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1. INTRODUCTION

LODERN physics regards its task of investigating
the phenomena in the world of elementary particles as
completed if it can formulate the regularities of the
experimental data in the brief form of conservation
laws. Only a few fundamental conservation laws were
known to prequantum physics, those of classical me-
chanics; a large number of such laws has already been
accumulated in quantum physics, particularly in ele-
mentary-particle physics.

The abundance of conservation laws may be due to
the fact that we do not yet know the deeper mechanism
that regulates the multitude of processes that occur
with particles. It may well turn out in the future that
many conservation laws are due to a common cause
and are a consequence of some general symmetry of
space and time. At present, however, they present
themselves as independent, and their study is a major
aspect of contemporary research.

The conservation laws in elementary-particle phys-
ics and the related symmetries are characterized by
the fact that in many cases they are not exact, but only
approximate. Owing to this we now have in physics a
new possibility for studying phenomena, because the
violations of a symmetry are in many cases relatively
small in magnitude and rather simple in nature.

An example of such a symmetry is isotopic symme-
try ; the electromagnetic and weak interactions that
break it have been intensively studied. It is no great
exaggeration to say that the most interesting results
in physics have been achieved precisely in cases when
symmetry laws have been found to be violated. This
thread can also be traced in astronomical observations.
Galileo supposed that the orbits of the planets must
naturally be circles. The violation of axial symmetry

in these orbits, discovered by Kepler, let to the found-
ing of classical mechanics. A triumph of the general
theory of relativity was the discovery of the motion of
the perihelion of Mercury, which signalized the break-
ing of still another symmetry —the closure of the clas -
sical mechanical orbit.

In quantum physics the question of new conservation
laws arises when one attempts to understand the struc-
ture of the bound states of a system. The discovery of
the levels of the hydrogen atom led to the Bohr model.
The systematics of the levels turned out to be con-
nected with new symmetry properties, which only many
years later were formulated by Fock in terms of rota-
tional symmetry in a four-dimensional space.* The
possibility of a purely group-theoretical description of
the hydrogen atom is a very important fact of atomic
physics, which is undeservedly passed over in most
courses in quantum mechanics.

Symmetry under permutations and the associated
Pauli principle make it possible to understand the level
structures of atoms with more than one electron.

In nuclear physics the study of the levels of atomic
nuclei has led to the discovery of charge invariance
and the associated isotopic space. The isotopic spin of
particles and nuclei is now a no less familiar concept
than the ordinary spin or the charge of a nucleus. The
law of conservation of isotopic spin which was discov-
ered by Wigner in 1937 has revealed its full power in
elementary-particle physics.

Up to that time only two heavy particles were known,
the proton and the neutron, and the question of new

*The fact that the symmetry reflected by the levels of the hy-
drogen atom is not one in physical three-dimensional space is
very instructive, since it makes the eventual appearance of the
isotopic and unitary spaces less unexpected.
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quantum numbers did not arise; when hyperons were

discovered, there was the question of the cause of

their great stability, since on the nuclear scale a life-

time of 10~10 sec is a very large time. As in the his-

tory of the theory of the atom, the first step in the con-

struction of the theory was the introduction of a "prin-

cipal quantum number" for the system of baryon levels

(as we may call the family of nucleons and hyperons).

This principal quantum number was discovered by

Gell-Mann and Nishijima as the "strangeness" S (or

the hypercharge Y, which is the sum of S and the

baryon number B).

At present we do not have the slightest idea as to

the connection of this quantum number with any prop-

erties of the strongly interacting particles. We do not

know whether it is independent of the ordinary proper-

ties that are described by quantum mechanics and

relativity theory, and will have to be explained by a

deeper theory; but it may be, and this seems more

natural, that the strangeness is simply a compact de-

scription of the interaction of the particles with the not

very well understood field which is given the name of

"the physical vacuum." However this may be, the dis-

covery of strangeness is one of the most important

steps in the development of elementary -particle phys -

ics.

In order to include "strangeness" in the apparatus

of the theory, it was necessary to broaden the isotopic-

spin scheme. The first attempt of this kind was made

by Sakata, ^ 1 > 2-̂  who considered the U(3) scheme of

a unitary vector (proton, neutron, Λ hyperon), and

also by Markov^A4^ and by Okun'.^A3^ But the sin-

gling out of only three from among all the hyperons as

the basic ones turned out to be not a radical enough

step, and the real success of the theory came with the

SU(3) scheme proposed by Gell-Mann and Ne'eman.

This scheme, which at first was received with much

reserve, has now turned out to be the most effective.

A triumph for it was the discovery of the Ω meson

which it predicted. ̂ "-J

The scheme of Gell-Mann CC2>3:1 and Ne'eman^01^

was called the "eightfold way" by the former author.*

It is interesting to note that the group SU (3) defines

the symmetry of the levels of the three -dimensional

harmonic oscillator.

Despite the fact that the mass differences of the hy-

perons, which are zero in SU(3), are actually large, it

was found that extremely simple assumptions about the

symmetry of the interaction that breaks the SU(3) sym-

metry make it possible to describe the actual splitting

of the masses. Moreover, the splitting of the isotopic

multiplets could also be fitted into a simple scheme.

The success of the theory constantly increases. The

*This name for the group is connected with a legend about the
Buddha and the eight ways to the annihilation of suffering: right
opinions, right intentions, right words, right actions, right living,
right endeavor, right thought, and right concentration.

data obtained lead us to expect great progress in the

theory of weak interactions and in the study of reac -

tions between elementary particles.

Already a great number of particles and resonances

which two years ago seemed devoid of system have

been fitted into a strict scheme of three octets and one

decuplet (not counting the antibaryons, which form an-

other octet and a decuplet), so that the "game of soli-

taire" of the elementary particles now has every pros-

pect of "working out."

The success of a comparatively simple description

generates the hope that the description of the interaction

of a particle with the vacuum will not be a hopeless

problem, and can be realized in a comparatively simple

form; the beginning of such a description is given by

the description of the mass splitting in terms of a mul-

tipole interaction with an effective field.

However this may be, the theory of unitary symme-

try is now a necessary apparatus, which should be

widely known. From the point of view of the unitary

model it is still unclear, however, why there are no

particles in nature that correspond to the representa-

tion with the fewest dimensions—the three-component

spinor, which was the fundamental one in the Sakata

theory. The situation is as it would be in quantum me-

chanics if there were no particles with spin V2. Gell-

Mann has made an attempt to introduce this kind of

particles (quarks '-E l-'), but no such particles have been

found experimentally.'-·^2-'

A theory including unobservable primitive particles

has been developed by Schwinger. '-F2-' It is still too

early, however, to speak of any satisfactory solution

of this fundamental problem of the theory.

The present article is to be an elementary introduc-

tion to the theory of unitary symmetry. It expounds the

tensor algebra associated with the group SU(3).

The exposition is conducted so as to emphasize the

analogy with the ordinary tensor algebra associated

with the rotation group, or, what is the same thing, the

unitary group in the plane—the group SU(2). Therefore

the exposition begins with a brief survey of the proper-

ties of SU(2). Then, in Sees. 3 and 4, we speak about

the tensors of SU(3).

The theory of the unitary symmetry of elementary

particles begins in Sec. 5, where the properties of the

multiplets are described. Two classes of multiplets

are described in this section: 1) fermion multiplets,

described by complex matrices—four of these are

known: the octet, the decuplet, and their antimultiplets;

and 2) boson multiplets, described by Hermitian mat-

rices—of these two are known, and to them we must

also add the unitary scalar ω meson.

The formulas for the mass splitting are derived in

Sees. 6 and 7. The interval rules are surprisingly

reminiscent of the formulas of the elementary Zeeman

effect. The analogy with atomic spectroscopy is so ob-

vious that the wish arises to describe the splitting by

introducing some quasi-magnetic field to describe ef-
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fectively the interaction of the multiplet with the vac-
uum. Such a field can be treated as a field of me-

Actually everything said about the mass-splitting
formulas could be limited to the derivation of the for-
mulas (7.16), which contain practically all of the re-
sults.

These results reduce to three interval formulas
(6.7), (7.7), (7.8) for the octet of baryons, one for each
type of mesons, (6.19), (6.28), and one (7.14) for the
decuplet.

Besides the interval rules there is a large number
of other results connected with magnetic moments,
form-factors, and reactions.

There are particularly interesting developments in
the theory of weak interactions. These topics will re-
quire a separate article.

A last comment relates to the literature. Since the
number of papers published on unitary symmetry is
very large, an attempt has been made to choose a com-
paratively small number of papers that contain the
greater part of the ideas and results published up to
June 1, 1964. In these papers the reader will also find
further literature references.

2. ISOTOPIC SPIN

A consequence of the charge invariance of nuclear
forces is that it is convenient to classify the states of
systems of nucleons and other fundamental particles
by means of an isotopic spin. If we neglect the elec -
tromagnetic field and the weak interaction, the proper-
ties of a system are determined by the magnitude Τ of
the isotopic spin alone, and do not depend on the pro-
jection T3.

The electromagnetic field and the weak interaction
lead to a "splitting" of the levels, so that the proper-
ties of the system depend also on the projection T3 of
the isotopic spin.

The wave function of the proton and neutron is de-
scribed by a two-component spinor function*

Ψι.
(2.1)

The isotopic spin projection T3 = + V2 corresponds
to the charged state ρ (proton), and the projection
T3 = - V2 to the neutral state η (neutron):

In
Ψ = (2.2)

We shall denote the adjoint function with a bar

Ψ = ( Ψ _ 1 / 2 , Ψ+ΐ/,) (2.3)

or

Ψ=(η, ρ). (2.4)

The function (2.1) can be subjected to a linear t rans-

*Each of the components in turn depends both on the coordin-
ates and on the spin, which we shall not introduce explicitly here.

formation by means of a matrix U:
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(2.5)

If there is isotopic invariance, then the components of
the new function Φ' can be regarded as functions de-
scribing the two states of charge, equally as well as
the components of the original function Φ. For this to
be so, however, the new functions must be orthogonal
and normalized. This requirement will be satisfied if
the matrix U is unitary; that is, if the reciprocal ma-
trix is equal to the Hermitian adjoint matrix:

(2.6)

These relations will hold if the matrix U is of the
form

U =
α β \

-β* α·/ '

with

(2.7)

(2.8)

The condition (2.8) also means that the determinant of
the matrix is equal to 1.

The matrix is still unitary if we multiply it by
exp (ίφ ); the determinant is still equal to unity if
φ = 0 or π.

If Φ is transformed with the matrix U, then Φ
gets transformed with the matrix U+, and this multi-
plication with the matrix is from the left:

Ψ' = Ψϋ*.

(2.9)

(2.10)

If we write the indices out explicitly, then for spin-
ors that are transformed according to the law (2.9) one
puts the index above, and the spinors are called con-
travariant:

Ψ ' α = (2.11)

(summation over equal indices ! ) .
Spinors that transform according to the law (2.10)

are marked with indices below and are called covariant:

ρ =(#•)« ψ α . (2.12)

Since the indices are written out explicitly, the order
of the factors in the right member of the equation is
immaterial.

From these formulas it follows that the transforma-
tion (2.9), (2.10) does not change the scalar product:

/ψ·' ψ'\ _ (ψ£/+ £7ψΛ — ΨΨ (2 13)

This relation (2.13) is the definition of unitary t rans-
formation.

Let us introduce the antisymmetric matrix

/0 - 1
S^=[l 0

and its inverse
0 1

(2.14)

ε α β _

- 1 0 ' (2.15)
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Then to each contravariant spinor we can assign a
corresponding covariant spinor by lowering the index:

Ψα = εαβΨίι. (2.16)

Conversely, by raising the index, we can turn a covari-
ant spinor into a contravariant spinor:

χρ α

= ε αβψ β . (2.17)

It follows that the difference between contravariant and
covariant components is a purely formal one, and

Ψ ι = — Ψ2, (2.18)

* 2 ~ T • (2.19)

The matrix ea@ remains unchanged under unitary
transformations:

(2.20)

This equation is easily verified; it is simply a conse-
quence of the fact that the determinant of U is unity.

Accordingly, if

Ψ α = ί ΐ , (2.21)

then

— P

η
(2.22)

Besides this, we note that

ΨαΨα=0 (2.23)

and that the matrix eaP plays the role of a metric
tensor.

Just as in ordinary tensor algebra one introduces
tensors which depend on several indices. A mixed
second-rank tensor

1} A\\

transforms like the product of two spinors, one con-
travariant and the other covariant. The trace of this
tensor,

SpA = A\ + Al, (2.25)

obviously remains unchanged under transformations,
and is a scalar.

The tensor

Mi A\Λ a

Ab =
(2.26)

is already irreducible. This tensor is equivalent to a
vector in three-dimensional space. The connection
between the components of the three -vector and those
of the tensor (2.26) is made by means of the Pauli mat-
rices. Taking the scalar product of the three-vector A
and the Pauli vector σ (σι, σ2, σ3), we get

(2.27)

mations of the tensor A^ are equivalent to rotations
of the vector A in three-dimensional space.

We shall not need here any further information about
higher-rank tensors.

Let us now take the electromagnetic field into ac-
count. In the isotopic space the axis 3 is now singled
out, since the projection along this axis determines the
charge of the state. In this case the interaction is no
longer isotopically invariant. The transformation mat-
rices become diagonal and can be written in the form

U =
0

expf_

They describe rotations in a plane around the ζ axis.
We get the one-parameter subgroup of two-dimensional
rotations R(2). In the tensor algebra corresponding
to this group the difference between upper and lower
indices disappears, and the only transformation that
remains is multiplication by a phase factor. It may
be helpful to recall that everything said about the prop-
erties of the matrices can be illustrated with the model
of particles with spin, in which the spherical symmetry
is broken by a magnetic field directed along the ζ axis.

An important case of a spin-tensor is the operator
(vector) Τ of the isotopic spin. In accordance with
(2.27) we write

(2.28)

The elements of this matrix are the components of the
isotopic spin, which in themselves are also matrices.
The form of these matrices (the number of rows and
columns) depends on the representation of the group,
i.e., on the magnitude of the spin of the particle on
whose wave function these matrices are to act.

For the nucleon, Τ = V2, the components of Τ are
the matrices

1 0\ /0 IN /0 0\
o - l j ' T+ = [o o ] ' T-=\i o) •

For example, by means of these matrices we can
write the current (vector and axial-vector) which oc-
curs in the weak interaction. The vector current cor-
responding to the β decay of the neutron is the J+

component of the isotopic current

We shall not give the proof that the unitary transfer-

It is indicated here that the matrix element is taken
between the initial state η and the final state p, for
the weak-interaction operator γ α ( 1 + λγ5) (λ ~ 1.25,
γα and γ5 are Dirac matrices), which acts on the or-
dinary spin indices, and for the isotopic operator T+,
which converts neutron into proton.

The current component J_ associated with the op-
erator T- describes positron decay, and according
to the theory of universal interaction the neutral com-
ponent J3 enters into the electrodynamical current.
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Thus, for example, the vector current can be written

in the matrix form

)
\v+ -v,

Here we are to understand with each element the un-
written index of the component in the ordinary Min-
kowski four-space. Returning to (2.28), we note that
Sp Τ = 0, and the determinant of this matrix is

Det D = -|- (T+T. + T-T+) + TZ = T2

(in calculating the determinant we have symmetrized
it in the elements T- and T+, since these matrices do
not commute). The last formula shows that the deter-
minant gives a matrix invariant of the transformation
—the square of the isotopic spin. It is clear that this
formula does not depend on the representation; that is,
it is true for any value of the spin.

For completeness we shall also describe briefly an
extension of the group. If we drop the unitarity condi-
tion and keep only the unimodularity condition Det U
= 1, the matrices will describe the Lorentz transfor-
mation L6(4).* Since in this case U+ * U"1, in the
tensor algebra of the Lorentz group there are not just
two types of spinors, but four, which transform with
the matrices U, U"1, U+ and U+~*. For the description
of these types one introduces a further index with a dot,
so that the transformations are written as follows:

(2.29)

In the tensor algebra of L(4), however, there is an
operation of raising and lowering indices, just as in the
algebra of SU(2). Therefore in the Lorentz group a
representation is characterized by two numbers—the
number of dotted indices and the number of undotted
ones. In this algebra a tensor is written by means of
four Pauli matrices σ0, σ±, σ2, σ
matrix. The tensor

3 , where σ0 is the unit

At =
It — ζ, χ — iy

[x+iy t+z

corresponds to a four-vector; its transformations are
equivalent to Lorentz transformations. Since one can-
not sum over a dotted and an undotted index (i.e., such
a summation does not give an invariant), the trace of
the tensor (2.30) (sic) cannot be regarded as equal to
zero in all coordinate systems.

To go over from the Lorentz group L6(4) to the
group of three-dimensional rotations R(3) it suffices
to drop the distinction between dotted and undotted in-

dices. Then a scalar, the trace, can be separated out

from the tensor. If in the matrices of the representa-

tions we keep only the diagonal components, we go over

to the group R(2). Thus the reduction of the group

is accompanied by a corresponding simplification of
the tensor algebra.

In conclusion we shall show how the components of
a tensor are placed in correspondence with the values
of the projection of the isotopic spin.

A tensor with ρ upper indices corresponds to the
isotopic spin p/2 = T, since the tensor has p + 1 com-
ponents. If all of the indices are equal to 1, we agree
to assign to this tensor component the value T3 = - Τ
= -p/2. Then, if a component of the tensor has p( l)
indices equal to 1 and p(2) = ρ - p ( l ) indices equal
to 2, for this component

1 3 ι ~r Ρ (4) = η, > Ρ \ ^ ) ~ 2 ' ( ·̂30^

In an analogous way we get for a tensor with q(l)
lower indices equal to 1 and q(2) lower indices equal
to 2 the value

ι, = 9(2)—9(1) (2.31)

For a mixed tensor with ρ upper and q lower indices

and with trace zero we get (cf. Eq. (4.14))

where

T3 = y (m2 — mi) = mi — y

= p(2)~q{2),

(2.32)

(2.33)
m = /Wj + m2.

*Transformations of four-dimensional space which depend on
six parameters.

We can say that the number V2 (p+q) = Τ character-

izes the representation, and the number m2 - m t char-

acterizes the subgroup of rotations around the 3 axis

—i.e., the value of the projection of Τ along this axis.

3. THE UNITARY GROUP

The algebra of the unitary group of complex third-
order matrices is constructed in the same way as that
of SU(2). Third-order matrices will also be denoted
by U, or by U5 (a, b = 1, 2, 3 ) if it is necessary to
show the components explicitly. The matrices U are
chosen so that

UU+=1, (3.1)

Det£/=1. (3.2)

A spinor in this space has three complex components:

(3.3)

This contravariant spinor, a spinor with upper index,
transforms by means of the matrix U. There also ex-
ists a covariant spinor, with lower indices,
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= (Φι, Φ2, Φ3). (3.4)

The spinor Φ transforms by means of the matrix U+.
It is obvious that the spinor adjoint to (3.3) trans-
forms like Φ.

The scalar product, which is unchanged under uni-
tary transformations, is defined by

(Φ, Ψ) = Φαψα. (3.5)

In SU(3) the operation of lowering an index has a dif-
ferent appearance from that in SU(2). We introduce
two antisymmetric tensors, which in three-dimensional
space have three indices:

(even permutations a, b, c),
(odd permutations a, b, c),
(two indices equal).

(3.6)

Since Det U = 1, the values of the components of
these tensors remain unchanged under the transforma-
tions of the group.

The action of the tensor ^^ can be demon-
strated with the example of a second-rank tensor
in SU(3).

Second-rank tensors can be of different types.
1) Φ§—the tensor with one upper and one lower

index. The trace of such a tensor is a scalar of the
group, and therefore an irreducible tensor (analogous
to the quadrupole moment tensor in electrostatics )
must have trace zero:

SpT = TS = 0. (3.7)

2) ^ab —the tensor with two upper indices. We
break this tensor up into two tensors, symmetric (in
a and b) and antisymmetric:

ψΐ '*1=±(ψ α | > _ψ ι > β ) , (3.9)

ψ"α). (3.10)

This separation of the tensor is covariant under uni-
tary transformations. Now we can use the tensor e a D C .
Multiplying it with the tensor (3.9), we get a spinor
with one lower index,

Ψ _ F mite] /ο ι -ι \

Thus in this algebra an antisymmetric tensor of the
second rank is equivalent to a spinor. On the other
hand the symmetric tensor (3.10) cannot be simplified.
Its product with e is zero. Therefore we shall use
*ab to denote the symmetric tensor, and shall not use
the antisymmetric tensor at all.

3) Similar arguments can be repeated for tensors
with two lower indices, *ab> ^ o r this c a s e w e u s e the
tensor eabc_ The result is that we can also take this
two-index symbol to mean a symmetric tensor.

All of this can be repeated for any pair of upper or
of lower indices. Therefore the general case of an ir-
reducible tensor can be characterized by two numbers

—the number of lower indices and the number of upper
ones. Furthermore all traces (sums over any pair of
one lower and one upper index) must be equal to zero.
Irreducible tensors (and the corresponding represen-
tations) are denoted by the symbol D(p,q), where ρ
is the number of upper indices and q is the number of
lower indices. Thus we arrive at the following classi-
fication of tensors in SU(3 ):

D(0,0)—scalar (one component)
D(l, 0) —contravariant spinor (three components)
D(0,1) —covariant spinor (three components)
D( 1,1) —mixed tensor (eight components)
D(2, 0) —contravariant tensor (six components )
D(0,2) —covariant tensor (six components), and

so on.

We now give some formulas for computing the num-
ber of components. A symmetric tensor with k in-
dices (all upper or all lower) has a number of compo-
nents given by

N(k, 0) = iV(0, k) =

A tensor with equal numbers of upper and lower in-
dices has a number of components given by

N{k, k) = (3.13)

The first of these formulas is simply the number of
ways in which k can be made up of three integers (the
numbers of ones, twos, and threes among the indices).
The second is obtained from the well known formula
for the sum of the cubes of a sequence of integers,

We note that the left member is the square of the num-
ber (3.12); that is, it is the total number of components
of a tensor which has the same number of upper and
lower indices, but with nonvanishing traces. Therefore
we can interpret this last formula as giving the decom-
position of such a tensor into irreducible tensors with
smaller numbers of indices (the proof is easily ob-
tained by induction).

For the case of a tensor with ρ upper and q lower
indices the number of components is

N(p,q) = ^(P+i)(g + l)(p + q + 2). (3.14)

This is obtained at once if we note that before setting
the traces equal to zero the number of components can
be found from (3.12) and is V4 (p + 1 )(q + l )(p + 2 )(q + 2 ).
The condition that the traces be zero is equivalent to
the vanishing of a tensor D (p - 1, q - 1 ) with
V4Pq(p + l ) ( q + l ) components. The difference of these
two numbers gives the result (3.14).

We can now formulate the rule for the composition
of vectors. In the rotation group this rule is that from
two tensors with 2jj +1 and 2j2 +1 components there
will come tensors with numbers of components 2J + 1,
where J runs through all integer (or half-integer)
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values from | j t — j21 to J1+J2· In SU(3) the rule is in
general more complicated, and it is simplest to use a
direct procedure.

For example, from two spinors * a and Φ^ we can
form a scalar φ and a tensor Φ§ with eight compo-
nents. We shall write this symbolically

D(l, 0)xD(0, l) = Z>(0, O) + Z>(1, I) (3.15)

or with simply the numbers of components

3 x 3 = 1 + 8. (3.16)

Let us consider the product of two tensors *§*§·
To find the irreducible parts, we proceed as follows.
We take the double sum, and get a scalar

= ψ£φ£ (one component). (3.17)

Summing only once, in two ways, and setting the traces
equal to zero, we get two tensors:

(eight components each). (3.18)

If by means of the tensor e we raise the lower indices,
and then symmetrize in all the upper indices, we get a
third-rank tensor with upper indices

Xabc. (3.19)

In analogous fashion we construct a tensor with three
lower indices

Xa (3.20)

There still remains a fourth-rank tensor with two
upper and two lower indices and with traces equal to
zero. This tensor has (2 +1)3 = 27 components

This result is written formally

+ Z>(3, 0) + D(0, 3) + D(2, 2)

o r

8x8 = 1+8 + 8 + 10 + 10 + 27.

(3.21)

(3.22)

(3.23)

The notation records the fact that the two octets
(second-rank tensors ) are equivalent—i.e., transform
in the same way—and the two decuplets (third-rank
tensors) transform with matrices that are each other's
adjoints.

We give also the formula for the product of two
decuplets; from (3.13) we can write at once (k = 2)

10χΐ0 = 1 + 8-)-27 + 64 (3.24)

or

D(3, 0)+Z>(0, 3) = B(0, O) + D(l, 1)

+ £>(2, 2) + Z>(3, 3).

We give several further formulas without proof:

(3.25)

3 x 3 = 1+8,

1, 0)χΖ>(0, l) = Z>(0, 0) + £>(l, 1),

3 χ 3 = 3 χ 6 ,

l, 0)xD(l, 0)=Z)(0, l)+Z)(2, 0),

3x3 = 3 + 6,

D(0, l)xD(0, 1) = Z>(1, 0) + Z>(0, 2),

6 x 3 = 8+10,

D(2, 0)xD(i, 0) = D(l, l)+Z>(3, 0),

6 x 3 = 3 + 1 5 ,

D(0, 2)xD(l, 0) = Z)(0, 1) + Z>(1, 2),

6x3 = 3 + 15,

D(2, 0)χΖ)(0, 1) = £>(1, 0) + £>(2, 1),

6x6 = 1 + 8+27,

D(0, 2)χΰ(2, 0) = Ζ»(0, 0) + Z»(l, l) + D(2, 2),

6x6 = 6 + 15 + 15',

D{2, 0)xfl(2, 0) = D(0, 2) + D(2, 1) + Z)(4, 0),

6x6 = 6 + 15 + 15',

D(0, 2)xD(0, 2) = Ο(2, 0) + Ζ>(1, 2) + D(0, 4) etc.

We see that only the simplest representations can
be described with a number alone. The two tensors
D(2,1) and D(4, 0) both have 15 components, and to
distinguish them we have written 15 and 15'.

The calculation of the coefficients in the composi-
tion formulas (the Clebsch-Gordan coefficients ) is
more lengthy. Since we shall not have need for them,
we shall not discuss them here (they are given in '-Β2-')

4. UNITARY SPIN

Just as in SU(2) a representation was character-
ized by the magnitude of the isotopic spin, we can also
introduce in the algebra of SU(3) an analogous char-
acteristic, the unitary spin, which we shall denote by
U. The components of the isotopic spin, which were
written in the form of a 2x2 matrix,

i:Mi: -
are generators of a rotation group. This means that
the matrix for a rotation through the angle δφ around
the 3 axis is of the form

Λί = 1 + γδφ7'3. (4.2)

There are analogous formulas for rotations around the
1 and 2 axes; these contain the respective matrices

The unitary spin is introduced as a 3 x 3 m a t r i x :

(4.3)

(4.4)

The four elements in the upper left-hand corner form a
matrix of the type of the matrix (4.1), but with nonvan-
ishing trace [i.e., this matrix is reducible in SU(2)].
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This matrix can be written as the sum of two matrices,

one of which has zero trace:

(4.5)

(4.6)

(4.7)

Comparing this with (4.1) we see that

or

If we take the eigenvalues of Q to be values of charge,

then Υ is the matrix corresponding to the hypercharge

S+B (S is strangeness and Β is baryon number). The

remaining elements (the elements L+, L_, K+, K- )

are matrices of the same form as the isotopic spin

matrices Tj, T2, and T3, but defined in the subspaces

(2,3) and (1,3). Since the group SU(3) consists of

transformations that conserve the quadratic form | X | 2

+ | Υ | 2 + | Ζ | 2 , in each of the two-dimensional sub-

spaces there exists a subgroup which conserves the

sum of two squares of absolute values, that is, a sub-

group equivalent to SU(2 ). From the structure of the

matrix (4.4) it can be seen that one may choose a sys-

tem of commuting matrices in different ways. Taking

as a subgroup the matrices (4.5), we get the system

of matrices Υ, Τ2, and T3. If we take as subgroup the

2x 2 matrix in the lower right-hand corner of (4.4), we

get the matrix

K- ι (Q 0

no Q
(4.8)

In this case the commuting matrices will be the mat-

rices Q, K2, and K3, where

K3 = Y-±Q. (4.9)

With this choice of the commuting operators the charge

of the particle will be determined by one of the quan-

tum numbers. Such a representation is convenient in

dealing with problems of the weak and electromagnetic

interactions.

Let us return to the choice of the system of com-

muting matrices Υ, Τ2, T3. We consider an arbitrary

tensor with ρ upper and q lower indices. We denote

it, and also the associated representation, by D(p, q).

Each of the p + q indices can take the values 1, 2, 3.

We introduce the following notations:

p(l) number of upper indices equal to J,
ρ (2) number of upper indices equal to 2,

ρ (3) number of upper indices equal to 3,

q(l) number of lower indices equal to 1,

q(2) number of lower indices equal to 2,

q(3) number of lower indices equal to 3.

(4.10)

and T3 and the components of a tensor D(p, q) is es-

tablished if we prescribe Υ for the components of any

one tensor. This is where the choice of representation

occurs for the description of the actual particles. In

the model of Gell-Mann and Ne'eman the octet D(l, 1)

is taken as the basis.

We assign the hypercharges for the components of

this octet:

Ψ?(α, 6 = 1, 2, 3): Y = 0, )

ψ'(6 = 1, 2, 3): y = l,

Ψί(α = 1, 2): Υ = - 1 ,

Ψ3: Ya = 0. J (4.11)

We recall that the components φξ comprise a mixture

of an isotopic vector and an isotopic scalar (a, b = 1, 2 ):

1 Λ

Ψί>—γδ^ρψ, Γ—vector ι Ι
Sp¥, Τ -scalar, j ( 4 1 2 )

Ψ3, Ψ', Γ-spinor,

T- scalar

The connection between the eigenvalues of Υ, Τ2,

From octets we shall form higher-order tensors. By

multiplying octets together we obtain tensors in which

the numbers of upper and lower indices are equal, but

the traces are not equal to zero. We denote such a ten-

sor by D'(k, k), indicating with the prime the fact that

Sp D' *• 0. The hypercharge corresponding to a compo-

nent of the tensor will be determined by the number of

indices that are equal to 3, i.o.f by the numbers p(3)

and q(3). Since according to (4.11) each upper index

contributes the amount 1 to Y, and each lower index

contributes - 1, for the components of a tensor D'(k, k)

the hypercharge is p(3 ) - q(3 ). It can be seen from

this that among the components of this tensor Υ varies

over the range - k £ Υ < k.

We now separate out from the tensor its irreducible

parts. To do this we first symmetrize the tensor in

the ρ upper indices, and separately from this in the

q lower indices. We get an irreducible tensor D(k, k)

for which Υ varies over the same range - k < Y < k .

Ιί ρ or q > 2, then by means of eabc w e c a n l ° w e r

two indices on D'(k, k), turning two upper indices into

one lower one. Similarly, with the tensor e a D C we can

raise two lower indices and turn them into one upper

one. Thus we can convert the tensor D'(k, k) into a

tensor D'(k-2, k + 1) or into a tensor D'(k + 1, k - 2 ) .

After this we must symmetrize the resulting tensors

to tensors D(k-2, k + 1) or D(k + 1, k - 2 ) .

The tensors e are antisymmetric, so that if the

tensor D(p,q) has all ρ indices equal to 3, multipli-

cation by eabc gives zero. Similarly, if the tensor

D(p,q) has all lower indices equal to 3, multiplication

by eabc gives zero. From this we can conclude that

the number of values of Υ for the tensor D(k-2, k + 1)

is one less than for the original tensor D(k, k); it has

no component with Υ = k. Thus the tensor D(k - 2, k +1)

has components with Υ in the range - k < Y s k - 1 .

We can also conclude that the tensor D'(k + 1, k - 2 )
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has components with Υ in the range - k + l < Y < k .

If we lower 2s upper indices, converting them into s

lower ones, we find by a similar argument that for the

new tensor D ( k - 2 s , k + s) the hypercharge varies

over the range - k s Y < k - s . So also, for the tensor

D(k + s, k - 2 s ) we have - k + s < Y < k.

Then for an arbitrary tensor D(p,q), when we set

k = (p + 2q)/3 and s = - ( p - q ) / 3 (p = k - 2 s , q = k + s) ,

we find that the hypercharge varies over the range

ο — < * < Q—· (4.13)
ο ο

The hypercharge of a component of the tensor

D(p,q) is determined by the number of indices equal

to 3. We set

Υ = />(3) — <7(3) + a, (4.14)

where a is a constant. We find this constant by noting

that for p(3) = ρ and q(3) = 0 the hypercharge Υ

takes its maximum value, (2p+q)/3. Therefore

a = - (p - q ) / 3 .

With the notation p(3 ) - q(3 ) = m3, ρ - q = m,

we get

1
Υ = (4.14')

In a similar way we can also get a formula for the

charge:

<?=— mi+jm, (4.15)

where m 1 = p ( l ) — q ( l ) . Its form is determined by

the symmetry of the determinant of (4.4) relative to

the interchange (Y ^ -Q and 1 ^ 2 ) . If we write the

further formula Υ -Q = -m 2 + m/3, then we can note

that the three numbers mu m2, m3 play the roles of

"magnetic" quantum numbers. In order to make the

sum of the eigenvalues of the three operators that are

on the diagonal of (4.4) equal to zero, one puts in a

term m/3 = (mj+m2+m3 )/3. This is the algebraic

reason for the appearance of the coefficient V3 in the

formulas [ cf. Eq. (2.31)].

From (4.13) we can get an expression for the

"width" of the unitary multiplet:

— Ymln = Ρ + ?• (4.16)

In analogy with the isotopic spin, we can call half of

the total number of indices the magnitude of the uni-

tary spin U,

U- (4.17)

so that the number of different values of Υ is 2U + 1.

For the "center of gravity" of the multiplet we get

l + Yrr (4.18)

The formulas (4.14) —(4.17) completely describe the

hypercharge structure of the multiplet.

These formulas give integer values for Y, but only

for tensors for which the difference | ρ - q | = 3n,

where η is a positive integer. In the scheme we

adopted for constructing tensors from a tensor D(k, k)

we get tensors D(k + s, k-2s) and D(k-2s, k + s)

which satisfy this condition. Tensors with | ρ - q | * 3n

cannot be obtained in this way. This recalls the situa-

tion in the rotation group, where by means of vectors

one can construct only tensors with integer values of

the isotopic spin; spinors with half-integer isotopic

spins must be introduced independently. In the group

SU(3) there also occur spinors with non-integer values

of the hypercharge, which are multiples of V3. If we

retain the rules we have obtained also for tensors with

I p —q I * 3n, we find, for example, that for a spinor

with one upper index, D(l,0), the assignment of values

of Υ to the components is:

(4.19)

p=i, γ t-
3 '

Similarly, a tensor * a has components with Υ = %,

%, -%. Thus fractional values of the hypercharge oc-

cur in SU(3). Attempts to detect particles correspond-

ing "to such representations (quarks, in Gell-Mann's

terminology) have so far been unsuccessful (see In-

troduction).

We can now continue the classification of the com-

ponents of a tensor and go on to the values of the iso-

topic spin and its projections. If in the tensor D(p,q)

we set some number of indices equal to 3, the remain-

ing indices, which take the values 1 and 2, form a ten-

sor in isotopic space with p( l) +p(2) = p(l, 2) upper

indices and q( l) +q(2) =q( l ,2) lower indices. The

resolution of such a tensor in SU(2) into irreducible

tensors is done with the usual procedure of summing

over the values 1 and 2 of one upper and one lower in-

dex. Since a tensor with p(l, 2 ) indices that take the

values 1, 2 has p(l, 2) +1 components, the isotopic

spin of such a tensor is

Tp = -^-p(l,2). (4.20)

Similarly for a tensor with q(l, 2 ) lower indices

Tq=*-±-q(i, 2). (4.21)

A tensor with p(l,2) upper indices and q(l,2) lower

indices can be resolved into irreducible tensors whose

spins are

Tv+Tq, Tp + Tq—i, . . . , Tp-Tq. (4.22)

Finally, we determine the value of the component of

isotopic spin according to Eq. (2.32):

T3 = ±(m2-m,) = ̂ -[p(2)-q(2)-p(l) + g(l)], (4.23)

and this agrees with the definition T3 = Q - V2 Υ and

with (4.14) and (4.15).

Thus we arrive at the following classification of the

components of unitary tensors. The components of an
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irreducible unitary tensor are characterized by five
quantum numbers:

1) the number ρ of upper indices,
2) the number q of lower indices,
3) the isotopic spin T,
4) the hypercharge Υ [ Eq. (4.14)],
5) the isotopic spin projection T3 [ Eq. (4.23)].
Instead of ρ and q we can introduce:
1') the unitary spin U = V 2 (p+q) [ Eq. (4.17)],
2') the "center of gravity" of the multiplet,

C = ( p - q ) / 3 [Eq. (4.18)].
Instead of C, Y, and T 3 we can introduce the quan-

tum numbers

The numbers m t , m 2, m 3 together with U and Τ are
another set of five quantum numbers which describe a
unitary multiplet.

We further note a useful formula for tensors which
have indices of only one type—tensors D(p, 0) and
D(0,q). According to (4.14) the hypercharge of a com-
ponent of a tensor D(p, 0) is Υ = p(3 ) - p/3. The iso-
topic spin of components with this value of Υ is obvi-
ously V^lp—p(3)], since p - p ( 3 ) is the number of
indices equal to 1 or 2. From this we see that for ten-
sors of the type D(p, 0) there is a relation

Then

-q(s), s = l, 2, 3.

C = -jj- (m, + m-i + m3),

Υ = -g- {2m3 — ml~mz\.

(4.24)

(4.25)

-trp (4.26)

and similarly for tensors D(0, q)

-Y+2T -·--§-</· (4.27)

Thus for such tensors Τ is determined when Υ is
given. Let us now consider several multiplets.

Table I. Multiplets in SU (3)

I. Octet D (1,1), U=l H. Covariant decuplet D (0,3),

~~2

Ψ? (α, ft =1.2)

^l (* = 1.2)

Ψ 3 (0 = 1,2)

y

0

1

1

τ

I H O

1/2

1/2

Τ abc («
Ψα63 (".

Ψ333

. 6 .
6 =

= 1

c =

= 1,
, 2,

1,
2,
3)

2,3)

3)

y

1
0
1

—2

τ

3/2
1

1/2
0

φ * = — <Pj — ΨΖ and therefore is not Included in the table.

III. Contravariant decuplet

D(3,0),U=—

IV. 27-et D (2, 2), U = 2

ψ α ί κ ; (α, ί
ψ α δ 3 ( α ι j

ψα33 (α =

ψ333

, e = l .
= 1,2,

1,2,3)

2,

3)

3)

y

—1

0

1

2

τ

3/2

1

1/2

0

Ψ 3 3 ( ο ,

<Jf3b ( f i i

Ψί$(α,
Ψ33 (α·

rf = l ,

crf = l

&, c, d

6, rf =

6 = 1,

2,3)

, 2, 3)

= 1,2,3)

1,2,3)

2,3)

y

2

1

0

- 1

—2

τ

1

3/2andl/2

2.1 andO

3/2andl/2

1

5. MESONS AND BARYONS

Let us now put actual particles in correspondence
with the unitary tensors. The octet of baryons consists
of the nucleon and the hyperons Λ, Σ, and Ξ.
In accordance with the rules of the preceding section
it can be written in the form of a matrix (upper in-
dex for rows and lower for columns ):

y- 5- Λ
§ Λ

Σ* + - ^ Γ Λ

- 1/ 4-Λ
(5.1)

The coefficients in the matrix are chosen so that in the
expression

δρΒΒ='ρρ + ήη+Σ*2* + Σ«Σ<> + Σ-Σ- + ΞοΕ·>+Ξ-Ξ- (5.2)

all of the coefficients are equal to 1, and so that Sp Φ
= 0.

In the matrix (5.1) the proton appears with the minus
sign. This is in accordance with the definition of the
covariant components of a spinor by Eq. (2.22). In the
literature a definition of the octet is used which differs
from (5.1) by interchange of rows and columns with the
minus sign for Ξ0.

Mesons (and resonances) form two known octets.



THE UNITARY SYMMETRY OF ELEMENTARY PARTICLES

Table Π. Components of the baryon decuplet

647

Serial
No.

1

2

3

4

5

Compo-
nent

333 (1)

331 (3)

332 (3)

311 (3)

312 (6)

y

2

—1

0

τ

0

1/2

1

τ3

0

-1/2

1/2

—1

0

Reso-
nance

Ω -

yla*°

1

Serial
No.

6

7

Q
Ο

9

10

Compo-
nent

322 (3)

111 (1)

112 (3)

122 (3)

222 (1)

γ

1

Γ

3/2

1

—3/2

-1/2

1/2

3/2

Reso-
nance

1

Δ"

71 Δ°
1

— - Λ*

Δ -

The octet of pseudoscalar mesons consists of the π, η,

and Κ mesons. The matrix of these mesons is formed

in analogy with the matrix (5.1) and is

1/2 1/6 '
\

(5.3)

The octet of vector mesons ρ, Κ* (Κπ resonance), and

φ forms the matrix

K*«~-^7rQ"

\ — A A

The meson octets differ from the baryon octet in that

particles occur in them along with their antiparticles.

These octets are described by Hermitian matrices

P*=P, V* = V. (5.4)

Besides the octet (5.1) there is also known a baryon

decuplet, which is headed by the famous Ω " particle.

This decuplet is described by a tensor with three lower

indices, *abc> which has 10 distinct components. These

components can be arranged in a table. After the num-

ber of the component (lower indices !) we indicate the

number of identical components of the tensor *abc

that can be obtained by rearrangements of the indices.

This number determines the coefficient in the last

column.

The normalization is chosen so that in the quadratic

expression ΦΦ all of the particles appear with the

same coefficient unity.

6. MASS SPLITTING OF THE MULTIPLETS

The multiplets of particles are completely degener-

ate; that is, all of the components would have exactly

equal masses if the particles were not in interaction

with anything. The existence of the strong interaction

with virtual particles (we shall say "with the vacuum"

for short) leads to a splitting of the multiplets. This

splitting can be described in a way very similar to the

usual description in quantum mechanics of the Zeeman

splitting of atomic levels.

We shall assume that the interaction of the multi-

plet with the vacuum is described by a constant effec-

tive field whose properties are those of a real tensor

D(l, 1 ).* We denote the field by Η Ξ H§ (see page 652).

For a more exact description of the splitting one can

also introduce "fields" of higher ranks, H^, Η | £ ° ,

and so on; as we shall see later, however, comparison

with experiment shows that the corresponding terms

in the interaction are small. In the free (unperturbed)

Lagrangian of the system the mass of the particles oc-

curs in the combinations

(6.1)for baryons,

TO2 Sp ΨΨ for mesons.

The perturbation (the interaction with the field) will

add a term to the mass for baryons and to the square

of the mass for mesons.f To calculate this added

term we find the analogs of multipoles of the system.

From the function Φ and its adjoint Φ we can formt

(6.2)
0-pole:

8-poles:

The remaining components form a 27-pole.

The average value of the 0-pole (scalar) deter-

mines the unperturbed mass; the 8-pole leads to a per-

turbation proportional to Hĵ , and the 27-pole to a per-

ab
turbation proportional to HC(j.

If Φ is Hermitian (bosons), the two 8-poles are

*If we consider reactions and decays in this scheme it will be
necessary to take into account the energy dependence of the ten-
sor components.

tSince the splitting is comparatively small for baryons, we can
suppose that for them also one gets relations for the squares of
the masses.

tFor brevity we shall call a multipole with k components a k-
pole.
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equal, since for Hermitian matrices ΨΨ = ΨΨ; there-

fore we can form two 8-poles from the components of

a baryon octet and only one 8-pole from those of a

meson octet.

In an analogous way we can form from the compo-

nents of a decuplet:

0-ρο1β:(Ψ, Ψ), "j

4
64-ρο1β:Ψα!)ι:Ψ

(6.3)

ί β /

(with all traces made to vanish). As we have already

stated, in the derivation of the formulas we shall in-

clude only the interaction with the 8-pole.

We begin with the baryon octet. The interaction with

the field Η is described by two terms of the forms (C t

and C2 are constants )

C, δρΗΨΨ and C2 SpT/ψψ. (6.4)

We now choose H. In first approximation it is natural

to neglect the mass differences within an isotopic mul-

tiplet, on the assumption that Τ is still a good quan-

tum number. At the end of the article we shall also

consider the splitting of an isotopic multiplet.

We choose Η so that the component different from

zero is H3. Then the interaction with the field, Eq.

(6.4), can be written in the form

AM = (6.5)

The constants a and b determine the strengths of the

interaction of the field with the two 8-poles. If we now

go back to (5.1), we get the following values for the

masses of the baryons (here m0 is the mass of the un-

perturbed octet):

m (E) =

2
m (Λ) = m0 + -ψ (a + b).

(6.6)

J

From this there follows the Gell-Mann-Okubo mass

formula

If we take the mass of Σ as a reference level,* then

from the known masses of the baryons we can compose

Table III (for Ξ and Ν we take half the sum of the

masses of the two components ).

The formulas (6.6) can be given a different form. It

can be shown from (4.5) that after the symmetry is low-

ered to SU (2) the remaining invariants of the group

are the trace of the 2x2 matrix and its determinant.

The determinant is equal to

*If we use the symbol of a baryon to denote the difference be-
tween its mass and that of Σ0, Eq. (6.7) takes the form Η + Ν =
(3/2)Λ.

Table ΠΙ.

Intervals in the

baryon octet

g
Ν
Σ°
Λ

Ξ+Ν
2u

m—m (ΣΟ),
MeV

125
—253

0
—77

—64

—58

It follows from (4.6), however, that

From this it follows that the quantum numbers that

characterize the split multiplet will be

Υ and T(T+1)—i-Y2. (6.8)

Therefore to first order the mass of the baryon is

given by

Μ = Μ0 + ΜιΥ + Μ2 \T(T + i) ^-Υ2Ί , (6.9)

where Mo, Mt, and M2 are new constants. In this form

the formula can be applied to any baryon multiplet. The

connection between a, b and Mo, M lt and M2 can be

found easily.

The question naturally arises as to whether it is

legitimate to use the formulas of first-order perturba-

tion theory. It is clear that the ratio of the mass split-

ting to the mass of the unperturbed multiplet cannot be

used as a measure of the smallness of the perturbation;

one must look for a different explanation, and strictly

speaking there is none at present.

We may suppose that in the baryon multiplet there

are no admixtures whatever of higher multipole order,

just as the deuteron has no electric moments higher

than the quadrupole. This means that there is no other

baryon multiplet with nearly the same mass, which

could introduce a perturbation of lower symmetry. In

any case, the pronounced manifestation of the interac-

tion of lowest multipole order is a major factor caus-

ing success of the entire scheme of the breaking of

unitary symmetry.

If, on the other hand, we include in the mass calcu-

lation a field H ^ (the component H33), then we must

add to (6.5) the term*

*The 27-pole has the components: Ψ^ = ψ{°ψ^} jf ψΙψϊδα

~ -γ Ψ ε ^ ο + Ψ * Ψ £ δ ^ . Multiplication of the 27-pole by
H3I leads to a shift of the remaining masses. This shift, however,
reduces to a change of the meanings of the constants, so that we
need consider explicitly only the first term in the formula as writ-
ten.
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cYTFJ. (6.10)

which shifts the mass of Λ in the formulas (6.6) by
the amount 2c/3. It is clear that this term will deter-
mine the deviation from the result (6.7), so that we have

c= —~[2m(S) + 2m(N) — m(2) — 3m(A)]. (6.11)

It follows from this that c ~ 36 MeV, and this gives
the amount of coupling of the 27-pole with H33.

We now consider the decuplet. In this case the
mass correction is given by

AM = άψα"3ΨαΜ. (6.12)

By means of Table II we get the following values of the
masses:

(6.13)

Thus in the decuplet the levels are equidistant, with
the separation d/3. From experiment the separation
is 145 MeV, so that

MeV. (6.14)

The equidistant pattern can also be obtained from (6.9),
if we use the fact that for the decuplet (4.20) gives

from which we have

Y,

(6.15)

(6.16)

where in general the constants are not the same as
for the octet.

The formula for meson octets is obtained from that
for the baryon octet if we set a = b = e [ or if in (6.9)
we set Mj = 0 ] and take these formulas as written not
for the masses but for their squares. For the octet of
pseudoscalar mesons we get, in analogy with (6.6):

(6.17)

(6.18)m2 (π) = ml,

The nio here is of course not the same as the constant
m 0 in the formula for the baryons.

From (6.18) we get a relation similar to (6.7):

The squares of the masses of the pseudoscalar mesons
are collected in Table IV.

The relation between the differences of squares of
masses

(6.20)

Table IV.
Squares of masses

of pseudoscalar
mesons (intervals)

Table V.
Squares of masses
of vector mesons

(intervals)

η

κ

a

(Mass)2 -
-m2(n),(GeV)J

0.28

0.22

0

φ
κ*
ω

Q

(Mass)2 -
- m ! (p),(GeV)2

0.46
0.21
0.03
0

For the octet of vector mesons the agreement is
much poorer. This is evidently to be explained by the
fact that within the octet there lies one other vector
meson ω (Υ = Τ = 0). Naturally this meson can per-
turb the octet (Table V).

The description of the perturbation that the ω
meson produces in the vector octet would seem to be
both beyond the framework of the group SU (3 ) and
outside the scheme of symmetry breaking that we have
described. The fact that two mesons (the ω meson
and the φ meson ) have been found in nature with
nearly equal masses and with the same quantum num-
bers evidently indicates the existence of a higher sym-
metry, whose breaking is demonstrated in the splitting
of the ω and φ mesons, as the breaking of the SU(3)
symmetry leads to the splitting of the masses of the φ
and p° mesons. A simple extension of the group, how-
ever, for example to SU(4), leads to an increase of
the number of components of the multiplet, so that the
solution of the puzzle must be more subtle than this.*
We must also note a second puzzle which the meson
octets present. It can be seen from the data that have
been given that the first intervals in the two octets are
equal:

m2 (K)— m2 (π) = m2 (A'*) - m2 (ρ). (6.21)

It is clear that this sort of relation cannot follow from
the SU(3 ) symmetry. The point here is that the cou-
pling of different meson octets with the field Η is the
same (a universal interaction). If the equality is not
accidental, its explanation must be associated with the
breaking of a higher symmetry. It can also be noted
that if we replace the squares of the masses of φ and
ω by their half sum, the scheme so obtained practically
coincides with the scheme for the pseudoscalar octet.
We turn to a possibility for describing the splitting
which has been pointed out by Schwinger. t

Indeed, let us assume that the ninth meson occurs
in the octet, which will then have trace different from
zero. Such an octet is described by the matrix

is rather well satisfied.

*As an example of a similar situation, we can refer to the ex-
tension of the rotation group to the Lorentz group. As is well
known, when this extension is made there is a mixing of states
with a given spin with states with smaller spins.

tMixing of ω and φ has been considered in a paper by Saku-
rai.[F4]
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Q" K-*

-τψ+γτ

(6.22)

As the interaction which breaks the symmetry we take
two terms: one of the ordinary type, Sp HVV, and an-
other simpler one which splits the masses of ω and φ.

We write the second term in the simple form Ιιωω. Our
interaction will now mix the φ and ω mesons, since it
contains the square of the element that appears in the
lower right-hand corner of (6.22). Thus the interaction
we consider is

AM = g F a F " + h(Mu. (6.23)

This interaction leads to the following meson masses

[ m0 is a new constant not connected with the constant

in (6.18)]:
m2(K) = ml + g, 1

τη2 (ω) = m* + - | -
(6.24

m2 (ωφ) = ^ - ? g; j

m2 (ωφ ) denotes the matrix element that mixes the
original φ and ω. As in the theory of the Zeeman ef-
fect, the actual levels—the masses of the actual φ and
ω —are described by the roots of an eigenvalue equa-
tion:

8-J- g ) m* (Φ) +

?-pgm2(φ) + ~g + ft

= λτη* (Φ)·

= W (ω).
(6.25)

The determinant of this equation is

ηι-ο+-γ g

3 g

2 / 2

(6.26)

As is well known, the sum of the roots of the eigen-

value equation is equal to the trace of the determinant

(6.26):

m2 (φ) + m2 (ω) = lm\ + 2g + h.

Comparing this with (6.24), we get

h = m2 (φ) + m2 (ω) — 2m2 (K*).

The product of the roots of (6.25) is equal to the de-
terminant (6.26). Instead of a formula for the masses
we get a formula for the intervals (choosing the mass
of ρ as the starting point). This means that we set the
constant m2, in.(6.24) equal to zero. When we now use
the symbols for the particles themselves to mean the

squares of the masses on this scale, we find that the
determinant (6.26) is equal to 4hg/3. Since g is the
mass of K*, and h is defined above, we have

^ 2 Κ * ) (6.27)

or, in terms of squares of masses,

= ~ [m2 (K*) - m2 (Q)][m2 (φ) + m2 (ω) -2m 2 (£*)]. (6.28)

To within experimental error this relation is satis-
fied by the experimental values of the masses. It is
clear that the procedure we have described is based on
assumptions of which we have little understanding.
Formally we would have to consider an interaction of
the general type h' (ωφ + φ ω), introducing two new
constants, h and h'. In this case comparison with
experiment would lead to some relation between h and
h', but obviously would not give rise to any relation be-
tween the masses. The Schwinger solution corresponds
to the choice h' = 23/2g/3. Whether or not this choice
has any deeper meaning will be shown by the further
development of the theory.

7. SPLITTING OF ISOTOPIC MULTIPLE TS

The scheme used for describing the splitting of uni-
tary multiplets can be extended so as to include also a
description of the splitting of the charge multiplets,
which by the conditions of the problem remain degen-
erate in the fields H | and H | | .

The simplest generalization uses the symmetry of
the unitary multiplet under replacement of charge by
hypercharge. Once more we write down the matrix of
the baryon octet

ΙΛ
XL· ^-Λ°

— Ρ - 1/4- Λ7
(7.1)

We consider the subgroup corresponding to the matrix
marked out in the lower right-hand corner. Obviously
its structure is analogous to that of the isotopic-spin
matrix; its quantum number is called the K-spin. The
components of a K multiplet are defined in the same
way as those of a T multiplet (isotopic multiplet). The
trace of the matrix multiplied by 61/'2/2 gives the state
with Κ = 0 (compare this with the way Λ is obtained
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from the matrix of the Τ multiplet)

(7.2)

When we subtract half of the trace from each diagonal

element of the 2x2 matrix, we get the function with

K= 1:

-Λ,

. (7.3)

The elements of the matrix (7.3) are made up of the

three components of Φ ·̂ η, +V2 (-Σ0 + 31//2Λ), Σ°, in

analogy with the way the isotopic matrix Σ is made up

up of the components Σ+, Σ°, Σ".

Finally, there are two functions with K-spin ι/2·

Φί}>=(Σ-, Ξ"), (7.4)

In each of these functions the components have the

same charge, just as the components of an isotopic

multiplet have the same hypercharge.

Perturbations that conserve charge are introduced

by the field components H} and H}J. Here we have

no reason to neglect the field H}}, since one of the

processes leading to the splitting of isotopic multiplets

is the emission or absorption of a photon; the matrix

element for such a process transforms like the square

of H} or, what is the same thing, like H{{.

The components of the perturbing field have the

same quantum numbers as the corresponding compo-

nents of the baryon or meson multiplet (two types of

field!), since the classification obviously has no con-

nection with the concrete choice of the particles. The

field H}} transforms like the corresponding component

of the 27-plet. The components important in the theory

of weak interactions will be H3 and H3, which possess

charge and strangeness (they transform like K+ and

K~ ). One can also consider fields which transform

like the decuplet. The only component of the decuplet

that changes neither charge nor hypercharge is the

component that transforms like Σ0*. We shall con-

sider it separately.

Accordingly we take for the terms added to the mass

an expression of the type

(7.5)

For this together with the old splitting we get:

m (η) = mo-\-b,

/ 3

(7.6)

The coefficient γ can be evaluated from the relation

y = m(Z»)-±[mV) + m&-)}. (7.7)

The value that follows from the experimental values

of the masses is γ = -0.95 ± 0.20. We shall set y = 0.

We then get from (7.6) one further relation connecting

three mass differences:

[m(E-)-m(E«)]-[m(p)~m(n)] = m(^-)-m (Σ*), (7.8)

which is in comparatively good agreement with experi-

ment:

m(H~) — m(H°) = 6.5±1.0,

m(p) — m(n) = —1.3, (7.9)

We now turn to the perturbation of the decuplet type. If

as before we require that the hypercharge remain un-

changed, the only term of the decuplet with Q = Υ = 0

is H123, which transforms like Σ0*. The contribution

to the mass from the decuplet is of the form

Keeping only the terms proportional to H123 and Hi23,

and dropping those whose effect reduces to changing

the constants in (7.5), we get

From this we get a new correction of — V2 (ot + δ2)

= - ΐ/2δ to the mass of Λ0, one of δ/6 to the

mass of Σ+, one of - 6^ to the mass of Σ+, and one

of -δ2 to the mass of Σ". Without incurring any con-

tradiction with the experimental data we can set δι = δ2

= 0. Let us now consider the mixing of Λ and Σ. Be-

cause of the electromagnetic interaction Λ and Σ,

which were eigenstates of the isotopic spin, become

mixed, while remaining eigenvalues of the isotopic

spin projection T3 = 0. (An effect analogous to the

mixing of a spin singlet and a spin triplet in a magnetic

field.) Setting γ = 0 in (7.6), we get

m(A^) = —^lm(3~) — m (Ξ°) — m (η) + m (p)]. (7.11)

From the experimental values of the masses we find

m(AE) = 1.5 + 0.4 MeV (7.11')

From this we get for the physical (mixed) states

p h y s = Λ cos α + Σ° sin α,

phys = — Λ sin α -(- Σ° cos α,
(7.12)

where

tan 2a = -—-(™
(^> = -0.019± 0,006. (7.13)

The angle a characterizes the degree of mixing of the

states with Τ = 0 and Τ = 1. Since the neutral compo-

nents of these states have different parities relative to

charge symmetry (interchanges p ^ n and v* s=t π"),

Eq. (7.13) characterizes the degree of deviation from
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charge symmetry of the Λ hyperon. An example of
reactions which can be used for the experimental
measurement of the angle a is π* + d — Λ + ρ + K+

and π" + d — Λ + η + K°.
We can treat the baryon decuplet in a way analogous

to the treatment of the baryon octet. If here also we
confine ourselves to the lowest multipole interaction,
then in analogy with the unitary splitting we find that
the levels are equidistantly separated, so that

m (Δ") — m (Δ*) = m (Δ*) — m (Δ») = m (Δ°) — m (Δ~) = m (Σ**)

- m (Σ*°) = TO (Σ*°) - m (Σ*~) = m (Ξ*°) - m (Ξ*'). (7.14)

A deviation from the linear dependence will indicate
that there is an admixture of an interaction of higher
multipole order.

In the case of meson octets the relation (7.10) be-
comes an identity. In the pseudoscalar octet, however,
the question arises as to the nature of the mass differ -
ence between 7r° and π±, which must be zero in the 8-
pole approximation. It must be ascribed to an electro-
magnetic interaction of the type H}|.

The formula (7.16) can be written in a simpler form
in which the mass of Σ0 remains undisplaced.

The field Hg must have quantum numbers Q = Υ
= 0; it can be written in the form of a diagonal matrix
with the diagonal elements Α, -Α, Β, - Β , where A
and Β are arbitrary real numbers.

From this matrix we subtract the product of the unit
matrix and the number V2 B. This operation is simply
a shift of the origin from which mass is measured,
since it does not produce any splitting. We shall see
that in this way we have fixed the mass of Σ0 as the
reference level.

Writing A - V2 Β = κ and 3/2 Β = - λ, we find that the
field can be written in the form of the matrix

0 0·
- κ Ο

0 λ
(7.15)

We denote the products of the field components by
the magnitude of the multipole in Eq. (6.4) by

Then by means of the matrix (7.15) (keeping the con-
dition γ = 0) we get a new set of formulas for the
baryon masses:

m(E') = mo-\-a + a, 1

m (Ξ0) = mo + a — a,

«-P.

α + β,
2 , 2

(7.16)

TO (η) = mo + i + β,

m(p) = mo + b— β.

The formulas obtained so far for the mass splitting

(there have been three of them, since the masses of 8
baryons have been described by 5 parameters) have
not depended on the model. If, however, we take the
field seriously, then from the relations given it follows
that α/β = a/b, or (cf. Coleman and Galshow t D l ] )

m(Ξ») —ι»(Ξ~) ^ m{Z«)+m(E-)—2m (Σ°) ( 7 1 ? )
m(n)—m(p) m (n)-\-m (/>) — 2m (Σ0)

The agreement with this relation is poor. The left side
is equal to - 5 , and the right side to -0 .5 . This means
that there is a large contribution to the isotopic mass
difference from purely electromagnetic corrections.
There is another relation which is poorly fulfilled. The
quantity

nt(E-) — m(E«)+m(p) — m(n) = 2 ° " ^ (7 18)

characterizes the ratio of the field components κ and
λ. From the known values of baryon masses we find
the value 0.038 for this quantity.

A similar quantity can be calculated from the
squares of the masses of the pseudoscalar mesons.
We find

= _0.017. (7.19)
γ ] -m2 (π2)

We can understand the meaning of Eqs. (7.18) and
(7.19) if we note that when we measure the masses
from the center of the multiplet, i.e., from the masses
of Σ0 and π0, respectively, we can write the two for-
mulas in the form

(7.20)
2m. a v(S, Ν) 2

m.BV{K)

where Am means the mass differences (not using
squares !) of the respective doublets, and m a v the
average displacements from Σ0 and π°. It can be seen
from (7.20) that we are concerned with a universal
character of the isotopic splitting which is less accu-
rate than the universal character of the unitary split-
ting.

8. "TADPOLES" AND "QUARKS"

"There on unknown ways
Are tracks of beasts not seen . . . "

— A. Pushkin

Our task has not included the exposition of all of the
ideas and results of the unitary theory, and we have
left to one side, for example, such an important but as
yet not clearly delineated development as that in the
theory of weak interactions; nevertheless it is not with-
out point to note certain new and still speculative ideas,
since they indicate that the fauna of the unitary world
may be extremely unusual. The mass splitting has
shown that the interaction between the particles and
the vacuum can be successfully described by a field
H§, whose neutral components, H | and H*, are r e -
spectively responsible for the unitary and isotopic
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splittings. It is natural to wish to give to this field the

meaning of an actual physical field, by assigning to the

components of this unitary field a new unitary meson

multiplet. A meson octet of this sort has been consid-

ered in a paper by Glashow and Coleman. [F3l

The idea of a tadpole has been put forward in papers

by Schwinger [Ann. Phys. 2, 407 (1957)] and by Salam

and Ward [Phys. Rev. Letters 5, 390 (1960) and Revs.

Modern Phys. 33, 428 (1961)]. A meson octet has been

introduced by Sakurai.'-^4-'

Let us suppose that the field H§ is a field of scalar

mesons. If we write the matrix of this field in analogy

with the matrix of the pseudoscalar mesons, the diago-

nal elements are two neutral particles which, to empha-

size that the unitary properties are identical, we de-

note by π'° and η' (the remaining components of the

octet, ττ'*, Κ'*, Κ'°, Κ'°, are associated with change of

charge or hypercharge and do not contribute to the

splitting, like the corresponding components of the

field H§).

Since the quantum numbers of π'° and η' are the

same as those of vacuum, they can be annihilated with-

out any trace, provided that their masses are zero —

for example, they could be converted into an unobserv-

able bound state of proton and antiproton with total

mass zero!

This means that formally there exists a process of

emission of a neutral meson which in the virtual state

has zero energy and is converted into an unobservable

state; since in a diagram such a process is represented

by a line with a "blot" on the end, such a meson is

called a "tadpole."*

Obviously this scheme formally coincides with the

scheme of the field H ;̂. If we add to what has been said

the assumption that the interaction of a tadpole with all

multipoles is described by a universal constant, we get

a model in which the interval rules connecting different

multiplets receive a natural interpretation.

A scalar meson from which one constructs a tad-

pole in a free state can also have a nonvanishing mass.

In this case the authors of the model point out the pos-

sibility of identifying it with the resonances K' —*· κ

(730 MeV), π' — £ (570 MeV), and η' with mass

~ 770 MeV near p°; for these three components the

squares of the masses are in good agreement with the

interval rule:

m*{K')-m*(,n') = 0.22, TO2 (-q')-m^ (π') = 0.28. (8.1)

The very existence of these resonances and their quan-

tum numbers are not well established, however, and the

*The reader has of course noticed that the tadpole belongs to
the family of "spurions" introduced by various authors to de-
scribe processes of symmetry breaking. Tadpole diagrams can
obviously also exist for ordinary n° and η mesons, but if their
interaction is unitary-invariant, such tadpoles do not lead to any
splitting.

assignment cannot as yet be taken seriously.*

One can also try a different explanation of "tad-

poles," using Gell-Mann's idea of unitary spinors or

"quarks," which in Russian should apparently be

called "besy (demons)."

The field H§ can be represented as the product of

two unitary spinors ψ0 and φΆ;

#g = ijvpe. (8.2)

The unitary spinor φα has components with charges

-e/3, -e/3, and 2e/3, and the unitary spinor ψβ n a s

components with charges e/3, e/3, -2e/3. The hyper-

charge of the spinors has similar fractional values.

The appearance of a fractional charge is due to the

fact that in the group SU (3 ) the matrices of charge Q

and hypercharge Υ are diagonal and have zero trace.

If we normalize the eigenvalues of Q and Υ so that

they take the values 0 and ± 1 for the components of

an octet, then since these values are sums of the

charges of the components of the spinors φ all

of these requirements are satisfied if the charges are

multiples of V3. In this case '/3 + V3 - 2 / 3 = 0, and from

the charges of ip^ and φΆ we can make only the

charges 0 and ±1. As before, only the neutral compo-

nents of the product of ψ^ and φΆ take part in the in-

teraction.

If we assume (8.2), then the action of the field HD

can be described as the emission and absorption of a

"quark" at the same point of the diagram (or the

emission of a pair ψ^ and φα and its subsequent an-

nihilation). Such a loop leads to a splitting of the

masses and is equivalent to a tadpole. If, however,

ψ^ and φΆ can be produced in free states we arrive

at Gell-Mann's scheme, but this has not been con-

firmed by experiment.

The search for particles responsible for the break-

ing of unitary symmetry reminds us of the search for

the neutrino, which had given clues of itself in the

form of energy nonconservation. How the new search

will end, the future will show.

CONCLUSION

The formulas for particle masses, or, as we can

call them in spectroscopic terminology, the interval

rules, by no means exhaust the applications of the

scheme of unitary symmetry and the breaking of this

symmetry. These formulas are especially significant,

however.

The unitary scheme has for the first time enabled

*Glashow and Coleman refer to the following experiments:
G. Alexander et al., Phys. Rev. Letters 8, 447 (1962); D. H.
Miller et al., Physics Letters 5, 279 (1963); S. G. Wojcicki et al.,
Physics Letters 5, 283(1963); ξ: D. B. Lichtenberg, Stanford
Linear Accelerator Report No. 13 (1963) (unpublished), page 53;
η': V. Hagopian and W. Selove, Phys. Rev. Letters 10, 533 (1963);
Z. Guiragossian, Phys. Rev. Letters 11, 85 (1963).
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us to consider the masses of particles from a unified,
albeit still very imperfect, point of view. Hitherto the
differences between the masses had been regarded
only as a vexing violation of the symmetry, and it
seemed that only in the high-energy region, in which
the differences may be unimportant, could attempts
at theoretical schemes be made.

In the scheme of SU(3) it was unexpectedly discov-
ered that the breaking of symmetry has simple prop-
erties and can be described very naturally in the
scheme of unitary multiplets. The question arises as
to whether from the nature of the symmetry breaking
one can figure out the properties of the interaction be-
tween the multiplets and the vacuum. This is a natural
question if we recall that the breaking of isotopic sym-
metry is caused by the electromagnetic field (the in-
teraction of particles with the electromagnetic field
of the vacuum); by studying the deviations from iso-
topic symmetry in various reactions, one could in
principle obtain a large amount of information about
this interaction (although in this case the splitting is
small). Of course there is no need to do this, since we
have better methods for studying the electromagnetic
field. The situation is different in the case of the in-
teraction with the field H| that breaks the SU(3 )
symmetry.

This interaction, which fortunately is comparatively
large, cannot be reduced to any known field. Therefore
the study of decays and reactions from the point of
view of the group SU(3) is a good source of informa-
tion about the interaction of particles with the vacuum.

The simplicity of the resulting scheme allows us to
expect that in this very direction there will be impor-
tant progress in the understanding of the laws of strong
interaction.

APPENDIX

1. THE OCTET AS AN EIGHT-VECTOR

In the algebra of SU(2) the components of a second-
rank tensor form a three-dimensional vector. The con-
nection between the two representations is accomplished
with the Pauli matrices in Eq. (2.27). In the same way
we can put an eight-vector in correspondence with the
components of a unitary octet. In the notation of Gell -

the octet A§ is written in the form

r=A&, Ai—iA2, Ai—iA

At+iA2, —A3——-=r.

Ak+iAs,~~ y ο

Obviously any octet can be written in this form. We
remark that it is customary to denote the components
of the unitary spin (8.8) by F a (a = 1, 2 8).

The relations between Â ; and Aa can be written
most simply if we introduce seven matrices λα which
here play a role analogous to that of the Pauli mat-
rices. The forms of the matrices λη are

0 1 O
λ ι = 1 0 0 , λ 2 =

0 0 0 0

— i
0
0

ON
0

0

, j

1 \

η
0

^0

0
— 1

0

0
0
0

/Ο 0 IN /Ο 0 — ι
λ 4 = 0 0 0 , λ 5 = 0 0 0

\l 0 0/ \i 0 0

/Ο 0 0
λ β = 0 0 1

\ο ι ο
λ 7 =

ο ο
ο ο
0 ί

O 1
1 0 0

0 0 — 2

The pairs of matrices (λχ, λ2), (λ4,λ5), and (Ag, λ7) are
the Pauli matrices a t and σ2 in three two-dimensional
subspaces. Here there are two matrices of the type of
σ3, since there is a supplementary condition Sp λα = 0.

The matrices λα satisfy the following conditions:

[λα, λρ] ΞΞ λ α λρ—λβλ α =2

The values of the "structural" factors—the antisym-
metric f αβγ and the symmetric d ^ y —are given by
the formulas

/l47 = /246 = fiSl = /345 = /M6 = /

t t V l •
7458 = 7678=—<Γ~ '

γι'

2/3'

The remaining nonvanishing components are ob-
tained by permuting the indices, with appropriate sign
changes in the case of the antisymmetric ίαβγ.

It is obvious that

The coefficients f and d enable us to write out prod-
ucts of octets. The formula for multiplying octets

is now rewritten:

(Χ±)α = ί j

/αβν

The symmetric product is sometimes called the
D-product, and the antisymmetric product the F-
produet.

2. ^-PARITY

Let us consider two transformations of an octet:
1) the R-transformation, which is interchange of the
rows and columns of the octet, and 2) the charge con-
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jugation C. It is not hard to see that the product of
these two transformations

leaves all elements of meson (Hermitian) octets in
their original places and can multiply them all by +1
or else by - 1 (since g2 = 1). Accordingly we have a
new quantum number, the g-parity, characterizing
Hermitian octets.

It is obvious that the g-parity is determined by the
charge parity of the particles that are on the diagonal
and keep their places in the R-transformation. There -
fore the octet of pseudoscalar mesons has g = + 1, and
the octet of vector mesons has g = - 1 .

From the definition of the components of the eight-
vector it is clear that the components Au A3, A4, A6,
A8 have the same charge parity, which is opposite to
the charge parity of the components A2, A5, A7.
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