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1. INTRODUCTION

J\.EPORTS of experiments with a target containing

polarized protons have been recently published^1"3].

In all these experiments the target used was single-

crystal La2Mg3(NO3)i2 · 24H2O in which approximately

1% of La3+ was replaced by paramagnetic Ce3+ or

Md3+ ions. The protons of the water of crystallization,

which constitute about 3% of the weight of the crystal,

are polarized by the so-called dynamic polarization

method. We describe here briefly a simplified scheme

by which the protons become polarized. The reader

who wishes a more detailed knowledge of the polariza-

tion mechanism is referred to ^ -L

We consider the energy levels of a system compris-

ing an electron (more accurately, the electron shell of

a paramagnetic ion with effective spin s = V2) and a

proton, situated in a constant magnetic field Η (Fig. 1).
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FIG. 1.

In Fig. 1, | M, m) —state with electron and nucleus

spin projections Μ and m, β —Bohr magneton, g and

gn —electron and proton Lande factors. Owing to the

dipole-dipole coupling of the magnetic moments of the

electron and proton, the unperturbed states | M, m)

are mixed and in an alternating magnetic field perpen-

dicular to the field H, transitions are produced with si-

multaneous change of the electron and proton spin pro-

jections ("forbidden" transitions). Upon saturation,

say, of the transition | -V2, -V2) ^ | V2, V2), the pop-

ulations of these states become equal*:

N+n+ = N-n-, (1.1)

where M± and n± are the numbers of the electrons

and protons with spin projections ±V2, respectively. If

the relaxation time of the allowed transitions | M, m)

3=̂  I M ± 1, m) is much smaller than the time of the

"forbidden" transition induced by the alternating field,

then the electrons have a near-Boltzmann distribution

N_

From (1.1) and (1.2) we find that

(1.2)

(1.3)

which yields for the proton polarization

— 1
P = - = t h - ^ -

It is obvious that in the absence of an alternating field
the proton polarization is equal to

•Pstat=th^1jT- . (1.5)

Thus, saturation of the paramagnetic resonance gives

rise to a proton polarization appreciably larger than

the static polarization. It follows from (1.4) and (1.5)

that for g/3H/2kT « 1 we have

•Saturation of the "forbidden" paramagnetic resonance means
that the proton relaxation time is much larger than the time of the
transition induced by the external alternating magnetic field,

tth = tanh.
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This method was used in ^ to obtain a 60% polariza-

tion in a crystal having a volume of approximately 15

cm3, at Τ = 1.2°K, a constant field Η = 18.5 kG, and

an alternating-field frequency 70 Gc.

In this review we consider possible applications of

a polarized proton target in high-energy physics. The

use of a polarized proton target allows noticeable prog-

ress to be made in the measurement of polarization

effects in various reactions. For example, proton po-

larization in 7T-p and p-p scattering can be deter-

mined by measuring the left-right asymmetry of the

pions (nucleons) in the scattering of pions (unpolar-

ized nucleons ) by a polarized target. If the target is

not polarized, then the proton polarization is deter -

mined by means of a double experiment using the

asymmetry in the secondary scattering of the recoil

protons. We note that even in the first experiment on

π-ρ scattering from a polarized target ^ the proton

polarization was determined with higher accuracy than

in the double experiment'-6"8-', and at those angles at

which the measurement of the left-right asymmetry is

made difficult by the low analyzing ability of the ana-

lyzer target. The same method was used to measure

nucleon polarization in p-p scattering in the energy

range 1.7—6.1 GeV. In the case of nucleon-nucleon

scattering it becomes possible, for example, to replace

the triple experiment for determining the polarization

correlation by a measurement of the cross section for

the scattering of a polarized beam by a polarized tar-

get, etc.

A polarized target makes possible several experi-

ments not otherwise feasible. An example is the deter-

mination of the spin-flip parameters in π-ρ scattering.

It is clear that the performance of these experi-

ments will lead to noticeable progress in the determi-

nation of the scattering matrices and to a deeper un-

derstanding of the spin dependence of the interactions

between elementary particles.

The use of a polarized proton target offers more

possibilities in the study of inelastic processes, too.

The study of the reactions

with a polarized target permits a unique determination

of the parity of the strange particles C1O~UH.

Our analysis of the possible applications of a polar-

ized target will be based only on general requirements

of invariance under space rotations and reflections and

under time reversal. These requirements will be

treated in a separate section. We shall formulate on

their basis the main theorems used in the study of

polarization phenomena in strong interactions.

The authors hope that the review can serve as an

introduction to many problems connected with studies

of polarization phenomena.

2. THE "POLARIZATION-ASYMMETRY" RELATION
IN THE CASE OF POLARIZATION PERPENDICU-
LAR TO THE REACTION PLANE. THE BOHR RULE

We start with an elementary consideration of the

important relations that will be needed later on.

We consider first the scattering of spinless parti-

cles by polarized particles with spin V2, for example

the scattering of pions by a polarized hydrogen target.

Polarization of particles with spin V2 is defined as the

mean value of the operator σ = 2s (s —spin operator,

σ—Pauli matrices). This quantity describes com-

pletely the spin state of particles with spin V2. Let

Ρ = Pn0 denote the initial polarization of the target

particles. The initial and final relative momenta ρ and

p' (in the c.m.s.) define the scattering plane. We as-

sume that the vector n0 is orthogonal to this plane. We

shall agree to say that the particles are scattered to

the left if the vector product p x p ' is parallel to n0,

and to the right if ρ χ ρ' is antiparallel to n0 (Fig. 2).

If we align the ζ axis with ρ and the y axis with n0,

then the azimuthal angle φ is zero for left scattering

and φ = π for right scattering.

[ρ χρ']
P'

FIG. 2. a - Scattering to the left; b - scattering to the
right.

The state with polarization Ρ = Pn0 is described by

an incoherent "mixture" of two eigenfunctions χ+ and

χ_ of the operator (σ, n 0). If w+ and w_ are normal-

ized probabilities with which χ+ and χ. enter into the

mixture, then

From (2.1) and from the normalization conditions we

get

-=4<i-*>.j ( 2 · 2 )

Let cr m ' . m (9) and ση\'.ηι(θ)—differential cross sec-

tions for right and left scattering through an angle θ

and m and m' projection of the spin on n0 in the ini-

tial and final states. We then obtain for the differential

cross sections for scattering by a target with polariza-

tion Ρ

aL- β (θ) = w+ (σ£ *(θ) + σ£· « (θ)) + u>_ (σ ·̂ « (θ) + σ̂,_Η ( θ ) )

= γ (σ£ «(θ) + σ£·+« (θ) + σ£_» (θ) + σ^·« (θ))

(θ) + σ .̂+« (θ)-σ£*(θ)-σ£._*(θ)). (2.3)
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The following relations can be readily established be-

tween the cross sections for left and right scattering:

= σΗ , (θ).
—πι': — m V >

(2.4)

To this end we must use invariance under rotation. In-

deed, rotation through π about the initial momentum

transforms the final momentum of the right-hand scat-

tering into the final momentum of the left-hand scatter-

ing and vice versa, with the spin projections reversing

sign (Fig. 3). The first term in (2.3), which we denote

by ΟΊ)(Θ), is the cross section for scattering by an un-

polarized target. It is seen from (2.4) that this cross

section is the same for the left and right scattering.

[p xp'l

(I)

FIG. 3. The scattering (L) is obtained from (R) by a rotation
of π and ρ (the double arrows indicate the spin directions).

From (2.4) it follows also that the sign of the term in

(2.3) proportional to the target polarization Ρ depends

on whether the scattering is to the left or to the right.

The effect of target polarization can be consequently

investigated by measuring the difference in the cross

sections for left and right scattering. It is customary

to introduce the quantity

• ( θ ) = -
)—σΗ(θ) (2.5)

called the left-right asymmetry. From (2.3) and (2.4)

we obtain for the left-right asymmetry the expression:

)-σ£_ (0)]

σο (θ)
(2.6)

It was shown first by Wolfenstein^-15^ that the coeffi-

cient of Ρ in this expression is equal to the polariza-

tion of the recoil particles due to left-hand scattering

by an unpolarized target. In the case that we are con-

sidering, scattering of particles with spin 0 and V2, this

is a consequence of the invariance under space rota-

tions and reflections. From the foregoing invariance

requirements it follows, first, that the polarization,

which is the mean value of the spin operator, is a

pseudovector. If the target is not polarized, then the

vector product p x p ' is a unique pseudovector which

can be constructed from the physical quantities of the

problem. Thus, the final-particle polarization result-

ing from scattering by an unpolarized target is orthog-

onal to the scattering plane. In the case of left-hand

scattering the polarization is obviously equal to

L ^ ^ )-σ^_ (θ))<y, , σ (
(2.7)

At first glance this expression differs from that in

(2.6) [the cross sections σΚ(θ) and σίν(θ) have dif-

ferent signs in (2.6) and (2.7)]. However, from the in-

variance against rotations and reflections it follows

that in the case of elastic scattering σ+ _ (θ) = σ. + (θ )

= 0. This is easiest to establish by means of the rule

formulated by O. Bohr [ 1 4 ].

We derive this rule in the general case of a two -

particle reaction

a + b—*c + d. (2.8)

Bohr's rule follows from the invariance against re-

flection in the reaction plane. Let us assume that the

initial and final wave functions | p, M) and | ρ', Μ')

are eigenfunctions of the operator of projection of the

total spin on the direction normal to the reaction plane

(M and M' are the corresponding projections ). It is

obvious that the momenta ρ and p' remain unchanged

under reflection R in the reaction plane. Since the

spin is a pseudovector, its projections on the normal

direction likewise remain unchanged. Therefore

| p, M) and |p ' , M') are the eigenfunctions of the

reflection operator R. In order to determine the cor-

responding eigenvalues, we note that the operation of

reflection in the reaction plane can be represented by

a product of the inversion operation I (reflection at the

origin) and rotation Rn(7r) through an angle π about

the normal. Letting the operator R act on the initial

state, we obtain

iflp, Λί) —/?η(π)/| ρ, Μ) = /;/?„ (π) | — ρ, Μ)

Μ), (2.9)

where 1̂  = Ialk —product of the intrinsic parities of

the initial particles, and s —total spin operator. We

obtain analogously for the final-state function

R\p', ', M'), (2.10)

where If = lcl^. Owing to invariance under reflections,
the eigenvalues of R in the initial and final states
should coincide, and we arrive at the following selec-
tion rule:

J.einM = (2.11)

This is the Bohr rule. It relates the intrinsic pari-

ties of the particles participating in the reactions with

the projections of the total spin on the direction of the

normal to the reaction plane.

We now consider elastic scattering of particles with

spins 0 and V2. In this case Ij = If, and the possible

values of Μ = m and M' = m' are ±V2. As can be

seen from (2.11), this means that m = m' and scatter-

ing with spin-flip is forbidden: σ+_ = σ_+ = 0. Thus,

the left-right asymmetry (2.6) and the polarization

(2.7) are equal to
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4-(ο*+(θ)-(ΐί:_(θ))
σο (θ)

It is therefore evident that

(2.12)

(2.13)

(2.14)

This relation plays an important role in the analysis
of experiments with polarized particles. We shall show
below that (2.14) is valid also in the general case of
elastic collisions of polarized particles with spin V2 and
unpolarized particles with arbitrary spin. In deriving
(2.14) for our very simple case we make use only of
the requirement of invariance under rotations and re-
flections. It is therefore clear that (2.14) will hold
true also for arbitrary reactions of the type

0 + y - i . O + i (2.15)

(0 and V2 —particle spins ) if Ij = If.
It turns out that even if the total intrinsic parity

does change (Ij = -If), the left-right asymmetry in
reactions of the type (2.15) is completely determined
by the polarizations Ρ and Ρ^(θ). This can be read-
ily understood, as in the preceding case, by using
Bohr's rule. Indeed, if Ii = -If it follows from (2.11)
that m = — m', and reaction without spin-flip is for-
bidden: σ++ = σ__ = 0. It then follows from (2.6) and
(2.7) that

σο (θ)

(2.16)

(2.17)

From this we get

(2.18)

Thus, for arbitrary reactions of the type (2.15), the
left-right asymmetry is'-10-'

eLR(Q)=±PP%((>), (2.19)

where the " + " sign corresponds to Ij. = If and the
" - " sign pertains to the case Ij = -If. This relation,
which will be discussed in detail in what follows, makes
it possible to determine the intrinsic parities of par-
ticles in experiments with polarized hydrogen targets.

Let us proceed to consider elastic collisions be-
tween unpolarized particles with spin j and polarized
particles with spin V2. We shall assume, as before,
that the initial polarization is orthogonal to the scat-
tering plane. Obviously, the unpolarized particles with
spin j can be described by an incoherent "mixture" of
(2j +1) eigenfunctions of the operator of spin projec-
tion on the n0 direction. The weight with which each
function enters into the "mixture" is l/(2j+l). The
cross section for scattering to the left (to the right)
through an angle θ will be denoted by σ*^? μ ΐ η (θ)

(μ' and μ —projections of the spin j in the final and
initial states ). Then the differential cross sections
a L ( R )(0), averaged over the initial and summed over
the final spin states, are equal to

[ ' ~ 2 2/ + 1 Zl Vm'; urn
μ. μ'

τη, τη'

Σ
μ, μ',

(2-20)

Invariance under rotations leads to the relation

σμ-,η.: μ» ( θ) = σ*μ'->η"; -μ-m (θ)" (2.21)

Summing these relations over the spin projections,
we get

u', μ
πι', m μ

τη',νι

Σ *£. m . ; l l m (e)= Σ <(-",>;μ<-η>(θ)· (2.23)

The first relation signifies that the differential cross
sections for the scattering of unpolarized particles to
the left and to the right are equal to each other. From
the second relation it follows that the coefficient of Ρ
in (2.20) reverses sign when the scattering direction is
changed., Taking this into account, we obtain the follow-
ing expression for the left-right asymmetry

) _ ρ
2(2/
2(2/+1)σο(θ)

Χ Σ Κν ; μ + ( θ )+^- ; μ + ( θ )- σ μν ; μ-( θ )-^- ; μ -(θ)]·
μ', μ

(2.24)
When unpolarized particles are scattered the polari-
zation of the spin V2 particles is equal to

2(2/ + 1)σο(θ)

Χ Σ

(2.25)

It is easy to see that when j differs from zero the
Bohr rule does not forbid transitions with changes
in the spin-V2 projection, that is, Σ/σμ'±)μΤ(θ) are

β', β
generally speaking different from zero. In this case,
however, as was shown by Wolfenstein and Ashkin^16^
and by Dalitz^17], relation (2.14) holds for the left-
right asymmetry. To prove this it is necessary to
use besides invariance under rotations and reflections
also invariance under time reversal. As is well known,
in the case of the two-particle reaction (2.8), the in-
variance under time reversal relates the probability
of the transition from the state | α, ρ, μ, m) into the
state |/3, ρ', μ', m') with the probability of the in-
verse transition from |)3, - ρ ' , -μ', - m ' ) into
| α, - ρ , -μ, - m ) . Here a and β characterize the
type of particle participating in the reaction. In the
case of elastic scattering, the direct and the inverse
processes are essentially identical (a = β). They are
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(μ, m)

(-μ,-m)
-Ρ" t\

b

FIG.

/

[(-Ρ

4.

(-μ,
< » '

' ) χ (-ρ)] <

shown in Figs. 4a and b. The cross sections for the
scatterings shown in Figs. 4b and c are equal as a
result of invariance under rotations (it is obvious that
Fig. 4c can be obtained from Fig. 4b by rotating through
an angle π around p' and subsequent rotation through
TT —Θ around the normal to the scattering plane). On
the other hand, the cross sections of the scatterings
in Figs. 4a and b are equal because of the invariance
under time reversal. We arrive thus at equality of the
cross sections for the scatterings shown in Figs. 4a
and c:

i=P h

^μ'τη'; μτη (β

It follows from this that

; ]X'm'

σ μ'-
μ', μ

; μ - ( θ ) = Σ σ£._ : μ + (θ),

(2.26)

(2.27)

Thus, the cross sections for scattering with spin-V2

flip drop out from expressions (2.14) and (2.25) for the
asymmetry and polarization, and we arrive again at
(2.14).

In the general case of inelastic processes, equality
(2.27), together with relation (2.14), does not hold true.
We shall show below, however, that the left-right
asymmetry can be related in this case to the polariza-
tion produced in the inverse reaction. Let us consider
the process (2.8) under the assumption that the spin of
particle b is equal to %, and the spins of the remain-
ing particles are arbitrary. Denoting them by j a , Jc>
and jd respectively and proceeding as before, we ob-
tain for the left-right asymmetry in the reaction with
polarized particles b and unpolarized particles a the
following expression:

2(2ja+l)of'ab(d)

[°™(i>>V<<+>m ( ^ ~ C r m
md"1e; (->m ^ l ' (2.28)

where σ^α'<ίο(θ ) —differential cross section of the
process (2.8) in the case of unpolarized particles, and
Pb —polarization of particles b. From the invariance
under rotations and time reversal we see that the cross
sections of the direct process (2.8) and the inverse
process

c + d—>a-\-b (2.29)
are connected by the following relation:

^ w W ^ ^ w - W 6 ^ • (2-30)

With the aid of these relations we get from (2.28)

X (2.31)

where af"'ca(e) —differential cross section of the re-
action (2.29) with unpolarized particles. It is obvious
that the coefficient of Pb represents in this expression
the polarization P b

n v (9) of the particles b, resulting
from the inverse reaction (2.29), when particles c and
d are not polarized. We obtain therefore the following
relation^- 2 1]

'(Θ), (2.32)

which is a generalization of (2.14) to include the case

of inelastic reactions.

In deriving the fundamental relations (2.14), (2.19),
and (2.32) of this section, we have assumed that the po-
larization of the initial particles is perpendicular to the
reaction plane. Later on, when we formulate the in-
variance requirements for the reaction amplitude,
these relations will be generalized to include the case
of an arbitrary polarization direction.

3. SYMMETRY PRINCIPLES AND LIMITATIONS ON
THE FORM OF THE REACTION AMPLITUDE

We shall formulate first the invariance conditions

in the form of requirements which must be satisfied by

the S matrix.* The S matrix, as is well known, is de-

fined as the operator which transforms the initial wave

function of the system (t — - °° ) into the wave function

for t — + °° :

|ψ(+οο))=5|ψ(-οο)>. (3.1)

The form of this operator is determined by the inter-
action. If there is no interaction, then the wave func-
tion is independent of the time** and the S matrix
becomes equal to unity.

*The reader who wishes to obtain a better knowledge of in-
variance principles and their use in nuclear physics is referred
to the reviewsf22-24].

**The S-matrix (3.1) is defined in the interaction representa-
tion. In this representation the wave function | φ (t) > satisfies
the equation

dt

where H(t) is the interaction Hamiltonian. In the absence of the
interaction.

= 0.
dt
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We consider first space rotations. Let | ψ(ί)) be
the wave function of an arbitrary state in some refer-
ence frame, and | φ(ί))^ —the wave function describ-
ing the same state in a reference frame turned relative
to the initial system. The wave functions | ψ(ί)) and
| ^(t))j£ are related by the unitary transformation

|·ψ(ί))Β = ί/Η|ψ(ί)>. (3.2)

The unitary operator U R ( U R I J R = 1) depends, natu-
rally, on the angles characterizing the rotation of the
reference frame. We multiply (3.1) by UJJ from the
left. Taking (3.2) into account, we obtain

The wave functions | ^ ( + ° ° ) ) R and |^( — ° ° ) ) R describe
the final and initial states in the rotated reference
frame, and consequently by definition the operator
Uĵ SUJj1 is the scattering matrix in the new frame.

The postulate that the interactions are invariant
under rotations consists in stating that for arbitrary
rotations

m
(3.9)

uRsu-R

i=s. (3.4)

Inasmuch as the S matrix is determined by the dynam-
ics, we presuppose by the same token the independ-
ence of the dynamics of rotations of the coordinate
frame. The invariance conditions (3.4) can, obviously,
be written also in the form

Uri'SU —S (3 5)

In order to formulate the requirement of invariance
under space inversion, we consider, besides the initial
reference frame, a system whose axes are directed
opposite to the axes of the first system (if the initial
system is a right-hand system the second system is
left-hand). Let Uj be a unitary operator that acts on
the initial-state wave function \)p(t)) in the first sys-
tem to produce the wave function | ^ ( t ) ) j describing
the same state in the reflected system

[ψ(ί))ΐ = ε/7[ψ(<)>. (3.6)

The operator UjSUfJ is the S matrix in the reflected
reference frame, and the invariance condition with r e -
spect to reflections has consequently the form

T7-1CTT Ο /ο η\

υ ι ου j — ύ. (ό. ι)
We now proceed to formulate the conditions of in-

variance under time reversal. To explain the mean-
ing of the corresponding invariance requirements, we
turn first to the equation of motion. Let I ^ ( t ) ) be the
solution of the Schrodinger equation in the interaction
representation

where H(t)—interaction Hamiltonian. We take the
complex conjugate of (3.8), in which we replace t by
- t . We obtain

In the general case of particles with spin, H * ( - t )
* H(t), and consequently the function | ψ(—ί))* does
not satisfy the Schrbdinger equation. Let us assume,
however, that the interaction Hamiltonian is such that
there exists a unitary operator U-p that ensures the
fulfillment of a condition

•t)UY = H(t). (3.10)

(3.1D

It is then obvious that the function
= Ux| $ ( - t ) > * is also a solution of (3.8)

Thus, if the interaction Hamiltonian satisfies (3.10),
then alongside with the solution of the Schrodinger
equation | ^ ( t ) ) there always exists a solution | ψ(ί))γ
= ϋ χ | ip( — t))*. This solution describes the "inverted"
motion of the system. We shall explain the physical
meaning of the "inverted" solution later. Relation
(3.10) is the condition for the invariance under time
reversal. Let us explain now what conditions are im-
posed on the S matrix by invariance under time· rever-
sal. The S matrix for the second solution is the same
as for the first, since it is determined only by the in-
teraction operator and does not depend on the initial
state. We therefore have besides (3.1)

(3.12)

that is,

UT | ψ ( - co))* = SUTΙ ψ ( + oo)>*.

Multiplying this relation from the left by U-p , we ob-
tain

>)>*. (3.13)

On the o t h e r hand, mult iply ing (3.1) f rom the left by S + ,

us ing the uni tar i ty of the S m a t r i x

S+S = I

and taking the complex conjugate, we obtain

|ψ(-οο)>-· = 5Ίψ(+οο)>·. (3.14)

The symbol ~ denotes in this case the transpose. Com-
paring (3.13) with (3.14) we obtain finally

U'TSUT = (3.15)

From conditions (3.5), (3.7), and (3.15) follow rather
stringent limitations on the possible form of the S-
matrix elements.

Before we formulate these limitations, we note that
in the problems which we consider (scattering or reac-
tion ) the particles do not interact and have definite
momenta as t —•-<». We denote such a state by | i ) .
We are interested in the probability of observing par-
ticles with definite momenta as t — +°° (state | f ) ) .
In order to separate that part of the matrix element
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(f | S 11) which is caused by the interaction, we repre-
sent it in the form

{f\S\i)=(f\i)-2mf>(q-Q>)6(E'-E)Tfi. (3.16)

Here Q', E' and Q, Ε are the total momentum and en-
ergy of the final and initial states; the δ-functions en-
sure conservation of the total momentum and energy.
The square of the modulus of the second term gives
the probability of the transition induced by the inter-
action from the state | i) into the state | f). The ma-
trix element Tj j can be represented in the form

Τα=(χ·Τ(ρ', Ρ) χ). (3.17)

Here ρ and ρ' —initial and final relative momenta, χ
and χ'—spin functions of the initial and final particles,
and T(p', p) —matrix acting on the spin variables. The
matrix T(p', p) is determined, naturally, by the dy-
namics of the process. Let us ascertain what general
limitations are imposed by the invariance require-
ments on the form of this matrix. We start with rota-
tions. From (3.5) we obtain

</1 S | i) = </ I UR

lSUR I i> = « < / I SI i)R, (3.18)

where R and | f ) R are the wave functions of the
initial and final particles in the rotated reference
frame. It is obvious that if the state | i) describes
particles with total momentum Q and relative mo-
mentum p, then the state | i )^ describes the same
particles with momenta QR and p^:

(3.19)

Here a^ —cosine of the angle between the new axis i
and the old axis I.

Relation (3.18) states the equality of different ma-
trix elements of the same operator. From (3.16),
(3.17), and (3.18) we obtain

ρ)χ). (3.20)

Here χ^ and χ^ are the initial and final spin func-
tions in the new reference frame. The functions χ and
χ^ (χ' and χ^) describe the same spin state in differ-
ent systems. They are therefore related by the uni-
tary transformation

XR = (3.21)

The unitary matrixes uj^ and upj act on the spin vari-
ables and depend on the angles of rotation. If the spins
of both initial (final) particles differ from zero, then
the function χ(χ') is the product (or the sum of prod-
ucts ) of the spin functions of the individual particles.
The matrix UR(UR) is in this case a direct product of
matrices acting on each spin function separately.

The mean value of the spin operator should trans-
form under rotation like a vector, that is,

where ŝ  —spin operator of any of the initial particles.
It follows therefore that the matrix Uĵ  satisfies the
relations

It is also clear that the matrix u^ satisfies analogous
relations.

From (3.20) and (3.21) we obtain

pR) uR = Τ (ρ', ρ). (3.23)

This is the condition which must be satisfied by the Τ
matrix as a result of invariance under space rotations.

We now proceed to consider the inversion of the co-
ordinate frame. If pj and pj are the initial and final
relative momenta in the new reference frame and Xj
and xj are the initial and final spin functions in the
same frame, then

Pi = - P. Pi = - Ρ

(3.24)

where uj is a unitary matrix satisfying the relations

u ] 1 s i u I = Sj. (3.25)

Analogous relations hold true for the matrix Uj. The
conditions (3.25) follow from the fact that the mean
value of the spin operator should transform like a
pseudovector.

The action of the operator Uj on the function | i)
consists in the substitutions ρ — pj, Q — Qj, and
χ — Xj and multiplication of this function by a factor
whose modulus is equal to unity. From the superpo-
sition principle it follows that this factor is the same
for different states of the given particles. Consequently,
it characterizes their intrinsic properties. It is cus-
tomary to call this operator the intrinsic parity. If the
reference frame is inverted twice, we return to the
initial system. The wave function of the particle with
integer spin then coincides with the initial wave func-
tion, and the wave function of particles with half-inte-
ger spin either coincides with the initial one, or dif-
fers from it in sign (the latter is connected with the
fact that two-fold inversion can be regarded as an iden-
tical transformation and a rotation through an angle 2π,
which, as is well known, leads to sign reversal for par-
ticles with half-integer spin). This means that the in-
trinsic parity of Bose particles can be equal to ±1,
while the intrinsic parity of Fermi particles can be
equal to ± 1 or ±i. From (3.7) we obtain for the ma-
trix elements

( f \ S \ i ) = I { f \ S \ i ) I . (3.26)

From this we get

(χ'+7>'> P)x) = IiIHxi+T(-p', -p)x,), (3.27)

where I^(If) —product of the intrinsic parities of the
initial (final) particles.

Thus, we ultimately obtain from the invariance
under reflections
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Γ(ρ\ ρ)= (3.28)

We note that the product Ijlf can be equal only to ± 1 .
We now proceed to clarify the consequences of in-

variance under time reversal. Multiplying (3.15) from
the right by | f) * and from the left by | i ) , we obtain

ll C I / \ 14 V \ i \ /Q *? Q\
γ{1 Ο | J )T = \ J LJ | I ) . \O.Δ&β

When t is replaced by - t , the momentum and the an-
gular momentum reverse sign. Therefore the "t ime
inverted" state | i ) T = U T | i>* (| f ) T = υ χ | f)*) differs

Here T i n v ( - p , - p ' ) —matrix of the inverse process
(f—• i ) , χ τ = u T x*, χ τ = u'Tx'*, u T and u'T—unitary
matrices, and ηχ and ηχ—factors with unity absolute
value (the time parities of the initial and final states).
The matrix ux is defined by the requirement that the
mean value of the spin reverse sign under time r e -
versal:

= ~X+Si%- (3.31)

Urp satisfies the condition
l=-Si. (3.32)

satisfied by the matrix ιι'Ύ.

It follows therefore that

Analogous relations are
From (3.30) we obtain

Τ (ρ', ρ) = uYTos (- ρ, - ρ') u'tt\Tr\T*. (3.33)

Relation (3.33) connects
inverse processes. For

inv
= T > UT = U T>

this case a limitation on
trix*:

T(p', p) = «i

the matrices of the direct and
the elastic scattering process

T* = l j a n d (3-33^ represents in
the form of the scattering ma-

- Ρ , - ρ ' ) « Γ . (3.34)

4. SPIN DENSITY MATRIX

So far we have assumed that the spin state of the
initial and final particles is described by wave func-
tions. Under ordinary experimental conditions, how-
ever, the spin state cannot be described by a wave
function, or more accurately speaking it cannot be de-

*If we carry out a rotation by an angle π around the direction
p' - p, then, using (3.22), we can rewrite (3.34) in the form

f (p', p) = uf'u^T (p\ p) uTuR.

In the usual Pauli-matrix representation «τ = —£o2 = exp ^—^ σ2Λ J

and coincides with the operator of rotation through an angle
(-π) about the y axis. If the y axis is aligned with p' — p,
then f-TfiR = 1 together with condition (3.34) is transformed
into the T-matrix symmetry requirement: T"(p'p) = Τ(ρ', p). This
formulation of the T-invariance condition belongs to the late
L. D. Puzikov.

scribed by a single wave function, but is described by
a density matrix or by a "mixture" of wave functions.
Let us proceed to determine the density matrix'-25"26-'.
We consider a beam of particles with definite momen-
tum. It is obtained as a result of interaction with some
subsystem. If we assume that the entire system as a
whole is described by a wave function, then after the
interaction that leads to the formation of the beam the
wave function of the entire system can always be rep-
resented in the form

from the state | i ) (| f)) in the signs of the momenta ψ (ζ, σ, ξ) =
and of the spin projections. From (3.29) we obtain

(ί-Γ ο 6(-ρ, -p')Xr)· (3.30) X ^^

( 2 π ) 3 / 2

(2a)1'
Jpx,φ (σ, (4.1)

Here χ»(σ) —spin functions of the beam particles,
ψη(£ ) —wave functions of the subsystem, and the co-
efficients a^n do not depend on the time and are de-
termined by those interactions which have led to the
formation of the beam. We assume that the functions
Χμ(σ) and ψη(ξ) are orthonormal and comprise a
complete system. The state of the subsystem is of no
interest to us. Therefore, in calculating the mean
values of the operators acting on the variable σ, it is
necessary to carry out integration (summation) with
respect to ξ. Let Ο be an arbitrary operator acting
on the variable σ. Integrating with respect to ξ and
assuming that the function φ (σ, ξ ) is normalized, we
obtain for the mean value (O)

(O>= Σ
μ, μ'
σ, σ'

where

μ' — 2j ^μη^μ'η-

If we introduce a matrix ρ with elements

βσσ·= Σ χμ(σ)Χμ·(σ')εμμ-,
μ, μ'

(4.2)

(4.3)

(4.4)

then the average value of the operator Ο is equal to

α, σ '

The matrix ρ is called the density matrix. The condi-
tion for normalization of the function φ (σ, | ) leads to

S p e = l. (4.6)

In the case when φ (σ, ξ) is not normalized, the mean
value of the operator Ο is

(4.7)

The mean value of any operator acting on the variable
σ can be obtained if the matrix ρ is given. Thus, the
density matrix (4.4) describes completely the spin
state of the beam particles.

We note that the spin state of the beam can be de-
scribed by a wave function only when the wave function
of the entire system φ (σ, ξ) is represented by a prod-
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uct of the wave functions of the parts of the system

[one term in the expansion (4.1)J:

φ (σ, ξ) = χ(σ)ψ(|).

The density matrix of such a state is

Qoa- = χ (σ) χ* (σ'),

and the mean value of the operator Ο is

(4.1a)

(4.8)

(4.9)

It is obvious from (4.9) that the spin state of the beam
is completely described by the wave function χ. Such
states are called pure.

Let us list the main properties of the density ma-
trix, which follow from (4.4), (4.3), and (4.8).

1. The density matrix is Hermitian:

ρ=ρ+. (4.10)

thus guaranteeing the reality of the mean values of the
Hermitian operators.

2. The density matrix of the pure state (4.8) satis-
fies the relation

ρ2 = ρ Sp ρ.

We therefore obtain for a pure state

(4.11)

(4.12)

3. In the general case

(4.13)

As already noted, the ground state of the beam is
described by a single wave function in the case when
the wave function of the entire system is of the form
(4.1a). We shall now show that in the general case the
spin state can always be described also by a set of sev-
eral incoherent spin functions (mixture ). To this end
we write down the equation for the eigenfunctions and
eigenvalues of the density matrix

:)- (4.14)

Multiplying (4.14) by u * ^ ' ) , summing over μ, and

using the completeness of the system of functions

In addition, we can show with the aid of (4.14), (4.3),

and (4.4) that the eigenvalues are positive:

ρμ>0. (4.18)

Relations (4.16), (4.17), and (4.18) signify that the spin
state of the beam is described in the general case by
an incoherent mixture of functions u^, which enter
into the mixture with probability p^.

By way of an example let us consider the simplest
case of particles with spin V2· The density matrix is
in this case a 2x2 matrix, and consequently can be
expanded in four basis matrices. It is convenient to
choose as the basis the matrices I and σ .̂ We obtain
the expansion

ρ = ε + Σ^σ» (4.19)
i

where c and dj —real numbers (hermiticity of p).

Normalizing the matrix (4.19) we find that c = l/2. On
the basis of (4.5) and (4.19) we get

j(ai)= ~Sp GiQ^di. (4.20)

The mean values (σι) form a pseudovector which is
called the polarization. Introducing the notation Ρ
= (σ), we write down the matrix (4.19) in the form

ρ = 1(/4-(σΡ)). (4.21)

Thus, the spin state of particles with spin l/2 is com-
pletely specified by the polarization P. From the in-
equality (4.13) we find that Ρ = | Ρ | (degree of polar-
ization) does not exceed unity:

P<A. (4.22)

According to (4.12), the degree of polarization is equal
to unity for a pure state. The state with Ρ = 0 is
called unpolarized.

We now turn to consider collision processes and
obtain a connection between the spin density matrices
of the initial and final states. For what follows it is
convenient to use the representation of the initial den-
sity matrix in the form of a mixture

(4.23)

we obtain

(4.15)

The new value of the operator O, calculated with the
aid of (4.15), is

= Σ Ομ («£ (4.16)

From the condition for the normalization of ρ it fol-
lows that

Σρμ = ΐ· (4.17)

On the basis of (3.16), (3.17), and (4.23) we obtain,
after averaging over the initial spin states and sum-
ming over the final spin states, the following expres-
sion for the cross section:

μ. μ'

1 1

~(2nW~TSpT^P ' P^e° (p ' ' P)°(E —E)p2dp dQ'.
(4.24)

Here j0—current density of the initial particles. In
(4.24) we can easily integrate with respect to p'. After
integration we obtain the following expression for the
differential cross section:
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= (2a) SpT(p', ρ)ρ0Τ
+(ρ', ρ), (4.25) malized initial density matrix is equal to

where ν' and ν —differences in the velocities of the
final and initial particles in the c.m.s. It is convenient
to introduce a matrix M(p', p), which differs only by
a factor from T(p', p) and is defined in such a way
that the differential cross section is

a = S p M ( p \ p)Q0M
+(p\ p). (4.26)

We now proceed to construct the final-state density
matrix. If the initial particles are described by a func-
tion χμ, then the spin function of the final particles is
equal to

Ρ)Χμ)· (4.27)

Using the completeness of the functions χμ', we can
write down the function χ' in the following fashion:

χ'=Μ(ρ', ρ)χμ. (4.28)

On the other hand, if the initial state is described by
the density matrix (4.23), then the final density matrix
is

Q = 2 ί-Μχμ) 6μ(Μχμ)+ — MQ0M
+. (4.29)

μ

The final density matrix is normalized in such a way
[ see (4.26)] that the sum of its diagonal elements is
equal to the differential cross section. On the other
hand, the mean value of the operator Ο in the final
state is, in accordance with (4.7), (4.29), and (4.26),

(0) = (4.30)

5. THE "POLARIZATION-ASYMMETRY" RELATION
IN THE CASE OF ARBITRARY POLARIZATION
DIRECTION

From conditions (3.23), (3.28), and (3.33) we can ob-
tain a general expression for the Μ matrix of any
process. Wolfenstein and Ashkin^16^ and Dalitz^17^
have shown, on the basis of the general expression for
the elastic-scattering amplitude, that the left-right
asymmetry in the scattering of polarized particles with
spin V2 by unpolarized particles with arbitrary spin is
equal to the scalar product of the initial polarization by
the polarization of the particles with spin V2 occurring
in the scattering of unpolarized particles. As was al-
ready emphasized, this relation is the basis of the
analysis of polarization phenomena and enables us, in
particular, to determine the polarization of particles
by measuring the left-right asymmetry. We obtain the
"polarization-asymmetry" relation in the case of the
two-particle reactions (2.8) by using directly the in-
variance requirements (3.23), (3.28), and (3.33). We
assume that the spin of the initial particles is equal
to V2 and the spins of all the remaining particles are
arbitrary. If only the particle with spin V2 is polarized
in the initial state (with polarization Ρ), then the nor-

(5.1)

where s —spin of the second initial particle.* With
the aid of (4.26) we obtain the following expression for
the differential cross section of the process:

(PSpitf(p-, p)

where

·2)

(5.3)

is the differential cross section in the case of unpolar-
ized initial particles. We now show that by virtue of
the invariance requirements with respect to time re-
versal, rotations, and reflections, the ratio

Sp A/(p',p) ρ)
SpJf(p', p")M+(p',p) ( 5 ' 4 '

is equal to the polarization of a spin-V2 particle pro-
duced by the inverse reaction with unpolarized par -
tides. We use first the requirement (3.33). If we take
into account the proportionality coefficient between the
matrices M(p', p) and T(p', p), then we can rewrite
(3.33) in the form

pM(p', p)=p'itx1Mo6( —p, — p')ui

From this we get

Sp Μ (ρ', ρ) αΜ+ (ρ', ρ)_ ρ', ρ)σΜ(ρ', ρ)
Sp Μ (ρ'," ρ) Μ+ (ρ', ρ) sp Μ+ (ρ', ρ) Μ (ρ', ρ)

S p J W - ρ , - ρ ' ) Μ & ν ( - ρ , - p ' ) c ( 5 5 )

Thus, relation (5.4), taken with a negative sign, is
equal to the polarization of particles with spin V2, pro-
duced in the inverse reaction upon collision with un-
polarized particles (the initial and final momenta in
the inverse reaction are - p ' and -p, respectively).
We introduce the unit vectors k = ρ/1 ρ | and k'
= ρ / | p' | and denote the polarization produced in the
inverse reaction by

(-P.-P')M+n v(-p, —p' inv
(5.6)

From the invariance of the reaction matrix under ro-
tations and reflections [relations (3.23), (3.28), and
(3.22), (3.25)] it follows that the polarization (5.6) is
a pseudovector, that is,

*The beam and the target are usually prepared independently
of each other. Therefore the density matrix of the initial state
will be the direct product p b x ρχ of the density matrices of the
beam and of the target. In our case the target is not polarized
and the target density matrix is proportional to the unit matrix
Pt = [l/(2s + 1)11. The proportionality coefficient in this expres-
sion is determined by the normalization condition. The beam
density matrix p t is given by the polarization ρ and its form is
(4.21).
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Pjnv(-k, _k')=/>Jnv((kk'))[k'k]. (5.7)

We therefore get

P T ( - k , -k') = - P T ( k \ k). (5.8)

Thus, the ratio (5.4) is equal to + PJn v(k', k) and we

obtain ultimately for the differential cross section of

the direct reaction

ized perpendicular to the plane of the reaction this re -

lation takes the form [see (2.19)]

a=a 0 ( l + (PPioy(k', k))).

Consequently the left-right asymmetry is equal

(5.9)

(5.10)

In the case of elastic scattering, the direct and inverse

reactions coincide and Pjn v(k', k) is the polarization

that would be produced if the incident particles were

not polarized.

6. POSSIBLE METHODS OF DETERMINING THE

PARITIES OF STRANGE PARTICLES IN POLAR-

IZED-TARGET EXPERIMENTS

The determination of the intrinsic parities of Κ

mesons and hyperons is one of the important problems

in elementary-particle physics. In connection with

parity non-conservation in all weak processes, includ-

ing strange-particle decays, the intrinsic parity of the

hyperons and Κ mesons can be determined only by in-

vestigating the strong and electromagnetic interactions

responsible for their production and mutual transfor-

mations. Perhaps one of the most interesting applica-

tions of a polarized hydrogen target in high-energy

physics is in possible experiments on the determina-

tion of the intrinsic parities of strange particles in the

reactions

= (A, Σ)
(6.1)

with polarized protons. This possibility was pointed

out in Clo-133. The connection between the intrinsic

parities and the polarizations of the particles partici-

pating in the reaction was discussed in general form in

an already cited paper ^ u ^ . The possibility of deter-

mining the parities of strange particles in investiga-

tions of reactions (6.1) with polarized protons is based

only on the general requirements of invariance under

rotations and reflections, and is not connected with any

concrete assumptions concerning the dynamics of the

interactions.

One of the possible formulations of the experiment

is based on the relation between the left-right asym-

metry eLR(#) in a reaction with a polarized target,

and the polarization Pjp produced upon collision of

unpolarized particles, a relation which holds in the

case of reactions of the type 0 + J/2 —*" 0 + V2 (this type

includes the reactions (6.1) of interest to us, since the

K-meson spin is zero and the 2 and Λ hyperons have

spin V2)· We recall that in the case of a target polar-

eLR
= ± ppL (6.2)

where Ρ —degree of polarization of the target. By de-

termining which of the possible alternatives actually

takes place we can determine the parity of the (KY)

pair relative to the proton. To this end it is necessary

to compare the results of two independent experiments

performed at the same energy. One experiment should

yield the polarization of the proton in a reaction with

an unpolarized target. In the second it is necessary to

measure the asymmetry in a reaction with a polarized

target. In principle it is sufficient to compare only the

signs of eLR(# ) and Ρ^(θ). If the signs coincide ΙπΙρ

= ΙχΙγ, if they are opposite Ι π Ι ρ = - I K Iγ.

It is also possible to use a modified formulation of

the experiment. To understand the latter, we assume

first that we have at our disposal protons that are fully

polarized in the direction n0. As before, we consider

the reaction (6.1) in a plane perpendicular to the polar-

ization direction. Then from the Bohr rule [see (2.11)]

it follows immediately that the hyperons emitted at an

arbitrary angle θ will be completely polarized and

their polarization will coincide in direction with the

proton polarization, if Ιχΐγ = Ιττίρ (forbidden reaction

with spin flip), and will be opposite to that direction if

IJJIY = -Ijj-Ip (forbidden reaction without spin flip).

Thus, a determination of the direction of hyperon po-

larization occurring in a reaction with completely po-

larized protons, and a comparison of this direction

with the direction of polarization of the target, also

leads to an unambiguous conclusion concerning the

parity of the (KY) pair. The situation does not change

essentially if the protons are only partially polarized:

Ρ = Pn0. It is merely necessary to carry out a suit-

able averaging. Indeed, the average polarization of the

hyperons* emitted at an angle θ in a plane perpendic-

ular to n0, either to the right or to the left, can be

readily verified with the aid of (2.4) to be

; T-J j . (Q 3 )

«1_-(-(θ)+σ__ (θ) + σ£ f (θ) + σ';__ (θ) * '

Using the Bohr rule (2.11) we obtain from (6.3)

:±A IKIY = ±IJV (6-4)

As in the case of fully polarized protons, the average

*The average hyperon polarization is determined by the equa-
tion

-vfr. (θ)+Λ'ί (θ)—.vf: (θ)—τν« (θ)

-Vt (Θ) -r Λ'̂  (θ) -j- Λ'Ί (θ) + JV" (θ)

where N + L (δ) — number of hyperons emitted at an angle θ to
the left with a spin parallel to no, etc. With such an averaging,
the terms corresponding to the polarization due to collision of
unpolarized particles drop out from the expression for the final
polarization.
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polarization of the hyperons is either equal to the pro-
ton polarization (Ικ;Γγ = Mp)» o r i s e q u a l in magnitude
but opposite in direction (ΙκΚγ = — Iirlp)·

Let us forego now the assumption that the target is
polarized in a direction orthogonal to the reaction
plane, and let us derive formulas that are valid in the
general case. To this end it is simplest to use the for-
malism of the density matrix and scattering amplitude,
developed in Sees. 3—5. The density matrix of the ini-
tial state in reactions (6.1) takes the form

Q=y(/-f(oP)), (6.5)

where Ρ —polarization of the hydrogen target.
The differential cross section of the reaction on the

polarized target is

Sp M<JAf+
σ(θ, φ) = Sp M Q M + = σ0 (θ)

SpiHM+
(6.6)

where σ0 —cross section of the reaction with unpolar-
ized target. On the other hand, the hyperon polariza-
tion Ρο(0,φ), produced upon collision of unpolarized
particles, is connected with the reaction amplitude by
the relation

(6.7)

The matrices σ and Μ in general do not commute.
Therefore the traces Sp ΜσΜ+ and Sp σΜΜ+, which
enter into the expressions for the cross section and
the polarization, are generally speaking not equal to
each other. However, they are simply related by the
requirements of invariance under reflections and ro-
tations. These requirements signify above all that
these traces are pseudovectors. Consequently

(6.8)
Sp ΜσΜ+ = η Sp Μ (ση) Μ+,
Sp σΜΜ+ = η Sp (ση) ΜΜ+,

where η = p x p ' / | p x p ' I —normal to the reaction plane.
We now effect a reflection in the reaction plane. The
vectors ρ and p ' go over into themselves, and the con-
dition for the invariance of the Μ matrix takes the
form

±ΛΤ(ρ\ ρ) (IKir=±IJP). (6.9)

Inasmuch as in the case of particles with spin V2 the
reflection operator R is equal to (σ·η), relation (6.9)
signifies that the operator (σ·η) commutes with the
Μ matrix in the case when Ιχΐγ = Ιττίρ. an<i anticom-
mutes in the case when Ιχΐγ = -Ιττίρ- It follows from
this and from (6.8) that

(ΙκΙγ=± IJp). (6-10)

For the differential cross section of the reaction we
obtain from (6.6), (6.7), and (6.10)

σ = σ0(1±(ΡΡ0)) (/ κ /γ=±/π/ Ρ ) . (6-11)

The left-right asymmetry is thus equal to

KIY=±IJV), (6.12)

where Po is the polarization produced in scattering to
the left. From (6.7), (6.8), and (6.12) we see that the
absolute value of the asymmetry is maximal if the po-
larization of the target is parallel (or antiparallel) to
the normal to the reaction plane.

Thus, the case considered previously, that of initial
polarization orthogonal to the reaction time, is the
most convenient from the point of view of asymmetry
measurement.

We now proceed to consider hyperon polarization
for arbitrary target polarization direction. We con-
sider only the connection between the hyperon polari-
zation, averaged over all the emission directions (over
the directions p'), and the target polarization. The av-
eraged polarization ( Ρ γ ) is determined by the rela-
tion

j Sp MQM+O dil

\ Sp MQM+ dQ
(6.13)

The integration is carried out here over all the direc-
tions p', and dil is the corresponding solid-angle ele-
ment. The general expression for ( Ρ γ ) can be readily
written out on the basis of the invariance requirements.
Indeed, ( Ρ γ ) should be a pseudovector constructed
from the initial momentum ρ and P. As can be seen
from (6.13), ( Ρ γ ) can depend on Ρ only linearly.
Consequently

(P y) = aP + P(Pk)k, (6.14)

where a and β —functions of the energies of the in-
coming particles, the specific form of which depends
on the dynamics of the interaction. However, the sign
of a does not depend on the dynamics. It turns out
that a is positive when Ιχΐγ = Ιπίρ a n ( 3 negative when
IKJY = -Iirlp· Consequently, if the target polarization
is perpendicular to the momentum of the incoming par-
ticles, then comparison of the signs of Ρ and ( Ρ γ )
makes it possible to determine the parity of the (KY)
pair.

To prove this, we shall use the general expressions
for the reaction matrix, which can be obtained from the
invariance conditions formulated in Sec. 3. In the case
when the intrinsic parity does not change, the Μ matrix
is a scalar

Μ = (ση), (6.15)|[kk']| ·

When the intrinsic parity changes, the reaction matrix

is pseudoscalar

= c(ok) + d(ax), x = —\φ^γ\—· (6.16)

In (6.15) and (6.16) k and k' are unit vectors in the
directions of the initial and final relative momenta,
while a, b, c, and d are functions of the energy and
(k· k') = cos Θ. Calculating with the aid of these ex-
pressions the traces contained in (6.13), and integrat-
ing over the directions k', we arrive at the following
expressions for the coefficient a:
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\a\ZdQ \a\2dQ
>0, (6.17a)

II. IKIY=-IJP,

| c I» dQ f I c is da

V J
0 · (6.17b)

We now turn to a discussion of an experiment con-
sisting of a comparison of hyperon asymetry and po-
larization measured in independent experiments. At
the present time one of these experiments has already
been carried out: the hyperon polarization produced in
collisions between unpolarized particles was deter-
mined for several values of the energy.

Thus, for example, the reaction

π~+ρ->Α + Κ° (6.18)

was investigated over a wide range of incoming-pion
momenta. Information on the magnitude and sign of
the polarization of the Λ hyperons was obtained by
studying their decays. The angular distribution of the
protons from the decay of a polarized hyperon is of
the form*

>stf), (6.19)

*Owing to parity nonconservation in Λ-hyperon decay
Λ —» n-+p

the amplitude of the decay is a combination of a scalar and a
pseudoscalar ( s , and pi. :vaves in the final state) and is of
the form '2 h

M = a+b(ak),

where a and b are constants characterizing the decay, and k
is a unit vector in the direction of the proton momentum. If the
hyperon is polarized, the initial density matrix is

where ρΛ =
ΡΛη — hyperon polarization (n — unit vector in the polarization
direction). For the decay probability W we obtain

l—aAPA cos 0),

where WQ = |a | 2 +|b | 2 — probability of decay of an unpolarized
hyperon, cos ϋ = (n.k), and the asymmetry parameter a\ is deter-
mined by the interference of the s t and p, waves, being equal to

2 Re η 6*
(,,2

In the decay of unpolarized hyperons, the neutrons will be longi-
tudinally polarized and the degree of their polarization is (—α-Λ)·
Indeed, the proton polarization P p is

„ Sp aMM+ _ 2Re«i*

As can be seen from these arguments, the degree of polarization
of the hyperons can be determined by investigating the asymmetry
of the decay product, provided the parameter «Λ is known. Its de-
termination calls in turn for a measurement of the longitudinal
polarization of the recoil protons in the decay of the unpolarized
Λ hyperon. These arguments obviously apply to non-lepton decay
of any hyperon with spin 1/2.

where £ —angle between the proton momentum and the
direction of the hyperon polarization P^ (we recall
that the hyperons are polarized perpendicular to the
plane of their production). It is seen from this that a
study of the asymmetry of the angular distribution
yields the product a\P\. The coefficient of asymme-
try ( - « Λ ) * S connected with the hyperon decay mech-
anism and is equal (see the last footnote) to the longi-
tudinal proton polarization produced in the decay of un-
polarized hyperons. The longitudinal polarization of
the protons, and consequently also a\, have already
been determined experimentally. The method of deter-
mining the longitudinal polarization is based on the fact
that protons polarized in the direction of their momen-
tum in the hyperon rest system will, generally speak-
ing, have a transverse polarization component in the
laboratory frame (relative to the direction of their
momentum in the laboratory frame). This transverse
component can be determined by investigating the azi-
muthal asymmetry in the scattering of protons by a
nucleus of known analyzing ability, for example car-
bon. Since the Λ particles obtained in the reaction
(6.18) are polarized, to obtain unpolarized hyperons
it is necessary to carry out averaging over all the
orientations of the plane of their production. The most
exact value a^ = -0.60 ± 0.07 was obtained by Cronin
and OversethE27] from an analysis of 1156 cases of the
scattering of protons in carbon plates placed in a spark
chamber. The values of a\ obtained by other authors
are listed in Table I, which is borrowed from the re-
view article delivered by Crawford ^ at the 1962
Geneva Conference.

Authors

Cronin and
Oversethf27],

Gray et al[29]

Beall et al[30]

Birge and Fowler["]

Boldt et al[32]

Table

Λ-particle
source

n--rP

K' + Ue

Jt~+ propane

Jl~-{- iron

I

Detector

Spark
chamber

Helium
bubble
chamber

Spark
chamber

Propane
bubble
chamber

Cloud
chamber

«A

—0.62±0.05

-0.66±0,25

A R 7 J _ 0 · 1 3

-0.67± 0 _ 1 7

—0.45±0.40

°-8a±0.21

*The articles are arranged in reversed chronological order. The
earliest data of Boldt et al are now considered incorrect.

A negative value of a^ signifies that the protons
have longitudinal helicity and the protons produced in
the decay of a polarized Λ hyperon are emitted pre -
dominantly in the direction of the polarization V\.

Knowing a/^ we can determine P^ on the basis of
the measured values of a\Pj^. Thus, at a pion energy
Τπ = 783 MeV, the average polarization Ρ̂ γ is ap-
proximately 70% and is directed along (-ρ π ) x ΡΛ· Κ
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is close to this value also when Τπ = 871 MeV. The
total cross sections of the reaction (6.18) at these en-
ergies are equal to (0.14 ± 0.01) χ ΙΟ"27 cm2 and
(0.56 ± 0.04) x 1O~27 cm2. Details on the cross sec-
tions and polarizations at these energies are given
in I-33-! where earlier papers are cited. According to
the data of the Crawford group C3*] at a pion momentum
1035 MeV the cross section amounts to (0.73 ± 0.028)
χ 1O~27 cm2, and the polarization at 90° (c.m.s.) is
close to 100%. This indicates the pion energies at
which experiments on the parity of the (ΛΚ) system
are best carried out.

A study of the reaction

π+ + ρ->Σ+ + Κ+ (6.20)

with a polarized hydrogen target makes it possible not
only tc determine the parity of the (Σ+Κ+ ) pair, but
also the relative parity of the Σ and Λ hyperons, if
the results of experiments on the reaction (6.18) are
known. From among the various Σ-hyperon decays,
only the process Σ+ —• ρ + π° is characterized by an
essentially nonvanishing asymmetry coefficient. Ac-
cording to the latest data[28>3o:i

+ 0.08
ao = O.78 _ 0 0 9

Analogous coefficients for other Σ-hyperon decays
are™

α+ (Σ+ -> η + π+) = 0.03 ± 0.08,

I =0.16 ±0.21.

According to Cork et a l ^ the polarization of the hy-
perons in (6.20) at Τπ = 990 MeV is close to 100%.
However, the hyperon polarization in the same reac-
tion is very small at Τπ = 1090 MeV[36: i.

If the spin of the Ξ~ hyperon is equal to l/2, then the
parity of the (Ξ~ρ) pair can be determined from the
reaction

Κ- + ρ-*Ξ- + Κ+. (6.21)

Assuming that the spin of Ξ" is V2. we know both the
asymmetry coefficient aw (the decay Ξ" —·· Λ + π" )
and the energy at which the Ξ "-hyperon polarization
is large. The most accurate value of av is'-28-'

05 = 0,62 ±0.11.

The polarization of Έ~ hyperons is close to 100%, for
example, at a K~-meson momentum 1800 MeV/c.C37^

So far we have considered possible methods of de-
termining the parity in reactions of the type

(6.22)

with a polarized target (0 and % —particle spins ).
We now consider briefly reactions of the type

±+±_>o+o. (6.23)

We shall show that the measurement of the total cross

section of a reaction such as (6.23) with a polarized
beam and a polarized target, and a comparison of the
result with the total cross section of the same reac-
tion with unpolarized particles, also make it possible
to determine the intrinsic parities of the particles E383.

Indeed, the total cross section of the reaction (6.23)
is of the form (see Sec. 7 )

(6.24)

where Pj and P2 —polarizations of the beam and of
the target, σ\, σ\, and σ8 —total cross sections of the
reaction from the triplet state with projection 0, trip-
let state with projection +1, and singlet state respec-
tively. Let the product of the intrinsic parities of all
particles be I = - 1. Then the parity conservation law
yields

( — ! ) ' ' ' = — (— (6.25)

where Zi and Zf are the orbital angular momenta of
the initial and final states. If the initial state is a
singlet, then obviously the conservation of the total
angular momentum leads to

lt = lf. (6.26)

Relations (6.25) and (6.26) signify that when I = - 1
the reaction from the singlet state is forbidden:

σ3 = 0, (6.27)

For I = +1, the reaction from the triplet state with
zero projection is forbidden:

σ< = 0, 7 = + 1 . (6.28)

In this case it follows from the parity conservation law
that

(-1)" = (_1)'/, ( 6 2 9 )

whereas the law of conservation of the angular mo-
mentum and its projection require that l± and Zf differ
by unity.

We see therefore that for the reactions in question
the sign of the coefficient of ( P t · P2) in the expression
for the total cross section is uniquely related with the
intrinsic parity. In the case when the target polariza-
tion is orthogonal to k, the cross sections take on the
form

= σ 0 — ), 7 = 1, )

). / = - ! •

(6.30)

Thus, comparison of the total cross sections σ and σ0

makes it possible to determine the sign of the coeffi-
cient of (Pi 'P j) , and consequently the intrinsic parity
of the particles. To this end we can investigate, for
example, the reactions

Λ + He3-» He* ΓΚ°.
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We note that determination of the intrinsic parities in
this fashion is at present more difficult than in reac-
tions of the type (6.22).

Let us now discuss briefly the information on the
intrinsic parities of strange particles that were ob-
tained from experiments performed to date.

Indication that the parity of (ΛΚ) is negative were
obtained in studies of the reactions

K' 4- He4/ Λ

AHe*
(6.31)

considered by Dalitz^39^. If the spins of the hypernu-
clei are equal to zero, then conservation of the total
angular momentum leads to equality of the orbital an-
gular momenta in the initial and final states of the r e -
actions (6.31):

lt = lf. (6.32)

The law of parity conservation yields in turn

ΙΈΙΝ(-1)'*=ΙΑΙα{-1)'/, (6.33)

f rom which i t follows that the r e a c t i o n i s allowed only
if

Ιτ,ΙΝ=ΙΑΙπ. (6.34)

At the p r e s e n t t ime it has been experimental ly con-
firmed that the spin of A H 4 in the ground s ta te is
equal to z e r o ( see, for example, E40^). Therefore, the
observat ion on the p a r t of the Block-Pevsner group ^41^
of s e v e r a l dozen c a s e s of r e a c t i o n s (6.31) is weighty
evidence in favor of Î Ijsf = ΐΛ^π- However, observa-
tion of reac t ion (6.31) does not d e t e r m i n e the par i ty of
the (ΚΛ) pa i r , if the hypernucleus has an excited s ta te
with unity spin and with a binding energy of s e v e r a l
hundred kev'-4 2-'. Indeed, in this case and if 1 ^ %
= - Ι/\Ιπ > * n e following sequence of reac t ions will take
place

(6.35)

which imitates the reaction (6.31). Therefore obser-
vations of hypernuclei in the interactions between K~
mesons and He4 can be regarded as proof of (6.34)
only if it is established that there is no gamma radia-
tion from the decays ( A H 4 )* —- A H 4 + Ύ o r ( Λ ^ 4 )*
— A H e 4 + γ.

Very weighty evidence in favor of a positive rela-
tive parity of Σ and Λ particles was obtained most
recently E 4 3, 4 4]. The (ΣΛ) parity, was determined by
measuring the mass spectrum of the (e+e~ ) pairs from
the decay of unpolarized Σ0 hyperons:

Σ0 —> Λ0 + e+ -f e~ (6.36)

A study of this decay with an aim at determining the
(ΣΛ) parity was proposed in C45»46]. The problem con-
sists in establishing whether the dipole transition is
electric (negative (ΣΛ) parity) or magnetic (positive

(ΣΛ) parity). At a given parity, the matrix element is
characterized by two form factors. However, the form
factor that vanishes in the case of emission of a real
gamma quantum is reasonably assumed to be small at
those values of momentum transfer which take place in
the decay (6.36). It is precisely under this assumption
that the authors of 4̂3,44] c o n c i u d e that the (ΣΛ) parity
is positive. A similar conclusion is arrived at by the
authors of E47>483 on the basis of a phenomenological
analysis of K"-p interactions at K~-meson momenta
near 400 MeV/c.

7. NUCLEON-NUCLEON SCATTERING

Experiments on nucleon-nucleon scattering are an
important source of information on interactions be-
tween these particles. The direct purpose of these
experiments is to obtain information on the asymptotic
behavior of the wave functions of the colliding nucle-
ons or, in other words, to reconstruct the nucleon-
nucleon scattering matrix.

Considerable progress was made in recent years in
the study of nucleon-nucleon collisions and in the solu-
tion of the problem of reconstructing the scattering
matrix. This has become possible by the availability
of polarized nucleon beams and by performance of
double- and triple-scattering experiments. Polarized
beams of fast protons were obtained by scattering pro-
tons from nuclei. If the beam obtained in this manner
is scattered again by a target identical to the first t a r -
get, we can determine the degree of polarization of the
beam. At energies of several hundred MeV the polari-
zation of protons elastically scattered by nuclei is
close to 70—100% at certain scattering angles. The
polarization produced in proton-proton collisions was
determined by measuring the azimuthal asymmetry of
scattering of the beam protons with known degree of
polarization by hydrogen (double scattering). In triple
scattering, where the first and third targets served as
a polarizer and analyzer, the change in polarization
upon scattering of polarized protons by hydrogen (sec-
ond target) was determined.

The first such experimental program was carried
out at 310 M e V ^ (Berkeley). This was followed by a
detailed study of nucleon-nucleon scattering at 150

M e V £ 5 0 ] (Harvard, Harwell) and 210 M e V ^ (Roches-
t e r ) , 650 MeV [ 5 2 : l(Dubna), and close to 50 MeV t 5 3 : l.

In this section we consider the possible use of a po-
larized proton target, and also of a polarized beam and
a polarized target, to solve the problem of reconstruc-
ting the nucleon-nucleon scattering matrix.

1. N-N scattering matrix. Within the framework of
the requirements of isotopic invariance, the three
nucleon-nucleon scattering processes (p-p, n-p, and
n-n) are described by a matrix which acts on the spin
and isotopic variables of the nucleons:

Μ (k\ k) =M0 (k', k) ± + M 1 ( k ' , k ) 3 + (

4

T l t 2 )
(7.1)
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Here τ4 and τ2 —isotopic matrices of the nucleons, k
and k' —unit vectors in the directions of the initial and
final relative momenta (c.m.s.), and Mo and Mt de-
scribe the scattering in states with isotopic spin Τ
equal to zero or unity. As can be seen from (7.1), the
p-p and n-n scattering matrices coincide with Mj,
while n-p scattering is described by the half-sum of
Mi and Mo. More accurately, the amplitudes of p-p,
n-n, and n-p scattering are expressed in terms of Mj
and Mo as follows:

{pp \ Μ | pp) = {nn j Μ \ nn) = Mu

which leads to singlet-triplet transitions is

The general expression for the matrix Mx(k', k) can
be obtained from the requirements of invariance under
spatial rotations and reflections, and also time rever-
sal E16'1?]. We introduce a triplet of mutually orthogonal
vectors

Ikk'] k—k'
I k—k' | '

I
k+k'

ik + k'j

This triplet is convenient in that in the non-relativistic
approximation the vectors 1 and m coincide in direc -
tion with the laboratory momenta of the scattered nu-
cleon and of the recoil nucleon, respectively. Expand-
ing Mx(k', k) in a complete system of 16 spin mat-
rices I, aji, a2k, ffji, a2k, and using the triplet vectors
(7.2), we arrived with the aid of (3.23), (3.28), and
(3.34) at the following general expression:

MT (k\ k) = aT + bT (σ,η) (σ2η) + cT [(^η) + (σ2η)]

+ dT [(σ^) - (σ2η)] + eT (a,m) (<r2m) + fT (atl) ( (7.3)

The coefficients ax, bx, οχ, dx, βχ, and ίχ are com-
plex functions of the energies of the colliding particles
and (k-k') = cos 0.

We now show that ΰχ = 0 in the case of nucleon-
nucleon scattering. This is a consequence of the iden-
tity of the particles in p-p and n-n scattering. For
n-p scattering this is true only within the framework
of the isotopic-invariance hypothesis. To prove this
statement, we consider the initial (final) state of two
nucleons with definite values of parity (-1)? or (-1)'',
total spin s(s '), and total isotopic spin T(T'). It fol-
lows from the Pauli principle that

Taking into account the conservation of the parity and
of the total isotopic spin, we obtain from these equa-
tions

(_l) s = (_l) s\

Inasmuch as the possible values of s and s' are 0 and
1, it follows that s = s' and the singlet-triplet transi-
tions are forbidden. The only term in (7.3) which does

not commute with the operator S2 = and

Thus, άχ = 0 and the nucleon-nucleon scattering ma-
trix is symmetrical with respect to the substitution
CTJ 5=ϊσ2. We note that the absence of singlet-triplet
transitions in nucleon-antinucleon scattering is the
result of the G-invariance requirement.

The matrix Mx(k', k) (d T = 0) can be rewritten in
a somewhat different form, separating the explicitly
singlet and triplet scatterings:

Μ τ (k\ k) = BTS + CT [(σ,η) + (σ2η)]

+ \ GT [Km) (a2m) + (σ,Ι) (σ21)] Τ' + ± Ητ [(σ,ΐη) (a2m)

Here

S = \ [1 -

η) (σ2α) Τ.

tfj σ2) land Γ = \

(7.4)

(«ισ2)1

(7.2)* —singlet and triplet projection operators, and

— f, C = c, G = 2a-\-e

= e-f, N=a + b. (7.5)

The amplitude Β describes singlet scattering, the re-
mainder—triplet.

The requirement of antisymmetry of the final wave
function M(k', k)xsxrp (xg and χ^—spin and isospin
functions of the initial state ) relative to permutation
of the spatial (k' —• - k ' ) , spin, and isotopic variables
leads, as can be readily seen with the aid of (7.1) and
(7.4), to amplitudes Β^θ), Ο^θ), Η^θ), Go(0), and
Ν0(θ ) which remain unchanged under the substitution
θ — π - θ , whereas Bo(0), Co(0), Ho(0), Gt(9), and
Νι(θ) reverse sign. Using these symmetry properties,
we can also readily establish with the aid of (7.5) the
behavior of the amplitudes ax, bx, etc., under the sub-
stitution 0 —• 7Γ - θ .

Thus, in the study of p-p and n-n scattering it is
possible to confine oneself to measurements in the
angle interval 0 < θ < ττ/2, since the value of the am-
plitude in the interval π/2 < θ < τ is determined by the
indicated symmetry properties. In the case of n-p
scattering the interval of measurements doubles, 0 < 0
< π, corresponding to the doubling the number of states
in this system.

So far we have disregarded the limitations imposed
on Mx(k', k) by the requirement that the S-matrix be
unitary, S+S = 1. As shown in C54^, this requirement
leads in the region of energies up to meson-production
threshold to the following integral relation:

-H£- [Mr(k', k) -Mi(k, k')l = ^ Mi (k", k')MT(k\

(7.6)

•[kk 1 = k χ k'.

where dU^» —solid-angle element in the direction of
k". This matrix element is equivalent for each value
of Τ to five integral relations between the ten real
functions of the angle and energy (real and imaginary
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parts of the coefficients a-p, b^, etc., or Βχ, C j , etc.).
If five of these functions are known for a given energy
in the entire angle interval (0 < θ < π/2 ), then the
other five functions are determined in the energy r e -
gion up to pion-production threshold by the five rela-
tions (7.6). We emphasize that these relations deter-
mine also the general phase shift of the scattering
matrix. We see therefore that in order to determine
M<r(k', k) it is necessary in principle to carry out five
experiments at all angles. Since the p-p scattering
matrix coincides with Mj, in order to reconstitute this
matrix it is sufficient to perform five experiments in
the angle interval 0 < θ < π/2. In the case of n-p
collisions, the scattering matrix is (M t ± Mo)/2, and
to determine it we must perform five experiments in
the angle interval 0 < θ < π. If Mj is known for a
given energy from p-p scattering experiments, then
Mo can be determined with only five experiments on
n-p scattering and the same energy in the interval
0 < 8 < π/2.

In practice, to determine the scattering matrix one
uses the phase-shift analysis method (see, for exam-
ple ^553), which takes automatic account of the unitar-
ity conditions (reality of the phase shifts and of the
mixing parameters below the pion-production thresh-
old).

The development of experimental techniques, and
especially the availability of a polarized proton target
and polarized nucleon beams, makes it possible to con-
sider a direct determination of the scattering matrix
elements, accurate to within a common phase factor
for given values of the angle and energy, without the
use of unitarity. At first glance this calls for nine in-
dependent experiments. However, Schumacher and
Bethe^56^ have shown that owing to the bilinear charac-
ter of the dependence of the observed quantities on the
scattering matrix elements, more independent experi-
ments must be carried out for each value of angle and
energy if the matrix is to be determined uniquely. This
method is particularly useful at high energies, when
the need of taking into account a large number of states
and of considering the influence of inelastic processes
makes the phase shift analysis difficult. The presence
of a polarized target and polarized nucleon beams
makes this program realizable even now.

2. Possible experiments. 1) The possible experi-
ments on nucleon-nucleon scattering* differ both in the
state of polarization of the initial beam and target and
in the character of the measured quantities (cross sec-
tion, polarization of the scattered particle, polarization
of the recoil particle, polarization correlation). The
parameters measured in experiments with an unpolar-
ized target are usually called the parameters of single,
double, and triple scattering. These names originated

*An analysis of all possible experiments on nucleon-nucleon
scattering and of the connections established by invariance re-
quirements between the experiments was made in[54].

with the conditions under which the corresponding ex-
periments were made in the absence of injectors of po-
larized particles. We shall describe these experiments
briefly and show how they are modified when polarized
targets are used.

We shall consider first collisions between non-iden-
tical particles, and discuss the changes necessitated by
the Pauli principle later. The index 1 of a spin matrix
will pertain to the incident (scattered) particles, while
the index 2 will pertain to the target (recoil) particles.

The cross section for the scattering of an unpolar-
ized beam by an unpolarized target

σ0 = ~ Sp MM* (7.7)

is the parameter of single scattering. Expressions for
the cross section and other measured quantities in
terms of the amplitudes a, b, etc., are listed in
Table II.

Table II

σ -
a0Dnn =

e | 1 + | 6 | . + 2 | e , . + | e i

a | 2 + | 6 | 2 + 2 | c | 2 — e

σ0Ο;ί=|α|2-16|2-|β|2+|/

OoDmm=\ a ! 2 — b ί 2 + Ι e I 2 — I /
σο·°ηι; = 2 Imc*(a —6),

aoPo=2Rec*(a+fc),

a0lCi=2lmc*(e+f),

—a0Cnrl= Re ai>*+l c | 2 — R e ef*,

1

yOoCi; = Re a/* — Re ie·,

l a 0 i f ; ! =Re f l /* + Refe*,

2

l ^ m m = R e a e * + R e ^ .

2_)-| V 12̂  H j

2 - l / l 2 , (2)
2 . (3)
2 . (*)

(5)

(6)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

The polarizations P{ and P° of the scattered and
recoil particles produced by collisions of unpolarized
particles* are equal to each othert

P? = p . _ p o 1
2 4 σ 0

(7.8)

They are determined by measuring the asymmetry in
a second scattering from a target of known analyzing
ability, and are the parameters of double scattering.
Usually a modified formulation of the experiment is
used. The polarization produced upon collision of un-

*As already noted, owing to the invariance under reflections,
the polarizations P,° and P2° are orthogonal to the scattering
plane.

tThe equality of the polarizations P,° and P* is a conse-
quence of the symmetrical dependence of Μ on σ, and σ2 (d = 0).
This statement is not correct in the case when singlet-triplet
transitions exist.
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polarized nucleons is determined from the asymmetry
of scattering of a beam with known degree of polariza-
tion, obtained by collision with nuclei of known polar-
izing ability (first target), by hydrogen (second tar-
get).

It is obvious that the use of a polarized target makes
it possible to forego the additional scattering that re-
sults in a beam with known degree of polarization, and
thereby replace the experiment on determining Ρ for
measurements of the asymmetry in double scattering
by an experiment involving measurements of the
asymmetry of the scattering of an unpolarized beam
by a polarized target.

The use of a polarized target will be very helpful in
measurements of polarization in n-p scattering. For
this purpose it is sufficient to observe the asymmetry
of the recoil protons in experiments with unpolarized
neutrons. Beams of fast neutrons are usually obtained
from proton accelerators by exchange n-p scattering.
Their polarization is small. Elastic scattering of neu-
trons by nuclei leads to polarized beams of neutrons
having low intensity. As a result, the greater part of
the data on polarization in n-p scattering has been ob-
tained so far from an analysis of experiments on quasi-
elastic scattering of polarized protons by neutrons con-
tained in deuterons.

Experiments with a polarized proton target make it
possible to obtain information on the polarization of
particles at energies of several GeV, where investiga-
tions without a polarized target are very difficult.

2) We now consider the so-called depolarization
tensor Dj^, defined by the relation

= -j Sp aii (7.9)

In the scattering of a polarized beam with polariza-
tion Pj by an unpolarized target, the tensor D ^ re-
lates Pj with the i-th component of the polarization
Pj of the scattered particles by means of the relations

Sp MQM+

where, as before, P° = P°n
(7.10)

-polarization of the par-

ticles produced by collision of unpolarized nucleons.
Owing to the symmetrical dependence of Μ on aj and
σ2, the tensor Dik is also equal to (1/4σ0) Sp σ2ϊΜσ2^Μ+

and determines the polarization of the recoil particles
P'2 in scattering of unpolarized particles by a target
with polarization P 2:

Ρ"~~ΐ+(ρ^Γ- ( 7 · η )

The definition of Dik t s e e (7.9)], the requirements
(3.23) and (3.28) of invariance under rotations and re-
flections, and the transformation properties of the spin
matrices [see (3.22) and (3.25)], all show that Dik is a
second-rank tensor and has consequently the form

Dih (k\ k) = DnniiiUh^ Dulilh-\- Dmmminih-]- Dmimilh + Dimlirrih.

(7.12)
The coefficients D m n , D/;, etc., are functions of the
energy, and (k-k') = cos Θ.

Further limitations on D ^ follow from the require-
ments of invariance under time reversal. Using (3.34)
and (3.32) we obtain

o0Dih (k\ k) = \ Sp auM (k\ k) aihM
+(k\ k)

ι
= -ζSpuYM+ ( -k, — k'

= ^SpalhM (-k, -k')auM
+(-k, -k')

= aaDhi(-k,-k'). (7.13)

Since the substitution k u - k ' causes the vectors 1,
m, η to go over into - 1 , m, and -n, it follows from
(7.12) and (7.13) that

Thus,

Dml=-Dlm. (7.14)

determined by four scalar functions:

{·Dmmmimh + Dml (7.15)

In the discussion of triple scattering experiments
7^, Wolfenstein introduced the following parameters:

D = (niab)i Dik

A = [niabk'iab]i Aft

R' = (k'ub)i Dih

A' = (k.'iab)i Dih

= (n); Dih (n) A = Dnn,
fi ft

iabkiabU= — (m); Dih [nk]A = Dmm cos -j — Dmi sin-j

θ ft

iab) f t= — (m)j Dih (k)h — Dmm s i n y — (7.16)

1 = .Di! sin j

ik (k)k = Dn cos -j — Dml sin -^ .

cos ~ ,

Here niat), kiab, and kiab —normal to the scattering
plane and unit vectors in the directions of the momenta
of the incident and scattered particles in the laboratory
frame. To obtain the connection between the introduced

parameters and Djm, D m m , etc., we made use of the
fact that njab = n, k^^ = k, and kjab = 1 in the non-
relativistic approximation. It follows from (7.16) that
the parameters E, A, R', and A' are related by
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(A + R') = (A'-R)ig^. ( 7 · 1 7 ) *

The fact that only three of the four triple-scattering

parameters are independent remains in force, of

course, for elastic scattering of spin-V2 particles by

particles of arbitrary spin s. The special case of the

reaction 0 + V2 —* 0 + l/2 i s discussed in Sec. 8.

To measure the parameters (7.16) or, what is the

same, the components Djk in the absence of a polar-

ized target, triple scattering experiments are neces-

sary. As in double scattering, the first scattering plays

the role of a polarizer—a beam is produced with known

polarization P t . The second scattering is from the in-

vestigated (hydrogen) target. The third scattering by

target analyzer serves to determine the polarization

PJ. The geometry of the different experiments on triple

scattering is determined by the fact that the polariza-

tion produced by collision of unpolarized particles is

orthogonal to the scattering plane, and by the fact that

the analyzing scattering again makes it possible to de-

termine only the polarization component normal to its

plane. Thus, to determine D, all three scatterings

must be carried out in a single plane. To determine R,

the plane of investigated scattering should be perpen-

dicular to the plane of the polarizing and analyzing

scatterings. To determine A, the plane of the analyzing

scattering is perpendicular to the plane of the main

scattering, and to obtain a longitudinally-polarized

beam, a magnetic field must be placed between the

polarizing and the investigated scatterings, etc. The

use of a polarized target makes the scattering by the

polarizer target ^ superfluous and makes it possible to

replace a triple scattering experiment by a double

scattering experiment. Additional advantages arise in

the investigation of n-p scattering. Thus, for example,

to measure D in n-p scattering it is sufficient to scat-

ter unpolarized neutrons from a proton target polar-

ized normally to the scattering plane, and then meas-

ure the left-right asymmetry of the recoil protons.

3) We now turn to the polarization-transfer tensor

= -^— Sp a2iMalhM+ (7.18)

This tensor determines the polarization P2 of the re-

coil particles when a polarized beam (with polarization

Pj) is scattered by an unpolarized target:

(7.19)
" 1+(POP.) ·

Owing to the symmetrical dependence of Μ on ^ and

σ2, the same tensor determines the polarization PJ of

the scattered particles when an unpolarized beam is

scattered by a polarized target (with polarization P2)

p . P\+KikP2h
11 1 + (P»P2) " l '

*tg = tan.
tThe same pertains to a magnetic field ahead of the investi-

gated scattering.

The general expression for Kik can be written by re-

peating the procedure that has led to the general ex-

pression (7.15) for Dj^. It is only necessary to bear

in mind that the requirement of invariance under time

reversal imposes on Kj^ a limitation of the form

Kik(k', k)=Kki(-k, -k') (7.21)

only if Μ has a symmetrical dependence on σ; and σ2.

We finally obtain

Kik = ΚηηηιηΗ + Kultlh ~ Kmmmtmk -f Kmt (m ;4 — i,-mft). (7.22)

As in the case of D^, the determination of the dif-

ferent components of the tensor K^ in experiments

with an unpolarized target necessitates the use of triple

scattering. The geometry of these experiments is anal-

ogous to the geometry of experiments on the determina-

nation of Dik, and will not be discussed here. The use

of a polarized target makes superfluous, as before, the

scattering by the polarizing target and reduces a triple

experiment to a double one.

Before we proceed to discuss other applications in

a polarized target, we shall make a few remarks con-

cerning experiments on the determination of Dik and

K^. I n experiments on the determination of Dik with

an unpolarized target it is necessary to measure the

polarization of scattered particles following the inves-

tigated (second) scattering. If the particle is scattered

through large angles (in the c.m.s.), then its laboratory

energy will be low and the measurement of the polari-

zation will be difficult because of the absence of good

polarization analyzers. In measurements of Dik in

experiments with a polarized target, on the other hand,

it is necessary to measure the polarization of the re-

coil particles. But at large scattering angles these

particles will have a large energy, and the measure-

ment of their polarization should not cause any special

difficulty. Therefore experiments on the determina-

tion of Dik with a polarized target complement, in the

case of non-identical particles, the determination of

Dik in experiments with a polarized beam. The same

considerations pertain to experiments on the deter-

mination of Kik.

We now consider a few features of the measurement

of the components of the tensors Dik and Kik i*1 P~P

scattering, resulting from the identity of the particles.

In p-p scattering we define as the scattered particle

the proton which falls in the angle interval 0 < θ < π/2.

The proton which falls in the interval π/2 < θ < π is

called the recoil particle. We recall that, for example

in experiments with a polarized beam, the determina-

tion of the Dik tensor components calls for the meas-

urements of the polarization of the scattered particles,

while the determination of the components of Kik calls

for the measurement of the polarization of the recoil

particles. It follows therefore that measurement of Kjk

in the case of identical particles is equivalent to ex-

tending the range of measurements of the components

of Dik t° include the angels θ > π/2. The components
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are then related to the components K
lowing equations:

Dnn (π - θ) = Knn (θ), Dmm (π - θ) = Κη (θ),

Du (π - θ) = Kmm (θ), Dml (π - θ ) = Klm (θ) =

by the fol -

Kml (θ).
(7.23)

The fact that the component D n n is connected by the
foregoing relation with Knn, D^ with K m m , etc., can
be readily understood by recognizing that the substitu-
tion k' —• - k' (Θ —-Έ -θ, φ - * φ +ΤΓ) causes m to go
over into 1, 1 into m, and η into -n.

From the foregoing definition of the recoil particles
it follows that the recoil protons will always have a
lower laboratory-system energy than the scattered
protons. If the recoil proton falls in the energy inter-
val from 20 to 100 MeV, the measurement of K^ (or,
what is the same, of Djk at the complementary angles
π - θ ) in experiments with a polarized beam is very
difficult, for lack of analyzer targets suitable for the
measurement of the polarization of recoil protons with
such an energy (in the energy region below 20 MeV,
the measurement of the polarization is again easier if
a helium target is used as an analyzer). It is possible
to get rid of this difficulty by using a polarized target,
for in this case the determination of K^ calls for the
measurement of the polarization of scattered particles
of higher energy.

4) We now proceed to consider the cross section for
the scattering of polarized particles by a polarized
target. The initial-state density matrix has in this case
the form

(7.24)

The differential cross section is

= Sp MQM+ = σ0 + 1 Sp Μ (σ,Ρ,) M+

(7.25)

The traces V4 Sp Μσ^ 2M
+ represent the polarization

σ0Ρ° which is produced in collisions of unpolarized
particles, and (7.25) can be rewritten in the form

where

a0Pik = \ Sp Malta2kM
+.

(7-26)

(7.27)

This tensor P ^ is a new characteristic, data on which
can be obtained by measuring the cross section for the
scattering of polarized particles by a polarized target.
As will be presently shown, this tensor essentially co-
incides with the correlation tensor C ^

; i f t = iSpa l i f f 2 f t MM + , (7.28)

of the polarization produced in scattering of unpolar-
ized particles by an unpolarized target.

Owing to the symmetrical dependence of Μ on σ^

and σ2, the tensors Pik and Cik are symmetrical in
the indices i and k. Taking this into account and using
the invariance under rotations and reflections, we ob-
tain

(7.29)

Pih (k\ k) = Pnnninh + Pmmmimk + Pnlilk + Pml

Cih (k', k) = Cnnni

(7.30)
From the requirements of invariance under time r e -
versal (3.34) we get

a0Pih (k\ k) = { Sp Μ (k\ k) aiia2kM
+ (k\ k)

= ~ Sp M+(k', k) o^OiiM (k\ k)

(7.31)

-k, -k')M+{-k, -k')

Substituting (7.29) and (7.30) in (7.31) we get

which proves the foregoing statement.
Measurements of the cross section at different beam

and target-polarization orientations make it possible
to determine different components of Pjk or Cjk· For
nucleon-nucleon scattering we have
<*Pi, P2 = <3O{1 + P« (P,n) + P«(P2n) + Pnn(Ptii) (P2n)

+ Plt (P,l) (P2I) + Pmm (Pjm) (P2m) + Pml [(P,l) (P2m)

+ (Piin) (P21)1}. (7.33)

For the case of target and beam polarizations orthogo-
nal to the scattering plane (Pj = P tn; P 2 = P 2 n), Eq.
(7.33) reduces to

ση η = σ 0{1+ΡοΡ 2 + [Ρ° + ΛΑ,η]^}. (7.34)

To obtain data on other components of the tensor Pj^
it is necessary to measure the cross sections σρ,ρ
for other orientations of Pj and P 2 . It is sufficient to
choose for the directions of Pj and P 2 the directions
of the vectors kjaij = k and kjaj-, χ n j ^ = k χ η in the
laboratory frame. If P t = Pjk and P 2 = P2k, then

+ C m m ( l -cose)-2C m i s ine] j . (7.35)

When Pj = P ^ and P 2 = P2k x n, (7.33) goes over into

}, (7.36)

which coincides with the expression for the cross sec-
tion when the beam polarization is directed along the
vector k x n, and the target is polarized along k.

For the case of beam and target polarization along
the vector k x η we have

(7.37)

+±PSACn (I-cosB)

+ Cmm (1 + cos Θ) + 2Cml sin Θ]} .
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Thus, the simple relations (7.34) —(7.37) show how the
use of polarized targets makes it possible to replace
difficult measurements with three targets, necessary
to determine the tensor C^, by simpler measurements
of the cross sections for the scattering of polarized
particles by a polarized target.

Owing to the difficulty of measuring the polarization
of low-energy recoil particles, the greater part of the
measurements performed so far on the parameters
Cnn a n ^ C m ; pertain to the scattering angle θ = π/2.
Since no such difficulties arise in the measurement of
the cross sections, polarized targets add greatly to our
information on the tensor Ci^.

The first experiment with a polarized proton target
and a polarized beam Μ involved p-p scattering at 20
MeV, and the interaction occurred essentially in the lS0

state. By virtue of the symmetry properties of the p-p
scattering amplitude under the substitution θ —·• π — θ,
we have

po (90°) = 0 and (90°) = σ0 (1 + P

if the polarization of the beam and of the target a re
perpendicular to the scatter ing plane. If σ ± —cross
section for the scatter ing by a target polarized " u p -
w a r d " (+) and "downward" (-), then

r — 1 Q+—Q-
^ 7171 η η _ ι _

and the measurement of the cross sections leads di-
rectly to a determination of C n n(90°).

We note also that knowledge of the sum of C n n , Cft,
and C m m makes it possible to separate directly the
singlet and the triplet contributions to the differential
cross section of the scattering of an unpolarized beam
by an unpolarized target. Indeed,

Cnn + Cii^Cjnm =((σ 1σ 2)),

where < (σχ · σ 2 ) ) denotes the mean value of the sca lar
product of the spins. On the other hand, the c r o s s s e c -
tions of the singlet and tr iplet scatter ings a r e , r e s p e c -
tively,

where S and Τ —singlet and triplet projection oper-
ators.

5) Measurement of the cross section σ0, of the
polarization P°, and components of the tensors Dj^,
Κί^, and C ^ yields 14 equations for the determina-
tion of a, b, etc. (Table II). If the observed quantities
are known with sufficient degree of accuracy, then we
can, on the basis of these equations, following L563> r e -
construct the scattering matrix for specified values of
the scattering angle and energy. Since the observed
quantities are quadratic in the matrix M, the common
phase shift cannot be determined from measurements
at a given angle and it becomes necessary to determine

nine real quantities (real and imaginary p a r t s of the
p a r a m e t e r s a, b, etc.) We choose as the common phase
the phase of the amplitude c, and will accordingly a s -
sume henceforth that c is a real positive number.

From Eqs. (1) and (2) of Table Π it follows that

Am)· (7-39)

(7.40)

Subtracting (4) from (3) we get

!)=a0(Du-Dmm).

From (7.39) and (7.40) we obtain the moduli of e and f:

4|e

4 1 /

(7.41)
(7.42)

If we assume that c is known, we can obtain from (7)
and (8) the imaginary par t s of e and f:

I m e = χ τ i + Kml) = (7.43)

(7.44)Im / = ^ σο (Kml — Cml) = - — ,

where we introduced the notation

N' = {• 0O (Cml + Kml) and Μ' = \ a0 (Kml - C m l ) .

Consequently, if c is known, then (7.41) —(7.44) d e t e r -
mine e and f, apart from the signs of their rea l p a r t s .

To determine c we consider Eqs. (9) and (10) of the
table. Subtracting (9) from (10) we get

Re ef* = Re e Re / + Im e Im / = -[ σ0 (Κηη-Cnn). (7.45)

We denote V4 σ0 ( K n n — C n n ) by L. Transferr ing
( I m e Imf) to the right side of (7.45), squaring the
resultant equation, and using (7.41) —(7.44), we obtain
after simple transformations the following expression
for c in t e r m s of the observed quantities L, M', and
N', and the previously obtained | e | 2 and | f | 2 :

(7.46)
° ~ le I2 I / I2 — i 2 '

Thus, (7.41) —(7.46) determine five p a r a m e t e r s :

c, Ime, Im/, Ree, Re/,

accurate to within the sign of one of the real p a r t s .
We now must determine a and b. It is m o r e con-

venient to find the combinations

Adding (1) to (2), (3) to (4), and (9) to (10) we get

« I 2 - \b? =Y«O(DU + Dmm),

It follows therefore that

2 [ u |2 =\ 0o (1 + Dnn + Knn + Cnn)-2c2, (7.47)
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2 | υ \2 = -ζ σ 0 (1 + Dnn — KnR — Cnn),

In addition, it follows from (5) and (6) that

(7.48)

(7.49)

(7.50)

-Ί-Έ-- (7-50')

From (7.47), (7.48), (7.50), and (7.50') we can deter-
mine the four parameters Reu, Imu, Rev, and Imv
accurate to within the signs of Im u and Re v. We can
determined the signs from (7.49). If the experimental
data are sufficiently accurate, this equation will give
unambiguous information concerning the signs of Im u
and Rev.

Thus, Eqs. (1) —(10) of Table II enable us to find all
the parameters of the amplitude, apart from an arbi-
trarily selected sign of Ree (or Ref). This ambiguity
in the choice of the sign can be eliminated by making
use of any of the hitherto unused equations (11) —(14).
These equations may also prove useful for the recon-
struction of the scattering matrix, if the experimental
data are insufficiently accurate.

6) Let us obtain, starting from the usual invariance
requirements, general expression for the total cross
section of any reaction channel in the case of a colli-
sion between a polarized beam and a polarized tar-
get Ε»»,*!»:.

The expression for the total cross section σ should
be a scalar made up of quantities characterizing the
state of the system before the collision: the polariza-
tions P4 and P2 of the beam and the target, and the
relative momentum ρ in the initial state. It is neces-
sary merely to take account here of the fact that σ de-
pends linearly on each of the polarizations. Thus,

σ = σ ο + σ ι (P,P2) + σ2 (P4k) (P2k). (7.51)

Here, as before, k is a unit vector in the direction of
ρ, σ0 is the total cross section of the reaction with un-
polarized particles, and the coefficients a t and σ2 are
certain functions of the energies of the colliding par-
ticles. Their meaning can be readily explained with the
aid of the following simple considerations.

We choose the direction of k as the quantization
axis. We denote by w s and wfn the probabilities of
observing in the initial state a singlet and a triplet
with projection m. The scalar products (Pj-P 2) and
(P! 'k)(P2 'k) , which enter in (7.51) and are equal re-
spectively to the mean values of the operators (σ1·σ2)
and (aj · k) (σ2 · k) in the initial state, can be written in
the form

(P1P2)=((0lO2)) = (2S2-3>,

(P,k) (P2k) = < (a,k) (a2k) > = (2 (Sk)2 - 1),

where S = {σι + σ2)/2 —system spin operator.
We obtain

(P,k) (P2k) = 2 ( -
(7.52)

From (7.52) and from the normalization condition
w s + X/Win = 1» we obtain the following expressions

m
for the probabilities:

(7.53)

If we denote by σδ and σ^ the total cross sections of
the reaction from the corresponding spin states, then

ο = υ)'σ'+ΣΚ<· (7-54)
m

Recognizing that σΐ. = σί, because of the invariance
under rotations and reflections,* we obtain from (7.54)
and (7.53) after simple transformations

σ = σ0 + {• Κ - os) (Ρ, Ρ2) + -§•«- σί) (pik) (p

2
(7-55)

from which we get the connection between the cross
section of the reactions from the triplet and singlet
states and σ4 and σ2.

We can obtain complete information on the total
cross section σ0, au and σ2 by carrying out experi-
ments with an unpolarized beam and an unpolarized
target, and also under conditions when: a) Pl and P2

are parallel to each other and perpendicular to the
beam direction, and b) Pj and P2 are parallel to each
other and also to the beam direction. By measuring
the total cross section σ under these conditions, we
can obtain σ4 and σ2, after which, using the obvious
relation

we can determine the three independent cross sections
of the reactions from the singlet and the triplet states.

The obtained relations pertain to any channel of a
reaction with two particles having spin V2 in the initial
state. Consequently, they are valid also for the total
cross section σ ^ of all the processes. Using the uni-
tarity of the S-matrix, we can easily relate the coeffi-
cients ajtot a n (3 °2tot i n the expression for the total
cross section with the coefficients of the forward
elastic-scattering matrix C58~6°H. in the case of for-
ward scattering we have in (7.3) c(0) = d(0) = 0 and
b(0) = e(0), so that the matrix (7.3) takes on the form

*The latter can be seen, for example, from (7.51). Indeed, the
values of the total cross sections σ+' and σ_ι can be obtained
from the general expression (7.51), if we assume that the beam
and the target are fully polarized either in the direction of k
(σ+*), or in the direction of -k (σ_'). This means that in both
cases (Ρ,·Ρ2) = 1 and (Ρ,-k) (P;-k) = 1. This leads to the result
stated above.
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Along with the ordinary optical theorem
k

Im a (0) = -τ— σ0 tot,

(7.56)

(7.57)

the condition for the unitarity of the S matrix gives the
following relations:

Ime(0) = — a t tot.

Im[/(0)-e(0)]=^-o 2 t o t .
(7.58)

Thus, measurements of the total cross section of all
the processes at different orientations of the beam and
target polarizations enable us to determine the imagi-
nary parts of all three forward elastic scattering am-
plitudes. These measurements make it also possible
to improve the known estimate of the lower boundary
of the differential forward elastic scattering cross
section. Using (7.56) —(7.58) We obtain the following
inequality:

(^)2 ΐ)2], (7.59)

where dae//dS2 —cross section for the elastic scatter-
ing of the unpolarized particles.

7) Many of the results obtained above for nucleon-
nucleon scattering also apply to elastic scattering of
fermions with spin V2 by each other (scattering of
electrons by protons, hyperons by nucleons, etc.), and
also to a more general class of reactions of the type
% + % —• V2 + /2> with both Ii = If and \ = -If.

Let us see how the results for N-N scattering are
modified in the presence of singlet-triplet transitions.
First of all, the polarizations Pj and P" are differ-
ent. To describe the change in the polarization in the
collisions it is necessary to introduce, in place of the
single tensor Dj^, the two tensors

and

: a > _ 1

(7.60)

(7.61)

The tensor DĴ ' determines the polarization of the
scattered beam PJ when the polarized beam (polari-
zation Pj) is scattered by an unpolarized target. The
tensor DJĵ  determines the polarization of the recoil
particles P2 after scattering of unpolarized particles
by a target with polarization P2.

We introduce analogously the polarization transfer
tensors K^ and κ{":

(7.62)

and

The tensor

ι
4 σ 0

tfa2ftM\ (7.63)

determines the polarization P2 of the

recoil particles after scattering of a polarized beam
(with polarization P1) by an unpolarized target. The
tensor KJjl' determines the polarization P[ of scat-
tered particles after collision between an unpolarized
beam and a polarized target (polarization P 2).

In the presence of singlet-triplet transitions, the
requirements of T-invariance for elastic-scattering
processes lead to the following equations

', k) =

and

(~k, -k'),

(-k, -k')

(7.130

(7.21')

which replace (7.13) and (7.21).
In the general case of reactions of the type V2 + V2

— V2 + V2 with \ = ± If, many interesting relations are
obtained from the requirements of invariance under
space reflections. We note first that the operator (2.9)
of reflection in the plane of the reaction has for this
case the form

Thus,

Λ=(σ,η)(σ 2 η). (7.64)

= (α(α) (σ2η) Λ/(σ,η) (σ2η) = +Μ (7.65)

for reactions with Ij = +If. We note that the validity
of (7.65) is obvious if we use the explicit expression
(7.3) for the Μ matrix. Relation (7.65) is replaced by

1 = (σ,η);(σ2η) Μ (σ,η) (σ2η) (7.66)

for the case of a reaction with Ij = - If.
With the aid of (7.64) we can show once more that

the polarization P° is perpendicular to the scattering
plane and that the tensors Bĵ t Ki^, P^, and Cj^ have
no components of the type Dnj and C m n .

It is easy to show with the aid of (7.64) that in the
most general case the depolarization parameters of
the tensors D^} and DJĵ  are equal to each other
(apart from the sign in the case of the reaction in
question with 1̂  = -If). Indeed, considering simul-
taneously the case of both values Ij = ± If, we have

Wn = \ Sp (σ,η) Μ (σ,η) Μ*

: : t 4 σ,η) (σ,η) Μ (σ,η) (σ2η) (σ,η) Μ*

= + |- Sp (σ2η) Μ (σ2η) Μ* = ±

An analogous result holds also for the tensors
&>. Indeed,

(7.67)

'}} and

™η = | - Sp (σ2η) Μ (σ,η) Μ+

= + \ Sp (σ,η) Μ (σ2η) Μ* = ± (7.68)

In the case of an inelastic reaction, the tensors
and P-ĵ , which generally speaking yield different in-
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formation, have identical components
(apart from the sign). Indeed,

a0Pnn = ~ Sp Μ (σ,η) (σ2η) Μ*

= ± ~ Sp (σ,η) (σ2η) MM* = ±a0Cnn.

and

(7.69)

An experimental check on relations of the type
(7.67) —(7.69) in inelastic reactions makes it possible
to investigate experimentally the degree of parity con-
servation.

8) Maximum information can be obtained by carry-
ing out experiments with simultaneous utilization of a
polarized target and a polarized particle beam. We
have already seen what information can be extracted
in studies of the differential and total cross sections
for the interaction between a polarized beam of nucle-
ons and a polarized target. We can ask: what additional
information is afforded by a study of the nucleon polar -
ization and polarization correlation after the scattering
of a polarized beam by a polarized target?

The general expression for the projection of the po-
larization vectors of the scattered particle 1 on the
direction of an arbitrary vector Q can be represented
in the form

opu P2 (
piQ) = σο [P° (Qn) + KQ, Pi + DQi Pl + MQ P l Jg, (7.70)

where Kab = K^a^k, Dab = D^a^k, and D ^ and
are the previously introduced depolarization and po-
larization-transfer tensors.

In the newly introduced tensor

Mihq = -L- Sp α^ (7.71)

there are only 13 nonvanishing elements, by virtue of
parity conservation. The general expression for this
pseudotensor of third rank is of the form

Mikq(k', k) =Mnnnninhnq + MnHnilhlq + Mlniltnhlq

+ MuJilhnq + Mnmmnimhmq + Μ mnmmlnhmq + Mmmnmtmknq

Mlnmltnhmq + Mlmnhmhnq + Mnmlnimhlq

(7.72)

Not all the components of the tensor N^kqik', k) con-
tain new information (compared with the simpler ex-
periments). Thus, the parameter M.imn coincides
with P*. The proof is based on invariance under re-
flections and admits of generalization to the general
case of reactions of the type % + % ~~ % + %• Indeed,
in the right part of the equation

aJMnnn = \ Sp (ση) Μ (σ,η) (σ2η) Μ*

we can write under the trace symbol, using (7.65),
(7.66), and the fact that (σ 2 ·η) 2 = 1,

oaMnnn = ~ Sp (σ2η) (σ2η) (σ,η) Μ (α{α) (σ2η) Μ*

= ± j Sp (σ2η) MM* = ± σ0Ρ°2,

which proves the foregoing statement.

We can find analogously that the invariance require -
ments "reduce" the results of some more complicated
experiments to simpler ones. Some examples will be
given later.

For the polarization of the recoil particles we have,
in analogy with (7.70)

apiP* (PiQ) = <Jo IP" (Qn) + KQPl + DQPl + NQPlp2], (7.73)

and the new information is contained in the tensor

ι = -rr- Sp OziMaiho2qM*. (7.74)

The structure of this tensor does not differ from (7.72).
The set of symmetry properties is close to the sym-
metry properties of the tensor Mj^q· Κ ̂ s easy to
verify, in particular, that

Nnnn = ± i>»

for both cases of relative parities in the general case
of reactions of the form V2 + V2 ~~* 'Λ + Vz- I n addition,
since for example

Μ (σ,Ι) (σ21) Μ* = Sp (σ2η) [(ffjii) (σ2η) Μ (σ,η) (σ2η)

Χ (σ,η) (σ2η) (σ,Ι) (σ21) Μ* = ± Sp (σ2η) Μ (σ,ηι) (a2m) Μ*,

the requirements of invariance under reflections leads
to the equations

nll^± Mn If «II. 1

Inml- I
(7.75)

We now consider the most complicated experiment —
determination of the polarization correlation in experi-
ments with simultaneous utilization of a polarized beam
(polarization P t ) and a polarized target (polarization
P 2 ). For the polarization correlations we can obtain in
this case

P l = 4 - Sp (o,a) (ff2b) Μ [/+ (Ρ,σ,)] [/+ (Ρ2σ2)] Μ*

= σ 0 {Cab

(7.76)

where C a^ = Cĵ a-jb^ is determined by the known ten-
sor Cik, and the possible new information is connected

and

= -ζ Sp αασΛ

with the tensors

(7.77)

, = -^ Sp σασ^Μσ1(1σ2ρΜ\ Ι

The tensor Cjkq(Pikq) characterizes the correlation
of the polarizations in experimentation with arbitrary
(unpolarized) beam and unpolarized (polarized) target.
A general form of the tensors Cjkq a n d ?ikq i s given
by an expression analogous to (7.72). The invariance
under reflections leads to

Cnnn = ±Pl Pnnn = ± P°i, (7-78)

and certain components coincide with the components
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of the previously introduced third-rank tensors. For

example,

Pmnm = ±Mini, ΡΜ = ± Mmnm, Pmni = T Mtnm,

Cmnn = ±Mun, Cln[ = ±Mmmn, Pinm — ± Mmnl,

Cmni = -F Mimn, 0ίηηι = ψ Mmtn, CnU = ± Nmmn,

Cun=^Pmmn, Pnmm = ±Nlnl, Cnml = ±N,,n, J-(7.79)

Cmmn = TPun, Cnlm = =fNmln, Cnml = TNlmn,

Cmln = i Plmnt Pnll = it "mnm, Pnlm = ~F Nmni,

Pnmi = Τ Nlnm, Pmln = ± Clmn.

The T-invariance requirements lead for elastic scat-

tering to the relations

Mikq(k',k)=Ckqi(-k, -k ') ,

Nihg(k', k)=Pkgi\

(-k, -k'), 1

(-k, -k'). I
(7.80)

We shall not discuss in detail the properties of the
tensor Cikqp· We note only that invariance under re-
flections leads to

Cnnn* = -ζ Sp Κη) (σ2η) Μ (σ^) (σ2η) Μ* = ± Sp Μ*Μ = ± σ0,

that in the general c
with two parity values
so that in the general case of reactions % + % ~* Vj +

we have

(7.81)

The requirement of invariance under reflections

leads to the vanishing of the components C n n n a , C n a b c

(a, b, c = 1, m). The components Cana}:) (a, b = 1, m)

coincide, as can be readily seen, with the components

of the tensor C^. Indeed, examining simultaneously

the general case of the reactions with both values Ij

= ± If, we have

atfinnab = χ Sp (σ4η) (σ2η) Μ (a,a) (or2b) Μ*

= ± χ Sp Μ (σιη) (σ2η) (σ^) (a,b) M* = ± σ</7[?ια], [bn}

and

Cnnab = ± Crna], [6«], (7.82)

so that, for example,

Cnnlm = ± C,nl-

Analogously we have

^nanb ~~ — ^ [ a n ] , [b™]' ^nabn ^~ i t "-[an], [im]i

^anbn = = i t l^lan], [bn]i ^abnn —^ i ^[na], [t)n]i

ι_/̂  /^ _I_P Λ1 ι /~*
fiii — I t ^mmmm> ^mmll — I t ^-'llmmj ^Tnlml — I t ^im/ni)

^immni= =~T~^mZiii m i i n m ~ ^ ' i m / / i ^ mllnt ^ Ι Π ^ Imrnli

ρ IE/'1 /^ J-Λ
*-*mmlm — ~t~ ̂ llmli ^mmml — I t ^lllm·

The T-invariance requirement leads to the relation

Cihqp(k', k)=Cqpih(-k, - k ' ) . (7.83)

Expressions for all tensors in terms of the coeffi-
cients of the amplitude (7.4) are given in ^543.

9) The entire discussion above was based on the
general assumption that none of the scalar functions
in the amplitude (7.3) are small. The results of an in-
vestigation of nucleon-nucleon interaction in the energy

region of several hundred MeV correspond to such a
complicated picture. In the region of very high ener-
gies, when states with large values of orbital angular
momenta participate effectively in the interaction, we
can expect many simplifications in the general form
of the amplitude. The latest investigations of p-p
scattering in the region of very small scattering
angles E61^, in the energy range ~ 10 GeV, point to the
need of investigating polarization phenomena even at
such high energies.

Many simplifications can be made at low energies,
when the interaction occurs essentially in S-states.
The n-p scattering matrix has in this energy region
the form

ikf=o1/' + a0S
I = a+P(ff1ff2), (7.84)

where a t and a0 —scattering lengths in the iS1 and 's 0

states, respectively. The polarization P°, of course,
vanishes, and for other values it is easy to obtain

σ·Μ-3σ'.

4

|a|2—1

+ 3 | β |2, σ 5=|α-3β σ ' = | α

U2

2[ίίθα· 2 ]

" • « - | α | 2 + 3 [ β | 2 "•*-

(7.85)

where a s and σ*- —cross sections for scattering in the

singlet and triplet states, respectively. As expected,

all these tensors are proportional to δ .̂ The expres-

sion for the tensor P̂ u can be reduced to the form

Λ»,

which is a particular case of the general relation

(7.38). Inasmuch as in this case

goes over into two relations
= D

m m ,
(7.17)

An interesting application of the polarized proton
target, for investigations in the region of rather low
energies, was indicated by Yu. V. Taran and F. L.
Shapiro t6 2^. In view of the large difference between
(7s and σ*- in n-p interactions, a neutron beam passing
through a polarized target becomes strongly polarized.
It is easy to show that the degree of polarization of a
beam of neutrons passing through a polarized proton
target of thickness d is

Ρn = tanh^ [P2n (σ3 - σ') d],

where P2 —polarization of the target and η —number
of protons per cm3. The use of polarized protons (and
polarized targets) is very fruitful in investigations of
nuclear levels and other problems.

For p-p scattering at low energies, the amplitude
reduces to the singlet projection operator

Λ/=α[1-(σ,σ2)].

Thus, for p-p scattering at low energies, = 0
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and Pj^ = - Ι δ ΐ ^ · Deviations from these quantities are
measures of higher states of the p-p system. Syste-
matic polarization research at energies above 50 MeV
is necessary to establish a unique set of phase shifts
for the n-p system in this energy range. The pres-
ently available analysis results of the Yale^63^ and
Dubna'-64-' groups are particularly at variance in the
energy dependence of the mixing coefficient of the
states 3 S t and 3 D t .

8. MESON-NUCLEON SCATTERING

In this section we shall consider scattering of pions
and Κ mesons by nucleons. The general form of the
scattering matrix can be obtained from the require-
ments of invariance under rotations and reflections
(3.22) and (3.28). Invariance under time reversal does
not impose in this case any additional limitations on
the Μ matrix. As already noted (see Sec. 6), the
scattering matrix of particles with zero spin or par-
ticles with spin V2 is of the form

Μ = ο + 6(ση). (8.1)

The complete measurements include in this case a de-
termination of the unpolarized cross section, the asym-
metry in the scattering by a polarized target, and an
investigation of the polarization of the recoil particles
following scattering by unpolarized and polarized ta r-
gets. Measurement of the asymmetry of elastic scat-
tering by a polarized target is equivalent, owing to the
polarization-asymmetry relation, to a determination of
the polarization of the recoil particle in experiments
with an unpolarized target. However, measurement of
asymmetry with a polarized target makes it possible
to determine the polarization of the recoil particles in
an angle range such that its direct measurement in the
double experiment is made difficult by the small ana-
lyzing ability of the analyzing target.

One of the first experiments with a polarized hydro-
gen target consisted of measuring the asymmetry of
scattering of positive pions with energy 246 MeV by
h y d r o g e n ^ . The recoil proton polarization was meas-
ured in this case with a higher accuracy than in the
double experiment, and at those angles for which the
double experiment is very difficult to perform.

In the most extensively investigated energy region
of the K-N system, the analysis presupposes that it is
sufficient to take into account the interaction in the S
state only. The cross section σ0 for scattering by a
polarized target is more sensitive to the contribution
of the Ρ states. It is precisely from this point of view
that experiments with low-energy Κ mesons and a po-
larized target are of interest.

In the case of 7r(K)-nucleon scattering, a polarized
proton target makes it possible to obtain quantities
which cannot be determined without a polarized target.
We have in mind here the depolarization tensor'-9-'.

The depolarization tensor determines the polariza-

tion of the final nucleon following the scattering of me-
sons by a polarized target. If we denote by P' the po-
larization vector of the final nucleon and by Ρ the po-
larization of the target, then

τ8ρσ ίΜ[/+σΡ)]Μ+
(8.2)

Here σ0 and P° are the differential cross section and
the polarization of the recoil nucleon in the case when
the meson is scattered by an unpolarized target, while
the depolarization tensor is equal to

ι
2 σ 0

Let kiak = k and kf^ be unit vectors in the direc-
tions of the momenta of the initial meson and recoil
nucleon in the laboratory system. We resolve the po-
larization vector Ρ of the target protons in the ortho-
normal system

niab
l k k ' l a b ] , ,, r i ,

•=Γ7ΐΐΡ—ι ι = — n ' k a n d [ n l a b k ] :

s,

and the recoil nucleon polarization vector P' in the
system of vectors n l a b , kj a^, and n ^ χ kfab = s'.
We obtain for the components of the vector P ' the
following expressions:

ff(P'niab)=tfo(-Po+jD(pniab))i

σ (P'k ' U b ) = σ0 (A'k + R' [n l a bk]) P,
σ (Ρ' [η i a bk' l a b]) = σ0 (Ak + R[n l a bk]) P,

(8.4)

where

o0D = ~Sp (ση l a b ) Μ (ση l a b ) M+,

σ0Α' = -j Sp (ak'iab) Μ (akiab) M+,

(8.5)

a0A = 1 Sp (σ [n l a bk' l a b]) Μ (ak) M+,

a0R= ~ Sp (σ [η l a bk' l a b]) Μ (σ [n l a bk]) M+.

We note that the choice of the system of vectors in
which P' is resolved follows naturally from the pro-
cedure of measuring the recoil particle polarization.

The essential feature of the processes considered
here is that only two parameters in (8.4) are independ-
ent. We shall show that

.0=1, A'=R, A=—R'.

To prove this we use the relation

(ση)Μ(ση) = Λί,

(8.6)

(8.7)

which follows from the invariance of the S matrix
against reflections in the scattering plane [see (6.9)].
We note that the (8.7) becomes obvious if we make use
of the explicit expression for the Μ matrix (8.1). Using
formulas (8.5) and relation (8.7) we obtain
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(8.8)

o0A' = i- Sp (ak: lab) («"») Μ (ση) (ak) M+

= |-Sp(ff[n l a bk' l a b])M(ff[n l a bk l a b]) Μ+=σ0Λ

σ0Λ' = γ Sp (ak'iab) (ση) Μ (ση) (σ [n l a bk]) M+

= \ Sp (σ [n l a bk' l a b]) Μ (ok) Μ + = - οαΑ.

Thus, in order to determine all the components of the
polarization vector P' it is necessary to measure only
two quantities. Naturally, it is simpler to measure the
polarization component perpendicular to k^^, that is,
the parameters A and R. To determine A(R) it is
necessary to direct the target polarization along k (or
n lab x k) and to measure the recoil proton scattering
asymmetry in a plane perpendicular to the plane of the
initial scattering. The up-down asymmetry in the sec-
ond scattering is obviously

_
R

σ (down) — σ ( up )

o(down)"-j-a( up )
(8.9)

if the polarization of the target is directed along
χ k, and

_ σ' (down) — a' ( up ) _ p . p

σ ' ( y ( up )
(8.10)

if the target polarization is Ρ = Pk. Here P c —ana-
lyzing ability of the analyzer target, and the " u p " di-
rection is determined by the direction of the vector
k χ k i a b .

Measurement of these parameters would make it
possible to eliminate the ambiguities of the π-Ν scat-
tering phase shift analysis, which still remain in the
energy region from 200 to 400 MeV.

It must be emphasized that a study of boson-nucleon
scattering with the aid of a polarized target permits a
unique determination of the absolute values and the
relative phase of the functions a and b, that is, to r e -
construct the scattering matrix, apart from the com-
mon phase. Indeed, it is easy to obtain the following
expressions for the observed quantities:

(8.11)
a0R = (| a |2 - ! b |2) cos 9 l a b - 2 Im (ab*) sin 9 I a b,
a0A = - (| a b |2) sin 9lab— 2 Im (ab*)cos 6,ab)

where 9iab —angle between the incident meson and the
recoil nucleon in the laboratory system. From these
relations we get

! α I2 = y σο (1 + R cos θ l a b - A sin 9 l a b ) ,

| 6 |2 = y σ0 (1 - Rcos 9 l ab-f A sin 9i a b ),

ab* = -i σ0 (P° — iR sin e u b — iA cos 9i a b ) .

(8.12)

The possibility of direct determination of the scatter-
ing matrix from the experimentally measured quanti-
ties is particularly essential at high meson energies,

where a phase shift analysis is greatly hindered by a
large number of states and by the need of taking into
account the influence of inelastic processes.

To carry out a phase shift analysis of the 7Γ-Ν and
K( Κ) -N scattering data (or for a direct determination
of the amplitude), further simplifications are obtained
by using the requirements of isotopic invariance of
strong interactions. Thus, the scattering of positive
pions by protons (or negative pions by neutrons) cor-
responds to the V3 amplitude of π-Ν scattering in a
state with a system isospin Τ = %. The amplitudes of
the different processes initiated by the negative pions
on protons are expressed in terms of V3 and the scat-
tering amplitude Vj in states with system isospin Τ
= V2 with the aid of the relations

For the K-N system we have two values of the system
isospin, 1 and 0, with scattering amplitudes Wj and Wo

respectively. Thus,

Μ (K°p -s- K«p) = i- {Wl + Wo),

Μ (K«p - * K+n) = -i (W1 - Wo).

Analogously, introducing the amplitudes Z
have for the K-N system

and z0, we

M(K°p-+K«p)=zi.

Each of the amplitudes introduced above has the struc -
ture (8.1).

We note in conclusion that the results obtained ad-
mit of a simple generalization. All the relations given
above were based only on invariance under spatial r o -
tations and reflections. This means that all the forego-
ing pertains also to inelastic reactions of the type
0 + V2 — 0 + V2, provided the total intrinsic parity of
the initial particles Ij is equal to the intrinsic parity
If of the final particles.

In the case of reactions of the same type with I|
= -If, it follows from the invariance under reflections
in the plane of the reaction that (see Sec. 6)

(ση) Μ (ση) = —Λ/. (8.13)

Compared with (8.6) this leads to a reversal of sign
in the right side

£>=—1, A'^—R, R'-=A. (8.6')

For reactions of the type 0 + V2 —• 0 + V2, the general
expression for the tensor Dj^ (7.15) reduces by the
same token to

Dih = ± nink + Dn(lilk± niimh) + Dmt {niih + ltmh), (8.14)

where the upper and lower signs correspond to the two
possible values Ii = ± If.



748 B I L E N ' K I I , LAPIDUS, and RYNDIN

Like the amplitude (8.1), expression (8.14) automat-

ically satisfies the requirements of T-invariance for

elastic scattering processes [see (7.19)]. An experi-

mental verification of the relations obtained above,

which are based on the requirements of invariance

under reflections and rotations, allows us to proceed

to an experimental investigation of parity conservation

in strong interactions, including searches for the in-

fluence of parity nonconservation in weak interactions.

9. PHOTOPRODUCTION OF PIONS AND Κ MESONS

A study of the photoproduction of bosons from fer-

mions is one of the most important sources of informa-

tion on the produced particles. Along with the scatter-

ing of pions by nucleons, photoproduction of pions from

nucleons was one of the main sources of information on

pion-nucleon interaction at the very start of develop-

ment of pion physics. The increased photon energy at-

tainable with accelerators makes photoproduction proc -

esses an important tool in the investigation of higher

pion-nucleon resonances. A study of the photoproduc-

tion far from threshold makes it possible to resolve

with high accuracy many pion-physics problems that

are still unclear, and carry out a reliable analysis of

the pion photoproduction process itself. In addition to

being of independent interest, detailed information on

the mechanism of photoproduction of pions in a wide

range of energies is the basis for the theory of the

proton Compton effect.

Until recently photoproduction experiments were

limited to measurements of the cross section for the

production by unpolarized gamma quanta from an un-

polarized target, and measurements of the polarization

of the recoil nucleons from an initially unpolarized beam

and target. Measurements were also made of the dif-

ferential cross section for the production of pions by

polarized gamma quanta from an unpolarized target.

Progress in the production of polarized gamma beams

and polarized proton targets allows us to undertake

more complicated experiments.

We shall consider here the photoproduction of π(Κ)

mesons from a polarized proton target. We confine

ourselves to examination of unpolarized gamma quanta.

The general expression for the reaction matrix can be

obtained from the requirement of invariance under ro-

tations and reflections (3.22) and (3.28). It can be

shown that the reaction matrix is of the form'-66^

M = A (eq) + iB (aq) (en) + iC (an) (eq) + iD (as) (en) (9.1)

for the production of a scalar spinless boson from nu-

cleons, and

M = a (en) + ib (aq) (eq) + ic (ση) (en) + id (as) (eq) (9.2)

for the photoproduction of a pseudoscalar particle.

In these formulas q and k are unit vectors in the

direction of the boson and photon momenta in the

cm.s . , respectively, n = k x q / | k x q | , s = q x n , and

e —photon polarization vector satisfying the condition

(e.k) = 0.

If the target is polarized, then it follows from (4.26)

and (4.21) that the cross section of the process is of the

form

i). (9.3)

Here σ0 —cross section for the photoproduction from

an unpolarized proton target, Ρ —proton and target

polarization, and

From the general theorem proved in Sec. 5 [see

(5.9)] it follows that A is the nucleon polarization pro-

duced in the inverse process of radiative capture of a

boson by unpolarized baryons. In the general case this

quantity does not coincide with the nucleon polarization

resulting from photoproduction from unpolarized nu-

cleons. Thus, measurement of these quantities gives

independent information on the process. This circum-

stance is common to all inelastic reactions.

The polarization of the final baryon in photoproduc-

tion from a polarized target is obviously

aP'i=Oo(Pi + DihPh), (9·4)

where

is the polarization of the final quantity for an unpolar-

ized target, and the depolarization tensor D ^ is

SpaMaM+ ( 9 l 5 )

We note that, just as in the case of scattering of pions

by nucleons, the depolarization tensor can be measured

during the photoproduction process only in the pres-

ence of a polarized target.

From considerations of invariance under spatial ro-

tations and reflections it is seen that in the case of un-

polarized gamma quanta five components of the tensor

Dik differ from zero. Unlike the process of the type

0 + Vj —• 0 + V2 and inelastic scattering of particles

with spin V2» a ^ f i y e components of the tensor Dj^ are

independent in the case of the photoproduction process

(and in the case of other inelastic processes with two

particles in the final state).

With the aid of (9.1) and (9.2) we can easily find ex-

pressions for the observed quantities. We present only

the results of the calculations. (The photons are not

polarized.)

1. Scalar boson:

(9.6)

σ0 (P°n) = —lm(A*C) sin2 θ — Im (B*D),

σο(Αη)= - Im (A*C) sin2 θ + Im (B*D),

0Dqq = (| A |2 - IC \*) sin2 θ + (| Β |2 - | D |2),2a0Dqq =

2a0Dss =

a0Dsq = Re A*Csin2 θ + Re B*D,

o0Dq, = — Re A*C sin2 θ + Re B*D.

A j 2 - IC | 2) sin 2 θ + (| D |2 - 1 Β | 2 ) ,
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2. Pseudoscalar boson:

2 σ ο = ( | α | 2 + |ε12) + ( | δ | Η d |2) sin2 θ,
σ0 (P°h) = — Im a*c — Im b*d sin2 Θ,
σ0 (An) = — Im a*c + Im b*d sin2 θ,

;sin 26, \
(9.7)

l2 + ( | d | 2 - |
a0Dsq = Re a*c + Re (b*d) sin2 Θ,

a0Dqs = — Re a*c + Re (b*d) sin2 Θ.

Unlike processes of the type 0 + V2 —• 0 + V2. t n e

parameter Dnn is not equal to ±1, for in the case of

photoproduction processes the operator (σ·η) is not

the operator of reflection in the plane of reaction.

To determine the "plane" components of the tensor

Dik it is necessary to carry out four independent

measurements.

Since the matrix of the photoproduction process is

characterized by the four complex functions of the

angle and of the energy, it is necessary to carry out at

least seven independent experiments in order to recon-

struct this matrix at a specified angle and for a fixed

energy.

For unambiguous determination of the matrix of the

process, as shown with meson-nucleon and nucleon-

nucleon scattering as an example, it is necessary to

have a larger number of experiments. This means, in

particular, that the solution of the problem of recon-

structing the photoproduction matrix calls for the per-

formance of experiments with both polarized targets

and polarized gamma quanta.

In conclusion we note that by virtue of the invari-

ance under time reversal, the photoproduction of pions

from nucleons can be investigated also by studying the

inverse process, namely radiative capture of pions by

nucleons L67J.

Thus, for example, a study of the capture of a nega-

tive pion by protons

π" + ρ—>n-\-y (9.8)

yields information on the production of pions from free

neutrons by monochromatic gamma quanta. An inves-

tigation of the polarization of neutrons captured by an

unpolarized target is equivalent to measurement of

asymmetry with a polarized neutron target. The de-

polarization tensors D ) O and DTjr in photoproduction

and radiative capture respectively are connected by

relation

DJi (k, q) =Dki ( — q, — k), (9.9)

which is a generalization of the analogous relation for

elastic scattering.

With increasing intensity of the pion beams, these

relations make it possible to carry out detailed inves-

tigations that are equivalent to a study of photoproduc-

tion from a neutron target.

10. SCATTERING OF GAMMA QUANTA AND ELEC-
TRONS BY NUCLEONS

As is well known, data on scattering of high-energy

electrons by protons, when analyzed in the lowest order

in the electromagnetic interaction constant, yield in-

formation on the electromagnetic form factors of

strongly-interacting particles. The results of an in-

vestigation of γ-ρ scattering make possible an analy-

sis based on the dispersion relations and on informa-

tion concerning the mechanism of pion photoproduction.

We shall discuss here briefly the possibilities of-

fered by a polarized proton target in such investiga-

tions. We start with the proton Compton effect. Most

of the hitherto performed experiments on this process

consisted of measurements of the scattering cross sec-

tions of unpolarized gamma quanta, with energies ap-

proximately up to 300 MeV, by protons ^ 6 8^. Data per-

taining to the energy region 800—900 MeV have been

reported only recently.

An analysis of γ-ρ scattering at energies below 300

MeV leads to perfectly defined predictions with respect

to the expected polarization of the recoil protons from

unpolarized and polarized targets.

The amplitude of the proton Compton effect can be

represented in the form^69^

M = Ri (ee') + Rz (λ'λ) + iR3 (σ [e'e]) + ii?4 (σ [λ'λ])

+ i/?5 [(ak) (λ'β) - (ak1) (he')] + iRe [ak') (h'e) - (ak) (he')],

(10.1)

where λ = k χ θ, λ' = k' χ e', with θ, k and e', k' —

unit vectors of polarization and momentum of the pho-

ton before and after scattering, respectively. For the

cross section for the scattering of unpolarized gamma

quanta by an unpolarized target we have '-70-'

+1 Ri - Rz Γ (1 - cos θ) 2 +| R3 + i?41
2 (3+2 cos θ - cos2 Θ)

+ 2 |/? 5 -i? 6 |2( l-cos9) 3

+ 4 Re (R3 + i?4)* (R5 + Ra) (1 + cos Θ)2

- 4 Re (R3 - i?4)* (Ri - R6) (1 - cos Θ)2. (10.2)

The expression for the polarization of the recoil pro-
tons following interaction between initially unpolar-
ized gamma quanta and nucleons

2σ0Ρ° = η sin θ Im l(R3 + i?4) (i?i + i?2) * (1 + cos Θ)

-(^-^(^-^(l-cose)] (10.3)

coincides, of course, with the expression for the asym-

metry of the cross section for the scattering of unpo-

larized photons by polarized protons.

Without the use of the polarized-target technique,

measurements of proton polarization are difficult not

only because of the small cross section but also be-

cause of the low nucleon recoil energy. The use of po-

larized targets eliminates this difficulty.
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Below the pion production threshold, all the ampli-
tudes Ri are real in the e2 approximation, and the po-
larization P° vanishes. An experimental check of this
statement is a check on the main assumptions of the
analysis of the proton Compton effect. Above the pion
production threshold, the polarization P° increases
rapidly. Numerical estimates for the polarization in
the energy region up to 300 MeV were obtained in Ε70"72]
on the basis of an analysis based on the dispersion r e -
lations. It follows from these estimates that the maxi-
mum value of the polarization P° reaches about 30%
near 250 MeV. A check on this prediction can be very

0Dnn = [| Rt+R2

[| Λ , - Λ 2 Ρ — I i ? 3 —

important for the entire analysis. Measurement of P°
at higher energies can serve as a test on the assump-
tion of the diffraction character of γ-ρ scattering'-73-'.
P° vanishes if the real parts of the amplitudes Rj are
neglected compared with the imaginary parts.

In analogy with elastic meson-nucleon scattering
and pion photoproduction, only the use of a polarized
target makes it possible in this case to measure the
components of the depolarization tensor Dj^. With the
aid of (10.1) it is easy to obtain for the nonvanishing
components of the tensor Djk the following expres -
sions :

_ 4 Re (Λ3

+ 4 Re (/?3 — 7
(1+cos θ)2

(/?5 _i? 6 )] (1 —cos Θ)2

2σ0 {Da - Dnn) = [2 | R3 + Λ4 + (Λ5 + Λ6) (1 + cos θ)

-(Ι Λ3 + Λ412 + I \R3-Λ41
2) (1 -cosΘ)] (1 + cos Θ),

2σ0 (Dnm - Dnn) =[2\R3-Ri- (i?5 - Re) (1 - cos Θ) |2

2a0Z>im = Re [(Λ, + Λ2)* (Λ3 + i?4) (1 + cos θ)
+ (Λ, - R 2 ) * (R3-Ri) (1 -cos Θ)] sin Θ.

(10.4)

Expressions for the polarization tensors in terms of
the invariant amplitudes were obtained in ^T4^. In the
low energy limit

With increasing energy, Dnn> £>ll> a n <3 Dmm decrease
in magnitude. Estimates based on the results of ^72^
show that the parameter 0 ^ ( 9 0 ° ) , which is approx-
imately equal to 0.60 at a gamma-quantum energy 75
MeV, reverses sign somewhat below threshold, and
reaches values near - 0.30 in the 150—225 MeV energy
region. In the gamma-quantum scattering-angle r e -
gion near 180° the value of Dnn decreases with de-
creasing energy from an initial value equal to unity,
reverses sign below the pion production threshold, and
reaches values near -0.8 close to 200 MeV. The en-
ergy dependence of all the components of the tensor
Dik. especially in the region of small scattering
angles, is characterized by a noticeable near-thresh-
old effect.

Experimental investigations of the depolarization
tensor components are essential for a more thorough
understanding of the mechanism of the proton Compton
effect. Measurement of the components Dik in the r e -
gion of large gamma-quantum energies is a good
method for investigating nucleon isobars. If the diffi-
culties with the small recoil particle energies are
overcome, it will be possible to measure the compo-
nents D ^ appreciably below threshold and to obtain
additional information on the polarizability of the
nucleons.

Investigations of the polarization effects in the scat-
tering of gamma quanta by protons would make possible
a complete phenomenological analysis of this process.

A similar situation obtains for the scattering of
high-energy electrons by nucleons. The presently
available experimental data can be reconciled within
the framework of the single-photon approximation.
Further increases in the particle energy and in the
momentum transfer, made feasible by the new accel-
erators, will allow us to make further progress in the
study of the nucleon structure. An investigation of the
polarization effects in e-p scattering, by affording the
possibility of direct verification of the assumed approx-
imation, will make it possible, on the other hand, to in-
crease the accuracy of the particle form-factor data.

In view of the absence of symmetry between the
electron (particle 1) and the nucleon (particle 2),
singlet-triplet transitions are allowed in the case of
electron-nucleon scattering. In the e2 approximation,
an appreciable simplification is possible. Thus, the
proton and electron polarizations Pj! and Pj vanish.
To describe the change in polarization after collision
it is necessary to introduce the tensors D ^ , D ^ , KJj^,
and K?2^, defined in (7.60) —(7.63). The tensor D ^ de-
termines the polarization Pj of the scattered electrons
when a polarized electron beam (polarization Pj) is
scattered by an unpolarized target. The tensor D2^
determines the polarization of the recoil nucleons P^
after scattering of unpolarized electrons by a polar-
ized proton target (polarization P 2 ) . The tensor K ^
determines the polarization P£ of the recoil nucleon
after scattering of a polarized beam of electrons (with
polarization Pi) by an unpolarized target. The tensor
K-ik' determines the polarization PJ of the scattered
electrons after collision between unpolarized electrons
with a polarized proton target. By virtue of (7.67) and
(7.68) we have D<J> = <2 <J *2g y

a n d K<J> = Κ*2}.
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Since p!! vanishes in the e2 approximation, meas-

urement of the left-right asymmetry of recoil-proton

scattering in the case of a proton target polarized nor-

mally to the scattering plane yields directly the value

°f Dnn- In the more general case (see Sec. 8) this

asymmetry is given by an expression proportional to

The general structure of the tensors Dj^ and Kj^

is of the form

Dih (k', k) = Dnnninh + Dulilk + Dmmmimh-\-Dimlimh-\-Dmlmilh.

(10.5)

The T-invariance requirements lead (in analogy with

Sec. 7) to the relations

tors k and η χ k). It is shown in C6] that the cross

section for the scattering of a polarized beam of elec-

trons by a polarized proton target has in the laboratory

frame the following form:

σΡ1Ρ2 = σ0 [1 + (Pik) (P2k) Mn + (P,k) (P2 [nk]) Ml3], (10.10)

where

ί e2 V
, = 1 -τ- I

MV(k', k) = £»g(-k, -k ') ,

from which it follows that

n(ll !2) π<1><2) ΖΓ(1> ίΓ(2) ?Γ(1> J?V
Dim = — L l m l ι Λ ί 1 = " • ( ( , Ω-mm — Λ η

(10.6)

(10.7)

Detailed calculations of the polarization effects in

e-p scattering in the e2 approximation were made in

E75]. It follows from the results of this work that Knn

= Kn

2jJ = 0, and the parameter Dnn is equal to

β Β η = 1 — E3L

(10.8)

where μ = F 2 /F! , Fj and F2 are the Dirac and Pauli

form factors of the nucleon, respectively, and the re-

maining notation is standard. Expressions were ob-

tained in ^3] for the other components of the tensors

Djk and K^, too.

We now proceed to consider the scattering of polar-

ized electrons by polarized protons. In view of the van-

ishing of Ρ? and P2, the general expression (7.26) for

the cross sections of electrons polarized orthogonally

to the scattering plane (P t = P4n) scattered by a pro-

ton target with polarization P2 = P2n turns into

ann = ao(i+CnnPiP2). (10.9)

Measurement of the scattering cross sections for two

target polarization directions yields C n n directly for

arbitrary scattering angles. In view of the fact that the

ultrarelativistic electrons are longitudinally polarized,

the quantity Cnn is of the order of the ratio of the

masses of the colliding particles, so that the difference

between σηη
 an<3 σ0 is, of course, more noticeable for

scattering of muons by protons.

The scattering of polarized electrons by polarized

protons in the e2 approximation was considered theo-

retically in H76.77]. in view of the longitudinal nature

of the high-energy electrons, especially noticeable ef-

fects are obtained by a combination of a longitudinally-

polarized beam and a polarized target with orientation

in the scattering plane (along the direction of the vec-

2ξ2 ί
θ Λ θ

1—j—2g sin2 -κ- ) s in 4 -γ

2(1-

θ '

(10.10')

Measurement of the cross sections for e-p scattering

(in the region of applicability of the e2 approximation)

with polarized particles also makes it possible to in-

crease the accuracy of the data on form factors (espe-

cially magnetic ) and check the correctness of the ap-

proximation.

Experiments with muons increase the accuracy of

comparison of the electromagnetic properties of lep-

tons.

Measurement of the cross sections of π-p and N-N

scattering by a polarized target in the region of ex-

tremely high energies is a most essential experiment

for a verification of hypotheses on the behavior of the

scattering matrix. Without the use of polarized targets,

such research is extremely difficult.

By way of an example we can point to the possibility

of clarifying the character of diffraction scattering by

means of CM9]. Diffraction with imaginary phase

shifts, without wave refraction, is characterized by

the fact that in the π-Ν scattering amplitude (8.1) the

quantity a(9) is imaginary and b(6) is real. For N-N

scattering, in the same approximation, all the ampli-

tudes a, b, e, and f in (7.3) are imaginary, while c is

real. Here P° = 0, and the cross section for the scat-

tering of an unpolarized beam by a polarized target

does not differ from the cross section for the scatter-

ing of unpolarized particles. The polarization P° van-

ishes only if the asymptotic y5 invariance is valid'-80].

Definite predictions were obtained for the polarization

effects within the framework of the Regge-pole

theory f-81-'. In the asymptotic energy region, where

the Pomeranchuk theorem is valid E82], relations should

exist between the particle polarizations in crossing

processesC83·84]. Thus, the polarization in π~-p scat-

tering should equal the negative polarization in π* -ρ

scattering:

Ρ»(π+ρ) — —Ρο(κ-ρ).

Analogously, for example,

and nucleon polarization in the nucleon Compton effect
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and in the pion charge-exchange process

and also the polarization of the Ξ hyperon in the re

action

tend to zero.

Investigations of polarization effects at ultra high

energies have barely begun. Here, too, the polarized

target will make possible research whose results con-

tain new information, presently unavailable without the

use of this technique.
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