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SOLID STATE PLASMA
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Usp. Fiz. Nauk 84, 533-555 (December, 1964)

Ix. solid state plasma is a system of positive and
negative carriers ( electrons and holes) in solids.

Solid state plasma can be charged (electron
plasma of metals, electron or hole plasma of semi-
conductors, plasma with unequal electron or hole
concentration in alloys) or neutral (electron-hole
plasma of semiconductors and semimetals); the
plasma particle density varies in different solids
over a wide range (from 0 to 1O22 cm"3 for a charged
plasma and to 1017 cm"3 for a neutral plasma).

Some properties of solid state plasma (thermo-
dynamic properties, kinetic coefficients) are
related to the type and peculiarities of the
lattice of the solid and to the interaction between the
carriers and the lattice; on the other hand, in many
cases solid state plasma can be regarded as an
almost isolated subsystem of the solid (which inter-
acts weakly with the lattice), and the properties of
this subsystem can be studied separately.

I. PLASMA OSCILLATIONS IN A SOLID

A characteristic property of solid state plasma is
the presence of collective excitations—plasma oscil-
lations.

1. Plasma in a metal. Langmuir oscillations can
exist in the electron plasma of a metal'-1-'. In the
presence of these oscillations, a plane layer of elec-
trons with density n0, shifted a distance δχ from the
equilibrium position, is acted upon by a restoring
force

8F = e 6E = — e • innoe bx,

which gives rise to oscillations about the equilibrium
position, with plasma frequency

<inoe* (1)δί1

Formula (1) is the correct expression for the fre-
only for sufficiently long Langmuir waves
phase velocity u./k is much larger than the

electron Fermi velocity vp); the correction to the
frequency, needed to account for the finite ratio
v p / ( ω/k), is due to the electron pressure and is
equal to

In an electron plasma at the boundary between a
metal and vacuum, there can propagate surface waves

^ with an electric field potential φ that varies har-

monically along the boundary and in time, and de-
creases exponentially on both sides of the boundary:

φ = (poe—fe 1 ^ I cos (kz — at).

Inasmuch as the electric-induction-vector component
to the boundary

L>=— εdx

is continuous, the frequency of the surface wave
should satisfy the e (ω) = — 1. For waves with phase
velocity much larger than the Fermi velocity, the di-
electric permittivity constant of the electron plasma
is

and consequently the frequency of the surface waves
is

ι

It must be noted that this expression holds true only
for waves whose phase velocity ω/k is much smaller
than the velocity of light c (the electric field of the
wave is potential only in this case); if ω/k and c are
commensurate, then the wave vector k and the fre-
quency ω of the surface wave are related by

c2k2 = ω2 —f—— .
ω^—2ω2

Oscillations with plasma frequency ω ρ and with a
decreased plasma frequency ajp/V~2 are observed
indirectly in experiments in which electrons'-1-' ex-
citing such oscillations pass through a thin foil and
lose thereby an energy ΔΕ = Κωρ, 2Κωρ, . . . or
Ku>p/V~2, . . . (the order of magnitude of which is
several dozen electron volts, Fig. 1). Comparison
of the theoretical and experimental values of ω ρ

shows that the electron plasma of many metals is
made up of the valence electrons of the lattice atoms.

The plasma of frequency ω ρ determines the boun-
y between the regions of transparency and specu-

lar reflection of light from metals'-52^: when ω > ω ρ

we have e > 0 and the metallic film is transparent to
the light, and if αϊ < ωρ, e > 0 so that the light is com-
pletely reflected from the surface of the metal. Inves-
tigations of the reflection and absorpt ion^ of light of
a frequency close to the plasma frequency of a film is

809
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an indirect method of observing Langmuir oscillations.
In the presence of a strong magnetic field Ho, heli-

cal waves, constituting electromagnetic oscillations
in matter'-4'5-', can propagate in an electron plasma
of density no- If the wave propagates along the force
lines of the field Ho (which is directed along the ζ
axis), then the plasma electrons drift under the in-
fluence of the electric field of the wave*
Ε = -ίαιΗ/ck with a velocity U = - i c ( E / H 0 ) , pro-
ducing a current j = noeU, which supports an
nating magnetic field H:

verified by investigating low-frequency mag
plasma resonance'-6-' in samples in the form of a
parallelepiped.'-7^ In this case the wave vector of
the helical wave is

ι
χ Υ '

where I, m, n—integers and Χ, Υ, Ζ —lengths of the
parallelepiped edges; the resonant frequency is
therefore

ωΙηιη = -
CHO

7/2
( \ L ' Z 4. ml2 Z2

Thus, the frequency ω of the helical wave propa-
gating along the magnetic field is connected with the
wave number k by the following dispersion relation:

The theoretical and experimental values for the ratio

The dispersion relation for helical waves
ine at an angle to the magnetic field is

from the system of equations of motion of the
and electrodynamic equations, which in this case
the form

ι [kH] = — noe ( —• (2)t

(Ε, Η— electric and magnetic fields of the wave,
V||—velocity component along the external magnetic
field Ho). Eliminating ν and Η from the system (2)
and assuming that the electron plasma in the low-
frequency helical waves is incompressible (k · ν = 0),
we obtain

Wcz, (3)

where k is the modulus of the wave vector and k7 its
on the external magnetic field.

The dispersion relation (3) was experimentally

*Here Ε = E x + i E y , Η = H x + i H y , etc.

t[k H] = k χ Η.

Owing to the friction between the electron plasma
and the crystal lattice (the electron momentum is
transferred to the phonons, impurities, etc.), the
helical wave attenuates within a time approximately

to Ω τ periods of oscillation:

( Ω = eH0/mc, τ—momentum relaxation time), since
the wave energy dissipation per period of the oscilla-
tion is

r y = ^ "
1 nmv

Another cause of attenuation of the helical waves is
the viscosity of the electronic plasma; the ratio of
viscous losses to friction losses is

mvhv
την

X

kH2

( v— kinematic viscosity, and I—mean free path of the
electron in the metal).

With the aid of low-frequency magnetoplasma res-
onance it is possible to determine the Hall coefficient
R = l/noec (by comparing the experimental value of
the resonant frequency with the theoretical
ω = k2c2H0R/47r) and the resistivity ρ = m/ne2T (by
comparing the experimental resonance width with the
theoretical y/ω = 1/ίΙτ = p/H0R for kZ « 1) of the
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material of the sample. Such investigations were
made for Cu, Ag, Au, Pb, Sn, Zn, Cd, and Hg [ 8^.

Relation (3) between the frequency and the wave
vector of the helical wave is valid only for waves
much longer than the Larmor radius of the electron
RJJ = νρ/Ω. The correction to the helical-wave fre-
quency, necessitated by the finite value of kRH, can
be obtained in the following fashion. For waves prop-
agating along a magnetic field Ho directed along the
ζ axis we obtain

i * - £ = - ,

the current density

*tf=-^-/\ (4)

(5)

is determined by the perturbed distribution function
fj, which satisfies the linearized kinetic equation

— iaji + ikv cos θ/, — Ω -^- = e (Exvx

( ν, θ , φ—spherical coordinates in velocity
Substituting in (5) the solution (6) and expressing Ε
in terms of Η with the aid of (4) we obtain for the
case of a gas filling a Fermi sphere of radius ν ρ the
following dispersion equation

in a gas plasma'-53-'). If, for example, the masses of
the holes and electrons (m+, m_) and the average
energies of their random motion (T+, T_) satisfy the
inequalities m+ » m_ and T_ » T+, then the holes in
such a wave move under the influence of the alter-
nating electric field mdU+/dt = - e V ψ, produced by
the space charge - v L = 4πβ(η+ - η_); the hole den-
sity is connected with the hole velocity dn+Zdt
= —Vn+U.,., while the electron density is determined,
for a sufficiently high collision frequency, by the
Boltzmann

For a plane wave of low amplitude we obtain from this
the following connection between the frequency in the
wave vector:*

where

In the presence of an external magnetic field, so-
called Alfven and magnetic-sound waves can propa-

in a neutral plasma of semimetals and semicon-
When a wave with frequency much lower

than the cyclotron frequencies of the carriers propa-
gates in a cold plasma (nT « H|j), the velocity of the
particles in the wave is determined by the drift trans-
versely to the magnetic field Ho under the influence
of the electric field Ε and of the inertia force

v. _ .„ d lEHol

, Jo."!
HI J ·

The current due to the vibrational plasma-charge
motion with such velocity produces the magnetic
field of the wave

me* Ε \
(8)

ο 1 -Υ -Q + (, cos θ

Thus, the decrease in the frequency of the helical
wave is equal to'-9-'

(7)

This value is in good agreement with the experimental
Fig. 3).

2. Neutral plasma of semimetals and semicon-
ductors. In such a plasma there can exist,
the Langmuir oscillations, also longitudinal electron-
hole sound waves ( analogous to the ionic-sound waves

It follows from (8) that for an Alfven wave (the vector
Ε lies in the k, Ho plane)

(u = yAfccos-0· (9)

(t?—angle between the direction of wave propagation
in the external magnetic field Ho), we have for a
magnetic-sound wave (vector Ε perpendicular to the
k, Ho plane )t

*A detailed analysis of the propagation of
in an electron-hole plasma can be found in ["].

t An analysis of the dispersion relations on the basis of the
kinetic equation in the free-carrier model can be found in [12'u]
and in the references cited there.
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Alfven and magnetic-sound waves were observed in

experiments with bismuth and its alloys with tin and

tellurium'-12-' (in these experiments Ho « 10 kG and

VA = 107 - 108 cm/sec).

In a sufficiently large external magnetic field,

cyclotron absorption of the helical and Alfven waves

by the carrier plasma is observed when the frequency

of the wave, in the coordinate system moving together

with the carrier

ω' = ω —kv

coincides with the frequency of revolution of the car-

rier in the magnetic field ω' = Ω . If the external mag-

netic field is such that the inequality Ω > ω + k( ω) vjr

is satisfied (vp—Fermi velocity of the carriers),

then the frequencies ω' and Ω cannot be equal and

there is no cyclotron absorption. The propagation of

Alfven waves in a solid-state plasma and cyclotron

damping were observed in bismuth and in the alloys

Bi + Sn and Bi + Τβ [ 1 4 ' 1 5 λ

The results of experiments'-59-' on cyclotron ab-

sorption of helical waves in sodium are in good agree-

ment with the theoretical relations for the critical

magnetic field H c r , at which cyclotron absorption of

helical waves vanishes:

eHr

( ω « Ω ).

3. Charged plasma of semiconductors. The

ence of a charged (electron, hole, or electron-hole)

plasma in semiconductors leads to the appearance of

magnetoplasma resonance, which is observed when a

homogeneous high-frequency electric field Ε acts on

a semiconductor sample placed in a constant

field. The magnetic field of the wave propagating

Ho is determined by the

where

kH = > neU + ε — Ε,

' = — i — ( Ω — ω)"1

is the velocity of the carriers in the electric field of

the wave, Ε = - i (ω/ck) H, and the summation is over

the species of the carriers. It follows therefore that

, vi °l \ (ID
ω (—ω + Ω)

In the case of carriers of a single species and e = 1,

it follows from (11) that (owing to the homogeneity of

the field k = 0), resonance takes place when

χ

FIG. 4

(an account of the depolarization in the sample

to replacement of ωρ by AwL where A = L (1 +

X—electric susceptibility of the crystal lattice, L—de-

polarization factor of the sample'-16'17^). Comparison

of the theoretical and experimental data. ( made for

Ge'-17-') makes it possible to determine the plasma

density, the effective carrier masses, and the colli-

sion frequency.

II. PLASMA FLOW

*E = E x + i E v , Η = H x + iH y , U = :

The flow of a plasma in a solid is the directional

carrier motion arising in the presence of gradients

of the electrical or chemical potential and of the tem-

perature. This flow was thoroughly investigated long

ago in experiments aimed at the determination of the

resistance of solids (with or without a magnetic field),

the thermoelectric coefficients, the Hall constant, etc.

We consider two cases of plasma flow in a solid:

1) flow of a charged plasma in a metallic conductor

of variable cross section, leading to the appearance

of the so-called configurational emf'-18'19-'; 2) flow of

a neutral plasma in a semiconductor situated in an

external magnetic field, leading to the appearance of

the magnetic moment of the plasma'- ^.

1. When electric current flows through a metallic

wire whose cross section decreases abruptly at some

point, a potential jump is produced at this point

( Fig. 4). The reason for the appearance of the poten-

tial jump is as follows. Since accumulation of charge

is impossible in stationary flow, the total current

flowing through regions 1 and 2 must be the same.

Therefore the current density jumps abruptly on

going into region 2. The charged plasma of the metal

is practically incompressible, so that the increase in

the current density j = neU can be connected only with

an increase in the velocity U. A sharp increase in the

plasma velocity in the transition region presupposes

the existence of a δ-like electric field

on the boundary between regions 1 and 2; the potential

2 — vt= — [ Edx
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can be expressed in terms of the areas of the trans-
verse cross sections of the conductor Sj and S2 and
the total current I

m dU dz^—ZM-Ui)

— Υ
ne J

Ρ — — (12)

The configurational emf (12)* reverses sign when the
sign of the charges is reversed, but does not depend
on the direction of the current I.

2. Let us consider the radial diffusion of a neutral
plasma in a solid, in a direction towards the surface
of a cylindrical sample ( radius R) situated in an ex-
ternal axial magnetic field. Inasmuch as there is no
accumulation of charge under stationary conditions,
the electrons and the holes should move with
velocity w*v = v̂ · in the radial direction, and
in the azimuthal direction with velocities νί, producing
an azimuthal electric current j 0 = Snevg (summation
over the electrons and the holes), and an axial magnetic
moment with average density

r/e(r)2nrdr (13)
1

'To'

Expressing with the aid of the equations of motion

m±vr TVrn = 0

τ±

the azimuthal velocities vi in terms of V r n and sub-
stituting in (13) the current jg = n(e+vg + e_v^) and
the density gradient V rn = — ηδ ( r — R + 0) (we thus
assume that there is a sharp decrease in the density
near the surface of the sample), we obtain

2nT

Η

(14)

where μ = (μ+/μ_)1 / 2— average mobility.
The results of an experimental investigation of the

photomagnetic moment t of plasma in germanium*-20j

agree with formula (14) ( Fig. 5).
If diffusion takes place in the plasma into the

sa.mple, then the radial density gradient reverses
sign, and the diamagnetic moment (14) should give
way to a paramagnetic moment | Μ |; such a paramag-
netic moment was actually observed^ J.

Thus, solid-state plasma can be either diamagnetic
or paramagnetic, depending on the conditions under

"•"Calculation of the configurational emf, based on the Boltzmann
equation for free electrons scattered by immobile centers, leads to
the appearance of a factor on the order of unity in (12) ["].

tThis moment arises when a nonequilibrium plasma c
tion is produced by illuminating a germanium sample.

which the nonequilibrium carrier concentration is
produced.

III. FLOW STABILITY

flow of a solid-state plasma, due to the
presence of potential, temperature, density gradient,
etc., may turn out to be unstable. The instability of
the plasma is manifest in two ways: first, the pertur-
bation produced by the external source becomes inten-
sified in the unstable plasma; second, even in the ab-
sence of an external stimulus, an increase takes place
in the fluctuations which are always present in the
plasma and changes the averaged flow characteristics.

One of the well-known flow instabilities is the so-
called two-stream ( or " sausage") instability arising
in a neutral plasma in the presence of sufficiently
rapid relative motion of oppositely charged plasma
components (see, for example, the review of work on
two-stream instability in a gas plasma^44^ ). Thus,
from the hydrodynamic equations that describe the
motion of a two-component plasma with sufficiently

relaxation times,*

dv.

± n± • ±m±

( s±—average thermal velocities, U±—velocities of
ordered motion of the components, which for sim-
plicity are assumed to be parallel, v± and n±— per-
turbations of the velocities and densities, Ε—electric
field) we obtain, for a plane wave exp ( - icot + ikx)
propagating along the relative-motion velocity, the
following connection between the frequency and the
wave vector:

f ω Ν·

T~u ) ~s2
(15)

( Wp— plasma frequency; the summation is over the
species of the carr iers) . It follows from (15) that

*A calculation of the conditions under which a two-stream in-
stability is produced in a plasma in semiconductors with
relaxation times can be found, for example, in ["].
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FIG. 6

when I U+ - U_ I > s+ + s_ there are always sufficiently
long waves (k < k1 « ωρ/U) for which there are two
real and two complex roots of the dispersion equation
(15) ( Fig. 6); the frequency of such waves is complex,

the perturbations with wavelength λ > 27r/k, will

Thus, if the velocity of relative motion of the elec-
trons and holes exceeds the sum of their thermal (or
Fermi) velocities, the plasma flow in the solid will
be unstable.

Another example of flow instability is the so-called
screw instability of current in a longitudinal magnetic
field. Screw instability arises when the plasma is

upon simultaneously by sufficiently strong
or almost parallel) electric and magnetic

fields (E and H). The carrier plasma in a sample
of finite dimensions is then inhomogeneous
(V 0N* 0).

Let us examine the propagation of a plane wave in
such a plasma ( all the quantities in the wave vary like
exp[ -iwt + ik-x]), under the assumption that:
a) Ω τ « 1, b) the wavelength is much shorter than
the characteristic dimensions over which the plasma

c) the oscillations are of low frequency ( ωτ « 1)
potential (E = -V4>), and the plasma remains

asineutral all the time ( N+ = N_).
Under these conditions the equations of motion

yield

Un = ( - •
Ν

( D = Τ τ/πι— diffusion coefficient, μ = er/m-n
h = Η/Η, €αο γ— completely antisymmetrical unit
tensor); substituting this expression in the continuity
equation

dN +VJVff- = 0

we an for the plasma

r
10 20 30 40

£, V/cm
FIG. 7

(6«i l = 0. (16)

Linearizing this equation, that is, putting Ν = Ν + η
and 8 = Ε - ϊ\ςφ, V = Vo + ik, retaining in (16) terms
proportional to the amplitude of the alternating density
η and to the potential φ, and recognizing that V0E
= 0, we obtain the following relation between η and
φ:

1 = 0

(the subscript 0 of Vo will henceforth be omitted).
the determinant of this system of two al-

equations for η and ψ to zero, we arrive at
the following dispersion equation, relating the fre-
quency ω with the wave vector k:

Α+Β-—Ϊ

A = — ω + μΙίΕ — i J^7- /c2 + μΩτΙί [Eh],

(17)

Β = μ№Ν — μΐ)ίΥΝ — μΩ-rik |

From (17) we obtain the imaginary part γ of the com-
plex frequency ω + iy

Λ,_ μ+Ιμ-Ι

x[(kE) (k [VNh]) — (kV.V) (k [Eh])] J .

If, for example, the vectors Ε and Η are directed
along the ζ axis and VN directed along the χ axis,
then the waves will increase provided that

Ω+Τ+ + Ι Ω__τ_ί \e\Ek XVXN kukz .. , ^ , 1

Τ
1

It follows therefore that for a specified kz, only waves
with one sign of k[ increase, that is, the growing per-
turbations are of the screw type.

An experimental investigation of screw instability
shows that on the whole the theory describes the
phenomenon correctly,* and the theoretical depend-
ence of the critical magnetic field on the electric

*A more detailed analysis of the conditions under which screw
instability arises in semiconductors and in semimetals is con-
tained in [J2's7] (the theory of screw instability was first developed
as applied to a gas plasma in the positive column of a glow dis-
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field ( Η , ^ - ^ Ε " 1 , Fig. 7) of the critical frequency
( at which attenuation gives way to amplification) on
Ε were confirmed^23'57^ . The character of the dis-
tortion of the current when the instability arises was
investigated and the resultant perturbation was indeed
shown to be of the screw type'-24^.

When a strong electric current passes through a
solid-state plasma a pinch effect is observed in the
plasma, namely the contraction of the plasma into a
pinch under the influence of the ponderomotive force
j χ H/c due to the interaction between the current and
its own magnetic field'-28"29^. The temperature and
density of such a compressed plasma state are deter-
mined by the balance of the forces acting in the
pinch (the equilibrium between the kinetic

and the magnetic field pressure), and the
of energy influx (Joule heat) and outflow
heating, thermal conductivity). The forma-

tion of the plasma pinch can be accompanied by many
secondary phenomena such as a considerable change
in electric resistivity (that is, in the current-voltage
characteristic)'- 2 7 ' 2 8^, excitation of standing sound
waves in the sample \ appearance of glow due to
recombination of electrons and holes in a plasma with
non-equilibrium carrier density'-27-', heating and
melting of the crystal lattice in the region of the
plasma pinch'-26^, incandescence of the sample under
the influence of mechanical and thermal stresses

the pinch effect1 J , etc. Along with

the method of passing strong current through a p-n
junction, the pinch effect in a solid-state plasma can
be used in principle to produce a laser that makes use
of recombination radiation of electron-hole pairs and
transforms the electric energy directly into coherent
light-emission

IV. INTERACTION BETWEEN LATTICE VIBRATIONS
AND A PLASMA

The interaction between the solid-state
and the crystal lattice leads to many effects which
manifest themselves when sound propagates in solids.
These effects include the variation in the velocity of
sound, attenuation (or amplification) of sound as a
result of interaction with the plasma, and the
ance of local anomalies on the dispersion

1. Motion of solid-state plasma in an alternating
electric field, resulting from the deformation of the
crystal lattice by the propagating sound wave, leads
to a change As in the speed of sound in the magnetic
field; this change was measured in many solid'-30'31-'
(Cu, Ag, Au, Al, Ta, V) and liquid [ 3 2 : ] ( Hg, Ka + Na,
Pb, Cu, Al) metals; the experimental and theoretical
values of As are in good agreement with each other.

2. The character of the interaction of the solid-
state plasma particles with the lattice vibrations is
different in different bodies (although in all cases
the force exerted on the plasma particle by the de-

formed lattice is electric in nature). Let us consider
one of the frequently encountered types of interaction,
when the Lagrangian of the system consisting of the
lattice and the plasma has the following form'- 3":

L=™
(19)

The first term is the Lagrangian of the sound oscilla-
tions, the second the kinetic energy of the plasma
particles, and the third the energy of interaction be-
tween these particles and the deformed lattice. The
quantity ξ in (19) is the deformation, Μ and Ν the
mass and density of the lattice atoms, m the carr ier
masses, and q the interaction constants. The summa-
tion is over all plasma particles.

Going over to a continuous description of the
plasma and varying (19), we obtain an inhomogeneous

equation for the deformation

q*6
at*:—*'Δξ=-3 (20)

(η = plasma-particle density) and the equation of
motion of the particles in the sound field

dv (21)

Actually, Eq. (21) should contain in addition to the de-
formation force qV2 | the pressure gradient, the
Lorentz force, and the friction force, so that the total
equation of motion takes the form

dv _„« Vp

*+TH)-
mv

τ
(22)

Propagation of the sound wave causes the plasma to
go into motion under the influence of the deformation
forces, and gives rise to a change in the properties
of the wave itself. Let us consider for concreteness
the case of the neutral plasma consisting of two
species of particles and assume that the inertial
forces and the friction force are small, and the
plasma remains quasineutral when the sound propa-
gates. We then obtain from (22)

(23)

(where T 1 ; 2 = (3p/9n) 1 ; 2 are the average energies of
random motion of the particles), so that the change
in the plasma density due to the deformation wave is
equal to x

^ Ore <7i-^? 2

Substituting on in (20), we obtain the altered speed
of sound

c '2 _ t 2 , (ii±Jh)P "

(24)

It turns out, however, that the interaction between the
sound wave and a degenerate plasma can lead not only
to a gross effect, namely the change in the slope of
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the line ω = sk, but also to the appearance of a local
singularity on the dispersion curve, at k = 2kp'-34^.
To clarify the character of this singularity, let us
use the equation for the plasma particle-density
matrix

dt
(25)

Here

Δ, = -

Φ = βΦ — qV£ —potential energy of the particle in the
deformation and electric fields (E = -V<i>). Going
over in (25) to the variables χ = (y + z)/2 and
x' = y — z, and introducing the quantum
function [ 3 5 ]

(26)

we obtain for its Fourier component

the quantum kinetic equation

(27)

For a plane sound wave exp( — iwt + ikx)
in a two-component plasma, by linearizing (27)

we obtain

/ k-f u
V+n V-7,

ω—kp
(28)

it Eq. (23), in which, however,
'"' In the case when the

so that we arrive
the Τ are replaced by β'
particles fill a Fermi sphere in momentum space,
the quantity β has near k = 2kp a
/3(k) - j 3 ( k F ) ~ ( k - 2 k F ) l n | k - 2k F |
a logarithmic singularity of the group velocity
on the dispersion curve of the sound in the presence
of a plasma:

d(u , . k
—,-,- — 111 1 — -7T1

dk 2kp

(an analysis made in *-26^ for cylindrical and plane
Fermi surfaces in the case of a metal, when there is
only one species of carriers, shows that in this
the singularity of dw/dk becomes

3. When the sound

FIG. 8

corresponding to the point of intersection of the dis-
persion curves of the sound wave ( ω = sk) and the
helical wave (ω = cHok2/47rnoe), anomalous absorp-
tion should take place'-37^. An analogous phenomenon
should be observed at frequencies corresponding to
the points of intersection of the dispersion curve of
sound with the dispersion curves of the electron-hole
sound, the Alfven wave, etc.

Indeed, near the points (ωο· k0) where the disper-
sion curves of two normal χ and y oscillations inter-
sect, the system of equations for the quantities χ and
y has, in the presence of coupling between χ and y,
the form

(Ω — iy— s2q — i

where Ω = ω - α>ο, q = k - k0, and the terms contain-
ing Λ describe the coupling between the oscillations.
Assuming Λ to be real, we obtain the following ex-
pressions for the frequency Ω 1 ; 2 and damping F i i 2

(which is assumed small) of "mixed" oscillations
(Fig. 8):

! + Λ",

st — s (29)

Y l , 2 =
Γι — Γ 2

'Si—S

If the damping decrements Γι and Γ 2 differ greatly
then the oscillation, which attenuates weakly far away
from the point of intersection, attenuates very strong-
ly near the intersection point

at q = 0.
An experimental investigation of the dispersion of

the oscillation near the point of intersection of the
dispersion curves of the helical and sound waves'-58^
confirms the theory of !-37^.

4. The sound-wave damping due to the interaction
with the solid-state plasma differs with the type of
solid. The reason for the damping of sound in the
charged lattice of a metal or semiconductor (when
the space charge of the lattice is disturbed by its
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motion), is the viscosity η of the charged plasma of
the carr iers .

If the wavelength of the sound becomes smaller
than the mean free path of the electron, the viscous
damping (^>ω2) is replaced by Landau damping
(ĉ > ω), due to the interaction between the sound wave
and the resonant electrons (the projections of whose
velocities on the direction of wave propagation is
equal to the speed of sound: ω = k-v). The magnitude
of this damping can be obtained for longitudinal waves
(k II Ε II U) by linearizing the equations of continuity

motion of the lattice

The

the kinetic equation for the electrons

(— ιω + tkvi 6/ = ~-

and by substituting the values of δΝ and δι into the
equality ON = fofdv (which is valid for long waves
with ka « 1, where a is the interatomic distance)
From the dispersion

-dv
in Ν

obtained in this manner it follows that ix, = ks ( 1 - ίδ),

The sound wave, in which no ion space charge is pro-
duced (transverse wave in a dielectric or a semicon-
ductor), attenuates as a result of the carrier ,
losses. In the presence of a strong external
field ( Ω τ » 1), the attenuation of the sound can
a large value because of the appearance of a
transverse carrier velocity (the carr iers oscillate
with velocity V|| under the influence of the deforma-
tion of the lattice along the direction of propagation
of the wave), namely vj_ = Ωτν||. Experimental obser-
vation of the attenuation of sound agrees with theory

it possible to determine
[38,391

The dissipative mechanisms which cause sound
attenuation under ordinary conditions lead to ampli-
fication of the sound waves if the carrier
motion in the crystal lattice is fast enoi

Let us consider by way of an example the case when
the interaction of sound with a plasma is described by
a deformation potential, and let us assume for sim-
plicity that the ''deformation charge" q differs from
zero only in one species of carr iers . If we neglect the
intrinsic pressure and the electric field of the carriers,
their speed exp( — iu)t + ikx) in a plane sound wave is
determined by the equality of the deformation force
and the friction force:

density oscillations, as can be seen
the continuity

dn

are in phase with the oscillations of the velocity in the
case of subsonic carrier translational velocity
( U < s), and out of phase in the case of supersonic
velocity ( U > s):

It follows therefore that the right side of the inhomo-
geneous d'Alambert equation (20) for the deformation,
which by virtue of its imaginary nature describes the
attenuation of the sound, reverses sign at U = w/k
~ s:

— ω 2 - L s2/c2 =
Mm ω

i.e., the attenuation is replaced by amplification when
U > s. Like the attenuation, the amplification of the
sound waves by a plasma stream is due to different
mechanisms in different solids.

a) When long-wave sound propagates in a charged
lattice of a metal or semiconductor, the carriers
execute oscillations under the influence of the force
exerted by the lattice and under the influence of the
viscosity force

Inasmuch as there should be no perturbation of space
in the case of a high-density plasma, the per-

of the carrier density

( U—carrier
velocity),
velocity)

δη-= fcM>-(ω — 1

velocity, v_ —carrier vibrational
of the lattice δη+ = kNv+ ( v+ —lattice

so that

ί . kU λ

ν- = ι 1 — , — 1 v.

and consequently the force exerted by the carr iers on
the lattice, F = k2r)v_, to

ι v+.

When U < s, this force determines the attenuation of
the ultrasound'-38-', and when U > s it leads to ampli-
fication.

b) Sound waves in which no space charge of the
lattice takes place, give rise to vibrational motion of
the carriers with velocity ν = rF/m, where F—force
of interaction between the lattice and the carriers .
The carrier-current oscillations resulting from this
force are
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Iff

so that the energy dissipation of the wave ( mean
value of the work performed by the force F) is pro-
portional to

Nx

1-

The resonance width at the point k· = 1 is

where σ—conductivity and D—Debye radius of the
carrier plasma. This expression describes satisfac-
torily the attenuation (U < s) and amplification
( U > s ) of ultrasound in semiconductors'-41^ ( Fig. 9).

c) When crossed electric and magnetic fields are
applied to the plasma, the carr iers drift with velocity

TI e [ E 0 H Q

m
The interaction with a propagating along
the vector Eo leads to the appearance in the plasma
of a direct current proportional to the square of the
amplitude of the oscillational carr ier velocity in the

Ωχ

1 — -
kU

(the width at the point k· = 1 is

of random motion of the
carriers and /—mean free path). When U < s the
work of the electric field leads to attenuation of the
ultrasound, which was thoroughly investigated exper-

'-39-'. When U > s the attenuation of sound is
amplification.

If the speed of the directional (drift) motion is so
sound amplification is possible, the ampli-

tude of the thermal sound oscillations can also build
up; inasmuch as the waves that grow under such con-
ditions are principally those propagating along the

1 of the carrier translational velocity, additional

momentum is transferred from the
plasma to the lattice, i.e., an additional friction force
is produced between the plasma and the crystal lattice.
The appearance of such a force leads to a kink in the
current-voltage characteristic of the investigated
sample, that is, to a jumplike change in the slope of
the current vs. voltage curve in the absence of a
magnetic field'-42-' ( an increase in friction reduces the
current), and to an analogous jumplike increase of the
slope in a strong magnetic field (a decrease in friction
increases the current)'- 4 3 ' 4 4^.

In analogy with the amplification and generation of
sound,* the flow of solid-state plasma can produce
amplification (and generation) of magnetic excitation
in ferromagnets, antiferromagnets, and ferrites, of
Rayleigh waves, of flexural waves'-47-', etc.

In the case when the wave attenuation and the par-
ticle frequency collisions are small, so that the waves,
electrons, and holes can be regarded as weakly inter-
acting quasiparticles, we can indicate the following
approximate condition for such an amplification: the
translational velocity of the carriers must exceed the
phase velocity of the excited waves. Indeed, the Ham-
iltonian of interaction of the individual electrons and
holes (fermions) with the waves (bosons) has the
same form as the interaction of a particle " c u r r e n t "
with a wave "field":

H = p_p- + Herm.

a+, a, b+, b—operators of creation and annihila-
tion of the particles and waves, respectively, and
λ—interaction amplitude. Consequently, the equation
for the wave density N^ in the space of the wave num-

k is of the form ( for a weak interaction)

( 1 — r e d)] δ (ε ,ft—ε ft—ω*),

where e and ω are the energies of the particles and
waves, and n p is the momentum distribution function
of the Fermi particles; the transition probability w is
proportional to λ2. Assuming that N^ » 1 (which
corresponds to the case of amplification or attenuation
of a sufficiently intense wave packet), we obtain

where ν = p/m*—velocity of the particles. For suffi-
ciently long waves (k « p) we obtain therefore

f df \
Υ \ Λ π J

*The
the
of the

of amplification of sound by carrier flow is
of many papers (see, for example, [4S]); the limitation

of the amplified sound wave b
in [«].
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X dt

FIG. 10 FIG. 11

where f =' >p [ the summation is over the momentum

components perpendicular to the wave vector of the
excited oscillation). If the particle gas moves as a
unit with velocity U, then

~L > 0 for ν < U and ^- < 0 for υ > U.

Therefore, when U > ω^/k we should observe ampli-
fication of the waves with γ > 0.

V. WAVE INTERACTION

Waves propagating in a solid-state plasma interact
with one another. The characteristic features of the
interaction of plasma waves are easiest to explain by
considering a case when the attenuation of these waves
is sufficiently small, so that we can regard them in
practice as quasiparticles obeying Bose statistics.
The interaction of such quasiparticles is best de-
scribed by a Hamiltonian containing the product of
three, four, etc. field operators: Η = H ( 3 ) + H ( 4 ) + . . .
In this case, in the lowest order of perturbation
theory, the Hamiltonian H ( 3 ' leads to two processes:
a) decay of one wave into two waves and b) coales-
cence of two waves into one wave ( Fig. 10). The
Hamiltonian H{ ' leads to three processes: a) scat-
tering of two waves (transformation of two waves into
two waves), b) decay of one wave into three, c) coal-
escence of three waves into one ( Fig. 11). The waves
present in the initial and final states of all these proc-
esses can belong to the same branch of the plasma os-
cillations, or to different branches*; phonons can also
participate in the interaction with the plasma waves.

Knowing the Hamiltonian of the wave interaction,
we can obtain the kinetic equation for the distribution
functions of waves in the wave-vector space. For
example, the part of the Hamiltonian H(3> describing
the decay of a helical wave (helicon) into a helical
and sound wave (phonon), and the inverse
is of the form

(a+, a; b+, b—operators of creation and annihilation of
helicons and phonons, Xq^—interaction amplitude),
the kinetic equation for the distribution function n^
of the helicons takes the form

into

lesc
indu

'It mu
anotl
ence,
ced s

:st be η
ler can

and sc
.catterii

oted th
be rea

:atterin

ig of w

at th
lized

g of
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e of \
ecay,
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s of
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(30)

Here Nq—phonon distribution function, w—probability
of the decay or coalescence process; the summation is
over the values of the wave vector q satisfying the
energy (frequency) conservation laws in the decay
and in the coalescence OJ^ = 0Jk_q + &q in the first
sum and 0% + Ω ^ = ω\ί+α *n t n e s e c o r > d sum.

Inasmuch as the decay of a helicon into a helicon
and a phonon is possible only if the energy conserva-
tion laws are satisfied, the decay of low frequency hel-
icons is in general forbidden; when the frequency of
the helicon rises above a threshold ωχ = s2 (7rnoe/cHo)
(for a wave propagating along the magnetic field), its
group velocity exceeds the velocity of sound s and
emission of a phonon by a helicon (decay) becomes
possible, i.e., additional attenuation of the helicon
sets in when ω > ωχ. An analogous attenuation, due to
the decay and coalescence processes, is possible also
for other waves in a plasma in a solid.

In some cases the interaction of plasma waves can
have a different character. If, for example, high-
frequency oscillations are produced in a plasma,
then the low-frequency wave propagating in such a
plasma will produce "compression" and "rarefaction"
in the high-frequency oscillation gas, as a result of
which its phase velocity, group velocity, and decre-
ment (increment) can change noticeably. Such an
"adiabatic" interaction of the waves can occur, in
particular, in the development of two-stream insta-

in a plasma whose carr iers have long relaxation

VI. OCCURRENCE OF TURBULENCE IN A PLASMA
IN A SOLID

The amplitude of the small perturbations that
develop in an unstable plasma in a solid increases
exponentially with time, so that the square of the am-
plitude η satisfies the differential equation

L = 2 Υ η , (31)

where γ—increment of the linear theory. As the per-
turbation develops, the rate of its growth changes and
(31) is no longer valid. If η is small, and the resul-
tant pulsations have a regular character, i.e., a defi-
nite frequency and wavelength, the rate of growth of
η can be determined by expanding the equations de-
scribing the plasma dynamics in powers of the per-
turbation amplitude. We then obtain the equation

(32)

which differs from (31) in that the increment of the
linear theory y is replaced by a "nonlinear incre-
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-7

γ=Ο

FIG. 12

ment" yjj, which depends on the square of the ampli-
tude η. With the aid of (32) it is possible to describe
several phenomena that occur in an unstable system
in a slightly supercritical state, that is, in the case
when the increment γ is small.

There are two modes of turbulence: "soft"'-55^
and "hard" ·- 5 6 ^. The soft mode corresponds to the
case a < 0 in (32); the square of the amplitude of the
stationary motion arising in an unstable solid-state
plasma is equal to

and increases smoothly from zero on going from
stability (γ < 0) to instability (γ > 0) and as the
supercriticality is increased. If the transition from
the subcritical mode to the supercritical mode has
been brought about by a change in some parameter X
of the system (electric or magnetic field, temperature
gradient, etc.), then a kink appears at the critical
point X = X c r on the plot of any quantity Y, averaged
over the pulsations, against this parameter.

Indeed, the expansion of any average quantity Υ
in powers of the amplitude of the perturbations that
develop in an unstable plasma is of the form

Y = yo4-cuH-..., (33)

and since η = 0 when X < X c r and I J ^ X - X c r when
X > X c r , the derivative of Υ with respect to the par-
ameter X has at the point X = X c r a finite discon-
tinuity ΔΟΥ/9Χ) (the function Y(X) itself is con-
tinuous ).

In the case when two parameters Xtj2 vary, the
transition to the unstable state occurs on some curve
Φ ( Xicr> ^2cr) = 0; the jumps of the derivatives of any
two quantities that are averaged over the pulsations
are then related by^49^:

ax.
• = Δ-

ax.
(34)

In the " h a r d " mode (a > 0) the turbulence de-
velops in the following fashion. By varying some
plasma parameter X it is possible to decrease the
decrement, γ —- 0 (as X ^ X c r ) , and go over into
the instability region, When γ = +0 the amplitude of
the perturbations reaches jumpwise a finite value η 1 ;

determined from the vanishing of the nonlinear incre-

FIG. 13

ment

= 0, η , = --τ (35)

(Fig. 12). With further increase of supercriticality,
the amplitude increases smoothly from a value TJI to
larger values rj0» defined by the equality γπ(τ)ο) = 0.
If we now reduce the parameter X below the critical
value (X < XCr)> then the motion in the plasma does
not stop; the amplitude ·\Αη decreases to zero jump-
wise only when X = X'cr < X c r . It follows from (32)
that the solution η = η 0 is stable if

and unstable if

(*UL) >0,

so that the perturbations are interrupted when
= 0, that is, when

2a
η = η (36)

Thus, the hard mode of turbulence is characterized
by a hysteresis, consisting in the occurrence and
cessation of pulsations in the plasma at different
values of the external parameters.

The plot of any observed quantity Y, averaged over
the pulsations, against the parameter X has discon-
tinuities and a hysteresis loop in the case of hard
turbulence (Fig. 13). The jumps Aj and Δ2 on this
curve ( excitation and cessation of the pulsations ) are
connected by the simple relation

Δ 7 "
(37)

(which follows from (33) when account is taken of
(35) and (36)). The kinks on the plot of Υ = Y(X)
(soft mode) were observed on the voltage-current
characteristics of piezoelectric semiconductors
(CdS, C d S e ) [ 4 2 ] and semimetals (Bi) [ 4 3 J ; the reason
for the kink is considered to be the occurrence of in-
stability of the plasma in the solid relative to excita-
tion of sound oscillations, in the case when the veloc-
ity U of the plasma stream in an external electric
field ( U = μΕ) or in crossed electric and magnetic
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FIG. 14

fields (U = cE χ Η/Η2) exceeds the speed of sound s.
In the absence of a magnetic field, the pulsations oc-
curring when U > s give rise to a decrease in the
average plasma velocity, and dl/dE decreases
( Fig. 14b). In the presence of a strong magnetic
field, the pulsations reduce the average supersonic
drift velocity; therefore the component of the Lorentz
force in a direction opposite to the force due to the
electric field decreases, and the current-voltage
characteristic becomes steeper:

(if the drift velocity in the turbulent plasma were to
decrease to the speed of sound, the differential mag-
netoresistance of such a plasma would be equal to the
ordinary resistance

in spite of the presence of a strong transverse mag-
netic field).

Hysteresis phenomena (hard mode) were ob-
served during the course of development of screw
perturbations and instabilities in a plasma in parallel
electric and magnetic fields .

VI. THEORETICAL AND EXPERIMENTAL
PROBLEMS

In conclusion let us point out several
theoretical and experimental, the clarification of

which would contribute to an understanding of the
properties of solid-state plasma).

The most interesting problem of the theory is the
clarification of the character of the plasma motion
occurring during spontaneous growth of fluctuations
in an unstable plasma ( and also the following related
problems: stabilization of instability by means of an
external periodic perturbation, limitation of the ampli-
fication of an external signal in an unstable plasma,
and generation of harmonics of this signal, and super-
sonic flow of solid-state plasma).

The transport of the energy released when radia-
tion acts on the solid in an electronic plasma (in
metals, organic crystals and amorphous
or large molecules) is not yet

It would be of interest to investigate the effect
exerted on the collective properties of a solid-state
plasma by the spatial periodicity and anisotropy of
the plasma.

One of the concrete problems which has arisen
recently is the theory of the pinch effect in a solid-
state plasma (equilibrium, stability, turbulent mode);
additional experiments are needed here, however;
another concrete problem is the theory of micro-
plasma, namely small glowing regions (with diameter
of several microns), observed during the course of
breakdown in semiconductor n-p junctions, and char-
acterized by a decreased breakdown voltage ( see, for
example, '-5l^ and the literature cited there).

Interest attaches to experiments on the conditions
of occurrence of different plasma instabilities, the in-
vestigation of the soft and hard modes of occurrence
of turbulence, and particularly a check on relations
(34) and (37) and a study of the character of variation
of the averaged quantities during the occurrence of
turbulence (see Fig. 13). Other experiments of
interest are those on the reflection and scattering of
electromagnetic waves by plasma in a near-unstable
state, and also by a turbulent plasma, as well as the
investigation of supersonic flow of solid-state ρ
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