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INTRODUCTION

J-HE application of optical quantum generators
(lasers) to study condensed systems (crystals or
liquids) has made it possible to observe an entire set
of non-linear optical effects.'-1"7-' We can explain them
in essence as follows.

For example, let us assume that a condensed sys-
tem is being subjected to the action of two intense
fluxes of electromagnetic radiation of frequencies
wl and w2. Then fluxes appear in this system with
frequencies 2iti\, 2a>2, and u>j ± u;2. That is, sum,
difference, and double frequencies are produced. If
the system shows absorption in even one of the spec-
tral regions 2u)], 2w2, or uif ± o>2, one can then ob-
serve a so-called two-photon absorption. That is,
two photons disappear and some state of the con-
densed system, having an energy equal to the sum of
the energies of the photon, is excited. The processes
cited above are termed non-linear. More than two
elementary excitations (photons, phonons, etc.) par-
ticipate in these processes. In a number of cases,
they become appreciable only when the primary
fluxes have high enough intensities. It is interesting
to note that this type of phenomenon has been known
for a relatively long time in the microwave and radio
regions. This involves the fact that it was specifically
in the microwave and radio regions that the high-
power fluxes necessary for observation of non-linear
effects could first be obtained. Only very recently
have people been able to obtain high-power fluxes in
the optical region of the spectrum as well. In this
review we shall limit ourselves mainly to discussing
third-order non-linear effects for the optical range.

We note that some non-linear effects can occur

even at low intensities of incident radiation fluxes.
Thus, the long-known Raman scattering in crystals is
essentially a non-linear process; it is the result of
the interaction of an electromagnetic wave with the
lattice vibrations. Finally, ordinary absorption,
which can be considered as the transformation of the
energy of electromagnetic waves into lattice vibra-
tions, is also a non-linear process in a certain sense.

In interacting with fluxes of electromagnetic radi-
ation, a crystal acts as a transformer of electromag-
netic-radiation energy, as S. I. Vavilov ^ has pointed
out. We shall consider here in fuller detail some
stages of this transformation that will be of great in-
terest to us later on.

Let electromagnetic radiation characterized by
the frequencies u>t and OJ2 be incident on the crystal.
When the electromagnetic radiation passes through
the crystal-vacuum boundary, the characteristic nor-
mal vibrations arise in the crystal with their charac-
teristic frequencies.

These vibrations are oscillations of the electrons
and nuclei of the crystal associated with the oscilla-
tions of the electromagnetic field. Strictly speaking,
one cannot distinguish mechanical oscillations of
particles from electromagnetic oscillations. Such a
situation is sometimes referred to as the "mixing"
of states of excitons and transverse photons. Owing
to the "mixing", observable optical waves are
formed, i.e., normal characteristic vibrations or
real excitons (excitons with retardation taken into
account). [9~15]

We can consider these characteristic vibrations
to be independent only in the zero-order approxima-
tion; taking anharmonicity into account entails that
the vibrations exchange energy. A state of the
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crystal characterized by intense enough vibrations
of frequencies wj and w2 has a probability of going
over to states of frequencies 2w1( 2u>2, or wj + w2.
The latter in turn generate electromagnetic waves of
the stated frequencies, and the detector records the
presence of the double, sum, and difference frequen-
cies.

Let us consider the phenomenon of Raman scatter-
ing in an analogous way. For concreteness, we limit
ourselves at first to the Stokes component. The inci-
dent light flux excites in the crystal a normal vibra-
tion of frequency u)0> which is transformed into two
vibrations of frequencies Wj and w2, where u>0 = w4

+ w2. The vibration of frequency wj induces electro-
magnetic waves, which are recorded as the Stokes
component of the Raman spectrum, while the vibra-
tion of frequency w2 (a phonon) is subsequently
transformed into heat. The anti-Stokes component
is to be treated analogously: vibrations of frequen-
cies oj0 and OJ2 combine and form a vibration of
frequency co0 + <JO2. The latter induces an electro-
magnetic wave, which is recorded as the anti-Stokes
component of the Raman spectrum.

The first study on the theory of non-linear optical
processes in crystals was apparently one by I. E.
Tamm '-16-' concerned with the theory of Raman scat-
tering. In this study he considered Raman scattering
as the result of interaction of the normal vibrations
in the crystal. However, Tamm's study was semi-
phenomenological in nature, since he did not calcu-
late the anharmonicity coefficients explicitly. Fur-
thermore, a knowledge of these coefficients is neces-
sary for determination of the fundamental character-
istics of Raman scattering. The concrete calculation
of the anharmonicity coefficients mentioned in ^^ has
proved possible within the framework of the rela-
tively recent microtheory. ^ According to this
theory, the Hamiltonian of the system (electrons,
nuclei, and radiation field) can be expanded in powers
of the amplitudes of the crystal vibrations. A treat-
ment of the Hamiltonian to an accuracy of the second
order in the amplitudes permits one to obtain the en-
ergy spectrum of the normal vibrations in the
crystal.'-11-' Taking account of the remainder of the
Hamiltonian gives rise to the non-linear
processes. [18~20]

Ordinary crystal optics takes another approach to
the problem of determining the spectrum of the
normal vibrations of the crystal. As we know (see,
e g [17,13] ̂  a knowledge of the dielectric-constant
tensor ej; (w, k) permits us to determine the r e -
fractive indices, i.e., to find the relation of the fre-
quency of a normal vibration to its wave vector.
This relation is found from the formula (w2/c2)n2

= k2, where w is the frequency, c is the velocity of
light in vacuo, n is the refractive index, and k is
the wave vector. In recent years, people have paid
attention to the fact that it is essential to take into

account the phenomenon of spatial dispersion Ci3,i4D
in a number of spectral regions. As we know, spatial
dispersion leads to the appearance of certain new
effects (optical activity, anisotropy of cubic crystals,
new waves, etc.)

At present there are several variants of the theory
of non-linear optical effects in crystals. In this r e -
gard, we shall mention first the extensive theoretical
work of Bloembergen and his associates. -̂  In this
study they investigated the action of an electromag-
netic wave of frequency w on the quantum-mechanical
system. They found the perturbed wave function of
the system, and then the dipole moment P of the
system in the perturbed state as a function of the
electric-field intensity E of the wave. The value of
the dipole moment was represented as a series ex-
pansion

t = biJEJ+pi)kEJEk+..., (1)

where bjj and /Ŝ jĵ  are certain characteristics of the
system. If we are not considering a resonance region,
the small parameter of this expansion is the ratio
E/Eo, where Eo is the intramolecular field intensity,
Eo ~ 107 V/cm. Since the electric-field intensity E
does not exceed ~ 105 V/cm, even in lasers , the ratio
E/Eo is small, and amounts to something of the order
of 10~2. We note that in the vicinity of a resonance, a
large parameter (w/v)f can generally accompany
the small parameter E/Eo. Here v is the width of
the resonance line and f is the oscillator strength.
If, e.g., oo ~ 1015 sec"1, v ~ 1012 sec"1, and f ~ 0.1,
then (w/V)f ~ 102, and the problem of the converg-
ence of the series (1) requires special treatment. If
we limit ourselves in the expansion (1) to only the
linear approximation, i.e., assume /3 = 0, etc., we
arrive at the ordinary linear theory. In this frame-
work, the non-linear effects are absent. However, if
we take into account the higher terms in the expan-
sion of P in powers of E (i.e., assume that
/3 jt 0 . . . ) , then non-linear effects become possible.
By using (1) and Maxwell's equations, one can show
(see '-30-') that under the action of a field of frequency
w, the dipole moment per unit volume also contain
higher harmonics. They arise from the presence in
(1) of terms containing the higher powers of the field
E. Hence, waves of frequencies 2u>, 3w, etc., appear
in the medium.

This very sort of consideration has been used
i n [28-32,60-69] ( s e e a l g 0 t h e review0 7 0 ). Loudon has
used a somewhat different approach. ^

Here the radiation field was quantized, and the
non-linear optical effects arise from the interaction
between the crystal and the radiation, which is con-
sidered as a weak perturbation. This approach seems
more consistent to us, since one can consider within
this framework such a problem, e.g., as the radiation
width. However, the mentioned difficulties in the
vicinity of resonances persist even here.
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We shall mention also ^2^, which took into account
the effect of quadrupole transitions on non-linear
effects. These transitions become important in
crystals having inversion centers, in which third-
order non-linear effects are forbidden in the dipole
approximation. Study'-73-' took up the interaction of
radiation with free electrons, which also leads to the
appearance of sum harmonics.

Reference ^ was concerned with calculating the
coherent interaction length of radiation in a non-
linear medium, while ^75-' discussed the problem of
the passage of random signals through a non-linear
medium. The problem of the existence of fluctuations
in non-linear effects due to a spread in the phases
and amplitudes of the different modes has been taken
u P i n C 7 6 l

The studies [28~32'G0~69>57'72~76] cited above give a
qualitatively true description of non-linear optical
effects in dielectrics. However, their results are
limited in applicability to small oscillator strengths
of the transitions in the crystal, and to a frequency
region far enough removed from absorption bands
(for more details, see Sec. 7). All these limitations
are eliminated naturally if we use as the unperturbed
states those states corresponding to the excitation in
the crystal of real light waves in the medium (ex-
citons with retardation taken into account)
(see tn,H,i9] ^ it w a s shown in these studies that a
theory of non-linear optical effects can be developed
on the basis of the method used in *- . This method
(see t18,iC) permits one strictly to isolate the third-
order anharmonic terms as well as the quadratic
terms in the Hamiltonian (properly speaking, in '-11-'
the treatment was limited specifically to the quad-
ratic terms).

The specific isolation of the third-order terms
corresponding to scattering of light waves by phonons
was first made in'-18-^. This made it possible to study
the long-wavelength edge of an absorption band. In
contrast to ^ , a theory was developed in L19.20J p e r _
mitting one to study from a unified viewpoint the in-
teraction of the normal vibrations of any type, and
to describe such phenomena as frequency doubling, the
effect of sum-harmonic generation, the phenomenon
of two-photon absorption, and the corresponding
luminescence. This approach permits one to con-
struct a microtheory of Raman scattering in crystals,
and to give an explanation of the peculiarities of
scattering in piezoelectrics. It is free from the dif-
ficulties found in the earlier theories when non-linear
effects were studied in the vicinity of a resonance.

A feature of '-18~2<)J on which the treatment below is
based is the fact that it was not assumed therein that
the interaction between the radiation field and the
crystal is weak. This fact proves to be essential,
since in a number of spectral regions the interaction
between the radiation field and the crystal is actually
not weak. Taking account of this fact leads to a num-

ber of observable effects, which cannot be treated
within the framework of the perturbation theory in
terms of the interaction cited above (see Sec. 7). All
of the problems mentioned above will be elucidated in
more detail below. The first chapter will present the
general theory of non-linear effects, while the follow-
ing text will discuss a number of concrete effects on
the basis of this theory.

I. THE GENERAL THEORY OF NON-LINEAR
EFFECTS

1. The expression for the Hamiltonian

As we stated above, we must isolate the anhar-
monicity terms in studying non-linear effects in the
complete Hamiltonian of the system including elec-
trons, nuclei, and the radiation field. If here the
Hamiltonian is limited merely to taking into account
the terms that are quadratic in the vibration ampli-
tudes of the crystal, then the corresponding expres-
sion can be exactly diagonalized. It is essential to
note that the normal vibrations thus arising are
nothing other than electromagnetic waves in the
medium obeying Maxwell's equations.Ql-' Hence, in
discussing the anharmonicity terms below within the
framework of the perturbation theory, we thereby
assume that electromagnetic waves in the medium
satisfying Maxwell's linear equations are a good zero-
order approximation of the theory.

In connection with what has been said, in this
chapter the terms will be isolated that are essential
in describing non-linear effects.

Everywhere below we shall limit ourselves to
discussing the optical properties of a crystal in
those spectral regions that do not involve the excita-
tion of free current car r ie rs in the crystal. Conse-
quently, we shall essentially limit ourselves to
studying non-linear optical effects in the region of
the exciton absorption bands.

At first we shall limit ourselves to discussing a
molecular crystal having fixed molecules. This
means that the centers of gravity and directions of
the principal axes of inertia of the molecules are
fixed, although intramolecular vibrations can occur
in the molecule. We shall indicate below what changes
arise in the theory if we reject these limitations.

If we use the Coulomb gauge of the electromag-
netic radiation f i e l d , ^ then we can write the Hamil-
tonian of the system in the form

H — (1.1)

where Ht is the Hamiltonian of the crystal taking
into account only the instantaneous Coulombic inter-
action between the charges, H2 is the Hamiltonian
of the field of transverse photons, and H3 is the in-
teraction between the field of these photons and the
charges.

In this approximation, following'-11-', we shall write
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the Hamiltonian of the crystal in the form

/, s

where s is the number of the unit cell of the crystal,
f is the set of indices specifying the number of the
molecule in the unit cell and the number of the level
in the molecule, Ef are the levels of the unperturbed
molecule, V ( . . . ) are the matrix elements of the
intermolecular-interaction operator, and b / _ , bf

I » a I j S
are the so-called Pauli operators. These operators
characterize the creation and annihilation of the f-th
state in the s-th unit cell, and obey the commutation
relations

btbt+btb, = l,

(i is an abbreviation for f, s ) .
The Hamiltonian of the transverse photons has

the form Lnl

(1.3)

where q is the wave vector of the photon, j is the
polarization number, and a*(q) and &•. (q) are
operators for creation and annihilation of photons.

The interaction operator H3 consists of two
terms:1523

= - 2 - ^ ( I S ) P , A{rs,p})

Im-cc
(1.4)

where p is an index giving the number of the mole-
cule in the crystalline unit cell and the number of
the particle (electron or nucleus) in the molecule,
ep , nip, Is,p» and r S ( P are the charge, mass, mo-
mentum operator, and radius vector of the s-th par -
ticle in the pth unit cell, respectively, and A{r} is
the vector potential. We can write Eq. (1, 4) in the
second-quantization representation in terms of the
operators a+, a, and b+ , b. Omitting the details of
calculation, which can be found in '-18-̂ , we shall give
the final expression:

a$ (q)

q , " 3 , / , / ' , » '

X fc/., , 6 / , s [ a , - ( q ) e i ( q ' r ( s

+ (q,) a,-2 (q2) cp (q2 — q4)

• (1 .5a)

(1.2)

w h e r e

<p(q)=
/ , / ' • «

Z j ( q ) i s t h e u n i t v e c t o r d e t e r m i n i n g t h e p o l a r i z a t i o n

o f t h e p h o t o n , a n d V i s t h e v o l u m e o f t h e c r y s t a l ;

t h e r a d i u s v e c t o r r ( p ) d e t e r m i n e s t h e p o s i t i o n o f

t h e p - t h p a r t i c l e i n t h e u n i t c e l l .

W e s h a l l a s s u m e e v e r y w h e r e i n t h e t r e a t m e n t

b e l o w t h a t t h e o v e r w h e l m i n g m a j o r i t y o f t h e m o l e -

c u l e s a r e i n t h e g r o u n d s t a t e , a n d o n l y a n i n s i g n i f i -

c a n t f r a c t i o n i n t h e e x c i t e d s t a t e . T h i s c i r c u m s t a n c e

p e r m i t s u s to a p p l y t h e a p p r o x i m a t e s e c o n d q u a n t i -

z a t i o n m e t h o d d e v e l o p e d b y N . N . B o g o l y u b o v . ' - 2 3 - '

T h a t i s , w e u s e t h e f o l l o w i n g o p e r a t o r s i n s t e a d o f

t h e P a u l i o p e r a t o r s d i s c u s s e d a b o v e :

B f t , = b t , , b f t , , B f , , = bf, s b O i s ( 1 . 6 )

( t h e i n d e x f = 0 i m p l i e s t h e g r o u n d s t a t e ) . T o a n a c -

c u r a c y o f t h e r a t i o o f t h e n u m b e r o f m o l e c u l e s i n t h e

e x c i t e d s t a t e t o t h e n u m b e r o f m o l e c u l e s i n t h e

g r o u n d s t a t e , t h e s e o p e r a t o r s a r e B o s e o p e r a t o r s ,

a s h a s b e e n s h o w n i n ' - 1 1 ^ .

2 . S e p a r a t i o n o f t h e s e c o n d - a n d t h i r d - o r d e r

t e r m s i n t h e i n i t i a l H a m i l t o n i a n

O u r f u r t h e r p r o b l e m c o n s i s t s i n i s o l a t i n g t h e

t e r m s o f d i f f e r e n t o r d e r s i n t h e o p e r a t o r s

a j ( q ) , B f ; S i n t h e e x p r e s s i o n f o r t h e c o m p l e t e

H a m i l t o n i a n . W e s h a l l c a r r y o u t t h i s p r o c e d u r e

s e p a r a t e l y f o r e a c h t e r m o f ( 1 . 1 ) .

F i r s t w e s h a l l c o n s i d e r t h e o p e r a t o r H j ( s e e

( 1 , 2 ) ) . B y t r a n s f o r m i n g t o t h e o p e r a t o r s B f ; s i n

t h e e x p r e s s i o n f o r H 1 ; w e d e r i v e t h e f o l l o w i n g e x -

p r e s s i o n :

( 2 . 1 )

w h e r e

tf ? ' = 2 E t B t , B , , . + ± 2 { V : n ( 0 . / . / ' . 0 ) B ) , . B r n

+ V . . § 1 ( / , 0 , 0 , / ' ) B u s B t : . i + V ; . i ( 0 - / . 0 , / ' ) B ) , . B f : n

+ V , . n ( f , 0 , f ' , 0 ) B , , , B t ; t l } ( 2 . 1 a )

i s t h e q u a d r a t i c p a r t , a n d

H T = I 2 {Vs, H ( 0 , / , / ' , / " ) B f . . B r . S 1 B p , S l

2 SSl{f}

. . 1 ( / , 0 , / ' , r ) B , . . B r . n B t ' . . 1

V . , , 1 U , f ' , 0 , r ) B f . . B p . B p . n

V . . n ( 1 . 0 , f ' , n B , . . B } : . B r , . } ( 2 . 1 b )
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are the third-order terms.
The operator (2.1a) can be diagonalized by the

substitution

Bf,. = N~lh 2 [#n (k) «M (k) «i(k> r (s))

(2.2)

where N is the number of unit cells in the crystal,
r ( s ) is the radius vector determining the position
of the s-th unit cell, and B,, (k) are the new Bose
operators. The coefficients Ufy, and
mined from the system of equations

are deter-

(E,-E) ut+2

(E, + E) v, + 2
r

.+rwv t . ) = o,

. + Tf].ur) = 0, (2.3)

where

/,o, o, /

O, /, 0, (2.4)

In solving the homogeneous system of equations
(2.3), we must take into account the normalization
condition, which has the form

After we apply the substitution (2.2), Eq. (2.1a)
acquires the form

H?= 2 ^(k)5J(k)Bf(k) , (2.6)
H, k

where Ey (k) are the roots of the secular equation
of system (2.3), which determine the Coulombic-
exciton energy spectrum.

Analogously, we can isolate the second- and third-
order terms from the operator H3. Omitting the de-
tails of calculation (see ^n 1919- ), we obtain

where
) WI(2) 1 rrJI(2)
="3 1 -"3

are the quadratic terms, and

(2.7)

(2.7a)

3
( ) (2.7b)

are the third-order terms.
Here the following notation has been introduced:

rjl (2) XI«3 = ZJq. i, v-

+ T*(-q, j , ll)aJ(q)Blx(-q) + T*

) = 2 \R (q. /, *, l̂ i- 1*2) «j (q) BMI (k) Bt2q, i, i*i. M-2

- q, /, k, (14, (i2) a+ (qJBn, (k) B+2 (k - q)],

(2.8)

(2.9)

(0 I j 1 q, |i) = 2

R(q, j , k, (i,, |X2) =

= 2 (Mk)M/1,/,W)B/1,M(q)»?1,|1,(q+k).

The expression for H3 <2) is derived from (1.5) by
replacing <p (q.i - fy) bY N2 (ep/m p )6 (qi, q2),

where 6 (qj, q2) is the Kronecker delta (6 (q, q) = 1,
but 6 (qi, q2 ) = 0 when qt * q 2 ) . The expression for
H3 is also derived from (1.5) by replacing tp (q)
by

+ its complex conjugate.

Equation (1.3) need not be transformed, since it
is diagonal in the variables a+ and a.

3. Separation of the non-linear effect operator

The set of second-order terms entering into the
complete Hamiltonian of the system consisting of
electrons, nuclei, and the radiation field, i.e., the
sum

can be diagonalized by the substitution

(3.1)

(3-2)

Here the new Bose operators £ + and £ are opera-
tors for creation and annihilation of excitons with
retardation taken into account (real electromagnetic
waves in the crystal), and the subscript p specifies
the branch number. The coefficients u and v en-
tering into (3.2) are determined by a certain system
of homogeneous equations (see Lii.isjj ^ ^ w e shall
not copy here because of their cumbersomeness.

Upon transforming to the operators | + and £,
Eq. (3.1) acquires the form

P, k
(3.3)

where Ep (k) is a root of the secular equation of the
above mentioned system of homogeneous equations,
from which one determines the coefficients u and v
taking part in (3.2). The set of values of Ep(k) gives
the energy spectrum of excitons having retardation
taken into account; this spectrum for the simplest
case is shown in Fig. 1.

The coefficients for the transformation to the new
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FIG. 1. Relation of the frequency of an exciton to the wave
vector; the frequencies cov <o2, etc. correspond to the characteris-
tic coulombic-exciton frequencies.

variables taking part in (3.2) have the following
form:

«HP =

VU0 =

2hqcT(qilL)

2hqcT(<\jV.)

(3.4)

Here the vector l\ (q) lies in the direction of polari-
zation of the ordinary or extraordinary ray in the
crystal. The quantity A entering into (3.4) is deter-
mined from a normalization condition analogous to
(2.5):

|Bj|"-|i>/P + 2{ |Mq)r- l ' ' i i (q) i 1 '} = i- <3-5)

We must note that the quantity Ep (k) is generally
complex: its imaginary part characterizes the at-
tenuation of the electromagnetic waves in the
crystal.*

The third-order terms have the form

p1p2p3k1k2

4 its complex conjugate. (3-6)

where Q ( . . . ) are the coefficients obtained from all
the third-order terms, i.e., those of Eqs. (2.7b) and

*We note in passing that the method presented above permits
one to study the energy spectrum of a crystal occurring at a tem-
perature of - 0 . In["], the crystal was studied at a temperature of
+ 0, and it was assumed that almost all of the molecules were in
the ground state. The assumption that the crystal is at a tempera-
ture — 0 means that almost all the molecules are in the excited
state. To find the exciton spectrum here we can use directly the
results of ["]. However, one should substitute -Ef for the energy
Ef of the excited state of the molecule in all the formulas of that
paper. The relation of the exciton energy to the wave vector for
this case is shown schematically in Fig. 2.

(2.1b), upon transforming to the operators £. The
terms of types £ +£ +£ + and £|£ are omitted in
writing (3.6), since they are not very important in
the effects of interest to us. Eq. (3.6), considered as
a perturbation with respect to the Hamiltonian of the
zero-order approximation (3.3), directly describes
the non-linear processes. It is important to empha-
size that the procedure presented above permits one
to obtain the cubic anharmonicity coefficients in ex-
plicit form. They are all expressed in terms of the
characteristics of the individual molecules forming
the crystal and the matrix elements of interaction
between them. We shall not write out here the gen-
eral form of these coefficients, which is rather
cumbersome in the general case. It is more con-
venient to write it separately for each concrete case,
as will be done below.

Let several exciton fluxes be propagated in the
crystal. These can be characterized as a whole by
some distribution of quantum numbers np (k) char-
acterizing the occupancy of the levels corresponding
to the exciton states. As we have mentioned, these
fluxes exchange energy owing to the non-linear in-
teraction. Consequently some of them gain energy
and others lose it. This exchange consists of a series
of elementary events, each of which is: a) an event
of formation of one exciton from the total energy of
two (exciton combination), or b) an event of formation
of two excitons from one (exciton decay). For a
Hamiltonian taken with an accuracy to third-order
terms in the creation and annihilation operators,
there will be no other elementary events in the first
approximation.

The rate of increase of the number of excitons
through events of combination of other excitons is
determined from the expression

dn ,

x [life,,

(3.7)

Analogously, the rate of increase of the number of
excitons through decay events is determined by the

FIG. 2. Relation of the frequency of an exciton to the wave
vector at a negative temperature.

.k
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expression

P2P3

(k,k2) !
2 n (Q3, k, + k2)

k2) + l]6{£Pi(k1)+£'p2(k2)

(3.8)

Generally, combination (or decay) events take place
simultaneously with the reverse events of decay (or
combination). For example, let us examine the
process of generation of summed-energy excitons. If
n(p 3 , k( + k2) « 1, then the " r e v e r s e " event of
decay will be considerably less probable than the
"d i rec t" event of combination, according to Eqs.
(3.7) and (3.8). Consequently, the process generating
the Stokes component of the Raman spectrum at low
intensity of the scattered flux can be directly calcu-
lated by Eq. (3.8), completely ignoring the " r eve r se"
process. Arguing by analogy, we can conclude that
the anti-Stokes component is found from Eq. (3.7).
In exactly the same way, when the resultant fluxes
are small, the process of generation of a sum fre-
quency should be calculated by Eq. (3.7), and a dif-
ference frequency by Eq. (3.8). However, for large
resultant intensities, i.e., when n(p3 , kt + k2) « 1,
the problem becomes more complex, and the direc-
tion that the process takes is determined by a number
of other factors: the formula of the exciton branch,
the spectral composition of the exciton fluxes, etc.

We can divide the non-linear effects into two
groups: electronic and electronic-vibrational.

We shall refer to non-linear effects as electronic
if they take place even when the vibrational motion in
the crystal is completely neglected. Here we get a
certain correction term (inessential as a rule) by
taking the latter into account. These effects include:
generation of sum and difference frequencies, two-
photon excitation, and certain others. In order to
obtain the third-order terms describing the electronic
non-linear processes, we must take only the elec-
tronic states of the molecules as the f states.

We shall refer to the effects which result from the
electronic-vibrational interaction as electronic-
vibrational non-linear effects. These effects include:
Raman scattering by intermolecular and intramolecu-
lar vibrations, and the generation of the Mandelstam-
Brillouin component.

In order to obtain the third-order terms describing
Raman scattering by the intramolecular vibrations,
we must take as the f states both the electronic and
the vibrational states of the molecule.

If we wish to study Raman scattering by the inter-
molecular vibrations or the Mandelstam-Brillouin
components, we must relax the limitation made at the
beginning of this section, and permit the molecules to
move as a whole within the unit cell. Then the Hamil-
tonian of the crystal will contain coordinates charac-

terizing the optical intermolecular and acoustic
vibrations of the crystal. Owing to the third-order
terms involving the optical intermolecular vibrations,
the Raman scattering will manifest these vibrations;
owing to the third-order terms involving the acoustic
vibrations, the Mandelstam-Brillouin components
appear.

Now some words on the higher-order effects.
The operators Bf are only approximately Bose

operators. Nevertheless, we need not take this fact
into account in studying the Hamiltonian of the system
to an accuracy of the third-order terms. However,
we must do so if it becomes necessary to study the
terms of higher than third order.

Various higher-order non-linear effects have been
observed in a number of experimental studies: the
appearance of third harmonics, 25'26-' and three-photon
absorption. ^ An attempt has been undertaken in^27-'
to construct a theory of many-photon processes.
However, this study does not take into account the
circumstance pointed out above, and also has a num-
ber of defects that will be studied in detail in Sec. 7
of this review.

In concluding this section, we shall examine
systematically the question that arises of the effect
of the third-order terms on the elementary-excitation
spectrum. Understandably, the role of the cubic
terms increases with increasing flux intensity of
quasiparticles in the crystal. Actually, such a phe-
nomenon resembles the phenomenon of anharmonicity
in the theory of ordinary mechanical vibrations: the
more intense the vibrations are, the greater the role
of anharmonicity.

We can estimate the correction to the energy by
the standard formulas of the perturbation theory.
Cubic anharmonicity contributes only in the second
approximation of the perturbation theory. An estimate
shows that the relative change of the exciton energy
is

E Ao
t v

where No/N is the concentration of excitons in the
crystal, and y is a dimensionless coefficient con-
siderably less than unity. Evidently, under real con-
ditions, AE/E « 1. One can draw an analogous con-
clusion upon taking fourth-order anharmonicity into
account.

II. ELECTRONIC NONLINEAR EFFECTS

4. The generation of sum harmonics

In line with what we have said above, we shall call
the effects for which the existence of electronic-
vibrational interaction is not essential non-linear
electronic effects. These effects include the phenom-
ena of doubling and addition of frequencies, two-
photon absorption, and certain others. This section
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will discuss the generation of sum harmonics.
Let two intense monochromatic exciton fluxes be

propagated in the crystal with frequencies u>l and
w2. The intensity of the resulting flux of frequency
u>j + w2 is assumed to be small. This assumption
imposes the following limitations on the quantum
numbers n (p , k) entering into Eqs. (3.7) and (3.8):
the quantity n(p3 , kt + k2) « 1, while n(Pi, k t ) is
equal to some constant n( in a small region Fj of
k-space and zero outside this region. The energy and
wave vector of the excitons in F t are approximately
equal to Ej and kj. The second flux has an analogous
property, its corresponding characteristics being n2,
F2 , k2, and E2.

Hence, in order to obtain the intensity of the sum
harmonic, it suffices, upon setting n(p 3 , k( + k2) = 0
on the right-hand side of Eq. (3.7), to find

W / \ V̂̂  *̂ / 1 i 1 \ (4.1)
kik2

Owing to the presence of the 6 function on the right-
hand side of (3.7), the summation in Eq. (4.1) will
cover a certain hypersurface in the space formed by
the set k1; k2; the results of this summation depend
on the structure of the exciton branches. It is ex-
pedient to transform from summation to integration
over the energy E and the solid angle J2. Here it is
convenient to bring the factors that depend weakly on
the variables of integration outside the integrand, as
is usually done. Consequently, we find that

£ n (Q3) = ^ | (k,, k2) |

(4.2)

where Nj = njp ( Ej) AEj Afij is the number of excitons
in the crystal belonging to the flux of frequency OJI,
and p ( E ) is the density of exciton states. The set
of quantities AEj, Afi, is characterized by the
dimensions of the region Tu and the same quantities
with subscript 2 characterize the flux of frequency
w2. The five-dimensional region r results from the
occurrence of the 5 function in (3.7).

Equation (4.2) gives the relation between the total
number of excitons of frequency UJJ + w2 arising per
unit time in the crystal and the number of excitons
in the primary fluxes. This is precisely the relation
that is to be compared with experiment.Cl~3'31'35'48-1

If we wish, we can derive a formula relating the
energy fluxes, whereby we can find both the integral
intensity and the intensity per unit energy interval.

Figure 3 illustrates the process of generation of
a sum harmonic.

Now we shall study the concrete form of the
quantity Q ( . . . ) , which is the matrix element of the
operator equal to the sum of (2.1b) and (2.7b) for the
transition characterized by the disappearance of the
excitons wi and w2 and the appearance of the exciton

ito.

FIG. 3. Creation of an exciton of double frequency.

uj + w2. The term H3 occurring in (2.7b) is im-
portant only in the X-ray region, as shown in ^ .
Since we are discussing the optical region, we can
ignore it. Consequently, it suffices to limit ourselves
to the sum of (2.9) and (2.1b), which must be written
in terms of the variables £ + and 4 in accord with
the procedure described in the preceding chapter.

The matrix element (2.9) for the transition cited
above has the form

k,k2)Q2,

where

a _ "V f (°i /2 ] k2. H2)(H2. k2|/':

(4.3)

(0 | / | -k t -k 2 ,

X
(Hi, -k,— kjjl/il —k2, H2)(Q 1/2 l —

(0|/il I / I - k2(*2) (0 112 I - 1
J '

D -
Ul-

(4.4)

and Zj2 that of fre-

n is the refractive index of the crystal in the fre-
quency region wj, At is determined from the condi-
tion (1.19), D2 is the analogous characteristic of the
frequency w2, and D is that of the frequency wj
+ w2. We must also add to Eq. (4.4) the same expres-
sion with the subscripts 1 and 2 interchanged. The
vector I ji determines the polarization of the flux
characterized by frequency
quency OJ2 .

 a n d I j that of frequency w i + OJ2 .

As is shown in '-20-', the matrix element (2.1b) is
generally small in comparison with the matrix ele-
ment (2.9). Those cases are excluded in which the
frequencies u)j, w2, and ŵ  + w2 happen to be in an
exciton absorption region; then the cited matrix ele-
ments are comparable in order of magnitude. If we
limit ourselves to precisely these resonance cases
(see also Sec. 6), then the general, rather cumber-
some expression for the matrix element of operator
(2.1b) is simplified, and acquires the form (4.3),
where we must substitute the following in place of
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(0 | /t 1 ktni) (0 I h ! M2) (0 I / ! k, + k2, n3)«

where

X M/,,

q)= 2 o,

2,ix2(q)"/3,H3(k-q)eiC-i'r»^.

(4.5)

(4.6)

Just as for (4.4), we must add to (4.5) the expression
with "interchanged" subscripts 1 and 2.

Below we shall call the quantity a = a0 + al the
non-linear effect tensor.

Firs t we shall take up the expression for a0,
which resembles the non-linear polarization tensor
introduced in'-28~32^. This expression arises from the
interaction between isolated molecules and radiation.
It does not vanish, even if we completely neglect the
interaction between the molecules, and it character-
izes the non-linear effects on the basis of an
oriented-gas model.

The tensor ait which can be of the order of a0,
is directly determined by the amount of interaction
between the molecules. This tensor does not appear
at all, in the studies known to the author, in line with
the nature of the approximations made in these
studies. Evidently, here the problem is the neglect
of the anharmonicity occurring in the crystal inde-
pendently of the radiation field.

We have discussed above the theory of the genera-
tion of sum harmonics; analogously we can also study
such experimentally-observed phenomena as ampli-
fication by non-linear e f f e c t s , - optical rectifica-
tion, 34'35J and difference-frequency generation;'-36''1-'
However, the previously published theory of these
phenomena (see L35,3T,38J^ c o n t a i n s inaccuracies, which
will be discussed in detail in Sec. 7.

5. The effect of symmetry and crystal dimensions
on non-linear effects

The symmetry of the crystal imposes definite
limitations on the form of the tensor a. In this sense
the situation is analogous to that occurring in the
study of the dielectric constant tensor L17J using sym-
metry theory (in particular, with spatial dispersion
taken into account -13- ), or the elasticity tensor, or
the selection rules for dipole and quadrupole transi-
tions in crystals, etc. The application of crystal-
symmetry considerations in studying the tensor a
is attractive in that the wave functions of the mole-
cules (and this is even truer of crystals) are not
known as a rule, and the calculation of the matrix
elements entering into Eq. (4.4) is difficult.

At first we shall limit ourselves to studying the
form of the tensor a0. The numerator of (4.4) con-

tains the product of three integrals of multiplicity T,
which can be written in the form of a single integral
of multiplicity 3T ( T is the dimensionality of the
corresponding configuration space). The integral of
multiplicity 3 T differs from zero only when the inte-
grand contains a totally symmetric function. Let us
subject all 3T variables to a symmetry transforma-
tion. The 3r-dimensional integral contains the sum
of the squares of the moduli of the wave functions of
the "intermediate" states, which transforms ac-
cording to the totally symmetric representation. Con-
sequently, the transformation properties of the
"intermediate" states do not affect the transforma-
tion properties of the whole integrand. The proper-
ties of the latter are determined by the product
MjjlV^Mj, where M, is the projection of the vector
M on the direction (y

When the frequencies u>i, LO2, and OJX + u>2 are far
from an absorption band, we can ignore the depend-
ence of E^(k) on the direction of the vector k. Then
the tensor a0 can be considered to be an ordinary
third-order tensor, and in it the non-zero components
are those that transform according to the totally
symmetric representation.

It is not hard to find these non-zero components;
this is done by a method analogous to that used in '-39-',
where the form of the Raman-scattering tensor was
found. We could also find the form of the tensor a0

within the framework of the semiclassical theory (on
this subject, see the notes, e.g., in'-40'41- ).

Table I gives the non-zero components of the ten-
sor a0; a 27-item table is shown for each group, and
the common notation of the components is given at
the top of the table. For the groups containing 3-, 4-,
or 6-fold axes, the circular coordinates £ = x + iy,
T) = x - iy have been used. In this case, one must
substitute x — £, y —» 77 at the top of the table.
Wherever the table shows identical numbers, this
means that the corresponding components are identi-
cal.

The symmetry properties of the tensor a1 can be
treated in an analogous way. The distinction from a0

in treating it consists in the fact that here we must
take into account the lattice sums (4.6). These sums
can be treated by the method proposed by Born and
Bradburn. - When the frequencies ajj, CJ2, and wj
+ u>2 are far from exciton absorption bands, we can
neglect the variation of E^ (k), and the non-zero
components of the tensor ai are not identical with
the corresponding non-zero components of a0. We
should note, by the way, that as a rule a0 exceeds
Qj when far from a resonance, except for special
cases (see the preceding section).

We shall comment on the situation important in
the non-linear effects that arises when even one of
the frequencies u>j, OJ2, or UJ1 + o)2 approaches an
exciton absorption band. In this case, we generally
cannot neglect the variation of E^ (k) . However,
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Table I. Form of the non-linear effect tensor

Groups

c

c.

c3

c2i>

D2

Ck

Sk

xxx xxy xxz
xyxxyyxyz
xzx xzy xzz

0
0
3
1
3
0
1
0
0
0
0
2
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
4
2
4
0
0
0
3
0
0
0
0
0
2
0
0
3
0
0
3
0
0
2
0
0
2
0
0
2

1
2
0
0
0
5
0
2
0
1
0
0
0
1
0
0
2
0
0
2
0
0
1
0
0
1
0
0
0
0

yxx yxyyxz
vvx yyy yyz
VZX J

0
0
7
6
8
0
0
0
6
0
0
0
0
0
4
0
0
3
0
0

—3
0
0
6
0
0
6
0
0
6

zy

0
0
8
7
9
0
0
5
0
0
0
4
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0

yzz

5
6
0
0
0

10
4
0
0
0
3
0
3
0
0
2
0
0

—2
0
0
4
0
0
4
0
0
4
0
0

xxz
yxz
zxz

9
11
0
0
0

13
0
8
0
6
0
0
0
6
0
0
4
0
0

—4
0
0
8
0
0
8
0
0
8
0

xyz
yyz
zyz

10
12
0
0
0

14
7
0
0
0
7
0
5
0
0
4
0
0
4
0
0
7
0
0
7
0
0
7
0
0

xzz
yzz
zzz

0
0

13
11
12
0
0
0
9
0
0
8
0
0
0
0
0
5
0
0
5
0
0
9
0
0
9
0
0
9

Groups

D,

DIA

#6

CSv

D3h

T

Td

0

j
1

xxx xxy xxz
xyxxyy xyz
xzx xzy xzz

0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
2
0
0
2
0
0
2
0
0
2
0
0
0
0
0
2
0
0
1
0
0

—1

1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1
0
0
1
0
0
1
0

yxx yxy yxz
yyx yyy
yzx yzy

0
0
0
0
0
2
0
0

—2
0
0

—2
0
0
2
0
0
0
0
0
2
0
0
1
0
0

- 1

0
0
2
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0

vyz
yzz

0
1
0
1
0
0
1
0
0

_ j
0
0
1
0
0
0
0
0
1
0
0
1
0
0
1
0
0

xxz
yxz
zxz

3
0
0
3
0
0
3
0
0
0

—3
0
0
3
0
0
0
0
0
2
0
0
1
0
0

—1
0

xyz
yyz
zyz

0
3
0
0
3
0
0
3
0
3
0
0
3
0
0
0
0
0
1
0
0
1
0
0
1
0
0

xzz
yzz
zzz

0
0
4
0
0
4
0
0
4
0
0
4
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0

evidently the taking into account of the variation of
E^ (k) does not affect the vanishing of the components
of the tensor a. This is due to the fact that the
vanishing of the tensor a requires only the vanishing
of the numerators of the terms entering into the
summations of (4.4) and (4.5), independently of the
magnitude and direction of k. Taking into account
the variation of E^ (k) can alter somewhat the
values of the non-zero components of the tensor a.
In particular, generally speaking, those components
come to differ that had been equal when the variation
of E^(k) was neglected. This fact is of definite in-
terest, since it can generally be used to study the
variation of E^ (k) by observation of non-linear ef-
fects near exciton absorption bands.

The intensity of the non-linear effects depends
considerably on the dimensions of the crystal. For a
crystal of finite dimensions, the matrix element of
the transition has the form

2-k), (5.1)

where D is a quantity of no particular interest in
this case, V i s the volume of the crystal, a is the
non-linear effect tensor,

kj and k2 are the wave vectors of the primary fluxes,
and k of the resultant flux; the summation in (5.2) is
performed over the crystal.

Since the intensity of the non-linear process is
proportional to the square of the modulus of the
matrix element, we must further find I f I2. For
this, we must now know the shape of the crystal. We
shall assume that it has been cut in the form of a
plate, and the vectors kj, k2, and k are perpendicular
to its faces. Since the vector k in (5.2) is small, we
can go over from summation to integration. Then we
find that the intensity I of the resultant flux depends
on the crystal thickness x according to the formula*

(5.3)

where Ak = kt + k2 - k.
Equation (5.3) implies that in order to increase the

intensity of a non-linear effect, it is expedient to
choose conditions such that Ak is small. In the ex-
perimental study'-43-', an appreciable increase was

/ (?) = 2 (5.2)

*An oscillating relation of this type occurs only when the
imaginary parts of the wave vectors k,, k2, and k characterizing
the attenuation are small. In the opposite case a number of peculi-
arities arise (seef128]).



NONLINEAR OPTICAL EFFECTS IN CRYSTALS 347

thus attained in the intensity of a sum ha rmon ic .
The quantity Ak c h a r a c t e r i z e s the degree of

" c o n s e r v a t i o n " of quas imomentum Kk of the exciton
in the non- l inear p r o c e s s . In an infinite c rys t a l
(x = °°), non- l inear effects a r e poss ible (see (5.3))
only when

i .e . ,

Mt = 0,

k = .'«-, + k2.

When x < °°, the maximum in I co r r e sponds to
Ak * 0. The g r e a t e r Ak i s , the g r ea t e r the deviation
from the conservat ion law. It i s in te res t ing to note
that Eq. (5.3) allows of the following graphic i n t e r -
pre ta t ion . We shall a s sume that a ce r ta in fictitious
wave vector Ak i s being propagated through the
c r y s t a l .

The intensity max ima of the non- l inear effect
appear when a hal f - in tegra l number of such waves
i s super imposed in the c r y s t a l ; in e s sence , Eq. (5.3)
i s the in te r fe rence condition for th is wave.

Equation (5.3) was f i rs t der ived in ^ and con-
f i rmed exper imenta l ly in ^ . Here light of frequency
OJ0 from a l a s e r fell on a p l ane -pa ra l l e l p la te . By
rota t ing the l a t t e r they could vary the path length x
t r a v e r s e d by the light in the c ry s t a l . As a r e su l t
they observed the intensity of the sum harmonic of
frequency 2u>0 to be an osci l la t ing function of the
rotat ion angle of the p la te .

We shall mention a lso the exper imenta l study'-46 ,
where they at tained a var ia t ion in the intensi ty of a
sum harmonic a r i s ing from the fact that the s e l e c -
tion ru l e s differ with differing or ienta t ions of the
c r y s t a l .

6. Resonance Phenomena

This section will d i scuss some pecu l ia r i t i es of
the non- l inear effects as the frequencies Wj, w2, and
oil + u>2 approach exciton absorpt ion bands . We shall
l imi t ou r se lve s at f i r s t to d i scuss ing only the t enso r
a0.

For conc re t enes s , we shall a s sume that UJ2 i s a p -
proaching an absorpt ion band, while ioi and u>i + a>2

a r e far from exciton absorpt ion bands . Then the
following factor enter ing into (4.4) approaches in -
finity:

(6.1)

However, this fact does not lead to any complicat ions ,
s ince the quantity D2 en ter ing into (4.3) approaches
ze ro , and jus t compensa tes for the infinity a r i s ing
from (6.1). After per forming calculat ions analogous
to '-47-', we find that the m a t r i x e lement (4.3) depends
on OJ2 accord ing to the formula:

h1''2, (6.2)

where the coefficient C contains all the quanti t ies
that depend re la t ive ly weakly on w2.

We can t r e a t analogously the c a s e s in which u>j o r
u>i + w2 is n e a r an exciton absorpt ion band. Thus, the
m a t r i x e lement (4.3) r e m a i n s finite for any values of
the frequencies wt and w2-

By a suitable choice of cjj and « 2 , we can con-
s iderably i nc r ea se the intensity of a non- l inear ef-
fect. This l a s t r e m a r k r e q u i r e s the following qualif i -
cat ion. We should not suppose that we m u s t invar iably
get an i nc r ea se in the intensi ty of the non- l inear
p r o c e s s when one of the cited frequencies approaches
an intense absorpt ion band. In o r d e r to unders tand
th i s , le t us examine some of the fea tu res of Eq. (4.4).
Each t e r m enter ing into the double summation of
(4.4) involves a set of th ree t r ans i t ions that we can
schemat ica l ly r e fe r to a s 0 —* 1, 1 —• 2, and 2 —* 0
(Fig. 4). It can happen that the t rans i t ion 0 —* 1 has
a high probabil i ty, while the t rans i t ions 1 —* 2 and
2 —- 0 have low probabi l i ty . Then, a s the frequency
w2 approaches the frequency fi01 of intense a b s o r p -
tion, we will not get the inc rease in intensity of the
non- l inear effect that we would expect a t f i r s t glance.

Probably , th is i s p rec i se ly the situation involved
in the r e s u l t s of the exper iments of'-48-', where they
studied the effect of approach of the frequency of the
p r i m a r y radiat ion to an absorption band, and observed
no apprec iable i nc r ea se in the intensi ty of the non-
l i nea r effect. In this ca se , the resonance mentioned
above proves to be poorly marked .

We m u s t make another r e m a r k on Eq. (6.2). The
l a t t e r was der ived under the assumpt ion that the
imaginary pa r t of Ep ( k ) sa t i s f ies the condition

Y = I m £ p ( k ) < c r ( k / n ) . (6.3)

If (6.3) i s not satisfied, we mus t have r e c o u r s e to
Eq. (4.4), and consider w t , w2, and w t + u;2 to be
complex quant i t ies .

We can a l so consider in an analogous way the b e -
havior of the t ensor a 4 in the resonance ca se ; no
s ingular i t ies appear he r e a s well , w h e r e a s (taking
into account what we have said above) the tensor a j
a t ta ins one of i t s max ima .

Let us assume that w t = w2 = u)0 and examine the
situation in which the frequency u)0 l i es in the region
of an absorpt ion band. Ju s t a s in the previously d i s -
cussed case , the quantity a j a lso i n c r e a s e s along

FIG. 4. Diagram of the
transitions involved in the
matrix element (4.3).
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with the intensity of the non-linear combination
process. As we have stated, a wave of frequency 2w0

is formed through the combination process. Since
here the number of excitons of frequency wo de-
creases, the process under discussion is an absorp-
tion process due to a third-order non-linear interac-
tion with respect to the excitons of frequency w0.

Consequently, the amount of absorption must de-
pend on the intensity of the incident radiation (so-
called induced absorption). The experimental study ^
has shown that the absorption cross-section in liquid
CS2 for radiation of A = 6943 A depends on the inten-
sity I of the incident radiation according to the for-
mula

where <J0 and ai are constants. An analogous re la-
tion must also hold for crystals. However, we know
of no pertinent experiments. The theory of induced
absorption is discussed in further detail in'-128-'.

The absorption process described above is called
two-photon absorption, since the act of absorption
consists in the simultaneous disappearance of two
photons in the medium (excitons). We can consider
the luminescence associated with two-photon absorp-
tion as though it resulted from the flux of excitons
produced by the non-linear process within the crystal.
Thus, in '-50-' they studied experimentally a CaF2 : Eu
crystal irradiated by the line A = 6943 A, while the
luminescence occurred at the wavelength A = 4250 A.
A luminescence of the same type in anthracene was
studied in'-49-', while in '-51-' a mechanism involving
triplet excitons was adduced to explain some charac-
teristics of the cited luminescence.

Let us consider the case in which u)j * w2, and
the primary exciton fluxes are equal respectively to
Ii and I2. Then an interesting feature of the induced
absorption of the flux at OJ, will be the proportion-
ality between this absorption and I2; I2 shows an
analogous characteristic with respect to Ij.

Now let us assume that an intense (laser) light
flux Ij is incident on the crystal; we choose its fre-
quency u)t such that the flux Ij is not absorbed.

Let us permit the crystal to be simultaneously
irradiated with an additional illumination I2 of fre-
quency OJ2, which we choose so that cci + uo2 or
ui) - (x>2 falls within an absorption band. Then the
flux L and also the flux I2 can be absorbed. Thus,
in '-129-' they observed experimentally the relation of
the absorption of the flux I2 to the frequency co2.
Here they could get information on the distribution of
the excited states.

The absorption of primary excitons of frequency
OJ0 occurs not only in combination, but also in decay.
Let the crystal have an absorption band in the region
wo/2. The decay obeys the law of conservation of the
wave vector k0 = k] + k2, and although k0 is small,
kj and k2 can be large (Fig. 5). The latter fact r e -

FIG. 5. Diagram of the decay of an exciton of wave vector
k0 into two excitons of wave vectors k, and k,.

suits in a higher density of final states, and hence a
higher probability of decay. The probability of disap-
pearance of an exciton of frequency w0 leads to the
appearance of an absorption band in this spectral
region; as was shown in '-52JJ the value of this absorp-
tion is comparable with that of the absorption in the
region OJ0/2. In the experimental studies'-53'54^, they
studied the LiF crystal, and observed absorption in
the far ultraviolet at 25 eV. This absorption was in-
terpreted in '-55-1 as the simultaneous excitation of two
Coulombic excitons. Absorption bands have also been
observed in the oxygen crystal with frequencies equal
to the sum of frequencies observed in gaseous oxy-
gen.*«

7. Some remarks on the existing methods of calcu-
lating non-linear effects

The theory of non-linear effects has also been de-
veloped by using methods differing from those p re -
sented in the previous sections. It is of definite in-
terest to compare these methods, as we shall do in
this section.

We shall first discuss the theory of non-linear ef-
fects ^57-' developed on the hypothesis that the interac-
tion between the crystal and the radiation can be
treated as a small perturbation, the radiation field
being quantized. The most essential defects of this
approach consist in the following.

As we have seen above, two mechanisms contribute
to the intensity of a non-linear process: anharmonicity
involving the interaction between the radiation field
and the crystal, and anharmonicity existing in the
Coulombic subsystem. Furthermore, anharmonicity
in the Coulombic subsystem was not taken into ac-
count in L -'. We should not suppose that it is generally
impossible to take it into account by the method of
small perturbations; it is taken into account in the
higher approximations. Besides, in the method out-
lined in the preceding sections, anharmonicity of the
Coulombic subsystem is taken into account even in
the first approximation of the perturbation theory.
We must also note that the method of small perturba-
tions and the method used in the preceding sections
give results for the non-linear effect tensor that
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differ numerically from one another by a factor of
2 - 3 .

The reason for this discrepancy consists in the
following. As we have seen above (see Sec. 2), the
exci ton-photon interaction gives rise in the Hamil-
tonian to both quadratic and cubic terms in the
creation and annihilation operators. The non-linear
effects arise from only that part of the complete
Hamiltonian that appears in the form of anharmonic
terms. Hence, in considering all exciton-photon
interactions as perturbations, we commit an error
if the quadratic part makes an appreciable contribu-
tion to the magnitude of the exciton energy.

Hence, the method of small perturbations can be
applied only when the cited quadratic terms make no
appreciable correction to the spectrum, i.e., only for
a gas.

We note also that the method of small perturba-
tions gives resonance denominators [see Eq. (6.1)]
that make the non-linear effect tensor infinite when
the frequencies Wj, u;2, or ajj + OJ2 approach an ab-
sorption band of the crystal. This involves an in-
correct choice of the functions of the zero-order ap-
proximation. In order to liquidate these singularities,
we could seemingly use the Weisskopf-Wigner
method.*'-58-' In actuality, we might encounter diffi-
culties here in studying closely-spaced levels. We
can also avoid the singularities by introducing a
complex value for the exciton energy ^ due to the
existence of radiationless transitions (see Eq. (6.3)
and the following discussion).

However, as we have seen, the problem of singu-
larities does not arise at all within the framework of
the theory developed above.

We also note that there is a theory of non-linear
effects (see C28-32,60-6O ^ i n w n i c n t^e radiation field
is treated as unquantized. We have already discussed
it above (see the Introduction). As we have mentioned,
the fundamental problem of the theories presented in
these studies is to find the quantity /3, which is
called the non-linear polarizability. We can divide
these studies into three groups.

The first group are studies in which the
peculiarities of the condensed medium are not taken
into account at all, or are taken into account by highly
imperfect means. Thus, for example, in the treat-
ment is carried out at first for a gas. Then an ef-
fective field is substituted for the external field by
multiplying the value of the external field by some
coefficient. Such a procedure does not permit one to
take into account one of the fundamental properties
of a crystal, its anisotropy.

The second group of studies ^65~70^ takes into ac-
count the peculiarities of the crystalline medium
more systematically from the outset. However, even

this group of studies does not take into account the
contribution made by anharmonicity of the Coulombic
subsystem. The latter is highly essential in studying
non-linear effects in the vicinity of exciton absorp-
tion bands, as well as in cases in which the contribu-
tion made by the tensor a0 is small.

Further, in these studies the behavior of the in-
tensity of the non-linear effects near a resonance is
determined by the magnitude of the Coulombic-
exciton attenuation y (when y = 0, then the intensity
at the resonance generally approaches infinity). This
completely ignores the possible case in which y is
small, and the cited behavior is determined by the
value of T (see the preceding section). In'-7Oj, they
introduced a parameter F characterizing the non-
adiabaticity of the inclusion of the interaction be-
tween the crystal and the radiation in order to remove
the singularity at the resonance. However, the
authors of'-70-' do not state how r is expressed in
terms of the characteristics of the crystal or any
other quantities.

The authors of the third group of studies [60"eC

limit themselves to studying the problem phenomeno-
logically; the problem is not raised at all in these
studies of finding fi in concrete form. We shall not
spend time on these studies.

m. NONLINEAR EFFECTS DUE TO ELECTRONIC -
VIBRATIONAL INTERACTION
(RAMAN SCATTERING)

8. The general theory of Raman scattering

As was mentioned in Chapter I, another of the non-
linear effects is effectuated by electronic-vibrational
interaction, namely, Raman scattering. It is due to
the interaction of light waves with intramolecular
acoustic and optical vibrations.

We shall first discuss scattering due to intra-
molecular vibrations, and limit ourselves to dis-
cussing the Stokes component of the Raman spectrum.
We can conveniently illustrate the process giving
rise to it by the diagram shown in Fig. 6. In the
initial state, let there by an exciton of wave vector
k0 and frequency OJ0 lying in the visible.* This exci-
ton is transformed into two excitons. The first,
having a wave vector kj and frequency ojj, also lies
in the visible. Upon emerging from the crystal, it
gives rise to the Stokes component of the Raman
spectrum. The second exciton, having a wave vector
k2 and frequency ti>2, lies in the frequency range of
the intramolecular vibrations, and is subsequently
transformed into heat. Since Raman scattering is
usually observed at a right angle (Fig. 7), the vectors
kj, k2, and k0 are about of the same length. These

*Insofar as the author knows, this method has not been applied
to study non-linear effects.

*For technical reasons, Raman scattering is usually studied
in the visible. However, this limitation is not essential in theory.
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FIG. 6. Diagram of the gener-
ation of the Stokes component of
the Raman spectrum.

vectors are shown in Fig. 6 with this fact taken into
account.

Let us assume that the intensity of the scattered
radiation does not attain such a value that laser
action results. By applying the method used in Sec.
4 (for further detail, see ^^ ) , we find that the inten-
sity of the scattered radiation of polarization j and
wave vector kj is equal to

*>(ki)=i i ND ('»• ki> 2 D ('"'• k°> Ia'-' I2 ("w );- 7 w
(8.1)

where c is the velocity of light, IOj' is the intensity
of the exciton flux determining the incident radiation
of polarization j ' , 9o;/8k is the group velocity of this
flux, OJ0 is the frequency of the incident radiation,
and Wj that of the scattered radiation; the other
symbols have already been used in (4.3).

The tensor aj'j consists (cf. Sec. 4) of two terms:

where

afi = 2 { ( - ^ - ^

(8.2)

(0 I /"

2, /i. 0,

(8.3)

(8.4)

and JU' is the number of the branch manifested in the
Raman spectrum.

Equation (8.2) for the tensor a(0) is an analog of
the formula for the Raman scattering tensor in gases,
and to some extent it characterizes the scattering in

FIG. 7. Arrangement of the wave
vectors in Raman scattering at an
angle of TT/2.

terms of an oriented-gas model. Hence, for brevity
we shall refer below to tensor (8.2) as the ordinary
tensor.

Now we shall discuss Eq. (8.3) for the tensor a(1)

in more detail, and for concreteness we shall limit
ourselves to dipole-dipole interaction between the
molecules. Expression (8.3) differs from zero only
when the dipole moment of the virtual electronic
transition interacts with the dipole moments of those
vibrations of the neighboring molecules that are
manifested in the Raman spectra. This means that
(8.3) differs from zero for vibrations that are active
simultaneously in the infrared and Raman spectra.
These vibrations can exist only in piezoelectric
crystals, which lack centers of inversion. Therefore
we shall call tensor (8.3) the piezoelectric tensor, in
distinction from the ordinary tensor (8.2). Under-
standably, in a piezocrystal not all the vibrations
make a big contribution to the piezoelectric tensor,
but only those for which the dipole moment differs
from zero.

Thus the vibrations lacking a dipole moment are
characterized by the Raman-scattering tensor (8.2),
and the vibrations having a dipole moment by the sum
of (8.2) and (8.3). In conclusion, we shall take up
some other variants of the theory of Raman scattering
in crystals.

Reference'-78-' treated Raman scattering in a
crystal by the method of small perturbations; the
difference between the latter method and that used
above has been discussed in Sec. 7, and there is no
need to repeat it here. Studies'-59'79^1 have recently
appeared in which Raman scattering has been treated
by using the density matrix. A highly valuable fea-
ture here is the account taken of attenuation involving
radiationless transitions. However, even these stud-
ies assumed the interaction between the material and
the radiation to be small. Further, we note that
Strizhevskii et a l . ^ tried to treat Raman scattering
from the standpoint of the exciton theory. Here the
role of the Hamiltonian of the zero-order approxima-
tion was played by the Hamiltonian of the field of
normal waves in the medium (i.e., the fact was taken
into account that n * 1). However, at the same time,
the perturbation was taken to be Hmt, or all the in-
teractions between the transverse photons and the
Coulombic subsystem. The matrix elements of Hm t
were taken in terms of the wave functions of the
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Hamiltonian of the zero-order approximation. How-
ever, this Hamiltonian already partially contains
Hint- T n a t is> t n e same operator was used in^80-'
both in the Hamiltonian of the zero-order approxima-
tion (in an implicit form) and in the perturbation.
Such a procedure at least requires justification. We
also note that Strizhevskii '-80-' did not derive the por-
tion of the Raman-scattering tensor due to the p res -
ence of anharmonicity in the Coulombic Hamiltonian.
As we have seen above, its contribution is quite sub-
stantial.

By using the method presented in Sec. 5, we can
also treat the effect of the crystal dimensions on the
Raman scattering intensity. From the calculations,
we find that the Raman scattering intensity depends
on the crystal dimensions according to a formula
analogous to (5.3). Here, however, | Ak | = | k0 - k t |
- | k2 I; k0 is the wave vector of the primary radia-
tion; kt that of the scattered radiation; Ep2(k2)

a ,= (8.7)

= Epo(ko) - is the condition determining k2;
the vector Ak lies along k0 — k t; and x is the thick-
ness of the crystal, which is cut in the form of a
plate having surfaces perpendicular to the vector
k0 - k , . *

We should note that in order to observe an oscil-
lating dependence of (5.3) on the crystal thickness,
we must strictly fix kj and k0. This means that the
primary radiation must be strictly monochromatic,
and the receiver must contain an apparatus of high
resolving power.

If these conditions are not obeyed, the effect will
be "smeared out." Insofar as we know, this effect
has not been observed experimentally yet.

The Mandelstam-Brillouin components in the
Rayleigh scattering arise from the excitation of
acoustic vibrations in the crystal.

The process of generation of the " r ed" compo-
nent can be represented by the following scheme. The
initial exciton of frequency LO0 decays into two: an
exciton of frequency v belonging to the acoustic
branch, and an exciton whose frequency uij is only a
little smaller than a;0 (w0 = LO1 + v).

The intensities of the Mandelstam-Brillouin com-
ponents were found within the framework of the
exciton theory in -. As a result, a formula was de-
rived similar to Eq. (8.1); however, instead of the
tensor a\>\ one must use the tensor

where

-aaHkt-ko, y^k.-ko)), (8.5)

(0 I /' I kô ji) (0 j / j ki, n)* , (01 /j-k), n)(0|/' ! — k0, \i)* ~\

(8.6)

-kt) (0 | / | - (8.7')

(8.8)

y r (k) are the coefficients of the transformation from
translational displacements to the displacements in-
volved in the r-th acoustic vibration,'-81^ and the nota-
tion in (8.2) has also been adopted.

The term Uj and (jj a r e a generalization of the
formula for the Rayleigh scattering tensor in gases
(see, e.g., Eq. (9.11) of the m o n o g r a p h ^ ) . However,
the term a3 is characteristic only of a crystal. It is
due to anharmonicity in the Coulombic subsystem,
and has not been previously discussed. We can show

—JIG>O
"7 <8-9)

Hence, in general, the terms CT3 are not small in
comparison with a t and a2 (tjj and cr2 are quantities
of about the same order of magnitude). As we can see
from (8.9), the role of 0-3 increases as the frequency
of the incident light approaches an absorption band.
Thus, by studying the relation of the intensity of the
Rayleigh scattering to the frequency OJQ of the inci-
dent light, we can get information on the anharmoni-
city in the electronic subsystem as well.

We shall now proceed to the problem of calculating
the intensity of the undisplaced component of the
Rayleigh scattering. As is known, ^ an ideal crystal
with fixed equilibrium positions of the molecules
gives no undisplaced component. The latter arises
only from thermal fluctuations, and also from various
deviations of the structure from ideality, which we
can consider to be the cause of the scattering.
"Ext ra" molecules, vacancies, and lattice-deforma-
tion regions can act as the structural defects. By
finding the scattering from a deformed structure, we
thus solve the problem of the scattering due to
thermal fluctuations, since the latter can be consid-
ered as regions of the crystal that have undergone a
certain expansion or compression. By calculations
analogous to those giving rise to Eq. (8.5), we can
show that the intensity of the undisplaced component
is determined by the tensor (8.5) within the accuracy
of an insignificant constant. In this tensor, the fol-
lowing function replaces (k0 - k1( y r (k0 - kj)):

*Just as in deriving Eq. (5.3), it is also necessary here that
the attenuation of the waves should be small. This occurs only at
very low scattering angles ("forward" scattering). In the converse
case there will be no oscillating relation.

(8.10)

where 2 ' is the summation over the "ex t ra" mole-
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cules, 2 " over the vacancies, 2 '" over the displaced
molecules, and u s is the displacement of the s-th
molecule. We see that f characterizes the deviation
of the crystal from ideality. In order to calculate f,
we must assign a concrete distribution of the extra
molecules and vacancies, and also assign the d is-
placements u s .

Raman scattering due to optical intermolecular
vibrations can also be treated analogously. If here
we limit ourselves to dipole-dipole interaction be-
tween the molecules, then the Raman-scattering
tensor for the above-cited vibrations is determined
by Eq. (8.6). However, in the latter we must set
CTt = cr2 = 0, and instead of E^ ^ ( k j , k2) (k0 - k1(

y r (k0 - kj)) we must use the expression

r ,w(k i>ko)= S W t f i . /i)«7ini(

r«>}. (8.11)

Here r is the number of the branch, xt and x2 are
the numbers of the Cartesian coordinates of the dis-
placements of the molecules, and the y (. . .) are the
transformation coefficients from Cartesian variables
to the crystal variables (e.g., one can find expres-
sions for them in '-83-').

Thus, the Raman scattering tensor for the inter-
molecular vibrations depends on the frequency of the
incident light in a way differing from the ordinary
tensor (8.2) (which is analogous to the Raman-scat-
tering tensor in gases), but resembling the piezo-
electric tensor (8.3). As we see from (8.11), the
latter is determined by the intensity of the intermo-
lecular interactions, and vanishes when they are
neglected. We recall that the ordinary tensor depends
weakly on the intermolecular interactions: in essence,
as we have said, it characterizes the Raman scatter-
ing in an oriented gas.

Recently lasers have made it possible to observe
the so-called stimulated Raman scattering. A r e -
view I-84-' has been devoted to this problem, but never-
theless we shall point out here how one should treat
this phenomenon within the framework of the exciton
theory (such a treatment has been made in'-85-' ).

When the intensity of the primary radiation is high,
the scattered radiation will also be very intense.
This leads to an increase in the occupation quantum
numbers n(p , , k]) that enter into Eq. (3.8) and de-
termine the intensity of the secondary radiation.
According to this formula, the increase in n (pl, kj)
raises the probability of transition from the initial to
the final state. Hence, a crystal in which Raman
scattering takes place becomes the generator of a new
frequency.

The Mandelstam-Brillouin components can also
give stimulated emission; this phenomenon has been
experimentally observed in [861

Similarly to induced optical absorption due to the
exciton-combination effect (see Sec. 6), we can have

induced absorption due to Raman scattering. In'-87-',
induced absorption was observed, which proved to be
proportional to the intensity of the stimulated Raman
scattering; this fact indicates that the induced ab-
sorption is directly due to the Raman scattering.

We note also that in the experimental study '-88-'
they observed Raman scattering accompanied by the
formation of an electronic excited state, or electronic
exciton, rather than a vibrational excited state, as
usually occurs in Raman scattering. From the view-
point applied in this paper for classifying effects, this
phenomenon belongs to the electronic effects. How-
ever, its treatment is fully analogous to that of Raman
scattering due to the intramolecular vibrations.

9. The form of the Raman-scattering tensor.
Harmonics. Combination frequencies. Fermi
resonance. Temperature-dependence

This section will take up the form of the Raman-
scattering tensor (RST) by group-theoretical methods.
It is evident here that the higher the symmetry of the
crystal is, the more essential the results obtained by
symmetry theory. We note that one observes experi-
mentally not the components of the RST themselves,
but the so-called two-dimensional intensity table.'-89-'
In order to determine it, we must study the intensities
of the scattered light with varying orientations of the
polarizers in the detector and the illuminator. Thus,
for example, the bxx component of this table charac-
terizes the intensity of the scattered radiation under
the condition that the polarizers of the detector and
the illuminator are oriented along the x axis. Here,
as we have said, the scattering angle is taken equal
to 7r/2. One defines analogously the eight other com-
ponents of this table (as can be easily seen, the table
contains nine components in all). We must take the
moduli of the squares of the corresponding compo-
nents of the RST for theoretical determination of the
components of this table. Whenever a vibration
manifested in the Raman spectra is degenerate, the
component in the intensity table is obtained by sum-
ming the corresponding moduli.

Studies are known (see, e.g.,'-89-') in which the form
of the Raman-scattering tensor has been treated
within the framework of the highly approximate
polarizability theory. We shall not have recourse to
this theory in this review; the form of the tensor will
be studied on the basis of the exact expressions (8.2)
and (8.3). The ordinary tensor (8.2) will be studied
by group-theory methods in this section, and the
piezoelectric tensor (8.3) in Sec. 10.

Since the appropriate procedure is analogous to
that presented above (see Sec. 5), we shall not take
it up here, but proceed directly to studying the char-
acteristic features of Raman scattering of light in
crystals.

When the frequency of the incident light approaches
an absorption band (the resonance case), one of the
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terms of the summation (8.2) becomes much larger
than the others, which we can thereby neglect.

The results of the group-theoretical study of the
RST are shown in Table II for the groups of the
crystal classes not containing an inversion center. In
centric crystals, only the vibrations symmetric with
respect to inversion (gerade) make a contribution to
the RST in the dipole approximation. Hence, the form
of the RST in a centric crystal turns out to be the
same as if the crystal did not contain the inversion
center.

The form of the RST for the resonance case de-
pends on the symmetry properties of the final and
intermediate states. Hence, by studying the form of
the RST, we can study the symmetry properties of
the exciton states.

Tables II gives the irreducible representation
corresponding to the intermediate state at the top,
and the final state at the left. Here the initial state is
assumed to be totally symmetric. For the groups
containing three-, four- or sixford axes, it is con-
venient to take the RST in a circular coordinate sys-
tem. We can derive the non-resonance case from
Table II as well: to do this, we must add the tensors
corresponding to different intermediate states, i.e.,
sum the tensors over the rows in Table II. As an
example, let us examine the case in which the final
state has the symmetry of the irreducible representa-
tion Aj of the group C4V. Summing over the row, we
find that the RST for this final state has the form

Similarly we can examine the non-resonance case for
a group of any crystal class. Using Table II, it is not
hard to obtain the intensity table or find the degree of
depolarization. Often one can experimentally deter-
mine the symmetry of a vibration manifested in the
Raman spectrum even from the degree of depolariza-
tion.'-92"95-' For more complex cases, we must also
find the intensity table.

We note that a classification of the vibrations in
certain ferroelectric crystals has been carried out
(see ^ ) on the basis of experimental data, using
Table II in particular. Apparently, the results of the
experimental studies L97~10(fl would also have been
more definite if the intensity table had been found
therein.

We also note that the structure of a number of
crystals (based on comparing the spectra of the
crystals with those of the same compounds in solu-
tion), the classification of vibrations, and other
problems studied with the aid of Raman scattering in
crystals have been discussed in some interesting

molecular crystals. The form of the Raman-scatter-
ing tensor for them is

a(,x) = V a(ag)M (9.1)

where a^& ' is the Raman-scattering tensor for an
isolated molecule occurring at the site a in the unit
cell, and the index g indicates the state of the iso-
lated molecule. The index n specifies the crystal
vibrations, and the coefficients uag j(U are defined in
Sec. 2. Very often it proves possible to determine
these coefficients even from purely group-theoretical
considerations.105-' Using Eq. (9.1), we can find the
tensor a^i if we know the tensor a^*S\ in many
cases, we can find the latter by using Table II and
the experimentally-determined degree of depolariza-
tion (for further details, see ^77 ' ) . Thus, if we know
the symmetry of a vibration for the free molecule,
the degree of depolarization measured for gases, and
also the crystal structure, we can derive the intensity
table. Insofar as we know, such a relatively easy
program has not yet been carried out as applied to
concrete crystals.

Using group theory, it proves possible to get
definite information on the intensity table for Raman
scattering in the harmonics and combination frequen-
cies and to take into account the presence of Fermi
resonance and effects involving temperature change

[ l o t l
(for further details, see

[ l o t l
).

papers by Mathieu and his associates.L101-104]
We shall discuss here especially the case of

We shall discuss these problems in more detail;
first we shall take up the case of a harmonic. For
this purpose, we shall determine the characters of
the representation according to which the wave func-
tions of the harmonic transform. We can find these
characters either by the method of Tisza, 7^ or by
that of Kompaneets. 08 The existing representation
of a harmonic can be either reducible or irreducible.
If it is irreducible, then we can use Table II directly
to find the form of the RST of the harmonic. However,
if it is reducible, then the harmonic consists of a set
of sublevels, and the form of the RST can be found
separately for each sublevel using the same Table II.
The intensities associated with each sublevel are
added.

It is even easier to treat a combination frequency,
since the corresponding representation is the direct
product of the representations for the constituent
levels, and there is no need to use any special method.
Transition from the first excited vibrational level to
the second becomes important with increasing tem-
perature. By following the methods described above,
we can easily find the set of tensors corresponding
to this transition.

We can make the following remarks on how to take
Fermi resonance into account in the Raman spectrum.
As has been mentioned above, a harmonic in the
general case splits into sublevels. Only those sub-
levels will participate in the resonance that t rans-
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f o r m a c c o r d i n g t o t h e s a m e r e p r e s e n t a t i o n a s t h e

f u n d a m e n t a l o f t h e F e r m i r e s o n a n c e . H e n c e , t h e

r e s o n a n c e p h e n o m e n o n w i l l c o n s i s t i n t h e e n h a n c e -

m e n t o f s p e c i f i c a l l y t h e s e s e l e c t e d s u b l e v e l s .

I n s p e a k i n g o f t h e a p p l i c a t i o n o f g r o u p - t h e o r e t i c a l

m e t h o d s t o R a m a n s c a t t e r i n g , w e m u s t n o t o m i t

r e f e r e n c e

[ 1 0 9 1

H e r e t h e s o - c a l l e d c r i t i c a l p o i n t s o f

t h e v i b r a t i o n a l s p e c t r u m w e r e s t u d i e d ( t h e d e n s i t y o f

s t a t e s i s i n f i n i t e l y l a r g e a t t h e s e p o i n t s ) u s i n g t h e

t o p o l o g i c a l m e t h o d s d e v e l o p e d i n ' - 1 1 0 - ' . I t w a s s h o w n

t h a t t h e y c o r r e s p o n d t o m a x i m a o f t h e s c a t t e r i n g

i n t e n s i t y . H e n c e t h e s t u d y o f t h e s h a p e o f R a m a n

l i n e s p e r m i t s o n e t o s t u d y t h e r e l a t i o n o f t h e v i b r a -

t i o n f r e q u e n c y t o t h e w a v e v e c t o r i n t h e n e i g h b o r h o o d

o f c r i t i c a l p o i n t s .

1 0 . R a m a n s c a t t e r i n g i n p i e z o e l e c t r i c c r y s t a l s

T h i s s e c t i o n w i l l t a k e u p s o m e p e c u l i a r i t i e s o f

R a m a n s c a t t e r i n g b y d i p o l e v i b r a t i o n s t h a t a r e a l s o

a c t i v e i n t h e i n f r a r e d s p e c t r u m . A s w e h a v e s a i d

( s e e S e c . 8 ) , v i b r a t i o n s o f t h i s t y p e o c c u r o n l y i n

p i e z o e l e c t r i c c r y s t a l s .

F i r s t w e s h a l l d i s c u s s t h e s e v i b r a t i o n s i n c u b i c

c r y s t a l s , a n d s h a l l a s s u m e f o r s i m p l i c i t y t h a t t h e

c r y s t a l i s m a d e o f i s o t r o p i c m o l e c u l e s . A m o n g a l l

t h e v i b r a t i o n s o f t h e m o l e c u l e , t h e o n l y o n e s p o s s e s s -

i n g a d i p o l e m o m e n t a r e t h e t r i p l y d e g e n e r a t e v i b r a -

t i o n s t r a n s f o r m i n g l i k e x , y , a n d z . I n t h e c r y s t a l t h e

t h r e e f o l d d e g e n e r a c y i s p a r t i a l l y r e m o v e d . A n o n -

d e g e n e r a t e l o n g i t u d i n a l v i b r a t i o n a n d a d o u b l y - d e g e n -

e r a t e t r a n s v e r s e v i b r a t i o n a r e f o r m e d . * T h e l o n g i -

t u d i n a l v i b r a t i o n i n d u c e s a l o n g i t u d i n a l e l e c t r i c f i e l d ;

t h e e x i s t e n c e o f t h i s f i e l d c a u s e s t h e f r e q u e n c y o f t h e

l o n g i t u d i n a l v i b r a t i o n t o b e g r e a t e r t h a n t h a t o f t h e

t r a n s v e r s e v i b r a t i o n s , f o r w h i c h t h e r e i s n o s i m i l a r

f i e l d .

W e c a n f i n d t h e v a l u e s o f t h e s e f r e q u e n c i e s i f w e

k n o w t h e r e l a t i o n o f t h e d i e l e c t r i c c o n s t a n t t o t h e

f r e q u e n c y e ( u > ) . I n p a r t i c u l a r , t h e f r e q u e n c y o f t h e

l o n g i t u d i n a l v i b r a t i o n i s d e t e r m i n e d b y t h e c o n d i t i o n

e ( a > | | ) = 0 , w h i l e t h e f r e q u e n c y o f t h e t r a n s v e r s e

v i b r a t i o n i s d e t e r m i n e d b y t h e c o n d i t i o n £ ( u j j _ )

= ° ° . T h e s i z e o f t h e s p l i t t i n g A u > = u ) j | - a j j _ h e r e i s

i n d e p e n d e n t o f t h e d i r e c t i o n o f t h e w a v e v e c t o r o f t h e

v i b r a t i o n .

W e s h a l l p r o c e e d n o w t o n o n - c u b i c c r y s t a l s , a n d

f o r c o n c r e t e n e s s w e s h a l l s t u d y a c r y s t a l o f t h e

t e t r a g o n a l s y s t e m w i t h a p r i m i t i v e l a t t i c e ( o n e m o l e -

c u l e p e r u n i t c e l l ) f o r m e d b y m o l e c u l e s o f s y m m e t r y

D 4 . T h e d i p o l e v i b r a t i o n s i n t h e m o l e c u l e c o m p r i s e

o n e t y p e o f n o n - d e g e n e r a t e v i b r a t i o n s , a n d o n e o f

d o u b l y - d e g e n e r a t e v i b r a t i o n s . L e t u s e x a m i n e h o w a

n o n - d e g e n e r a t e v i b r a t i o n p o l a r i z e d a l o n g t h e f o u r f o l d

a x i s w i l l b e h a v e i n t h e c r y s t a l . T h e l o n g i t u d i n a l f i e l d

a c c o m p a n y i n g t h i s v i b r a t i o n c a n b e w r i t t e n a s E | |

= - 4 7 r k ( k " p ) ( w h e r e k i s t h e w a v e v e c t o r a n d P i s

t h e d i p o l e m o m e n t p e r u n i t v o l u m e ) . T h e c h a n g e i n

t h e e l a s t i c c o n s t a n t f o r t h i s v i b r a t i o n a n d h e n c e a l s o

t h e c h a n g e i n t h e s q u a r e o f t h e f r e q u e n c y a r e p r o -

p o r t i o n a l t o t h e p r o j e c t i o n o f t h e f i e l d E | | o n t h e

d i r e c t i o n o f P . H e n c e , t h e f r e q u e n c y o f a n o n - d e -

g e n e r a t e v i b r a t i o n d e p e n d s o n t h e a n g l e c p b e t w e e n

k a n d P ( o r , e q u i v a l e n t l y , t h a t b e t w e e n k a n d t h e

f o u r f o l d a x i s ) a c c o r d i n g t o t h e f o r m u l a

* S t r i c t l y s p e a k i n g , w e c a n r e f e r t c t h e v i b r a t i o n s a s b e i n g

t r a n s v e r s e o r l o n g i t u d i n a l i n t h i s c a s e o n l y f o r l o n g w a v e s .

A c o s 2 c p , ( 1 0 . 1 )

w h e r e u > o a n d A a r e c o n s t a n t s .
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Now we shall discuss a vibration that is doubly
degenerate in the isolated molecule. Let the plane of
the vibration by the xy plane. In this plane, let us
choose two perpendicular unit vectors T and a, such
that the unit vector a lies in the plane formed by the
z axis and the vector k. Let us resolve the degener-
ate vibration into components along T and o. The
vibration along r, and hence orthogonal to k, is not
subject to the action of the longitudinal field, while
vibration along a can be treated as a non-de gene rate
vibration. Hence, the frequency of a vibration polar-
ized along a can be determined by Eq. (10.1). How-
ever, here we must take q> to be the angle between
T and k.

We have limited ourselves above to a primitive
lattice for simplicity. As has been shown in1-77^, the
relation of the frequencies to the direction of k can
also be described by Eq. (10.1) for an arbitrary
crystal.

Consequently, the frequencies in a non-cubic
crystal vary with the direction of k. That is , the
vibration frequency is a non-analytic function of the
wave vector when k —-0. In fact, in a number of ex-
perimental studies, J a vibration frequency
manifested in the Raman spectrum has been observed
to vary as a function of the direction k, and sat is-
factory agreement was found with Eq. (10.1) (see
also [ 1 1 ( a) .*

The degree of depolarization of the Raman scatter-
ing in piezoelectric crystals also shows a number of
peculiarities, which were first explained by Poulet'-117-'
as applied to cubic crystals. This explanation is
semiphenomenological. It is graphic in nature, and
is worth taking up in more detail.

In accord with the polarizability theory,! the
Raman scattering intensity is determined by the de-
rivative 3a /9q (where a is the polarizability of the
crystal, which depends on the displacements qx, qy,
and qz of the ions along the x, y, and z axes; q is
the generalized coordinate corresponding to the
vibration manifested in the Raman spectrum).

Consequently, the intensity of the Raman scatter-
ing by a longitudinal vibration is determined by the
derivative

3a da dqx 3a dqy : 3a dqz
3<7n dqx dq dq,, do, dq, dq, • (10.2)

The form of the tensors 3a/3qx , 3a/3qy , and
3a /3q z is known, and can be found in£893. Then,
using (10.2) we can obtain the form of the RST for
the longitudinal vibration and find the intensity table

•Evidently the angle cj> in (10.1) is n/2 for transverse vibra-
tions.

^The application of the polarizability theory in crystals is sub-
ject to some doubt. Reference ["*], which is concerned with sub-
stantiating the polarizability theory in crystals, does not take into
account, e.g., the existence of the piezoelectric tensor (8.3),
which plays a considerable role in this case.

or the degree of depolarization, since
= k x / | k |, etc. We can treat analogously the scatter-
ing by the transverse vibrations; its intensity is de-
termined by the formula

_3o_ = Ja_ dq^_ , _*LJ;)£w, Jta_J>£z_ n n „ .
dqy dqx dq± "•" dqy dq±

 n dq. dqy ' \J-V-J)

w h e r e q x i s o n e o f t h e t w o t r a n s v e r s e v i b r a t i o n a l

c o o r d i n a t e s . S i n c e t h e t r a n s v e r s e v i b r a t i o n s a r e d e -

g e n e r a t e , t h e R a m a n s c a t t e r i n g i n t e n s i t i e s f r o m t h e s e

v i b r a t i o n s m u s t b e a d d e d . T h e s o - c a l l e d " a n o m a l i e s "

i n t h e d e g r e e o f d e p o l a r i z a t i o n i n p i e z o e l e c t r i c s ' - 1 1 9 " 1 2 0 - '

w e r e e x p l a i n e d in ' - 1 1 4 - ' b y d i r e c t l y u s i n g E q s . ( 1 0 . 2 )

a n d ( 1 0 . 3 ) .

W e p r e s e n t T a b l e I I I , w h i c h h a s b e e n t a k e n f rom ' - 1 1 ' 4 ^ .

I t c o m p a r e s t h e t h e o r e t i c a l a n d e x p e r i m e n t a l d a t a o n

t h e d e g r e e o f d e p o l a r i z a t i o n f o r e i g h t d i f f e r e n t c a s e s

o f c r y s t a l o r i e n t a t i o n ; h e r e p\\ d e n o t e s t h e d e g r e e o f

d e p o l a r i z a t i o n f o r a l o n g i t u d i n a l v i b r a t i o n , a n d pi f o r

a t r a n s v e r s e v i b r a t i o n . T h e v a r i o u s c a s e s d i f f e r

f r o m o n e a n o t h e r i n t h e p o s i t i o n o f t h e d e t e c t o r , t h e

o r i e n t a t i o n o f t h e c r y s t a l , a n d t h e p o l a r i z a t i o n d i r e c -

t i o n ( f o r f u r t h e r d e t a i l s , s e e t h e e x p l a n a t i o n f o r

T a b l e I I I ) . W e s e e f r o m t h e t a b l e t h a t t h e d e g r e e s o f

d e p o l a r i z a t i o n c a l c u l a t e d u s i n g E q s . ( 1 0 . 2 ) a n d ( 1 0 . 3 )

a n d t h o s e o b s e r v e d e x p e r i m e n t a l l y a g r e e s a t i s f a c -

t o r i l y .

W e s h a l l n o w m a k e a s p e c i a l e x a m i n a t i o n o f t h e

p r o b l e m o f t h e r a t i o o f t h e s c a t t e r i n g i n t e n s i t y f r o m

a l o n g i t u d i n a l v i b r a t i o n t o t h a t f r o m t h e t r a n s v e r s e

v i b r a t i o n s . If w e a s s u m e t h a t t h e c o e f f i c i e n t s

3 a / 3 q x , 3 o : / 3 q y , a n d da/dqz a r e t h e s a m e i n ( 1 0 . 2 )

a n d ( 1 0 . 3 ) , t h e n t h e r a t i o o f t h e c i t e d i n t e n s i t i e s d o e s

not turn out equal to that actually observed experi-
mentally. 116 •120-' In order to eliminate this discrep-
ancy, Poulet took different values for these coeffi-
cients in (10.2) and (10.3). It was later possible to
determine the corresponding coefficient from inde-
pendent experiments on the elasto-optic constants.

We note that the ideas presented in '-117-' were
further developed in 021-124]̂  WJ1JCJ1 w e r e concerned
with studying Raman spectra in piezoelectric crystals
(see also in this regard the review '-125^ ). In connec-
tion with what has been said, we also note that one
can show within the framework of the microtheory of
Raman scattering presented above (see '-126-' ) that the
piezoelectric tensor (8.3) is not zero for longitudinal
vibrations, while it vanishes for the transverse vi-
brations. This shows that it is essential to take into
account the polarity of a vibration, and consequently,
Poulet's procedure '-117- for cubic crystals, is strictly
substantiated. Thus the microtheory'-126-' has fully
confirmed the validity of the phenomenological
theory. IJ Besides, it has made it possible to find
an explicit expression for the RST.

The treatment above was concerned with finding
the form of the RST in cubic crystals. The behavior
of non-cubic crystals has been discussed in'-77'127-.
Here it was shown that the form of the RST for a
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Table III. Comparison of the theoretical and experimental data on
depolarization

Case
NO. ; Pn

Experiment Theory

2.8
1.4
2.3
0.4

0.9
0.06
0.7
1.1

Case
II No.

Experiment Theory

3
2
3
0.33

1
0
1
1

5
6
7
8

0.6
0.6
1.8
0.35

14
0.3
0.06
0

f

0
0.
0

5
75
33

0
0
0

P i

.17

The X, Y, and Z axes are fixed (laboratory system); the radiation is incident on the
crystal along the X axis, and the detector for the scattered radiation lies in the Y direc-
tion. The x, y, and z axes are the symmetry axes of the crystal, which is cut in the form
of a cube having axes r, s, and t.

Case 1: the axes r, s, and t coincide with x, y, z and X, Y, Z, and the incident light
is unpolarized. Case 2: the same, but the light is polarized along the Y axis. Case 3: the
r, s, t trihedron is rotated by 45° about the z axis, the axis ot is parallel to OX, and the
incident light is unpolarized. Case 4: the same, but without ot parallel to OY. Case 5:
the same as Case 4, but with the light polarized along Ey. Case 6: the axis ot coin-
cides with a threefold axis, the axis ox is perpendicular to ot and lies in the toz plane,
os completes the trihedron, ot and OX are parallel, the angle toz is 54°44', the axis oz
lies in the XOY plane, and the incident light is unpolarized. Case 7: the same, but with
the incident light polarized along Ez. Case 8: the same as 7, but with k and z forming
an angle of 99°44'.

non -de gene rate vibration is given by the formula

eccs2cp), (10.4)

where a z is the form of the RST for a vibration
polarized along z, e is a constant, and <p is the
angle between z and k.

For a vibration polarized along the previously-
defined vector a, the RST is given by the formula

aa = [axcos(x, a) + a!J(ios(y, a)\ (1 + ecos (a, k). (10.5)

For a vibration polarized along T, it is given by

aT = axccs(.T, x) + aycos(y, x). (10.6)

Here we have introduced the notation: ax, av are the
RST for vibrations along the x and y axes, respec-
tively.

The given formulas (10.4) and (10.5) imply that in
general the RST depends on the direction of the wave
vector of the vibration. This dependence results in
an asymmetry of the Raman-scattering indicatrix.
Insofar as we know, this has not yet been observed
experimentally. In line with the theory presented
above, this asymmetry must occur only for polar vi-
brations and be accompanied by a change in the vibra-
tion frequency manifested in the Raman scattering as
the scattering angle is varied.

In speaking of the Raman-scattering indicatrix, we
must mention some interesting peculiarities observed
when Raman scattering is excited by a high-power
light flux. However, this set of problems has already
been taken up in sufficient detail in a review,184- and
we shall not treat it here.
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