sec. 2, combined resonance should

be the most intense in crystals without an inversion

center, in which the spin-orbit divergence of the bands

appears already in the first order in k. Among these,

apparently, the most convenient object of investigation

are semiconductors with loops of extrema, such as

CdS; a discussion of the prevalence of band structures

of this type, the values of the parameters, etc., is

contained in ^ .

In the hexagonal modification of crystals of the CdS

type with symmetry C 6 v, the matrix Hamiltonian of

the band electrons has near k0 = 0 the form

Η (k) = ση (Ak Ι + α[σ,

(3.1)

where Oz is oriented
= k2 +Kx

the axis,
y, and σ^ = (σ χ, ay). The constant a deter-

mines the magnitude of the spin-orbit divergence of

the bands. The law of electron dispersion correspond-

ing to the Hamiltonian (3.1)^2'8'9^ is

E±{k)=Ak]_ + Bkj±ak±. (3.2)

The energy minimum E m i n = -Δ = -Q?2/4A is attained

for the lower sign in (3.2) (we assume for concreteness

that a > 0) on a circle (extremum loop) with radius

k0 = a/2A, lying in the plane kz = 0. A plot of the en-

as a function of kj is shown in Fig. 1. At small
E = Emin I < Δ, the equal-energy surfaces

have a toroidal form.

When the carriers are concentrated at the bottom of

the band, k c n a r ~ k0 and the divergence of the bands

is «s<5(k0) = 4Δ. To the contrary, at characteristic

that are large compared with Δ, we have

~ 4 VE c n a r A. Consequently, the situation

analyzed in Sec. 2, where 6 ( k c h a r ) « Ko;s and the

terms ~ ό ι
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in the case of semiconductors with an extre-
mum only in sufficiently strong magnetic fields which

the spin-orbit coupling.* For example, when
~ 4 χ 1(T 5 eV ( E c h a r ~ 10"4 eV, Δ ~ 10"6

eV— this apparently corresponds approximately to a
value of Δ in certain crystals of this group) the oper-
ating frequency of the apparatus should satisfy the
condition ν = ω/2 » 1010 cps, and the magnetic field
for g « 2 must satisfy the condition Η » 3000 Oe. At
larger values of Δ, these criteria will be much more
stringent and, for example, even when Δ
they correspond to a transition into the infrared
of the spectrum.

If the criterion δ ( k c j i a r ) « fiu)s is satisfied, then
a single combined-resonance band at a frequency ω 5

should be observed. Using (2.18a), we can readily ver-
verify that (VQoj^/VQyj^)2 ~ A / E c n a r . At the same
time, an analogous ratio for paramagnetic and cyclotron
resonance is of the order of (g'Xo/rchar )'• Therefore
the ratio of the intensities is

10"5 eV

'CoR (3.3)
'CyR ^cha

10"6 eV, ho; s
10"4 eV, m *•- 0.1m0,When Δ

this ratio is ~107; consequently, for a similar band
structure the combined resonance is stronger than the
paramagnetic resonance by many orders of magnitude.
A detailed theory of combined resonance in semicon-
ductors with extremum width in strong magnetic fields

r 1 ft"1

is given in- J .
Combined resonance in semiconductors with an ex-

tremum loop is of interest not only because of its high
intensity, but also because when Η is oriented along
the symmetry axis the Schrodinger matrix equation can
be solved accurately ^ n ^, so that the picture of com-
bined resonance can be investigated in a wide range of
H1.

The exact energy spectrum of the system consists
of two branches, which can be set in correspondence
with the two branches of the dispersion law. Two
transitions are possible from each state of the lower
branch into the states of the upper branch; the fre-
quency of the transition depends on the quantum num-
ber of the initial state; therefore, as a rule, the com-
bined-resonance spectrum should have no structure
and should be resolved only in a few limiting cases.

If Δ is large, the magnetic fields are not too large,
and the majority of the carr iers is concentrated at the
bottom of the band, then the combined resonance is
essentially an interband absorption of the carr iers
with transition between two spin-conjugate bands; in
Fig. 1 these transitions are indicated by an arrow.
The absorption is located near the frequency u; - 4Δ/Κ

*We are referring, naturally, not to the breaking of the in
atomic spin-orbit bonds, with energy on the order of an electron
volt, but to the satisfaction of the criterion S(kci,ai.) «1 ϊω 5 ,
which ensures an appreciable autonomy of the configurational and
spin motions of the band carriers.

and consists of a series of peaks spaced 2coc^
= 4Akn/fi apart. The strength of the combined-reso-
nance oscillator is in this case very high and coincides
with the strength of the cyclotron-resonance oscillator;
at the same time, combined resonance is easier to ob-
serve than cyclotron resonance, since the quasiclat
cal cyclotron-resonance frequency, which is equal

eH (3.4)

vanishes when k^ = ko(S_—area of the intersection be-
tween the equal-energy surface E_ and the plane k z

= const).
To the contrary, if E c n a r » Δ and the magnetic

field breaks the spin-orbit bond, two bands will ap-
pear in the combined-resonance spectrum. One of
them, discussed above, will correspond to the fre-
quency (x's|| = | g|| | /30H/K; the other, which is one
of the frequencies resulting from the combination of
2CJ C I with ω 8 | | (which depends on the ratio of the

•s), is weaker than the first band by a fac-

We note that the case of large Δ was considered ^
also for Η oriented perpendicular to the symmetry
axis; since the exact solution cannot be obtained, a
quasiclassical method was used. Unlike the majority
of other effects in combined resonance, the region
near the central section makes a small contribution;
inasmuch as the frequency of the combined resonance

depends strongly on the quantum num-
when Ko.'s « Δ, the absorption should extend

over a broad band.
Unfortunately, the resonant properties of those

semiconductors in which high combined-resonance
intensity should come into play in conjunction with in-
teresting peculiarities of cyclotron resonance have
not been investigated experimentally at all. The re-
sults of the only investigation L14J of cyclotron reso-
nance in n-CdS is in contradiction with the later in-
vestigations of other effects.

The second theoretically-investigated type of band
structure without an inversion center is that of
crystals of the n-InSb type L1BJ. In such crystals, if
we confine ourselves to terms that are cubic in ka,
the matrix Hamiltonian is of the form

I( = δ0 (σκ)

where

(3.5)

(3.6)

and KV and κζ are obtained from KX by cyclic per-
mutation of the indices; the cubic axes are chosen to
be the coordinates.

Inasmuch as Hj is cubic in k Q , the intensity of
the combined resonance should be appreciably lower
than in semiconductors with an extremum loop; in
strong fields the spectrum should contain, besides
the spin-resonance frequency, also four combination



830 Ε. Ι. RASHBA

I X.

Cyclotron

d,Z

FIG. 2. Electron energy level scheme of InSb in a
field. The arrows indicate the transitions corresponding to vari-
ous resonances; it is assumed that the combined resonance is di
to the term Hl from (3.5). The letters designate the types of poh
ization: longitudinal (Z), right-hand (d), and left-hand (g) ι

the transition scheme for InSb is shown
in Fig. 2. The combined-resonance intensity should
be strongly anisotropic; typical angle diagrams are
shown in Fig. 3. The intensities of all the bands were
calculated in ^15j for many limiting cases, together
with the dependence of the intensities on the tempera-
ture, electron density, and H; the intensity oscilla-
tions in the presence of degeneracy were also investi-

An estimate of δ0, obtained for InSb on the basis
of the Kane model ^ , yields Ι δ0 I « 2 x 102 atomic
units. This value of | ό0 | for c = 2 . 4 x 1010 cps,
leads to a concentration limit of observation of spin
resonance N i j m ~ 6 χ 1015 cm" 3 .

Spin resonance of band electrons was observed in
InSb for the first time by Bemski ^ . He was able to

resonance at ν = 2.4 χ ΙΟ10 cps up to concen-
N ~ 3 x 1015 cm" 3 ; at higher concentrations,

owing to the sharp broadening of the band, starting
with approximately Ν ~ 2 χ 1015 cm" 3 , it was impos-

FIG. 3. Typical angle diagrams of the combined-resonance in-
for crystals of the InSb type. The coupling of the configu-
and spin motions is realized by the operator H^ from (3.5).

sible to observe the resonance. Satisfactory
ment between the theoretical and experimental values
of N u m indicates the correctness of the estimate of
| (50 |. At the same time, for this value of | ό0 I and
for the values of concentrations and temperatures
corresponding to Bemski's measurements, the in-
crease of combined-resonance intensity at the antinode
of the electric component of the high-frequency field,
compared with the intensity of the paramagnetic
resonance at the antinode of the magnetic component,
is estimated theoretically to be approximately four
orders of magnitude; inasmuch as the dimensions of
the samples are usually approximately 0.1 of the
wavelength, even if the sample is placed in the anti-
node of the magnetic field, the electric excitation
cannot be excluded. Therefore it was suggested in ^15^
that Bemski actually observed a superposition of
combined and paramagnetic resonances.

This assumption was confirmed in later experi-
ments by Bratashevskii, Galkin, and Ivanchenko '-18-'*

by Bell -'. They observed a narrow spin reso-
band (~10—20 Oe) against the background of a
cyclotron-plasma resonance band and proved

directly, by displacing the sample in the
that the electric excitation of the spin
prevails over the magnetic excitation. It can there-
fore be assumed that in these investigations the com-
bined resonance with the band carr iers was observed
experimentally. Figure 4 shows by way of an illustra-
tion the curves obtained by Bell.

At the same time the impurity scattering in these
experiments, which were performed at liquid-helium
temperature, was so strong that the criterion ω τ
» 1 was greatly deviated from, as can be seen from
the extremely smeared cyclotron-resonance curves.
We can therefore expect appreciable deviations from
the predictions of the theory, particularly in the
angle diagrams, which are determined by the sym-
metry of the quantum states.

In both experimental works L it was estab-
lished that the combined resonance is isotropic at

the frequency ci s at all Although
there is no systematic theory of combined resonance
under the conditions ωτ ~ 1 and a i i s » 1 at pres-
ent, we can show that strong scattering should
smooth out the angle diagrams; nonetheless, it appar-
ently should not lead to complete isotropy, at any
rate so long as the inequality fi/τ « f, which was
satisfied

[18,19]
is still valid ( ζ = Fermi

Worthy of attention is still another
A peculiarity of InSb, governing the
values of several parameters of its band structure
(m = 0.013 m0, g = —51, etc.) is the small width of
the forbidden band Eg (which slightly exceeds

*The results were partially reported by Yu. A. Bratashevskn
at the Ninth All-union Conference on Low Temperature Physics in
Leningrad, June 1962.
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FIG. 4. Resonant absorption of electrons in InSb. a) Electric-
dipole absorption. On the smeared edge of cyclotron resonance,
near 1 kOe, one can see at both orientations of the magnetic field
combined-resonance peaks corresponding to pure spin transition;
in the insert, one of the peaks is shown on an enlarged scale,
b) Magnetic-dipole absorption. In one of the polarizations one can
see the paramagnetic resonance band while the second polariza-
tion (insert) does not contain this band.

-Z •7 Ο

Magnetic field,

a)

0.2 eV). This makes it necessary to consider, be-
sides the operator H1 from (3.5), also the term H't
due to the dependence of the g-factor on k. Indeed,
although Hj is a quantity of higher order of smallness
in the quasimomentum (it is proportional to
k H 2 k 2 char)· it contains nevertheless a term of the
type ( a - k ) ( H - k ) , which is due to the "interaction"
of the nearest bands, whereas δ0 is determined pre-
dominantly by the contribution of the upper bands.
This term can be readily estimated at

Comparison with H t makes it immediately possible
to estimate the relative contribution of both
tors to the velocity matrix elements:

(^char) ErtvJh_

E r

(3.8)

When Ν ~ 10M cm and the frequencies have the
values assumed in ί18'1^1, th j s quantity is of the
unity and the contribution of the term HJ should be
taken into account, something not done in earlier
work (see note added in proof at the end of the arti-
cle). Inasmuch as Hj from (3.7), unlike Ht, is a
spherical invariant (and not cubic), the absorption
caused by it should be isotropic. It is easy to verify
that when ωτ and ωτΒ » 1, H't gives rise to transi-
tions at one of the combination frequencies in longi-
tudinal polarization and to pure spin transitions in
one of the circular transverse-resonance polariza-
tions, but does not lead to absorption in the other
polarization. ωτ < 1 and ω τs » 1, Η!
parently can explain the isotropy of the absorption in
the longitudinal and one of the circular polarizations,
but not the equality of the absorption in both circular
polarizations, which by Bell Ll9]

investigations are therefore necessary here.
Increasing the temperature leads to weakening of

the impurity scattering, to an increase in ω τ, and to
a narrowing of the cyclotron resonance band. At
liquid oxygen temperature, Bratashevskii, Galkin, and

Ivanchenko '-18-' succeeded in compensating the cyclo-
tron absorption in the longitudinal polarization to a
considerable degree, and in observing four new ab-
sorption bands excited by the electric component of
the field. These bands have appreciable anisotropy
and are located in the regions 4000—7000 Oe (Fig. 5).
They advanced the opinion that the bands observed by
them are the four remaining combined-resonance

However, strict identification of the observed
3, and elimination of the other possible ii

tations, are made extremely difficult by the following
circumstance. Owing to the small effective mass of
the electrons (m = 0.013m0), the plasma effects in
n-InSb are very large, and for Ν ~ 1014 cm" 3 the
position of the cyclotron-resonance band is shifted
by the plasma interaction by one order of magnitude
into the region of large magnetic fields ( from ~ 300
to ~ 3000 Oe ), leading to a realignment of the entire
absorption curve. At the same time, the elimination
of the distortion introduced by the plasma effects, by
recalculating the experimental data, is made difficult
by the influence of the skin effect—the skin depth is
of the order of the spherical samples. Therefore the

soon? raw H, oe

FIG. 5. Resonance absorption of electrons in InSb. a) I
plasma resonance in transverse polarization; b) magnetc

and four absorption bands in longitudinal polarization.
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question of the nature of the observed bands and the
possibility of their interpretation as being for com-
bined-resonance bands shifted by the plasma interac-
tion from the 150—500 Oe region (theoretical position)
into the region 4000—7000 Oe still awaits a final
solution.

Summarizing the comparison of the theoretical
and experimental results on n-InSb, we must con-
clude that the existence of combined resonance has
been established unambiguously; at the same time,
it is necessary both to generalize a theory to include
new cases (strong scattering ω τ <, 1, allowance for
plasma effects), and to carry out new experiments
under conditions satisfying the criteria of the already
existing theory. Among the semiconductors with in-
version center, greatest interest is attached to Ge

Si, as being most suitable for resonance investi-

The theory of combined resonance of electrons in
germanium and silicon was constructed by Boiko ,
who showed that in Si there should occur a single
band at a frequency ω 3 , and in Ge three bands at
frequencies ω8 and ω 0 ± w s . An estimate of the
probabilities of the transitions has shown that in both
cases the intensities of combined and paramagnetic
resonances should be comparable in order of magni-
tude. Inasmuch as in semiconductors with inversion
center the combined resonance is the result of the
dependence of the g-factor on k, it should be stronges
in the presence of nearby bands, when the deviation
of g from a constant value occurs particularly early.
We encounter a similar situation in p-Ge and p-Si
crystals subjected to deformation, which lowers the
symmetry and lifts the degeneracy of the bands of
heavy and light holes in k0 = 0; in such cases the
distance between the split bands Δ € is usually of
the order of several hundred eV. This interesting
situation was investigated by Gurgenishvili '-21-' on
the basis of the theory of Pikus and Bir ^ ; the in-
tensities and the angular dependence of combined
resonance are expressed in his paper directly in
terms of the Luttinger parameters '-23-\ which are
known from other experiments.

The order of magnitude of the effects obtained by
him can be readily estimated in the following fashion.
From dimensionality considerations it is clear that
the term in the g-factor which is quadratic in k is
of the order of R2kc j i a r /mAe . Consequently, the term
in the velocity operator, responsible for the com-
bined resonance, is of the order (Kk c n a r /m) χ
(/30Η/Δ<τ), and the matrix element of the coordinate
is of the order fi2kcnar/mAe. Therefore

•Όοϊ?
(3.9)

3 x 10-4 and « ΙΟ"'1 eV, thischar
ratio is of the order of 10".

In undeformed germanium and silicon crystals, as

is well known, the levels of the holes in a magnetic
field are not equidistant at small quantum numbers
(the quantum region), owing to the fourfold degen-
eracy of the bands in k0 = 0; the systematics of the
quantum levels in this situation was developed by
Luttinger L23^, and a detailed theory of the quantum
transitions was given in subsequent works (Khutsi-
shvili et al ^2i^). In ^ it is shown that in the quan-
tum region practically all the transitions are ac-
companied by a change in the spin state, and these
types of transitions whose properties in the quasi-
classical region can be attributed to combined reso-
nance (a* (n) *^ b* (n + 1) transitions in the nota-
tion of '•23^ ) are excited in longitudinal polarization in
the spherical-band approximation. In the approxima-
tion used in L24-', the intensity of combined resonance
decreases monotonically with increasing n; however,
an inclusion of terms ~ Hk ak^ in the Hamiltonian
will cause the combined-resonance intensity first to
pass through a minimum and then to grow again in
the region of large n.

In conclusion let us dwell on the interesting re-
sults of Smith, Gait, and Merritt , who observed
the combination frequencies ccc ± ω 8 in the spectra
of Bi and Sb. In these crystals with small Eg and
large g-factor, the dependence of g on k should be
appreciable, and apparently in this connection the
opinion was advanced ^ that the effect observed
in *• J has the same nature as combined resonance at
the frequency w s in InSb. However, bismuth and
antimony are metals with strongly pronounced skin
effect, and in the skin layer the high-frequency elec-
tric field is much weaker than the magnetic field (by
a factor on the order of the ratio of the thickness of
the skin layer to the wavelength ^ ); therefore the
conditions for the electric excitation of the spin
transitions are less favorable here than in n-InSb.
Yet it is precisely under conditions of strong skin
effect, as noted by Azbel' ^ , that a high-frequency
magnetic field with strong spatial inhomogeneity will
excite, besides the pure spin transitions, also transi-
tions at combination frequencies. The polarization of
the transitions, established by Smith et al, indicates
that the bands they observed are more likely mag-
netic-dipole and are due to the mechanism of ^ .

4. COMBINED RESONANCE WITH BOUND
CARRIERS (GENERAL ANALYSIS)

As was already noted in Sec. 1, the high intensity
of the combined resonance with band carr ier s leads
to a change in the conditions for the excitation of
spin resonance on local centers, namely the possibil-
ity of combined resonance with the bound car r ie r s .
We shall consider below predominantly centers with
large radius, so that we can compare directly the
combined resonances with them and with band car-
r iers by constructing the theory in general terms,
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and thus separate the singularity due to the
tion of the electron into the bound state. As can be
seen from the preceding section, the oscillator
strength f of combined resonance with the band car-
riers can be very high, reaching values on the order
of unity. For fields Η that break the spin-orbit
coupling, f can be readily estimated with the aid of
(2.18a), by recognizing that the oscillator strength of
cyclotron resonance is of the order of Echar/Kwc·
For example, for crystals without an inversion center

^. (4.1)

It is interesting to note that the oscillator strength is
proportional to FT1 so long as k c j j a r does not de-
pend on H.

It is easy to explain the cause of the high values
of f. As is well known for the band electron there is,
besides the oscillator strength for the transition to
other bands, also a nonvanishing oscillator strength
for the transition "into itself," which is equal to
mo/m l2S-1; it is precisely this oscillator

which causes the interband absorption of lij
free carr iers and the cyclotron absorption. The os-
cillator strength'for the transition "into itself,"
possessed by the Schrodinger band electron, is
shared, on going over to the relativistic electrons
and when the number of bands is doubled, by two
bands—transition "into itself" and transitions into the
spin-conjugate band; the latter oscillator strength is,
roughly speaking, the source of the combined reso-
nance.

At the same time, for the bound states, the oscil-
lator strength, both for the transition "into itself" and
for the transition to other states that are degenerate
relative to the usual state, is always equal to zero
because of the finite radius of the state R. Conse-
quently, the nonzero values of f will always appear
only in higher orders in the magnetic field H, which
splits the levels. The expansion parameter will be
TTa,s/Ej ~ (kjjR)2, where Ej is the potential of the
center, and is a characteristic quantity for the dis-
tances between the successive levels, and f, unlike
(4.1), will contain only the direct powers of Η (at any
rate, so long as R a s « E[). Consequently, other
conditions being equal, the combined resonance with
the bound carr iers should be much weaker than with
the band carr iers (E. I. Rashba, paper at All-union
Symposium on Solid State Theory and New Methods
of Quantum Statistics, Odessa, May, 1961).

We now consider in greater detail L 2^ the struc-
ture of the matrix element of the coordinate r for
combined resonance, and confine ourselves first to
the local level produced at the bottom of a simple
band. More accurately, we assume that there is no
multi-valley structure, and likewise no spin-orbit
splitting of the band at the point k0, at which the
bottom of the band is located (usually k0 = 0), and
we likewise assume double degeneracy in k0 with

of the spin; in semiconductors without an
inversion center, to which we confine ourselves tem-
porarily, the bands in the vicinity of k0 will diverge
slightly.

now verify

Ei
(4.2)

The last factor in (4.2), R, is the maximum value
of the matrix element of the transition—the radius of
the center; the first two factors are small and are
due to an account of the perturbations that make the
combined resonance possible. Indeed, the second
factor takes into account the effect of band divergence,
which in the model assumed here, is the only reflec-
tion of the existence of spin-orbit coupling.

In the case of a simple band, the main level of the
impurity center is doubly degenerate as a result of
T-symmetry at Η = 0 (when spin is taken into ac-
count); the two wave functions belonging to it can be
denoted ip and Kip. Using the properties of the oper-
ator K, we easily verify ^ that

*) = - Γψ) =0.(4.3)

Therefore, the matrix element of the coordinate
differs from zero only in first order in H, and
causes the appearance of the first factor in (4.2).

Let us note now the circumstances under which
the small factors can vanish from (4.2). The first
factor vanishes for states with angular momentum
J > '/2 and transitions with variation of the modulus
of the magnetic quantum number M, since the initial
and final states are not conjugate relative to time
inversion in this case. Such a situation is realized
with J = % f ° r acceptors in degenerate bands (of the
type p-Ge, Si, InSb^30-'). In the same case, the second
factor also vanishes, since the spin-orbit divergence
of the bands at the symmetry point usually exceeds
Ej (or else is a quantity of this order). It must be
borne in mind, however, that in the case in question
the second factor performs still another role. The
point is that in the presence of an inversion center
the electric-dipole transitions between the different
states within a single term are forbidden, and the
operator that causes the spin-orbit divergence of the
bands is simultaneously the only term in the Hamil-
tonian which is odd relative to inversion. Therefore,
for acceptor centers of the type indicated, if we
neglect <5 (kjj) we can obtain a nonvanishing com-
bined-resonance intensity only by taking into account
other odd terms in the Hamiltonian of the effective-
mass method; we shall discuss this in greater detail
in the next section.

Finally, the matrix element r can increase ap-
preciably in the presence of nearby levels, when the
denominators in (4.2) will contain in place of Ej an
essentially smaller quantity; this is possible in a
multivalley structure, for excited levels, etc.
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It is easy to see that f is proportional to Η
r does not depend on H, and is proportional to H3

pena on ri, ana is ρ
when r is proportional to H, thus
from (4.1).

5. COMBINED RESONANCE

OF VARIOUS TYPES

noticeably

LOCAL CENTERS

Let us consider now in greater detail
special cases. If we apply (4.2) to semiconductors
with extremum loops and assume for the parameters
values that are apparently close to those realized in
CdS, CdSe, and others (Ej ~ 3 x 10"2 eV, a ~ 1CT10

eV-cm), then for ν ~ 1011 sec"1 we obtain r ~ 10~10

cm, which exceeds λ0.*
Calculations made by a variational method for

semiconductors with extremum loops ^ lead in the
region of weak fields to a result close to (4.2), and
in the region of strong fields (Κω8 » Ej) to the
same intensities as for the band carriers '-10 .̂ In in-
termediate fields, n"a;s ~ Ej, the intensity as a func-
tion of Η goes through abrupt maxima, which arise
when the terms cross; the corresponding absorption
frequencies lie in the infrared region of the spectrum.

As was shown in Sec. 4, the highest combined
resonance intensities should be expected for acceptor
centers with large radius, the ground state of which
has fourfold degeneracy. The situation is most
amenable to analysis in p-InSb, for the absence of
the inversion centers in the crystals causes the
Hamiltonian of the band holes to contain terms that
are odd and cubic in k; this makes it possible to
construct a purely macroscopic theory within the
framework of the effective-mass method l-32 .̂ Inas-
much as the cubic terms in InSb are nonrelativistic,
the relative magnitude compared with the quadratic
terms is ~(a/R), where a is the lattice constant,
and consequently for transitions with change in | Μ |
the matrix element of the coordinate can be esti-
mated in analogy with (4.2) as follows:

r Ρ Γ Λ = < (5.1)

which is three orders of magnitude larger than λ0.
The theory predicts sharp angle diagrams for the
resonance, similar to those shown in Fig. 3.

Unfortunately, it was impossible to observe spin
resonance with acceptors in free crystals, probably
owing to the band broadening due to the lattice im-
perfection '-30-'; the resonance can, however, be ob-
served in crystals subject to deformations, which
lower the symmetry and lift the fourfold degeneracy.
The matrix element of the pure spin transition differs

*If we regard combined resonance with local centers as a
method of measuring a, then it has apparently approximately the
same threshold, or a threshold one order of magnitude lower, than
the Hopfield method (using the fine structure of the exciton spec-
trum [31]), whereas combined resonance with band carriers

• it possible to measure appreciably smaller values of a.

in this case from that given by (5.1) by a
fiu)g/Ae *- , as can be seen from perturbation theory
(Δε—level splitting due to the deformation). There-
fore

(5.2)

r exceedsη"ω 8 /Δ€ ~ 0.1,
orders of magnitude.

A theoretically much more difficult problem is the
case of acceptors of large radius in Ge and Si, which
was analyzed by Bir, Butikov, and Pikus . Inas-
much as ideal crystals of this type have an inversion
center, and the center is missing only in the local
group of the impurity atom replacing one of the
atoms of the main substance, the detailed variation
of the potential within the confines of the cell be-
comes important, and the solution of the problem
within the framework of the effective-mass method
is impossible; only the question of an order-of-mag-
nitude estimate can be raised here.

Being unable to present here the analysis given
in t33-', we confine ourselves to crude estimates,
analogous to those made above for the other cases.
Inasmuch as the local group of the impurity atom is
a tetrahedral group, the antisymmetrical part of the
impurity-center potential can be regarded at dis-
tances exceeding a as the potential of an octupole
with moment ~ ea ; at distances of the R, the

potential can )e estimated at

Therefore, it leads to a transition matrix element

R
3 Β ( α

a,
(5.3)

and here r « a. At the same time, for Ge, and
especially for Si, the value of r estimated in this
manner exceeds Xn. We note, however, that accord-

Too"]

ing to the results of L , while r has a structure
analogous to (5.3), it is numerically smaller; in
particular, according to 3^ r ~ λ0 f° r Si and
r « Xo for Ge. The deformation of the sample en-
suring the narrowing of the spin wave, as already
noted, decreases r/X0.

It is interesting to note in this connection that in
accordance with the deductions of , where a
thorough investigation was made of different mecha-
nisms of band broadening, in the structurally most
perfect samples producible at the present time, the
bandwidth should be sufficiently small also in the
absence of external deformation. It is consequently
of interest to undertake combined-resonance exper-
iments in such crystals.

We have paid principal attention above to an esti-
mate of the intensity of combined resonance; the
reason for it is that combined resonance has not yet been
observed experimentally on large-radius centers, so
that an estimate of its intensity is essential for the
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choice of a suitable direction in the experimental re-
search; at the same time, the magnitude of the inten-
sity of resonance is important also for an estimate
of the possibility and advisability of its practical ap-
plication in what follows. Once resonance is observed,
the main interest should lie in the investigation of its
numerous singularities.

Let us dwell in conclusion on an interesting group
of investigations, which has already led to success in
the experimental study of combined resonance.
Bloembergen (report at the National Academy of
Sciences, Washington, April, 1961 L34-') has pointed out
that if the paramagnetic ions that produce small-
radius impurity centers in a crystal occupy positions
without an inversion center, it becomes possible to
produce electric-dipole excitation of spin transitions,
i.e., combined resonance; under the same conditions,
in a constant external electric field E, the frequency
of the spin resonance depends linearly on Ε (in the
presence of an inversion center, only a quadratic ef-
fect will be produced).

These effects were soon observed experimentally
on transition-metal ions in Si, which is a convenient
and well-investigated research object: a frequency

-shift in a constant field was observed by Ludwig and
, and combined resonance by Ludwig and

Ham [361

The theory of these effects was developed by
Ham ^37-' in terms of atomic functions perturbed by
the crystalline field, on the basis of the energy
scheme for the interstitial ions of transition metals
in silicon, proposed earlier in . He obtained by
perturbation theory a spin Hamiltonian for several
typical cases;* from the structure of the coefficients
one can see the factors that determine the electric-
dipole moment. The dipole moment is maximal when
the ground state of the impurity ion is an orbital triplet
( L = 1), for in this basis the matrix elements of the
coordinate differ from zero in the local group of the
impurity atom T^. If furthermore the lowest level
(resulting from the spin-orbit splitting) corresponds
to J > y2> then the electric-dipole terms arise in
zeroth order in H. These conditions are satisfied
for the ion Mn+ (S = 2, L = 1; lowest level J = 1),
for which the electric-dipole effects are most clearly
pronounced (compared with the five other investi-
gated ions); if we write for Mn* the electric-dipole
term of the spin Hamiltonian in the form

erE(JJ2 + JJx),

where Ja are the matrices of the angular momentum
and Ε is oriented along Oy, then in accordance
with i 3 6 ] r « 3 χ 10"1 0 cm. It is obvious that the upper

of the possible values of r is set for ob-

of this type by the ion dimension a0; the actual

symmetry properties, Roftsin ["]

values of r, however, will always be appreciably
smaller than a0, owing to the relative smallness of
the crystalline splitting of the terms compared with
the distance between the atomic terms, and for or-

also because of the smallness of the
Zeeman splittings compared with the

crystalline splittings, etc. Therefore, in the series
consisting of band carriers—large-radius centers—
small-radius centers, the last group of objects cor-
responds, as a rule, to the smallest combined-reso-
nance intensity; nonetheless, their experimental in-
vestigation is apparently easiest.

If the impurity ion is located within the sample
volume, then the crystalline field near the center
has no inversion center only in certain lattice types;
at the same time, the field near ions located on the
surface never has an inversion center. It was there-
fore suggested ^ to use the electric-dipole effect to
separate the spin transitions in impurity ions
the surface.

The existence of electric-dipole spin
in accordance with the dispersion relations, leads to
the appearance of resonant terms in the dielectric
constant near the spin frequencies. Roitsin^40^ con-
sidered the singularities that are introduced by these
terms in various effects, which are the microwave
analogs of the electro- and magneto-optical phenom-
ena, with account of the Zeeman and Stark splittings
of the spin levels.

The difference in the selection rules for combined
resonance and paramagnetic resonance uncovers a
possibility of saturating transitions of new types and

the range of applicability of electron-
^; thus, in particular, an

increased degree of orientation of the atomic nuclei
nuclear double resonance -'•

attainable L41]

*On the b a s i s of the
and inves t iga ted the spin Hamiltonian for many other

Note added in proof. In a recent review, Y. Yafet (Solid State

P h y s i c s , Vol. 14, 1963) analyzed s t i l l another type of terms that

lead to combined resonance . In the formalism of the effective-

mass method, the operator of the coordinate has in the general

c a s e the form

where the Χα connected with the interband matrix e lements
both on the components k and, owing to the p r e s e n c e of spin-orbit
coupling, on the spin matr ices ; therefore, the operators Χα make
an addi t ional contribution to the combined r e s o n a n c e . In the gen-
eral c a s e it should be of the same order a s the contribution due
to the dependence of the g-factor on k. According to Yafet ' s
e s t i m a t e s , th i s effect i s weaker in n-InSb than that cons idered in
i n [ 1 5 ] . V. I. Sheka ( F T T 6, 3099 (1964), Soviet P h y s . Solid State
6, 2470 (1965) c a l c u l a t e d the intens i ty of combined resonance in
n-InSb, us ing the exact solut ion for the 8-band scheme. According
to h i s re su l t s , under the condit ions of the experiments of[ 1 8 ' " 1 ,
the mechanism of[ 1 5 ] , which is connected with the spin-orbit diver-
gence of the bands, apparently predominates but should become
secondary in s trong quantizing magnetic fields (hoj c » kT) at
temperatures that are not too low. The addit ional inves t iga t ions
made by him show that the effect he ca lcu la ted is due to the

of Yafet.
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