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INTRODUCTION

A HE meaning of synchronization can be explained in
the following way. Assume that an external periodic
oscillation (in the simplest case, sinusoidal) is ap-
plied to a self-oscillating system either directly or
through a special device. Then the driving force
causes the self-oscillation frequency to assume,
within a definite interval called the synchronization
band, a value equal to the frequency of the external
oscillation. The synchronization band is determined
essentially by the parameters of the system and de-
pends also on the amplitude of the external oscillation.
Outside the synchronization band, the frequencies of
the external oscillation and the natural oscillations do
not coincide.

The synchronization phenomenon is widely used in
radiophysics and engineering, and has therefore been
the subject of many investigations. We present sev-
eral examples showing the practical utilization of
synchroniz ation.

In physical measurements frequent use is made of
phase methods in which some physical quantity is
estimated by measuring the phase difference between
two oscillations. This method is used in particular to
measure accurately the propagation speed of electro-
magnetic energy. The same principle is used in radio
range finders'-1-' with coherent synchronous hetero-
dynes.

Investigations of nuclear reactions by means of
cyclotrons presuppose high stability of the p'arameters
of the deflected accelerated-ion beam and of the fre-
quency of the accelerating voltage. Frequency devia-
tions of the resonant system lead to a considerable
reduction in the voltage on the dees. To eliminate
this it is necessary either to adjust the master gen-
erator automatically to the natural frequency of the
dee circuit, or to adjust the dee circuit to the fre-
quency of the generator. The control system frequently
incorporates automatic phase control of the frequency
[ 2 ] _

A very important factor in launching of artificial
satellites and rockets is knowledge of their orbit
parameters. These parameters can be measured by
various methods (interference, Doppler, etc.), but all
are based on the use of either a highly stabilized or a
synchronous generator. Among the main elements of
such devices are automatic phase control systems'-3·'.

To solve many radiophysical problems it is neces-

sary to generate highly stabilized microwave oscilla-
tions. The existing klystron and magnetron generators
as a rule do not have enough stability. To increase
their frequency stability, such generators are syn-
chronized by means of low-power oscillations from
highly stabilized standard generators (for example,
quartz-controlled or quantum generators).

In television, synchronization devices are widely
used to synchronize the horizontal and vertical
sweeps. In color television systems synchronization
is essential to restore the subcarrier frequencies in
the receiver^4'5}.

Communication systems using synchronous detec-
tion have come into extensive use recently. The use
of synchronous detectors in amplitude, frequency, and
phase telegraphy makes it possible to attain near-
maximum interference immunity'-6-'. Promising radio
communication systems with single-band modulation,
or with two-band modulation with suppressed carrier,
call for the presence of synchronization devices on
the receiving end'-7'8-'

Among other applications of synchronization we
can point to time-service systems, synchronous radio
broadcasting, coherent radar, some types of phase-
controlled radio navigation, etc.

The synchronization of self-oscillating systems is
among the most complicated problems in nonlinear
oscillation theory, owing to the variety and subtlety
of the effects observed even if the synchronization is
by means of external sinusoidal oscillations, and also
owing to the essentially nonlinear character of the
phenomena.

The fundamentals of synchronization theory were
established in the early thirties by Van der Pol^9-'
and by A. A. Andronov and A. A. Vitt [ 1 0 '1 1 ]. Subse-
quently a major contribution to the solution of this
problem was made by the Soviet scientists L. I.
Mandel'shtam, N. D. Papaleksi, Ν. Ν. Bogolyubov,
S. M. Rytov, V. V. Migulin, Yu. B. Kobzarev, S. I.
Evtyanov, R. V. Khokhlov, and others. A complete
review of this research is given in '-12-'.

Interest in the study of the influence of fluctuating
signals on the synchronization process has increased
recently. This problem includes an analysis of the
effect of fluctuations on the operation of an autono-
mous generator. The result of such an analysis helps
explain the statistical character of the autonomous
oscillations themselves. The fluctuations are gener-
ated either in the self-oscillator circuit elements
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( shot and flicker noise of electron tubes, thermal
fluctuations of loss resistances) or by external
random signals ( changes in the temperature, pres-
sure, humidity, etc.).

A qualitative manifestation of fluctuations is, for
example, that the self-oscillations cease to be strictly
sinusoidal but are modulated in amplitude and in fre-
quency in random fashion. The energy spectrum of
such a stochastic oscillation is continuous.

The basic work dealing with problems of this
type was that of A. A. Andronov, L. S. Pontryagin,
and A. A. Vitt , who solved in general form the
behavior of dynamic systems in the presence of
random signals. Their assumption that the process
occurring in such a system is a Markov process has
made it possible to apply the statistical formalism of
the Fokker-Planck-Kolmogorov equation to the solu-
tion of the problem.

A direct continuation of'-1" was a series of theo-
retical'-14'15^ and experimental^16^ papers by I. L.
Bershtein on the amplitude and phase fluctuations of
self-oscillations of a vacuum-tube oscillator. Since it
is not our intent to present here a complete review of
all the work in this field, we shall cite only some of
the papers. In 1955 S. M. Rytov'-17-' developed a gen-
eral theory of amplitude and phase fluctuations in
weakly-linear self-oscillating systems, for which the
small-parameter method can be used to determine the
periodic stationary mode. Assuming the fluctuations
to be delta-correlated and to be of second-order
smallness, expressions were obtained in general
form for the correlation functions of the fluctuations
of the amplitude and phase in both autonomous and
non-autonomous self-oscillating systems.

In a fundamental paper published in 1958, R. L.
Stratonovich^18^ investigated, on the basis of the
Fokker-Planck-Kolmogorov equation, the stationary
phase and amplitude fluctuations of a vacuum-tube
oscillator synchronized by a sinusoidal signal at the
fundamental frequency, under the assumption that the
correlation time of the applied fluctuations is much
shorter than the phase and amplitude transient time
of the self-oscillations. In addition, the synchronizing
signal and the intensity of the fluctuation were as-
sumed to be sufficiently small to make it possible to
solve separately the abbreviated equations for the
phase and amplitude.

Unlike the earlier papers, no limitation was im-
posed in '-18J on the smallness of the phase fluctua-
tions, and a clear mathematical picture was presented
for the case of phase fluctuations that are commen-
surate with the period of the oscillations. The sta-
tionary distributions were obtained for the phase and
amplitude fluctuations of the self-oscillations, and the
shift of the average oscillator frequency resulting
from phase "jumps" amounting to an integral number
of periods and due to the action of the fluctuation
noise, was calculated. The results of '-18-' were sub-

stantially expanded and experimentally verified by
I. G. Akopyan[12'19] and others [ 2°-^.

The main purpose of this article is to generalize
and systematize the principal results of the analysis
of the effect of fluctuation noise on typical synchroni-
zation devices [ synchronized self-oscillation and
automatic phase control of the frequency (see ' - ^ ) ],
and also to present a few estimates of the effect of
fluctuations on the operation of relaxation oscillators,
as well as some ideas concerning rational methods of
pulsed synchronization.

1. PRINCIPAL STATISTICAL CHARACTERISTICS
OF SELF-OSCILLATIONS

In analyzing the operation of self-oscillators used
in many radiophysics problems it is necessary to take
into account the internal fluctuations (noise in the
tubes and resistances) as well as external random
signals (random variations of the power-supply
voltage, oscillations in the ambient temperature,
vibrations, etc.).

The effect of fluctuations and random signals is
manifest in the fact that the self-oscillations cease
to be strictly sinusoidal, being randomly modulated
in amplitude and in frequency. The amplitude and
frequency fluctuations due only to the internal noise
of the self-oscillator are customarily called natural
fluctuations'-23-'. These fluctuations can not be elim-
inated in principle and determine the limit beyond
which the frequency and amplitude stability of a given
self-oscillator can no longer be increased. The fre-
quency and amplitude fluctuations due to external
random action are called technical fluctuations, and
can be eliminated in principle by parametric stabili-
zation (thermostating, shock absorption, etc.) and by
stabilizing the supply voltages.

In spite of the fact that under real conditions tech-
nical instabilities greatly exceed the natural instabili-
ties, we present in what follows the main results per-
taining to natural fluctuations, since they are of basic
interest.

The operation of a self-oscillator subject to
internal fluctuations was analyzed by many authors.
With regards to the mathematical formalism em-
ployed, the main papers can be divided into two

[14-16,25] using the Fokker-Planck-groups, one
Kolmogorov equation and the other^17^ using the small-
parameter method. Although the applicability of
neither methods is subject to doubt, the method of
linearization relative to the fluctuation corrections is
simpler and more natural in this case.

The equation of a vacuum-tube oscillator ( Fig. 1)
and of a few other self-oscillating systems reduces
to the form

'x' + o?x=zf(x, x, t), (1)

where the dot denotes the t ime derivat ive, χ ( t ) — s o m e
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FIG. 1. Diagram of self-oscillator.

coordinate (for example the current in the inductive
branch), ω—resonant frequency of the oscillating sys-
tem, e—small parameter, and f(x, x, t)—a function
whose form is determined by the circuit under
consideration.

To study the solution of (1) it is expedient to go
over from one second-order equation to two first-
order equations that describe the behavior of the
amplitude and of the phase. Although the concepts
of amplitude and phase are intuitively clear, an
attempt to define them for oscillations that are
not strictly sinusoidal, no matter how close to
sinusoidal they may be, involves a certain arbitrari-
ness. It is appropriate to recall here the non-
uniqueness of the definition of the envelope and phase
of quasiharmonic fluctuations'-26-'.

Taking into account the smallness of the parameter
e and the quasiharmonic character of the self-oscilla-
tions, we define the amplitude and phase by the rela-
tions

χ = A cos(ωί + θ), x = — ωΑ sin(ct>

From this we get*

(2)

Differentiating these equations with respect to the
time and taking (1) into account we obtain

x> (3)

Let us apply these equations to the generator
circuit in question ( Fig. 1) It is easy to verify that
the differential equation for the current I flowing
through the inductive branch of the tank circuit is

We represent the tube plate current J a in the
form of a sum of two components: regularly varying
Ia( t ) and fluctuating i ( t ) , the latter taking into ac-
count the shot noise of the plate current:

/«(*) = MO+'(*)·
To simplify the formulas we assume that there is

no grid current; we can neglect the anode reaction
and we can approximate the characteristic of the

tube over some range by the cubic parabola

Since Ug = MI, where M—mutual-inductance coeffi-
cient of the plate and grid coils, we can write

7 + ω 2 / = ω2/ \(SM — RC)—|-M3/2] +ω2ί(<). (5)

In spite of the large number of assumptions made
in the derivation of the fundamental equation (5), it
describes satisfactorily the qualitative aspects of the
processes occurring in the oscillator.

We introduce the following notation:

Ao

(6)
Ao is the stationary amplitude of the current self-
oscillations in the tank circuit.

Equation (5) assumes in the new notation the form
(1), in which we must put

tf(x, (7)

Substituting this expression in (3), going over in
these expressions from the variables χ and χ to A
and Θ, and discarding the sinusoidal components with
frequencies 2ω and 4ω, we obtain the following abbre-
viated equations for the amplitude and phase:

A=™L(l-A*)-£-; sin (ωί+θ),
(7')

As is well known^27^1, the effect of the higher har-
monics, which we failed to take into account, reduces
to a certain frequency correction, but this correction
is regular. Therefore, in spite of the fact that the
frequency correction due to the higher harmonics
exceeds the frequency fluctuations, we must assume
that this simplification is justified.

From (7) we obtain the stationary operating mode
of the oscillator in the absence of fluctuations. Thus,
putting A = 0 and i (t) = 0, we obtain A s t = 1 = const.
Analogously, putting i ( t ) = 0, we obtain θ = 0, 9 s t
= θο = const. No value of the initial phase can be
given preference here. It must therefore be regarded
as a random quantity, uniformly distributed over the
interval ( — π, π).

Thus, the stationary current in the tank circuit is
determined by the formula

t cos (ωί + θ0) = Ao cos (ωί + θ0). (8)

*arctg = tan"

An estimate of the frequency and amplitude fluc-
tuations of the self-oscillations, due to the shot noise
of the tube current, can be obtained by using a method
wherein the equations in (7) are linearized in the
vicinity of the stationary state. The use of the l inear-
ization method is justified by the fact that the shot
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noise is small. It therefore causes small deviations
of the amplitude A and of the frequency ω ( and not
of the phase) from their stationary values.

We denote the amplitude and phase fluctuations due
to the noise by

a = A — As
= θ-θ0. (9)

By definition, a and φ are small deviations.
We substitute (9) in the initial equations (7) and

retain in the latter only the terms of first order in a.
The fluctuation current i(t) we must assume here to
be a quantity of first order of smallness, while the
quantities A and Θ, which remain as coefficients in the
equations, must be replaced by their stationary values
(A st = 1, 9si = 8Q). All these transformations yield

α + εωα = — -j— i (t) sin(coi+ θ0), (10)

(ID

The fluctuations of the tube plate current can be
regarded, in many practical cases, as a normal white
noise with a correlation function

Here and throughout angle brackets will denote sta-
tistical averaging, e = 1.6 χ 10"19 C—electron charge,
I s —equivalent current of the diode in the saturation
mode.

If the statistical characteristics of i (t) are known,
Eqs. (10) and (11) enable us to calculate all the statis-
tical characteristics of the amplitude and phase fluc-
tuations. We shall henceforth pay principal attention
to phase fluctuations.

From (11) we obtain an expression for the random
phase deviation after a certain time T:

τ
Δψ = ψ (ί0 + Τ) - ψ (ί0) = - ~ jj i (ί0 + x) cos (ωί0 + ωχ + θ0) dx.

(12)

It follows therefore that the mean value of the phase
deviation is equal to zero: (Αφ) = 0. For the variance
of the phase deviation we obtain

= DT, (13)

The variance of the phase deviation increases in pro-
portion to the observation time, that is, the phase va-
riation has a diffusion character.

The phase fluctuations lead to a random spread of
the instantaneous value of the self-oscillation
frequency relative to its nominal value. In practice
we cannot propose any measures for eliminating the
natural instability without appreciably changing the
operating principle of the generator itself.

We note incidentally that if a broadband normal
stationary noise is applied to a tank circuit with high
Q, then the abbreviated equation for the phase of the
output oscillations coincides exactly with (II)'-28-'.

The result can therefore be extended to include this
case, too.

The stationary solution of (10) is

α(ί) = — >; (a;) sin (ωα;+θο)ώ;.

From this we can readily obtain an expression for the
variance of the amplitude fluctuations

CA~~teAi •

Consequently, taking into account the amplitude
and phase fluctuations, these self-oscillations can be
represented in the form

θ(ί)=θο (14)

If we recognize that in the linear approximation
the amplitude and phase fluctuations are independent
of each other and have normal distributions, we obtain,
after making the necessary calculations, the following
expression for the energy spectrum of the self-oscil-
lations (14):

Γ 4rD . 1

-Τ-β2 + (Ω — (0)2

It follows from (8) that in the absence of fluctua-
tions [ i (t) =01 the oscillator generates a sinusoidal
signal with an energy spectrum represented by a dis-
crete line of height Ajj/2 and of frequency ω. The
energy spectrum of the quasiharmonic oscillation (14),
obtained in the presence of fluctuations, is continuous.
It is symmetrical and has a maximum at the frequency
ω. The spectrum consists of two terms, the first of
which is due to the phase fluctuations and the second
to the amplitude fluctuations.

Let us estimate the various quantities. Let
e = 5 x 10~2, f = 10 Me, I s « l mA, and Ao ~ 100 mA.
Then D « 3 x 10"5 and ^ « δ χ 10~12. At these values
we can neglect in the analysis of the energy spectrum
of a quasiharmonic oscillation the second term, which
carries insignificant power and which is more
"broadband." We then obtain for the spectrum the
simple formula

Thus, the energy spectrum of the oscillation is
transformed by the phase fluctuations from a discrete
line into a continuous spectrum which has at the 0.5
level a width ΔΩ = D. The natural instability of the
oscillator frequency can be quantitatively character-
ized by the relative width of the energy spectrum

Δ Ω Ώ β Ι ω

ω ω 2ΑΙ ~~

2. TECHNICAL METHODS OF SYNCHRONIZATION

The natural fluctuations and the external random
signals lead to frequency instability of self-oscilla-
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tors. One of the effective means of maintaining the
frequency constant is external synchronization of the
self-oscillator by means of another more stable
source of oscillations. Two ways are possible here.

In the first, a synchronizing signal is applied
directly to the self-oscillator tank circuit. The r e -
sultant "captured" oscillator operates on the principle
of frequency ' ' entrainment.' '

The second is based on comparison of the frequency
of the synchronized generator with that of a standard
generator. Depending on the frequency difference, a
control voltage is generated which adjusts the fre-
quency of the stabilized generator (SG) via an
actuating mechanism, until it coincides with the fre-
quency of the highly stabilized reference generator
(RG). Such systems contain as a rule a feedback loop
and constitute automatic control systems. If the fre-
quency comparison unit is a phase detector, the result
is automatic phase control. On the other hand, if the
comparison is with the aid of a frequency discrim-
inator, we get an automatic frequency control system.
In some applications it is convenient to have both
phase and frequency detectors, and the result is a
frequency-phase control system.

A feature of all the synchronization systems is
that a reference generator of relatively low power can
stabilize the frequency of a generator of considerably
higher power.

The presence of fluctuation noise acting on the
synchronization systems together with the syn-
chronizing signal leads to disturbances to normal
operation. Whereas in-phase operation of the gener-
ators can be attained in the absence of noise, the
presence of noise can cause fluctuation oscillations
of the phase difference. At a low noise level we can
speak of synchronous generator operation, that is, we
can say that the average frequencies of the reference
and synchronized generators are equal. Large noise
causes phase jumps amounting to an integer number
of cycles, and synchronous operation of the two gen-
erators is impossible. A more rigorous albeit arbi-
trary delineation between these modes will be given
below.

From among the foregoing synchronization
methods, we shall consider in what follows the opera-
tion of a synchronized self-oscillator and phase-type
automatic frequency control in the presence of noise,
since the frequency-type automatic frequency control
does not permit synchronous operation of generators
in the absence of noise, owing to the presence of a
residual frequency deviation'-29·'.

1. Synchronized self-oscillator. It can be shown
[12,18,25] ^ a t if a sinusoidal synchronizing signal
Ε sin Wgynt is applied to the tank circuit of a self-
oscillator (see Fig. 1) together with a relatively
weak fluctuation noise ξ ( t ) , then the oscillations of
the generator can be approximately represented under
certain conditions in the form A cos ( a > s v n t + φ).

The statistical characteristics of the phase ψ are
determined here by the equation

φ = Δ0 — Asinq> + ^-£(i)cos(a) s y ni + (p), (15)

where Δ ο = ω — ω 8 ν η —initial detuning, Δ = ω 8 ν η Ε/Α 0

—synchronization band, Ao—average value of the am-
plitude, and ω—natural frequency of the tank circuit.

A solution of this nonlinear stochastic equation and
a discussion of the results will be given in the next
two sections.

2. Phase-type automatic frequency control. Let us
examine briefly the operation of a phase-type AFC
circuit, the block diagram of which is shown in Fig. 2.

RG
u°(tK PD

u(t)y L P F

ujt)

SG

liJt)

CE

FIG. 2. Block diagram of phase-type AFC.

The sinusoidal oscillations U(j(t) and u S y n ( t ) of the
reference and of the synchronized generators

uo(t) = A1 cosΦ, (t) = At cos [ωοί + Ql (t)],

u g y n(i) = Az sin Φ2 (ί) = A2 sin [cosyni + θ2 (ί)]

will act together with the normal stationary fluctua-
tion noise

ξ (ί) = Α (ί) cos Φ (ί) = Α (ί) cos [ωοί + θ («)]

on the phase detector ( PD). The output of the PD is
a voltage proportional to the phase difference of the
applied oscillations. After going through a low pass
filter ( LPF) this voltage changes the frequency of
the SG by means of a control element ( CE), causing
it to coincide with the frequency of the RG.

If we assume the LPF to be ideal, that is, its
transfer function equal to unity at low frequencies
(w S y n — ωο) and zero at high frequencies ( ω 3 ν η + ωο
then we can obtain for the phase difference φ = Φ2

— Φι the following differential equation'-20-':

φ = Δο — Δ sin φ — — (Asya sin φ — As cos φ) + ψ. (16)

Here Δ ο = wSyno - ω0—initial frequency detuning of
the generators, Δ—synchronization band, which de-
pends on the circuit parameters and on the amplitudes
A[ and A2, and

(17)

Equation (16) is analogous to (15).
If we use for the LPF an RC integrating network,

then the operation of the phase-type AFC ( Fig. 2) is
described by the following nonlinear differential
equation^2'^:
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where
sin φ = αΔ0 + ζ(ί),

αΔ,
Αι

(18)

(19)

Inclusion of an RC filter increases the order of the
equation, and we can assume intuitively that the influ-
ence of the noise is smaller in such a system than in
the first-order systems indicated above. However, it
must be borne in mind that the presence of a filter
causes a narrowing of the lock-in band of the phase-
type AFC, which is not always acceptable. Therefore
in practice the tendency is to choose filters that en-
sure the required interference immunity for a speci-
fied lock-in band. These can be an RC filter with
velocity correction (proportionally-integrating filter)
[ 3 0 ] , an LCR filter [ 3 1> 3 2 ], and also a nonlinear filter
[33,34]

We present below solutions of (15), (16), and (18),
and consider separately two cases of small and large
external fluctuation noise.

3. LINEAR THEORY OF OPERATION OF SYN-
CHRONIZATION DEVICES

When relatively low noise is applied to the syn-
chronization system and when the initial frequency
deviations are small, the linearization method can
be used for the analysis.

We consider the calculation of the mean value of
the phase increment and of the variance of the incre-
ment, using a tank circuit as an example. As will be
shown below, in this case the derivations will be valid
for a locked-in self oscillator (15) and for phase-type
AFC with an ideal filter (16). In addition, the results
obtained answer directly the question of the t rans-
formation of the phase fluctuations of the self-oscilla-
tions by means of resonant systems in the presence of
additive fluctuation noise'- -\

Assume that an LCR tank circuit ( Fig. 3) is acted
upon by a signal from a self-oscillator

s(Z)=.d(i)cos[<oi-fi|5(i)l

and a weak additive normal white noise ξ ( t) with
zero mean value and with a correlation function

urn

(20)

where δ (t) is the delta-function.
Because of the internal fluctuations of the self-

oscillator, the amplitude A(t) and the phase ip(t)
are random functions of the time, and the statistical
characteristics of the phase ψ ( t) are determined by
(11).

According to (11), the correlation function for the
derivative of the phase is

Κ (τ) = (ψ (ί) ψ (ί + τ) > = g r o (τ) cos ωτ. (21)

Since the internal fluctuations of the self-oscillator
are usually small, we shall henceforth disregard the
amplitude fluctuations of the self-oscillations, that is,
we put A(t) = Ao, where Ao—the self-oscillation am-
plitude obtained in the absence of the internal noise.

The differential equation for the current in the in-
ductive branch of the tank circuit is

η _ _ β ^ —- 1 \ΔΔ)

We confine ourselves to an examination of the fol-
lowing case of practical interest, in which the tank
circuit has high Q and the deviation between the self-
oscillation frequency ω and the tank-circuit resonant
frequency WQ is small, that is, | ω - ωϋ | « UJQ.

Under these assumptions, the solution of (22) can
be sought in the form of a quasiharmonic oscillation

(23)

For a tank circuit with high Q, the functions B( t ) and
φ (t) will be slowly varying compared with
cos [ ωί + ψ (t) 1. Therefore we can put, with some
approximation,

η [ω< + φ (ί)1· (24)η(ί)= — c

From (23) and (24) we obtain

φ = _ ω ί — a r c t g ^ .

Differentiation of these expressions yields

< 2 5 >

Substituting s (t) in (22) and introducing the initial
detuning Δ ο = u> - ωο, we obtain

ξ(0}- ( 2 6>

FIG. 3. Effect of sel f-osci l lat ions and noise on a tank circuit .

where we put

ω2 — ω* = (ω — ω0) (ω + ω0) = 2ωΔ0.

If we substitute (26) in (25), carry out the trigo-
nometric transformations, and discard in the right
sides of the resultant equations the terms containing
the harmonics of frequency 2ω, we obtain the following
abbreviated equations for the amplitude and the phase:
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Β = —αΒ ~ sin ( φ — ψ) — ωξ (t) si

φ = Δο — ^ cos (φ — ψ) — ~ ξ (<) cos (ωί + φ).
(27)

From the second equation we can readily obtain the
stationary values of the phase difference in the absence
of noise (ξ (t) = 0) by putting φ - 0. We get

— ψ = arccos ( — — (28)

In the particular case when there is no initial de-
tuning (Δ ο = 0), we have φ = ψ — π/2. Consequently
in the absence of external noise, or for zero initial
detuning, the mean value of the phase of the quasi-
harmonic current in the tank circuit differs from the
mean value of the phase of the self-oscillations by
π/2; all of their other statistical characteristics coin-
cide. When Δ ο ^ 0, owing to the reactive properties
of the tank circuit, a deviation not equal to π/2 is
produced between the phases.

To find the statistical characteristics of the phase
φ , we change in the second equation of (27) from φ to
a new variable

= φ _ ψ + " .

We obtain

ω.4
X = Δ ο — ^ s i n χ — ψ— ξ cos (ωί + φ ) .

(29)

(30)

Although the "amplitude" B ( t ) in this equation is
a random function of the time, we replace it by a con-
stant quantity Bo— the stationary amplitude of the cur-
rent oscillations in the tank circuit, due only to the
signal s ( t ) . In the first equation of (27), putting
4 (t) = 0 and φ — ψ = — π/2, we get

τ> ω/10 ω 0 Λ 0 ( ο ι \

It is obvious that replacement of Β with Bo is
valid if the variance aL of the noise current in the
inductive branch of the tank circuit is much smaller
than Bo- Using the known formula'-36-'

we obtain the initially indicated condition for the
smallness of the noise ξ ( t ) :

When applied to the cases for which this inequality is
not satisfied, the results obtained below must be r e -
garded as a crude approximation.

Substituting in (30) the value of Bo from (31), we
can write ultimately

χ = Δο — α sin χ — ψ (ί) — ζι (<) (32)

where

is a random process with zero mean value and with a
correlation function

(33)

Comparing (32) with (15) and (16), we verify that
(32) describes the synchronization processes in a
vacuum-tube oscillator and in a simplest phase-type
AFC circuit in the presence of a fluctuation noise.
The only difference is that in the last two cases we
must replace a in the right side of (32) by the syn-
chronization band Δ. The analytical and experimental
investigation of this equation will be considered in
later sections.

We consider below the case of small noise, when
there are practically no phase jumps, and the phase
difference χ is sufficiently small, so that Eq. (32)
can be linearized. Assuming that sin χ = χ, we obtain
the linear differential equation

= Δ 0-ψ(ί)-ζ,(ί). (34)

This equation shows that the phase fluctuations of
the quasiharmonic current depend both on the phase of
the self-oscillation and on the external noise.

From (34) we obtain the mean value

(35)

The general solution of (34) is of the form

% (t) = Xo + e-af \ e"* [Δ, - ψ (χ) - ζ, (χ)] dx.
Ό

Let us find the increment Δ γ after a certain time
T > 0:

t+τ

e<« [Δ ο - ψ (ζ) — £ ,

The mean value of this increment is

(Δχ) = ^

(36)

(37)

We see therefore that the mean value of the increment
of the quantity χ in the stationary state (t —* «°) is
equal to zero, that is, there is no systematic diver-
gence of the phases ψ (t) and φ ( t) with time.

Let us calculate now the variance
crement after a time T.

According to (36), we can write
1+Γ

^ of the in-
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We then obtain

In the calculations we must take it into account that
the random processes i/J(t() and £ i ( t 2 ) are inde-
pendent of each other, that their mean values are
equal to zero, and that the autocorrelation functions
are given respectively by formulas (21) and (33).

Leaving out the intermediate calculations, we
present the final result:

(38)

It is seen from the formula that the variance
is the sum of two terms, the first due to the external
noise and proportional to the noise intensity No and
to the bandwidth Δί = α/π of the tank circuit (at the
0.5 level), and the second due to the fluctuations of
the phase of the self-oscillations, is proportional to
the phase diffusion coefficient D = W2N/4AQ, and is
inversely proportional to the bandwidth of the tank
circuit.

As applied to the stationary state ( t —- °° ),
formula (38) simplifies somewhat:

(39)

At small time intervals ( a T < 1) the phase devia-
tion satisfies a diffusion equation:

^4-^W (40)

For large time intervals ( a T » 1), the variance of
the phase difference has a constant value

(41)

It is interesting to note that (41) makes it possible
to determine the optimum value of the damping coeffi-
cient of the tank circuit a, at which the variance has
a minimum value. It is easy to verify that

ΫΝΝΟ . f

A%

(42)

An analogous relation is valid in the linear approx-
imation for the optimal synchronization band ( from
the point of view of interference immunity) in a
"locked-in" self-oscillator or in the simplest phase-
type AFC circuit. We can note incidentally that the
principles underlying this question are still unclear.

For the synchronization system described by (18),
the statistical characteristics can be calculated in
analogous fashion. We exclude from consideration
the internal phase fluctuations (ψ = 0) and linearize
(18), putting sin ψ = φ and cos φ = 1. We then obtain

+ αφ+αΔΓΐ _

In view of the smallness of the noise, we can neglect
the term Α 8 γ η /Α( « 1 in the left side of this equation.

φ + αφ + αΔφ = αΔ0 — αΔ - (43)

Neglect of the component A S y n alone has a per-
fectly defined physical meaning. The point is that the
cosine component leads to amplitude fluctuations of
the signal, which we neglect, while the sinusoidal
component A s leads to phase fluctuations, to which
the phase detector responds.

The right side of (43) contains the normal random
function

σΔχ with mean value (η) = αΔ 0 and correlation function

For the stationary state, the mean value of the
phase difference can be obtained by averaging the
right and left sides of (43):

(44)

which coincides with the mean value of the phase
difference for first-order systems.

Calculation of the phase-difference variance aL
in the linearized second-order synchronization sys-
tem leads to the following result:

σΦ=α*β-' ( 4 5 )

where a = Aj/σ—signal/noise ratio at the input and
β = πΔί—parameter characterizing the bandwidth of
the selective system connected ahead of the phase
detector.

It was assumed in the calculation that the band-
width of the LPF is smaller than Δί. Such an assump-
tion is satisfied in practice.

It is seen from (45) that the variance aL does not
depend on the time constant of the LFP, if the assump-
tion indicated above is satisfied. From this point of
view it may turn out that the second-order synchroni-
zation system has the same interference immunity as
the first-order system. However, it can be shown
even with the aid of linear theory that this is actually
not the case.

If we calculate with the aid of the procedure de-
scribed above the mean value (Αφ) of the phase
increment after a certain time T, then, as in the
case of a first-order system, we find it to be equal
to zero. On the other hand, the variance σ^^ of the

increment depends on the time constant of the LFP.
For the case of practical interest when α «β, the
following approximate equality holds true:

_ 2 _ A
-aT. (46)

We see that large time constants of the LPF cor-
respond to a smaller variance of the phase-difference
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increment. This offers evidence of the better inter-

ference immunity of the synchronization system with

low-pass filters, including RC filters.

4. NONLINEAR THEORY

In the case when the synchronization system

operates with sufficiently large external noise or on

the borderline of the synchronization band, the linear

theory becomes unsuitable, since it does not yield

even a qualitative picture. It is then necessary to

consider the operation of synchronization devices in

the nonlinear formulation, and it is expedient to make

use of the Markov-process formalism.

It is known'-25'37-' that if some system with a time

constant TS^ is acted upon by stationary random dis-

turbances ζ (t) with a small correlation time TC

« Tst, then the formalism of Markov processes can

be used for the investigation of the behavior of such

a system, particularly the Fokker-Planck-Kolmogorov

equation. The first-order differential equation

φ = -Πφ, ζ(ί)] (47)

corresponds to the following Fokker-Planck-

Kolmogorov equation for the univariate probability

density of the function φ:

(48)

The coefficients Kt and K2

of the formulas

are calculated by means

(49)

If we are interested in the stationary distribution,

then the right side of (48) must be equated to zero:

(φ)]--^[#ι(φ)Μ<Ρ)]=0. (50)

Here M—normalization factor:

(52)

Iii, (ζ) —Bessel function of imaginary index and imag-

inary argument'-38-', the parameter Do characterizes

the initial frequency deviation, and D characterizes

the intensity of the acting fluctuations:

(53)

It is seen from (51) that the probability density satis-

fies the natural periodicity condition w ( #> + 2π)

= w(<p) and the condition of normalization over each

period.

The integral in (51) cannot be expressed in terms

of known functions. However, in the particular case

of zero initial detuning ( Do = 0) we obtain for

w(<p) the simple expression

(54)

Figure 4 shows plots of the probability densities

for the phase of a synchronized self-oscillator in the

presence of fluctuation noise. We see that the distri-

bution has a symmetrical form with zero mean value.

At large values of the noise ( small D), the distribu-

tion tends to the uniform value over the interval

( — π, ir). In the other extreme case, when the noise

is negligibly small, a δ-like distribution is obtained.

The solution of (50) for a synchronized self-oscilla-

tor in the presence of an external fluctuation noise

ξ (t) with correlation function (20) is of the form t 1 8 '1 2^
Φ+2π

u> ((p) = -^-exp(ZVp + .Dcos φ) \ exp( —Doy — D cosy) dy.

'" (51)

-A

FIG. 4. Probability densities of the phase difference for a first-
order synchronization system Δο = 0.

The presence of an initial detuning (Do * 0) leads

to asymmetry of the distribution curve. This is seen

in Fig. 5, which shows the probability densities

w ( φ) corresponding to values D = 1 and 5, and to

several values of the parameter Do'-
12-'.

If we neglect the natural fluctuations of the gener-

ators (ψ = 0) and regard the external fluctuations

ξ (t) as sufficiently broadband quasiharmonic noise

with a correlation function

k (τ) = ι cos ωοτ, (55)

we obtain for the phase-type automatic frequency

control (AFC) system described by (16) the same

results as above, except that now Do and D are

determined by the relations

= «·-£- (56)

where a = Aj/σ—signal/noise ratio.

For the phase-type AFC described by the second-

order differential equation (18), we can write the cor-

responding Fokker-Planck-Kolmogorov equation'-25-'.

If the external noise ξ (t) is assumed to be quasi-

harmonic with a correlation function (55), then we can

obtain an exact solution only in the absence of an



THE OPERATING ACCURACY OF SYNCHRONIZATION EQUIPMENT 583

where

-a -2 -ι ο ι ζ Λ

FIG. 5. Probability densities of the phase difference when

initial frequency deviation (Δ ο = 0) This solution is
of the form

1

(57)

where a = Α(/σ—ratio of the signal amplitude to the
mean square value of the noise, and I 0 ( z ) — Bessel
function of zero order of imaginary argument.

From (5 7) we obtain the univariate probability
density for the phase difference

00

w (ψ) = \ wz (Φ. Φ) ^Φ = τ Χ exp C"V c o s

(58)

and the univariate probability density for the frequency
difference

w(q>) =

When Δ ο ?! 0 it is impossible to obtain an exact
solution, and approximate methods were proposed
[21,34] _ A realization of one of these methods -̂21-
yields the following approximate formulas for the
univariate probability densities

W (φ) = "4π2 e*Do I IiD« (D) I 2 e x p (·°°φ + D C 0 S V)

φ+2π

xj exp( — Doy — Dcosy)dy, (60)
Φ

Δ2 (62)

Formula (60) coincides with the corresponding
formula (51) for the first-order phase-type AFC.
Therefore the plots of Fig. 5 can be regarded as
constructed on the basis of (60).

It can be shown'-18'20-' that the mean values of the
phase derivative {φ) are determined for systems
described by (15) and (16) from the formula

= (ω> ω0 = (63)*

The results of the calculations, made by I. G.
Akopyan on the basis of this formula'- -\ are shown
in Fig. 6. From an analysis of (63) and of the plots
we see that at very large noise levels (D —- 0) the
influence of the synchronizing signal is barely notice-
able. In this case the mean frequency of the syn-
chronizing generator (SG) turns out to be close to the
natural frequency of the generator. In the other ex-
treme case, when the noise is small compared with
the signal, a normal synchronous mode is established,
of course, if the initial detuning is smaller than the
synchronization (holding) bandwidth.

2.0

1,8

IB

1.4

1.2

1.0

as

Q6

0.4

02

£=00

2n α 4π* exp

0 02 Μ 0.6 0.8 W 12 /A 1.6 >.8 20 *

FIG. 6. Dependence of the average frequency shift on the initial

deviation for small Δο.

If the inequality Δο « Δ is satisfied, we can deter-
mine (φ) from the asymptotic expression of the
Bessel function in (63), and obtain the simpler
formula

(64)

Figure 7 shows curves plotted in accordance with
(64). We see that at zero initial detuning the mean
value of the generator frequency difference is zero.
This does not mean, however, that a synchronous
mode is possible for any noise level in the system.

(61) *sh = sinh
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FIG. 7. Plot of the average frequency shift vs. initial deviation
for small Ao.

For a second-order phase-type AFC we obtain on

the basis of (61) the same expression for the mean

value of the frequency difference as from (63). In

this case, however, formula (63) must be regarded as

approximate. In such an approximation, the differ-

ence between the first- and second-order systems

lies in the values of the variance σ2, of the frequency

difference. ^

For first-order systems with zero initial frequency

deviation and ψ = 0, we can obtain from (16) the fol-

lowing formula

(65)

The variance of the frequency difference for the

second-order system at zero initial detuning is ob-

tained from the expression (59)

(66)

We see that the synchronization system with RC

low-pass filter is more immune to interference than

the locked-in self-oscillator and phase-type AFC with

ideal low-frequency filter. The larger the time con-

stant of the system, the smaller the variance σ1-.

This result is directly related with the deduction of

the linear theory: the deviation of the phase variance

accumulated after a certain time decreases with in-

creasing time constant of the LPF.

5. STATISTICAL DYNAMICS

It can be seen from (63) that in the stationary

state, in the presence of an initial frequency devia-

tion, the applied noise shifts the mean value of the

frequency of the synchronized generator, relative to

the mean value of the frequency of the synchronizing

signal. The resultant value of the residual frequency

deviation is determined by the noise level, by the

initial frequency deviation, and by the system param-

eters.

The physical cause of the frequency deviation can

be explained by using automatic phase control as an

example, and by considering random-function bursts.
[39]

In a closed phase-type AFC, the stable equilibrium

states correspond to the values

q>ft = -f±2ftn (A = 0, 1, 2, . . . ) .

The constant π/2 phase difference between the ref-

erence and synchronizing generators is due to the

phase detector. Deviations of the phase difference

from any specified value φ^ are permissible only

within the limits ±π/2. In the opposite case it is

either impossible to synchronize the system, or else

the system will operate in the vicinity of some other

stable state, and on going over into the latter state

the phase of the synchronized generator will increase

by an integral number of cycles (± 2k?r).

If the noise causes the fluctuation of the phase dif-

ference φ (t) to exceed the level Φ = ±π/2, then the

system will respond to the random external signal at

the instant when Φ goes through the levels ±ir/2.

When Δο ^ 0, the initial frequency deviation will

cause the mean system response to be unidirectional

with random oscillations determined by the noise.

After the lapse of a certain time, which is deter-

mined by the relation between the transient time of

the system and the amplitude and duration of the

burst ψ (t) in excess of the level Φ, the operating

point returns to the stable state, and a stationary

value of ψ is established after termination of the

transient process.

During the duration of each burst, the phase of the

SG increases by 2ττ, 4π, 6π, etc. This phenomenon

can be called a phase jump, although it must be borne

in mind that each such jump occurs not instantaneously

but after a finite time interval.

At zero initial detuning (Δο = 0) the probability of

exceeding the levels Φ = π/2 and Φ = — ττ/2 is the

same, by virtue of the symmetry of the distribution

w ( φ ) (Fig. 4). Therefore the number of phase jumps

in both directions is also equal, and consequently

{φ ) = 0. This explains the absence of an average

frequency divergence between the reference and signal

generators, although the mode at Δο = 0 cannot be re-

garded as synchronous.

Strictly speaking, there is a finite probability of

phase jumps even under very small random distur-

bances. For practical purposes, it is convenient to

assume that a synchronous mode is established in the

system if the probability of the jumps does not exceed

some permissible value. This means that the quantity

of interest to us is followed-up with practically no

frequency error. On the other hand, if the probability

of the jumps exceeds the permissible value, then the

operating mode of the system must be regarded as

asynchronous. Possible quantitative criteria of tran-

sition from one mode to another are given in'-22-'.

The presence of initial detuning leads to asymmetry

in the distribution ν/(ψ) (Fig. 5). The probability

that the fluctuations of ψ (t) will exceed the level
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Φ = π/2 is not equal to the probability of exceeding
the level Φ = —π/2. Consequently, the number of
phase jumps will not be the same in both directions.
The difference in the number of jumps determines the
residual frequency detuning, and the sign of the aver-
age frequency shift of the SG coincides with the sign
of the initial frequency deviation.

The average number of phase jumps per unit time
can be calculated if the average number of fluctuation
bursts φ ( t ) exceeding the level Φ is known. The
average number of bursts at the level Φ per unit
time is determined by the formula'-39^

Ν (Φ) = \ (fwz (Φ, φ) d(f. (67)

We shall consider a case when the fluctuation
bursts <p(t) are relatively rare, that is, when the
average interval θ between the bursts that exceed
the level Φ is much larger than the average duration
τ of the bursts, θ » τ.

This is precisely the case of greatest interest,
since the opposite case corresponds to very large
noise, when operation of the synchronization system
is practically impossible.

Let us find the average number of bursts of the
function ψ ( t) exceeding the level Φ = π/2 at zero
initial frequency deviation. To this end we substitute
in (67) the expression for w2(rr/2, φ) from (57).
After simple transformations we obtain

Ν 4- ) = 2) a V 2πβ
2π/0

(68)

We note that not every such burst involves a phase
jump. When the burst duration is short, the operating
point can return to the same region of stable state
from which the fluctuation of φ{ί) has driven it out.
For zero initial detuning, the probability of phase
jumps due to the φ ( t) bursts exceeding the level Φ
can be set equal to 0.5. This assumption is in agree-
ment with the physical picture of the effect of noise
on a locked-in self-oscillator, given in '-25-'.

Taking the foregoing into account, we obtain for
the number Ν of phase jumps per unit time, referred
to the holding band, a value

—
Δ

2πβ
(69)

Formula (69) was used to plot the relative number
of phase jumps vs. signal/noise ratio (Fig. 8).

We see that the number of phase jumps depends
essentially on the time constant of the filter, and
that the number Ν decreases with increase in
Τ = RC = I/a. This is due to the fact that with in-
creasing filter time constant the fluctuations of φ{ί)
become slower, the number of bursts exceeding the
level Φ decreases, and consequently Ν decreases.
Formula (69) demonstrates the relatively poor effi-

20

16

12

0 1 2 3 4 5

FIG. 8. Dependence of the number of phase jumps on the signal/
noise ratio at detunings close to zero.

ciency of the RC filter. We must therefore find other
types of filters that would ensure better interference
immunity of synchronization systems at large noise
values. Of interest from this point of view is a non-
linear filter'-30'34^, and also a circuit with an integrator.

When the initial frequency deviation is not equal to
zero, the number of phase jumps is not the same in the
opposite directions. Calculations by means of (67)
give for the relative number of phase jumps in oppo-
site directions at the level Φ, the following formulas:

Χ \ exp( — Doy — D cos y) dy-'r
π/2

C

.(«Do)]

exp(— Z>oY — D cosy) dy+ ^

where C = ( %)π21 IiD0 ( D) | 2.
The difference

(70)

enD
3π/2

n/2

3.1/2

V e-(DoY+iOos v) dy 1

-π/2

gives an idea of the average frequency shift of the
synchronized generator due to the noise.

Figure 9 shows the dependence of the relative
number of phase jumps in opposite directions on the
signal/noise ratio. The shaded area corresponds to
the difference (Nj — Ν 2)/Δ. We see that with de-
creasing level of the interacting noise, a decrease
takes place not only in the number of probable jumps,
but also in the difference N t — N2, that is, in the
residual frequency deviation.

An analysis of relations (69) and (70) leads to the



586 V. I. TIKHONOV

IB

to'

"ι-«ι

0 I 2 3 i 5

FIG. 9. Number of phase jumps in different directions Δο A 0.

following conclusions. First, in the presence of an
initial frequency deviation the number of phase jumps
in the direction corresponding to the sign of Δο is
always larger than the number of jumps in one direc-
tion when Δο = 0, provided the remaining parameters
of the system and the signal/noise ratio remain the
same.

Second, with increasing initial frequency deviation,
a decrease takes place in the permissible value of the
signal/noise ratio at which phase jumps begin to ap-
pear. This means that at detunings close to the syn-
chronization limits phase jumps are possible even in
the case of small noise.

Consequently, synchronization devices operate with
highest stability at frequency deviations Δο close to
zero; when the phase error is likewise at a minimum.

6. METHODS OF EXPERIMENTAL INVESTIGATION
OF THE INFLUENCE OF NOISE ON THE OPER-
ATING ACCURACY OF SYNCHRONIZATION
DEVICES

A correct understanding of the results of inter-
ference-immunity investigations is possible only if a
clear-cut idea is gained of the mechanism of the
noise. Comprehensive experimental investigations
are of help in gaining such an idea. In addition, ex-
periment makes it possible to check the theoretical
results and to analyze questions not amenable to a
theoretical analysis.

A distinguishing feature of experimental research
on the effect of noise on synchronization devices is
that it becomes necessary to deal with such a "non-
energy" signal characteristic as the phase. This
circumstance forces us to seek indirect methods of
separating the phase (or the phase difference).

The most successful method was proposed in [12]

Its gist can be understood by examining Fig. 10, which
shows the functional diagram of a phase-type AFC
with additional elements needed for phase separation.

A flipflop (Ff) transforms the oscillations of the
standard generator into a square wave having the

RG — • * • Σ ^ -

tew
PS

PD

4

Amp
—

Ff STG

—

t

Υ

L P F

fit)
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FD Amp

1

Ζ
DN Ff

h

FIG. 10. Block diagram of typical experimental setup

same repetition period as the reference generator
( RG). The leading front of the positive pulse triggers
the sawtooth voltage generator (STG). In this case
the phase of the sawtooth generator is rigidly con-
nected with the phase of the RG oscillations. This
voltage is applied to the Υ input of the vertical oscil-
loscope amplifier.

The oscillations of the synchronized generator are
also transformed into a square wave, which is trans-
formed in the differentiator (DN) into very narrow
pulses corresponding to the leading fronts of the
positive pulses. These are fed to the Ζ input of the os-
cilloscope. Intensity modulation superimposes clear
and bright points onto the sawtooth pattern on the os-
cilloscope screen. If the phase difference between
the reference and signal generators is zero, then the
points are located at the very start of the sawtooth.
If the oscillations are not in phase the brightness
markers are located in the linear portion of the saw-
tooth pattern. The phase shift can be measured, since
the entire swing of the sawtooth corresponds to 2π.

By reducing the sweep rate of the oscilloscope
beam in the horizontal direction, it is possible to
merge the sawtooth voltage traces into a continuous
raster, on the background of which one can see the
line formed by the individual intensity pips. The
position of the line is determined by the phase differ-
ence between the reference and signal generators. To
compensate for the phase shift in the circuit elements,
and also to locate the initial phase line at the center
of the raster, a phase shifting network is connected in
one of the branches of the circuit controlling the oscil-
loscope beam. The brightness control makes it pos-
sible to remove the raster image, leaving only the
phase position line visible on the screen.

If a phase-type AFC circuit is subjected to both a
signal and a noise ξ (t), phase fluctuations are ob-
served on the oscilloscope screen. Large noise
causes phase jumps amounting to an integral number
of periods. On the screen, each phase jump is dis-
played by a drift of the representative point from the
raster and its reappearance on the other side.

Figure 11 shows by way of an example oscillo-
grams of the phase of the synchronized generator in a
phase-type AFC system with RC filters. Oscillo-
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FIG. 11. Phase oscillograras in a system of synchronization
under the influence of fluctuation noise.

grams a and b correspond to phase fluctuations due

to normal external noise, with oscillogram b corre-

sponding to a large time constant of the RC filter

(the sweep rate is the same in both cases). Photo-

graph c shows a single phase jump of 2π. The pres-

ence of a large initial frequency deviation causes

several phase jumps in one direction, as can be seen

on photographs d and e, taken for detunings with oppo-

site signs.

The procedure described, in addition to having great

clarity, also affords the possibility of experimentally

plotting univariate probability densities (for example,

photometrically), to count the number of phase jumps,

and to investigate, if further modified, nonstationary

processes in synchronization systems. It is possible

to investigate analogously the effect of modulated

signals, harmonic noise, and other types of noise on

synchronization devices.

To measure the statistical characteristics of the

phase derivative, it is sufficient to connect a fre-

quency discriminator ( FD) to the synchronized

generator.

Measurement of the locking and holding bands, and

also an exact determination of the mean value of the

synchronized-generator frequency under the influence

of noise, are best made with electronic frequency

meters operating on the principle of counting the

number of "zeroes."

Figure 12 shows the experimentally plotted proba-

bility densities w(<p) for a second-order phase-type

AFC system. The points shown on the figure corre-

spond to the theoretical deviation of the curves. We

see that the agreement between the theoretical and

experimental results is perfectly satisfactory.

The experimentally plotted dependence of the

number of phase jumps in one direction against the

signal/noise ratio, for different time constants of the

RC filter, is shown in Fig. 13. The initial frequency

deviation was in this case close to zero. The quali-

tative agreement between the experimental dependence

-2 -i

FIG. 12. Experimentally plotted probability densities of the
phase difference, for Δο = 0.

0 ! 2 3 Ί 5

FIG. 13. Experimental dependence of the number of phase jumps
on the signal/noise ratio for several time constants of the low pass
filter.
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FIG. 14. Dependence of the number of phase jumps on the initial
detuning, obtained by experimental means.

Ν (a) and the theoretical one (Fig. 8) is further evi-

dence of the expediency of the described experimental

procedure.

At a fixed noise level (a = const), the number of

phase jumps depends on the magnitude of the initial

detuning, as can be seen from Fig. 14.
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7. EFFECT OF FLUCTUATIONS ON THE OPERA-
TION OF RELAXATION OSCILLATORS

Let us consider qualitatively the influence of
internal fluctuations on the operation of relaxation
oscillators, which are widely used in pulsed radars,
oscilloscopes, and other types of apparatus. By way
of an example we shall consider a symmetrical multi-
vibrator ( Fig. 15).

1
 IT ι — 2

FIG. 15. Diagram of symmetrical multivibrator.

In the absence of fluctuations, the operation of the
multivibrator is characterized by the fact that tubes
1 and 2 alternately conduct and are cut-off at equal
fixed time intervals T/2, determined by the circuit
parameters. The output of the multivibrator is then
a discontinuous oscillation, constituting a periodic
sequence of almost rectangular pulses with a repe-
tition period T. The spectrum of the oscillations is
discrete.

If we take into account the fluctuations of the cir-
cuit elements themselves (in particular, the tube shot
noise), then the tube will not start and stop at rigidly
fixed instants of time, but at instants that are subject
to a random "flicker." As a result, the durations of
the pulses generated by the multivibrator as well as
the pulse repetition periods will be subject to fluctua-
tions [ 4 3 '4 43.

A characteristic feature of these fluctuations is
that they accumulate'-45-'. If, for example, the intrinsic
fluctuations have caused a "premature" conduction of
tube 1, then this does not of necessity give rise to a
likewise premature cutoff of the tube; its cutoff
instant will be random, not connected statistically
with the conduction instant. Therefore the variance
ffjj of the instant of appearance of the N-th pulse,
being the variance of a sum of Ν independent random
quantities, increases in proportion to N:

In other words, we are observing here an effect anal-
ogous to the time growth of the variance of the phase
in sinusoidal self-oscillating systems. As a result,
the self oscillations of the multivibrator become
aperiodic and the oscillation spectrum becomes con-
tinuous'-46^.

If we define σ\ as the variance of the duration of
a single pulse, then quantitative estimates show'-43-'
that the relative value of 2σ4/Τ is of the order of 10"5.

8. INTERFERENCE IMMUNITY OF PULSED
METHODS OF SYNCHRONIZATION

The need for pulsed synchronization of radio de-
vices arises in radio communication, in radiotelem-
etry, and in other fields. In the simplest variant, the
purpose and the operation of a pulse-synchronized
radio line consist in the following.

Assume that some device transmits not only infor-
mation pulse signals (which carry useful information),
but also one or several synchronization pulses. It is
assumed that the synchronization pulses precede the
information pulses in time, and are rigidly connected
with the latter. The synchronization pulses serve to
"prepare" the information receiver for the reception
of information pulses only. They can be received by
the same receiver or else by a special synchroniza-
tion receiver. The latter variant is preferable, since
it provides increased interference immunity.

The presence of noise results in different time re-
lations between the information pulses and the syn-
chronization pulses on the transmitting and receiving
ends. Any such mismatch is always undesirable.

Without stopping to analyze in detail different
technical methods of pulsed synchronization and the
corresponding systems, let us consider one simple
concrete example, which enables us to explain the
nature of the problem.

Let the synchronization signal sl (t) be a video
pulse of rectangular form with known amplitude A
and duration TU. It is received against a white noise
background ξχ(ί) (with spectral intensity No) by a
special receiver, which is optimal with respect to
interference immunityC40>41^. The synchronization
pulse from the output of this receiver acts on an elec-
tronic relay, which should "turn on" the information
receiver, via a special device, only during the time
interval when the information pulses should appear.

By electronic relay is meant here a device that
operates whenever the voltage applied to it exceeds a
certain threshold value H.

As is well known'-42-', the optimal synchronization
receiver for this case is a linear filter matched to the
signal. The signal s 2(t) at the output of the matched
filter coincides in form with the autocorrelation func-
tion of the input signal, while the correlation function
of the output of the normal noise ξ 2 (t) n a s the form
of the autocorrelation function of the input signal.

The maximum peak value of the output pulse s 2 (t)
is equal to

s2m=kE, E= \ (71)
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Optimal
receiver

FIG. 16. Operating principle of optimal receiver.

where Ε—"energy" of the signal and k—some ampli-

fication coefficient.

The variance of the normal noise | 2 ( t ) at the out-

put of the matched filter is

ol = k*»£. (72)

Consequently, the ratio of the peak value of the

signal to the mean square value of the noise is

' im

«2 Λ Ό •
(73)

Figure 16 shows the input synchronization signal

s ^ t ) and the input white noise | i ( t ) , and also the

signal s 2 ( t) and the noise ξ2 (t) at the output of the

synchronization receiver.

If we disregard the signal distortion during propa-

gation and the distortion due to various technical in-

stabilities of the apparatus, then, in the absence of

noise, for we can always choose for a specified sig-

nal energy Ε a relay operation threshold

Η < s2m = (74)

which determines exactly ("rigidly") the instant of

relay operation.

In the presence of noise, such a rigid fixation of

the instant of operation of the relay is practically im-

possible.

Depending on the ratio of the threshold voltage Η

to the noise level σ2, two cases should be distin-

guished:

1. If the noise level is small compared with the

threshold voltage ( σ2 « Η), we can disregard the

highly improbable false operations of the relay. The

noise will cause a "flickering" of the instant of relay

operation, and by the same token will disturb the rigid

time relation between the instant of relay operation

and the information pulses.

It can be shown^43^ that the mean-square value σο

of the random instant of operation of the relay is de-

termined by the formula

_ C < 2 _ Slr = ds2 (0
dt

(75)

where the instant of time t0 is determined from the

equation s 2 (t 0 ) = H. For a rectangular synchronizing

pulse, formula (75) takes the form

σ ο =
S 2 m _

2E

(76)

It is seen from this formula that to reduce the

"flicker" of the instant of operation of the relay, at a

fixed energy Ε of the rectangular synchronizing

pulse, it is necessary to reduce the duration of the

pulse, that is, to increase the slope SH of the output

pulse.

2. When the level of the noise is comparable with

or larger than the threshold value (σ2 =2 Η), false

operations of the relay will occur for the most part

in the interval between the synchronization pulses,

particularly if their off-duty factor is large'-47-'. If

we denote the interval between neighboring pulses by

T, then the average number of false operations within

a time Τ is determined by a well-known formula'- -\

which can be written in the form

(77)

where the coefficient μ is defined in terms of the

noise correlation function. (We do not consider here

the feasibility of calculating this coefficient mathe-

matically. )

It is seen from (77) that to reduce the number of

false operations it is necessary to increase to the ut-

most the threshold H. In accordance with (74), this

calls for an increase in the energy of the synchroni-

zing pulse. The energy can be increased by increas-

ing the radiated peak power or by lengthening the

pulse. The increase in the peak power is limited

by the technical capabilities (so-called "peak"

limitations), and an increase in the pulse duration

is undesirable from the point of view of the instability

of the instant of relay operation, caused by the noise

(76).

From the foregoing very simple example we can

now see clearly the requirements that must be im-

posed on the wave form of signals used in pulsed-

synchronization lines. With the peak radiation power

limited, the synchronization signals must have the

necessary energy Ε and as "narrow" an autocorre-

lation function as possible. Such requirements are

usually imposed on radar signals when it is necessary

to obtain high target-range measurement accuracy

and high resolution in range.

These requirements are satisfied to a known de-

gree by special signals with intra-pulse modulation

(in particular, phase manipulation). These include
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signals constructed on the basis of the codes of

BarkerC 4 8 ) 4 9 ], HuffmanC50], etc.

The principle of construction of such signals con-

sists roughly speaking in the following. Starting

from "peak" limitations, one determines the over-

all duration of the pulse T U at which the required

signal energy Ε is attained. The time interval TU

is broken up into η elementary sub-intervals of length

Δ = Tu/n. For example, the phase of the high-fre-

quency oscillation at each of the elementary sub-

intervals can assume two values: ψ and ψ ± π. By

choosing the number η and the phase alternation se-

quence in each of the elementary sub-intervals, we

can obtain a signal with a narrow correlation function.

Thus, for the Barker code with η = 13, the signal auto-

correlation function (hence the signal at the output of

the optimal receiver) has a fundamental narrow peak

in the form of an isosceles triangle with a base 2Δ,

and 12 identical " lobes" of the same form, but the

height of each lobe is Vu of the height of the main

peak.

Detailed information on methods of formation and

reception of such signals can be found in the period-

ical literature.

Note added in proof. Recently the field of application of
synchronization devices (in particular, phase-type automatic
frequency control), has broadened further. It turns out that cer-
tain modifications of phase-type automatic frequency control
are optimal for interference-immune reception of continuous
stochastic signals against a background of fluctuating noiseL52!.
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