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INTRODUCTION

L. GINZBURG and I. M. FrankW have shown in
1946 that a particle moving uniformly in a straight line
across the interface of two media with different dielec-
tric constants emits a unique radiation, called transi-
tion radiation. The radiation effects connected with
the motion of particles through electrically inhomo-
geneous media have subsequently attracted the atten-
tion of many workers. This group of phenomena is of
interest because radiation of the transition type is en-
countered more frequently, for example, in the study
of Cerenkov radiation in organic media, in problems
involving the passage of beams of particles through an
inhomogeneous plasma such as the solar corona, in ac -
celerators, in counters for the detection of particles,
etc. The physical nature of these effects is as follows.

When the charge moves through an electrically in-
homogeneous medium, the relation between the phase
velocity of the electromagnetic wave at the particle
location and the velocity of the particle changes con-
tinuously. As a result, the electromagnetic field con-
nected with the particle becomes detached, as it were,
from the particle and radiation results.

In this sense, the radiation from a particle moving
uniformly in a straight line in a medium with variable
dielectric constant is analogous to the radiation from
a particle moving non-uniformly in vacuum. In both
cases the radiation is connected with the change in the
relation between the phase velocity of the electromag-
netic waves in the given medium and the particle ve-

locity. The only difference is that in the former case
the phase velocity of the wave changes, and in the lat-
ter the particle velocity.

It follows from the foregoing that radiation of elec-
tromagnetic waves from a charged particle moving uni-
formly in an electrically inhomogeneous medium is,
unlike the Cerenkov effect, a nonrelativistic effect and
can be observed at relatively low velocities.

Although the radiation from the particle in an in-
homogeneous medium has been the subject of many
investigations, there is still no systematic exposition
of this very timely question as far as we know. The
present review should fill this gap to some degree.

We have purposely disregarded investigations of the
radiation produced when a particle passes parallel to a
plane interface, since this effect is a modification of
Cerenkov radiation. The status of this question as of
1961 was reported in the review of B. M. Bolotov-
skii'-41-', and this effect was also the subject of later
original papers [33,34,42a,82,85] _

In this survey we consider only radiation from a par-
ticle in an inhomogeneous medium filling an unbounded
space, in which connection we do not concern our-
selves with radiation in waveguides[36-38,43,4,68,n,72,m]_

1. TRANSITION RADIATION OF A CHARGE PASSING
THROUGH THE INTERFACE OF TWO MEDIA

The problem of transition radiation was first solved,
as is well known, by Ginzburg and FrankCJ and was
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later considered by several others1-2'5'19'29'74^*.
To solve this problem, we use here the method pro-

posed by G a r i b y a n ^ .
Let a charge e, moving uniformly with velocity v,

cross the interface between two media with different
dielectric constants and permeabilities € and ix. We
assume further that the energy lost by the particle per
unit path is so small compared with its kinetic energy,
and that the velocity of the particle can be regarded as
constant. Then the field produced by the particle is de-
scribed by Maxwell's equations in the form

d i v B = O , d i

— e v 6 ( r — v t ) , r o t E = s —

D = 4ite6(r — vt),
= EE.

( l . l ) t

We choose the plane z = 0 as the interface between
the media. The particle moves along the positive z
direction from the first medium ( e ^ ^ ) into the sec-
ond medium (€2;Ju2) and crosses the interface at the
instant t = 0.

We seek the fields and the currents in the form of
expansions in triple Fourier integrals

E ( r , t)= \ E ( k ) e i <kr-w<> dk e t c . (1.2)

homogeneous Maxwell's equations can be written in the
form

r, t)=

where

i, 2̂ 1,2 —

Since the first medium occupies the region of space
z < 0, it follows, from the condition that the solution
be finite as z — -°° , that Im A.t < 0.

It is obvious that the radiation fields can propagate
in the first medium only in the negative z direction,
and therefore Re A.j < 0. From analogous considera-
tions we find that Re A2 > 0 and Im A2 > 0. These
signs of Im A1>2 pertain to positive a; and should be
reversed for negative as.

From the boundary conditions for the tangential
components of the fields ET and HT we obtain the
Fourier components of the radiation field. In the first
medium we have

ei <aei [xv]] (1.5)

w h e r e w h e r e

e ( o ) E ( k ) , B (k ) =•. ,u (o>) H (k).

T h e F o u r i e r c o m p o n e n t s fo r t h e f i e l d s h a v e t h e f o l l o w -

i n g f o r m

T h e s e e x p r e s s i o n s d e s c r i b e t he f i e ld of a c h a r g e in a n

u n b o u n d e d m e d i u m and a r e s o l u t i o n s of t h e i n h o m o -

g e n e o u s M a x w e l l e q u a t i o n s .

To find t h e t r a n s i t i o n r a d i a t i o n , i . e . , t he e f f ec t c o n -

n e c t e d w i t h t h e b o u n d a r y , i t i s n e c e s s a r y t o add to t h e

f o r e g o i n g s o l u t i o n s a l s o t h e s o l u t i o n s of t he h o m o g e -

n e o u s M a x w e l l ' s e q u a t i o n s w i t h a r b i t r a r y c o n s t a n t s ,

o b t a i n e d f r o m t h e c o n d i t i o n s of c o n t i n u i t y of t h e t a n -

g e n t i a l c o m p o n e n t s of t h e f i e l d s .

We d e n o t e by p and K t h e c o m p o n e n t s of t h e v e c t o r s

r and k, l y i n g in t h e ( x , y ) p l a n e . T h e s o l u t i o n s of t he

T h e r a d i a t i o n f i e l d s in t h e s e c o n d m e d i u m a r e o b t a i n e d

f r o m (1.5) by i n t e r c h a n g i n g t h e i n d i c e s 1 and 2.

W e now c o n s i d e r t he c a s e w h e n t h e p a r t i c l e m o v e s

f r o m t h e m e d i u m t o t h e v a c u u m , i . e . , e 2 = ju2 = 1. We

a s s u m e f u r t h e r m o r e t h a t Mi = 1 and e4 = e = e ' + i e " .

L e t u s w r i t e out a n e x p r e s s i o n , fo r e x a m p l e , f o r

t h e r a d i a l c o m p o n e n t of t h e e l e c t r i c f ie ld of t h e r a -

d i a t i o n in v a c u u m :

£ 2 P ( Q , z, t)= e-™* rfco.

*.\ very illustrative physical interpretation of transition radia-
tion, its peculiarities, and its connection with other phenomena
can be found in the paper by I. M. Frank[108], dedicated to the mem-
ory of S. I. Vavilov.

t rot a curl.
t[vE] = v x E.

= —r e— X2
— •,/<•

( 1 . 6 )

T h e i n t e g r a t i o n w i t h r e s p e c t t o <p i s f r o m 0 t o 2TT, a n d

w i t h r e s p e c t t o K f r o m 0 t o ° ° . T h e i n t e g r a l w i t h r e -

s p e c t t o <p i s e x p r e s s e d i n t e r m s o f B e s s e l f u n c t i o n s .
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We introduce the distance R from the point of emerg-
ence of the particle from the medium to the point of
observation, and the angle 9 between the z axis and
R, by means of the relations z = R cos 9 and p
= R sin 9. Then, for large R, using the asymptotic
expressions for the Bessel functions, we obtain

- r J j (1.7)

where

= — x, fix) = x sin 9 + 1/ 1—a;2cos0,
0)
(x)= — zsinG + y 1— x1 cos6,

^ w 4 -

(1.8)

Similar integrals for oiR/c » 1 can be readily cal-
culated by the saddle-point method. We consider the
first term in the integrand

The saddle point is x s = sin 9. We must recognize
that the function W(x) has a pole at the point

which under the condition 0 < x p < sin 9 makes a con-
tribution to the radiation field, in the form of a cylin-
drical wave (the other poles are unimportant).

The distance between the saddle point and the pole
varies with the frequency; in particular, the pole may
coincide with the saddle point (we have in mind the
case when e" —-0). Depending on this distance, the
radiation fields in vacuum differ in structure. Leaving
out some intermediate steps, we can represent the ra -
diation field in the following form L H J :

(1.9)

where Wo is the residue of W(x) at the pole x =
and

(1.9')

(It can be shown that the second term in the integrand
of (1.7), the exponential of which contains ^(x) in the

argument, makes no contribution to the radiation field
in the approximation of large R.)

When the saddle point and the pole are sufficiently
far apart (| A | « 1) we have

--R

(1.10)

In the frequency region where | A | « 1, the pole
and the saddle point coincide and f(Xp) — 1, so that

Thus, the radiation field, subject to the condition
e"V wR/o « 1, i.e., when the attenuation can be neg-
lected, consists of a spherical and cylindrical wave.
The first describes the transition radiation and the
second the Cerenkov radiation emerging from the
medium to the vacuum.

Indeed, when the particle moves from the medium
to the vacuum, the Cerenkov wave is incident on the
interface at an angle

1
' = 6 = " (1.11')

P V e' (to)
If we now use Snell's law, putting K' = (o>/c)V e' sin 9',
and substitute the value of 9' from (1.11'), we obtain
K' = wxp/c, i.e., Xp = sin v(u ) precisely determines
the angle of refraction of the Cerenkov wave of fre-
quency CL>. The left side of the inequality 0 < Xp < sin 9
is the condition for the excitation of the Cerenkov wave
in the medium, while the right side is the condition for
the emergence of this wave to the vacuum.

In the limiting case of very large R, when the con-
dition

(1.12)

is satisfied, the situation will be different. Now the
attenuation can no longer be regarded as equal to
zero, and therefore the condition | A | » 1 is satisfied
in the entire frequency interval. At such distances
there is no cylindrical wave, and the radiation field
constitutes a spherical wave

?- R (1.13)

Expression (1.12) describes both transition and
Cerenkov radiation. It is clear that in the presence
of attenuation, the contribution to the Cerenkov field
emerging to the vacuum is made by a small section
of the particle trajectory near the interface. At infi-
nitely large distances from the point of emission of the
particle, the waves radiated by a source of finite dimen-
sions are of course spherical.

We note that the remaining components of the elec-
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tromagnetic field, E z and H^ = H, have a form analo-
gous to that of Ep, differing only in inessential mul-
tipliers.

We now find the spectral density of the radiation.
The energy flux of the radiation of electromagnetic
waves in a solid-angle element dS2 = sin 9 dd dy,
during the time of flight of the particle, is equal to

dWtr
dQ = 7

C-/?2 [ E'Hdt, (1.14)

where

The spectral density of the transition radiation is
written in the form

! a | ^ | 2 . (1.14a)
dQdia

For the Cerenkov radiation (cylindrical waves) it
is convenient to calculate the flux of the Poynting vec-
tor through a circular area

hence

(1.15)

We now consider the frequency interval in which
| A | » 1. If we assume zero attenuation and let R
become infinite, then the condition can be written in
the form

|p sin 9 — |/p2e'(a) — 1

In this frequency region we obtain

•0. (1.16)

d2W'tr
dQ da

e2P2sin29cos29
«2c(l — p2 cos2 e)2"

( E - l ) ( l - p 2 - f e —sin'B)
(ecos8+/e — sin29) (l —p / e — sin2 8)

W e

(1.17)

(1.18)

As already noted, Cerenkov radiation in the form of
cylindrical waves is produced not in the entire fre-
quency region | A | » 1, but only in the part where
0 < V e'(w ) - / 3 ~ 2 £ sin 9.

In the case when the saddle point and the pole coin-
cide, we obtain the width of the frequency interval from
the solution of the equation (| A | ~ 1):

6(o' -

where oi' is determined from the equation

E'(CO') — f5~2 = sin29.

For the transition radiation in this frequency interval
(a)' ± Sw') we obtain

___ e2P3sin28cos26
dQda l —p2cos28)2

8+1 (1.19)
ECOS8 + V E — sin2 8

and the Cerenkov radiation is determined as before by
the expression (1.18), but without the factor 4.

Finally, when condition (1.5) is satisfied, the tran-
sition and Cerenkov radiations are described by for-
mula (1.17) in the entire frequency interval. The sharp
maximum of (1.17), arising when 1 - /3Ve'( w) - sin2 9
= 0, is due to the emergence of the Cerenkov radiation
to the vacuum.

For a particle entering into the medium, the for-
mula for the spectral density of the transition radia-
tion (the formula of Ginzburg and F r a n k ^ ) is obtained
from (1.17) by replacing j3 with -/3.

The transition radiation is linearly polarized, and
the electric vector lies in the plane passing through the
ray in the direction of the charge velocity. For non-
relativistic velocities, the intensity of the radiation is
proportional to the square of the particle velocity. On
the interface between vacuum and an ideal conductor
(e = «>), the spectral radiation density is'-1-'

(1.17')
dQda

The angular distribution of the radiation is in this case
the same as for a dipole placed on the interface.

In the ultrarelativistic case, as can be seen from
(1.17), the transition radiation has a sharp maximum
in the direction 9 ~ mc2/E (E —kinetic energy of the
particle). In this case, as shown by Garibyan'-5^', the
main contribution to the transition radiation forward
is made by frequencies larger than optical, for at these
frequencies the denominator of (1.17) is small because
of the smallness of

1 — P>e — sin28 ( P ~ l , e ~ l , 9 « 1 ) .

The spectral density is practically constant up to the
limiting frequency ojiim = OJ0 /2V [1 -/32] (at this fre-
quency the radiation density decreases to one half the
radiation density at the lower frequencies ), where w0

is the plasma frequency of the medium. Substituting
in (1.17) the expression for €(w) = 1 — (OJO/W2) (this
expression for e(w) in any medium when u >OJ 0^ 1 1 0^) ,

and then integrating with respect to the frequencies and
the angles, we o b t a i n ^

e2ff>0
WtT = (1.20)

3c 1 1 —P2

When the particle enters the medium, the factor
1 - /3 V [ e - sin2 9 ] in the denominator of (1.17) is no
longer small, and the transition radiation in vacuum
encompasses only the optical part of the spectrum and
is determined by a formula that increases logarithmic-
ally with the energy C1'5];

V E (CO) — 1 dw. (1.21)
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It must be pointed out that the expressions presented
describe the transition radiation only under the con-
ditions (OJ/C)R sin2 9 » 1. In the region of space
R ~ (C/GL) ) sin"2 9, redistribution of the wave field of
the transition radiation takes place.* In the ultrarela-
tivistic case, this redistribution region is quite appre-
ciable. In vacuum its order of magnitude is

2c
Z v ~ CO (1 — P2+82) '

and in the medium (at frequencies larger than optical)

2c

CO f 1 —

The radiation field of an ultrarelativistic particle, as
can be seen from (1.5), is actually redistributed in a
region with dimensions ~ z v - z m . It is obvious that
for the formation of the transition radiation it is very
important that the particle trajectory be linear over a
length on the order of z m . Multiple scattering can
lead to a change in the value of z m , and consequently
also to a change in the spectrum and energy of the
transition radiation. The effect of multiple scattering
on the transition radiation was considered by Garibyan
and PomeranchukE15^, Garibyan№, and Pafomov [ 1 7 ' 1 3 9^.

Without dwelling in detail on the contents of these
papers, we point out one important circumstance. It
turns out that when multiple scattering is taken into
account, there exist a certain critical energy

Ecr = (mC2)3 COQZ,

(where L is the radiation unit of length, E s = 21 MeV)
such that if the particle energy E is lower than critical,
multiple scattering does not affect the transition radi-
ation, for in this case the transition radiation field is
redistributed essentially along the path in a vacuum,
up to the maximum frequency w\im.

When E > E c r , the usual mechanism of transition
radiation in the high-frequency region of the spectrum

'. J
begins to break down as a result of multiple scatter-
ing, and the multiple scattering itself leads to the ap-
pearance of bremsstrahlung. In this case the transition
radiation cannot be distinguished from bremsstrahlung
and the two must apparently be regarded as a single
phenomenon.

The intensity of the transition radiation depends
greatly also on the relation between the field redis-
tribution zone and the degree of smearing of the inter-
face. Amatuni and Korkhmazyan have shown f-26^ that if

*More accurately, the zone of redistribution of the radiation is
determined from the condition that there be no interference between
the radiation field and the particle field, i.e.,

the smearing is much larger than the redistribution
zone the radiation is greatly reduced (see also E14°3.)

The foregoing formulas are valid, naturally, only
for sharp boundaries.

It is also easy to obtain an expression for the spec-
tral density of the transition and Cerenkov radiations
in vacuum at the boundary of an isotropic ferrodielec-
tric (Pafomov'-19-]). Using (1.5), we get

e'P'sin'8cOS'8
dQda

X (e —l)(l-p V en-sin26)-p2(eM,-l) (1.18')

It must be noted that in a ferrodielectric the group
velocity can in principle be negative, i.e., the direc-
tions of the phase and group velocities can be opposite.*
This can be readily shown by substituting in Maxwell's
equation a solution in the form of plane waves (E, H
~ e x p [ i ( k # r - wt)]). We then obtain

Undamped electromagnetic waves exist both when
e > 0, \x > 0 and when e < 0, fx < 0, since the refrac-
tive index is real in both cases. From the latter equal-
ity it is seen that in the first case the Poynting vector
coincides in direction with the wave vector k, while in
the second case S and k are directed opposite each
other, i.e., the group velocity is negative. In this case
the solutions are advanced potentials. If the particle
velocity exceeds the phase velocity of the light (n/3 >1),
then all the elementary waves of the excitation propa-
gate, with equal phase, in a direction 9 satisfying the
equality n/3 cos 0 = 1 . The Cerenkov waves produced
in this manner have an equal-phase surface in the
form of a cone with vertex directed backward (in dis-
tinction from retarded potentials, when the vertex of
the cone is directly forward). The phase velocity of
the Cerenkov waves makes an acute angle 6 with the
direction of motion of the particle, while the energy
propagates in the opposite direction. Accordingly, a
sharp peak in the intensity of the transition radiation,
due to the Cerenkov radiation, should take place when
a particle enters the medium. This can be readily
verified by introducing a small damping

Indeed, in the region of frequencies with negative
group velocity (e ' < 0, /u' < 0), we should get, from
the conditions that the solution be finite as z —• °° ,

Re Xi = -^- l/e>' — sin2 9 < 0.

Taking this circumstance into account and replacing
/3 by -/3, we verify that the spectral density (1.18)

*Particle-radiation singularities connected with negative group
velocity in an anisotropic medium were investigated in the disser-
tation of Pafomov[18].
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has a sharp maximum in the direction corresponding
to the angle of emission of the Cerenkov radiation 0O,
(sin2 90 = e'n' - /3~2).

This singularity of transition radiation, connected
with the negative group velocity, appears also in ani-
sotropic mediaC18>19>55>S63 and in media with spatial
dispersion'-85 '̂.

In conclusion it must be noted that by using per-
fectly analogous arguments we can calculate the tran-
sition radiation not only for a point charge, but also
for an arbitrary current, for example for dipole mo-
ments [24], a charged filamentC11^, etc. [25,46,65-68]

The quantum theory of transition radiation was
developed in papers by Ternovskii^126^ and Garibyan^.
It follows from their papers, however, that the quan-
tum corrections to the classical formulas for transi-
tion radiation are of no particular interest in the case
of the ordinary electron densities. They can become
appreciable only when the charge enters from vacuum
in very dense matter, for example into an atomic
nucleus.

2. RADIATION OF A CHARGE PASSING THROUGH
A MOVING INTERFACE
The question of the transition radiation in moving

media is of definite interest in the study of the inter-
action between individual particles and electron clus-
ters, for example, in the generation of radio waves,
for astrophysical applications, etc.

In the present section we develop the results ob-
tained by Barsukov and Bolotovskii-39-1 and Barsukov
and Naryshkina^35^.

Let us assume that in a reference frame x, y, z,
ict the interface between two media with dielectric
constants et and e2, measured in the reference frame
at rest, is the plane z = -ut, where u is the velocity
of the interface. The charge e moves along the z
axis with velocity v. We change over to a reference
frame connected with the interface. The velocity of
the charge in this system is written in the form

for radiation directed forward and

and the electromagnetic fields of the radiation are de-
termined by expressions (1.4) and (1.5).

To obtain the radiation fields in the stationary ref-
erence frame, it is necessary to use the Lorentz trans-
formation for the field.

We shall henceforth confine ourselves to the case
when the moving medium is a plasma with e£ = 1
- (O)O2/OJ'2 ), and ej = 1 (the primes denote quantities
pertaining to the frame affixed to the boundary).

As a result of a calculation similar to that given in
the preceding section, we obtain for the total radiation
energy when the relative particle velocity is w « c

•/3 -'- W% (w)(2.1)

\-h Wl(w) (2.2)

for radiation directed backward.
Here Wj(w) and WQ(W) denote the total energy

radiated in the corresponding direction in the station-
ary medium, and are determined by formulas (1.20)
and (1.21) in which v is replaced by w. Substituting
the expression for WJJ (w) and introducing the Lorentz
transformed frequency

• 1 / - ^ Z

r I —
we obtain

w-T = - In 1 —- (2.3)

where

! = 1 ITS" , Wn =
The expression for the radiation energy has formally
the same form as in the case of a stationary interface,
but with a different material plasma frequency. When
u ss c, OJQ becomes much smaller than a;J. This effect
is equivalent to increasing the plasma density by a fac-
tor 2(1 -u/c)""1.

Integrating (3.3) with respect to the frequency, we
get

15itc { | ^ 1 u
1 —

— 1 (2.4)

As can be seen from (2.4), Wr becomes quite appre-ciable when u ~ c.When w ss c, the total energy radiated forward(when the particle is emitted from the plasma)1=T̂' (2-5)
i.e., in this case the radiation energy is independent
of the velocity of the wall, and coincides exactly with
the expression for the transition radiation in the case
of the stationary interface.

3. TRANSITION RADIATION IN OBLIQUE INCIDENCE
OF THE CHARGE ON THE INTERFACE

The radiation produced in oblique incidence of the
charge on the interface has a very important property:
unlike in normal incidence, the radiation is generally
speaking polarized in two mutually perpendicular di-
rections.* This circumstance is very important for

*A similar polarization is possessed also by transition radia-
tion in the case of normal incidence of a charge on the boundary of
a gyrotropic medium[56' 142' I43].
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the detection of transition radiation, since the polari-
zation of the transition radiation is one of the most im-
portant factors which make it possible to distinguish it
from all possible extraneous effects.

Transition radiation in the case of oblique incidence
of the charge was considered in papers by Korkhma-
zyan, C29.32], GaribyanE6'7^, and Pafomov^22^.

We present below an exposition of the results of
these papers.

Assume that a charge is incident with velocity v on
the plane z = 0 which separates the media et and e2-
The x axis is chosen such that the vector v is in the
(x, z) plane, while the z axis is directed from the
first medium (e t ) into the second medium (e2).

The procedure for finding the electromagnetic
fields of the radiation is in this case precisely the
same as in Sec. 1. We therefore present directly ex-
pressions for the Fourier components of the radia-
tion W :

(3.1)

E, ,2T (k) = nEt,iK (k) + vxEU2x (k),

*•-£•« 0)2" E2,l ,
(3.2)

(3.3)

where u = k«v = kxvx + kzvz, n is a unit vector along
the z axis, and EK(k) and Ex(k) are the components
of the tangential components ET along K and along vx.

To find the flux of the differently polarized radia-
tion we resolve the vectors E and H into components.

One of the components—the longitudinally polar-
ized one—lies in the plane containing the wave vector
and the normal drawn to the boundary at the point of
entry of the particle, while the other—transversely
polarized—is perpendicular to the first. Denoting
further the longitudinally polarized components by the
symbol II and the transversely polarized by 1, we
obtain

Ex = cos cp (xEx -;- cos yvxEx),
(3.4)

etc., where cp is the angle between K and the x axis.
The electromagnetic radiation flux during the en-

tire time of flight of the particle is best obtained by
means of the formula

W = -^— \ [EH]2dxdydt. (3.5)

In integrating with respect to t, x, and y we obtain

6-functions; taking further account of the fact that
sin 9 cos cp, AB =-̂ - Ĵ e sin 9 sin <p,

v. = — V e sin 9,

z=~, kx = —

we obtain the spectral density of the radiation in a
solid-angle element*.

Thus, for the radiation in medium 2 (forward) we

d2Wl.

(f)COS(p
"1 2!

\x(ia, 9, (p)cos6sin2(p.

(3.6)

(3.7)

The total radiation density is determined by the sum
of (3.6) and (3.7).

As can be seen from (3.7), in the case of normal in-
cidence of the charge on the boundary (vx = 0) the ra-
diation is longitudinally polarized.

Let us consider some particular cases of our re-
sults.

As Vz —- 0, the transition radiation vanishes, as it
should, since the particle does not cross the interface.
When 0 = JT/2, the radiation is also equal to zero if
ei * °° . This result is due to the fact that the wave
propagating along the interface either cannot satisfy
the boundary condition (e2 > £j) or else is "drawn
into the medium" 1 (e2 < et).

If we put in (3.6) and (3.7) e2 = 1 and et = °°, then
we obtain the angular distribution on the interface be-
tween vacuum and an ideal conductor:

c/Qild>
_ <"2pz I sin9 — px coscp "] 2 /g g*

" ~ ~n*c~ L (1—PiSinSâ cp)2 —p|cos26 J '
d-W-*- e2p"z f p v cos 9 si n tp ~l -
dlfda ~ ~Wc L (1 —pTsIn~e"cos"(f)'2~—Pj COPITJ ' (3.9)As can be seen from (3.8), when sin 6 = /?x cos ip the

radiation polarization is purely transverse. Let us
consider the transition radiation of a nonrelativistic
particle. Neglecting in (3.2) and (3.3) all the terms
that contain 0, we ^22^

" da du> ~ A ; g, cos g + ('E2lE,-e2sin
2T)|2 '

Thus, the transition radiation is polarized in this
approximation in the same manner as for normal inci-
dence, and the radiation density differs only by the
factor (/3z//3)2.

For relativistic velocities, the main contribution to
the transition radiation is made, as before, by the fre-
quencies w0 < w < wo/2V [1 ~p2] , and the radiation is

*We confine ourselves here to the case of large distances,
when the cylindrical wave is completely transformed into a spheri-
cal one.
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concentrated around the trajectory of the particle in a
cone with an apex angle ~V [1 - 0 2 ] . The transversely
polarized radiation component is smaller in order of
magnitude by a factor (1 - /32) than the longitudinal
component, i.e., this radiation is practically com-
pletely longitudinally polarized.

4. TRANSITION RADIATION WITH ACCOUNT OF THE
SPATIAL DISPERSION OF THE DIELECTRIC CON-
STANT

The radiation from sources moving in a medium
depends not only on the nature of the source and on
the character of its motion, but also on the electro-
magnetic properties of the medium. From this point
of view, it is of definite interest to determine the r a -
diation from charged particles in media with spatial
dispersion. We have referred so far to media in which
the connection between the induction and field-intensity
vectors was local. This means that we considered me-
dia in which the value of the induction at a given point
is determined by the field at the same point. Yet it is
sometimes necessary to take into account the influence
of the field in all of space on the induction at a given
point, and this leads to the appearance of several new
effects, particularly to the appearance of additional
waves[57'69>7°]. Mathematically this circumstance is
described by an integral relation between the field and
the induction, namely

Dt{i, t)= jj d*' jj di'llk(t, f, r, r')Eh(r', f). (4.1)

For processes which are homogeneous in space
and in time, the operator e depends only on the dif-
ferences r - r ' and t - t ' . In this case the nonlocal
connection between the field and the induction can be
replaced by a local connection between the Fourier
components, i.e.,

(co, k) = ei4(co, k)£ft(co, k). (4.2)

The dependence of the dielectric tensor eik(w,k) on
the wave vector k is called spatial dispersion.

The effect of spatial dispersion on the energy lost
to radiation by a particle passing through an interface
between vacuum and a medium was first considered
by ZhelnovL52] and later by many others[53-56,58,59,104] _
The operator eik(t, t', r, r ' ) can then be obtained by
starting from a concrete model of the medium and
making some physical assumptions concerning the
properties of its surface. This is the situation, for
example, in problems involving a bounded hot
plasmaC 5 7 ] .

It is possible, however, to approach the problem
phenomenologically, by postulating the form of the
operator ?ik(w> k) C70]. It then becomes necessary
to introduce additional boundary conditions for Max-
well's equations, since their order, generally speak-
ing, increases for media with spatial dispersion. Some

arbitrariness enters in this case in the choice of
boundary conditions. However, as follows from
[52,58,59,86] ^ t-^e intensity of the radiation depends
very little on these conditions.

We investigate the influence of spatial dispersion
and transition radiation, using an electronic plasma
as an example. To describe the properties of the
plasma we use a linearized kinetic equation with self-
consistent field in the form ^573

(4.3)

If f0 is the plasma electron distribution function,
f the nonequilibrium addition, e, u, and v the energy,
velocity, and effective collision frequency of the elec-
trons, and e the electron charge. On the interface
t = 0 the electrons satisfy the condition for specular
reflection*

The plasma occupies the half space z > 0.
equations can be represented in the form

(4.4)

The field

AE | ^ j - — grad di v E ~ -^

= 0,

v = (0, 0, v),

uf dp + qv t> (z -vt)6{Q)}

(4.5)

where q is the charge of the particle.
To solve the problem, all the quantities entering in

(4.3) and (4.5) are best expanded in Fourier integrals
of the type

A(r, «)= \ A (co, x, z) el l*f>-at) da'd<» (4.6)

[compare with (1.2)].
Solving (4.3) with boundary condition (4.4), and con-

tinuing the electric field into the region z < 0 (the tan-
gential components ET in even fashion and the normal
component Ez in odd fashion'-S7^)( we obtain from (4.5)

Eh(<S>, k) = O, k)A';(CO, k) (4.6')

(summation from 1 to 3 is carried out over repeated
indices),

(a = x, y and the prime denotes the derivative with
respect to z) ,

,= 6(^)4- — , :?. (4.7)

*The case of diffuse reflection of electrons from the boundary
was considered by A. Ts. Amatuni.[1M]
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The symbol P denotes that the singularity at x = 0
must be understood in the sense of the principal value.
The Fourier components E ( w , k ) are related with
E (u, K, z ) by the equation

t (co, x, z) = ~

The dielectric tensor e^(
to

eiA(to, k) = 6ift — ~ -

?i(co, \L)eih*z dk2. (4.8)

k) in the plasma is equal

utuk -
i (co — ku) — v (4.9)

For an isotropic medium this tensor can be repre-
sented in the form -57^

where e ( w , k ) and e t r (a ; ,k) are the longitudinal and
transverse dielectric constants; for a plasma

(4.11)

(4.12)

It is convenient to represent the general solution of
Maxwell's equations in vacuum, as in Sec. 1, in the
form of a sum of solutions of the homogeneous and in-
homogeneous equations [see (1.3) and (1.5)]. Omitting
the calculation procedure, which is perfectly analogous
to that given in Sec. 1, we obtain for the spectral den-
sity of the transition radiation in vacuum ^54j

2 l m

dkz

-T- e"(ra, k) —
sin2 9

7l(co, k)

(4.13)

(4.14)

(4.15)

0)3
Y = —9—

kz dkz
k~

(4.16)

The foregoing expressions solve completely the formal
aspect of the problem of transition radiation in our
case. Setting e t r(a. ' ,k) and e'(o;,k) in (4.13) and
(4.14) equal to e(o-), we obtain the known Ginzburg
and Frank expression M for the transition radiation
in a medium without account of spatial dispersion.

We now proceed to an analysis of the results in
several particular cases.

In the case of weak spatial dispersion, the t rans-
verse and longitudinal electric constants can be rep-
resented in the form -57^

str(co, k) = e (co) — atr ^ - ,

e' (co, k) = e (co) — a1 -—— . (4.17)

Substituting these values of the dielectric constant in
(4.15) and (4.16), we get

(4.19)

For a nonrelativistic electron plasma with

(where T is the temperature in energy units), calcu-
lation of the integrals in (4.11) and (4.12) under con-
ditions of spatial dispersion (w » kV [3T/m] ) yields*

CO2
4jte2n0

a ' = 3 - (4.20)

In this case the contribution due to a^r is negligibly
small. For a completely degenerate electron Fermi
gas with

/»W =
3rin

0,

P<-Po,

P> Po

(where p0 = (37r2)1^3Rn1/3 is the limiting Fermi mo-
mentum ) we have

5 co2e2 ' ° m '

When the charge is emitted from the plasma, the r a -
diated Cerenkov longitudinal waves contribute to the
field in the vacuum. Indeed, the phase velocity of the
longitudinal waves, as follows from the dispersion
equation c2/c2

e (co) — a1 —=— — 0,v ' co2

can be much smaller than the velocity of the charge.
Then when the charge moves to the boundary of the
plasma, the Cerenkov longitudinal wave is incident on
the boundary at an angle

(4.21)„ CO Ccos e =;— = —kv v 1/

where e' = Re e. In addition to the reflected longitudi-
nal and transverse waves, a transverse wave is t rans-
formed from the longitudinal one on the boundary. The
angle at which this wave propagates in vacuum is de-
termined from Snell's law and is equal to

(4.22)

Using a derivation similar to that in Sec. 1, we can
show that in our case the Cerenkov wave going into
the vacuum is cylindrical near the boundary. A s R - > »
it becomes transformed into the spherical wave. The
spectral density of the Cerenkov and transition radia-
tion is then described by expressions (4.13), (4.14),
(4.18), and (4.19), in which v is replaced by —v. It

*We neglect the Landau damping.
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follows from (4.19) that the maximum radiation due
to the emergence of the Cerenkov waves into vacuum
occurs when condition (4.22) is satisfied, and that the
region of the frequencies in which the Cerenkov gen-
eration takes place is determined by the inequality
0 < sin v < 1. We now proceed to investigate the
singularities of the radiation in the region where the
conditions of strong spatial dispersion are satisfied,
namely

In this approximation the backward transition radiation
is equal to C54H

2 sin2 9 cos2 9 j 1 —f
dQ da

(4.23)

where f is the surface impedance.
In the case of a Maxwellian plasma, the impedance

is equal to

£ = niT (4.24)

Since the impedance is small for a Maxwellian plasma
(because wVaj2) « T/mc2 « 1), the transition radiation
in the entire region of angles cos 9 » \ £ | is the same
as for an ideally conducting medium [see (1.17')]. If
the medium has sufficiently large magnetic permeabil-
ity, the conditions for strong spatial dispersion are
satisfied because of the large value of M. and the im-
pedance J, which is proportional to yfJT, may not be
small compared with unity.

To conclude this section, we consider the role of
weak spatial dispersion of the dielectric constant near
the exciton absorption band^69'57'70^, when the dielec-
tric constant is large. As is well known, allowance for
spatial dispersion leads in this case to the appearance
of additional transverse waves (exciton waves ).

The question of transition and Cerenkov radiation
of a charge near the exciton light-absorption frequen-
cies in a dielectric was considered in^86^, where the
influence of boundary conditions for the polarization
vector on the radiation intensity is examined, and
where it is shown that the intensity of the radiation
depends very little on these conditions. We confine
ourselves to the case when the condition Pn|z = i = 0
is satisfied for the polarization vector. This condition
is equivalent to continuity of the normal component of
the electric field E l n | z = 0 = E 2 n | z = 0. It is easy to show
that the condition of specular reflection from the sur-
face of the plasma also leads to this equation. There-
fore to estimate the spectral density of radiation, with
allowance for spatial dispersion near the exciton ab-
sorption bands in the dielectric, we can make use of
formulas (4.13) —(4.16). We represent €^-r(oj,k) in
the f o r m ™

rkr+fo-^r-' (4.25)

and we replace e'(oj,k) by e(cu) (we disregard lon-
gitudinal waves), where | e(w)| » 1 and ^0 is a pa-
rameter characterizing the spatial dispersion. Calcu-
lating the integrals (4.15)—(4.16) for a particle enter-
ing the medium, we obtain

sin2 9 cos2 9. (4.26)

This formula has been obtained under the assumption
that j3 « 1, e' = Re e » 1, and e'2£0 « 1. The dis-
persion relation for the exciton wave takes the form

k2 = ~ ~& eft) '
In the region of frequencies where e' > 0 the exciton
wave has negative group velocity when /30 < 0. The real
part of the radical [-l/e/30 - sin2 9]1^2 is negative in
this case and the sharp radiation maximum due to
emergence of Cerenkov waves of exciton origin into
the vacuum occurs when the particle enters the me-
dium at an angle 90, where

(4.27)

[compare with (1.18)].

5. RADIATION FROM A POINT CHARGE PASSING
THROUGH A PLATE*

In this section we obtain the radiation produced
when a point charge passes through an isotropic plate
of thickness a (Garibyan and Chalikyan^13'14^,
Pafomov^7'18-20^).

The Fourier component of the radiation fields in
vacuum have in this case the formLl4^:

where

(5-2)

( 5-3 )

0)2

T _ L
_ ^ a.2

0)̂
c2

(5.4)

Etr(co, k)
*We do not consider here the ionization energy loss of the

particle in the plate[s>20].
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The normal components of the electric field and the
magnetic field are connected with ET by the equations

)="5—-"IT. £-2n= r~ i

H2(x, w) = -^- (5.5)

(n is a unit vector along the normal).
The expressions with index 1 describe the radiation

field ahead of the plate, while those with index 2—be-
hind the plate in the direction of particle motion. We
recall that

(02 = e, e 2 = l ,

and that the real and imaginary parts of \1>2 are posi-
tive. *

We consider first the case when R is much larger
than the thickness of the plate a (R » a ) . Then the
saddle point, as in a semi-infinite medium, is KS

= (OJ/C) sin 9. Following the usual procedure, we
can easily obtain a formula for the spectral density
of the forward radiation £18^:

sin26 cos29

(6-1) \2x (1—p2—p3y-

(z-l/)2e c

(5.6)

The energy radiated in the region in front of the plate
can be obtained from (5.6) by replacing v with - v .

Let us investigate the results (5.6) for a thin plate
(I Ve~"|o)a/c « 1) in the case of a nonrelativistic par -
ticle. Expanding exp(iwxa/c) and exp ( - iwxa/c) in
a series and retaining the first terms of the expansion,
we obtain the angular distribution of the transition-
radiation spectral density in the form:

diida (5.7)

The radiation in front of the plate is described by the
same formula, since the latter does not depend on the
sign of the velocity. When sin(wa/2v) = 1, the radia-
tion energy exceeds the corresponding value in the
case of a half-space, owing to interference of the elec-
tromagnetic waves radiated by the particle on going
through the boundary of the plate.

It must be noted that the foregoing formula inter-
prets correctly the transition radiation experimentally
observed in thin films (see [58-ei])#

For a relativistic particle (a>a/v « 1) the spectral
radiation density is written in the form

6 - 1 2 sin2 8 cos2 0
(1 —p2cos29)2

Integrating over the angles, we get
«2,,,2tt2 .dW

da 8 — 1 (5.9)

For a relativistic particle, the radiation is also in-
dependent of the sign of the velocity and increases with
increasing particle energy.

We now consider the case of a "thick" plate. We
assume that the inequalities under which Cerenkov r a -
diation is possible are satisfied, namely

o) y s
When finding the asymptotic values of the radiation
field, it is necessary to take into account the effect of
the exponentials in the expressions for E1T and E2T

on the position of the saddle point. Expanding F"1 in
powers of the small quantity

we obtain for the radial component of the Cerenkov-
radiation field ^

Eip(R, 9, /) = 2JU Res ( - ~ f • 3.ti
i , — ico -£-

e 1 2E

JL + J - ^ 2

E 1 \ 2 »

X ^ I ^ — ^ - I exp | ( 7 f [ x s i u 9 + X2 cos 9

(5.10)

( 5 . 8 ) w h e r e R e s d e n o t e s t h e r e s i d u e a t t h e p o l e

This residue must be taken into account if the pole is
to the left of the line of steepest descent.

It is seen from (5.10) that the terms containing a2

*Here, unlike in (1.4), we seek the solution in the region
— a < z < 0 in the form A exp (iAtz) + B exp ( - iA,z), and in the
region z > 0 and z < - a in the form exp (iA2z) and exp (—iA2z),
respectively.
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and /3i have different saddle points. If the pole is to
the left of the saddle points corresponding to the terms
with a>2 and /3j, then the residues must be taken at the
poles a2 and /3j.

It is easy to show that in this case the residues
cancel each other and the field is equal to zero. There-
fore the residue makes a contribution to the radiation
field only for those frequencies at which the pole «p

is to the left of the line of steepest descent correspond-
ing to the term with /3t, and to the right of the line of
steepest descent of the term with a2.

As a result we obtain the following conditions for
the Cerenkov-radiation frequenciesCMH:

[5 sin 9 1 R
cos2 8

V e (<o) — sin2 9
(5.11)

where s = 2n + 2 and p = 2n + 1 (e rea l ) . For the
spectral density of the Cerenkov radiation through a
circular area p, r + dp into the space ahead of the
plate we obtain C14^

4e2

dQ da
[1 — e (1 —e)]*n+

Cerenkov radiation in a solid-angle element
on the other hand, is finite (it is independent of R) and
is proportional to the square of the thickness of the
plate Wl.

It is interesting to note that the Cerenkov radiation
in the backward direction vanishes if the angle of inci-
dence of the generated Cerenkov ray is equal to the
Brewster angle.

Indeed, as is known from optics, in the case of in-
cidence at the Brewster angle the reflected ray is at a
right angle to the refracted ray. In the case of radia-
tion at the Brewster angle, the condition /32e2 = 1 + e is
satisfied, and the statement made above follows from
(5.12).

Radiation from a charge passing through the plates
of a ferrodielectric, and also through a plate cut from
a uniaxial crystal, is of interest from the point of view
of the Cerenkov-radiation singularities referred to in
Sec. 1. An investigation of this problem was made by

Silin and Fetisov^58'59^ took into account spatial d is -
persion of the dielectric constant to determine the
transition radiation in a plate. In solving this problem
they assumed that the reflection of the conduction elec-
trons from the surface is specular.

x / ( P 2 E - l ) [ l t p ! ( l - e ) ] . (5.12)

Similar calculations for the radiation in the region of
space behind the plate yield the following expression:

dQ da v%

X (5.13)

where the bands of the Cerenkov frequencies are de-
termined from the condition (5.11) with s = 2n+l ,
p = 2n. It is obvious that the series expansion in (5.12)
and (5.13) corresponds to Cerenkov radiation arriving
at the given point as a result of multiple reflection of
the waves from the walls of the plate.

From a comparison of (5.12) and (5.13) we see that
forward Cerenkov radiation exceeds the backward
radiation by a factor

Putting a « R we find from (5.11) that at a given point
there will move at an angle 9 a packet of waves with a
narrow frequency spectrum

and with a fundamental frequency determined from the
condition sin 9 = [e - /3" 2 ] 1 / 2 . In this case there is no
cylindrical Cerenkov wave (just as for the case of a
half-space, when R —- °° ), and the intensity of the
Cerenkov radiation through the circular area p, p + dp
vanishes, naturally, as R —- °° . The intensity of the

6. RADIATION OF A PARTICLE MOVING IN A ME-
DIUM WITH PERIODICALLY VARYING PROPER-
TIES

Direct estimates show that the intensity of t ransi-
tion radiation is low. The photon emission probability
is of the order of V137 per particle. In his Nobel prize
lecture L1083, I. M. Frank noted the possibility of inten-
sifying transition radiation by adding up the transition
radiation from a particle passing through a periodic-
ally complicated structure. In this connection, an
analysis of the passage of particles through a layered
medium is of a special interest.

The earliest of the rather extensive group of papers
devoted to this question is that of Ya. B. Fainberg and
N. A. Khizhnyak^78^*, who considered a simple model
of a layered medium, such that the solution of the prob-
lem can be completed without any approximations. This
paper deals with a periodically stratified dielectric
with period a+b, consisting of two plates with mate-
rial constants eit ^ and e2, Hi, and with thicknesses
a and b. The particle moves along the z axis per-
pendicular to the interfaces between the plates.

Using the symmetry of the problem, we can reduce
Maxwell's equations to a single equation for the z-
component of the induction vector Dz = D = e(oj, z )EZ,
which has the following form:

*See also[136].
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t h a t j U i = / U 2 = 1 . ) T h e c o r r e s p o n d i n g f o r m u l a f o r t h e

l o s s e s i s o f t h e f o r m

( -

' A )

CO y o > = a ) o

c o 0

S d e ^

\ ddo

V . b(0n

- 1 — a r c t g — - ( 6 . 7 ) '

K m a x i s t h e m a x i m u m v a l u e o f t h e w a v e v e c t o r , a t

w h i c h t h e m a c r o s c o p i c t h e o r y i s s t i l l a p p l i c a b l e .

T h e f i r s t t e r m i n ( 6 . 7 ) d e s c r i b e s t h e p o l a r i z a t i o n

l o s s e s i n a l a y e r o f t h i c k n e s s b , w h i l e t h e s e c o n d t e r m

i s c o n n e c t e d w i t h t h e p r e s e n c e o f b o u n d a r i e s . F r o m

( 6 . 7 ) i t f o l l o w s t h a t t h e b o u n d a r i e s d e c r e a s e t h e p o l a r -

i z a t i o n l o s s e s . A m o r e d e t a i l e d i n v e s t i g a t i o n s h o w s

t h a t p o l a r i z a t i o n l o s s e s r e a c h a m a x i m u m i n t h e m i d -

d l e o f t h e l a y e r a n d d r o p o f f t o w a r d s t h e e d g e s E 7 8 ^ .

T o b e a b l e t o a n a l y z e t h e r a d i a t i o n l o s s e s , w e m u s t

k n o w t h e f r e q u e n c y d e p e n d e n c e s o f e ( w ) a n d n ( w ) .

S u c h a n a n a l y s i s i s p r e s e n t e d i n ' - 7 8 ^ f o r s e v e r a l

p a r t i c u l a r c a s e s . W i t h o u t d w e l l i n g o n t h e s e c a s e s , w e

p o i n t o u t o n e g e n e r a l d e d u c t i o n . A s s u m e t h a t w e h a v e

a l a y e r e d m e d i u m w i t h a d i e l e c t r i c c o n s t a n t p e r i o d i c

i n t h e c o o r d i n a t e z w i t h p e r i o d L . I f i n s o m e r e g i o n

o f f r e q u e n c i e s t h e w a v e l e n g t h i n t h e m e d i u m i s m u c h

l a r g e r t h a n t h e c h a n g e i n t h e d i e l e c t r i c c o n s t a n t , t h e n

i n t h i s f r e q u e n c y r e g i o n t h e p e r i o d i c m e d i u m i s e q u i v -

a l e n t , f r o m t h e p o i n t o f v i e w o f i t s e l e c t r o d y n a m i c

p r o p e r t i e s , t o a u n i a x i a l c r y s t a l w i t h a d i e l e c t r i c

t e n s o r h a v i n g c o m p o n e n t s

( 6 . 8 )

T h e r e f o r e t h e e n e r g y l o s t b y t h e p a r t i c l e t o C e r e n k o v

r a d i a t i o n c a n b e d e t e r m i n e d f r o m t h e f o r m u l a C 1 1 1 ^

T h i s r e s u l t i s g e n e r a l i z e d t o t h e t h r e e - d i m e n s i o n a l

c a s e i f w e i m p o s e o n t h e " a m p l i t u d e s " o f t h e o s c i l l a -

t i o n s o f t h e d i e l e c t r i c a n d m a g n e t i c c o n s t a n t s s o m e

a d d i t i o n a l l i m i t a t i o n s .

A s s h o w n i n l - 8 0 ^ , i n t h e c a s e w h e n b o t h t h e d i e l e c -

E q u a t i o n s ( 6 . 6 a ) a n d ( 6 . 6 c ) d e t e r m i n e t h e p o l a r i z a - * a r c t g = t a n "
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trie constant and the permeability are arbitrary peri-
odic functions of the coordinate, and the wavelength is
much shorter than the period, the electrodynamic
properties of the medium are described by dielectric
and magnetic tensors of the form

If we assume that the particle energy loss is small
compared with the energy of the particle itself, then
SE = v* 5p and both formulas in (6.13) can be combined
in one

— 1 •"

i '

nink

(6.10)

where a n and j3n are the Fourier components of the
dielectric constant and the permeability, respectively.
The summation in (6.10) is over all the reciprocal-
lattice vectors.

As shown by Gertsenshtein and Tatarskii^112^, for-
mulas of the type (6.10) hold true if, in addition to lim-
itations formulated above, the following requirement is
satisfied

2xL (6.11)

In this case the quantities — o>n |
2 and — ,Z/ | /3n |

2

may be far from small. Knowing e ^ and n^, we can
calculate the particle losses from the known formulaC87].

The loss of an ultrarelativistic particle in a s t ruc-
ture consisting of sharply bounded layers of a dielec-
tric was considered in Clo>16>17>76]_ ^ e s n a n n o t s tOp
to discuss these results, since all the qualitative de-
ductions are the same as in the case of a periodically
inhomogeneous medium whose properties vary smoothly
with the coordinate. We now proceed to an analysis of
such a case.

The medium considered in several papers [16,75-77,79]
had a dielectric constant that depended on the coordi-
nate like

E(CO, Z) = e0((o (6.12)

The most detailed study of this case is given in the
paper by Ter-Mikaelyan^76^, which we shall follow be-
low. General deductions concerning the character of
the spectrum radiated by a particle moving in a peri-
odically inhomogeneous medium can be obtained by
starting from the laws of particle energy and momen-
tum conservation

= fc2f cos i (6.13)

Here <5E —change in particle energy due to the emis-
sion of a quantum with frequency OJ , Sp —change in
the momentum of the particle, k —wave vector, 8 —
angle between the direction of the emitted quantum and
the vector v, ip —angle between the Oz axis and the
vector k, and r is an integer.

The second formula of (6.12) describes the conser-
vation of the projection of the momentum of the par-
ticle plus emitted quantum system on the direction of
motion of the particle.

K COS 6 =
7?

COS ll).
T

(6.14)

The modulus of the wave vector is connected with
the frequency w by the dispersion equation of the me-
dium k = k(w ). From (6.14) we obtain for cos 6 the
equation

c o 8 e = ( - ? — ? f ) * - » ( « ) . (6.15)

F r o m t h e r e q u i r e m e n t t h a t | c o s 6 \ < 1 f o l l o w t h e i n -

e q u a l i t i e s

(6.16)

From the inequalities (6.16) we can find for each r
the region of the frequencies radiated by the particle.
Formulas of the type (6.13) —(6.16) can be easily ob-
tained for an arbitrary medium whose dielectric con-
stant is periodic in the three coordinates. The deduc-
tions made with respect to the character of the radi-
ated spectrum remain in force here, too.

As noted by Ter-Mikaelyan, Eq. (6.13) is equivalent
to Bragg's law in the theory of diffraction of x rays.

It follows from (6.13) that the radiation of electro-
magnetic waves by a particle takes place for a defi-
nite relation between the wavelength A = 27r/k and
the lattice parameter, i.e., there occurs a peculiar
parametric type of spatial resonance.

For the special case of a layered medium, con-
sidered by Famberg and Khizhnyak, the frequencies
corresponding to the parametric resonance are de-
termined by Eq. (6.6c).

If | e - e | /e" « 1, then the influence of the inhomo-
geneous medium on the properties of the emitted quan-
tum can be neglected and we can put in (6.13) —(6.16)

that

We note that as r — °° Eq. (6.16) goes over into
the usual conditions for Cerenkov radiation.

We now consider the ultrarelativistic case, when we
can put v s« c and we can define e (u, z ) by means of
a formula such as

8 = 1 i
2 : t z

5
(6.17)

Substituting

k = -

in (6.16c) and recognizing that when v » c

we obtain the following inequalities, which define the
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region of the radiated frequencies:

E „
-E-) \

>co> — f 1 + V 1
mcr L '

( i r ) J = w>^- (6.18)

From the fact that the radicand is positive it fol-
lows that the energy of the radiated particle should
satisfy the inequality

3.19)

Thus, the radiation of electromagnetic waves by an
ultrarelativistic particle is a threshold effect, i.e.,
waves will be radiated by the particle if its energy is
not lower than that given by inequality (6.19).

The conditions (6.18) can be greatly simplified if
we stipulate satisfaction of the inequality

e*Nl* r me* y

Then

T
I
cr

(6.20)

(6.21)

We note that from (6.19) and (6.20) we get the fol-
lowing limitation on the order of the spectrum:

_J_/4H£27VY (6.22)

From inequality (6.15) and the relations that follow
it we get

e<
/ iVe2 \ '
\3tmc2 J

(6.23)

\nme2 J
i.e., the radiation from an ultrarelativistic particle
lies in a narrow cone in a predominantly forward di-
rection, as already mentioned several times above.

It is interesting to note that transverse electromag-
netic waves can be radiated in a layered medium hav-
ing a dielectric constant described by (6.17), but not in
a non-layered medium.

We shall not discuss here spectra with r » r m a x ,
since, as shown in E76^, the radiation intensity corre-
sponding to these spectra is quite small.

The expression for the intensity of radiation pro-
duced by a particle moving in a medium with a dielec-
tric constant described by a formula of the type (6.17)
was derived by the WKB method by Ter-Mikaelyan in
the following form:

(6.24)
dz dm

where d2W/dzdo; is the spectral density of the par -
ticle radiation per unit path, J r is a Bessel function
of order r, B = luA/4^r^fT^ c cos 0, and p = v /c .

In the derivation of (6.24) it was also assumed that
I » c/o;V~e^ (the condition for the applicability of the
WKB method).

Each of the terms in the sum in (6.24) corresponds
to the radiation intensity of the r-th order spectrum.
It is easy to see [see (6.15) and below] that the expres-
sion in the square brackets in (6.24) is equal to sin2 6.

The spectrum with r = 0 corresponds to Cerenkov
radiation modified by the presence of the inhomoge-
neity.

We note that the radiation with r > 0 can occur
when the Cerenkov condition (v/c)VT > 1 is not sat-
isfied.

The intensities of the spectra with r = 0 and ± 1
were calculated in C26'79^ under the assumption that
B « 1 and A/e0 « 1, but for an arbitrary ratio of \
to I Eidman^os] considered the calculation of the
radiation from a particle traveling at an angle to the
Oz axis in a medium with a dielectric constant de-
scribed by formula (6.12). The radiation of an oscil-
lator in such a medium was calculated by Khacha-
tryan'-89^'. The same question is dealt with in the paper
by V. V. Tamoikin'-136-!, in which it was pointed out that
resonance between the transition radiation and the o s -
cillator vibrations is possible, so that the latter can
build up.

K. A. Barsukov and B. M. Bolotovskii^40'130- inves-
tigated the energy lost by a particle in an inhomoge-
neous nonstationary medium with a dielectric constant
that varies like

z(z, ait) = s0 (co) + A cos f -— z — (00M . (6.25)

The calculation, made in the WKB approximation,
leads to the following expression for the spectral den-
sity of the field radiated by the particle per unit path:

dz da

Here

= £i£!lM»-u> v Jr B>) t _ ( 5 L ^ " £ w. (6.26)

:-r\V — U, D = •
Aac 1 e 0 cos 0 -7-

c ) So

The conditions that determine the radiated frequen-
cies are obtained from the requirement that the ex-
pression in the square bracket of (6.26) must be posi-
tive. These conditions can also be derived from con-
servation laws, in analogy with the procedure used for
a medium whose properties are time-independent.
B. V. Khachatryan^133^ studied the radiation from a
system of cylindrical plasmoids in a medium having
a dielectric constant given by (6.12), and investigated
the influence of the fluctuations of the plasmoid dimen-
sions and of the distances between plasmoids on the
spectrum of the field.

Barsukov investigated the radiation from a charge
moving in a magnetoactive plasma situated in an ex-
ternal magnetic field that varies periodically with the
coordinate t 1 3 1 ] . His results are close to those of Ter-
Mikaelyan (cf.
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So far we have considered a particle moving through
an infinite periodic medium. Let us now discuss the
radiation of a particle passing through a stack consist-
ing of a finite number of plates. This question is the
subject of papers by Garibyan^10^ and Pafomov^17^. We
confine ourselves to a report of the results of ^17^.

In Sec. 5 we gave a formula for the radiation from
a particle passing through a thin plate. Summing the
radiation from m plates, we obtain

(6.27)
dudQ dadQ

where d2Wm /dwdfi is the radiation from a particle
passing through m plates (per unit solid angle and per
unit frequency interval), d2W/dwdfl is the radiation
from a particle passing through one plate, a is the
thickness of the plate, and b the distance between
plates. The factor preceding d2W/dwdft in (6.27) de-
scribes the interference between radiation from dif-
ferent plates.

If

~2e~
[a-|-6(l-pcos9)]

then

dadQ da dp. '

i.e., the radiation is summed coherently. If

then the summation of the radiation is incoherent and

dadQ dadQ "

For an arbitrary value of

~ m [ o 4 6(1— p cos 6)1

the interference factor has maxima proportional to m2,
and widths of order m when

(6.28)

where v is an integer.

7. RADIATION OF A PARTICLE IN A MEDIUM HAV-
ING A FLUCTUATING DIELECTRIC CONSTANT

In many cases it is of interest to study the radiation
of a particle in a medium whose dielectric constant
fluctuates. Phenomena of this kind can occur when
corpuscular streams pass through the solar corona,
ionosphere, or interstellar space. The energy lost by
the particle to radiation should experience a sharp
increase when the particle passes through matter,
when it is in a phase-transition state, etc.

The radiation loss of a particle can be calculated by
two methods—by an averaging method and by pertur-
bation theory. Naturally, when these methods are ap-

plied to the same problem they lead to the same r e -
sults. However, the averaging method seems prefer-
able to us, since it makes it possible to reduce the
problem of particle energy loss in a fluctuating me-
dium to the known problem of particle energy loss in
a medium with a specified dielectric tensor.

Maxwell's equation in a medium with dielectric con-
stant € is of the form

rot rot? + -
de- dt

(7.1)

In the general case, in the presence of temporal and
spatial dispersion, the dielectric constant e ( r , t ) is
an integral tensor operator which is a random function
of its arguments. Naturally, the electric field % is
also a random function. We write e and S in the form

e = e-j-6E, % = J (7.2)

The bar denotes here statistical averaging, 6e is the
fluctuation of the dielectric tensor, and £ is the fluc-
tuation of the electric field.

Let us derive an equation for the average field E.
To this end we average (7.1) and subtract the averaged
equation from (7.1). As a result we obtain the follow-
ing system for the determination of E and £:

rotrotl + ~-^- (Bl+68E-f 6eg — 6e|) = 0. (7.3)

To obtain an equation for E we must express the sec-
ond equation of (7.3) in terms of E, and then substi-
tute the resultant expression into the first equation
of (7.3). This procedure can be carried out in closed
form if we neglect the last two terms in the paren-
theses of the second equation of (6.3). We shall assume
that this neglect is permissible; the conditions under
which this can be done will be formulated later.

Let 0 be the Green's operator of the equation

From the second equation of the system (7.3) we
obtain for £ the following expression:

l(r, 0 = r'; t, t') (6EE)r-,,. dr' dt'. (7.4)

The indices r ' and t' denote that the expression
(SeE) is taken at the points r ' and t'. Substituting
(7.4) in the first equation of (7.3) we ultimately obtain
for E the equation

(7.5)

where the effective dielectric constant is defined by

B(e)e) E = eE H- (r, <)<P(«\ O (6eE)r-r dr' dt'. (7.6)

This method was first applied to the problem of
propagation of electromagnetic waves in a fluctuating
medium by Lifshitz, Kaganov, and Tsukernik ^-n^ , and
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developed by Kaner- l u J and by one of the authors'-81^.
We shall henceforth consider only homogeneous

and stationary media, i.e., media in which e does not
depend explicitly on r or on t, and the correlation
relations between <5eik(r,t) and <5ejk;(r', t ' ) have the
following form:

6eik(r, 0SEi.fc.(r', t') = WiH-k- ( r - r ' , t-t'). (7.7)

In this case the expression for e^e'E can be writ-
ten:

(eWE)i= \ lik(r-r', t — t')Ek(v', t')dr'dt'

w ( r - r ' , t-t')Wilmk(r-r', t-t')Ek(T', t)dr'dt'.

(7.8)

Going over to Fourier transforms with respect to the
coordinates and the time, we can rewrite (7.8) in the
form

where

8^(0), k) = e;ft(co, k)+\(pem(Q, r)WUmh(Q, x) e-i«ot-ftP) rfQ(/T.

(7.10)

It is interesting to note that the presence of fluctu-
ations leads to the appearance of spatial and temporal
dispersion even in the case when there is no such dis-
persion for the average value of the dielectric con-
stant. Knowing the effective dielectric tensor, we can
easily obtain the particle energy loss by means of the
formula £"]

duidz
v, S-'v) (k,
1 —(kft-'

(7.11)

where

Let us consider an isotropic medium for which e
and Wik^m are isotropic tensors characterized by the
scalars e(o;) and W(p). We shall also assume that
W does not depend on T, nor does e on k. Under
these assumptions, the effective dielectric tensor
takes the following C 1 1 1 ^

exp —i — \ e(cu) Q-[-ikQ
x —± '—- ' dQ. (7.12)

Thus, the formulas presented provide a complete
solution of the problem of the energy lost by a particle
moving in a medium having random inhomogeneities.

Methods similar to the foregoing were used to de-
termine the particle loss in a statistically inhomoge-
neous medium by Tamoikin and Biragov ^103^ and by

Kalashnikov and RyazanovL92^. Kapitza^88^, Ter-
Mikaelyant77], and Tamoikin'-102^ based their analysis
on perturbation theory, i.e., they assumed that E in
formula (7.4) for £ is the same as it would be for a
medium with 5e = 0, and then, knowing £, they deter-
mined the intensity of the radiated field by means of
the usual formulas.

We proceed now to a direct exposition of the r e -

sults. If the inequality —--/fZ~« 1 is satisfied (I is
the characteristic correlation radius), and if W de-
pends only on the absolute value of the vector p, then
the dielectric constant of the fluctuating medium is
given by the following formula:

(7.13)

Here

8ea = W(0), Z3 = -J=-

Apart from the inequalities indicated above, the limits
of applicability of this formula are determined also by
the relation (2irl/\)76e2 « 1 [112- [cf. (6.11)].

Substitution of (7.13) and (7.11) leads to the follow-
ing formula for the particle energy ^

)rfz

Km a x is the maximum value of the wave vector at
which macroscopic electrodynamics is still applicable.
In the derivation of this formula it was assumed that
/32e < 1, i.e., the conditions for Cerenkov radiation are
not satisfied for the average value of the dielectric
constant. In this case, which is of most interest, the
only reason for the radiation is the presence of fluc-
tuations. In addition, it was assumed in the calculation
of the energy loss that ul/v « 1.

If the medium is one-dimensional, i.e., if e depends
only on one coordinate, say on z, then the effective di-
electric constant is a tensor with components

(0 O (0 / T\ , (/) r_j/\i_l In 1 r \

i.e., such a medium is equivalent in its electrodynamic
properties to a uniaxial crystal t81-. We have already
encountered a similar situation in the analysis of the
loss in a periodically inhomogeneous medium (see the
preceding section). In this case the energy loss is de-
termined by formula (6.11).

Tamoikin'-102^ considered the energy lost by a par-
ticle in a plasma, taking into account weak spatial dis-
persion and fluctuations of the electron density.

The action of the operator e(w )E was specified in
the form

8 (co) E = 8 (oi) E ~ V (VE), (7.16)

where
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e (to) = 1 —"—- •

T is the temperature of the electron gas in energy
units, N = N + SN, N is the average value of the elec-
tron density, and 5N is the fluctuation of the electron
density.

It is assumed that 6N « N. It is easy to see that
the fluctuation of the dielectric constant is determined
by the relation

6e = —4jte2SA7ffl2m.

As is well known, in the absence of a magnetic field
there is no Cerenkov radiation of transverse waves.
Cerenkov radiation of longitudinal waves is possible
under the condition

v- > '.iv'r;'e (v-f = Tim).

If v2 < 3 v j / e , both longitudinal and transverse
waves are radiated, owing to the presence of fluctua-
tions.

If v > 3v^/e, then an additional process takes
place, consisting in the transformation of the longi-
tudinal Cerenkov waves into transverse ones, owing
to scattering by the fluctuations.

We consider first the case v2 < 3v^/e. We obtain
for the intensity of the radiation loss of transverse
waves the expression

:1
da dz

1 - - '
I n ' - :iA

l p%
ei'2

3,4 , 1 - .

(7.17)

Formula (7.17) is similar in appearance to (7.14).
There is no need, however, for introducing here the
limiting momentum Kraax, for cut-off takes place
automatically at distances on the order of the Debye
radius when spatial dispersion is taken into account.

The radiation intensity increases abruptly when v
tends to VTv-p/ZT, corresponding to an approach to
the Cerenkov threshold of plasma wave emission.

The expression for the loss due to radiation of lon-
gitudinal waves differs from (7.17) by a factor %J~3
x(cVvip). Since this factor is much larger than unity,
it follows from the foregoing that the intensity of r a -
diation of longitudinal waves is many times larger
than the intensity of radiation of transverse waves.

The corresponding formula is applicable under the
conditions

z « i , c .
) 3l-T

We shall not stop to discuss the case v2 > 3vqVe, or
the angular distribution of the radiated field. The cor-
responding results and their discussion can be found
in the cited papers.

8. RADIATION OF A PARTICLE IN THE PRESENCE
OF OBSTACLES

The inhomogeneity of the medium in which the par-
ticle moves causes a change in the phase velocity of
the electromagnetic waves, and this in turn causes r a -
diation of an electromagnetic field even at subluminal
particle velocity.

The same result is obtained when the particle moves
over an uneven surface. The physical nature of the
phenomenon is that the charge induced by the particle
does not move on the surface uniformly even when the
particle itself moves uniformly.

If the particle velocity is much smaller than the
velocity of light, then the problem is electrostatic and
can be solved by the image method. Such an analysis
was carried out by Askar'yan, Gorodinskii, and
E'idman ^103j, using as an example a particle incident
on an ideally conducting sphere.*

The gist of the method of images is to replace the
system comprising the sphere and the moving charge,
in accordance with the known rules, with some speci-
fied distribution in vacuum of charges moving gener-
ally speaking in non-uniform fashion, such as to sat-
isfy the boundary conditions on the surface of the
sphere. Knowing the motion and the distribution of
the charges, we can easily obtain their radiation loss.

The calculation given in -105jI gives for the spectral
density of the field radiated per unit solid angle the
following expression

IT
L

imJ "I2v
~aa 1 + p cos 9 J '

(8.1)

where

r I f= -w\ —2 { — a -h- Et
ia>a \ "|

[

0 is the angle between the particle trajectory and the
direction to the point of observation, a is the radius
of the sphere, and Ei is the integral exponential
function.

As a —- °° , (8.1) goes over into the well known ex-
pression for transition radiation for normal incidence
of the particle on a perfectly conducting half-space.
As a — 0 (collision with neutral particle ), (8.1) takes
the form:

dQ da '
(8.2)

Formulas (8.1) and (8.2) were obtained under the
assumption that a « X and v2/c2 « 1. However, for-
mula (8.1) gives a correct answer also when a — °° .

*We note that a remark was made in[105] to the effect that
Askar'yan's results in[97] are incorrect. As shown in[137], the re-
sults are actually correct.
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This circumstance is connected with the special sym-
metry of the problem in this case.

It is interesting to note that the image of a sublumi-
nal particle can acquire superluminal velocity if the
surface on which the charge is incident is chosen in
suitable manner. Noteworthy from among problems
of this type is the one dealing with radiation incident
on a sphere from a current ringt116 '117^.

Dnestrovskii and Kostomarov considered the en-
ergy loss of a nonrelativistic particle moving near a
surface possessing axial symmetry C99>1003, The par-
ticle radiation intensity is expressed in terms of the
regular part of the Green's function of the electro-
static problem for the given surface. It must be men-
tioned that the determination of the Green's function
itself is quite difficult and, generally speaking, cannot
be carried out in general form. The authors have suc-
ceeded in solving approximately, with the aid of a
method they developed, the problem of radiation from
a particle entering into a round waveguide with an
infinite flange.

Increased radiation intensity can naturally be ob-
tained if the particle moves over a system of spheres
or some other bodies in such a way that the individual
fields radiated as the particle moves over each sphere
are summed coherently. It is easy to see that the best
conditions for coherent addition are obtained if the bod-
ies over which the particle moves are periodically a r -
ranged. A corresponding analysis was presented by
Amatuni and Oganesyan ^28^.

Let us calculate the radiation from a particle t rav-
eling over a sphere of radius a at an impact distance
b. In analogy with the case considered in the beginning
of this section, we assume that the inequalities /3 « 1
and a/A. « 1 are satisfied, so that the radiation can be
regarded as dipole, and we can use the image method
to determine the dipole moment.

Simple calculations yield for the components of the
dipole moment d the following expressions:

eaHt
(b*-

dz=-- (8.3)

Knowing the dependence of the dipole moment on the
time, we can use known formulas E118^ to find the spec-
tral density of radiation in a unit solid angle. The
corresponding formula will be of the form

dm' e2(06a6 f•

(8.4)
where Ko and Kj are modified Hankel functions, and
6 and q> are the angles in the spherical coordinate
system.

We write out also the values of the spectral energy
density radiated in all the directions (dW/dw), the
energy dW/d£2 radiated at all frequencies in a unit
solid angle, and the total radiated energy W:

6(0

W = = \ ™
J du> dQ

a, a

( 8 . 7 )

T h e m a x i m u m r a d i a t i o n c o r r e s p o n d s t o a f r e q u e n c y

d\V__

rfco
to > con

( 8 . 8 )

A n a n a l o g o u s c a l c u l a t i o n l e a d s t o t h e f o l l o w i n g e x -

p r e s s i o n s f o r a c h a r g e d f i l a m e n t m o v i n g o v e r a c y l i n -

d e r :

da dtp
W = - ( 8 . 9 )

H e r e cp i s t h e a z i m u t h a l a n g l e , ( 0 < <p < TT), a n d T i s

t h e c h a r g e p e r u n i t f i l a m e n t l e n g t h . T h e f i r s t f o r m u l a

o f ( 8 . 9 ) h a s a m a x i m u m w h e n w = 3 v / 2 b .

W e n o w c o n s i d e r t h e r a d i a t i o n o f e l e c t r o m a g n e t i c

w a v e s w h e n s o m e c h a r g e m o v e s o v e r a s y s t e m o f m

s p h e r e s o r c y l i n d e r s w h i c h a r e s e p a r a t e d f r o m o n e

a n o t h e r . W e a s s u m e t h e c h a r g e t o m o v e p a r a l l e l t o

t h e l i n e j o i n i n g t h e c e n t e r s . W e a l s o a s s u m e t h a t

( a / r ) 3 « 1 ; i n t h i s c a s e t h e r e s u l t a n t f i e l d i s t h e s u m

o f t h e f i e l d s d u e t o t h e r a d i a t i o n f r o m t h e i m a g e i n

e a c h o f t h e s p h e r e s o r c y l i n d e r s .

T h e m a g n e t i c f i e l d H r a d i a t e d b y s u c h a s y s t e m h a s

a t t h e i n s t a n t t t h e f o l l o w i n g

w h e r e R o i s t h e d i s t a n c e f r o m t h e c e n t e r o f t h e s y s t e m

t o t h e p o i n t o f o b s e r v a t i o n ,

T h e s p e c t r a l d e n s i t y o f t h e r a d i a t i o n p e r u n i t a n g l e i s

g i v e n b y t h e f o r m u l a

mar
s i n 2 — , — ( 1 - p c o s O ) ,r-w

da di>.
s i n 2 ^ ( . - f

( 8 . 1 0 )

(8.5)

T h e f i r s t f a c t o r d e s c r i b e s t h e r a d i a t i o n o f a n i n d i v i d u a l

b o d y , a n d t h e s e c o n d t h e i n t e r f e r e n c e o f r a d i a t i o n f r o m

d i f f e r e n t b o d i e s . T h i s f a c t o r i s t y p i c a l o f d i f f r a c t i o n -

g r a t i n g t h e o r y . N a t u r a l l y , f o r m u l a ( 8 . 1 0 ) c a n b e u s e d

t o d e s c r i b e t h e r a d i a t i o n f r o m a s y s t e m o f a r b i t r a r y

i n d e p e n d e n t r a d i a t i n g b o d i e s .

I f t h e s y s t e m l e n g t h i s s m a l l ( — — ( 1 - / 3 c o s 6)

« 1 ) , t h e s e c o n d f a c t o r i s e q u a l t o m 2 , i . e . , c o h e r e n t

a d d i t i o n o f t h e r a d i a t i o n f r o m t h e i n d i v i d u a l b o d i e s

t a k e s p l a c e .

F o r a n a r b i t r a r y v a l u e o f — 5 — ( 1 - / S c o s 9), t h e

s e c o n d f a c t o r h a s m a x i m a w h i c h a r e p r o p o r t i o n a l t o

m 2 a n d h a v e a w i d t h o f t h e o r d e r o f l / m w h e n
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-=— (1 — p cos 9) = nl, (8.11)

where I is an integer.
Relation (8.11) is the Bragg-Wulff condition for a

plane grating. From the condition cos 9 s 1 at a spe-
cified value of the wavelength we can obtain the follow-
ing limitations on the order of I:

Finally, when u;r

(8.12)

~P cos 6) » 1, the interference

factor will be of the order of m at all points except
in the direction of the principal maxima, i.e., inco-
herent summation of the fields radiated by the individ-
ual bodies takes place in this case. (We note that we
are dealing here with a situation analogous to that pro-
duced when a particle travels through a stack of plates;
see Sec. 6.)

Radiation from a particle moving along a continuous
periodic surface was investigated by Bass and Khan-
kina^823, and also by Parygin^90^.

The method used in E82^ was first proposed by
Lysanov'-119^ and by Meechem^120^, who showed that
if the surface z = £(x, y) satisfies the inequalities

Imax«l, "7-1 « 1

(the subscript max denotes the maximum value), then
the investigation of the propagation of the waves over
the periodically uneven surface reduces to a solution
of an integral equation with a difference kernel.

For the time-averaged particle energy-loss, the
following expression was obtained in L82J:

dx da
p B.

-co (, r, s—— o
s, r (fOe£max) exp [j ((i00 + HOe) b\

_s, -I

V—l, l-T (8.13)

We have introduced here the following notation:
a r e t n e coefficients of the Fourier

expansion of exp i
L max J

and

V

Lx and Ly are the periods of the function f (x ,y) .
We consider the particular case when J

= A cos [(2?r/L)x] and (wb/v )(1 -/32)1 /2 » 1. If
these assumptions are satisfied, then (8.13) takes
the form

dx dm
-Re

2j/x

/
co2 / co , 2it -26- /1-p (8.14)

where J s is the modified Bessel function of order s.*
It follows from (8.14) that only harmonics with

s < 0 can be radiated.
From the condition that the radicand must be real

follow the following limitations on the number of the
radiated harmonic at fixed frequency:

(8.15)

From the same condition we can obtain the limitation
on the radiated frequency at a fixed number of the
harmonic:

(8.16)

In the paper referred to, the radiation of a particle
moving over a periodic surface was investigated in a
perturbation approximation, in the form developed in
[121]_ rp^g j j m j t s of applicability of this method are
determined for the given case by the inequalities

In the case when f = A cos (2irx/L) the formula for
the particle loss is written in the form

_2b ™ (1_p
dx day

(8.17)

The limitation on the frequency in (8.17) is obtained
from (8.16) by putting s = - 1. It is interesting to note
that in the perturbation-theory approximation, when
ai/v - 27r/L is close to w/c, the loss increases. This
is connected with the known effect of resonant r ise in
the field amplitude when the field glides over a period-
ically uneven surface. When w/v — 2ir/h ~ co/c, per-
turbation theory in the form used by us cannot be em-
ployed. A more correct calculation, similar to that
given in C125], should lead to a finite value of the losses
in this case.

Parygin'-9Oj considered, using a somewhat different
form of perturbation theory E122^, the disturbance of a
modulated beam moving over a periodically uneven
surface.

Along with the radiation from a particle moving
over a periodically uneven surface, it is of interest to
consider a particle that moves over a statistically un-
even surface. A problem of this type was solved by
Bass and Khankina^83^. We shall not repeat the cal-
culation method, and present only the final result for
one particular case:

(8.18)
dxdio

*Some errors have crept into[82], as a result of which formulas
(10) and (11) of that paper, which correspond to our formulas (8.13)
and (8.14), are incorrect.



440

where

is the correlation function of the uneven surface, the
bar denotes statistical averaging, and g2 = K(0) the
mean square of the height of the roughness. Formula
(8.18) is valid if the following inequalities are satisfied:

Formulas (8.13), (8.14), (8.17), and (8.18) can be r e -
written for moving radiators of different types by
multiplying them by a certain factor. Thus, for a
dipole this factor is of the form

F . G. BASS and V. M. YAKOVENKO

(P x and Pz—are the corresponding components of the
dipole moment); for a filament

2t22t2 / nav
e* V (o(l-B

etc. It is interesting to note that the formulas obtained
in this manner hold true for a filament without any lim-
itations on wb/v.

In conclusion let us consider the radiation from
various types of charges moving past a semi-infinite
ideally conducting screen. The field connected with
the motion of the charge can be represented as a
superposition of plane damped electromagnetic waves.
The radiation from the charge is connected with the
diffraction of these waves by the edge of the screen,
since diffraction of a damped wave can give rise to
undamped diffraction waves.

The diffraction of plane electromagnetic waves by
a semi-infinite screen has been thoroughly investi-
gated. This problem can be reduced to a system of
paired integral equations, which are solved by the
Wiener-Hopf method L 1 2 3 ] . The superposition of the
diffracted waves yields the radiation field. Without
dwelling in detail on the methodological aspect of the
problem, we present the results.

The radiation from a charged particle moving past
a screen was calculated by Kazantsev and Surduto-
vicj1[83] ; that of a particle moving past a semi-infinite
screen by Sedrakyan^124^, and that of a charged fila-
ment by SedrakyanC91] and by Bolotovskii and
Voskresenskii^42]. We present the results of the
last papers. It is assumed in the calculation that the
filament is parallel to the edge of the screen and
moves at a distance a from it. The angle between
the filament velocity and the plane of the screen is
7T-t?. The radiation intensity in the frequency intervals
dw and angle intervals dy is determined by the rela-
tion

Integration of (8.19) over the angles leads to the
following expression

dW
da> (8.20)

dis> dcp
T2 1 —Pcosd
no) B

(p
sin2 ~2

(COS (8.19)

This result was obtained with the aid of asymptotic
formulas which are not always valid. Thus, when
i? = 0 and /3 = 1 we have dW/dw = 0, something which
does not follow from (8.20). The divergence of the
intensity in regions of small to is connected with the
slow decrease of the field of the filament with dis-
tance, compared with the field of a finite source. This
divergence can be eliminated by taking into account
the finite thickness or the finite conductivity of the
screen.

Sedrakyan^134] considered radiation from a filament
moving past a screen at a distance b from the edge of
the screen. The presence of the edge of the screen in-
troduces into the formula for the transition-radiation
fields corrections which decrease like (kd)* l / 2 with
increasing d. There are also several papers dealing
with the radiation from a linear source moving over
two planes E132^ or over an infinite system of planes 2̂8]

The radiation of a charge moving through an opening
was investigated essentially by numerical meansC95~97^.
We shall not stop to discuss the results here, referring
the reader to the original papers.
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