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1. INTRODUCTION tronomers did not know until most recently of any
,-p formation with a gravitational potential close to c2.
1 HE main force governing the motion of celestial Interest in the relativity theory of gravitation arose
bodies is that of universal gravitation. This force, to- relatively recently in connection with the discovery of
gether with the pressure forces, determines the cosmic objects of a new type. During the last decade,

of individual cosmic bodies. astrophysicists have diligently tried to find the
The law of universal gravitation has been known of the tremendous energy stored in cosmic rays and

since Newton's time, and although it has been clear for magnetic fields of some powerful radio galaxies. This
more than half a century that this law is valid only for energy, on the order of 1060 erg, is comparable with
weak gravitational fields, with a gravitational potential the energy of gravitational interaction of stars of giant
φ « c2, and for slow motions with ν « c, astrophysi- galaxies. Hoyle and Fowler'-1-' have suggested that
cists have never resorted in their research to Ein- such an energy can be released upon compression of
stein's gravitational theory, for the following reason: a quasi stellar object of the order of 108 M~, situated
Except in cosmology (the study of the universe as a in the center of the galaxy.* Almost at the same time,
whole), which we do not discuss in this article, as- new objects were discovered, having apparently mas-

of this order of magnitude, dimensions of about
*The second part of the article is in preparation and will be

in one of the early 1965 issues of UFN. *M©- mass of the sun, = 2 χ 10"
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764 Ya. B. ZEL'DOVICH and I. D. NOVIKOV

106 cm (light week), and emitting about 1O46 erg/sec in
the optical region, which is two orders of magnitude
larger than the luminosity of a large galaxy having
dimensions a million times larger and containing 1011

stars.*
A theoretical analysis of the evolution of such a

large mass shows that it should be compressed to
dimensions such that the potential on its surface is
φ » c2, so that Einstein's gravitation theory becomes
essential to the entire problem.

All these results have rekindled interest in the
papers of Oppenheimer and his co-workers^2'3-',
written in the thirties, which were almost forgotten
by the astronomers. These and later papers consid-
ered models of stars during the last stages of their
active life, when the sources of internal energy have
already been exhausted and the star has cooled down.
It was shown that a sufficiently massive cold non-

star will contract unobstructed even if its

mass is a modest 2 MQ, and at a mass of the order of
1.5 MQ it will reach the state of a so-called neutron
star with a radius on the order of 10 km and with
φ « 0.2c2.

The evolution of non-rotating stellar systems should
also lead to their gradual condensation, to an increase
in their velocity to » 0.5c, and then to a relativistic
compression.

Thus, it is becoming more and more evident that
the massive cosmic bodies and systems of bodies t

reach a relativistic stage. The processes
during such a stage of evolution constitute

the subject of relativistic astrophysics.
We begin with a review of the general information

on the equilibrium of a star and its evolution, and ex-
plain the conditions that bring about the relativistic
phase of the star; we then dwell on the properties of a
spherically symmetrical gravitational field in vacuum
(the Schwartzschild field), after which we turn to an
analysis of the objects for which the Einstein gravita-
tional-theory effects play an essential role.

Some questions concerning star stability and indi-
vidual questions connected with the exposition that
follows have been touched upon in a recent review by
Chiu [ 4 ].

Good expositions of the classical theory of star
structure of the nonrelativistic stages of their evolu-
tion are contained in^ 1 3 ' 2 5 · 2 6 ' 2 7 ' 4 1].

The main deductions of Oppenheimer and Volkov'-2^
and Oppenheimer and Snyder^ are detailed in the
textbooks of L. D. Landau and Ε. Μ. Lifshitz [38'48] .
Problems in the theory of superdense stellar configu-
rations are considered ίη^ 1 0 ' 8 ' 1 5 ' 1 6 ' 7 0 ^ . Some questions

*A review of the experimental data on quasars can be seen
in the article by J. Greenstein (UFN 83, 549, 1964 [Scientific
American 209 (6), 54 (1963)]).

tAt least, weakly rotating bodies. Problems connected with
te far from clear, and will be discussed in part II of this

of relativistic astrophysics and the theory of
contained int32,42,48]̂

2. EQUILIBRIUM AND STABILITY OF A STAR AS A

A star in its usual state is a gas sphere in
dynamic and thermal equilibrium. The
equilibrium is ensured by equality of the gravitational
and pressure forces acting on each mass element of
the star.

The characteristic time of the hydrodynamic proc-
esses in the star is much shorter than the time of the
thermal processes and the processes of nuclear fuel
conversion. In fact, say for the sun, the characteristic
time of the thermal process is determined by the con-
dition

3-107

where Εχ«—thermal energy of the sun, TQ—tempera-
ture of the interior of the sun (107 deg K), m—mole-

weight, L Q and MQ—luminosity and mass of the
sun ( L Q = 4 x 1033 erg/sec, M Q = 2 x 1O33 g). The time
of nuclear fuel conversion is

'Θ
10u years.

Here EJSJQ—nuclear energy stored in the solar matter
and 0.01c2—maximum energy of the nuclear reactions
per unit mass.

Let us estimate, on the other hand, the time of the
hydrodynamic processes. Assume that the force of
gravitation on the surface of the star is not fully bal-
anced by the pressure force. Then the acceleration
acquired by the matter under the influence of this un-

force is
r'2r G-M

-sr = «-#»-. (2-1)

where a—fraction of the unbalance force and R—ι
of the star. Let us estimate the time tjj during which
the surface is displaced a fraction b of the

and obtain by comparing with (2.1)

a GM \-Vt fGM\~l/a
\ R* J (2.2)

if we assume that b « a is of the order of unity.
A second approach to the determination tpj is to es-

timate the time necessary for the sound to cover a
distance on the order of the radius of the sun. The
condition of equilibrium of the star yields in this ap-
proach the same formula (2.2) for tjr. In fact, the
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speed of sound is v s = (8P/9p)1 / 2. Using for the esti-

mate the averaged equilibrium equation (2.3a) below,

we find that

from which follows (2.2). For the sun tjjQ Ά 10 sec,

and we see that tjjQ « t-p^ and tjj^ « t^Q ·

Thus, stable hydrostatic equilibrium is necessary

for a star to exist in a stationary state. The equili-

brium condition is written in the form

tlP (2.3)

On the left side is the pressure acting on a unit vol-

ume, and on the right the force with which the unit vol-

ume is attracted to the mass M(r) contained in a

sphere of radius r. To analyze the stability and the

equilibrium we characterize the total matter in the

star by an average density p~ and an averi

P, and estimate their orders of magnitude (we

henceforth omit the averaging symbols for

This method is crude, but yields an intuitive insight

in the physical nature of the problem. The exact

of a star model in stable equilibrium confirms the

crude estimates'-5-'. Using the averaged characteris-

tics, we can write for the entire star

L-o™- (2-3a)

Since ρ = Μ/(4πΚ3/3), we have

The right side of (2.4) can logically be called the

age gravitational pressure, which we denote by q. The

condition for the equilibrium of the star is Ρ = q. Let

us examine the stability of this equilibrium. To this

end we consider the contraction and dilatation of the

star as a whole, when both Ρ and ρ vary. The function

Ρ = P(p ) characterizes the equation of state of the

matter in the star as a whole. Since thermal proces-

ses, as already noted, take a much longer time to

evolve in the star than hydrodynamic processes, the

hydrodynamic instability must be considered at a con-

stant entropy S (meaning, of course, an "average"

entropy that characterizes the star as a whole). Con-

sequently, P(p ) is the equation of an isentrope. As-

sume some change in the size of the star, meaning

also in its density p. This leads to changes in Ρ and q.

As can be seen from Fig. 1, the condition for stable

equilibrium is

%>%• (2-5)

In fact, during equilibrium Ρ = q; this corresponds to

the point of intersection of the curves P(p ) and qjy[(p )·

The symbol Μ denotes the mass of the star. If the

P(p ) curve is steeper than the q(p ) curve, then Ρ

becomes larger than q upon contraction of the star and

FIG. 1. Condition for equilibrium of a star. P(p) — pressure of
matter; q^ (p) — gravitational pressure for a star with mass M1;

<JM (f) — the same for mass M2. In the stationary state Ρ = q. If
the Ρ line is steeper than q, then any small deviation from equi-
librium (from the point (P,, pm ) for a star with mass M^ gives
rise to forces (AFj or AF2) that return the star to equilibrium.

the uncompensated part AFj of the pressure of the

matter tends to expand the star and return it to

equilibrium. During dilatation q > Ρ and the fraction

AF2 of the gravitation force (the part uncompensated

for by the pressure) compresses the star, again re-

storing its equilibrium. Thus, (2.5) is the condition

for stable equilibrium. From the definition of q it

follows that
dq 4 q

(IQ 3 Q '

Using this equation and the equilibrium condition

Ρ = q, we rewrite (2.5) in the form

dp i_ q _ 4 ρ
dQ A Q 3 Q

or

d i n Ρ i_

din ρ ' ΊΓ '
(2.6)

The quantity
din Ρ

d Ing = y

should be called the adiabatic exponent; however, γ is

not a constant and is itself a function of the density

and of the entropy.

Thus, the criterion for hydrodynamic stability is

γ > 4/3. We recall that for an ideal monatomic non-

relativistic gas we have γ = 5/3.

We shall not consider at present the question of the

thermal stability of this star, and assume, in view of

the slowness of the thermal processes, that S is con-

stant.

Equation (2.4) can be regarded as an expression for

the mass of the star in terms of its average density,

if we know the equation of state Ρ = P(p ). Let us
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differentiate (2.4):

/dlnP 4 '

U]no~3,

stitute in (2.4) the equation of state Ρ = kTp/m and
determine T:

The sign of dM/dp coincides with the sign of the
difference (γ — 4/3), as is clearly seen from Fig. 1.
Indeed, a larger mass corresponds to larger q, and if
the slope of Ρ exceeds that of q (i.e., γ > 4/3), then the
curves cross at larger values of ρ.

Let us formulate the result: dM/dp > 0 when the
star is stable, and dM/dp < 0 when it is unstable. In
calculating dM/dp we imply a comparison of two star
models made of matter having the same equation of
state and the same entropy, but unequal masses that
differ by dM. This is a natural criterion: in the stable
state addition of mass causes compression and an in-
crease in pressure, compensating the increased eravi
tational force. We note that an analysis of the
equilibrium equation, rather than the average one,
leads to the following stability criterion: dM/dp c > 0,
where p c—central density of the star Λ5^

Can the star lose stability because of a strong tem-
perature dependence of the energy-release processes
in nuclear reactions? This dependence, for small in-
tervals of P, is given by

ε = ε0 ρΓν.

Here e0 and ν are constants. For the proton-proton
reaction, for example, ν = 4.5 in the temperature in-
terval (0.9—1.3) x 107 deg K. For the carbon cycle
ν = 20 at Τ = (1.2-1.6) x 107 deg K.

The process of heat dissipation and radiation of
energy from the star into the surrounding space is de-
termined by the conditions of diffusion of radiation
from the interior to the outside. * The flux Q of energy
to the outside depends on the distribution of the tem-
perature and on the opacity of the stellar matter

'D dE

where D—diffusion coefficient, E—density of light en-
ergy, proportional to T4. Since usually ν > 4 and con-
sequently the energy release depends more strongly
on Τ than the heat dissipation, one might think that an
accidental small excess of the energy release over the

of energy radiation by the star into the sur-
space would lead to an increase in T, mean-

ing also to a sharp increase in the energy release e,
so that the perturbation will build up. This phenom-
enon is analogous to a thermal explosion in a chemical
system. Actually, however, the situation is different.
We have already emphasized that hydrodynamic proces-
ses in a star are much faster than the thermal proces-
ses. Therefore an increase in the energy release
leads to a deviation from equilibrium: Ρ > q. This
causes the star to expand and p to decrease. We sub-

3 l/o

ρ " . (2.7)

We see that the decrease in p leads to a
T, * meaning to a decrease in e, so that the
tion will not build up.

The excess of radiation over the energy release
leads to the reverse process, and equilibrium is again
restored. Thus, the star regulates the power of the

sources, reconciling them with the
from the surface.

The excess of energy release over heat dissipation
leads therefore to a decrease in the temperature of
the star. In this sense we can speak of the star having
a negative specific heat. The heat capacity in question
differs from specific heat at constant pressure or con-
stant volume usually employed in physics. In this case
this is "specific heat under stellar equilibrium," i.e.,
under the condition

In the stationary state of the star, the release of
nuclear energy exactly compensates the energy lost to
radiation. However, a decrease in the concentration of
the nuclear fuel leads to violation of the balance: the
energy loss exceeds, albeit little, the energy release.
This leads to a rise in temperature, such as to ensure
the required rate of release of nuclear energy a de-
creased concentration of the nuclear fuel, or when the
fuel is changed (for example from Η to He), which
necessitates a higher combustion temperature. This
constitutes the slow evolution of the star with gradual
exhaustion of the nuclear energy reserves.

We note that in accordance with the negative speci-
fic heat of the star as a whole, the gradual increase in
temperature is accompanied by a decrease in entropy.

In fact, let us write down the equation of state first
in terms of the temperature and then in terms of the
entropy, and let us rewrite (2.4); we obtain

Ρ = const·ρ 3.

From (2.8) and (2.10) it follows that

Γ = const · ρ ' 3,

and from (2.9) and (2.10) we get

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Thus, we see from (2.11) and (2.12) that an increase

*Under conditions the energy flux is
convection, but this does not cl

not by
the situation.

*In massive stars the pressure is determined principally by the
radiation pressure and Ρ = aT"/3. Obviously in this case, too, a
decrease in ρ is accompanied by a decrease in T.
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in density leads to an increase in Τ and to a decrease
in S.

3. EQUATION OF STATE

In the preceding section we have established that

the mass of an equilibrium star and the stability of

equilibrium depend essentially on the equation of state

of the matter. In the interior of ordinary stars, the

temperature is so high that the gas is almost com-

pletely ionized and constitutes a high-temperature

plasma. Under conditions of strong ionization, the

separate particles have much smaller dimensions than

the atoms and the molecules in the neutral gas, and

their interaction is small. Consequently deviations

from the ideal-gas equation are negligibly small and

we have for the pressure of the matter

P = h^Q. (3-D

The molecular weight m is equal to the fraction μ of

the proton mass nip per particle. In a fully ionized

hydrogen plasma m = mp/2. The pressure can be ex-

pressed also in terms of the entropy S:

P=C,e C l V / 3 , (3-2a)

where Cj and C2 are constants.

In massive stars the temperature is so high that the

radiation pressure becomes important. In this case

we must add to the right side of (3.1)

For almost pure radiation the energy is Ε ~ T4V;

here the energy Ε and the volume V have been calcu-

lated per nucleon (although we consider almost pure

radiation and there are very few nucleons), since it is

precisely the number of nucleons which is conserved.

Hence, using the relation dS = dE/T, we easily find that

for S = const
PL = const ·ρ4/3.

(3.2b)

As can be seen from (3.2a), for an ideal monatomic
gas γ = 5/3. The adiabatic exponent for pure radia-
tion (photon gas), as seen from (3.2b), is 4/3. Matter
consisting of non-interacting particles has an
exponent between 5/3 and 4/3.

However, at very high temperatures, in the
ence of statistical equilibrium between the
equilibrium reactions can occur, accompanied by ab-
sorption of energy. Then the growth in temperature
due to contraction slows down, and the adiabatic ex-
ponent can become smaller than 4/3. An example of
such an endothermic reaction is the process

the si of which was pointed out by Hoyle and
to calculations by V. S.

Imshennik and D. K. Nadezhin, this process causes γ

to become smaller than 4/3 when Τ £ 5 x 109 at

p = 107 g/cm3, reaching at this density a minimum

value ymin = 0.97 at Τ = 6.5 χ 109.

Another example of such a process is the produc-

tion of e+ and e" pairs. If the density of matter is

sufficiently low to make the pressure determined es-

sentially by radiation (or radiation with e+, e" pairs at

Τ > 6 x 109), then the adiabatic exponent, as shown by

G. V. Pinaeva^45^, becomes noticeably smaller than

4/3 in the interval 5 x 108 < Τ < 3.5 χ ΙΟ9.

Thus, at high temperatures there are processes

that make γ < 4/3 and consequently cause instability

of the hydrostatic equilibrium in Newtonian theory.

We now turn to the case of low temperatures. Dur-

ing the evolution the star sooner or later exhausts its

nuclear-energy reserves. Then the energy radiation,

as we have already shown, is accompanied by contrac-

tion of the star, which leads in final analysis to the

degeneracy of the electron gas. The pressure of the

material will be determined essentially just by the

pressure of the degenerate particles.

Further radiation of energy and cooling of the star

leads ultimately to a situation wherein the tempera-

ture drops practically to zero. The stable equilibrium

configuration at Τ =0, meaning also S = 0 (if such a

configuration is possible for the given mass), is the

natural final stage of star evolution. Therefore an in-

vestigation of the equation of state at S = 0 is of spec-

ial interest.

Let us see how the state of cold matter and its

pressure vary with variation of the density.

At a density larger than 102 g/cm3 the distances

between the atoms are smaller than their dimensions,

the electrons become collectivized, and no longer be-

long to individual nuclei, regardless of the tempera-

ture of the matter. What is their state then? The

Pauli principle establishes that in six-dimensional

phase space of the momenta and coordinates, one cell

with volume (2πϊί3), where R is Planck's constant, can

contain no more than two electrons with different spin

directions. Consequently, at zero temperature and at

a specified density n e, the electrons, striving to occupy

the lowest possible energy states, fill all the cells of

phase-space with momentum from zero to p0, with two

in each cell. This state is called degenerate. The

limiting Fermi momentum p0 is obviously connected

with the electron density:

We = 3^2ps Pa·

On the right side of this equation is double the number

of cells in phase-space volume, being the product of

a unit coordinate volume by the volume of a sphere of

radius p0 in momentum space. Expressing n e in terms

of the density of matter p, namely n e = pZ/Amp,

where A and Ζ are the average atomic weight and

the atomic charge of the matter, respectively, and mp

is the proton mass, we obtain for the limiting Fermi

momentum
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- Q )Po = ( -jzr- 6 ,V Am ρ J

The pressure is determined by the density of momen-
tum flux. If the particle velocities are nonrelativistic,
then ν = p/m, where m—particle mass. Since the mass
of the electron is much smaller than the masses of the
atomic nuclei, the electron pressure is much larger
than the nuclear pressure. The latter can be disre-
garded, and the equation of state takes the form*

\5/3 (3.3)

With increase in density, the momentum of the par-
ticles increases. For ρ « Α/Ζ.106 g/cm3, the electron
momentum becomes of the order of m e c, and the elec-
tron gas becomes relativistic. The adiabatic exponent
gradually decreases from 5/3 to 4/3. For an ultra -
relativistic gas γ = 4/3. However, further increase
in the density of matter above ρ = 2 χ 106 g/cm3

the electrons on the edge of the Fermi dis-
l, starting with a certain density, to start to

participate in the inverse β process with the stable
nuclei:

- = (Z-i, A)+v.

The produced neutrinos move freely away from the
star. The isolated nucleus (Z — 1, A) is unstable
experiences β decay:

(Z — i, A)->{Z,A)+e~+v.

However, this process cannot occur in the star at the
density in question, since the nuclei are imbedded in
the degenerate electron gas and all the phase-space
cells corresponding to the momentum of the produced
electron are already occupied, so that the electron
cannot be created.

The inverse β process leads to a decrease in the
total number of the electrons per gram of matter and
to an increase in the number of neutrons in the stars.
This process is called neutronization. The possibility
of formation of neutron configurations was indicated

in[66-68] a n d w a s c a i c u i a t e d by L. D. Landau^18^. The
density corresponding to the start of neutronization
depends on the chemical and isotopic composition of
the matter.

We shall show below that for stars neutronization
begins when the matter consists of elements of med-
ium atomic weight (A « 24). Then p c r j t = ΙΟ9—1010

g-cm" 3 .t The decrease in the number of electrons
stops the growth of the pressure, and when ρ > pcrit
the value of γ becomes smaller than 4/3. The neu-
tronization process makes the nuclei unstable and
leads to their eventual disintegration. When ρ > 1012

g/cm3, the pressure (as well as the density) is deter-
mined essentially by the degenerate neutron gas. If

the neutrons were not to interact with one another,
this gas would be ideal and, so long as the gas were
still nonrelativistic, the adiabatic exponent would be
γ = 5/3 (and always γ > 4/3). It is known, however,
that attraction forces exist between the neutrons, and
although these forces are insufficient to produce
nuclei consisting of neutrons, they nevertheless make
a negative contribution to the pressure and γ is as
before smaller than 4/3.

At small distances between baryons, the forces of
attraction are replaced by repulsion forces which
make a positive contribution to the pressure, so that
when ρ ~ 2 χ 1014 g/cm3, γ again becomes larger than
4/3. According to A. Cameron'-8-', the equation of
state for ρ £ 1012 g/cm3 is

Ρ = 5.3-10'ρ5/3 + 1.6· 10"5

 e

s / 3 - 1.4· 105 ρ2. (3.4)

The second term takes into account the repulsion for-
ces and the third the forces of attraction between the

Cameron, like many other workers, is inclined to
overestimate the accuracy of formulas similar to
(3.4). In actuality this is only a crude approximation.
At still higher densities (p > 1015 g/cm3) there should
appear in the matter hyperons,* which are stable
under these conditions; this is discussed in detail in
the papers by V. A. Ambartsumyan, G. S. Saakyan,
and their co-workers * , but for the time being we
cannot speak with assurance of the exact form of the
equation of state in this region.t

In the case of large density, a distinction must be
made between the total density of the mass (including
the energy density) ρ (g/cm3), and the density of the
baryon rest mass p ' = mn(g/cm3), where n(cnT3) is
the baryon density.

For a long time it was assumed without proof that
the pressure should be smaller than or equal to
pc2/3 (see^38-'). Such a dependence is obtained in two
cases: for free non-interacting particles (with
Ρ = pc2/3 in the limit of ultrarelativistic particles)
and for an electromagnetic field and particles inter-
acting via the electromagnetic field.

However, Zel'dovichl-39^ constructed a concrete ex-
ample of interaction of particles with a field of
neutral vector mesons; a relativisticall·
theory yielded a pressure Ρ —»pc2 = e as ρ —* °°. We
note that when Ρ = pc3/3 the speed of sound is
v s = c/VW in the new variant, and when Ρ = pc 2 the

*We use the cgs system throughout,
t A curious exception ["] is the neutronization of He3 (see

Sec. 12).

*Σ~ hyperons appear in the matter even at a nuclear density
ρ »= 3 χ 10'" g/cm3. Their stability is ensured by the presence of
degenerate electrons. Under usual conditions there can be no hy-
perons in a nucleus situated at the center of the atom, since the
electrons cancel out the nuclear charge within the volume of the
atom only in the mean, and the density of the electrons in the nu-
cleus, even for heavy elements, is one-millionth the density of
the electrons when stable hyperons appear in the stellar matter.

tin spite of the production of new particles, the conserved
is the baryon charge n; hyperons are also baryons.
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Table I. Sign of Δ = λ - 4/3 for different values of the
sity (S = 0)

Density interval

Sign of Δ

G < 1° 9 g/cm3

+

109 <£ Q =€ Ι Ο "

—

1014<Q<1015

+

Q > 10·5

speed of sound tends to that of light, v s — c, which is
aesthetically more satisfying. At any rate, the assump-
tion that Ρ £ c2/3 always and everywhere has now be-
come a preconceived notion; more than four years
elapsed since the publication of L39-' , but no dissenting
opinions have been expressed against it; see a l so L l l > 4 .

In a recent paper D. A. Kirzhnits and V. L. Polya-
chenko'-40-' suggest the possibility of v s > c. Moreover,
they construct an example of baryons that interact
locally with a pseudoscalar meson field, in which such
a case is realized in their opinion. General consider-
ations allow us to state that this example contains an
error ; the equations for the meson field outside the
sources have a value c for the speed of signal propa-
gation; a system of point-like baryons at rest, inter-
acting via mesons, cannot produce in any way a signal
velocity larger than c.

Different exponents in the function ρ = ρ (η) corre-
spond to different ratios of P/p in that region where
ρ » p' = nm:

for P~Q~re4/3 P = i e c ? ;

for • n* P = [

We shall show later (Sec. 4) that stars in which densi-
ties ρ ss 1015 g/cm3 and more are attained are certainly
relativistic, i.e., the decisive influence is exerted on
their structure by the effects of general relativity. It
turns out in this connection that the absence of reliable
information on the equation of state at super-nuclear
densities does not prohibit an analysis of the principal
problems in the stellar evolution.

We list in conclusion in Table I the signs of Δ = γ
- 4 / 3 for S = 0.*

To solve the question of stellar evolution completely
it is necessary to be able to compile a similar table
for any specified entropy S, i.e., it is necessary to
know the equation of state for all values of ρ and T.
To write down such an equation of state we must solve
the equations of statistical equilibrium for the com-
ponents of matter for specified ρ and T. In spite of
the fact that this problem is in principle trivial for the
greater part of the possible values of ρ and T, it has
not yet been solved even in crude approximation. Work
in this direction has only begun. However, in spite of
the lack of numerical calculations at present, we can
obviously nevertheless indicate, from considerations
of continuity of the function P(S, p), the approximate

form of Pg = const = P(P ) f ° r small S, since the func-
tion Ρ = P(0, p) is known. These considerations will
help us in the analysis of stellar evolution.

4. MASSES OF STARS IN THE FINAL STAGE OF
EVOLUTION

Let us return to the nonrelativistic theory. We cal-
culate the mass of a cold star (S = 0) as a function of
the average density. We rewrite formula (2.4) in the
form

= (3/4π) ι / 2.
The equilibrium equation (2.3) was integrated in a b;

paper by EmdenE12^ for the case when the equation of
state in the entire star has the adiabatic form Ρ = kpY
where k and γ are constants. The main deductions of
his work can be found, for example, in^44-'. As a r e -
sult the expression obtained for Μ in lieu of (4.1),
derived from the averaged equilibrium equation,
differs from (4.1) in that the numerical coefficient
b = (3/47Γ)1/2 is replaced by a factor b(y) which de-
pends on γ . Frequently γ is replaced by the polytrope
index η = l/(y — 1). If γ varies from 5/3 to 4/3, then
b(y) varies from b(5/3) ~ 7.4 to b(4/3) = 4.6.

When ρ « 106 g/cm3, the appropriate equation of
state for a medium in which the pressure is deter-
mined by the degenerate electron gas is (3.3). Substi-

(3.3) in (4.1) and putting b(5/3) = 7.4, we get

(4.2)Λ/ = 6.8·10~

*See Sec. 8

1015 g/cm3.

ing the when ρ >

If the electron gas were to become gradually relativis-
tic with increasing p, but without neutronization of the
medium, then it would be necessary to replace (3.3)
for ρ » 106 g/cm3 by an equation of state for a med-
ium whose pressure is determined by ultrarelativistic
degenerate electrons, and whose density is determined
by the atomic nuclei

i> = 1.23-1016^-e-Y/3. (4-3)

The atomic nuclei are not yet degenerate and on the
whole Ρ « pc 2; therefore Newton's theory is applica-
ble. Substituting this expression in (4.1), using
b(4/3) =4.6, and taking account of the fact that the
ratio Z/A for heavy elements is of the order of 0.5,
we obtain
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Thus, for cold matter in equilibrium there exists in
Newtonian theory an upper mass limit ("Chandrase-
khar limit"1^1 3^), equal to 1.45 M Q , and attained in the
limit as ρ = °° (when γ is exactly equal to 4/3 in all
of the star). Actually, however, as we have noted in
the preceding section, the neutronization of the medium
causes γ = 4/3 to be reached not at ρ = °°, but at
ρ RS ΙΟ9—1010 g/cm3. When the average density of the
star material is sufficiently high, ρ £, 107 g/cm3, the
pressure is determined by the relativistically degen-
erate electrons, and γ differs very little from 4/3. A
small reduction in γ now suffices to make Δ smaller
than zero. When the density at the center of the star
exceeds p c « 109 g/cm3, neutronization of matter be-
gins there. As soon as this process is initiated in the
center, γ becomes smaller than 4/3 for the entire
s tar .* The maximum mass corresponding to this cen-
tral density is M m a x = 1.2 M Q ( s e e Fig. 4)Ε14~16λ This
result was obtained by numerically integrating the
balance equation (2.3) with account of the change in the
equation of state on going from dense stellar interiors
to the less dense surface. The value of M m ax depends

; not very strongly) on the chemical composition,
to an even lesser degree on the spin of the star

(up to the limit when the spin causes a strong outflow
of matter from the equator of the star). With further
increase in density, we get γ < 4/3 (see Table I). It
follows from (4.1) that with increasing ρ the mass de-
creases and the equilibrium is then unstable (dM/dp
< 0), and consequently stationary cold stars with den-
sities p c > 109 g/cm3 in the center do not exist (see
alsoC e 9 : l).

When the mean density of the neutron core of the
star reaches ρ = 1013 g/cm3, the density at the center
exceeds the nuclear density (3 χ 1014 g/cm3) and the
average value of γ for the star becomes larger than
4/3. Thus, the mass Μ of an equilibrium star reaches
a minimum value when ρ « 1013 g/cm3. This value
M m i n can be estimated by determining the pressure at
ρ = 1013 g/cm3 from formula (3.4) and substituting this
value in (4.1) with b ~ 5:

Mm l n^0.05MQ.

We recall that this is only an order-of-magnitude
estimate, for actually the star cannot consist of neu-
trons only. In the outer regions the pressure is in-
sufficient for the existence of stable neutrons, and the
outer shell consists of nuclei and electrons. More de-
tails on masses of cold stars at large densities will be
given later (Sec. 8). The details of the calculations

be found in the paper of G. S. Saakyan and Yu. L.

Further increase in density is accompanied by an

*At the critical density, some contribution to the decrease in
the effective γ is made also by effects due to the difference be-
tween the density of the particle rest mass and the energy den-
sity (see Sec. 3), and to the change in the gravitational law con-
nected with general relativity [47]. For more details see Sec. 8.

increase in mass, since Δ = γ — 4/3 > 0, meaning that
dM/dp > 0. The equilibrium configurations are then
stable. Simultaneously with baryon repulsion at
ρ « 1015 g/cm3, the effects of relativistic gravitational
theory come into play. Before we consider these rela-
tivistic objects, we must review the properties of
strong static gravitational Einstein fields.

5. SCHWARZSCHILD GRAVITATION FIELD

We begin the examination of relativistic effects
with the simplest case—strong gravitational field pro-
duced by a spherical body in vacuum.

The solution of Einstein's equation for such a field
(the Schwarzschild solution'-17^, 1916*) determines the
geometrical properties of the space and the rates of
time flow near the body producing the field. It turns
out that this field is always constant (even if the ma-
terial of the central body executes radial oscillations
but remains spherically symmetrical), and depends
only on the total energy Ε of the body.

The expression for the four-dimensional interval
in the Schwarzschild field is of the form

(5.1)

where Μ = E/c2. In the expression for ds 2 is contained
all the information concerning the gravitational field.
Let us recall the manner of using this expression for
physical deductions. The first three terms in the sum
constitute the square of the distance (dZ2) between
infinitesimally close points, taken with a minus sign,
and written in spherical coordinates in curved
A stationary observer located near the massive
can measure distances in a small vicinity by the
method, introducing Cartesian coordinates. In these
coordinates dZ2 = dx2 + dy2 + dz2. If he chooses
dz = rd0 and dy = r sin Θ άφ, then outside the gravi-
tational field we have in Euclidean space dx = dr.
Near the massive body, in the Schwarzschild field,
we have, as can be seen from (5.1),

, f . 2GM
dx = I 1 — — ΊΓ

"dr. (5.2a)

The factor preceding dr differs from unity, a manifes-
tation of the non-Euclidean nature of the geometry.
From this it follows, for example, that the distance
between two close circles drawn in a single plane
around the central body and having lengths lx and Z2

is not (Z2 -Ζ1)/2π, but

2π 1 —

The curvature of space at a given point in a given
two-dimensional direction, i.e., for a given orientation

the of the solution see,
for example, [46].
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of the plane (the so-called Riemannian curvature) is
measured by the ratio (Σ — ir)/S, where Σ —sum of the
angles of a small triangle on this plane, and S—its
area. The curvature has the dimension of cm"2 and
can be either positive or negative. Outside the star,
in a direction tangent to its surface, the curvature is
negative, while in orthogonal directions it is positive.
The curvature averaged over all directions (the so-
called Gaussian curvature) is equal to zero.

The last term in (5.1) is the square of the interval
of the running time at the given point (multiplied by c2)·.

Δτ = 1 -,-Δί.
re2

(5.2b)

Far away from the body, as r —- °°, we have Δτ = Δί.
The closer the point of observation to the body pro-
ducing the field, the slower the course of the time,
i.e., the smaller the interval Δτ corresponding to the
given time interval Δί at infinity. *

Let us find the gravitational force F acting in a
Schwarzschild field on a trial mass m with low veloc-
ity (v « c). This force is obviously equal to
F = md2Z/dr2. The acceleration of free fall d2Z/dr2

for the trial particle is written in the form

iin CM
2G-M

consequently the gravitational force is

ρ „. _lGMm

(5.3)

We see that at r = 2GM/c2 the force of gravitation
becomes infinite. This singularity is evidence that the
central body, if static, cannot have a radius smaller
than 2GM/c2. The stationary non-deforming spherical
system of coordinates used above is applicable like-
wise only if r > 2GM/c2. This critical radius
rg = 2GM/c2 is called the gravitational radius, and a
sphere of radius rs is called a Schwarzschild sphere.
We note that a non-static body can have dimensions
smaller than the gravitational radius.

At a distance that is large compared with r g the
Schwarzschild field is the usual gravitational field of
Newton's theory, with a gravitational potential
φ = GM/r and with a force

F = — -
CM,,

The gravitational radius of the sun is 2.96 km and that
of the earth 0.443 cm. The radii of the earth and of the
sun are much larger than the gravitational radii.
Consequently, the gravitational field outside the sun,

or other stars or planets is, with tremendous
a Newtonian field. Schwarzschild solutions

cannot be used in matter, and inside the sphere, as

*The simu of events is of

field will

e shown in the next section, there are no
larities of the Schwarzschild-sphere type at all.

6. GRAVITATIONAL FIELD INSIDE A STAR

We now consider the properties of a strong
tional field inside matter at rest. The four-dimensional
interval is then customarily written in the form

ds2= — eM l )dr2 —r'(c29'+sin29d<p2)-|-ev<'ViZi2. (6.1)

The two coefficients e ' r ' , describing the deviation of
the geometry from Euclidean, and e^( r), describing
the change in the rate of time flow, are determined by
the distribution of the matter:

(6.3)

We recall that ρ is the density of matter and includes
not only the sum of the particle masses per unit vol-
ume, but also their energy (of motion and of interac-
tion other than gravitational). The coefficients of dr 2

in expressions (5.1) and (5.6) should coincide in vac-
uum outside the star. Hence, using (6.2), we obtain an
expression for the mass

R

Λ/ = 4π \' Qr2dr. (6.4)
ο

We recall that owing to the non-Euclidean nature of
the space, the volume element is dV = 4π exp (\/2)r2dr
^ 4 i r r 2 d r . The integral of (6.4) contains 47rr2dr and
not dV. We shall show that this is connected with the
influence of the energy of the gravitational field on the
mass of the body. From (6.2) and (6.3) we see that
e^ > 1 and e v < 1 (as in the case outside a gravitating
mass), and therefore the deviation of geometry from
the Euclidean inside the body has the same character
as beyond its boundaries, and dV > 47rr2dr, while the
time flows more slowly than at infinity.

It follows from (6.2) that β λ ^ 1 as r ^ O , and the
metric has in this case a Galilean form. This, of
course, does not signify that the space is less curved
here than at other points. The point is that we are
using spherical coordinates and the condition r —· 0
means that we are taking a small vicinity around the
center. In the preceding section we have mentioned
that the curvature of space has a dimension cm"2;
consequently, the effects due to the curvature de-
crease in proportion to the square of the dimension.
Therefore as r —- 0 the curvature of space does not
come into play and e^· — 1.*

Actually, the Gaussian (average) curvature CG of
the space is larger at the center of the star than in

be considered below.

*We note that solutions with finite mass and with pc ~ °° exist.
Accordingly, in these solutions the curvature is infinite at the
center and e^ 4= 1. We shall not deal here with these singularities.
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other places. The value of CG is given by (see the
paper by A. L. Zel'manov'-54-'; its conclusions that
of interest to us are contained in'-55^)

r - 4l (6.5)

Since the density is maximal at the center of the star,
CQ is maximal there, too. Of course, we must not
think that (6.5) implies that the space is Euclidean
outside the star, where ρ = 0, even near its surface in
a strong field. Formula (6.5) yields only the average

of space in all two-dimensional directions,
this average curvature is indeed equal to zero.

However, as indicated in the preceding section, out-
side the star the Riemannian curvature of space is not
equal to zero and can have, depending on the two-
dimensional direction, both positive and negative
values. At the center of the star all the directions are
equivalent; the curvature there is given by formula
(6.5) for any orientation and is always positive.

The gravitational field obtained by "joining" the
solutions inside the star and outside has no physical
singularities of the Schwarzschild-sphere type any-
where, and we have 1 < e^ < °o a n ( j ο < β μ < 1 through-
out.

7. PATHS OF LIGHT RAYS INSIDE AND OUTSIDE A

STATIC STAR

Let us see now how rays of light and neutrinos,
moving along the radius, will propagate in a spherical
gravitational field. Inasmuch as the observer can
locally introduce coordinates in which dx2 = c2dt2 — dx2

— dy2 — dz2, we obtain, using the principle of constancy
of the velocity of light measured by a local
(vlight = c), an equation for the motion of a

particle with zero rest mass: ds = 0. Consequently,
for φ = const and θ = const we have

ν - λ
„ 2 (7.1)

Inside the sphere exp[(y — λ)/2] < 1 everywhere. Be-
yond the surface of the sphere, in vacuum, we have

and this quantity tends to unity as r — °°
for example for a neutrino emitted from the center,
the variation of the coordinate r of a remote exterior
observer with the time t should have the form shown
in Fig. 2. The dashed line in this figure shows the
motion of the neutrino in the absence of a gravitational
field. We note that as the radius of the star R —• rg,
we have in vacuum

How do the neutrino energy and the energy of the
light quanta, and consequently also the frequency of
the corresponding waves, vary as they move in the

FIG. 2. Plot showing the variation of r as measured by the
clock of an external observer t for two neutrinos emitted at t = 0
and t = At from the center of a star with mass 0.64 M©. R — bound-
ary of the star (R = 6.9Rg).

gravitational field? Let us consider the variation of
the frequency. Let the emitter in the center of the
produce two flashes separated by an interval At.
Since e^ and e v do not depend on t, these flashes will
arrive to the remote observer also separated by an
interval At by his clock, as shown in Fig. 2. However,
the interval At in a strong field corresponds to a time
interval

* — " " • <7.2,

Consequently, the frequency of the signal received by
the observer, which is proportional to I/At, differs
from the frequency of the emitted signal ω 0 ~ 1/Δτ:

v/2 (7.3)ω = ωοβ

The signal frequency decreases as the latter
from the gravitational field (and increases for motion
in the opposite direction). Accordingly, the
energy Ε = Κω decreases. This phenomenon is
the gravitational red shift. For an observer located
on the surface of the star, the emission spectrum of
the atoms has exactly the same appearance as in the
laboratory on earth. However, the spectrum of the
same atoms of the star, observed from the earth, is
shifted by this phenomenon towards the red side. *

The gravitational change in the frequency of the
quanta demonstrates the amazing orderliness of the
general theory of relativity. Indeed, in the framework
of Newtonian theory the described phenomenon can be
interpreted as loss of energy by the quanta as they
leave the gravitational field. However, owing to the
connection between the energy and the frequency,
Ε = Κω, the change in energy is connected with the
change in frequency, and the latter is proportional to

*The "violet" shift produced in rays arriving from outer
on earth by its gravitational field, amounts only to Δω/ω = 10
and will be
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l/Δτ. Thus, it follows from this fact that the rate of

flow of time changes in a gravitational field, i.e., a

change takes place in the properties of the space-time

continuum. This already leads directly to Einstein's

gravitational theory with the idea of space-time curva-

ture. Numerous attempts to construct in some other

manner a modern theory of gravitation were not suc-

cessful. Einstein's theory is the only orderly gravita-

tion theory, consistent to the end, explaining the entire

of the observed

zo·

1567
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8. SUPERDENSE STARS

From the Einstein field equation, as is well known,

follow directly the equations of motion and, in the par-

ticular case of statics, the equilibrium equations. In

the case of spherical symmetry, the equilibrium equa-

tion is written in the form *

(8.1)

The expression (8.1) together with (6.2), (6.3), and the

equation of state determines the hydrostatic equilibrium

in relativistic theory, and replaces the equilibrium

equation (2.3) of Newton's theory. Integration of this

system in conjunction with the equation of state,

cribed in Sec. 3, makes it possible to construct

tivistic models of superdense cold stellar configura-

tions, which extend many of the models considered in

Sec. 4 into the region of large densities.

The first such calculations were made in the classi-

cal paper of Oppenheimer and VolkoffL2^ in 1939, using

the equation of state of an ideal Fermi gas. The most

characteristic feature of the calculated models was the

fact that the curve Μ = M(p ) has a maximum in the

region ρ ~ 1015 g/cm3. The unavoidable appearance

of a limit on the equilibrium mass was pointed out

FIG. 3. yl = d In P/d In η and y2 = d In P/d In ρ as functions
of the density ρ for an ideal cold neutron gas.

The reasons for the appearance of the maximum

are as follows: first, a change takes place in the law

of gravitation. We have already noted that the gravita-

tional force (5.3) tends to infinity on the surface of a

static star when the radius of the latter approaches

the gravitational value (and not zero, as was the case

in the Newtonian theory), and consequently the star

radius R must exceed r«:

R ^ r - ^ 1 (8-2)
ti >rg— c 2 .

Let us express R in terms of Μ and the average

density p . According to (6.4), the average density is

_ M

Obtaining from this R and substituting in (8.2), we get

*We see from (8.1) that the quantity v/2 is analogous to the
Newtonian potential φ . In the weak-field approximation v/2 = φ/c 2 ,
and we obtain the Newtonian equilibrium formula (2.3) by
nizing that in this case pc2 » P.

vfi

coefficients,or,

We see that no matter what law governs the

Ρ = P(p ), the largest possible value of Μ must

decrease with increasing ρ.

Another cause of the maximum of M(p ) is that at

large densities the main contribution to the energy

density (and consequently also to the mass density)

is no longer made by the rest energy of the particles,

but by the energy of their motion and interaction. Let

us denote the baryon density by n, and let the quantity

d In P/d In η be defined as the adiabatic exponent γί.

The value of yx so defined is always larger than 4/3

for a degenerate gas, and for repelling particles it

can reach in principle a value ^39^ yx - 2.

However, the equation contains not n, but the mass

density ρ and the pressure P. By virtue of the circum-

stance noted above, the asymptotic form of the equa-

tion of state is Ρ ~ ρ, and therefore the effective value

of γ2 = d In P/d In ρ becomes smaller than 4/3 and in

the limit γ2 —- 1.

The quantity listed in Table I is indeed γ2. Figure 3

shows plots of γι and γ2 for an ideal neutron gas. Re-

placement of γ2 > 4/3 by γ2 < 4/3 leads, as shown in

Sec. 4, to appearance of a maximum in M(p ). Thus,

even regardless of the change in the law of gravitation,

M(p ) should have a maximum. Both effects in question

are of the same order and act in the same direction.

Numerically these effects, as small corrections to the

classical theory, were considered in a little known

paper by S. A. Kaplan^47 J and later by Fowler148 ]

(see alsoL 2 0 J). These corrections, in connection with

the theory of the construction of very massive stars,

will be considered in Part II of the review.

Thus, owing to the factors considered above the

mass of the equilibrium configuration can not arbi-

trarily be large, and in the region of high densities

(p ~ 1015 g/cm3) the Μ = M(p ) curve also has a maxi-
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FIG. 4. Masses of cold stars. 1 -
["], 1939. 2 - Hamada and Salpeter (for Mg") ["],
1961; 3 — Harrison, Vacano, Wheeler (for a real gas)
["], 1958; 4 — Ambartsumyan and Saakyan (for an
ideal gas ['], 1961; 5 — Saakyan and Vartanyan (for
a real gas) ["], 1964; 6 - Oppenheimer and Volkoff
for an ideal gas) [2], 1939; 7 - Cameron (for a real

], 1959.

15 16 !7 W 13 log./?

mum. Oppenheimer and Volkoff, ^ using the equation
of state of an ideal degenerate neutron gas, obtained
Μmax 0.72 This of however,
we have seen in Sec. 3, cannot be used at such
ties. The latest papers of Cameron'- , Saakyan and

ι L!6J > with an equation of state of a real gas,
: (1.6-2) Μ Θ .

We can now complete the construction of the func-
tion Μ = M(p ) for equilibrium configurations with
S = 0. Fig. 4 shows the curve Μ = M(pc) as calculated
by various authors. The abscissas represent here not
the average density ρ, but the density p c at the center
of the configuration, which is a more convenient
eter; in particular, it is precisely dM/dp c > 0
serves as the criterion of star stability for the
Newtonian case, as was noted already in Sec. 2. (See
Sec. 10 concerning the stability of the models in the
relativistic case.)

We see from Fig. 4 that additional information on
the properties of matter at high densities has modified
somewhat the M(pc) curve, particularly in the region
of superhigh densities. This curve has also been cal-
culated differently by different authors, owing to the
different assumptions made concerning the chemical
composition of the matter (in the region of the first
maximum), and owing to different simplifying assump-
tions used in the calculation. In spite of all these
differences, however, the qualitative character of the
curve, which is important for the analysis of the funda-
mental questions of stellar evolution, is the same for
all authors. We shall henceforth use for concreteness
the curve 5 of Saakyan and Vartanyan-1 6 J. These au-
thors took into account in their calculations the change
in the equation of state on going from dense interiors
of the star to the envelope. It is curious that in the
region of large densities, beyond the maximum, where
real equilibrium cold stars can no longer exist, the

total mass of the equilibrium star, as shown by N. A.
Dmitriev and S. A. Kholin, experiences a periodic
attenuating dependence on p c a s p c - ^ ° ° (see Fig. 6).

For pc = °°i as already stated in Sec. 6, there is a
solution with a finite mass.

We shall call the mass maximum for stars at
p c » 1015 g/cm3 the "OV" (Oppenheimer
maximum M m ^ x , to distinguish it from the

maximum, which takes place whenp c is of the
of 109 g/cm3. On the surface of a star with

Μ = M m ^ x , the quantity e v assumes the minimum
possible value for the surface of stars, e ^ j n = 0.5.
Consequently, the maximum gravitational red shift,
which can be observed in principle in the spectrum of
an equilibrium star, is

Figure 5 shows plots of and

(8.3)

for two stars

w

P.5

0.0
3 5

, I
r, km

FIG. 5. β λ / 2 and eu/2 as functions of the radius r for stars
with M1 = 0.64Mo and U2 = 1.55ΜΘ. 1 - ι

v •- ι2eA/2.eM, '
of the

2; 2 - e^2; 3 -
, correspond to the sui

stars.
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FIG. 6. M, Mo, and Mt as functions of p c for a

s of neutrons.

ideal Fermi

with p c = 5.5 x 1014 and 3.6 x 1015 g/cm3 and with
respective masses 0.64 M Q and 1.55 Μ . The β λ / 2

plot characterizes the deviation of the geometry of the
space from Euclidean near the star and outside the
star. The coordinate radius for these stars, i.e., the
values of r for the surface R = r S U r = λ/β/Ίπ (where
s—area of the surface of the star), is equal to 13 and
9.3 km, respectively. The distance from the center

λ'2

e dr

is equal to 13.8 and 11.5 km respectively.

The quantity e v/2 as already noted, is analogous
to the Newtonian potential. It shows directly the slow-
ing down in the rate of time flow as compared with the
time at infinity. Unlike β λ / 2 , the value of ev'* does
not tend to unity at the center of the star.

This, of course, is connected with the normalization
condition: we have chosen the time coordinate t such
that at infinity it always coincides there with the read-
ing of the observer's clock; therefore (e >V2)oo = 1,
and the ratio of e u'2' at the center of the star to
(e ^'2)oo is equal to the ratio of the rate of time flow
at infinity to that at the center.

9. MASS DEFECT

us write down the expression for the total en-
E of the star, for the case when the densities are

small and Newton's theory is applicable: Ε = Eo + Τ
+ Ω · Here Eo = Nmc2—rest energy of the nucleons
making up the star, T—energy of motion and interac-
tion of the nucleons, and Ω — potential energy of mutual
gravitation. The last term is negative. We put Eo +
Τ = Ej · In the relativistic region we must accordingly
distinguish between the following:

Ε = M& = ρ/2 dr, (9.1)

(9.2)

ο
a!

75 re !7 73 79 :

FIG. 7. Dependence of at = AjM/M and a^ = Δ2Μ/Μ0 on

density ρ at the center of the star.

^ (9.3)

where dV = 4πβ ' " i^dr. Figure 6 shows plots of M,
Mo, and M.i as functions of p c . The calculations were
made for the case of an ideal degenerate neutron

We recall that the mass density p, measured

r, includes not only the rest mass but also the
internal energy of motion of the nucleons and the par-
ticle interaction energy per cubic centimeter. (Except
for the gravitational interaction! The latter is not in-
cluded in p, since the forces of gravity are long-range
forces and the gravitational energy depends not on the
local properties but on the properties of the entire configu-
ration.) The total mass Μ of the star is not equal to
the sum Mj of the masses of the elements of its vol-
ume, and since e ^ / 2 > 1 , we have

The difference - Μ will be called the total
gravitational mass defect. The origin of Δ,Μ is ob-
vious: when we unify mass elements dm =pdV
(which already have a specified density p) to form a
star, we should take into account the energy of gravi-
tational interaction between these elements. This
binding energy [which is not taken into account in
(9.3), in contrast with (9.1)], and the corresponding
mass are negative, therefore AtM > 0. In the
Newtonian approximation c2AjM = — Ω·

The ratio
α - & ί Μ
α ί ~ Μ

is called the coefficient of gravitational packing, and
characterizes the ratio of the absolute value of the
gravitational energy to the total energy. Figure 7
shows the dependence of a1 o n p c for stars consisting
of a real gas, as given i n - 1 6 ] . al is small for small
p c and tends to zero as p c —• 0. For the densest con-

4 « 0.5.
The difference Δ2Μ = Mo - Μ = Nm - Μ is called

the incomplete mass defect or simply the mass defect.
The energy corresponding to Δ2Μ is precisely the
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that is released when a dense star is formed
from the initially rarefied diffuse matter. From the
physics of this process it is clear that Δ2Μ > 0 for a
stable stationary star. *

In the Newtonian approximation ο2Δ2Μ = — (Τ + Ω).
The ratio

_ Λ 2 Λ /

is the ratio of the energy released during star forma-
tion to Moc

2. A plot of a 2 (p c ), calculated for
made up of a real gas in accordance with the
ofL16^, is also shown in Fig. 7. For large densities
a2 becomes negative. See Sec. 11 on this subject.

The gravitational mass defect is sometimes in-
correctly called the gravitational screening. Such a
name does not reflect the nature of the phenomenon,
which is not at all similar to the effect of a
To be sure, when we unite, say, two particles we
a system with a mass smaller than the sum of the
particle masses but, first, this weakening of gravita-
tion has no direction whatever (as should be the case
were the second particle to be a real screen) and,
second, any binding force has the same property of
reducing the total mass of the particles, and gravita-
tion is no exception in this respect. Indeed, the mass
of the deuteron is smaller than the sum of the proton
and neutron masses but of course we do not say on this
basis that the neutron provides a gravitational screen
for the proton.

When particles are united to form a bound system,
an energy equal to the mass defect is radiated either
in the form of quanta, neutrinos, gravitational waves,
etc. A remote observer will notice the mass defect
(the decrease in mass) not at the instant when the par-
ticles are united, but only after the radiated

moved past him (Fig. 8). Until that instant,
nergy transformations will not affect in

manner the star mass as measured by the observer
(owing, naturally, to the law of energy conservation).

10. STABILITY OF SUPERDENSE STARS

As was indicated in Sec. 2, the criterion for the
stability of the equilibrium of a star is dM/dpc > θ'-5-'.
However, a proof of this statement is valid only for
Newtonian gravitation and is not applicable directly to
the relativistic region.

Stable equilibrium denotes a minimum of the star
energy for a given entropy and for a given number of
particles. Starting from this general premise, we can
show that the same criterion is applicable also in the

*We consider here the mass defect only for static configura-
tions. If we forego the static requirements, then the total mass Μ
of a given number of nucleons can in principle b
(see Sec. 16). In particular, Μ vanishes for a closed <
model (see, for example, ["'"']). Especially interesting a

s of ΔΜ for so-called semi-closed worlds [5O'S1].

FIG. 8. Variation of the mass of the matter during the forma-
tion of a dense star (A - observer), a) Diffuse matter prior to
compression into a star, b) The matter has been compressed; the

nergy (region B) has not yet passed the observer, who
not notice the decrease in the mass of the body, c) Wave

has moved past the observer, he notes the decrease in the mass
of the body by an amount ΔΜ.

for small perturbations.
The concept of the energy of a star will be system-

atically utilized in Part II of this review. We present
here a different proof of the stability
without pretending complete mathematical
satisfactory to physicists.

We consider first the change in the mass of a star
in equilibrium when a single particle is added to the
star at a radius r from infinity, where its energy was

to me2. In other words, we determine dM/dN.
such a particle falls freely in the gravitational

field to a radius r, its energy reaches a value *

V-P (lo.i)

The difference e(r) - μ(τ) (where μ(r)—chemical
potential of the particles of the cold star) is radiated,
for example in the form of γ quanta. Owing to the
γ-quantum energy loss resulting from the gravitational
red shift [see (7.3)], an energy

AZ? = (p-[i)e v· ' '2 (10.2)

goes off to infinity. On the other hand, from the
equilibrium equation for the cold star it follows
that[22,16]

(10.3)

From (10.1)—(10.3) we obtain

rf.W

The change in Μ does not depend on the position

*The energy is measured by a local observer and does not in-
clude the potential energy of the particle in the gravitational field;
the total particle energy, of course, does not change during its
fall (the radiation of gravitational waves is disregarded, since it
is small).



RELATIVISTIC ASTROPHYSICS. I. 777

the particle is added to the equilibrium star. * We
note that by virtue of (10.2) and ofe" < 1 we always
have

dM .

dX^m· (10.4)

We now return to the question of the stability of the
star. We consider the section of the curve Μ = M(p c)
closest to the maximum M m a x · From expression
(10.4) it follows that N(p c ) has a maximum at the
same value p c = Pcrit a t which the maximum of M(p c)
is attained.

Consequently, on the left and on the right of p c r i t
we can choose two different stationary stellar models
with different p c l and p c 2 , but with identical N. Then
the solution for one of these models can be represen-
ted as a perturbed second solution:

(?2(Π = ΟιΜ + δρ. < 1 0 · 5)

In the most general case the solution for small pertur-
is of the form

6n = <p(r)c»!. (10.6)

For the particular perturbation δρ, which
forms the stationary solution pl into the
solution p 2, naturally, δρ does not depend on the time,
i.e., ω = O.t Thus, at the maximum of the M(p c)

ω = ω ! = 0 .

!, the case with ω 2 = 0 is on the borderline
between ω 2 < 0, where ω is imaginary, and ω 2 > 0,
where ω is real. The former case corresponds to sta-

and the latter to instability. We have thus shown
the passage through the maximum corresponds to

loss of stability. These considerations are equally
applicable to a star model constructed with allowance
for general relativity and to the nonrelativistic case.
We emphasized that so far we have considered only
small perturbations.

11. SOLUTIONS WITH NEGATIVE GRAVITATIONAL
MASS DEFECT

It was indicated in Sec. 9 that for stable star models
the gravitational mass defect is Δ2Μ > 0. However,

*In contradistinction to the erroneous statement by Wheeler ["].
We note that the independence of dM/dN of the place where
the particle is added means that if we specify that the particle
distribution Sn(r) is disturbed without changing the total number
of particles, i.e., δΝ = 0, then in first order we also have δΜ = 0,
i.e., δΜ/δη|η _ c o n s t = 0. This denotes precisely that the equilib-
rium state corresponds to an extremum of the mass, i.e., an extre-
mum of the total energy of the system (which is perfectly natural).
If this extremum is a minimum, then this signifies stability of the
state, in accord with the statements made at the beginning of this
section.

tThe method which we used here was systematically developed
in ["]; see also [70].

az at as- as w iz w is ι.β 2J> ΝΙΟ

FIG. 9. Dependence of the mass of a cold star on the total
of baryons N. Alongside each circle is indicated the den-

sity of the star at the center. Dashed line: Μ = Nm .
J η

for unstable configurations corresponding to the des-
cending branch, we cannot make beforehand any defi-
nite statements concerning the sign of

\ (m f?e*·'2 — Q)r2 dr ,

for, on the one hand, nm < ρ because of the energy of
motion and interaction of the nucleons, and on the
other hand β λ / 2 > 1. The sign of Δ2Μ must be deter-
mined from specific calculation of the star models.

Models with negative Δ2Μ must certainly be un-
stable; they cannot be realized in nature and are
therefore of no particular interest. We dwell on this
question only because it is frequently discussed in the
literature.

Let us consider the dependence of the star mass Μ
on the number of nucleons in the star. It is clear,
first, that this curve passes through zero: Ν = 0,
Μ = 0. Furthermore, we have shown in Sec. 10 that
dM/dN < m. At first glance it might follow that
Μ < Nm and Δ2Μ > 0 always. This is not the case,

The M(pc) and N(pc) curves pass through a maxi-
mum at the same value of pcrit» while dM/dN is finite
everywhere and has no singularities (see Sec. 10). It
follows therefore that the dependence of Μ on Ν will
have a turning point corresponding to the common
maximum of Μ and N. This dependence is shown in
Fig. 9, using data from-16 , for superdense configura-
tions.* dM/dN < m everywhere on the curve, but there

*In accordance with the remark made in Sec. 8, the M(pc) and
N(pc) curves have an unlimited number of maxima at pc -» °°, the
amplitudes of Μ and Ν attenuate, and the curve Μ = M(N) has a
corresponding number of turning points.
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is a section where Nm > Μ and Δ2Μ < 0. Of course,
these configurations are unstable and small perturba-
tions cause the star to compress or expand. When such
a star flies apart, the matter will have a nonvanishing
kinetic energy at infinity. It is clear that a real star
with Δ2Μ < 0 cannot be formed from diffuse matter.

The physical reason for Δ2Μ < 0 consists in the
following. At very large density, the energy of motion
and repulsion of the baryons is appreciably larger
than their rest energy,

ρ > nm.

Therefore, in spite of the fact that an account of the
negative energy of the gravitational field reduces this
difference somewhat, nevertheless

Α,Μ --Απ K'2 — Q)r2dr<0.

It is seen from Fig. 9 that the solutions with
Δ2Μ < 0 exist for the equations of state of a real

In Fig. 6, the Mo and Μ curves for an ideal gas
cross, i.e., in this case, too, Δ2Μ < 0 for p c ^ 5 χ 1016.
We repeat that this circumstance, which is curious in
itself, is of no interest in principle.

It is important to note, however, that Δ2Μ < 0 is
possible for free particles only in the relativistic
theory, not in the Newtonian approximation. Indeed,
in Newtonian theory, for a star made up of Maxwell
or Fermi gas, the following virial theorem holds true

On the other hand, in the Newtonian approximation
Sec. 9) we

Consequently

ci Δ2Μ -= - -i- Ω > 0. (11.1)

In a relativistic theory, the virial theorem is no longer
applicable, and unstable solutions with Δ2Μ < 0 are
already possible.

We emphasize also that all the foregoing holds not
only for a gas made up of colliding particles, but also
for a gas whose particles do not interact with one
another at all except by gravitation. * Indeed, let us
take any stationary isothermal solution for a star
up of an ideal gas, and let us ; ' turn off" the
collisions. Obviously, locally at each point the aver-
age distribution of matter, or its energy, remain un-
changed, since the collisions cause only an exchange
of energy and momenta between the particles. The
integral characteristics of the system do not change
when the collisions are turned off. Now each particle

*The
only on

ing is true when
where Ε — enere

see the papers of

; distribution function
For an additional exposition

[56], cited in the review ["].

executes a finite motion in the common gravitational
field of all the remaining particles, and its orbit need
not be a closed curve. The total energy of each indi-
vidual particle in the field of the remaining particles
(which is conserved during the motion in the orbit) is
smaller than me2, and accordingly the particle cannot
go off to infinity.

If the state in question is obtained after "turning
off the collisions from the stationary solution for the
cold ideal Fermi gas with Δ2Μ < 0, then, consequently,
we shall have Δ2Μ < 0 here, too. Thus, although the
total energy of each particle is smaller than me2, the total
energy of the entire system is larger than Nmc2. The
possibility of this can be easily understood qualita-
tively by recalling that in Newtonian theory the energy
of one particle is

Ei = me2 -{-Τ ι -"r Ω ; .

However, the energy of the entire system is

Ε =N y me2 +T, + y Ut ) .

An essential factor here is the coefficient 1/2 in the
third term, which is needed to prevent each pairwise
interaction from being taken into account twice. Since
Ωί < 0, we have

A solution with Ε > Nmc2 is therefore possible for
Ej < me2. Of course, this necessitates violation of the
virial theorem, for this theorem leads to the inequal-
ity (11.1).

12. EVOLUTION OF A STAR

We can now proceed to an analysis of the evolution
of a star. We shall not dwell in detail on all the stages
of evolution, referring the reader to the book of S. A.
Kaplan^2^ and the corresponding monographs'-26' .
We merely make a few remarks that are needed in

follows.
According to generally accepted notions'-26-', stars

formed from an initially rarefied medium by
gravitational condensation of diffuse matter consist-
ing primarily of hydrogen. During the contraction
phase, the light of the star is produced at the expense
of gravitational energy. This source of stellar energy
was already pointed out by Kelvin. The temperatures
are still low and the release of nuclear energy is
negligibly small. The star is in hydrostatic equili-
brium without internal energy sources. The duration
of this phase is relatively short and amounts to

Μ years.

Since the star has negative specific heat, the
tion of energy and the contraction cause an increase
in the temperature which rises in the interior of the
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star enough to initiate the nuclear fussion of hydro-

into helium. V. A. Ambartsumyan'-52j and his co-

consider a different possible evolutional path

prior to the start of the nuclear reactions, namely the

formation of protostars not from diffuse matter, but

from superdense D-bodies, the nature of which is still

unknown. This does not change the subsequent evolu-

tion of the star, which is determined by the mass, ini-

tial entropy, and initial chemical composition, and

also by the angular momentum in the case of a spinning

star. * During the start of the nuclear reactions the

star is in the state of hydrodynamic and thermal

equilibrium. This is the most prolonged period of the

active life of the star, the duration of which is deter-

mined by the reserves of hydrogen in the core, where

the temperature is sufficiently high for the

reactions, and by the rate of conversion of 1

into helium. It is obvious that this period τ is propor-

tional to M/L, where L is the luminosity of the star.

Calculations yield for the mass of the core, where the

hydrogen is burned up, an order of magnitude 0.1M,

from which it follows that

τ = 1.1 -ΙΟ1»-^-^- years (12.1)
XJ III ,̂ -j

The inhomogeneity of the chemical composition, due to

the burning up of the hydrogen at the center, leads to a

change in the structure of the star, its outer envelope

expands, while the core contracts.

In sufficiently massive stars (M > MQ and Μ ~ Mg)

the temperature in the core rises to such an extent

that triple α-particle collisions take place to produce

C12

3H*-+W + y. ( 1 2 2 )

The subsequent fate of the star is very difficult to cal-

culate theoretically. It is possible that the star experi-

ences many radical changes, accompanied by the ejec-

tion of part of the outer shells; it is highly improba-

ble, however, that the star would lose the bulk of its

mass as a result of such ejection. In one way or an-

other, the general direction of the stellar evolution

proceeds along the line indicated at the end of Sec. 2,

namely the exhaustion of the reserve of nuclear fuel

leads to contraction of the star and to its heating. On

the Μ vs. ρ diagram (Fig. 10), the equilibrium states

of the star correspond to a slow displacement from

left to right on a horizontal line (M = const). Let us

consider first the evolution of stars with Μ < 1.2 MQ

(MJ in Fig. 10). The contraction will continue until

the electrons in the main mass of the gas become de-

generate. Then the contraction practically terminates,

since the pressure depends little on the temperature,

and during the entire subsequent evolution Ρ will de-

l/2, with the

FIG. 10. Evolution of stars Mt and M2

the " O V " limit.
smaller

the point Ό1. Prior to the start of the degeneracy, the

temperature of the star increases upon compression,

its specific heat being negative. After electron

eracy sets in and the compression stops, the

radiates, becomes cooler, and its temperature

after going through a maximum. The specific heat of

the star is then already positive. The maximum of the

temperature corresponds in order of magnitude to the

degeneracy energy of the electrons in the final state.

For stars with mass equal to MQ , the maximum T c

amounts to ~ 109 deg K. Subsequently, on cooling, all

the thermonuclear reactions with effective energy re-

lease cease and the electron degeneracy becomes even

stronger. This last stage in the life of a star is called

the white-dwarf stage. White dwarfs cool slowly, their

radiation being due principally to the thermal energy

of the atomic nuclei that are still in the nondegenerate

state. The cooling process lasts for billions of

L27^ . We see that during the entire evolution the

moves gradually on the Μ vs. ρ diagram from left

to right and tends to the curve corresponding to Τ = 0

(S = 0).

The final chemical composition of white dwarfs de-

pends on those nuclear reactions which still took place

during the stage of their compression and heating, and

the possibility of any particular reaction depends in

turn on the temperature. In all stars with Μ Ji. 0.3 MQ,

the temperatures attained during the process of evo-

lution were certainly much higher than Τ = 107 deg K,

at which the nuclear transformation of Η into He4 be-

gins. Let us calculate the maximum temperature which

is attained in a star with mass M. We have already

said that this is the temperature at which the electron

gas becomes degenerate: Tmax ~ Τ of degeneracy

~ ρ . Using (3.1) and (4.1) we can easily find that

Tmax ~ Μ
in the center of the

2M4/<3. Numerical calculations yield for T r

*In connection with the possibility of this second manner of
ir formation, see [6°] concerning piezonuclear reactions in

(12.3)*
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where μ—molecular weight. According to an estimate
by Opick , a temperature close to maximum is re-
tained for ~ 1014 sec. We can estimate from this the
change in the chemical composition of the star, due to
the nuclear helium transformation reaction. If
Τ > ~ 3 χ 108, then the triple α-particle collision
process (12.2) leads to the formation of C12, but this
is not the end of the reaction:

O1 6-

(12.4)

According to Opick's calculations white dwarfs with
Μ > 0.5 M Q s h o u l d consis t pr incipal ly of Mg 2 4, and
heavier nuclei a r e not formed because all the helium
is exhausted. In s t a r s with m a s s about (0.4—0.45) M Q ,
an appreciable fraction of the helium in the centra l
parts still experiences a similar transformation, but
when Μ < 0.4 M Q the white dwarf should consist essen-
tially of helium.*

Let us trace now the final stages of the evolution of

a star with 1.6M,Θ Μ Ζ 1.2ΜΘ' the of

the decrease in the entropy such a star also moves
slowly from left to right via quasi-equilibrium states
from A2 to C2 along the line M2 of Fig. 10. After
reaching the critical point C2, which is the maximum
of the isentrope M(p), stability is lost and a cata-
strophic contraction takes place at a rate on the order
of the speed of free fall dR/dt ~ [GM(RC - R)/R 2 ] 1 / 2 .
It must be especially emphasized that after reaching
the state C2 the speed of further contraction does not
depend in any way on the rates of those processes that
have brought the star to the critical state during the
course of the slow evolution. This is in full accord
with the fact that the speed with which a man falls
after jumping from a roof does not depend at all on the
speed with which he approached the edge of the roof.

We must point out here the following important

•The time of evolution of stars with Μ < 0.3 Mg> exceeds, ac-
; to (12.1), the age of the metagalaxy. The smaller M, the

smaller the maximum possible temperature. Therefore in stars with
sufficiently small Μ the temperature will ensure in the future the
occurrence of nuclear reactions that stop only with He3. It might
appear that these stars should consist of He3 at the end of the
evolution (at S = 0). However, as recently noted by Parker, Bah-
call, and Fowler [s8], the neutronization potential of He3 is very
low and amounts to only 18 keV. Therefore during the course of
the stellar evolution, the He3 will be transformed into tritium, and
the latter will be converted into He4 via the usual thermal reac-
tion. Thus, these stars will consist of He4 at the end of the evo-
lution. However, at a mass Μ < 0.1 Mo, the degeneracy occurs
before the temperature rises sufficiently for the nuclear reactions
to take place. Such stars produce light at the expense of gravita-
tional energy and will consist primarily of hydrogen at the end of
evolution. It is curious that a large quantity of He3 was
in the spectrum of one of the stars [61]

circumstance. In considering the occurrence of in-
stability of a star and its hydrodynamic contraction,
we assume that the processes causing the instability,
i.e., making γ < 4/3, occur within a time much shorter
than the hydrodynamic time tjj. With respect to such
processes, the matter is at all times in the state of
equilibrium. These processes are almost adiabatic
and have consequently constant entropy. An example
of such a process is pair production at high tempera-
ture. It is not excluded, however, that neutronization
of matter, which we have shown to cause instability at
low temperatures, occurs within a time comparable
with tjj. The neutronization will then lag the equili-
brium under these conditions. This is equivalent to
the appearance of a large effective viscosity, which
leads to an increase in the entropy. To make the
picture more detailed it is necessary to consider
simultaneously both the hydrodynamics and the neu-
tronization process.

In addition, we have crudely approximated the
matter of the star by its average density and average
pressure. It is clear that this cannot account for the
appearance, during the course of contraction, of shock
waves that cause an increase in the entropy with
"hydrodynamic" velocity. It is likewise impossible
to account for the loss of part of the mass, probably
due principally to the emergence of the shock wave to
the surface of the star. An account of these phenomena
calls for a concrete calculation of the nonstationary
processes in the star'-71-'.

The result of all the foregoing phenomena is as
follows. After the "col lapse" of the star at the point
C2, the density increases (horizontal dashed line on
Fig. 10) and the star reaches a new stable state (point
D2), but the contraction continues by inertia until a
certain maximum density is reached ( p m a x ) . In the
first approximation, damped oscillations about D2 will
set in. The damping is caused by the already-described
processes of entropy growth; in addition, the star
throws off some of its mass. Consequently the star
shifts from the isentrope corresponding to the instant
of the collapse, to a higher isentrope (from Sj to S2).
The horizontal line drops because of the loss in mass,
and the star arrives at the point D3 in a state of

This state of the star is usually called the neutron
state. This of necessity raises the question: how can
this be, when we started the evolution of the star with
hydrogen, with protons ? The thermonuclear reactions
caused the protons to combine into complex nuclei and
a tremendous energy, on the order of 0.01 Me2, was
radiated, and at the end of evolution, during the neu-
tron-star stage, we have again a substance consisting
of individual baryons (with the neutron rest mass being
even larger than the mass of H); where did the energy
radiated during the evolution come from ? The answer
is obvious: gravitation produced a high density, and
this has led to neutronization of the matter and caused
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the complex nuclei to break up into individual baryons;
consequently, the gravitational energy in the final state
compensates exactly for the energy radiated by the
star into the surrounding space.

The ideas of Kelvin and Helmholz, that the light
from the stars is due to gravitational energy, do not
hold for the prolonged active stage of the star when its
light is due to nuclear reactions. However, in the
concluding phase of the stellar evolution, the gravi-
tational energy breaks the nuclear bonds, and in final
analysis gravitation is responsible for the entire
ted energy; in this sense the ideas of these great

are correct.

13. NEUTRON STARS

The neutron star in position D3 is in a
equilibrium state. The neutron core of the star is
surrounded by an envelope consisting of nuclei and
degenerate electrons, and the surface layers them-
selves consist of ordinary plasma. Regardless of the
processes that have brought the star to the position
D3, the temperature of its interior, as indicated by
ChiuL , cannot exceed several billion degrees, for
otherwise the intense production of (v, V) pairs which
instantaneously leave the star would anyway cool the
s tar .* In the entire interior of the star the thermal
conductivity is exceedingly high, since it is determined
by the degenerate electrons. Therefore the core of the
neutron star is isothermal and a temperature gradient
exists only in the outermost envelope. The tempera-
ture of the interior is not higher than several billion
degrees. The structure of the outer envelope can be
easily calculated, since the radius and the mass of the
neutron configuration are already known, and a definite
interior temperature can be specified. We can then
determine the surface temperature and the luminosity
of the star. We present the results of Chiu and
Salpeter^65^ for a neutron star with Μ = 0.5 M Q and
radius R = 10 km (Table II).

In spite of the fact that the luminosity of neutron
stars is thousands of times larger than the luminosity

*The main processes which lead to neutrino production at hig
atures is electron-positron pair annihilation: e+ + e~~ ->

ν + P.
Pontecorvo ["] was the first to note that modern theory of β

decay leads to the possibility of radiation even without baryon
participation (for a review see ["]).

of the sun, the former are invisible in ordinary tele-
scopes, as noted by A. A. Ambartsumyan and G. S.
Saakyan^10-'. Indeed, as seen from Table II, their sur-
face temperatures Te amount to tens of millions of
degrees, and the bulk of their energy is radiated in the
form of soft x-rays. At a surface temperature ~1.2
x 107 deg K, the maximum of energy distribution at the
center, as a function of I^dy, lies in the region ~ 4 A.
In the optical range, the radiation is negligible and
amounts to a millionth of the luminosity of the sun in
this range. This, of course, is connected with the
negligible surface of the neutron star, which is
2 χ 10"10 of the surface of the sun.

Are there any neutron stars in the galaxy ? Re-
search outside the atmosphere, carried out during the
last two years^30-' (see also^-63'64^) has disclosed

sources. According to [30] one of these
sources is in the direction of the Crab nebula. This
nebula is the remnant of a supernova explosion. No
optical object is seen at all at the location of another
source. We note that it was previously assumed that
the weak star of 15th magnitude at the center of the
Crab nebula is the remnant of an old supernova ex-
plosion. Recent observations by Kraft have shown that
this star cannot be the remnant of a supernova, since
it has the usual spectrum. There are no other stars
brighter than 18th magnitude in the center of the nebula.

The x-ray flux from the Crab nebula is 2 x 10~9

erg-sec' 1 cm"2 A"1 for λ ~ 5 A'-30-'.
If we assume, following MortonL29^ or Chiu and

Salpeter^6 5 ', that the source of radiation is a neutron
star, we can easily calculate its effective temperature,
since the distance to the nebula is known (1100 psec),
and the mass and the radius of the neutron star cannot
vary strongly. For R = 9.25 km we obtain T e = 7.6
x l 0 s deg K.

According to the very latest published reports
Friedman, using the occultation of the Crab nebula by
the moon, found that the dimensions of the x-ray source
are ~ 1/5 the dimensions of the nebula, i.e., approxi-
mately 0.02 psec = 6 χ 10 ΐ 6 cm. If this is so, then the
visible source is obviously not a neutron star. This
makes more probable the hypothesis of V. L. Ginz-
burgL62-', that the x-ray emission has a synchrotron
nature. Obviously, the situation is more complicated
than was presented by Morton, Chiu, and Salpeter.
Some considerations on this subject will be made in
Part II of this review.
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M,

«ov
of evolution of a star with N3 >

According to Table II, neutron stars cool very
and cease to radiate energy. However, this
only if the star is in vacuum. The neutron star

is a deep potential gravitational well, causing the ac-
cretion of matter (i.e., the falling of matter on the
star). The gravitational potential at the surface of the
star amounts to « 0.2c2. The foreign matter falling in
this field is accelerated to approximately half the
speed of light. Colliding with the surface, the falling
matter releases an energy on the order of 0.2mc2,
where m is the falling mass. As will be shown in the
second part of the review, the rate of mass growth

as an order of

dM

dt
(2-4)

where p»—density of the surrounding matter, v—veloc-
ity of motion of the matter particles relative to the
star at infinity. If we assume that p«> = 1O~24 g/cm3

and ν ~ 10G cm/sec, then dM/dt « 2 x 1012 g/sec and
the luminosity of the neutron star due to accretion is
L ~ 4 x 1O32 erg/sec. The effective surface tempera-
ture is in this case somewhat less than a million
degrees, and the Wien-law maximum lies at λ « 5 0 A.
The time of appreciable increase in the mass of the
star is t ~ 1021 sec, which is much longer than the age
of the metagalaxy.

We see thus that as a result of accretion of inter-
matter the neutron star can exist for a prac-
unlimited time as a source of soft x-ray emis-

sion of luminosity comparable with that of the sun.
However, the luminosity due to accretion is many
orders of magnitude smaller than the luminosity of a
neutron star immediately after its formation (see
Table II). Of course, if the star is immersed in a
cloud which is much denser than the interstellar diffuse
matter (and this should take place if the neutron star
is produced immediately after a supernova explosion),

its luminosity increases sharpty. We shall not
here with the interaction between the falling
and the radiation.

14. EVOLUTION OF A STAR WITH A MASS LARGER

THAN THE "OV" LIMIT

We now consider the last stages of evolution of a
star with mass larger than the "OV" limit for super-
dense configurations (M k, 1.6 Mg). The qualitative
difference between this case and the preceding ones
lies in the fact that for such large masses there is no
equilibrium configuration with S = 0 (and Τ = 0). This
means that without loss of an appreciable part of the
mass the cooling massive star cannot reach an equili-
brium state. On the other hand, as emphasized by
Hoyle, Fowler, and Burbidge^32-', there is no reason
whatever to cause the mass to eject precisely as much
mass as is needed to arrive ultimately at the state of
equilibrium with S = 0. Consequently, the concluding
part of the evolution of such stars will be essentially

Let us trace the last stages of this evolution
11). The star approaches the critical point C slowly,
via quasi-equilibrium states. At C the star loses sta-
bility and contracts with hydrodynamic velocity. Its
further evolution depends on the course of the isen-
tropes on the p-M diagram in this region. As already
noted in Sees. 3 and 8, when S is small the isentropes
qualitatively duplicate the S = 0 curve. For larger S,
however, the shape of the isentrope can be essentially
different, and there are still no calculations of the
equation of state in this region. We shall therefore
consider qualitatively the different possibilities repre-
sented in Figs, l la—c. We emphasize that at large
densities, owing to relativistic effects, we must have
dM/dp < 0 for any S = const.

In the case shown in Fig. l la , the horizontal line
Μ = const is tangent to the point C of an isentrope with
a single maximum. Then after the slump at the point
C, the star will contract without limit, and after a
time on the order of tjj it will be contracted to such
an extent that the gravitational potential in its surface
assumes a value on the order of c2, and effects of the
general theory of relativity come into play. Starting
with this instant, the star enters the phase of rela-
tivistic contraction—collapse. We shall discuss this
relativistic stage later (see Sec. 15).

Qualitatively the same will occur if the isentropes
have the form shown in Fig. l ib . Here the second
maximum lies much lower than the first, and neither
the growth of entrop}' during the contraction process
(the equilibrium isentrope corresponding to increase
in entropy is no longer S2 but S3 in Fig. l ib), nor the
ejection of matter (transition to the dashed horizontal
line) will stabilize the star, which will continue to con-
tract without limit. The evolution will proceed differ-

in the case shown in Fig. l i e . Here the second
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Β A C

FIG. 12. Star at the point of "slump" A. The deviation from
equilibrium to the left (point B) causes an appearance of a force
which returns the star to A. A deviation to the right (C) causes a
"slump" — hydrodynamic compression of the star.

maximum is higher than the first, and after the slump
at the point C, the star will evolve in exactly the same
way as in the case leading to formation of a neutron
star (Sec. 12). The star will reach a quasi-equilibrium
state at the point Όί. However, whereas in the case of
a neutron star this is the final state of the evolution (the
star reaches S = 0 and Τ = 0), in our case, after reach-
ing Dj, a second stage of quasi-equilibrium evolution

. The star, radiating energy, will again move
via quasi-equilibrium states from left to right,

from isentrope to isentrope, until the second maxi-
mum Ε is reached, after which the star will
slump and will now be contracted without limit,
over into the stage of relativistic collapse.

We see that the final fate of all stars with Μ >
is relativistic collapse, which we now proceed to con-

15. RELATIVISTIC COLLAPSE

Let the star be situated at the ' ' s lump" point A at
the maximum of the isentrope on the M-p c diagram
(Fig. 12). The perturbations that shift the star to the
right or to the left (points Β and C) cause it to lose
equilibrium. In either case, the equilibrium configura-
tions corresponding to the perturbed density lie lower,
and have a lower mass (points B' and C')· This means
that the force of gravitation at Β and C exceeds the
force of pressure and causes the star to contract and
to increase in density. However, whereas the contrac-
tion returns the star from position Β to the equilibrium
A, from position C it takes the star even farther away
from equilibrium, and collapse begins. The rate at
which the collapse begins at the point A itself is deter-
mined by the rate of slow evolution of the star, i.e.,
the rate with which it arrives at the critical point A
and, continuing its motion, passes through this point
to the right. However, after some noticeable deviation
from the state of equilibrium A, the forces of gravita-
tion exceed the pressure forces already by a finite
amount, and the compression acceleration constitutes
a finite fraction of the acceleration of free fall. Thus,

soon after the " s lump," the star contracts at
free-fall acceleration, and the

do not play an appreciable role in the dynamics
of the collapse. These considerations are confirmed
by a concrete calculation made by M. A. Podurets-33-',
of the relativistic contraction of a star with counter-
pressure.

It follows from the foregoing that in the crudest
approximation, in the analysis of the dynamics of the
collapse of the star as a whole, we can neglect the
effects of pressure and put Ρ = 0. Such a collapse
was considered in the classical paper by Oppenheimer
and S n y d e r ^ and by Tolman^34^ .

We shall see below that the qualitative peculiarities
of the collapse do not depend on the rate of contraction
and are perfectly the same for a speed that amounts
to 10% as well as 99% of the speed of free fall.

Let us consider the surface of a collapsing star.
During the course of contraction the mass Μ does not
change, and therefore at Ρ = 0 the particle on the sur-
face simply falls under the influence of the gravitation
of the mass M. Consequently, in order to explain the
character of the collapse, it is sufficient to consider
the free fall of a trial particle in the field of the
M.

For the rate of free fall in a Schwarzschild field
(see, for example1-35^), we have

dt 1 —
ι—ί-

1/2

(15.1)

Here r^—gravitational radius of the central mass,
σ

r0—distance from which the fall begins and at which
dr/dt = 0. At a large distance (r0 and r » r^), formula
(15.1) goes over into the usual expression of Newtonian
theory

dr Έ /2GM, ,

•sr = V—to- 1")·

Expression (15.1) shows the rate of change of the co-
ordinate r as measured with the clock of a remote ob-
server. The local stationary observer, situated
side the falling body, will measure its velocity as
follows [see Sec. 5, formulas (5.2a) and (5.2c)]

dx dt
1—

1 —
ι —

(15.2)

As the gravitational radius is approached, dx/dr
— c. The change of dx/dt, as measured by the clock t
of the remote observer, is quite different. Using (15.1),
we get

dx 1 dr

as r —• Tg. Of course, the tendency of the velocity dx/dt
to zero is due to the slowing down of time near rg. The
velocity ν = dx/dr is a quantity that has a direct physi-
cal meaning. It is measured by a co-moving observer.
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This is precisely the quantity which enters into the ex-

pression for the local energy of the particle according

to the formula Ε = mc2/Vl — (v/c)2 etc. Of course, this

velocity increases continuously under the influence of

gravitation when the particle falls. The velocity dx/dt,

is expressed in terms of the time of the remote

.-, does not have such a direct meaning. Away

from the gravitating mass dx/dt = dx/dr = dr/dt, and

dx/dt increases for a falling particle, but near the mass

dx/dt decreases and, as shown above, tends to zero as

r —* rg . This decrease, however, is not due to "repul-

sion on the part of the central body," as is stated in-

correctly by McVittie ('-36^, p. 136), but to the connection

indicated above between the times τ and t.

(15.3)

diverges at the upper limit if r = rg. Thus, the time t

that the particle falls to r™ is always infinite. The value

of At corresponding to attaining rg is infinite, even for

light, the propagation time of which from r 0 to r is de-

termined by integration of (7.1) and is equal to

ro—r
I ft Τ f '

It remains for us to make one more explanation.

With the aid of expression (15.3) we find r = r(t), i.e.,

the position of the trial particle at the instant t as

measured by the clock of the remote observer. But

this, of course, is not the same place where this ob-

server sees the particle at the instant t, since it takes

the light some time Δ^ί to cover the path from the

t i d e to the observer. This time can be readil

ted by formula (15.4). Denoting the time of arrival of

the light at the observer by t*:

(15.7)

When the particle approaches the gravitational radius

t —• °° and Δ^ΐ —*°°, so that t^ certainly tends to infinity.

Thus, the observer sees that the particle approaches

the gravitational radius only asymptotically in an infin-

ite time. With the aid of the expressions given above we

can easily obtain the formula r = rit^) for the falling

particle, i.e., the law governing the manner in which the

observer sees the approach of the particle to the gravi-

tational radius. For r g —» r, the asymptotic form of the

formula is:

(15.8)
(15.4)

nothing can move faster than light.

Thus, as measured with the clock of the remote

stationary observer, the time to reach r g is always in-

finite. Any body, no matter what the acting force, can

approach rg only asymptotically.

What is the time of fall measured by a clock mounted

on the falling particle itself. Let us tie the reference

frame to that particle. In this system, the clock does

not change position, and for it therefore ds = cdT, where

Τ is the reading of the clock. Hence ΔΤ = (1/c) / d s .

But ds is an invariant quantity, which does not change

on going over to a different system, and it can be cal-

in the Schwarzschild system:

(15.5)

Using for dr/dt expression (15.1) we see that (15.5) con-

verges for any upper limit, including r = rg. In par-

ticular, if the particle falls with parabolic velocity

(i.e., dr/dt = 0 at infinity), then

AT = const •(/-! —7-)3/a (15.6)

which coincides with the formula of Newtonian theory.

Here r t—position of the particle at the instant of the

start of measuring ΔΤ.

Thus, the time to fall to r g as measured by the clock

on the particle is finite. A time which is infinite when

measured by an external observer is finite when meas-

ured by the falling observer. What can be a clearer

illustration of the relativity of the concept of infinite

time.

Here rt—position of the particle at the instant
ι

Let us see now what will be the change in brightness

of an emitter falling in a Schwarzschild field, as seen

by an external observer. Assume that at some instant

the falling source is located near rg and moves with

local velocity dx/dr = ν along a radius joining the cen-

tral body with the remote observer A, and for a co-

moving observer, which falls together with the source,

the latter radiates isotropically with constant intensity.

Then the flux density at infinity loo will be for the ob-

A
2

(15.9)

Here one factor (1 — rg/r) describes the gravitational

red shift, the other factor (1 — rg/r) is connected with

the bending of the ray trajectories in the gravitational

field, while one factor [(1 - v2/c2)/(l + v/c)2] is connec-

ted with the Doppler effect, and the other with the

aberration. From (15.2) it follows that

as r

(15.10)

The law governing the variation of r with t + has already
been given in (15.8). We thus obtain an expression that
shows how a remote observer sees the change in the
brightness of a falling source a s r - r g :

2c ι
— — ( '*—'*

, = const -e rs (15.11)
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Table III. Characteristic time of

attenuation of luminosity for

of different masses

M/MQ

1.6
10
1()2
10*
10»
1 0 "

« g , km

4.8
30

3· 102
3-105
3-108
3-10"

( = Hg/c, sec

1.6-10-5
10-4
10-3

1
103
106

The frequency of the light received by the observer

tends to zero in accordance with an analogous expres-

sion, but the argument of the exponential is one quarter

as large in absolute value.

Our calculations of the change in the brightness and

the wavelength pertain only to the central point of the

visible disc of a contracting star. For the entire disc,

the deductions are much more complicated, since it is

necessary to consider rays moving at a large angle to

the radius, and the paths of such rays near the star are

quite complicated. An analysis of this question'-37-'

shows that the formula for the luminosity of the entire

star L is similar to (15.11), but with a somewhat differ-

ent argument of the exponential:

4c

L = const -e 3 V^ -(*.-/*) (15.12)

where Rg—gravitational radius of the

We have considered light sources located on the

face. It is clear that neutrino sources, for example

will be situated in the center of the contracting

But in this case the radiation is determined by a

of the type of (15.12) (see [ 5 3 ]).

We can now make the following conclusions. A re-

mote observer sees a catastrophically collapsing star,

whose dimensions are still much larger than Rg, con-

tracting with hydrodynamic velocity, i.e., very fast.

When R - Rg ~ Rg, the star itself continues to contract

strongly reaching Rg after a finite proper time, and

continuing to contract. Owing to the effects analyzed

above, the contraction seen by an external observer is

strongly slowed down and its radius tends to Rg in ac-

cordance with (15.8). The average density of the star

tends in this case to

%.Y_i_. (15.13)
Λί

The luminosity of the star decreases rapidly, in

spite of the fact that near the instant when R ~ Rg. the

photons continue to be created in the star at almost the

same rate (actually, even at an increased rate). Owing

to the gravitational red shift and other effects listed

following formula (15.9), the luminosity decreases in

accordance with (15.12). The characteristic attenuation

time is on the order of Rg/c. This time is listed in

Table III for objects having different masses.

Thus, seen by the external observer, the star stops

to radiate almost instantaneously. He will never

what happened to the star when its radius became

smaller than the gravitational radius.

This phenomenon is called gravitational self-closing.

No further radiation leaves the star.*

However, the star of course does not "disappear"

without trace from our world. During the collapse

neither its mass Μ nor its static gravitational field

changes. Such an "extinguished" star interacts with

the surrounding bodies by its own gravitational field

(which is exceedingly strong near its gravitational

) - t
We have found the final state of a star with a mass

than critical, Μ > Μ ,̂Υν. This state, which is

catastrophically nonstationary for the star itself, is

asymptotically "stationary" to the external observer

in the sense indicated above.

Thus we have resolved the "paradox of large mas-

ses" (i.e., the conclusion that a large mass must un-

avoidably be catastrophically contracted),

from the work of Oppenheimer and his co-

discussed in the literature (see the paper of
[ 1 4 ] and the review of Chiu [ 4 ]). At first

this paradox is very unpleasant. Indeed, a cooling

with mass Μ > M£,Y,. contracts without any limit what-

ever! What next? Wheeler regards this question as

unsolved and he suggests'-14-' that in a large mass the

"excess" nucleons annihilate upon compression, are

converted into radiation that leaves the star, so that

the remaining mass is always less than critical. This

assumption denies a fundamental law of physics—the

law of conservation of baryon charge, and for large

masses the critical density at which this process should

take place is quite moderate. For example, for

Μ = 108 M Q , t we have in accordance with (15.13)

p c r = 2 g/cm3. The temperatures that are attained

upon contraction to critical dimensions are also low

(see the second part of the review). Under these con-

ditions, which are in no way remarkable, certainly

nothing fantastic can take place. The only thing that is

unusually large is the gravitational field, but according

to the principle of equivalence the gravitational field

itself does not produce local changes in the laws that

govern the physical processes.

From our point of view there is no paradox whatever.

For an external observer the collapse "stops" at

R— Rg, and there is no need for fabricating fantastic

a situation wherein the mass of the
decrease strongly by radiation of
part of the gravitational energy is

or particles, but is transformed

"Self-closing bring;
:ar can no

[53·32], and the
not radiated in the form of
into the kinetic energy of the contracting

tWe recall that so far we have been U
stars. The role of rotation will be analyzi
the review.

tThere are grounds for assuming that tht
have similar masses and are in the stage of
This will be treated in the second part of the review.

ing of
in the part of

collapse.
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violations of reliably established fundamental laws of
physics.

16. METASTABILITY OF ANY EQUILIBRIUM STATE

We shall assume for brevity that cold stars consist
of an ideal Fermi gas. In Sees. 2 and 10 we considered
the stability of the star against small perturbations. It
was shown that when the criterion dM/dpc > 0 is satis-
fied the configuration has a minimum energy and is
stable against small perturbations.

For stars of cold Fermi gas, having Ν < 0.75 N_
nucleons, there always exists one or several static
solutions. One of these solutions has the smallest total
energy. It is stable against small perturbations. Static
solutions with the same N, but with smaller total energy
(smaller M) do not exist. Does this mean that we must
deduce that the nucleons can never be regrouped (with-
out changing their number) in a configuration (which
certainly is not static) having a total energy (meaning
also a mass M) smaller than the initial energy? We
shall show below that such a conclusion would be in-
correct, and that the minimum energy corresponding to
the stationary state is only a local minimum.

By applying external pressure to the mass we
in principle, bring its dimension so close to the
tational radius * that the gravitational forces (which then
tend to infinity) exceed the pressure forces (which in-
crease in proportion to p), thus causing it to contract
further independently—to collapse.

This might lead to the conclusion that collapse of a
small mass, although possible, is separated from the
equilibrium state by a giant energy barrier.

We shall show that this conclusion is also incorrect,
and that the energy barrier in this case is infinitesi-
mally small.

We start with the proof of the latter statement.
The smaller the initial mass, the less energy is

needed to collapse it, in spite of the fact that the den-
sity to which it is necessary to compress the matter
beforehand increases with decreasing mass: ρ = 2 χ 10le

x (MQ/M) 2 . Assume that we have a cold configuration in
equilibrium. Let us compress its small central part,
causing this mass to collapse sufficiently rapidly. Then
the layers bordering with the collapsing nucleus will
lose their lower support and will start to fall towards
the center, dragging more and more of the outer
layers with them. The internal layers will, in ac-
cordance with the property of relativistic collapse,
fall eternally as measured by the clock of the external
observer, never reaching a bottom support. Conse-
quently, the outer layers will likewise never stop.
Thus, the entire star will be involved in the contraction
and will collapse.

The smaller the region of the initially contracted
3, the less energy must be consumed in order to

γ compression, the mass of the

start the contraction of the entire star from a

have thus proved that the energy barrier that
collapse from equilibrium is infinitesimally

small;* but the perturbations that initiate the collapse
of the star are far from small, and the compression of
the nucleus before the start of its collapse is the larger,
the smaller the required energy. For example, we can
cause a star having the same mass as the sun to col-
lapse by compressing in its center a core having a mass
equal to the mass of the earth. In order to start the
collapse of such a core, it must be compressed to a
density

r. = 2·1027 g-crn'- 3 1

'fluctuations" cannot arise spon-
taneously, either statistically or in quantum fashion.
Of course, we cannot discern such a possible transition
to a collapse in the linearized theory of small pertur-
bations .

We now show that we can always assemble a speci-
fied number of nucleons Ν such that their total energy
is arbitrarily small, i.e., the mass Μ measured by an
external observer will be arbitrarily small^31-'.

Assume that we are given Ν baryons. We pack them
sufficiently close, so that the expression for ultrarela-
tivistic gas holds:

Q=-|ft(3n»)1/'i-/i«/.. ( 1 6 1 )

The formulas for Μ and N, in the case of matter at rest,
are

R

i (16-2)

specify the di

' = -r , r < R, and ρ = 0, r>R,

(16.3)

(16.4)

where a—arbitrary constant. Using (16.1), (16.2), (16.3),
and (16.4) we obtain

M = (16.5)

The distribution (16.4) has the following singularities:
p —»°° as r —» 0, and p is discontinuous at r = R. It is

*Since we add
increases.

*Einstein's gravitational theory is not a quantum tneory
can therefore, starting from dimensionality considerations, in-
dicate a limit of its applicability (Wheeler ['"]). From the con-
stants π, G, and c we can obtain a quantity with the dimension of
length, L* = (π G/c3)"2 = 1.6 χ 10"" cm.

At smaller scales, quantum fluctuations of the metric should
become more significant. Consequently, a mass with gravitational
radius rg = L* is the smallest which can still be compressed to
dimensions rg without resorting to quantum theory. It amounts to
m = 10"5 g. This determines the lower limit of the barrier in ques-
tion, if this limit depends on quantum effects.
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easy to verify that the singularities can always be

smoothed out in such a way that the relation (16.15)

varies as little as desired. In such a distribution there

are no singularities anywhere, either in the metric or

in the density.

It follows from (16.5) that for any specified Ν the

mass Μ — 0 if a — C2/STT G2, q.e.d. Of course, the con-

figuration obtained is not static, for its mass is close

to zero and is certainly smaller than static for given N.

The nucleons arranged in such a manner are at rest at

the initial instant of time, but the acceleration is differ-

ent from zero and the nucleons will collapse.

We see that in principle a machine can be construc-

ted capable of producing configurations with a mass de-

fect as close to Mo as desired. Thus, this machine ex-

tracts from the matter an energy which is almost

to Moc
2, incomparably larger than the nuclear

0.01M0c
2.

Of course, the creation of such a machine to work

with masses much smaller than M J J ^ X is an impossible

task, for it would be necessary to compress the matter

to fantastic densities.

For a mass close to the "OV" limit, the correspond-

ing densities are far from fantastic and the transition

into collapse is possible, for example, if a star with

Μ ~ 1.5 MQ , which ' 'slumps" in the region of the

Irasekhar maximum, overshoots the stable state

the course of hydrodynamic compression by in-

ertia.

However, the gravitational energy is not radiated in

this case to the outside, but is converted into kinetic

energy of compressing matter. Therefore the best

•'gravitational machine" so far is the accretion of mat-

ter on a neutron star, with yield on the order of O.2mc2.

We conclude with this section the first part of the

review. In the second part we plan to consider possible

processes in the vicinity of relativistic objects and

relativistic stages of evolution of objects with masses

larger than
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