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J.HE nature of the solid state is one of the most im-
portant problems of modern physics. Its solution is
approached by physicists along different paths and by
different methods.

During the last decade and a half solids have been
extensively investigated by radio-spectroscopy meth-
ods, particularly by electron paramagnetic resonance
(EPR) and electron nuclear double resonance (ENDOR).
The study of crystal semiconductors by the EPR
method began in 1953. The EPR and double-resonance
methods have made it possible to study many interes-
ting properties of semiconductor crystals and the
physical processes occurring in them. Thus, for ex-
ample, the EPR of shallow donors and acceptors has
provided the answer to several questions connected
with the position of the impurity atom in the crystal
lattice, and with the structure of the energy bands in
these substances. Experiments on the EPR of shallow
donor and acceptor states constitute the basis of the
theory of Kohn and Luttinger which has made it possi-
ble to map out wave functions for these states. The
EPR of shallow donors in silicon helps solve one of the
most interesting problems in solid state—that of the
interaction between the crystal-lattice waves and the
magnetic moments of the electrons in the nuclei. A
combination of experiments on the EPR of shallow
donors in silicon with experiments on photoconductivity
has answered several questions connected with the
kinetics of the transitions between impurity atoms.
EPR and ENDOR were used to study the interaction
between impurities and vacancies in lattices and the
structure and production of radiation defects in silicon
crystals bombarded by high-energy electrons and fast
neutrons. Interesting results were obtained by obser-
vation of EPR with the crystal deformed or placed in
an electric field.

In this survey we discuss EPR of impurities that
produce shallow and deep levels in silicon and ger-
manium, and also the EPR of radiation defects result-
ing from irradiation of crystals. It must be noted,
however, that the EPR method is already in use for the
investigation of binary and vitreous semiconductors.
It will undoubtedly play an important role in research
on the nature of semi-conductivity of noncrystalline
semiconductors. A study of the EPR of semiconducting
crystals is of interest in quantum radioelectronics.

This article reviews work published up to 1963. It
is impossible to discuss here the techniques and the
capabilities of EPR in general. Those interested are
referred to the books "Electron Paramagnetic Reson-
ance" by S. A. Al'tshuler and Β. Μ. Kozyrev, "Para-

magnetic Resonance in Solids" by W. Low, "Masers"
by Singer, etc., and also to the collection "Electron
Paramagnetic Resonance in Semiconductors" (IL.
1962).

I. FIRST EXPERIMENTS ON THE EPR OF SHALLOW
DONORS IN SILICON. THE THEORY OF KOHN
AND LUTTINGER

In 1953 Portis et al [ 1^ first observed EPR of the
conduction electrons of η-type silicon crystals: the
resonance spectrum consisted of one line with a
g-factor close to that of the free electron. Somewhat
later Fletcher et al'-2·3-' succeeded in observing EPR
of electrons localized on donors.

In Fletcher's experiments, which were made at
liquid-helium temperature with crystals of silicon
doped with arsenic (nuclear spin I = 3/2) and phos-
phorus (I = 1/2), the spectrum hyperfine structure due
to the magnetic interaction of the unpaired electrons
with the spins of the donor nuclei was resolved. The
widths of the hyperfine structure lines (21 + 1 in num-
ber) and the distances between them were measured.
These experiments, as well as later ones on silicon
doped with lithium'-4 , were devoted to the inhomogen-
eous resonance line broadening, due to the interaction
of the donor electron with the nuclei of the silicon
magnetic isotope Si29 (I = 1/2, natural abundance
4.68%). Experiments on samples of silicon with in-
creased content of Si28 (99.88% ± 0.08%) have shown
that the broadening of the resonance lines is due to the
above-mentioned interaction, since the width of the
EPR lines of the phosphorus donors in the purified
silicon amounted to 0.22 Oe, whereas for ordinary
crystals it amounted to 2.5 Oe'-5-'.

These first experiments yielded the following quali-
tative picture: when elements of group V are intro-
duced into the crystal of the tetravalent silicon, the
introduced atoms, occupying the lattice sites, form
four covalent bonds with the neighboring Si atoms.
Participating in the production of these bonds are four
of the five valence electrons of the impurity atom,
while the fifth remains with unpaired spin and makes
paramagnetic resonance absorption possible. At low
temperatures, the unpaired electron is more strongly
bound to the donor atom, whose nuclear magnetic field
produces the slight splitting of the EPR line, observed
in the experiment as a hyperfine structure. A weaker
interaction of the unpaired electrons with the Si29

nuclei produces only an inhomogeneous broadening of
the resonance line.
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At room temperatures the donor is ionized and the

electron is in the conduction band; however, if the

impurity atom concentration exceeds ΙΟ17—1018 cm"3,

a considerable part or even all the. donor electrons

will be in the impurity conduction band at helium tem-

peratures. They will produce an EPR spectrum con-

sisting of a single line with a g-factor close to that for

the free electron. The effect of the transition of the

unpaired electrons from the donor levels to the im-

purity conduction band on the character of the EPR

spectrum was investigated in'-6»7 '̂.

If the impurity concentration is sufficiently high

(above 1016 cm"3), the impurity atoms, being close to

one another, can form pairs whose electron spins are

strongly bound by exchange forces. In this case two

electrons act like a single effective electron situated

in the average field of two nuclei. Consequently an ad-

ditional line, of lower intensity, will be observed be-

tween the hyperfine structure lines. With increasing

impurity concentration, more and more complicated

groups of impurity atoms are formed. Accordingly,

the number of additional lines increases (Fig. 1). When

the impurity concentration reaches 1018 cm 3 and more,

the intermediate lines merge into one, and the com-

ponents of the hyperfine structure vanish completely,

thus offering evidence that the majority of electrons

go over from the donor levels into the impurity con-

duction band.
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FIG. 1. Spectrum of Ρ donors in Si at Τ = 1.2° Κ (Ρ concentra-
tion = 10>7 cm"3). Three weak lines due to exchange interaction
are seen between the two intense hyperfine structure lines. The
parentheses contain the number of the atoms whose exchange in-
teraction leads to the appearance of the corresponding line.

EPR in semiconductors is characterized by very

large relaxation times, which reach tens of minutes or

even hours in some cases. These times are strongly

influenced by many factors, such as impurity concen-

tration, temperature, magnetic field intensity, number

of electrons in the conduction band, etc. The EPR line

intensities and the relaxation times depend to a great

degree on the purity of the specimen, on its surface

finish, and on various lattice defects. Exposure to

light exerts an appreciable influence.

The qualitative picture of the EPR in silicon with

shallow donor impurities, disclosed by the first ex-

periments, was subsequently convincingly verified in

the theoretical papers of Kohn and L u t t i n g e r ' 8 1 1 ^

The theory they developed for the donor states in sili-

con and germanium with impurity atoms of low ioniza-

tion energy (0.10—0.05 eV) (P, As, Sb, etc.) has made

it possible to determine the wave functions and the

energy spectrum of the unpaired electrons of the donor

atoms, and prepare the ground for further calculations

of such spectral characteristics as the hyperfine split-

ting, g-factor, and also the relaxation times. The

shallow donor states in Si and Ge are described by

hydrogen-like wave functions with large effective

radii. ^Thus, for silicon the "Bohr" radius a* is equal

to 21 A (lattice constant a = 5.42 A), and for german-

ium the values are a* = 45 A and a = 5.62 A. These

large dimensions of the region of localization of the

impurity states are due to the high dielectric constant

of the crystals (Kgi = 12. *Ge = 16) and the low effec-

tive masses of the carriers. As is well known, the

state of the conduction electrons in an ideal crystal

can be described with the aid of the Bloch functions,

which are solutions of the Schrodinger equation with the

periodic potential V(r) produced by the crystal lattice.

For localized impurity electrons the Schrodinger equa-

tion is written in the form

(1.1)

where U(r)—additional potential resulting from re-

placing the silicon atom by a donor atom. If the orbit

of the donor electron is sufficiently large compared

with the lattice constant, then the perturbing potential

U(r) can be represented in the Coulomb form

(1.2)

where κ—static dielectric constant* and the origin is

at the donor nucleus.

Expression (1.2) is not applicable near the impurity-

atom nucleus (for small r). It is likewise not com-

pletely correct at large r, owing to the screening

caused by the interaction of the electrons with one

another. The effect of the donor-ion Coulomb field on

the donor electron is greatly weakened by the large

dielectric constant of the medium. Owing to the large

dimensions of the region of their localization, we can

apply to the impurity states the effective-mass method,

in which the effect of the lattice is taken into account

by introducing the electron effective-mass tensor in

place of its free-space mass m.

The wave functions of the localized electron, which

are solutions of (1.1), are constructed from the Bloch

functions for the bottom of the conduction band. It is

known that the conduction band in Si has in wave-vec-

tor space six equivalent energy minima, located on the

six [100] axes. If the coordinates of the point of the

*It is shown in ["] that the use of the static dielectric con-
stant is perfectly admissible because of the slower motion of the
impurity electron, compared with the other electrons of the crystal.



510 BOGOMOLOVA, LAZUKIN, and CHEPELEVA

minimum on the [100] axis are denoted by kjiko, 0, 0),

then the equation of the equal-energy surface in the

vicinity of this point can be written in the form

(1.3)

where the effective masses are m.x = 0.98m and

m2 = 0.19m. These surfaces are ellipsoids, with

principal axes directed along [100], [101], etc.

Assuming that (1.2) and (1.3) hold, Eq. (1.1) has as

solutions

X; = F,(r)\|>(kj> ' ) · ( ! · 4 )

Here i/>(kj, r) = u(r) exp(ik· r) is the Bloch function

corresponding to the minimum of energy at the point

kj (it is assumed that this minimum is not degenerate);

the modulating function Fj is the solution of the hydro-

gen-like SchrSdinger equation with effective masses

m, and m2, which is transformed from (1.1) with the

aid of (1.3). This equation enables us to obtain the

spectrum of the eigenvalues e* which characterize

both the bound ground state and a whole series of ex-

cited states.*

The functions Fj (r) change little within the unit cell.

The normalization integral for the functions Fj (r) is

taken over the entire space (for the Bloch functions —

over the unit cell). Only in the case of small variation

of the function Fj (r) can the effective-mass approxima-

tion be used in this problem. A solution in the form

(1.5)

with corresponding choice of the parameters a and b

for all n^/mj < 1 makes it possible to account suffi-

ciently well for the experimental results. Owing to the

anisotropy of the effective mass, the functions Fj(r)

have no spherical symmetry and are slightly elongated

in the yj and ZJ directions, compared with Xj, to which

a heavier effective mass mj corresponds. The phases

of the functions Xj are chosen all real and equal at the

origin.

Let us consider the ground state. Inasmuch as

there are six equivalent minima, there are six solu-

tions of the form (1.4), corresponding to six different

kj but belonging to the same eigenvalue e*. The com-

plete solution is given by a linear combination of these

six degenerate solutions:

The six-fold degeneracy of the ground state is partially

lifted by introducing corrections to the effective-mass

method. Purely formally, however, without account of

the corrections, the remaining degeneracy can be es-

tablished uniquely from the symmetry of the Hamil-

tonian of the impurity states, which is invariant under

the transformations of the point group of the tetra-

hedron T<j with the donor atom at the center. Obviously,

the six degenerate functions Xj form a basis for the

representation R of the group Ttf, which has five

classes.* Comparison of the characters of the repre-

sentation {is} and of the indicated five irreducible

representations shows that {is} breaks up into a sum

of three representations (1-, 2- and 3-dimensional):

{1«} = ^ ! + £ + 7Ί. (1.7)

Thus, owing to the symmetry properties of the intra-

crystalline field, the six-fold degeneracy of the ground

state is partially lifted and singlet, doublet, and triplet

states arise. According to the Kramers theorem, the

singlet state is doubly degenerate in the spin, and, as

shown by EPR experiments, is the ground state. The

linear combinations corresponding to the different ir-

reducible representations (1.7) are written in the form

i = l, 2, . . . . 6), (1.8)

where j = 1 , . . . , 6 corresponds to different minima

(k0, 0, 0), (-k0, 0, 0) . . . (0, 0, -k0), and the coeffi-

cients | a(J)|2 characterize the probability of finding

the electron at the j -th minimum. Out of the six Is

wave functions, only the nondegenerate function Φο1

has a finite value on the donor nucleus (r =0). Be-

cause of this, the greatest hyperfine splitting should

be observed for the singlet state, as is indeed con-

firmed experimentally.

In order to check how well the wave function Φο1

[which coincides with (1.6)] describes the ground state,

the hyperfine splitting was calculated in'-8-'. The total

hyperfine splitting (i.e., the distance over the field be-

tween the extreme lines of the multiplet) is

(ΔΗ) = - ^ | Ψοι (0) |2 μυ. (1.9)

If the moment μ ρ of the donor nucleus is known, then

the determination of the hyperfine splitting reduces to

a calculation of | Φ0Ι(Ο)|2. On the other hand, knowing

(ΔΗ) from experiment, we can find the experimental

value of | Φ01(0)|2. The values of | Φ01(0)|2 were esti-

mated approximately from the experimental values of

the ionization energy. The calculations thus yielded a

phosphorus donor | Φ0ι(0)|2 « 0.4 x 1024 cm"3, whereas

the measurements yielded | Φ01(Ο)|2 = 0.44 χ ΙΟ24 cm"3.

The good agreement shows that the ground state is a

singlet one and is described by the function Φ01. Inas-

much as only the singlet state has a finite probability

of being located at the point of the nucleus, it is separ-

ated in energy from the doublet and triplet states. This

splitting depends on the type of impurity'-12'13-'. The

*The existence of excited states was confirmed by infrared ab-
sorption experiments ["].

*This representation reduces to five irreducible representations
A,, A2, E, T,, and Ta of group T d

: R = n ^ + n2A2 + n3E + n4T t

+ n sT 2, where the integers η represent the number of levels with
degeneracy of the corresponding multiplicity.
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corresponding term in the Hamiltonian <^?eo. which
gives rise to the interaction that leads to the splitting
(essentially a spin-orbit interaction), has been repre-
sented in the form of a matrix, which we do not repro-
duce here (see -̂ ). Its matrix elements Ac charac-
terize the splitting due to the spin-orbit interaction
for an electron situated in the k-space region near one
minimum. If this matrix is made to operate on differ-
ent linear combinations of the wave functions (1.8), we
find that the spacing between the singlet and doublet
is E12 = 6AC, and the splitting between the doublet and
triplet is much smaller, E23 = 2δΔ0 (δ is small and
positive). The excited doublet and triplet states play
an important role in different phenomena in silicon
at low temperatures, for example, in interactions be-
tween the spin system and the lattice phonons.

II. SOME DISTINGUISHING FEATURES OF SEMICON-
DUCTOR EPR RESEARCH PROCEDURES

EPR can be observed in a semiconductor crystal
containing some impurity, as a rule, only at helium
temperatures. However, even at such temperatures
semiconducting materials have a rather high conduc-
tivity, and this leads to large dielectric losses of
microwave power and to a corresponding reduction in
the Q of the radiospectroscope cavity. This imposes
very stringent requirements on the construction of the
radiospectroscope, and particularly on its sensitivity.

The sensitivities of different radiospectroscope
systems were estimated by Feher'-14-; we shall indi-
cate only briefly what spectroscope systems were used
in EPR experiments on semiconductors.

A comparison of the different types of spectro-
scopes shows that the greatest sensitivity is possessed
by: a) balanced-bridge spectrometers with bolometer
detectors operating at low magnetic-field modulation,
and b) superheterodyne spectroscopes with crystal
detectors operating both with and without magnetic-
field modulation. The use of a balanced bridge as the
essential spectroscope element in either type makes it
possible to operate both in absorption (χ") and disper-
sion (χ')·'- depending on whether the bridge is bal-
anced in phase or in amplitude. This is a very valuable
property when working with semiconductors, which as
already noticed, show rather long relaxation times. If
the spin-spin and spin-lattice relaxation times are
long, the bridges are usually tuned for dispersion and
the signal is observed under conditions of fast adia-
batic passage. This is readily realized with either
spectroscope type. In many experiments, particularly
in double-resonance experiments where higher sensi-
tivity is required, the method of low modulation of the
magnetic field is used, with a frequency 100—1000 cps
and an amplitude 0.5—1.0 Oe. To reduce the noise at
this frequency, rigid coupling with the resonator is
used when tuning for absorption.

In most work with semiconductors, the unloaded Q

of the cavity was not less than 5000, reaching 20,000
in individual cases. In many cases the cavity construc-
tion affords a possibility of exposure to light, which
exerts an appreciable influence on the relaxation time.
Many investigations were made by the double reson-
ance method, where the semiconductors must be acted
upon by magnetic fields with frequencies that stimulate
both electronic and nuclear transitions. The radio-
frequency field for the nuclear transitions is applied
with a loop or a small coil'-12-' through an opening in
one of the cavity walls.

Cavities were built ^16J in the form of quartz cylin-
ders coated on the inside with a thin layer of silver;
a helix of very small pitch was cut over this layer with
a diamond cutter. The generator leads are soldered
to the end of the silver helix. The radio-frequency
field produced in the cavity by such a helix is some-
what weaker than that produced by a copper coil of
equal size.

An essential factor in the success of the experi-
ment is a correct relation between the dimensions of
the specimen and the cavity. An increase in the volume
of the specimen leads, on the one hand, to an increase
in the signal, since the number of paramagnetic cen-
ters is increased, and on the other hand to increased
losses, lower cavity Q, and by the same token a weaker
signal. Calculations show that the optimum specimen
volume is such that the cavity Q is 2/3 of its unloaded
value. The investigated semiconductor specimens
usually were of the order of 100 mm3.

The choice of the spectroscope operating frequency
was based on the following considerations. It is known
that higher frequencies lead to an increase in sensi-
tivity, since the minimum number of spins observed
with the spectroscope is usually inversely proportional
to ω7 . At the same time, the power output of a micro-
wave source decreases rapidly with increasing fre-
quency, and this cancels out the gain due to the in-
creased frequency. On the other hand, to obtain very
narrow lines, which are usually used in the case of
semiconductors, high stability and homogeneity of the
magnetic field are necessary, and these are much
easier to realize at low frequencies. The most useful
spectroscope turned to operate at 9000 Mcs (λ » 3 cm);
some of the investigations were made at 14,000 Mcs
(λ « 2 cm) and 24,000 Mcs (λ * 1.25 cm).

The long semiconductor relaxation times and the
appreciable dielectric losses make it necessary to
carry out the EPR observation at helium temperatures
(1.25—4.2° K) and (much less frequently) at hydrogen
temperatures (14—20° K).

In most cases the observation of EPR is at a slow
passage'-17-, where the time necessary to pass through
the resonance line is much longer than the relaxation
time. Then, if the apparatus is of sufficiently good
quality, the shape of the observed resonance signal
duplicates the shape of the distribution of the spin
packets. In the examined semiconductor materials,
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which give inhomogeneously broadened lines, and also

many other cases, the picture becomes much more

complicated if the long relaxation time makes the

passage through the resonant line "fast," i.e., occur-

ring within a time much shorter than the relaxation

time. It is then necessary to account for many factors

to interpret the experimental results correctly.

In connection with the timeliness of this problem,

a thorough study was made both of the possible meth-

ods of observing EPR, and of the associated "passage

effects' »19. In'-19-' are considered different methods

of observing EPR lines in a system described by

Bloch's equations (i.e., for which spin diffusion etc.

can be neglected). It was shown that to interpret the

shape and amplitude of an inhomogeneously broadened

line, observed if the magnetic field varies like

Η = H0(t) + Hmcosojmt, it is necessary to know not

less than seven parameters (with dimension of fre-

quency) :

Μ 12
yHm, ω,,,, ·=- dH0

Hi dt

where Tj and T2—spin-lattice and spin-spin relaxation

times, γ —gyromagnetic ratio, ΔΗ—half-width of the

resonance curve, Hj—amplitude of the high-frequency

field, H m and ω m—amplitude and frequency of the

modulation field. The signal shape depends on the

ratio of these parameters and can be very complica-

ted. An analysis of the solutions of Bloch's equations

for different ratios of these parameters shows that 11

methods of observing EPR signals are possible, most

of them already realized experimentally (the investiga-

tions were carried out with a silicon sample, doped

with phosphorus of concentration 1.7 x 1016 cnT3, at

various temperatures, microwave power levels, modu-

lation frequencies, etc.). An estimate was made of the

form and magnitude of the χ' and χ" signals for these

cases, and various "passage effects" were also con-

sidered, as well as the conditions under which the

"unperturbed" lines were observed and the resonant

signals had a maximum. Which method is the most

effective depends on what information it is desired to

obtain in the particular case.

It was noted'-19-' that in the observation of EPR it is

important to distinguish between truly physical effects,

explained in terms of the theory of fast passage (when

tuning to χ' in adiabatic fast passage, for example,

such effects are various phase shifts of the dispersion

curves relative to the modulating field, a line shape

similar not to the dispersion derivative but to the ab-

sorption line shape, etc.), from false passage "ef-

fects" (for example, the broadening and splitting of the

lines if the speed of passage, characterized by H m or

by dH0/dt, is incorrectly chosen), which can be elim-

inated in most cases.

Without stopping to discuss all possible methods of

observation and the "passage effects," let us consider

only those which were used and allowed for ^12>20-' for

the EPR of donors in silicon. Let us dwell briefly on

the effect of line broadening.

In semiconducting materials with large relaxation

times, EPR is usually observed, using adiabatic fast

passage (AFP)*-17 , by registering the dispersion sig-

nal χ', i.e., the magnetization component in phase with

the microwave field Hi (the absorption signal is negli-

gibly small under such conditions'-19-'). If the AFP is

effected by varying the magnetic field, then the follow-

ing condition should be satisfied

• ^ «

(2.1)

In adiabatic variation of the field, the angle between

the magnetic moment and the effective magnetic field

acting on the spins remains invariant in the coordinate

system which rotates at microwave frequency ω Λ21-'

Because of this, AFP is accompanied in the ideal case

by total inversion of the level populations, and the

direction of the magnetization vector is reversed, its

absolute magnitude remaining constant.*

If this method is used to observe inhomogeneously

broadened lines, their experimentally-obtained shape

may differ appreciably from the distribution of the

spin packetst, which can be described'-1-' by means

of a function h satisfying the normalization condition

h(Hl-H0)dHi=i. (2.2)

Here H^—resonant magnetic fields for different spins,

due to the magnetic interaction between donor elec-

trons and different aggregates of Si29 nuclei situated

inside the electron orbits and responsible for the

broadening. In^12^ is given an expression for the

projection of the magnetization MX(H) (due to all the

spins) on the Ht direction in a coordinate system that

rotates around Ho with angular velocity ω'-21-' (this

corresponds to registration of the dispersion under

the AFP conditions). An analysis of this expression

for the case when the distribution curve h(Hi — Ho) is

a Gaussian function (with half-width ΔΗ) shows that

for very small fields Ht the envelope of MX(H) also

has a Gaussian form. The larger Hj (i.e., the better

the condition (2.1) is satisfied), the more the observed

line shape differs from the spin-packet distribution,

and the closer Hj is to ΔΗ. Calculation of the broad-

ening has shown, for example, that for ΔΗ/Hj = 103

the observed line width AHobs is 8% larger than the

width of the curve describing the distribution of the

spin packets, and for ΔΗ/Hj = 1010 it is approximately

30% larger, t

*A detailed explanation of AFP is gi\>en in J. R. Singer's book
"Masers,"N.Y. 1959.

tA spin packet is an aggregate of spins with close resonant
fields, with the absorbed energy uniformly distributed within the
aggregate. Consequently, the inhomogeneously broadened line can
be regarded as consisting of a set of narrow homogeneously broad-
ened lines corresponding to the aggregate of spin packets.

tit must be noted that this line-broadening effect does not oc-
cur in the case of AFP of homogeneously broadened lines.
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Depending on the relaxation time, Feher'-12- real-

ized two methods of observing signals under AFP

conditions, nonstationary and stationary. The first

was used in ENDOR investigations, and the second

for a study of EPR line shape and width.

After a certain number of passages (i.e., modula-

tion cycles), saturation causes the magnetization to

tend to a stationary value; the condition for this is the

equality Mj(N — 1) = Mi(N + 1), where N—number of

modulation cycles, and M{—magnetization produced

by spins whose resonant fields are equal to Hi. If this

condition is not satisfied (for example, at the instant

when the microwave power is turned on), then the

magnetization does not reach its equilibrium value.

When a signal was registered, in both cases the

AFP conditions were satisfied for the modulating field

(w m H m « γΗ], o;m » l/T2), and the amplitude of this

field was much smaller than the spin-packet line

width (Hm » Hj). If the resonant line passage time is

shorter than the relaxation time (dH0/dt is so small that

the stationary-state condition is satisfied for each

value of Ho), then at sufficiently small Hj the suscep-

tibility χ' (Η) (for a Gaussian distribution of the spin

packets) can be written in the form

η J

Xexp t - Η
' J-0.69 (cos ω™/) In (2.3)

(Xo—static susceptibility). This expression was used

for a comparison of the experimental and theoretical

EPR line shapes. For samples with large relaxation

times, the stationary method could be used by exposing

the specimen to light so as to reduce the relaxation

time.

On the other hand, if the passage time is longer

than the relaxation time, the shape of this nonstation-

ary signal remains the same as in (2.3), and the signal

amplitude decreases by a factor 2/π. It must be noted

that the output signal does not depend on the modula-

tion-field amplitude so long as Hm > Hj; when Hm

approaches Hj, the signal starts to decrease.

In the derivation of (2.3) it was assumed that there

is no spin-spin interaction and that in the case of AFP

through the line the absolute value of the magnetiza-

tion remains unchanged. This assumption is in good

agreement with the experimental data (see Ch. III).

The ENDOR method has been extensively used in

investigations of paramagnetic resonance in semi-

conductors. It was first used to investigate phosphorus

donors in silicon and to produce nuclear orientation in

such a system'-22'2 . The method makes it possible to

determine the hyperfine splitting and the g-factor'-12-'

very accurately. It was also used to determine the

nuclear spins and to study the anomalies of the hyper-

fine structure'-12'24 2 6^ .* In recent years this method

was used to investigate impurity centers in silicon,

producing deep levels'-16-1.

The possibility of using the method of double elec-

tron-nuclear resonance is based on the fact that the

inhomogeneously broadened line can be saturated in

parts. If the spin diffusion is insignificant, then the

saturation of the lines of one group of spin packets

does not cause any change in the remaining groups,

since their resonant frequencies are different.

To observe electron-nuclear double resonance it

is necessary to apply to the specimen not only two

magnetic fields (constant and microwave), but also a

small radio-frequency magnetic field H r, perpendicular

to the constant field, and with a frequency that can be

varied over the required range. This field induces

transitions between the levels due to the interactions

with the nuclei [see (3.3), (3.4), and Fig. 2], thereby

changing the electron level populations. This changes

the magnitude of the EPR signal. Thus, if some defi-

nite EPR level is fixed in the instrument and the fre-

quency vr of the field H r is varied, then peaks above

the fixed level will be observed at certain frequencies

'/'i

FIG. 2. Energy level scheme for the donor electron in phos-
phorus doped silicon in a magnetic field. For simplicity we
assume that the microwave field completely saturates the part
of the line corresponding to mi = + Vi·

*For more details, for example, see W. Low, Paramagnetic
Resonance in Solids, Solid State Physics Suppl. 2, Academic Press
N.Y. 1960.
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vT corresponding to certain nuclear transitions. The
aggregate of these peaks constitutes the double-reso-
nance spectrum, which makes it possible to ascertain
the structure of the Ε PR lines and by the same token
the interactions that occur in the system. Double
resonance experiments are carried out on highly sen-
sitive superheterodyne spectroscopes with magnetic-
field modulation at helium temperatures (usually at
1.25°K). The double-resonance line width is small,
approximately 10 kcs, whereas the EPR lines are ~10
Mcs wide. Thus the use of double resonance increases
the resolution by three orders of magnitude.

III. ELECTRON PARAMAGNETIC RESONANCE OF
DONORS AND ACCEPTORS IN SILICON AND GER-
MANIUM, FORMING SHALLOW IMPURITY LEVELS

1. EPR of Donors in Silicon

Before we discuss the experimental data on EPR of
shallow donors in Si and the procedure used to obtain
these data, we must examine the types of interactions
in such systems.

1. Hamiltonian. Energy Level Scheme. The various

interactions in the systems under consideration (when
an external field Ho is applied)'-1 can be described by
the Hamiltonian

ffl = - μ,Η0- μ ο Η 0 - (-^ | Ψοι (0) j 2

ψοι (τι) ι2 - 2 Σ
ι

where μ8—electron magnetic moment, μβ— magnetic
moment of the impurity atom nucleus, μι —magnetic
moment of the Si29 nuclei in the different sites I of the
silicon lattice, and ^(r^)—electron wave function in
the site I. The distance r is measured from the donor
nucleus. The third and fourth terms of the Hamiltonian
describe the interaction between the magnetic moment
of the donor electron and the magnetic moments of the
donor and Si29 nuclei. The last term is the dipole in-
teraction due to the donor electron and to the Si29, and
vanishes when the electron wave function has strict
cubic symmetry. Owing to the symmetry properties of
the wave function, the dipole and quadrupole interac-
tions vanish for the site where the donor is located.

In ordinary EPR experiments one induces the tran-
sitions Ams = ± 1, AmD = 0, Amgj = 0, where nig,
mrj, and mgi are the magnetic quantum numbers for
the electron, donor, and the Si29 nuclei. This gives
rise to a series of allowed hyperfine structure lines,
for which

hve = g?>H0 + aDmD, (3.2)

where g—electronic g-factor, β—Bohr magneton,

aD—constant of hyperfine interaction with the donor

nucleus, HID assumes values I, I - 1, . . . . - I , and

ve~microwave frequency (see Fig. 2; for simplicity
we consider here a phosphorus donor with nuclear
spin 1 = 1/2).

In the ENDOR technique, transitions for which
= 0 are induced, i.e., one flips either the donor

= ± 1) or the Si29 nuclei (Amgj = ± 1)*.
In the first case we observe lines with frequencies

given by

1 η IE

2
(3.3)

the upper sign corresponding to mg = ± 1/2 and the
lower to m g = -1/2 (Fig. 2). The frequencies vj)
range from several dozen megacycles to several
megacycles. In the second case (when the Si29 nuclei
located in the sites I are flipped), the transition fre-
quencies are given by

h\f= — (3.4)

where a χ and bj—constants of hyperfine isotropic and
anisotropic interaction with the Si29 nuclei. This equa-
tion describes two series of lines centered around the
unperturbed Larmor frequency of a Si29 nucleus in the
field Ho (VH ~ 2.6 Mcs at Ho κ 3000 Oe). The hyper-
fine splitting due to the Si29 nuclei ranges from several
megacycles to zero, depending on the distance of the
Si29 nuclei from the donor (on Fig. 2 the corresponding
values of the energies are drawn for the sake of sim-
plicity as discrete levels, although the width of each
level is actually larger than the spacing between lev-
els). Let us consider the main characteristics of the
EPR spectrum, namely the g-factor, the hyperfine
interaction, the line shape, and the line width.

2. Line Shape and Width, a) Theoretical estimate.
The EPR line shape was investigated theoretically by
Kohn. He showed'-10-' that if the wave function of the
donor electron spans a large number of Si29 lines, then
the EPR line shape can be described by a Gaussian
function. For a Gaussian line shape, the ratio

Γ = - ^ - (3.5)

is equal to unity (M4 and M2 are the fourth and second
moments of the line, respectively). The value of Γ is
very close to unity if the line shape is described by
expression (2.4). The fewer the Si29 nuclei spanned by
the electron orbit, the more Γ deviates from unity;
this should take place, in particular, for a donor with
maximum ionization energy.

As mentioned earlier, the EPR line width of the
donors in silicon is due essentially to the hyperfine
interaction between the donor electron and the Si29

nuclei. To estimate this width, the hyperfine interac-
tions a ι were calculated for different lattice sites I
occupied by the Si29 nuclei. The line width (character-

*We shall call the corresponding lines ENDOR lines.
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ized by the second moment of the line M2) is equal to

(3.6)

where f—natural abundance of the Si29 isotope and
η/—number of equivalent atoms in the "shell" I. In
estimating the line width, the sum in (3.6) was divided
into two parts, one made up of the first four largest
experimentally determined interactions with the nearby
Si29 nuclei (see Table II; this part accounts for 80% of
the observed line width), and another with the remain-
ing interactions corresponding to the 24 nearby Si29

"shells", and calculated on the basis of (3.7) with
koAmax = 0.85. Owing to the exponential attenuation
of the wave function, it is sufficient to include only the
first 24 shells in the calculation of ΔΗ^ν·

b) Experimental results and discussion. As already
mentioned, the EPR line shape and line width were in-
vestigated for different donors by a stationary method.
The experimental results are listed in Table I. The
experimentally measured line widths 2ΔΗ0]μ,3 were
corrected in accordance with (2.4) for the line broad-
ening in the AFP. Under the experimental conditions
(ΔΗ/Η) ~ 300), the observed widths were approxi-
mately 10% larger than those corresponding to the
true distribution of the spin packets (2AHCorr> Table I).
The Gaussian line shape for shallow donors was con-
firmed in the course of estimating the values of Γ
(see Table I; M2 and M4 were determined graphically
from the experimental resonance curves), which turned
out to be close to unity. A considerable deviation is
observed for arsenic donors, which have the highest
ionization energy and whose wave function consequently
spans a small number of Si29 nuclei (Kohn's theoretical
estimate gives for the arsenic donors Γ ~ 1.25). A
considerable deviation of Γ from unity is observed also
for samples of silicon enriched with Si28.

The experimental line widths (2AH c o r r ) coincide
with the theoretical ones calculated from (3.6). The
results disagree for the same arsenic donor, which is
understandable since the effective-mass approximation
is less accurate for impurity centers with large ioniza-
tion energies. The good agreement between the theor-
etical and experimental results shows that the passage
effects have been correctly taken into account, and that
there is no spin diffusion.

The observed EPR lines were symmetrical and had
no odd moments.

3. Hyperfine Interaction. The investigation of the
hyperfine interaction of a donor electron, with both
donor and Si29 nuclei, yielded much valuable informa-
tion on the investigated samples. The ENDOR method
was used for the purpose. In many investigations, the
samples were mechanically stressed. The hyperfine
interaction with the Si29 nuclei was used to determine
the spatial distribution of the wave function of the
donor electron, thus yielding k0. In investigations of
the variation of the hyperfine interaction with the donor
nucleus under shear deformations, the spacing E 1 2 be-
tween the singlet and doublet was measured for differ-
ent impurities and the deformation potential constant
E u was determined.

a) Spatial distribution of wave function. Theoretical
premises. It was noted above that the wave function of
the donor electron in the ground state is a linear com-
bination of six wave functions corresponding to six
energy minima at the bottom of the conduction band
and equal at r = 0 (on the donor nucleus) [see (1.6)].
With increasing distance from the donor, interference
takes place between the different components of the
wave function; this interference depends on the posi-
tion (k0) of the energy minima at the bottom of the
conduction band in wave-vector space. Because of
this, the wave function does not decrease monotonically
with increasing distance to the donor nucleus, and the
largest hyperfine interaction will therefore be ob-
served for the donor nucleus, the hyperfine interaction
with the Si29 nuclei being smaller and not decreasing
in proportion to the distance r i from the donor nucleus.
Thus, the hyperfine interaction between the As and the
Si29 in the site 440 (Fig. 3) is much larger than with
the 220 silicon, although the latter are closer to the
donor (see Table II). In order to determine the spatial
distributions of the wave function of the donor electron,
the theoretical values of the hyperfine interactions
with the Si29 nuclei, calculated on the basis of the Kohn
and Luttinger theory, were compared with the experi-
mental values measured by the ENDOR method. The
isotropic hyperfine interaction with the Si29 nuclei in
sites I is proportional to^1 2^

Ψοι (r,) ;2 = | η lFix) (r,) cos koxt +F™ (r,) cos koyi

+ ^<:)(Γ,)οο3λ;0Ζί]. (3.7)
where x/, yj, z;—coordinates of the site I, and 7?— ratio
characterizing the degree of localization of the func-
tion Uj(r) in the lattice site I, with a value 186 ± 18 [ 2 7 }

TABLE I

Donor

Antimony
Phosphorus
Arsenic

Phosphorus in
taining = 99.

Si con-
88% Si2 8.

Concentra-
tion, cm"3

2.5-1016
1.5-lOie

1.8.1016

4-1016

- » o o s ^

2,6+0.1
2.8+0.1
3.2+.0.1

0.24+_0.02

2AH c o n f,Oe

2.3
2.5
2.9

2.3
2.5
3.1

r =

1
1
1

1

Μ

.0+0

.0+0

.3±υ

.8+_0

4

.1

.1
•1

.1
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Doi

FIG. 3. Unit cell of silicon crystal with substitutional donor.
The magnetic field was rotated in the crystal plane (110) (see
shaded plane).

the expressions for the components of the anisotropic
envelope function F<x)(r;), F v . . . (τι), F<z)(r ι) are
given in'-12-. For different donors the isotropic hyper-
fine interaction with the Si29 nuclei located in different
sites I of the silicon lattice (see Fig. 3) was calculated
as a function of the quantity ko/kmax- Corresponding
curves were plotted and used to interpret the lines by
comparing each measured aZ with the theoretical val-
ue.

Experimental results and discussion. As already
noted, the hyperfine interactions with the donor nuclei
and with the Si29 nuclei, which cause broadening of the
EPR lines, were investigated by the ENDOR method
(see Ch. II). We shall not stop here to discuss this
method in detail, since it is thoroughly described
in'-12-' and*-24 , but consider only briefly the interpre-
tation of the lines'-12-' and the experimental results.

A part of the ENDOR spectrum for arsenic donors
is shown in Fig. 4. The figure shows the lines due to
the hyperfine interaction with the nearest Si29 nuclei,
located in different lattice sites I (see Fig. 3), for
three different orientations of the magnetic field—

7.O &O 5,O
N, Mcs 4.0 3.2

FIG. 4. ENDOR spectrum for silicon with arsenic concentration
8 χ 1016 cm'3 for three orientations of the magnetic field (T = 125°K,
Ho = 3000 Oe). The resonance lines correspond to the hyperfine
interaction of the donor electron with Si19 nuclei located in dif-
ferent lattice sites.

along the [100], [011], and [111] axes. It is seen from
Fig. 4 that the line structure depends noticeably on the
direction of the magnetic field, thus indicating aniso-
tropy of the hyperfine interaction with the Si29 nuclei.
The ENDOR lines are designated A, B, C, and D; the
line A corresponds to the largest hyperfine interac-
tion, etc. The lines are not symmetrical. Their steep
slope on one side is due to the fact that the natural
line width of the spin packets is very small; the slow
decrease in the line intensity following the passage is
connected with the fact that the EPR signal is satura-
ted at a finite rate, which is inversely proportional to
the relaxation time (nonstationary method of observa-
tion, see Ch. II). Inasmuch as interference takes place
between the components of the wave function, a com-
parison of the theoretical and experimental data for
only the isotropic part of the hyperfine interaction
does not lead to any interpretation. Therefore, in
order to identify the silicon lattice sites of the Si29

atoms causing a particular ENDOR line, Feher'-12-'
used two additional factors:

1) Anisotropic hyperfine interaction, which causes
the structure of the ENDOR lines to depend on the
orientation of the crystallographic axes of the sample
relative to the magnetic field Ho. To interpret any
particular line, the experimentally determined depen-
dence of its structure on the angle of rotation of the
mar.ietic field was compared with the theoretical ex-
pression (3.4) or with an analogous expression. The
form of the expression for hvf was determined from
an examination of the symmetry of the individual
lattice point r; relative to the donor atom. (For ex-
ample, the site 333, as can be readily seen from Fig.
3, has axial symmetry and expression (3.4) holds for
it.)

2) The relative amplitudes of the ENDOR lines,
which are determined by the number of equivalent
lattice sites occupied by the Si29 nuclei. (Thus, for
example, from symmetry considerations it turned out
that the lines C and D can be due to any of the sites
333, 444, or 555. An investigation of the relative am-
plitudes of these lines has shown that site 444 must be
excluded from consideration, since there are eight 444
sites, and only four 333 sites and four 555 sites.)

After line A was interpreted from the symmetry
investigation, the theoretical curves for a; versus

were used to obtain the approximate value of

TABLE II

Line, site

A (400)

tti/3(Mcs)

3.86

Β (440)

a,/2>(Mcs)

3.00

C (333)

<H/2 (Mcs)

2.04

D (555)

a;/2 (Mcs)

1.29
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koAmax> and these curves were then used to interpret

the remaining lines.

The experimental results of the interpretation of

the ENDOR lines for the As donor are listed in Table

II.

We do not list here the constants of anisotropic

hyperfine interaction. We note only that they are much

smaller than the constants of isotropic hyperfine in-

teraction. Thus, for example, in the case of As donors,

the constant bj/2 is equal to 0.023 Mcs for the 400

site and 0.004 Mcs for the 333 site.

Thus, while interpreting the ENDOR spectrum we

determined the spatial distribution of the wave func-

tion of the donor electron: the electron is localized to

a greater degree near the 400 sites, then near the 111

sites, etc. Summation of the hyperfine interactions

corresponding to the lines A, B, C, and D shows that

these interactions with the Si29 nuclei determine the

greater part (up to 80%) of the EPR line width. Anal-

ogous results were obtained for the donors Ρ and Sb.

The identification of the lines makes it possible to

determine the value of k o /k m a x . There is no single

value of ko/km ax for which the experimentally meas-

ured hyperfine splittings for different sites coincide

best with the theoretical ones. Thus, for the A line,

the best fit is obtained if a \ is calculated with k o /k m a x

« 0.8, for the Β line—» 0.9, etc. Therefore, the actual

value of ko/kmax w a s obtained by averaging these quan-

tities obtained from comparison with experiment over

different r ι:

kjk = 0.85 ±0.03.

This value agrees well with the values of k o /k m a x ob-

tained by other methods ^2 8-'.

There is still no theory by which to calculate the

anisotropic hyperfine interaction accurately. It is

possible (in Anderson's opinion) that the main factor

influencing the anisotropy of the hyperfine interaction

is nuclear orientation.

b) Effect of mechanical axial stress on the hyper-

fine interaction. Theory. An investigation of the vari-

ation of the hyperfine interaction in a crystal subject

to a force acting along one of its axes and causing

shear deformation has made it possible to determine

the distance E12 between the singlet and the doublet for

different impurities, and the shear deformation poten-

tial constant Eu^29-1. If we apply to the crystal a mech-

anical compression or tension force along one of its

axes, the crystal symmetry will be disturbed and the

six energy minima in the Brilluoin zone [the corre-

sponding equal-energy surfaces near k0 are ellipsoids,

see (1.3)] will no longer be equivalent. The energy of

some minima will decrease and that of others will in-

crease. Because of this, the relative populations of

the ellipsoids will change in accordance with the

Boltzmann distribution and the ground state will no

longer be a pure singlet, for wave functions of the

doublet state will be mixed in with it. (No triplet state

is added by such static deformations.)

It was assumed that the action of a mechanical axial

stress is manifest only by a change in the relative

populations of the ellipsoids. The change in the energy

of the ellipsoids relative to the change in the energy

of their center of gravity Aej was calculated on the

basis of the Herring deformation-potential theory'-30-'.

It can be assumed with good approximation'-13-' that

the relative changes in the energies of the ellipsoids

are equal to the changes in the energy of the ground

state and, in addition, it can be assumed that the off-

diagonal matrix elements of the Hamiltonian βί?βο>

which characterizes the spacing between the singlet

and the doublet (see Ch. I), do not change when the

stress is applied. The changes in the energies of the

ellipsoids enter as diagonal terms in the matrix of the

Hamiltonian 3&eo > which is transformed into S&eo. It

is shown in'-59- that when this modified matrix 3@eo

acts on several transformed linear combinations of

the wave functions (1.8), a change takes place in the

wave function of the singlet state and in one of the two

functions of the doublet state, i.e., the result of the

stress is a mixing of the singlet (*oi) with one of the

components of the doublet (Ψ02)· The remaining states

remain unperturbed. Inasmuch as it has been assumed

that the only consequence of the deformation is the

change in the populations of the ellipsoids, the wave

functions corresponding to the mixed states will differ

from Φο1 and Ψ02 only in the coefficients uty of the ex-

pansion in the basis functions xy These new linear

combinations are characterized by coefficients a(J)

d p) , which are determined by solving theand p
Schrodinger equation = Ε ε ο Φ and normalizing.

*The coefficients aW and a(j)* are expressed in

terms of some quantity χ which characterizes the

relative change in energy of an electron located at the

minimum point, equal to

EUS' ^ 3aS'
(3.8)

Here £u—deformation-potential constant which char-

acterizes the change in energy due to the axial dis-

placement produced by tension along the ellipsoid axis

and compression along the two perpendicular direc-

tions; S' = 2(Su - S12T), where Su and S12 are the

moduli of elasticity and Τ is the stress. In the case

of shear deformation, the energy of the two ellipsoids

decreases, and of the four others increases. In the

case of strong compression (— χ » 1), the electron in

the ground state spends most of the time in the two

ellipsoids whose energy decreased. Since the influ-

ence of the stress is accounted for in the coefficients

ay' , the ratio of the value of the hyperfine splitting

in the presence of deformation (ΔΗ)* to the corre-

sponding value in the absence of deformation (ΔΗ)

[see (1.9)1 is

(AH)
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pand assumes upon substitution of a(p the form Table III

(Δί/)
( 3 · 9 )

In the case of strong compression (—χ » 1) this ex-
pression is equal to 1/3, and in the case of strong
tension (x » 1) we have (ΔΗ)*/(ΔΗ) = 2/3, i.e., the
hyperfine interaction is proportional to the number of
occupied ellipsoids in these two limiting cases.

Experimental results. The experiments were made
with silicon samples obtained by the Czochralski
method, with donor (P, As, Sb) density 1016 cm"3, at a
temperature 1.25CK. All the measurements were made
with AFP, and the bridge was tuned for dispersion.

The dependence of (ΔΗ)*/(ΔΗ) on the values of
χ =EuS'/Ei2 was investigated for different donors
(Sn and Sj2 are known for silicon). The values of
(ΔΗ)*/(ΔΗ) measured experimentally for different S'
lie near the theoretical curve calculated from expres-
sion (3.9) using the experimental values of Ei2/Eu-

The experimental results were presented in a
different manner. The values of χ = EuS'/Ei2 were
calculated from the known experimental values of
(ΔΗ)*/(ΔΗ) on the basis of expression (3.9). Figure 5
shows the dependence of χ on the elastic deformation
S' = 2(Sn - S12)T in the case of arsenic, phosphorus,
and antimony donors. It can be seen that the experi-
mental values of χ lie near straight lines whose slopes
are determined by E 1 2 /E u ( s e e Table III), thus con-
firming the correctness of expression (3.9), i.e., the
change in |Φ01 (0)|2 is due to a change in the populations
of the ellipsoids.

To determine the splitting between the doublet and
the singlet E12 it is necessary to know the deformation
potential constant Su>* which experiments have shown
to be positive. Since the wave function of the doublet
vanishes on the nucleus, the position of the corre-
sponding level will not depend on the type of impurity,
and its energy should be close to the value obtained by

FIG. 5. Dependence of χ = HUS'/E12 on the elastic deformation
S' = 2(SU = S12) Τ for arsenic, phosphorus, and antimony donors
(T = 1.25°K, Ho = 3000 Oe, donor concentration = 10" cm"3).

* A theoretical calculation of this constant, made by Herring
I 3 0 · " ] , gives an incorrect and unusable value of Ξ u in the interval
from 7 to 11 eV.

Donor

Ρ
As
Sb

Ionization
energy, eV

44.6-10-3
52.5-10-3

43-10-3

£12/eV

(1.32±0.08)-10-3
(1.98±0.12)-10-3
(1.10±0.07)-10"3

Eli, s«

15-10-3
22-10-3
12-10-3

the effective-mass method. Then, taking this into ac-
count, Feher obtained the value of S u by trivial calcu-
lations based on known values of the ionization energy
for the different donors (see Table III) and the experi-
mental values of E 1 2 /E u · It was found in this way that
E u = 11 ± 1 eV. The values of E12 for P, As, and Sb
are listed in Table III. Thus, the doublet level lies
(30.0 ± 1.0) χ 10"3 eV below the conduction band, in
good agreement with the energy (29 χ 10~3 eV) obtained
by the effective-mass method. The value of E12 for the
phosphorus donor (15 x 10"3eV) agrees with the corre-
sponding quantity obtained from measurements by the
Hall effect [32].

4. The g-factor. a) Theory of g-factor. At the
present time the most complete theory of the g-factor
of shallow donors in silicon and germanium is given
in the papers of L. Roth [ 3 3 : i, Hasegawa[34] and Liu [ 3 5 : i.
Inasmuch as the wave functions of the donor electrons
are mapped out from functions for the conduction elec-
trons, the authors first estimate the g-factor for the
conduction electrons. In calculating this quantity,
Roth uses the effective mass method developed by
Kohn and Lutt inger^ for the case of degenerate
bands and spin-orbit interaction. The problem is
solved by perturbation theory (the spin-orbit interac-
tion and the interaction with the external magnetic field
are regarded as first-order perturbations relative to
the ordinary Hamiltonian, written in the effective-mass
approximation). We shall not present the general ex-
pression which Roth obtained for the g-factor in tensor
form. It follows from the crystal symmetry that the
only g-tensor components are

gzz=g\\, (3.10)

where z—axis of the ellipsoid.
In calculating the g-factor for Si and Ge, Roth used

the energy band structure and the terminology of
H e r m a n r 3 7 ' 3 8 ] and Phi l l ips [ 3 9 ] .

From Roth's calculations it follows that g|| = 0.9
and

gx— 2 **. 0.04 ± (3.11)

Roth assumes that the value of Δg^ is of the order of
0.01 and its sign in (3.11) is not known. Phillips'-39-'
has shown that this term is indeed very small.

Thus, the g-factor is anisotropic for the conduction
electrons. For each individual ellipsoid, the g-factor
is determined from the expression

(3.12)
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where θ—angle between the magnetic field and the axis
of the ellipsoid. In the case of donor electrons, all the
ellipsoids are intermixed and the g-factor for the elec-
tron in a singlet donor state is equal to

£=~3 £ΐι+"3"£χ· (3.13)

i.e., an isotropic g-factor should be observed in EPR
experiments. In the case of silicon it follows from
Roth's estimates that g|| - 2 = 0.01 (differing from the
experimental value — 0.003). However, Elliot has
shown that the spin-orbit splitting at the edge of the
silicon valence band is very small and can reduce
gil — 2 by a factor of 3. This agrees with the experi-
mental value.

As to the estimate of g^, Roth assumes that the
main contribution to g^ is made by the edge of the val-
ence band. Then gi - 2 should have an approximate
value (g|| — 2)/6. Experiments have shown'-29- that the
Roth model cannot be used for silicon. Liu calculated
the g-factor using wave functions, and showed that the
greatest contribution to the change in the g-factor is
made by the band corresponding to the 2p states of the
silicon atom. These states were not taken into account
by Roth. As a result, g|| and gĵ  have nearly equal val-
ues in Si. The theoretical values of g|| — 2 and g^ — 2,
which are - 0.0027 and - 0.0036 respectively, are close
to the experimental values (- 0.0028 and - 0.0040).

b) Effect of axial stress on the electronic g-value
of donors in silicon. Experiments on the influence of
the axial stress on the value of the electronic g-value
of donor impurities in Si29 have made it possible to
determine g|| and g^, on the basis of which conclusions
were drawn with respect to the correctness of the Roth
and Liu theory. The change in the g-value in response
to an axial stress is brought about by two causes. One
is connected with the addition of a doublet state to the
singlet one, i.e., with a change in the populations of
the ellipsoids. The other is that crystal deformation
results in mixing of Δ ( (of the band closest to the
bottom of the conduction band) and Δ^ * (for which the
corresponding matrix elements vanish under the usual
conditions). Both effects were investigated separately,
since they come into play at different axial-stress
orientations relative to the crystallographic axes. No
change is produced in the g-value by the first cause if
the force is applied along the [111] axis, for identical
changes take place in the energies of all the ellipsoids,
so that their populations do not vary. On the other
hand, Roth has shown that the g-value can not be
changed by the mixing-in of the A'2 band if the force is
applied along the [100] axis.

Let us consider first the change in the g-value due
to the change in the ellipsoid populations^29-. Let g*
be the g-value in the presence of deformation. In order
to take into account the effect of the change in the
ellipsoid population when the crystal is compressed
along the [100] axis, the product g(SH0) = <SgJHo)av
was averaged over new wave functions, characterized

by coefficients α Ψ . An expression was written down
for g*2 in analogy with (3.12), and the result of some
transformations was

(3.14)χ i — (

Thus, the mixing-in of the nonisotropic doublet
state with the isotropic singlet state makes the g-value
of the ground state also anisotropic. In the case of
strong compression (—χ » 1) expression (3.14) takes
the form

e* — g = 4-1 (3.15)

from which we readily see that the g-value is g* = g||
when H0IIT, and becomes equal to g^ when HO1T. This
result is understandable, for the electrons are situated
at all times in the two ellipsoids with lower energy in
the case of strong compression along the [100] axis.

The mixing-in of the Δ£ band upon deformation
causes changes in g|| and g^. Roth has shown that the
corresponding change in the g-value is

?*-g=i-A(T/Cii)( 1-f-sinM (3.16)

(the elasticity constant C44 of Si is known'-40-'), where
the expression for the matrix element A is given
in L35J _ No such change in g-value occurs if the
stress is applied along the [100] axis of the crystal.

c) Experimental results and discussion. The
g-values were determined from formulas which took
into account the Breit-Rabi corrections. The experi-
mental g-values for the donors As, P, and Sb are listed
in Table IV. Experiments have shown that the g-value
for these donors is isotropic, in agreement with the
theory considered above.

Donor

As
Ρ
Sb

1
1
1

_ 1

.99837+1

.98850+j
,99858+_l

2
Τ ? i

•10-4
• 10-4
• 10-4

Table IV

(1
(1
(1

« I I - J .

10+0.05)·
04+Ό.05)·
13+0.05)·

10-3
10-3
10-3

- ( 3
- ( 2

= SD - See.

.8+0.1)-10-4

.7+0.1)-10-4

As can be seen from (3.14) for the g-value under
change in the ellipsoid populations, the quantity g* — g
can be determined in two ways: either by varying χ at
constant Θ, or by varying the angle θ between the direc-
tion of the force and the magnetic field at constant x.
Experiments of both types were made. In these, Τ was
directed along the [100] axis of the crystal, making it
possible to exclude the second cause of the change in
the g-value under deformation. Figure 6 shows the de-

*The band designations are those of Herman ["' 38L
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FIG. 6. Dependence of the change in the g-value, g* — g, on

the value of χ = HUS'/E12(T = 1.25°K, Ho = 3000 Oe). The com-
pression of the crystal was along the [100] axis.

pendence of the experimentally measured g* — g on χ
for silicon doped with phosphorus at a concentration
of 1016 cm"3 (the magnetic field Ho is perpendicular
to T). The solid line is the theoretical curve, calcula-
ted from (3.14) with g|| - gj. = 1.1 x 10"3. The experi-
mental points lie close to this curve, thus confirming
the correctness of (3.14) in that the change of the
g-value is due only to the change in the ellipsoid
populations. The decrease in the g-value with increas-
ing deformation implies that g|| < gj_. The values of
gH -gj^ (see Table IV) for different donors were de-
termined from (3.14), in which the experimentally
measured g* - g for known χ were substituted. As can
be seen from Table IV, the values of g|| are close to
those of gi for all three donors, in agreement with the
theory of Liu and in contradiction to the theory of
Roth. The theoretical results of Liu agree with the
experimental data within approximately 10% .

An investigation of the dependence of g* — g on the
angle θ for different values of χ has shown that when
Ho is parallel to the [111] axis the g-value is equal to
g, i.e., to the corresponding value in the absence of
deformation.

Table IV lists also quantities characterizing the
deviation of the donor g-factor from the g-value for
conduction electrons (gc.e

 = 1-99875 ± 1 x 10~4), ob-
tained in'-12-'*. As can be seen from Table IV, this
deviation is larger for donors with higher ionization
energy. In the limit (at very low ionization energies),
gj-j should approach gC - e · However, since the values
of Ag are very small and close to one another for all
three donors, we can assume that the contribution
made to the g-value by the spin-orbit coupling due to
the impurity atom itself is very small. Thus, the g-
value is determined by the spin-orbit interaction due
to the silicon atoms; this in fact is taken into account
in the Roth and Liu theory.

Experiments were also made on the g-value varia-
tion occurring under deformation and due to the mix-

* The anisotropy of the g-value for the electrons in the conduc-
tion band, which follows from the Roth theory ["], was not noted in
the experiments described in ["].

ing in of the Δ2 band. In these experiments the force
was applied along the [111] crystal axis. The depen-
dence of g* — g on the angle θ between the magnetic
field and the direction of the force was investigated
experimentally for three different values of x. When
the magnetic field is directed along the [100] crystal
axis, the g-value is equal to g. The deviation of g*
from g was the same for all three donors. This signi-
fies that this experiment indicates the presence of
states much farther from the bottom of the band than
the splitting E12 between the singlet and the doublet.
This corresponds to the assumption made by Roth that
the mixed-in band Δ£ is located approximately 0.5 eV
from the bottom of the conduction band.

With the measured values g* - g substituted in
(3.16), the value of the matrix element A was found to
be

Λ = 0,44 ±0.04.

The experiments have shown that the changes in the
g-value (g* — g) due to mixing-in of either the doublet
state or the Δ£ band are quantities of the same order.
This is attributed by Feher'-29-' to the closeness of the
Δ2 band to the conduction band and to the fact that the
quantity g|| - gj_, which causes the change in the g-value
when the ellipsoid population changes, is very small
for silicon.

2. Electron Spin Resonance of Shallow Donors in
Ge. The EPR of shallow donors in silicon has been in-
vestigated by now in sufficient detail. The resonance
of the shallow donors in germanium was not observed
until 1959 when Feher and his co-workers succeeded
in doing so'-41-' by the ENDOR technique.

Data for comparison with silicon, obtained in that
investigation (for Holl [100]), are listed in Table V.

From these data one can draw certain conclusions
on the causes of failure to observe resonance in ger-
manium.

First, the donor hyperfine structure is observed in
germanium at donor concentrations that are one or two
orders of magnitude lower than in silicon. The reason
is that these electrons are easier to delocalize, owing
to the large Bohr radius of the donor electrons in
germanium. Second, the lines are broader in german-
ium than in silicon. Third, the deviation of the g-value
from the value for the free electron in germanium is
approximately two orders of magnitude larger than in
silicon. In the discussion of the Kohn and Luttinger
theory'-8'10-', it was shown that the wave functions of
the ground state can be represented as linear combin-
ations of four wave functions corresponding to four
energy minima in the conduction band. For the com-
binations corresponding to the degenerate triplet
state, the value of |Ψ(0)|2 is zero, so that no isotropic
hyperfine splitting can be observed. The singlet state
is formed by a linear combination with a finite value
of |Ψ(0)|2, and should consequently lead to hyperfine
splitting. Thus, an experimental study of the hyperfine
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Donor
Donor

concentration
cm"

g-value Line width
ΔΗ, Oe

Ρ
As

Germanium
8-1014 1.5631
8-1015 1.5701

10
11

Donor
Donor

concentration g-value

Line -
width

ΔΗ,
Oe

Ρ
As

Silicon
1.5-1016 1.9985 2.8
1.8-10ie 1.9984 3,2

splitting shows that the ground state of the phosphorus
and antimony electrons in germanium is singlet.

In the case of resonance of the bound electrons, in
germanium the line width is anisotropic. The smallest
line width occurs when Holl [100]. The line shape is
Gaussian.

Feher also investigated '-*1-' resonance in germanium
at high donor concentrations, when the electron is no
longer localized on the impurity, but moves through
the entire crystal (impurity conductivity), even at the
very lowest temperatures. A single resonance line is
then observed. In germanium such a line turns out to
be anisotropic. Its width is minimal (~ 4 Oe) and
Holl [100]; the maximum value (~ 65 Oe) is observed
when Ho makes an angle 70° with [100] in the (110)
plane. The experiments have shown that the line width
depends on the temperature. The line shape is
Lorentzian. In germanium doped with phosphorus and
arsenic, the g-value for the nonlocalized electrons is
isotropic and is approximately equal to the g-value of
the bound electrons, from which we can conclude that
at these concentrations the electron spends most of
the time near the impurity atom.

Germanium doped with antimony was investigated
at concentrations from 1015 to 3 x 1016 cm"3. The line
shape was found to be extremely asymmetrical, and
the g-value was found to be anisotropic and to fluctu-
ate from 1.6 when Holl [100] to 1.9 when Holl [110].

It was reported in'-42-' that in antimony-doped ger-
manium one can observe, in addition to the lines ob-
served by Feher , four other lines with an aniso-
tropic g-value. The principal values of g coincide with
the theoretical and experimental values of g for elec-
trons at the minimum of the conduction band. The
widths and shapes of these lines do not depend on the
temperature in the interval from 1.2 to 5° K. The num-
ber of paramagnetic centers responsible for this spec-
trum is likewise practically independent of the tem-
perature. The line intensity is proportional to the
antimony concentration. No such lines were observed
in arsenic-doped germanium. The line intensities are
not affected by exposure of the specimen to light with
a wavelength in the far infrared, from which we can
conclude that this spectrum cannot be caused by elec-
trons excited in the impurity band through the forbid-
den band. The nature of the spectrum is still unclear
at present. However, Keyes and Price made an
attempt to explain some features of the observed spec-
trum (coincidence of the values of the g-tensor, the

absence of a similar spectrum in germanium doped
with arsenic, weak temperature dependence, etc.) by
assuming that it may be connected with the presence of
local deformations in the germanium crystal, which
exert a particular influence on the structure of the
impurity band of antimony.

3. Paramagnetic Absorption in Acceptor Resonance
in Silicon. Until 1960, all attempts to observe EPR of
acceptors in silicon were unsuccessful. The reason
for this failure, as indicated by Kohn^10 , was the de-
generacy of the valence band in silicon. Feher and his
co-workers^44-' succeeded in observing paramagnetic
absorption in a p-type silicon sample previously
compressed along one of the crystallographic axes.

Figure 7 shows the structure of the valence band in
silicon. In the absence of deformation, the band is de-
generate at k = 0, and the equal-energy surfaces are
curved (Fig. 7a). Compression along one of the axes
lifts the degeneracy, and at sufficiently large deforma-
tions the band splits with the corresponding equal-
energy surface becoming ellipsoidal (Fig. 7b). Local
stresses connected with dislocations, defects, and
lattice vibrations are always present in the sample.
This leads to a splitting of the valence band by an
amount ΔΕ.

In an external magnetic field, the spin degeneracy
is also lifted, and each band splits by an amount
gni3H0, where gn—spectroscopic-splitting hole factor.
The following two cases can be singled out:

a)

FIG.
sion, b)
at ΔΕ =

d)

7. Valence band in silicon, a) In the absence of compres-
in the presence of unilateral compression, c) energy levels
gh/3H0, d) energy levels for ΔΕ » gh/3H0.
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1) ΔΕ « ghj8H0. In this case all six quantum tran-
sitions are allowed. In a specimen with random stress
distribution, a broad spectrum of values of ΔΕ, to-
gether with a large set of transitions corresponding to
different effective g-values, is possible. As a result,
the resonance line becomes so broad that it cannot be
observed.

2) ΔΕ » gn/3H0. Such a set can be readily obtained
by compressing the specimen along one of the axes.
Figure 7b shows the case when the compression is
along the [100] axis. The possible transitions are
m j = ± 1. Local s tresses influence little the width of
the resonance line. It then becomes possible to ob-
serve the acceptor Ε PR.

In'-44-' the experiments were made with ρ-type Si at
1.3° Κ and 9000 Mcs. They showed that the line dis-
appears when the compression is equal to zero.

The hole g-value is anisotropic. In the boron con-
centration range from 5 x 1015 to 2 χ 1017 cm"3 the
g-value is independent of the concentration and when a
compression of 800 kg/cm2 is applied in the [100]
direction its values become

g± = 2.43 ±0.01, gn= 1.21 ±0.01.

Paramagnetic absorption of the acceptors was ob-
served in silicon doped with aluminum, gallium, and
indium. The behavior of the g-value under variation
of the compression direction was studied, and the val-
ues of gh were found to differ from the foregoing val-
ues of gĵ  and g|| by several percent.

IV. SPIN LATTICE RELAXATION IN SEMICONDUC-
TORS

The problem of the relaxation mechanisms in semi-
conductors is very complicated, both theoretically and
experimentally. Consequently the present ideas con-
cerning these mechanisms are still far from complete
or clear.

As applied to a system of paramagnetic centers, in-
cluding the case when their concentration is small and
classical statistics are applicable, the relaxation time
is the time when the system reaches thermal equili-
brium with the crystal lattice. This equilibrium is
independent of the initial state, and the electron levels
have a Boltzmann distribution, i.e., the populations are
proportional to exp(En/kT), where E n is the energy of
the given level and Τ is the lattice temperature. Such
a distribution is the result of interaction between the
paramagnetic centers and the thermal lattice vibra-
tions. We shall consider below the possible mechan-
isms of this interaction.

If two level energies E n i and En2 are specified then,
for a given coupling mechanism between the spin sys-
tem and the lattice, we can calculate the probabilities
Wt and W2 of the direct and inverse transitions induced
by the lattice. If we take the latter to be a reservoir
that remains at constant temperature all the time, then
the ratio of these probabilities is

_
ΔΕ

(4.1)

where ΔΕ = En2 ~~ E n r For convenience we introduce
the quantity W = VWJWJ. By solving the simplest
differential equation for the population change of levels
n. and n2, we obtain

n(t)-B(oo)
n(0)—n(co)

(4.2)"

where n(t)—difference in the populations of levels n4

and n 2 , n(0)—initial difference of the populations of
these levels, and η (°°)— equilibrium population differ-
ence.

It is clear therefore that the rate at which the sys-
tem enters equilibrium is determined by the relaxation
time Tj, which equals, in accordance with (4.2),

(4.3)

(4.4)t

It follows from (4.2) and (4.3) that

where Ν = nj + n 2 .
The very first experiments^ ' 3 ' 6 ' 4 5 ^ have shown that

the relaxation times in semiconductors depend
strongly on the temperature, impurity concentration,
magnetic field, number of free carr ier s present in the
sample, etc. The character of the dependence differs
with the range of each parameter. This indicates that
different relaxation mechanisms are present.

Most published papers deal with the simplest im-
purity center, phosphorus, which has electron and
nuclear spins 1/2. The four energy levels correspond-
ing to such a system are shown schematically in Fig.
8. The possible transitions between these levels are
indicated by arrows. The relaxation processes corre-
sponding to these transitions will be denoted T x , T x ' ,
T s , and T N .

Ι'Δ.'/ζ)

'-α. α κ

(&.-%) '-*,-*/
FIG. 8. Types of spin-lattice relaxation in silicon doped with

phosphorus.

The designated T x pertains to crossing relaxation,
in which the orientations of the electron and nuclear
spins, which have opposite directions, change simul-
taneously ( Δ Ι Ϊ Ι 8 = ± 1, Δηιΐ = ± 1); T s denotes the
process of "vertical relaxation," in which only the

*ch = cosh
t th = tanh
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electron spin orientation changes (Ams = ± 1,

= 0); Tj\j corresponds to a process in which only the

nuclear spin orientation changes (Ams = 0, Amj = ± 1),

while T x ' corresponds to a process in which, as in the

case of T x, both electron and nuclear spins flip, but

have the same direction (Ams = ±1, Amj = ±1).

The processes Tx, T x ' and Τ Ν are frequently

called "horizontal relaxation processes", since the

nuclear spin must change orientation in these proces-

ses. It must be emphasized that the notation T x, T s ,

etc. pertains not to some definite mechanism of energy

exchange between the spin system and the lattice, but

to the entire process that leads to a change in the ori-

entation of the spins in accordance with the given

selection rules. This process can be the result of

many relaxation mechanisms that accompany one

another.

1. Theory of Spin-Lattice Relaxation in Semicon-

ductors. There is no theory as yet providing a more

or less full explanation of relaxation processes in

semiconductors. However, attempts were made at cal-

culating the spin-lattice relaxation time of electrons on

shallow donor levels in silicon and germanium^48'47'33>

34,48__ xhese calculations were based principally on

the notions of Kroenig 4 9 ^ and Waller - concerning

the possible mechanisms of energy exchange between

a system of paramagnetic centers and a crystal lat-

tice. According to these notions, the thermal vibra-

tions of the lattice can influence the magnetic dipole

interaction of the spins, and also modify the intra-

crystalline electric fields, which in turn leads to a

perturbation of the energy levels of the paramagnetic

center. In the latter case, the change in orientation of

the spins which cannot interact with the electrostatic

fields directly is due to the spin-orbit coupling. The

spin system and the lattice can exchange energy either

in discrete quanta equal to the lattice-vibration energy

quantum (phonon) at the corresponding frequency (the

so-called resonance or direct single-phonon process),

or by scattering of a phonon with a change of its en-

ergy (combination scattering or the two-phonon Raman

process).

1. Direct phonon process. Pines, Bardeen, and

Slichteru46-' estimated the relaxation times for the T s

and T x processes under the assumption that the energy

exchange between the spin system and the lattice is

resonant at a frequency ω0, and that the state of the

donor electron changes adiabatically. Such an assump-

tion is valid so long as Κω0 is small compared with the

electron binding energy, and makes it possible to em-

ploy with assurance the deformation-potential

method proposed earlier by Bardeen and Shockley.

In r 4 G ] , as in all the subsequent papers [ 3 3 > 3 4 > 4 7 > 4 8 j , the

state of the donor electron is described with the aid of

the wave functions (1.6), but in 4 6 j a simplified wave

function is used, corresponding to a single energy

minimum, for which the average effective mass of the

electron is 0.31m. Only longitudinal phonons are con-

sidered in^46^ although, as will be shown below, trans-

verse phonons are essential for the understanding of

many of the observed variations.

In"-46- *J denotes the wave function describing the

state of an electron with spin parallel to the constant

magnetic field, while *o describes the state of an

electron with antiparallel spin; the transition from the

second state into the first is then characterized by the

matrix element

(Ψο, (δΚ + δ^ί)Ψο) = (Ψό, ε+ΔΨο) + (£Ό+ —£Ό-)(ψό. δΨί).

(4.5)

Here Δ—exchange broadening (no other types of defor-

mation was considered), oVand δΜ\—change in the

electrostatic potential and hyperfine interaction,

e+—change in the total energy of an electron with

spin parallel to the field, and δΦ^—corresponding

change in the electron wave function. The volume

broadening Δ is written inJ46^ in the form

Λ — ^ 3. p— iqr ι Λ α\

q

where q—phonon wave vector and p—silicon density.

a) The T x process. One of the possible relaxation

mechanisms is connected with the fact that the lattice

vibrations modulate the hyperfine interaction between

the donor electron and the impurity nucleus, producing

an energy-level change corresponding to the reorien-

tation of the electron and nuclear spins. The paper

presents an estimate of the matrix element (4.5) for

this mechanism. The first term of (4.5) vanishes,

since the spin parts of the wave functions of electrons

having opposite spin orientations are orthogonal. The

second term of (4.5) is

(4.7)

Here δΑ—change in the hyperfine interaction constant

under volume broadening, which can be represented

in the form

where γ—is a factor characterizing the degree of dis-

tortion of the energy bands upon deformation. This

factor can be estimated if one knows the wave functions

and the structure of the energy bands. It is assumed

i n
[46] that 10 < γ < 100 in the case of silicon. The

relaxation time T x is found from the expression

(4.8)

The last factor under the integral sign is the square of

the matrix element for the electron-phonon interaction,

Nq— number of phonons with wave vector q, s—speed

of sound, k—Boltzmann constant, and T—lattice tem-

perature.

In the general case, when the nuclear spin is equal

to I, we have
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(4.9)

For γ ~ 50, (ωο/2π) = 9000 Mcs, and Τ = 1.2° Κ we

have T x = 3.6 x 106 min for Si doped with lithium. For

silicon doped with phosphorus, arsenic, and antimony

T x is equal to 560, 56, and 41 min, respectively.

b) The T s process. In'-46-' is given an estimate of

the relaxation time for the T s process. The matrix

element (4.5) was calculated for this process pri-

marily under the assumption that spin reorientation is

due to modulation of the spin-orbit coupling of the

donor electron by the lattice vibrations. It is shown

in the paper that the main contribution to this process

should be made by the first term of the matrix ele-

ment (4.5), which does not vanish in this case, since

the spin-orbit coupling causes mixing of the states

corresponding to the different spin orientations. The

energy of the spin-orbit interaction depends on the

gradient of the periodic potential produced by the sili-

con atoms, and on the gradient of the potential produced

by the impurity atoms. The degree of mixing of the

states can be approximately characterized by the

change in the g-value relative to its value for the free

electron (Ag). We shall denote by Agsi the change in

the g-value due to the silicon atoms and by Agjmp the

g-value change connected with the impurity atom.

If we assume that the mixing of the states is due to

spin-orbit interaction caused only by the silicon atoms,

then the first term of the matrix element (4.5) turns

out to be

It is assumed here that the volume broadening (4.6) is

produced only by one resonant phonon q0.

On the other hand, if we consider only the spin-or-

bit interaction connected with the impurity atoms, then

this term of the matrix element is approximately equal

to

(AftapKfXra,, (4.H)

where rn()—dipole matrix element for the transition

from the n-th excited state to the ground state.

The relaxation time T g, calculated in the ordinary

manner and corresponding to the first term of the

matrix element (4.5), is given by the expression

1 ( £ + ) O ) o r e 7 r / A _ \ o / _ \ < > i / A _ ^ 2 / ^ Λ Ί Ε Ν 2 1 / A 1 O\

IOU I J. \^ * 1. Li f

Assuming that ωο/2 = 9000 Mcs, £+ = 14 eV, (rn 0) = 2.4

x 10"7 cm, Τ = 1.2° Κ, and Agimp/Agsi = 0.1 we get

T s a 75 min.

The second term of (4.5) for this mechanism is cal-

culated first for the conduction electrons at helium

temperatures. It corresponds to a relaxation time

Τ « 10"5 sec, which coincides with the experimental

value'- 5 . The ratio of the matrix elements for the

bound and conduction electrons is very low; in*-36- this

ratio is assumed to be Κωο/1 eV ~ 10"5. If we take

also account of the difference in the effective densities

of the conduction-electron states and of the bound elec-

tron states, then we obtain for the bound electrons a

relaxation time so long that it cannot be measured ex-

perimentally.

In [46] there is considered still another mechanism

of relaxation of donor electrons for the T s process, in

which the lattice oscillations modulate the hyperfine

interaction between the donor electron and the Si29

nuclei. The relaxation-time ratio for this mechanism

to T x is of the order of 100—2000 for phosphorus, ar-

senic, and antimony impurities; for lithium this ratio

is smaller than unity.

From the theory of Pines, Bardeen, and Slichter

follows the conclusion that the shortest relaxation time

corresponds to the T s process for the relaxation mech-

anism in which the lattice oscillations modulate the

spin-orbit coupling of the donor electron. However,

this conclusion, which is confirmed by experiment, is

based on an inaccurate estimate of the second term of

the matrix element (4.5).

Abrahams'-47-' made a more rigorous calculation.

Unlike i n ' - 4 , he uses in his theory not simplified wave

functions with a single minimum, but the wave func-

tions (1.6) which take into account the spin-orbit coup-

ling in the Bloch functions:

Ψ0=Α\±) + Μ±Β±\ + >, (4.13)

where A—the wave functions (1.6) and

6

Β± = — Ύ Fcp±

Here M*—matrix element characterizing the degree

of mixing of the states, and φ= —Bloch function for the

excited state. The second term of (4.5) takes the form

q l)l/2ql-'2[M-{A, e*vB-) + M+(fi% c'l'A)], (4.14)

where G = ie+ (R/2pVs) and V—volume of the silicon.

Van Vleck has shown[55] that if M" = M+with

(B~ )* = — B+, then such a matrix element is equal to

zero (the Van Vleck "cancellation"). The matrix ele-

ment (4.14) then becomes equal to

Ν 1/2 (4.15)

i.e., an account of the Van Vleck "cancellation" leads

to the appearance of a factor 2g/3Ho/Eon, where Ε ^ —

energy difference between the ground and excited

states. The last factor of (4.15) can be written, with

account of (4.12), in the form

r ) (<PJ)* ί dr. (4.16)

The anisotropy of the effective mass is neglected here,

so that the function F2(r) is the same for all the energy

minima. The slow variation of F2(r) causes the terms

of the matrix element with identical summation in-

dices, i.e., those relating identical minima, to be equal
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to zero; the matrix elements relating different minima
tend to zero as a result of interference of the Bloch
functions.

Thus, the Abrahams calculations, in which account
is taken of the Van Vleck "cancellation," which leads
to the appearance of a factor 2gj3Ho/EOn, and of the
"phase cancellation," which leads to a decrease in the
second term of the matrix element (4.5) by approxi-
mately 104 times, show that the estimate given for the
matrix element in'-46-' is too low, and that in fact this
matrix element corresponds to a relaxation time
T s ~ 109 sec, which cannot be measured experimen-
tally.

The spin-lattice relaxation time of the donor elec-
trons in silicon and germanium was also calculated
for the T s process by Hasegawa L34-; he considers a
relaxation mechanism in which the lattice vibrations
modulate the value of the singlet-doublet splitting in
the silicon and of the singlet-triplet splitting in ger-
manium. This mechanism leads to a time variation of
the population of the different energy minima and is
therefore manifest in a change in the g-value. The ap-
preciable difference between the calculations of
Hasegawa'-34- and the calculations of Pines, Bardeen,
and Slichter^46-' or of Abraham'-47- is due to the follow-
ing:

Γηιΐ

1) HasegawaL l > J uses the Herring and Vogt defor-
mation-potential theory'-30-', which is a generalization
of the theory of Bardeen and Shockley'-51-' to the case
of multivalley semiconductors. Both the isotropic dila-
tation of the lattice and the uniaxial strain character-
ized by H u and determined experimentally ίη^ 5 3 ' 5 4 ^
are considered here. The isotropic dilatation was con-
sidered in'-4 6'4 7^ . The contribution made by the uni-
axial strain to the spin-lattice relaxation process is
indicated in^34-.

2) Hasegawa chose for the excited states that mix
in with the ground state as a result of spin-orbit in-
teraction the states (1.7) that are produced as a result
of the splitting of the ground state.

Let us dwell briefly on some results of the Hase-
gawa theory. We denote by Φη the donor-electron wave
functions satisfying the Schrodinger equation with
Hamiltonian

(4.17)

The change in the ground-state energy due to this
interaction is

Δ£?= (Ψο, ^?χΨο) +(Ψθ. S&e^t)

where V(r)— sum of the periodic and impurity poten-
tials. (We note that the third term of (4.13) expresses
the energy of the spin-orbit interaction.) Inasmuch as
each level is at least doubly degenerate in the absence
of a magnetic field, the symbol Φη denotes two series
of eigenfunctions, Φη and Φη, corresponding to the
eigenvalues e*.

Hasegawa considers in 34-' the interaction of the
electron with a constant magnetic field

2 = /3H0 (1 +gs)) and with the crystal lattice
grad V p e r i o c j ) .

ΜΨο (4-18)

Here Φο denotes the wave function of the ground state.
The second term of (4.18) represents a first-order
interaction between the electron and the lattice. How-
ever, as shown by Abrahams'- , this term does not
make any appreciable contribution to the relaxation,
owing to the Van Vleck cancellation and the phase can-
cellation. Hasegawa'-34-' estimates the contribution of
the third term of (4.18) to the spin-lattice relaxation
process. The summation is carried out, generally
speaking, over all the excited states, but Hasegawa
confines himself only to those states which were pro-
duced as a result of the splitting of the ground state.
The energy of interaction with the lattice is small in
comparison with this splitting, so that perturbation
theory can be used.

Hasegawa considers both longitudinal and t rans-
verse phonons with wave vector q. The relaxation
time T s is determined from the expression

where

φ),

| - g ± ) , (4.19)

g = (1/3) (2gĵ  +g| |) (see above concerning the g-value
anisotropy). The energy difference between the ground
and excited state is E o n = E1 2 for silicon and E o n = Ε ( 3

for germanium; c n , ciit and c* are elastic constants.
It follows from these expressions that 1/TS is propor-
tional to the first power of Τ and to the fourth power
of Ho. This relation is due to the fact that 1) the
matrix element (&£'-,} is proportional to H2, 2) the
principal term in the expression for the density of
states for acoustic phonons is proportional to ω2,
3) the mean value of the square of the dynamic strain
is proportional to kT and does not depend on Ho. Sub-
stituting the numerical values in (4.19), and assuming
that the magnetic field Ho lies in the (110) plane (for
in which case we have f (Θ) = cos40 + (1/2) sin Θ for
germanium and f (Θ) = (3/4) sin20 (1 + 3sin2 Θ) for sili-
con), we obtain the data listed in Table IV at
Τ = 1.25°Κ for different donors and different direc-
tions of the field Ho = 3000 Oe.

The anisotropic properties of the relaxation time
are due to the geometrical structure of the edge of the
conduction band.

It must be noted that the main results of1-34-, which
we cite here, have been obtained under the following
assumptions: 1) the state of the electron is described
by the wave functions of Kohn and Luttinger (1.6); in
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Table VI. Theoretical values of T s , calculated by

Hasegawa'-34-'

Ho 11 [111]

1/TS, sec"'
Ρ
As

Ge
4.4-102
2.4-102

Si
9-10-5

Ho II [100]

Ge
1.3-103
7.3-102

Si
0
0

the case of silicon and Ho II [100], the matrix element

for the transition between the states with reversed

spin, described by (1.7), tends to zero, making 1/TS

= 0; 2) the spin-orbit interaction due to the impurity

can be neglected; 3) the contribution of the higher ex-

cited states can likewise be neglected.

The correctness of the latter assumption is con-

firmed by the fact that the only excited states leading

to the HQ dependence, which is confirmed experimen-

tally, are those due to splitting of the ground state.

Results analogous to *-3i^ were obtained also by

L. Roth1-33-1. Let us stop to discuss briefly these re-

sults. It is shown in^33^ that the g-factor for the elec-

trons in Si and Ge is anisotropic (see Ch. III). In ex-

periments on the Ε PR of donor electrons one usually

observes an isotropic g-factor, because these elec-

trons are in the singlet state, which is described by

wave functions which constitute a linear combination

of the wave functions corresponding to different ellip-

soids, such that the effect becomes averaged. The

g-value anisotropy characteristic of the conduction

electrons in Si and Ge, is manifest for donor electrons

in the singlet state by the strong interaction between

the electrons and the waves due to the uniaxial strains

in the crystal lattice. The ground states of the donor

electrons in Si and Ge, as indicated above, are singlet;

Roth, like Hasegawa, define the two-fold and three-

fold degenerate levels produced as a result of the

splitting of the {is} level as excited. Inasmuch as for

an arbitrary magnetic field direction the interaction

gj3H0 is different for electrons with values of kj that

lie on different ellipsoids, a mixing of the singlet and

excited donor states is possible; the latter, in partic-

ular, can also differ from the ground state in the spin

orientation. Therefore interactions with the crystal-

lattice waves capable of changing the orientation of

the donor-electron spin are possible. The usual Van

Vleck cancellation used in'-47^ cannot be employed

here. It is due to the invariance of the operator under

time reversal, which is impossible if an interaction

with the magnetic field is also included.

The calculation given in'-33'' for the direct phonon

process is essentially analogous to the calculation of

Hasegawa'-3. We shall not repeat here the cumber-

some expressions for the relaxation time of the donor

electrons. We merely note that these expressions

give the same dependence of the relaxation rate on the

temperature and on the magnetic field as (4.19). These

calculations also lead to the anisotropic properties of

the relaxation rate, and in particular to the small

value of this rate for Ho II [100] in the case of silicon.

For some averaged direction of the magnetic field at

Ho = 9000 Oe and Τ = 1.25°Κ we have T s ~ 1000 sec.

2. Raman process. A second-order interaction be-

tween the phonons and the donor electrons leads to a

process of the Raman type. Such a process comprises

phonon scattering with a transition from the q-state

into the p-state, with simultaneous electron spin flip-

ping. An estimate of the spin-lattice relaxation time

of the donor electrons in silicon and germanium in the

Raman process was made by Abrahams^47-' and by

Roth1^33-. Let us discuss first the first paper. The

calculation procedure is the same as for the direct

phonon process. The effective matrix element char-

acterizes a transition to an excited orbital state with

emission or absorption of a phonon, and then the in-

verse transition, likewise with absorption or emission

of a phonon. The electron spin flip can occur either in

the first or in the second transition.

We shall not stop to calculate the matrix element

for such a process, presenting only the final result:

Ts ^ IO15T-13. (4.20a)

In calculating this expression we neglect the energy

gj3H0 compared with Rsp and fisq; therefore in the

final analysis T s is independent of the magnetic field.

It follows from (4.28) that at helium temperatures

the relaxation time for this process is very large, but

it is already of the order of 1 second at 14° K. A

different dependence of the relaxation time on the

temperature and on the field was obtained for the

two-phonon process in'-33-'. Like Hasegawa'-34^, Roth

uses the Herring and Vogt deformation-potential

method "-30- in the calculations, which are confined to
an estimate of the contribution made to the matrix

element by the transverse waves produced in the case

of axial shears of the crystal lattice. In

obtained for silicon is

[33] the value

9*3

175Ts 175 V . W Kg J WtPcfX H% /·
(4.20b)

Here Ε12—splitting between the singlet and the doublet,

equal to 10"2 eV, Ag/g = 1.5 x 10~3, σ = 11 eV, and

cjj = 5 x 1O28. At 4.2°K, the relaxation time for such a

two-phonon process in silicon is 60 seconds. The re-

laxation rate, as can be seen from (4.20b), is propor-

tional to the 7th power of the temperature and to the

square of the field.

3. Exchange interaction between neighboring im-

purity centers. As will be shown presently, the relaxa-

tion mechanisms considered above can be used to ex-

plain, with one degree of accuracy or another, the ex-

perimentally observed relaxation times and their de-

pendence on the magnetic field and on the temperature.

However, it was impossible to explain by means of

these mechanisms the sharp decrease in the relaxa-

tion time with increasing concentration of the doping

impurity, a decrease observed even in the first ex-

periments of Feher (when the phosphorus concentra-
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tion was increased from 1017 cm 3 to 4 χ 1017 cm 3,
the relaxation time decreased from several seconds
to 10~5 sec). So far there is no theory capable of
answering this question.

jnU6] a n a ttempt was made to relate the decrease
in the relaxation time with the occurrence of groups
consisting of several impurity atoms. A calculation
was made for groups made up of two closely-lying im-
purity atoms. It was assumed there that the lattice
vibrations modulate the exchange interaction between
these atoms. The calculation is essentially analogous
to the calculation of the relaxation time for the process
due to the modulation of the hyperfine interaction of
the electron with the impurity nucleus. If the energy
of the exchange interaction is JSiS2 (where J is the
exchange-interaction constant, which depends on the
distance between the impurity atoms, i.e., in final
analysis, on the impurity concentration), then the ratio
of the relaxation time T e x c n for this process to T x is
equal to

—Y
3a*J

(4.21)

At an impurity atom concentration 3 χ 1018 cm 3, the
most probable distance to the nearest neighbor r is
approximately 87 A, and in this case the value of the
exchange integral J, expressed in Oersteds, is approxi-
mately 0.88; consequently T e x c n = 4 χ 105 T x at Ho

= 3000 Oe and T e x c h ~ 225 T x at a concentration 1017

cm"3. Thus, the relaxation time for this mechanism
is very large.

4. Interaction between the donor electrons and the
conduction electrons. If the conduction band contains
electrons, we may encounter a new mechanism for the
relaxation of the donor electrons. Pines et al con-
sidered exchange scattering of electrons whereby the
impurity electron and the conduction electron exchange
places, after which a very rapid relaxation of the con-
duction electrons takes place. Let us dwell briefly on
the main results. We assume that η—number of con-
duction electrons and N—number of donor electrons.
If W+—velocity of the conduction electrons and U—
probability of exchange transition, and if W+ is large,
calculations show that the relaxation rate of the elec-
trons is equal to nU, i.e., to the number of collisions
experienced by the donor atoms per unit time. This
quantity can be estimated, since U/2 = aOpVe, where
σ op—cross section of spin exchange and ve—velocity
of conduction electron. The cross section can be de-
termined from the formula for the exchange scattering
of electrons from hydrogen atoms:

After which account is taken of the dielectric constant
of silicon; then σ Ο ρ = 3 χ 10"12 cm2. If we assume
v e = 10e cm/sec, then U = 6 x 10"6 sec and nU = 6
x 10~6 n. When η = 108, the donor electron relaxation

rate should be 6 χ 102 sec ' (relaxation time 1.6
x 10"3), if the relaxation rate of the conduction elec-
trons is sufficiently large. Actually, however, this
requirement is very difficult to satisfy, since it signi-
fies that W+ » NU. When Ν = 1016 cm"3, W+ should be
considerably larger than 6 x 1O10. At room tempera-
ture, W+ is equal only to 109, and at helium tempera-
ture it is even smaller, since the relaxation rate of the
donor electrons can be assumed to be approximately
equal to W+n/N. Portis and his co-workers^1- have
found that the line width at resonance of the conduction
electrons is equal to 2 Oe, which corresponds to a r e -
laxation rate of 4 χ 107 sec"1. If n/N = 10~12, then the
relaxation time is of the order of 400 minutes. So
large a value of n/N cannot result from thermal ioni-
zation and helium temperatures, although at 20°Κ such
an excitation is possible. As will be shown later, such
a value of n/N, and an even higher value at helium
temperatures, can be produced by optical excitation.

In addition to this mechanism, others are also
possible, as shown by Abrahams'-47-, viz., Coulomb
scattering of the conduction electrons and of the bound
electrons, which can lead to flipping of the spins of the
latter; flipping of the donor spins under the influence
of magnetic fields produced by the motion of the con-
duction electrons; dipole-dipole interaction between
the bound electrons and the conduction electrons, in
which spin flip of both types of electrons takes place.
It turned out that none of these mechanisms is as ef-
fective as exchange scattering.

5. Influence of acceptor impurity on the relaxation
rate of donor electrons. Experiments show that in
phosphorus-doped silicon containing an acceptor im-
purity the rate of relaxation is the larger, the larger
the acceptor impurity content. V. I. Avdeev-48-' attemp-
ted to estimate the effect of the acceptors on the r e -
laxation rate of the donor electrons.

Avdeev considers as a possible mechanism the
following: the electron from the neutral donor atom
(i) goes over to the next ionized atom (j), and such a
transition is accompanied by absorption or emission
of a phonon. The considered transitions i(+) —• j(—)
are due only to the modulation by the lattice vibrations
of the hyperfine interaction of the electron with the
impurity nucleus. Since interatomic transitions are
important in this case, the overlap integral should not
be very small. On the other hand, to resolve the hyper-
fine structure it is necessary that the integral not be
very large. In germanium, the latter condition is satis-
fied at a concentration 4 x 10IG cm"3, and the overlap
integral has a value on the order of 10"2; for silicon
under the same conditions, the overlap integral is ap-
proximately equal to 10"5.

We shall not repeat the expression obtained in^48-
for the relaxation times T x , but it follows from it that
the relaxation rate for this process depends little on
the field and is proportional to T5. The relaxation
rate for the given mechanism is proportional to the
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product of the probability of spin flip in the single-
phonon process and the probability of the transition of
the electron from one atom to the other. The first
probability, as follows from the theory of the single -
phonon process, is proportional to T, while the second,
as follows from semiconductor theory, is proportional
to T4 at low temperatures.

In calculating T x for germanium, Avdeev found that
the relaxation rate decreases with decreasing concen-
tration of the donor impurities and does not depend on
the nature of the acceptor impurity. For germanium
at an arsenic donor concentration (1—4) x 1016 cm"3

and at an acceptor concentration half as large we have
1/TX = 0.3—3 sec"1. For silicon at a donor concentra-
tion (4—3) x 1016 cm"3 and at an acceptor concentra-

tion half as large we have 1/TX = 10"2 — lCT1 sec"1. The
accuracy of the calculation is less reliable, since the
overlap integral is small.

2. Experimental Methods of Determining the Relaxa-
tion Time

The first measurements of the spin relaxation time
were made by Honig , who obtained very large re-
laxation times (tens of seconds at 4°K), he assumed
that he dealt in this case with nuclear relaxation proc-
esses. Subsequent experimental and theoretical inves-
tigations [46>47>33>34J have shown that large electron re-
laxation times are involved in this case. Of all the
experimental papers on the determination of the spin-
lattice relaxation time, the most complete are those
of Feher and Gere [ 2 0 ] , Honig and S t u p p M , and Wilson
and Feher [ 2 9 ] .

There are several methods of measuring relaxation
time. In all methods it is first necessary to disturb
the thermal equilibrium between two levels. This is
done either by completely saturating the spin system,
or by level inversion under adiabatic fast passage (see
above).

When measuring large relaxation times, such as
encountered in semiconductors, it is necessary to
prevent light from striking the sample and to protect
the sample against thermal radiation from the wave-
guide elements which are at room temperature. This
is done by wrapping the cavity with several layers of
aluminum lined with carbon paper. The waveguide con-
nected to the cavity is filled on the inside with foamed
styrene"2 , and in addition, a glass plate 1 mm thick
is inserted in it to absorb the thermal radiation of the
waveguide elements that are at room temperature. As
indicated above, there are different relaxation proces-
ses in silicon doped with phosphorus. In order to in-
vestigate them in detail it is necessary to be able first
to separate experimentally each of these processes,
and then to be able to understand which mechanism
(or mechanisms) leads to a given relaxation process.

1. Study of the T s process, a) Case of strong field.
Honig and Stupp^56·^ measured T s in the case of a

strong field (above 1500 Oe) in the following fashion.
They saturated the "vertical" levels by multiple pass-
age through resonance so that the fast-passage signal
became equal to zero. Then the amplitude of the signal
(difference in level population) was measured at defi-
nite time intervals t. Since dispersion is observed
under the condition of adiabatic fast passage, and since
field modulation and narrow-band detection circuits
are used in addition, the signal has a complicated de-
pendence on such parameters as the microwave power,
the rate of change of the constant magnetic field, the
velocity and amplitude of the modulating field, etc.
However, when all these parameters were maintained
constant, then the signal amplitude (which is propor-
tional to the population difference) could be reproduced

in[56] w i t h a c c u r a C y of 3% for m a n y hours.

As follows from (4.2), the relaxation time can be
calculated from the slope of the plot of

n(t) — n{co)

n(0) — n(oo)

against t (Fig. 9). The quantities n(0) and n(t) in this
expression can be measured, but it is quite difficult to
determine n(°°) if we deal with very large relaxation
times. To determine this quantity one usually employs
a feature of the "vertical" relaxation process, where-
by T x becomes small in very strong fields. (Thus, for
example, at Ho = 10,000 Oe, T s < 7 min in all phos-
phorus-doped samples.) Consequently, in afield
Ho = 10,000 Oe it is possible to measure simultaneously
n(°°) and T s with great accuracy.

b) Case of weak field. In the case of a weak field
T s is measured essentially by the same method. How-
ever, inasmuch as the Zeeman splitting of the levels,
and consequently also the population difference be-
tween them (the amplitude of the signal) are small, it
is difficult to obtain a good signal/noise ratio, and this
lowers the measurement accuracy. In order to over-
come this difficulty, the following procedure is used:
the equilibrium magnetization of the sample and the
level inversion are effected in a strong field, while the

CJr

0 5 ΙΟ /5 2Ο 25

Time, min.
FIG. 9. Dependence of [n(t) - η («>)] Λη(0) -n(<*=)] on the time.

The ordinate scale is logarithmic.
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rate of the change of the signal is measured in the in-
vestigated weak field. This yields a good signal/noise
ratio even in the weakest fields. The correctness of
this was confirmed by the agreement between the r e -
sults of this method and others. It must be noted that
the described method of determining T s cannot be
used if the dominating process is Τ χ and not T s .
However, there are other methods which make it
possible to determine which of the processes pre-
dominates. One of the most widely used methods, also
used by Honig and Stapp'-56 , is the method of "for-
bidden transit ions." This method consists in first
establishing the equilibrium population difference be-
tween the levels (1 —» 4) and (2 •·— 3), and then rotating
the waveguide through 45°. The microwave field Hj
will then have a component along Ho. As a result, the
transition (mj = 1/2, mj = - 1/2) «— (mi = - 1/2,
mj = + 1/2) will be saturated. This forbidden tran-
sition can be realized only when there is a sufficiently
strong microwave field parallel to Ho. After satura-
tion of this transition, the waveguide is set in its ini-
tial position and the signal intensity is measured. If
the T s process predominates, then the amplitudes of
the resonance lines have the same magnitude, equal to
half the amplitude which they would have if the for-
bidden transition were not saturated. If the T x proc-
ess predominates, the amplitudes are equal to zero.

2. Measurements of T x , T x ' , and T N · The proces-
ses T x , T x ' , and T N are considered together, since
the experiments yield unavoidably a combination of
these processes. In the study of the processes of
"horizontal" relaxation one usually uses two meas-
urement methods. Each gives a distinct relaxation
time, which has a different dependence on T x , Τχ',
and T N · The two methods complement each other, and
taken separately neither can give an idea of the rela-
tive importance of the processes T x , T x ' , and T N .

The first method is based on the application of the
Overhauser effect to the discrete hyperfine structure
lines; this method was used in several different vari-
ants by Pipkin [ 5 7 : i , Feher [ 5 8-., and Honig [ 5 6 ] . Let us
stop to discuss the last variant, which has several ad-
vantages over the others.

In this method the transitions 1 —- 4 and 2 -·— 3 are
first saturated quasi-continuously (see Fig. 8), and
passage through the line is with a speed such as to
make the period of the passage small, compared with
T x and T s . Let us assume that the only horizontal-
relaxation process is T x . When t = 0 the populations
of all four levels are equal (nf = n2 = n3 = n4 = N/4).
After some definite time interval, an equilibrium
population difference is established between levels 2
and 4, and this difference can be measured in the
following fashion: the "ver t ica l " transitions are satur-
ated first, then the transition 2 — 4, followed by meas-
urement of the signal amplitudes. They are equal in
magnitude and proportional to (n4 - n2)/2; the relaxa-
tion time T x can be determined from the formula

(4.22)

In the case when alongside with T x there are present
also the T x ' and T N processes, formula (4.22) becomes
more complicated (see^56^) and takes the form*

where "2W"—effective probability;

i-(Wx- + WN) t].(4.23)

The difference Wx — Wx ' can be determined directly
from the experimental data if the time t is small. If
the measurements are sufficiently accurate, Wx ' +
can be determined. In the experimental determination
of the times of horizontal relaxation, measures must
be taken to exclude "forbidden" transitions that lead
to the same effect as the T N process. This is accom-
plished by accurate orientation of the waveguides in
such a way as to make the component Hj along Ho

minimal.

The second method of determining the times of
"horizontal" relaxation, that of depolarization of the
nuclei, consists in producing a definite nuclear polar-
ization, which is then varied (the nuclei are depolar-
ized) as a function of the magnetic field and the tem-
perature. The nuclear depolarization is caused by the
relaxation processes T x , T N . and T x ' , and the de-
polarization can be determined by measuring the ratio
of the amplitudes of two hyperfine structure lines.
Assuming that cosh(/3H0/kT) « 1 and Ws > Wx, Wx ' ,
and WN> we get

71ldep = -2WN
(4.24)

The expressions (4.23) and (4.24) for Ti show that in
medium fields (for which the relation cosh 03H0/kT)
» 1 holds), the relaxation time measured by the de-
polarization method is always smaller than the time
measured by the Overhauser method. Estimates of the
relative importance of each of the horizontal-relaxa-
tion processes will be presented below.

3. Main Experimental Results

1. Ts process. The Ts process was investigated in
detail in'-20'56-' over a wide range of magnetic fields
(from zero to 11,000 Oe), temperatures (from 1.25 to
4.2°K), and impurity concentrations (from 1014 to
5 x 1018 cm" 3 ) . The first striking fact is the sharp
dependence of the relaxation time on the donor con-
centration. Figure 10 shows the experimental depen-
dence of the relaxation rate 1/TS on the phosphorus
concentration, obtained by Feher^ 2 0 . It is seen from
this curve that at concentrations below 1016 cm"3 the

*sh = sinh
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FIG. 10. Dependence of the spin-lattice relaxation time on the
concentration of phosphorus in silicon (T = 1.25°K; Ho = 3200 Oe).
1 - Sample Si VIII-58, boron concentration 3 χ 1014 cm"3; 2 - sam-
ple Si VIII-64, boron concentration 3 χ 1014 cm"3; 3 — sample Si
VIII-230, boron concentration 2 χ 1014 cm"3; 4 - sample Si VIII-215,
Β concentration < 1015 cm"3.

relaxation time is practically independent of the con-
centration; at concentrations above 1016 cm"3, the de-
pendence is very sharp. Therefore Feher distinguishes
between two relaxation mechanisms, one dependent on
the concentration and one independent. However, such
a subdivision is apparently inaccurate. As shown by
Honig and Stupp ^5e", in this case there are in effect at
least three mechanisms, each of which predominates
in a definite range of values of the field, temperature,
and donor concentration, but makes a contribution to
the T s process even outside this region.

The first mechanism, called by Honig and Stupp
the H4 mechanism, predominates in strong magnetic
fields and at temperatures lower than 2.5°K. This
mechanism, as follows from the figure, is character-
ized by the fact that the relaxation rate is proportional
to H4 and depends linearly on the temperature. The
greatest deviations for samples with different concen-
trations are due to the fact that even in strong fields
some contribution is made by the concentration-de-
pendent mechanism. At 3,000 Oe and 1.25° K, Honig
and Stupp obtained 1/TS = (2.63 ± 0.1) x 10"5 sec"1.

The second mechanism, the T7 mechanism, pre-
dominates at high concentrations for temperatures
above 2.5°K, and at low concentrations over the entire
temperature range. This mechanism is characterized
by the fact that the relaxation rate does not depend on
the donor concentration or on the magnetic field, but
depends very strongly (in proportion to T7) on the
temperature. The exponent of Τ is 7.5 ± 0.3 at 4.2°K
and 7 at 2°K. Honig and Stupp found that at 2° Κ

~ = (1-65 ± 0.15)-10"4 sec"1.

The third, concentration-dependent mechanism,
acts in weak fields at low temperatures and at large
concentrations. The relaxation rate is proportional to

m
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Magnetic field, Oersted

FIG. 11. Dependence of the relaxation probability 2W on the
magnetic field for three samples: Ο — sample with phosphorus con-
centration 1.1 χ 1016 cm' 3;D- 10'5 cm"3; Δ-10 1 4 cm"3; measurements
made at 1.2S°K (continuous curves) and 2.16°K (dashed).
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FIG. 12. Dependence of relaxation probability 2W on the temper-
ature: a) Samples B, C, F (points Ο, Δ, and D.respectively), b) sam-
ple F after subtracting from the relaxation probability the values of
2Ws(Np) and 2WS(H\ T), which are connected respectively with the
concentration-dependent and with the H4 relaxation mechanisms,
and also the transition probability for horizontal relaxation; Ho =
3400 Oe.

H~1/2 and to T. At 3,000 Oe, Τ = 1.25°Κ, and a concen-
tration 5 x 1015 cm"3 we have

" 1

= (3.3±0.4)-10"4 sec

The experimental curve shown in Figs. 11—12 also
receives a small contribution, other than from these
three mechanisms, from the "horizontal relaxation."
To explain all the experimental points on these curves
it is necessary to use in addition to the relaxation
mechanisms a fifth mechanism, which acts on samples
with low donor concentration for fields from 2000 to
3000 Oe at 1.25°K. This mechanism is characterized
by a small relaxation rate, 1/Tj ~ 2 χ 10~5 sec"1. The
properties of this mechanism were investigated very
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little. We can assume, however, that in this field in-

terval the relaxation rate does not depend on the mag-

netic field (or depends on it little), but depends on the

concentration of the compensating impurity. This de-

duction was arrived at by Honig and Stupp on the basis

of the following considerations. They investigated the

dependence of the relaxation rate on the phosphorus

concentration in silicon (see below and Fig. 13). The

regular variation of the relaxation rate with the con-

centration is violated only for sample E. This sample

was cut from silicon obtained by crucible melting, in

which a high degree of impurity compensation is pos-

sible. The dependence of the relaxation rate on the

magnetic field for this sample is analogous to the de-

pendence obtained for the "fifth" relaxation mechan-

ism. The tests that suggested to Honig and Stupp the

existence of a "fifth" mechanism were repeated on

samples with low donor concentration, obtained from

the same initial material as sample E. It was there-

fore concluded that the "fifth" mechanism is connec-

ted with the degree of compensation of the sample.
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FIG. 13. Dependence of the relaxation probability 2WS (Np) on
the concentration of the uncompensated phosphorus atoms for the
concentration-dependent relaxation mechanism. (Ho = 200 Oe,
Τ = 1.25°K).

W,

0^ made special investigations of the influ-

ence of acceptors on the relaxation rate of donor elec-

trons. Figure 14 shows the temperature dependence

of the relaxation rate for silicon samples having the

same donor concentration but different degrees of

compensation. The relaxation time in the compen-

sated samples is smaller than in the uncompensated

ones.

Let us stop to discuss in somewhat greater detail

the dependence of the relaxation rate on the donor

concentration. Honig and Stupp determined the ex-

perimental relaxation probability for the concentra-

tion-dependent mechanism. This probability is ob-

tained by excluding from the observed relaxation

probability the relaxation probabilities connected with

the H4 mechanism, the T7 mechanism, the "fifth"

mechanism, and the "horizontal" relaxation. As a

result they obtained the curve of Fig. 13, which shows

that at phosphorus concentrations below 1016 cm"3, the

relaxation rate increases linearly with the concentra-

tion; at concentrations above 1016, the dependence is

much steeper. Such a dependence was observed also

by Feher (see Fig. 10), but it was connected only with

the concentration-dependent-mechanism. He there-

fore found that at low phosphorus concentration the

relaxation rate is practically independent of the con-

centration. On the other hand, at high concentrations

he found that the relaxation time decreases sharply

from 3 x 10+3 sec (concentration 1016 cm"3) to 10~4 sec

(concentration 3 x 1017 cm"3).

Feher and Gere"-2 , and also Honig and Stupp-5 ,

investigated the dependence of the relaxation rate for

this process on the temperature and on the magnetic

field. They found that in the low temperature region

(< 2.50° K), the dependence is the same as for the di-

rect phonon process. At higher temperatures, the de-

pendence is not so strong as for the T7 mechanism.
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FIG. 14. Dependence of the relaxation rate on the temperature

in two samples with different degrees of compensation (T = 1.25°K,
Ho = 3200 Oe). Curve A — sample Si IX-99, phosphorus concentra-
tion 4 χ 1016 cm"3, boron concentration 1 χ 1016 cm"3; curve Β —
sample Si VIII-230, boron concentration 2 χ 1014 cm'3, phosphorus
concentration 7 x 1016 cm"3.
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Angle between HQ and the [loo] axis, deg.

FIG. 15. Dependence of the relaxation rate on the angle be-
tween the magnetic field and the [100] axis for silicon doped with
phosphorus; Τ = 1.25°K; ve = 9000 Mcs. Ο - Experimental points;
dashed curve — theoretical; I — for the mechanism connected with
the change in the populations of the different minima; II - for the
mechanism connected with the modulation of the g-value for one
energy minimum. Continuous curve — theoretical, obtained by sum-
mation of I and II.
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Feher and Gere found that the relaxation rate for this
mechanism does not depend on the magnetic field.
Honig and Stupp observed a weak dependence on the
magnetic field (for details see below).

We note still another interesting feature—the aniso-
tropy of the relaxation time for the T$ process. Prior
to the publication of the papers of Hasegawa'-34^ and
Roth'-33 , which pointed to the anisotropy of T s , ex-
periments on the study of relaxation were made at
arbitrary orientation of the sample relative to the
magnetic field. Honig and Stupp made a series of ex-
periments on the anisotropy of the relaxation time al-
ready following the publication of'-56 , in view of the
publication of the papers by Hasegawa and Roth, and
in a postscript to'-56-' they reported observation of
anisotropic effects. Detailed investigation of this
question, however, was made by Wilson and Feher '-29-.
Figure 15 shows the dependence of the relaxation rate
on the angle between the magnetic field and the [100]
axis. A noticeable anisotropy is seen.

2. Horizontal relaxation processes. Honig and
Stupp measured the horizontal relaxation time (Ami
= ± 1). These measurements were made by the Over-
hauser method and by the nuclear depolarization
method. An important factor in the first method, as
follows from (4.23), is the time t, reckoned from the
instant of saturation of the "ver t ica l " levels. The r e -
sults obtained by the two methods are quite close.
Thus, for example, for Ho = 3400 Oe, Τ = 1.25° Κ, and
a phosphorus concentration 1.1 χ 1016 cm"3, the hori-
zontal relaxation time is Tover = 38-6° n r (at t = 5 hr),
while Td ep = 32!6 hr. The e r r o r s in these measure-
ments are very large and are connected with the large
relaxation times, the poor signal/noise ratio, etc.
Honig and Stupp believe that at 2.15°Κ

0<W«.<0,2,

Here T x = 3 ± 0.4 hours. The T x process is apparently
the dominating "horizontal" relaxation process af
higher temperatures, too. In the opposite case, the
relaxation rate corresponding to the other processes
should increase more rapidly than Τ .

At 1.25° K, the following relations hold true, in the
opinion of Honig and Stupp, for the relaxation proba-
bilities:

i.e., at this temperature T x exceeds 16 hours, T x '
> 80, and T N > 80. The data of Honig and Stupp do not
confirm the quadratic field dependence obtained by
Feher and Gere'-20- for the relaxation rate of the T x

process. The latter obtained T x = 30 hr at Ho = 3200
Oe and Τ = 1.25° Κ and T x = 5 hr at Ho = 8000 Oe and
Τ = 1.25°Κ. Feher and Gere state also that T N > 10.
The large discrepancy in the experimental results for
T x , in the opinion of Wilson and Feher, is connected

with the fact that local stresses are possible inside
the crystalline specimen. Wilson and Feher'-20-' made
a series of experiments on the influence of stresses
on the relaxation time T x . They measured T x for
silicon samples doped with As (~ 1016 cm"3) in com-
pression. In the absence of compression the value of
T x (at Ho = 3000 Oe and Τ = 1.25° Κ) is approximately
3 x 103 sec.

When the crystal is compressed along the [100]
axis, T x drops to 102 sec.

3. Effect of light on the relaxation time. In the first
experiments of Feher and Fletcher1-59- it was noted
that the relaxation time was strongly influenced by
light. Honig f-60-1 has shown that the greatest decrease
in the relaxation time is produced by light with a wave-
length from 2 to 25 microns.

Feher and Gere'-20-' investigated the dependence of
the relaxation rate on the wavelength of the light illum-
inating the object. The factor influencing the relaxa-
tion time is not the number of incident photons, but the
number of free carr iers (and the sign of their charge)
excited by these photons. Figure 16 shows the results
of these measurements for a silicon sample doped
with phosphorus at a concentration 7 χ 10+15 cm"3.

Gap width
i '-^Electron/cm3'-^

Relaxation_rate_without_inuminatK>n
Widthof forbidden band of"si 1

I 1 J 1 1Of as as r.o /<? IA

Energy of incident photons bit, eV

FIG. 16. Dependence of the relaxation rate in phosphorus-doped
silicon on the wavelength of the incident light (phosphorus con-
centration 7 χ 1015 cm"3). Curve A - flux = 3 χ 1013 photon/sec,
curve Β — observed increase in relaxation rate (T = 1.25°K, Ho =
3200 Oe).

One curve shows a decrease in the relaxation time
with increasing frequency of the incident light, while
the other is normalized to a constant photon flux (ap-
proximately 3 χ 1013 photons/sec) incident on the sam-
ple. This curve was calculated under the assumption
that the decrease in the relaxation time is proportional
to the number of incident photons. The dependence of
the number of electrons excited by the light on the light
energy follows the normalized curve up to energies
below 1.15 eV. The sharp jump in the relaxation time
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near approximately 1.15 eV is due to the fact that

electron-hole pairs are produced near this energy.

The majority carriers are still electrons with a mo-

bility approximately equal to the mobility of the elec-

trons in the photon-energy region corresponding to the

ionization of the impurity atom.

4. Discussion of Results and Comparison with the

Theory. Our explanation of the experimental results

will begin with the single-phonon Tg process. Accord-

ing to the experimental data one should observe for

this process a linear connection between the relaxa-

tion rate and the temperature, and a proportionality of

this rate to H4. As can be seen from the theory, such

a dependence was obtained by Pines, Bardeen, and

Slichter^46- (see (4.12)). However, as indicated by

Abrahams L47-, an allowance for the Van Vleck can-

cellation leads to the appearance of a factor propor-

tional to H2 in the expression for the relaxation rate

l/T s , i.e., 1/TS ~ H6. In addition, the relaxation

mechanism considered by Pines, Bardeen, and Slich-

ter1^46- and by Abrahams for the single-phonon T s

process corresponds to very large relaxation times

(~ 109 sec), whereas the experimentally observed

times are much smaller (see Sec. 3, heading 1).

The experimentally observed dependence of T s on

the temperature and on the field in the single-phonon

process is obtained from the calculations of Hase-

gawa'̂ 4-1 and Roth [ 3 3 ] [see (4.19)].

The relaxation rate (for Holl [111], Ho = 3000 Oe,

and Τ = 1.25°Κ) obtained from Hasegawa's calculations

for phosphorus-doped silicon (see Table VI) is equal

to 9 x 10~5 sec , whereas the experimental value of

1/TS obtained by Honig and Stupp for the same field

value but for arbitrary field orientation (and the same

temperature) is 2.63 x 10"5. Such an agreement of the

theoretical and experimental values is very good.

From the theory of Hasegawa and Roth follows also

the anisotropy of the relaxation times [see (4.19)].

These effects were investigated in detail by Wilson

and FeherL29J. However, before we compare experi-

ment with theory, let us stop to discuss some of Feher

and Wilson's considerations.

As indicated above, the relaxation mechanism pro-

posed by Hasegawa and Roth'·33'34 consists in the

modulation of the singlet-doublet splitting by the lat-

tice vibrations, i.e., it is a time dependent change in

the populations of the different energy minima, and is

therefore manifest in the modulation of the g-tensor.

However, this mechanism yields l / T s = 0 for Holl [100].

Roth^33- considered a different mechanism, which

results from modulation of the variation of the g-value

corresponding to one energy minimum. This change is

due to the shift of the bands under periodic lattice

deformation even when all the electrons are at one

minimum.

To compare theory with experiment it is necessary

to consider the effect of both mechanisms simultan-

eously.

At Ho = 8000 Oe and Τ = 1.25" we get according to

theory l / T s = 0.45 x 10~3 sec"1 for the first mechanism

and 0.16 x 10"3 sec"1 for the second. For the same

field orientation (Holl [111]) and the same values of

Ho and T, the experimental values of 1/TS are respec-

tively 1.1 x 10"3 and 0.3 χ 10"3 sec"1, i.e., approxi-

mately twice as large. Such an agreement between the

theoretical and experimental values can be regarded

as very good.

For a Raman type process it was found in the ex-

periments of Honig and Stupp '-5e-' that the relaxation

rate 1/TS is proportional to T7 and does not depend

on the magnetic field or on the impurity concentration.

The theory for this process was developed by Abra-

hams and RothL33~. As was indicated above, the

results obtained in'-33-' were in poor agreement with

experiment. According to Roth's calculation [see

(4.20)] the relaxation rate 1/T for this process is pro-

portional to T7 and to H2. However, no quadratic de-

pendence on the field was observed experimentally in

the range from 3000 to 8000 Oe. Nor was anisotropy

of T s observed in analogy to the anisotropy for the

single-phonon process. The experimental value of Ts

and that predicted by the Roth theory likewise diverge.

The reason for this divergence is not clear.

As regards the concentration-dependent mechanism,

we can state that there is no theory of this mechanism

which agrees to any degree with experiment. As indi-

cated above, the exchange interaction process consid-

ered by Pines, Bardeen, and Slichter^46^ (see Sec. 1,

heading 3) does not reflect the laws observed experi-

mentally. Honig and Stupp have proposed a qualitative

interpretation of the experimental results. Their

idea [56] is that the relaxation of the main mass is
realized by spin diffusion from the rapidly relaxing

centers. Such centers may be pairs of impurity atoms.

The pairs may comprise ionized and neutral phos-

phorus atoms or two phosphorus atoms. Honig and

Stupp proposed that the Ts(conc.) process is due to

pairs consisting of two neutral phosphorus atoms.

The electron wave functions should be determined for

such a pair with allowance for the Coulomb interaction

of the electrons with both phosphorus nuclei, and also

with account of the exchange interaction between the

electrons. As noted above, the relaxation time due to

modulation of the exchange-interaction constant is

very large. However, owing to the absence of spheri-

cal symmetry of the Coulomb potential, and also owing

to electron correlation effects, the spin-orbit coupling

can, in the opinion of Honig and Stupp, change in such

a way that the electrons connected with such a pair

begin to relax rapidly. On the other hand, the elec-

trons connected with the isolated phosphorus atoms

relax as a result of spin diffusion from the same cen-

ters.

Honig and Stupp have shown that the number of

pairs produced by two neutral atoms increases linearly

with increasing impurity atom concentration. The
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probability of relaxation due to the relaxation of only
the electrons connected with the pair (in the absence
of spin diffusion) should also depend linearly on the
impurity concentration, as was indeed observed
experimentally by Honig and Stupp in some regions of
phosphorus concentration (see Fig. 13).

It must be noted, however, that the relaxation
mechanism proposed by Honig and Stupp does not re-
flect completely the regularities that are observed ex-
perimentally (dependence of the relaxation rate on the
field and on the temperature, and the dependence on
the concentration in the concentration region above
10 l ecm" 3).

A theoretical calculation of the relaxation time for
the T x process was made by Pines, Bardeen, and
Slichtert46] and also by HasegawaE34^. The former
have found that the relaxation rate 1/TX is propor-
tional to H2 and T. However, the experiment of Honig
and Stupp^56^ for 1.25°K, when the mechanism pro-
posed by Pines, Bardeen, and Slichter should be effec-
tive, has shown that low quadratic dependence in the
field is observed. Such a dependence was observed,
to be sure, in the experiment of Feher and Gere'-20"'
(see Section 3, Heading 2).

As indicated earlier, Pines, Bardeen, and Slichter
derived expression (4.9) assuming a linear variation
of |Ψ(0)|2 under isotropic dilatation. The value of γ
was estimated in'-46- to be on the order of 50. Recently
Paul measured the ionization energy and the dielectric
constant under compression, and it can be concluded
from his results that γ is at least two orders of mag-
nitude smaller. Therefore the agreement between the
theoretical and the experimental values of T x is purely
accidental. Feher and Wilson'-29- made additional
measurements of T x with the crystal compressed
along the [111] axis, and observed changes in the
hyperfine splitting. It follows from these experiments
that γ < 2, in agreement with Paul's theory.

Feher and Wilson conclude '-29-' from the foregoing
that in the temperature and magnetic-field ranges in
question the T x process cannot be due to single-phonon
relaxation. Hasegawa calculated T x under the assump-
tion that a process of the Raman type is effective at
1.2° K, and obtained good agreement with experiment
at these temperatures.

5. Conclusion

Thus, a review of the theoretical and experimental
results on relaxation effects in silicon doped with ele-
ments of the fifth group disclosed that these phenomena
have a complicated pattern. Many experimental regu-
larities, such as a dependence on the field and on the
temperature at Τ < 2° Κ, a dependence on the tempera-
ture at 2° Κ < Τ < 4.2° Κ, and many others can be ex-
plained by the theory of relaxation mechanisms for
single- and two-phonon processes. On the whole, how-
ever, the relaxation picture is not yet clear. In par-

ticular, there is no explanation for one of the most
interesting relaxation phenomena— the sharp increase
in the relaxation rate with increasing impurity concen-
tration and exposure to light. The proposed relaxation
mechanisms do not lead to good agreement between
theory and experiment. The relaxation effects of shal-
low donors in germanium and deep donors in silicon
and germanium, and also in irradiated systems, have
not been investigated so far.

V. ELECTRON PARAMAGNETIC RESONANCE OF
IMPURITIES PRODUCING DEEP LEVELS

In the last few years Ε PR and ENDOR methods
were used to investigate centers that produce deep
impurity levels in silicon and germanium. The main
investigations in this field were made by Ludwig and
Woodbury, who studied the resonance of various
charged states of transition metals in silicon and
nickel in germanium. The impurities that produce
deep levels were investigated to a lesser degree than
shallow donors in silicon; for example, no investiga-
tion of the relaxation time was made for the former.
However, even the available data lead to a certain rule
that explains well the electronic configuration of the
substitutional and interstitial ions of the transition
elements of the iron group in silicon. The investiga-
tions in question concerned the electron configurations
of deep impurities in different charge states and their
interaction with vacancies. The EPR of Ni" and Mn2"
ions in germanium was investigated. In silicon, the
EPR spectra of different charged states of the ions of
the iron group (unfilled 3d shell), palladium (unfilled
4d shell), and platinum (unfilled 5d shell) were inves-
tigated along with the spectra due to groups of four
atoms of manganese with pairs consisting of a tran-
sition-metal atom and an acceptor (boron, aluminum,
indium, gallium, gold).

1. EPR of the Ions Ni~ and Mn2' in Germanium. The
EPR of the ions Ni" in germanium was considered
j.nL63,64,65j. Germanium crystals doped with nickel
(7 x 1015 cm"3) by diffusion at a temperature of 850°C
were studied ^62^ . The nickel atom acts like a double
acceptor in germanium. It has two corresponding
levels—0.30 eV below the conduction band and 0.22 eV
below the valence band'-61-. These acceptor levels
were filled with electrons by introducing into the
crystal a donor impurity (such as arsenic). When
only the lower acceptor level is filled, the nickel is in a
charged state ΝΓ, the spectrum of which was analyzed
in detail i n [ 6 4 ] .

At 20.4°K, the EPR spectrum of the Ni" ion in ger-
manium, with arbitrary orientation of the magnetic
field, consists of six principal lines with an anisotropic
g-value. From the symmetry of the spectrum and
from the equality of the intensities of its lines it
follows that each nickel atom gives only one resonance
transition (effective spin S = 1/2), but that this atom



ELECTRON PARAMAGNETIC RESONANCE IN SILICON AND GERMANIUM 535

FIG. 17. Location of a Ni" ion in the germanium lattice. Owing
to the Jahn-Teller effect, the nickel atom is displaced from the
lattice site along the edge of a cube, for example in the direction
indicated by the arrow; θu θ1, (?3 — angles between the directions
of the magnetic field and the axes of the g tensor.

can be located in six geometrically non-equivalent
sites of the lattice, distributed with equal probability
over the entire crystal. A model of the lattice site
containing the ΝΓ ion and explaining the resonant
spectrum is shown in Fig. 17. The electron config-
uration of the Ni" is not known exactly (the configura-
tion of atomic nickel is 3d84s2). However, the resonant
spectrum can be explained by assuming that the con-
figuration is 3d8 with a "bound hole" in the valence
shell. Then the spin of the 3d shell should be equal to
unity, the spin of the valence shell to 1/2, and conse-
quently the total spin should be 1/2, as is observed in
the experiment. Such a configuration should lead to
orbital degeneracy of the wave function of the ground
state of the ΝΓ ion. Then, in accordance with the Jahn-
Teller theorem, the system should experience a per-
turbation that lifts the degeneracy. The Ni" ion shifts
from the lattice site along one of the six directions
corresponding to the edges of the unit cell. This shift
determines the observed spectrum of six lines, for
each of which the g-value is determined by the ex-
pression

g = (gj cos2 Θ, + g"; cos2 θ2 -f g\ cos23) 1 ' ' 2 . (5.1)

Here 01( θ2, θ3—angles between the direction of the
magnetic field Ho and the principal axes of the g-ten-
sor, which constitute the edges of the cubic cell along
which the ion is displaced, and two mutually perpen-
dicular axes [110] (Fig. 17). The correctness of (5.1)
for the Ni" ion was confirmed by the good agreement
between the experimental values of the g-value with
the theoretical curves obtained by substituting in (5.1)
the experimental principal values of the g-tensor
(gj = 2.1128, g2 = 2.0294, g3 = 2.0176). An investiga-
tion was made of the temperature dependence of the
spectrum of Ni". At 20°Κ the total line widths (be-
tween the extrema of the absorption derivative) are
equal to 4.2 Oe, and the distance between the extreme
lines is ~ 200 Oe. The lines have a Gaussian shape.
With increasing temperature, the lines broaden, and
at 30°Κ they begin to overlap. After a complete merg-
ing, the resultant single anisotropic line (with Lorentz
shape) becomes narrower, reaching a minimum width

of 28 Oe, and then, at temperatures above 50° K, it
again broadens. This behavior of the spectrum was
explained in the following fashion. The Ni"-ion shift,
which is "frozen-in" at sufficiently low temperatures,
causes a change in its position in the lattice with in-
creasing temperature—a reorientation. The higher the
temperature, the higher the reorientation frequency.
When this frequency reaches a value corresponding to
the width of the individual line at low temperature, the
lines broaden; when it reaches a value corresponding
to the total splitting between the extreme lines, the in-
dividual lines overlap. The different lines broaden at
unequal rates. This is caused by the fact that in cer-
tain directions of the magnetic field some reorienta-
tions do not change the g-value, and because there are
also two possible methods of thermally-excited reor i-
entation: inversion and rotation.*

The temperature dependence of the correlation time
was investigated for different lines and was calculated
from the line broadening; as a result, threshold ener-
gies for inversion and rotation were determined. The
threshold energy for rotation is approximately 0.018
eV, while for inversion it is ~ 0.022 eV. The latter
quantity can be regarded as an approximate estimate
of the perturbation energy of the system, leading to
the displacement of the ion. In the temperature range
from 20 to 40° K, in spite of the somewhat larger thres-
hold energy, the reorientation by inversion takes place
to the same degree as reorientation by rotation.

The hyperfine structure of the principal lines, due
to the atoms Ge7 3 (I = 9/2) in the two sides closest to
the Ni" ion was also resolved. The best agreement
between the theoretical and experimental values of the
corresponding hyperfine interaction occurs if one as-
sumes that the Ni" ion is displaced from the lattice
site by 0.2 A.

The hyperfine interaction due to Ni was resolved
in samples doped with nickel enriched with Ni6 1 (83%)
( s e e [65,64])_ T h e g p i n o f t h e N i6i n u c i e L l s w a s deter-
mined for the first time (3/2).

Watkins observed EPR in Ge doped with manganese
in the charged state Mn2"·-66^. Investigations of the
spectrum at 77° and 1.5° Κ have shown that the Mn2"
ion is in the state e S 5 / 2 · The measurements yielded
g = 2.0061 ± 0.0002, A = - 45.6 ± 0.3 G, a = + 9.5 ± 0.5G
(A—constant of hyperfine interaction due to Mn55

(I = 5/2), a—constant of splitting due to the cubic field).
Manganese enters into the lattice in the form of a sub-
stitution center, and the degree of occupation of its 3d
shell is not changed thereby, and the two positive elec-
trons are captured by the 4s4p shell. No hyperfine
interaction with Ge7 3 was observed.

2. EPR of Transition Metals in Silicon. The tran-

*Thus, for example, the shift in the [001] direction as a result
of inversion is transformed into a shift along the [00Ϊ] axis, while
rotation results in a shift along the axes [100], [Ϊ00], [010], and
[010].
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sition elements can exist in silicon as isolated atoms
that are in different charged states. In addition, tran-
sition metal and acceptor pairs can be produced, as
well as more elaborate complexes, such as groups of
four impurity atoms.

The charged state of the transition metal atom was
varied by introducing into the crystal an acceptor im-
purity, which can gather electrons, or a donor impur-
ity, which can give up electrons'-1 . The transition
metal molten into the sample was made to penetrate
in it by diffusion, the sample being heated to 1300°C,
at which the solubility of the transition metals in sili-
con is close to maximal.

The sample cooling rate after diffusion has an ap-
preciable influence on the arrangement of the impurity
in the lattice and on its charged state. Thus, after
diffusion of iron in ρ-type silicon, iron-acceptor pairs
are produced in the sample following slow cooling, but
rapid cooling causes the production of positively
charged isolated iron ions.

1. EPR of transition metals of the iron group, a)
Hamiltonian. In elements of the iron group the unfilled
shell is 3d. It is known that the EPR and ENDOR
methods make it possible to determine the electron
orbits and the energy levels of the ion from measure-
ments of the values of the constants contained in the
spin Hamiltonian, i.e., to determine the electron con-
figuration and the types of ionic bonds.

In silicon, which has a diamond-type lattice, each
substitutional atom and each interstitial atom located
at a point with maximum-order symmetry are surroun-
ded by four nearest neighbors on the [111] axis.
Therefore both the substitutional and the interstitial
atoms are in a crystal field with tetrahedral symme-
try.* In both cases the tetrahedral field of the crystal
lattice lifts partially the five-fold orbital degeneracy
of the 3d shell, as a result of which there are formed
triply degenerate t2 and doubly degenerate e states^6 .
However, as shown by experiments (see below), the
triplet and doublet levels for the interstitial and sub-
stitutional atoms are arranged in an unequal fashion. If
we neglect the displacement of the impurity atom from
the point with maximum-order symmetry (no such
displacement was observed for the elements in ques-
tion), then the spin Hamiltonian^16-! of the isolated im-
purity atom, whether in the site and in the interstice,
can be written in the form

(5.2)

Here ASI characterizes the hyperfine interaction with
the nucleus of the transition-metal atom (the hyper-
fine interaction with nuclei of the isotope Si29 is not

taken into account). If S £ 3/2, then the term contain-
ing the constant a, which characterizes the splitting
due to the field of cubic symmetry, is equal to zero.

The frequency of the transition between the elec-
tron levels, corresponding to Μ and Μ — 1 (the selec-
tion rules are ΔΜ = ± 1 and Ami = °) i s given by the
expression

(5.3)
2Av

Here M—magnetic quantum number characterizing the
orientation of the total electron spin, and mj—quantum
number for the nuclear spin.

It is seen from this expression that line splitting
should take place in accordance with the term
mj(2M — 1) H2/2hv. If such a splitting can be resolved,
then the total electron spin S can be determined from
the number of fine-structure lines (2S).

In the case of double resonance the frequency f of
the transition between the nuclear levels (M, mi) and
(M, mj — 1) (selection rules: ΔΜ = 0, Ami = ±1) i s

equal to

f- AM eR ΗJ— AM — g,pNtt0
. (5.4)

This expression was used both to obtain exact values
of the hyperfine interaction constant A, and to deter-
mine S. (Owing to the tetrahedral symmetry of the
sites the quantities A and the g-value are constants
and not tensors.)

b) Experimental results. For some ions of the
transition elements under consideration, the experi-
mentally measured constants which enter in the spin
Hamiltonian are listed in Table VI, and their config-
urations are shown in Fig. 19 . (More detailed ex-
perimental data are given in'-8 .)

For all the transition-metal ions considered (except
iron), the relaxation times in Si at 1.3°Κ are of the
order of seconds and more; the line widths (at
Τ = 10° Κ) are of the order of one Gauss.

Let us consider some of the resonance spectra.

100
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70

60

50

30

ZO
Ϊ

-§—ζ
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*Consequently, one cannot determine from the symmetry of the
interaction with the crystal field whether the impurity atom causing
the resonance is interstitial or substitutional.

FIG. 18. Spectrum of Cr+ in silicon at 20.4°K. The magnetic
field Ho is directed along the [001] axis. The corresponding
transitions characterized by the quantum number are indicated
for the five fine-structure lines.
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Substitutional ions

Ions Cr.Mn Mn"

d-shell configura-
tion

3d" 3d3 3d3

Interstit ial ions

Cr.Mn*' Fe' Fe°Mn"

3d5 3d' 3d3
3d"

Orbital degeneracy 1

Electron spin j

1

5/2

1

3/2

I

5/2

3

1/2

1

1 1/2

FIG. 19. Electron structure of transition-metal ions (with un-
filled 3d shell) in a silicon lattice. Owing to the spin-orbit inter-
action, the spin of Fe° is equal to 1/2.

Table VII

Center

V++
Cr+
Mn~
Mn++
Mn»
Fe»

S

3l->
5 / 2

2
1

g

1.9892
1.9978
2,0104
2.0066
2.0063
2.0699

a,
10"4 cm""

+30.16

+ 19.88

Isotope

V51
Ο 5 3

Μα5δ
Mn55
Mll55
F e "

I

' / .

v.V.
ΒΛ>
Va

A, 10-4

cm"

—42,10
+ 10,67
—71,28
—53,47
—12,8

6.98

The spectrum of V++ (the solubility of vanadium in

silicon is <1015 cm"3) was observed only in low-re-

sistance ρ-type crystals. It consists of eight narrow

hyperfine structure lines, each of which splits into

three lines in accordance with the term

mi(2M - 1) A2/2hy (5.3). All the double-resonance

lines were resolved for Μ = ±1/2.

Assume that we measure experimentally the fre-

quency of one of the double-resonance transitions.

Then, inasmuch as the nuclear moment of V51 is

known (+ 5.139 nuclear magnetons), formula (5.4) was

used to calculate the transition frequencies for differ-

ent values of the total spin. Comparison of the data

has then disclosed that only the theoretical value of f

obtained for the spin S = 3/2 agrees with the experi-

mental frequency. It was thus determined that the total

spin S is equal to 3/2. The remaining values of S

listed in Table VII, and the signs of the constants A,

were determined analogously.

The chromium atom in acceptor-doped crystals is

a double donor with solubility ~ 8 χ 1015 cm"3. The

spectrum of Cr+, shown in Fig. 18, consists of five

(2S) fine-structure lines the positions of which are

characterized by the total spin S = 5/2), and the con-

stant a (see Table VII). The sign of a was determined*

from the change in the line intensity with decreasing

temperature, after which the transition corresponding

to each line was identified. Near each fine-structure

line there are four weak hyperfine structure lines, due

to the Cr53 isotope (natural abundance 9.5%).

At room temperature the state of Cr+ is unstable.

After a time on the order of a week, most Cr+ ions

combine with the acceptor present in the sample to

form pairs. The resonance spectrum of chromium-

gold pairs was investigated . In such a pair the

gold occupies the lattice site and the chromium one

of the neighboring interstices on the [111] axis rela-

tive to the gold. This pair, which is in a neutral

charged state (CrAu)0, has a total electron spin

S = 3/2. The interaction of the atoms in the pair leads

to a splitting of the levels, which can be described by

introducing into the Hamiltonian a term DS2,, where ζ

is the pair axis. The value of the constant D, which is

equal to 6.7 cm"1, is much larger than the interaction

between the spin and the magnetic field (0.5 cm"1), so

that only the transition Μ = + 1/2 — Μ = - 1/2 is ob-

served experimentally. The hyperfine interaction due

to Au197 (I = 3/2) was investigated by the ENDOR

method, on the basis of which the magnetic moment

of gold was determined.

Groups of four manganese atoms MnJ, constituting

four neutral Mn atoms lying on corners of a tetrahed-

ron'-69 , are produced when manganese diffuses in

crystals of low-resistance η-type silicon, or in crys-

tals of high-resistance silicon which are then slowly

cooled. In these crystals, at a definite orientation of

the magnetic field (in the absence of splitting due to

the cubic field of the crystal), 21 hyperfine structure

lines are observed. This corresponds to
4

m I = ι ? ) ' w n e r e n%—magnetic quantum number of

the k-th manganese-atom nucleus (I = 5/2) in a group

of four atoms. The splitting of the hfs line into four

lines, due to the interaction with the crystal field,

shows that S = 2.

Slow cooling of a p-type sample results in mangan-

ese-acceptor pairs. The EPR spectra due to pairs

formed by the manganese atoms with such acceptors

as boron, aluminum, and gold were investigated
[69,70] The spectrum of the MnAu pair'-70- has axial

*For more details see W. Low, Paramagnetic Resonance in
Solids, Solid Physics Suppl. 2, Acad. Press, N.Y., 1960.

in

symmetry with an axis directed along [111] (g|| = 2.0,

gĵ  = 4.0). This indicates that, like in the case of the

CrAu pair, the MnAu pair is oriented along the [111]

crystal axis, and the gold atom is substitutional while

the manganese atom is interstitial.

Iron impurities in silicon (maximum solubility

1.5 x 1016 cm"3) correspond to a donor level located

0.4 eV above the valence band1 7 1 1. When the Fermi

level is located above this level, the iron atoms are

neutral. The EPR spectrum of such atoms^16>72^ con-

sists of one line, the structure of which is resolved at

a high microwave power level. It is possible that this

structure is due to the hyperfine interaction with the

Si29 nuclei. Observation of double resonance at

Τ = 1.3° Κ has made it possible to determine the total

spin (S = 1) and also the magnetic moment of Fe57

Γ <τοΊ

(seeL'° ). If the crystal is subjected to uniaxial mech-

anical compression, which disturbs the tetrahedral



538 BOGOMOLOVA, LAZUKIN, and CHEPELEVA

symmetry of the sites, then the single Fe° line splits

into two fine-structure lines. This confirms that S = 1.

The EPR spectrum of pairs produced by an iron

atom with acceptors such as B, Ga, Al, and In was also

investigated ^ .

As first shown by Bloembergen^7 , the electric

field exerts an influence on the magnetic hyperfine in-

teraction of the paramagnetic ions that occupy in the

crystal lattice positions for which the inversion trans-

formation does not take place. Ludwig and Woodbury

observed [76] that the EPR lines of ions of the iron-

group-element ions situated in the interstices in a sili-

con lattice, which had no inversion transformation,

were split in the electric field. (Thus, for example,

the single Fe° line splits in an electric field Ε (E 1 Ho,

Ε = 12 kV/cm) into two components of equal intensity;

the splitting is proportional to Ε and varies sinusoid-

ally when the magnetic field orientation changes rela-

tive to the crystallographic axes.) A theoretical esti-

mate of the spin Hamiltonian and of the position of the

energy levels of such ions was carried out by Ham^77-

for the case of an electric field.

As a result of an investigation of the EPR of the

iron-group transition-metal ions in silicon, the follow-

ing rule governing the electronic configurations of

these ions in the crystal lattice was established'-67-':

1. For ions replacing silicon atoms in the lattice,

the energy of the triply degenerate states t2 is larger

than the energy of the doubly degenerate states e

(Fig. 19). The opposite holds true for the interstitial

ions.

2. In the substitutional ions, enough electrons go

over from the 3d shell to the valence shell to form

tetrahedral bonds with the four neighboring silicon

atoms. In the interstitial ions, all the electrons go

over from the valence band to the 3d shell.

The EPR method was used to investigate the inter-

action between vacancies and chemical impurities'-78-'

(see also Chapter VI). It was observed that the vacan-

cies are captured by interstitial impurities, which

turn into substitutional impurities as a result.

3. EPR of Palladium and Platinum in Silicon. The

first reported observation of EPR of the ions Pd and

Pt in silicon was in'-79-'. A more detailed investiga-

tion'-80-' was also devoted to this question.

The transition metals Pd (unfilled 4d shell) and Pt

(unfilled 5d shell) are acceptor impurities in silicon.

In samples containing shallow donor impurities, the

palladium exists in the form of singly charged negative

ions Pd", while platinum exists in the form of singly

charged and doubly charged negative ions, so that two

modifications of platinum centers are observed, Pt(I)

and Pt(II), each with its own EPR spectra. In crystals

with platinum there are more Pt(I) than Pt(II) centers.

The positions of the acceptor levels of the palladium

and platinum centers have not been determined exactly.

In samples containing Pd or Pt, but containing no donor

impurity, no EPR spectra are observed at all. The

spectrum of Pd in silicon is analogous to the spec-

trum of ΝΓ in germanium. It is obvious that the Pd~

ion is also located at the lattice site (see Fig. 17) and

is shifted somewhat along the [100] axis. There are

six geometrically non-equivalent sites, and accordingly

six independent spectra are observed at arbitrary

magnetic-field orientation. The hyperfine interaction

with Pd105 (I = 5/2) and with the two nearest Si29 nuclei

was investigated. The hyperfine splitting of the spec-

tral lines, due to the nuclear quadrupole interaction,

was investigated in samples with palladium impurity

enriched with the Pd105 isotope (the EPR and ENDOR

methods were used).

A study was made of the temperature dependence

of the spectrum of Pd" usually observed at 20.4° K. At

a temperature above 20° the lines broaden and then

vanish completely. Unlike the case of Ni" in Ge, no

averaging takes place here of the g-tensor as a result

of reorientation of the sites, which leads to the merg-

ing of the lines. In the opinion of Ludwig and Wood-

bury, this is due to the fact that the spin-lattice re-

laxation broadens the resonance transitions of differ-

ently located Pd" ions before the frequency of the site

orientation becomes comparable with the frequency

difference between the individual spectral lines. The

spectrum of the Pt(I) center is analogous to the spec-

trum of Pd", i.e., it can be attributed to displacement

of the platinum ion from the lattice site in one of the

six directions [100]. A hyperfine interaction due to the

Pt1 9 5 isotope was investigated (I = 1/2, natural abun-

dance 34%). The spectrum of Pt(I) was observed only

at low temperatures. At temperatures above 12°K,

the lines of the Pt(I) spectrum broaden and disappear.

When an axial mechanical stress is applied to the

samples, the spectra of Pd" and Pt(I) vary in the same

manner.

The spectrum of Pt(II) was observed at tempera-

tures 20°Κ and above. This spectrum of Pt(II) shows

that there are four geometrically nonequivalent

sites, in which the center Pt(II) can be located and

which are displaced along the [111] axes. The inten-

sity of the spectrum of the Pt(II) center varies from

sample to sample, and is connected to a certain de-

gree with the oxygen content in the crystal. It is thus

possible that the Pt(II) center is a platinum atom

bound to the oxygen atom. The Pt(II) spectrum is not

sensitive to axial compression of the crystal. The

electron configuration of the Pd"1, Pt(I), and Pt(II)

centers is analogous to the configuration of Ni" in

germanium, i.e., the tetrahedral bonds with the four

nearest neighbors are filled, but there is a "bound

hole" in the corresponding unfilled shells.

VI. ELECTRON PARAMAGNETIC RESONANCE IN

IRRADIATED SILICON

In the last decade thorough studies were made of

different imperfections produced in silicon and ger-
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manium bombarded with neutrons and electrons. In

most cases, however, it was impossible to connect the

concrete changes in the electric, optical, and mechan-

ical properties of the materials with any particular

imperfection produced by bombardment. The use of

paramagnetic resonance has cast new light on the na-

ture of the defects produced in irradiated crystals.

Much progress was made in the study of radiation de-

fects produced in silicon bombarded with high-energy

electrons (0.5—1.5 MeV) and fast neutrons.

EPR of radiation defects in silicon was first ob-

served in 1955 in a sample doped with boron and bom-

barded with neutrons at room temperature ^ 8 2 - . Later

on EPR (and in some cases also the ENDOR method)

was used to study in detail the structure of the main

paramagnetic centers connected with the defects in

silicon bombarded with 0.5, 1, and 1.5 MeV electrons,

and a study was initiated of centers produced in sili-

con bombarded with fast neutrons. In addition to the

structure of the centers, studies were made also of

other properties, for a better understanding of the

production of centers in irradiated materials.

1. EPR of Radiation Defects Produced by Electron

Bombardment of Silicon. The EPR spectra of radia-

tion defects in silicon were investigated with the sam-

ples bombarded by electrons having energies 0.5 and

1 MeVr83] and 1.5 MeV[84-. In the latter case the

electron energy was sufficient to produce simple types

of defects: interstitial atoms, vacancies, two vacan-

cies located alongside—divacancies, etc. Depending

on the radiation dose, on the position of the Fermi

level, on the temperature of the irradiation, on the

type of impurity, and on the method of obtaining the

crystal, these simple defects can form different para-

magnetic centers, each with its own EPR spectrum.*

In general, up to 20 individual EPR spectra were ob-

served in electron-bombarded silicon, obviously

corresponding to different defects (some represent

different charged states of the same defect). We con-

sider here the five principal centers (Si-Α, Si-B,

Si-C, Si-Ε and Si-J centers) produced when silicon is

bombarded with 1.5 MeV energies, investigated by

Watkins and Corbett'-8 . We shall consider, using the

Si-Α center as an example, the procedure for the ex-

perimental investigation of the structure and proper-

ties of these centers, and also a theoretical estimate

of their wave functions, hyperfine interaction, and

g-value, obtained on the basis of the molecular-orbital

method.

1. Si-A center, a) Experimental method and re-

suits. The Si-A center t is the principal center pro-

*We shall not emphasize from now on the difference between
the concepts "paramagnetic center" and "defect," recalling that we
are speaking of a defect which becomes paramagnetic for some
reason or another.

tWe shall henceforth call it simply the Α-center, and the other
centers will be called the B-center, C-center, etc. We shall bear
in mind that we are dealing with irradiated silicon.

duced when high-energy electrons bombard silicon

crystals drawn from a melt.* It was first investi-

gated by paramagnetic resonance by Bemski, Feher,

and Gere'-8 , and was subsequently investigated in

detail by Bemski[83^ and by Watkins and Corbett[84>

J87,8
u s

briefly the results of these ex-

periments, which have made it possible to construct

a model of the A center.

The characteristic EPR spectrum corresponding

to the Α-center (Fig. 20) is observed by irradiating

at room temperature low-resistance crystals of drawn

η-type silicon (with doping impurity concentration

1O15-1O16 cm"3) with a beam of 0.15, 1, and 1.5 MeV

electrons (the dose was 1015—1016 electrons/cm2).

FIG. 20. Spectrum (derivative dispersion) of Si-Α center at
40°K. The magnetic field HQ is directed along the [100] axis of
the crystal. The letters A, B, C, D, and Ε denote the hyperfine
structure lines due to the hyperfine interaction with Si29 nuclei
located in five groups of nonequivalent lattice sites.

No corresponding resonance spectrum was observed

when crystals of p-type silicon or of high-resistance

η-type silicon were irradiated with an equivalent dose.

The EPR spectrum of the Α-center does not depend

on the sort of doping impurity and is the same for

crystals doped with As or with P. The resonance lines

disappear almost completely after the samples are

heated for several minutes at 750° K.

The formation of Α-centers in η-type silicon (with

a phosphorus concentration 1015—1016 cm"3) was in-

vestigated in'-84^ with the aid of EPR following irradia-

tion at room temperature with 1.5-MeV electrons.

The dependence of the concentration of these centers

on the radiation dose, determined from the intensity

of the corresponding spectrum, was investigated.

These experiments have shown that the produced

radiation defects capture the phosphorus donor elec-

trons and become paramagnetic as a result; resonance

of Α-centers is observed only after they have captured

electrons.

The Α-center is thus an electron trap. A compari-

son of the EPR experimental results with electrical

measurement results^89'90-' has shown that the A-cen-

ter corresponds to an acceptor level 0.17—0.16 eV

below the conduction band. In crystals obtained by

zone melting, the concentration of the Α-centers was

only several percent of the corresponding value in

*As is well known, the former crystals contain up to 10" oxy-
gen atoms per cubic centimeter. The oxygen concentration in sili-
con crystals obtained by zone melting is much lower (1015 — 1016

cm"3).
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crystals grown in quartz crucibles, i.e., a high oxygen
concentration is necessary for the formation of A-
centers.

An investigation of the rate of Α-center formation
in different samples'-84'88-1 has shown that the A-center
is produced as a result of capture of a primary defect
by an electrically neutral admixture of oxygen, which
is present in sufficient amounts in silicon grown in
quartz crucibles.*

Special experiments were made^84-' to show that the
A-center is not a primary defect (i.e., one produced
immediately after the breaking of the bonds). The
samples were irradiated at 20° K, and the resonance
was observed after annealing (approximately 30 min-
utes at each temperature) followed by heating. No
Α-centers were observed immediately after irradia-
tion. However, even after annealing at room tempera-
ture the A-center concentration does not amount to
more than 2.5% of the concentration obtained after
equivalent irradiation at room temperature. An anal-
ogous phenomenon takes place for irradiation at 77 and

90°K
[83]

Thus, the Α-centers are not primary, and
displacement of primary defects is necessary for
their formation. The defects are mobile at tempera-
tures below room temperature, and the A-centers
are produced as a result of capture of oxygen atoms
by the moving defects (vacancies).

Valuable information on the nature of A-centers
was obtained from an analysis of the corresponding
EPR spectrum (see Fig. 20). The spectrum is des-
cribed by a spin Hamiltonian

i

The spectrum is characterized by an anisotropic
g-value and, depending on the orientation of the mag-
netic field relative to the crystallographic axes of the
sample, it is resolved into a different number of lines
(for example, the spectrum for Ho II [100] (Fig. 20)
consists of two principal lines). An investigation of
the anisotropy of the g-value has shown'-88- that there
are six nonequivalent arrangements (orientations) of
this defect in the silicon lattice, each of which corre-
sponds to a displacement of the silicon atoms making
up the A-center in one of the six [100] directions. The
principal axes of the g-tensor are shown in Fig. 21,
and its principal values are given in Table VIII. The
second term of the Hamiltonian (6.1) describes hyper-
fine interactions with the Si29, which was resolved for
five nonequivalent lattice site groups. The correspond-
ing hyperfine structure lines are denoted on Fig. 20
by the letters A, B, C, D, and E. All these interactions

*Attempts to observe hyperfine interaction with O17 in speci-
mens enriched with this magnetic oxygen isotope, and to demon-
strate by the same token its presence in the A-centers with the
aid of EPR, were not successful because the oxygen atom is at
the node of the wave function of the unpaired electron, and only
an insignificant hyperfine interaction can occur for it.

fO7/J fr/rj

FIG. 21. Model of A-center. The principal axes of the g tensor
are denoted g^ g2, and g3. The thick arrows denote the axes of
hyperfine interaction with the Si29 nuclei. The dashed line de-
notes a vacancy.

Table VIII

« ( ± 0 . 0 0 0 3 )

g l = 2.0092

g2 = 2.0026
g, = 2.0033

Principal values
of the tensor of
hyperfine inter-
action with Si

ΙΟ"4 cm'1

Number of equiv-
alent Si2 atoms
and the principal
axes of the corre-

sponding hyper-
fine interaction

i
η = 153.0±0.05| (I) [111]

(I) [111]

have axial symmetry with axes lying near [111] or
near [111] (Fig. 21), and can be described with the aid
of the quantities Αμ and A .̂ For the line A, the quan-
tities A|| and Αχ and the number of equivalent sites
are given in Table VIII. For the line B: A|| = 16 χ 10"4

cm"1, Aj_ = 12 x 10"4 cm"1; for the line C: AN = 10.6
x 10"4 cm"1, A_L = 7.9 χ 10"4 cm"1. The corresponding
quantities for the lines Ε and D are even smaller.
Thus, the greatest hyperfine interaction occurs for
the site group A, i.e., the unpaired electron is local-
ized principally near the two silicon atoms that are
obviously closest to the defect.

b) Model of A-center. All the experimental results
considered above have made it possible to construct
the A-center model shown in Fig. 21. The occurrence
of the A-center can be explained in the following man-
ner. The irradiation produces four broken bonds
around a vacancy, one for each of the surrounding
silicon atoms. The oxygen atom captured by the va-
cancy joins two of the broken bonds, forming a Si-O-Si
"molecule." The remaining two silicon atoms with
broken bonds are slightly attracted to each other, and
this results in a Si-Si "molecule." Such a defect is
not paramagnetic in the neutral state, since the spins
of all the electrons are paired. The paramagnetism is
the result of the additional electron which goes over
from the donor and is captured by the Si-Si molecular
bond. The wave function of this electron can be con-
structed in the form of a linear combination of atomic
wave functions. Inasmuch as the unpaired electron is
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essentially localized near two neighboring silicon
atoms (atoms A and A' on Fig. 22), its wave function
can be constructed with good approximation from the
wave functions of these two atoms (^A' *A')· ^n ^ n e

Si^-SiA' "molecule," the wave functions * A a n d *A'
overlap, so that the corresponding energy levels split
into two (the distance between them is determined by
the binding energy). If the overlap is not very large,
then the additional electron with uncompensated spin
is described by an asymmetrical linear combination

This "disintegrating" orbit corresponds to an upper
energy level lying 0.17 eV below the conduction band.
(The state described by the antisymmetrical wave
function ΦΔ Λ' is stable. Indeed, according to the
model of James and Lark-HorovitzLS J the vacancy is
an electron trap. In addition, when the SIA-SIA' bond
captures an additional electron, the stresses resulting
in the vacancy region from the attraction of the SiA
and SiA' atoms during the formation of the bond, are
appreciably reduced.) The lower level, which can lie
in the valence band, corresponds to the symmetrical
wave function

~=

("binding" orbit). At this level are located both elec-
trons with compensated spins, which remain from the
broken covalent bond. This Α-center model (Fig. 21
and 22) satisfies the following properties, which were
determined on the basis of the resonant spectrum: 1)
the electron is localized principally near two silicon
atoms; 2) the symmetry of the hyperfine interaction
tensor, the axes of which are directed towards the
center of the vacancy, is representative of the sym-
metry of the atomic orbits with the bond broken, form-
ing the molecular orbit; 3) the symmetry axes of this

FIG. 22. Arrangement of the SIA-SIA1 "molecule" of the A-cen-
ter in the silicon lattice. Energy level scheme for such a "mole-
cule.". The dashed arrows indicate the electronic transitions which
are taken into account in the calculation of the g-factor. The num-
bers 1, 2, and 3 denote the three principal axes of the Si-Si "mole-
cule."

molecular orbit correspond to the principal axes of
the g-tensor.

The theoretical estimate of the hyperfine interac-
tion and of the g-value, based on the molecular-orbital
method1-88-, is valid for both the Α-center and for the
remaining four centers under consideration.

c) Theoretical estimate of the hyperfine interaction
and of the g-value. The wave function of the unpaired
electron was constructed in the form of a linear com-
bination of the wave functions of the atoms contained
in the lattice site near the vacancy:

V1 ~ \τ/ ία o\

where Ψ;—wave function of the atom in the j - t h s i te,
r e p r e s e n t i n g the hybrid orbit 3s3p:

(ψ3ρ),-. (6.3)

< 6 · 4 >
1 · (6.5)

In the case of axial symmetry, the principal values of

If we neglect the overlap, then these functions are
normalized under the conditions

α'3 + Ρ Η 1 .

the t e n s o r of hyperfine interact ion with Si B a r e

A, = a — b. (6.6)

, [ 8 8 ](The expressions for a and b are given inLBBJ.) If we
neglect the overlap, then the hyperfine interaction with
the Si29 nucleus located in the j-th site is determined
principally by the atomic wave function Ψ] in this site.
Then

b-c— ββ Ά- (r~3) ^ 6 " 7 )

Inasmuch as γ is negative for Si29 and only direct in-
teraction is taken into account in (6.7),* aj and bj are
also negative.

The values of aj and bj were then determined di-
rectly with the aid of expression (6.6) from the ex-
perimental values of |A|| |j and |AjJj for different sites
A, B, C, and D.

The values of a;, β., and η 2 can be determined

from (6.7) and from (6.4)—(6.5) if we know the ratio

ΙΦ 3s 3p· A value of 1.4 was obtained for thisΙΦ 3s ( ) l V ( ) 3p
ratio from an estimate by Hartree et al"-93J for Si3+,
under the assumption that when the charged state of
the silicon atom changes the values of \ψ 3 s (0)j2 and

*In the general case, in addition to direct interaction between
the nucleus and the unpaired electron, account is taken also of the
indirect interaction via the other electrons surrounding the nucleus.
(In other words, the field acting on the nucleus is due to the mag-
netic moment of the spin of the unpaired electron and to that mag-
netization which it produces in the electron shells surrounding it.)
The hyperfine interaction was estimated only with account of the
direct interaction, but at small interactions such an approach may
yield incorrect results.
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( r 3 )sp vary in identical fashion: the value 1.4 was
used in this case, too.

Thus, α2, β2., and η 2 were determined under the

conditions that the wave function is described by (6.2)
and (6.3), that \ip 3 S (0)|2/(r~3) = 1.4, and that only di-
rect interaction takes place. For the sites A: a2 = 0.37,
β2 = 0.63, and η 2 = 0.36. The values \ψ 3 S (0)|2 = 24
x 1024 cm"3 and (r~ 3) 3 p = 17 x 1024 cm"3 were then de-
termined from (6.7). These quantities agree with those
estimated theoretically in'-94" for the neutral silicon
atom.

For the sites B, C, and D we have a2 = 0.25 and
β2 = 0.75, which corresponds to tetrahedral sp3 orbits.
This physically reasonable result confirms that the
values and relative signs (identical) of aj and bj are
correct.

The wave functions for the atoms A and A' have a
larger S-state admixture (see Table VIII) than the
tetrahedral sp 3 orbits—they are more like sp2 orbits.
This character of the wave function is in accord with
the fact that the atoms A and A' are somewhat shifted
from their normal position towards the vacancy, owing
to the molecular Si^-SiA' bond.

The value of the coefficient η 2 (η2 = 0.72) indicates
that approximately 70% of the wave function is due to
the Si^-SiA' diatomic molecule ( η Α =ν\> = 0.36). The
remainder of the wave function corresponds to the
other 12—16 atoms (B, C, D, E) in the vicinity of the
vacancy. The lattice sites at which these atoms are
located have not been established as yet. Accordingly,
we cannot construct the remaining 30% of the wave
function of the unpaired electron.

Watkins and Corbett assumed that to construct a
detailed wave function for either the Α-centers or the
other centers in question it is meaningless to use a
linear combination of those wave functions which are
taken into account in the case of shallow donors, and
efforts must be continued to apply the molecular-
orbital method, supplemented by an analysis of the
perturbations in the region of the vacancy.

Nonetheless, even the available wave function,
which takes into account the contributions of the two
atoms A and A', makes it possible to explain suffi-
ciently well the observed g-values.

In the first order of the spin-orbit interaction the
deviation of the g-value from the corresponding value
for the free electron (2.0023) is equal to

where

^ · = — 2λΛ;,·,

< 0 | L ; n) (n\Lj\O)

En Ed
(6.8)

The summation must be carried out over all the n ex-
cited states. However, since the unpaired electron is
localized to a considerable degree near two SIA sites,
we can take into account in first approximation the ex-
citation of the state only for the diatomic

molecule. When estimating the g-value, a system of
eight atoms was considered: the two atoms A and A'
and six silicon atoms X (Fig. 22). A weak bond exists
between the atoms A and A', whereas their bond to the
remaining atoms is strong and covalent.

In the ground state, the corresponding 12 electrons
are on filled binding orbits, corresponding to wave
functions Φ AX a n d *A'X'· t w o electrons are in the
state *AA' a n <^ o n e unpaired electron is in a state as
described by the antisymmetrical wave function
Ί Ά Α ' - The transitions to the excited state can be
described in such a system with the aid of matrix ele-
ments of two types. One corresponds to a transition
from a level described by ΦΑΑ' to levels character-
ized by ^ A X a n ( ^ *A'X'J a n c^ c a u s e s Ag to be negative
(λ is positive); the other corresponds to a transition
from levels corresponding to *AX a n d *A'X' to the
*AA' level, resulting in positive Ag (λ negative). The
total change is due to both effects.

The molecular wave functions *AX'> *AX'< • · · >
etc. were constructed in the form of linear combina-
tions of atomic wave functions σ I, t r" , . . . , σ IV* and
were normalized with allowance for the overlap, char-
acterized by the expression

In estimating the g-value, no account was taken of the
weak overlap for the S I A - S I A ' bond, and the matrix
elements of the orbital angular momentum Lj were
transformed under the assumption that σΙ'(Α) is a
unique function of the atom A, which overlaps σ~^(Α)
appreciably. As a result it was obtained from (6.8)
that the change in the g-value for the three principal
axes (1, 2, 3) of the "molecule" (Fig. 22) is:

(6.10)

where Εa—energy difference between the levels char-
acterized by *AA' a n d *AX> while ED—between the
levels described by *AA' a n a - *AX· From simple
calculations it was found that the matrix elements in
(6.8) for these three axes are

(6.11)

σ'(Α)) = ξ-fa,

where σ*(Α) is given by (6.3). Using the experimental
values Agj = ± 0.0070 and β2

Α = 0.63, taking |λ | = 0.02
eV and S* = 0.7 from^94'95-, and assuming in the solu-
tion of (6.10) that E a « E^, Watkins and Corbett found
that E a ~ ED = 2.6 eV. In other words, the energy
difference between the disintegrating and binding
states is approximately 5 eV, which is physically

*<r, α11, σ111, σ Ι ν — wave functions of the atom A for the bind-
ing-force directions indicated in Fig. 22. The wave functions for
the opposite directions are σ"1, ..., σ" Ι ν .
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quite realistic. It follows from (6.11) that

Agj : Ag3 : Ag2 = 3:2:1. This result differs apprec-

iably from the experimental data, since it was meas-

ured that Agj = 0.0070, Ag3 = + 0.0010, and

Ag2 = + 0.0003. But the signs of Ag were theoretically

determined correctly. Furthermore, the relation

Agt > Ag3 > Ag2 is satisfied, as follows also from

experiment. The positive change in the g-value is

attributed primarily to the fact that the wave function

of the unpaired electron overlaps more strongly the

binding AX orbits than the disintegrating AX orbits.

Thus, this simple transition scheme, considered

under many simplifying assumptions, makes it possi-

ble to determine correctly the signs and the ratio of

the values of Ag, in spite of the fact that the wave

function of the unpaired electron is not completely

determined. This fact can be regarded as rather re-

markable if it is recalled that the unpaired electron

of the Α-center corresponds to a level which is 0.17

eV away from the conduction band, and that no account

of the semiconductor property of the material was

taken at all in the calculation.

d) Investigation of the Α-center structure by Ε PR

observations of a crystal subjected to a force along

one of its axes. An important method for the investi-

gation of the structure and properties of defects is to

study their motion with the aid of EPR. To this end, a

study was made of the line broadening due to the mo-

tion of defects with increasing temperature; the pre-

ferred defect orientation, the redistribution of the

electrons among the defects, etc. were investigated in

a suitable temperature range with a mechanical axial

stress applied to the crystal.

We stop to discuss briefly the experiments per-

formed to confirm the Α-center model considered

above ^ 8 8 ' 8 5 -; they were also carried out in order to

investigate the structure and properties of the re-

maining four centers in electron-bombarded silicon.

An axial mechanical stress disturbs the normal

cubic symmetry of the crystal. As a result, the six

possible locations of the A center are no longer

equivalent, i.e., these centers no longer yield lines of

equal intensity. This change in the relative intensities

of the spectral lines under deformation of the crystal

is due to two mechanisms, which were studied separ-

ately, since their influence comes into play in differ-

ent temperature ranges.

1) Depending on how the Α-center is located rela-

tive to the direction of the applied stress, the energy

of the electron captured by the defect can either in-

crease or decrease. Accordingly, the electrons are

redistributed among the traps via thermal ionization,

which is manifest in a change in the relative intensi-

ties of the resonance-spectrum lines. This mechanism

was investigated in the 60—80° Κ temperature range.

The redistribution of the electrons was investigated

by measuring the time necessary to restore the initial

intensity of the line after removal of the applied

stress. An investigation of the temperature depen-

dence of the recovery time (equal to the average time

spent by the electron in the trap) in the 60—70° Κ

range has made it possible to determine the activation

energy of this process. It characterizes the height of

the barrier that must be overcome by the electron in

order to leave the defect, and is equal to 0.20 ± 0.03

eV, i.e., it is close to the energy of the disintegrating

orbit (0.17 eV). A study was also made of the energy

difference (ΔΕ) between the electron levels corre-

sponding to differently located defects. The signs of

the corresponding measured values of ΔΕ have shown

that the trap energy increases when the two silicon

atoms come closer together in the SIA-SIA' molecule.

This confirms that the electron captured by the defect

is on a disintegrating orbit between the two silicon

atoms of this molecule.*

2) At higher temperatures, the defects themselves

can become reoriented, i.e., a transition of the oxygen

atom takes place from one pair of silicon atoms to

another pair of atoms surrounding the vacancy. If a

stress is then applied along any of the crystal axes,

some defect orientation becomes dominating. This

causes an additional change in the relative amplitudes

of the spectral lines which, as already stated, can be

readily separated from the distribution of the electrons

among the defects, which is a process of higher fre-

quency. The activation energy of the defect reorienta-

tion process (in the neutral states), measured in the

temperature region 120—145° K, in which this phenom-

enon begins to manifest itself, is 0.38 ± 0.04 eV. The

preferred orientation, which is characterized by the

relative number of identically oriented defects, is de-

termined principally by the two orthogonal Si-O-Si and

Si-Si molecular bonds (see Fig. 21). The energy of

each of these bonds decreases when the stress is ap-

plied along the direction of the bonds (the intensities

of the corresponding lines increase). The relative

stability of the different orientations (and, by the same

token, the preferred orientation) is determined by the

degree (relative ease) to which each of the molecular

bonds Si-Si and Si-O-Si is oriented along the direction

of the applied stress. The change in energy of each

bond is determined by the component of the strain ten-

sor along the direction of this bond. On the basis of

the measured values of the preferred orientations and

of the energy differences of the electron levels (ΔΕ),

and also on the basis of the magnitude of the stress

used in the experiment, the changes in energy of each

of the two bonds and of the SIA-SIA' were calculated

per unit change in strain. These were found to be of

the order of the deformation potential for silicon, a

result which is physically reasonable. It was found at

the same time that the change in the bond energy per

•When the two atoms come closer together the energy of the
binding otbit decreases and that of the disintegrating orbit in-
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unit change in strain has an opposite sign for the

single electron on the disintegrating orbit, and con-

stitutes half of the corresponding change in energy for

the two electrons on the binding orbit. This fact is

also a very essential confirmation of the A-center

model. On the basis of the changes in the bond ener-

gies, the signs and magnitudes of the preferred orien-

tations and of ΔΕ were determined for different direc-

tions of force applications. They agree very well with

the experimental values, again confirming the correct-

ness of the chosen Α-center model.

The location of the oxygen atom, like its very pres-

ence in the Α-center, cannot be determined directly

with the aid of EPR observations. It was found in^91^

that infrared absorption at 12μ is observed in the

materials considered above, owing to the vibrations

of the oxygen atom. By studying the influence of an

axial-mechanical stress on the infrared-absorption

band and by comparing the results of this experiment

with those of analogous experiments on paramagnetic

resonance, it became possible not only to prove the

presence of the oxygen atom in the Α-center, but also

to find that its location corresponds to the model con-

sidered above.

2. Si-Ε center. Ε-centers have been observed only

in silicon obtained by zone melting, and are the main

centers in such crystals irradiated at the doses in

question. Each line of the Ε-center resonance spec-

trum is a doublet. This splitting is obviously due to

the hyperfine interaction with the phosphorus atoms

(I = 1/2), which comprise the main impurity in the

investigated crystals. The Ε-center model is shown

in Fig. 23. The wave functions of the unpaired elec-

tron has a greater p-state content than the hybrid sp3

orbit (a2 = 0.19, β2 = 0.81). This indicates that the

silicon atom (denoted by the number 1 in Fig. 23) is

drawn away from the vacancy by its three nearest

silicon neighbors. A study of the hyperfine interac-

tion with the Si29 and Ρ atoms has shown that the un-

paired electron is localized principally near one sili-

con atom, and its state can be described in first ap-

proximation by one free orbit remaining from the

[oiij

FIG. 23. Model of Ε-center. The numbers 1, 2, and 3 denote the
silicon atoms. The arrow marked Ρ denotes the axis of the hyper-
fine interaction with the phosphorus atom, while the arrow marked
Si29 — the axis of hyperfine interaction with the Si29 atoms. The
dashed line shows the vacancy.

broken covalent bond. The fact that the coefficient η2

has a value 0.59 indicates that approximately 60% of

the wave function is connected with this orbit. The

resonance spectrum of the Ε-center was observed

only when its acceptor level (0.43 eV) was not occu-

pied by electrons. Thus, the Ε-center is a vacancy in

a neutral charged state, near which is located a sub-

stituting phosphorus atom. The Ε-center model shown

in Fig. 23 was confirmed in a study of the thermally-

activated transition of an unpaired electron from one

silicon atom to others with equivalent positions (rela-

tive to the phosphorus-vacancy direction) near the

vacancy. This transition of the electron from atom to

atom, occurring when the temperature is increased,

was investigated both by observing the EPR with an

axial stress applied to the crystal, and by investigat-

ing the line broadening due to this effect. The activa-

tion energy for such a transition is ~ 0.06 eV. The

Ε-center model was confirmed also by investigating

the preferred orientation arising when the crystal is

deformed at room temperature.

The investigations have thus shown that the same

defect, a vacancy, participates in the formation of both

Α-centers and Ε-centers, depending on which impur-

ity, oxygen or phosphorus, is captured by the vacancy.

In addition, the structure of the Ε-center, which con-

tains a phosphorus atom, is weighty proof that the

vacancies are mobile below room temperatures, a

fact demonstrated by experiments on low-temperature

irradiation of silicon grown in a quartz crucible.

3. Si-Β center. The exact model of the B-center

has not yet been determined. An investigation of the

g-tensor and of the hyperfine interaction with si29'-83-

has shown that the unpaired electron due to the EPR

spectrum is localized principally on one silicon atom,

and that its state can be described with the aid of the

free orbit left after the covalent bond is broken. The

fact that the coefficient η2 is equal to 0.64 shows that

approximately 65% of the wave function is connected

with this orbit. The values of a2 and β2 indicate that

the content of the p-state in the wave function is much

larger than in the tetrahedral sp3 orbit. This corre-

sponds to the silicon atom being drawn away from the

vacancy by its three nearest neighbors. Their mutual

placement thus approaches the planar configuration

for which the AX bonds are sp2 orbits and the free

orbit corresponding to the unpaired electron is a pure

ρ orbit. The lines of the B-center spectrum are nei-

ther broadened nor narrowed by the motion of defects

as the temperature is increased to room temperature.

Watkins and Corbett proposed on the basis of their

experimental results that the B,-center can contain one

or more vacancies, with the atoms so arranged around

them that one free bond is left. It has not yet been es-

tablished whether the impurity atom (for example,

oxygen) enters into the B-center.

4. Si-C and Si-J centers. These centers are made

up of defects of a different kind in irradiated silicon —
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FIG. 24. Divacancy in silicon lattice. The vacancies are shown
by dashed lines and are denoted A and B. The orbit on which the
electron causing the EPR is situated is shown schematically by a
thick black line. The arrow designated Si29 shows the axis of the
hyperfine interaction with the Si29 nuclei.

divacancies consisting of two neighboring empty sites

(designated A and Β in Fig. 24). Investigations of sam-

ples irradiated at 20° Κ have shown'-97- that the di-

vacancy is a primary defect, which is stable at room

temperature and is formed immediately upon irradia-

tion. At an electron energy 1.5- MeV, the rate of di-

vacancy formation is approximately 5% of the rate of

vacancy formation, as determined from measurements

on A centers. It has been observed that the rate of

divacancy formation is anisotropic with respect to the

direction of the electron flux. In p-type silicon, and in

high-resistance η-type silicon, divacancies (Fig. 24)

become paramagnetic and produce an EPR spectrum.

The corresponding paramagnetic centers are called

Si-J and Si-C centers. Their formation is explained

in the following fashion. The broken bonds of atoms 5

and 6 and of atoms 2 and 3 (Fig. 24) join to form mole-

cular bonds, and the corresponding electrons are

paired. In p-type material, one of the two electrons

corresponding to the broken bonds of atoms 1 and 4

goes over to the acceptor, while the remaining un-

paired electron is on the orbit between these atoms

(black line on Fig. 24) and produces an EPR spectrum

(J-center). In this state the divacancy is a singly-ion-

ized donor. The paramagnetic C-center is produced

in high-resistance η-type silicon when an additional

electron goes over to the divacancy. This electron is

on a disintegrating orbit between atoms 1 and 4, and

the corresponding binding orbit is filled. In this state,

the divacancy is a singly-ionized acceptor. The

C-center spectrum is not observed in low-resistance

η-type silicon. This is due to the fact that in such a

material the divacancy captures one more electron,

i.e., becomes a double acceptor. The experimental

EPR results which have made it possible to construct

the Si-C and Si-J center models are given in^97^. The

values of the coefficients η2 show that in the case of

J-centers (η2 = 0.56) the disintegrating orbit consti-

tutes only 56% of the wave function, while in the case

of the J-center—62% (η2 = 0.62). The ratio of the val-

ues of the coefficients a 2 and /32 indicates that the

wave function of the unpaired electron, especially for

the J-center (a2 = 0.16, β2 = 0.84), contains much

more of the ρ-state than the tetrahedral sp3 orbit. For

the C-center we have a2 = 0.22 and β2 = 0.78.

The thermally activated transition of an electron

between equivalent configurations (see Fig. 24) was

investigated for both centers by using EPR observa-

tions with the crystal deformed and by studying the

line broadening. These experiments have confirmed

the C- and J-center models. The activation energy of

this motion is ~ 0.06 eV for both centers. The model

was also confirmed by investigations of the preferred

orientation of the vacancy-to-vacancy direction. The

values of the preferred orientation, as well as the

kinetics of the reorientation, are identical for both

centers. The activation energy of the divacancy re-

orientation process is ~ 1.3 eV for both centers. This

energy can be regarded as the activation energy for

the divacancy diffusion. Experiments on the annealing

of these centers have shown that the lowest binding

energy of the divacancy is s 1.5 eV, and that both

vacancies diffuse together, the probability of their

separation being relatively low.

2. EPR of Radiation Defects Produced by Bombard-

ing Silicon with Fast Neutrons. Compared with elec-

tron-bombarded silicon, radiation defects in fast neu-

tron bombarded silicons have been investigated little.

The first experiments on EPR in n- and p-type

silicon bombarded with neutrons at room tempera-

ture ^ 9 8^ established no connection between the ob-

served spectra and any concrete defects. Only in a

recent communication"-99^ is there a report of a reso-

nant spectrum in silicon bombarded by fast neutrons,

due to a definite center called the Si-N center.

The exact structure of this center is still not clear.

The experimental data in'-99-' permit only some assump-

tions to be made relative to the N-center model.

Bombardment of the crystal with fast neutrons

gives rise to a series of all kinds of possible defects.

(The total number of displaced atoms is ~ 20 per neu-

tron-cm.) Fast-neutron bombardment increases the

resistivity of n- and p-type samples to a value corre-

sponding in the case of prolonged bombardment to the

intrinsic conductivity, and the Fermi level shifts to-

wards the middle of the forbidden band. The resonance

signals produced were in the main very complicated,

and most cases could not be resolved completely. How-

ever, none of the spectra produced by bombardment of

silicon with 1.5-MeV electrons were observed in this

case. The greater part of the investigations was de-

voted to samples whose resistivity was raised by ir-

radiation to almost the intrinsic value. In these sam-

ples, the spectrum did not depend on the neutron dose,

and the rate of center formation was 0.1 neutron-cm.

Unlike silicon bombarded with electrons, the centers

produced were not connected with the chemical im-

purity. In order to separate individual centers and by

the same token simplify the spectrum, several experi-

ments were made in which the investigated crystals
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were heated. The resonant spectrum remaining after

heating for two hours at 170°C and one-hour at 300°C,

and left unaffected by further heating at higher tem-

peratures, was investigated. This spectrum can be

separated into two parts which differ in line intensity

and in the character of the temperature dependence

above room temperature. The more intense part of

the spectrum was found to be due to a definite center,

called the Si-N center. The EPR spectrum of the

N-center was not observed in samples irradiated at

50°C but not heated^100-. Thus, the heating is essen-

tial for the formation of the N-center. The defect

causing the resonance probably does not contain the

impurity atom connected with it, since the N-center

spectrum was observed in both chemically pure sam-

ples and in samples containing various amounts of

different impurities, including oxygen. The EPR spec-

trum of the N-center was investigated at different

temperatures. At room temperature this spectrum is

described by the simple spin Hamiltonian

where

5=1/2 and g = ĝ

(6.12)

2e 3. (6.13)

There are 24 different equivalent positions of the de-

fect in the silicon lattice, with which 24 expressions of

(6.13) can be connected. In accordance with this fact,

the resonance spectrum for arbitrary magnetic-field

orientation can consists of 24 lines. When the mag-

netic field is directed along one of the crystallographic

axes, some lines (or even all) coincide. For example,

for Ho II [001] the spectrum consists of one line for

which gt [110] = 2.0126, g2 = 2.0048, and g3 = 2.0090.

The EPR spectrum of the N-center was investiga-

ted also at low temperatures. The relaxation time of

the Ν center was measured at 77° Κ and found to be

of the order of 10"4 sec. At 77 and 4°Κ it was possible

to resolve the hyperfine interaction with the'Si29

nuclei [in which connection a term IAS must be intro-

duced into the Hamiltonian (6.12)], and an investigation

of the hyperfine interaction has shown that at low tem-

peratures the unpaired electron is localized near one

silicon atom. The character of the symmetry of the

hyperfine interaction and of the g-center indicates

that the wave function of the unpaired electron has a

slightly perturbed axial symmetry with principal axis

along [111]. Accordingly, it can be represented by the

free orbit remaining after the tetrahedral bond is

broken. A theoretical estimate of this wave function,

based on the molecular orbital method, yields η2 = 0.63

and β2/α2 = 6.4, i.e., the p-state admixture predom-

inates in the part (63%) of the wave function under

consideration.

The temperature dependence of the N-center spec-

trum was also investigated for different orientations of

the magnetic field. The observed vanishing of certain fine-

structure lines and the appearance of new lines in the

N-center spectrum can be explained by assuming that

as the temperature increases the electron is no longer

localized on one of the sites, but "jumps" to some

neighboring equivalent site within the confines of the

defect. The electron cannot "jump" to any site, but

only to one whose g-tensor axis has the same direc-

tion as the first site. As the temperature is raised

above 100°K, the jumping rate increases and the elec-

tron becomes localized on two silicon atoms, so that

new lines appear. The experiments have shown, how-

ever, that the thermally activated electron "jump" is

not the only process causing the observed temperature

dependence of the N-center. It has been suggested'-99-'

that at Τ ~ 160° Κ another mechanism comes into

play—thermal averaging of the lattice perturbations

in the vicinity of the N-center. However, the exis-

tence of this mechanism has not yet been proved ex-

perimentally. Thus, whereas the measurements at

low temperatures show that the unpaired electron is

localized at these temperatures on one silicon atom

and can be described by one free orbit, the results of

the measurements of the temperature dependence of

the spectrum allow us to assume that at higher tem-

peratures the electron is localized on two silicon

atoms, and its wave function is represented by two

free orbits, for which the g-tensor axes have a defi-

nite orientation relative to one another. None of these

experiments yielded an exact model of the Si-N cen-

ter. The experimental temperature dependence agrees

with a defect model either in the form of a single iso-

lated vacancy, or a divacancy (Fig. 25). More compli-

cated vacancy groups, which are produced under neu-

tron bombardment, can likewise be identified with the

N-center. The hyperfine interaction constants and the

g-tensor of the N-center are very close to the corre-

sponding characteristics of the B-center spectrum.

However, an analysis of the experimental data shows

that in spite of the fact that the N- and B-centers are

each described (at Τ = 77°Κ) by one free orbit belong-

ing to one silicon atom, these centers are undoubtedly

connected with different defects.

3. Conclusion. Thus, the structure of the defect

producing the N-center is still not clear, and its de-

termination calls for additional experiments.

The structure and nature of the main centers pro-

a) b)

FIG. 25. Possible model of Si-N center, a) Single vacancy;
b) divacancy.
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duced when silicon is bombarded with 1.5-MeV elec-

trons have been investigated in sufficient detail; the

Si-A and Si-Ε centers are each connected with a va-

cancy. Below room temperature the vacancies are

mobile and can be captured by different chemical im-

purities, resulting in different centers. The activation

energy of the vacancy motion is ~ 0.4 eV. The Si-J

and Si-C centers are each connected with a divacancy,

which is also a mobile defect. Its motion has an acti-

vation energy ~ 1.3 eV. The binding energy of the two

vacancies forming the divacancy is not less than 1.5

eV. The divacancy is thus a stable defect which moves

as one unit, with low separation probability.
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