SOVIET PHYSICS USPEKHI

519.281

VOLUME 8, NUMBER 2

SEPTEMBER-OCTOBER 1965

New Apparatus and Methods of Measurement

EXPERIMENTAL ERROR AND RELIABILITY OF SIMPLEST EXPERIMENTS

M. I. KORNFEL’D
Usp. Fiz. Nauk 85, 533-542 (March, 1965)

THE concept of experimental error does not have a
clear meaning until we have indicated its reliability,
i.e., the probability of finding the desired quantity
within the limits of error.

The present note is devoted to an estimate of the
reliability of the simplest experiments. In more
complicated cases the reader should refer to the
maﬂ[lgmatical theory of the reduction of observations
(cf. 7).

1. COMPARISON OF OBJECTS

To distinguish one physical object from another
means to indicate which of them A or B possesses
a definite attribute.

However, because of unavoidable accidental dis-
turbances the distinctive attribute may be ascribed
not only to the object which in fact possesses this
attribute, but also to the other object. In other words,
there exists a probability Wy that the attribute will
be ascribed to object A, and the probability WgB
=1 — WA that the attribute will be ascribed to object
B. .
In accordance with this the degree of distinguish-~
ability of the objects can be conveniently charac-
terized by the quantity

U—W,4—Wsg, (1.1)

which is equal to zero for indistinguishable objects,
and is equal to plus or minus unity for maximally
distinguishable objects.

We assume that in the experimental determination
of this quantity (i.e., in comparing the objects) n
experiments (tests) have been carried out. If in
mp cases the attribute was ascribed to object A
and in mpg =n — mp cases the attribute was as-
cribed to object B, then the degree of distinguish-
ability is approximately equal to
mp

foma_
n

(1.2)

n

The problem now consists of making a judgment
of the true degree of distinguishability U on the
basis of the approximate value of the degree of dis-
tinguishability U.

This problem is equivalent to the statistical prob-
lem of finding the probability of an event on the basis
of a number of independent experiments (cf., for
example, [2], page 136).

Its solution shows that for n — <, and in practice
already for n > 100, the inequalities

299

Table I
\
1 PR 107 ‘0.9 10.99 0.999‘
| ! \
| 0 ; i i
t i 0 | 1.04 1.64] 2.58 ls.zg ‘
| i

O—-pV1—T2p
g

T4V 1—024p2
N EETa

U (1.3)

[}

hold with the probability p, where
ot
p= Vo
while the dependence of t on p is given in Table I.
For B « 1 in place of the inequalities (1.3) we

can write

U=U+AU,
where

AU=pV1- 02 1p2 (1.4)

In future we shall call AU the experimental error,
and p the reliability in determining the degree of
distinguishability.

Thus, the formulas above enable us to assert with
a reliability p that the difference U — U does not
lie outside the limits of error +AU.

In scientific questions one can hardly be satisfied
with the reliability of any assertion smaller than 0.9.
In accepting this number, i.e., having reconciled
oneself to the fact that in one case out of ten our
assertion will turn out to be incorrect, it can be
easily seen from (1.4) that in order to achieve a
tolerably acceptable experimental error a very large
number of experiments is required.

For U close to zero an experimental error of 0.1
corresponds to 250 experiments, an experimental
error of 0.01 corresponds to 25,000 experiments,
and an experimental error of 0.001 corresponds to
two and a half million experiments!

For U =1 one needs a considerably smaller num-
ber of experiments. However, one must have in mind
that in this case the approximate nature of (1.3) be-
gins to be felt and the estimate of the number of ex-
periments becomes inexact.

In order to illustrate the considerations outlined
above we shall outline the results of an investigation
of a procedure of comparison in which the distinguish-
ability of objects was determined by the unaided eye
(M. I. Kornfel’d [¥1y.

A circle drawn in India ink on white paper was
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photographed and prints were made with different
magnifications from the negative so obtained. Seven
pairs were formed from these prints. On one of the
prints of each pair the circle had a diameter of 12
mm, and in the other one a diameter differing by

A =0.10; 0.15; 0.20; 0.25; 0.30; 0.40; 1.00 mm.

The experimenter by ‘‘shuffling’’ a given pair of
prints by means of a special device was required
each time to indicate which one of them contained the
larger circle. The number of correct (and erroneous)
conclusions was recorded automatically and from
this by means of formula (1.2) the approximate de-
gree of distinguishability of the circles U was de-
termined.

Twenty eight persons participated in this work.
For each pair of prints one thousand experiments
were carried out by different persons (100 experi-
ments in one sitting). The results are shown in
Table II and in Fig. 1 where the vertical lines cor-
respond to the error evaluated with the aid of formula
(1.4) for a reliability of 0.9 and for the number of
experiments equal to 1000.

The curve shows first of all the existence of an
interval of insensitivity situated in the diagram to
the left of the vertical dotted line. The differences
between circles lying within the limits of this inter-
val are not detected by the eye even after a very
large number of experiments, which apparently cor-
responds to the discrete nature of the receptors in
the eye.

The shape of the curve beyond the interval of in-
sensitivity can be explained by a superposition of
random disturbances on the actual difference between
the circles. The greater is this difference the
smaller the role is played by the disturbances and,
consequently, the closer to unity is the degree of
distinguishability.

The data obtained show that the resolving power
of the eye in the usual sense of this term depends on
the degree of reliability with which we desire to
distinguish one object from another, i.e., what frac-
tion of erroneocus conclusions we regard as being
admissible. For example, for 30% erroneous con-
clusions the resolving power is equal to 0.15 mm,
for 10% it is equal to 0.4 mm, for 1% it is equal to
1 mm etc.

2. MEASUREMENT OF MAGNITUDES

As a result of unavoidable random disturbances a
repetition of the procedure of measuring a magnitude
leads, as a rule, every time to a different result.
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The problem consists of arriving at an estimate of
the true magnitude on the basis of several numbers
obtained in repeated measurements.

This problem can be solved in the following
manner (cf. [ ).

In accordance with the definitions adopted in the
preceding section, in comparing two indistinguishable
objects it is equally probable to ascribe a distinguish-
ing attribute to either one of them. In terms of the
measuring operation this means that in measuring
the magnitude of an object it is equally probable to
obtain a number which is greater than or less than
the true magnitude.

We denote the true magnitude by x and arrange
the numbers obtained in the n measurements in in-
creasing order: X1, X5, X3, ...,Xp. Then, in accord-
ance with what has been said the probability of the
inequality x < x,, as well as the probability of the
inequality x > xy, will be equal to ().

From this we get for the probability that neither
one of these inequalities is satisfied, i.e., for the
probability of the inequality x; < x < Xy,

p=1—2(1/2)". (2.1)

Thus, with a degree of reliability p one can
assert that x lies between the limits of x; and xp.
In future instead of giving the limits of this interval
we shall write

where r=2 % Az,
= (21 ), (2.2a)
Az =3 (2, —a). (2.2b)

We shall call the first of these numbers the
approximate value of the quantity, and the second
number the experimental error of the measurement.
When the number of measurements is great and the
reliability calculated by means of (2.1) appears to us
to be unnecessarily high, we can discard at the be~-
ginning and at the end of the series xq, xy, X3, ..., Xn
respectively q and ! numbers, and by this reduce
the experimental error.

In order to calculate the reliability of the result -
obtained by this method one can utilize the expres-
sion
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Table III
5
¥ [ i {
| p=0.9 ‘ pe=0.99 ‘ p=0.999

10 ‘ 2 ‘ — —
20 6 ‘ 4 2
30 ‘ 10 : 8 6
40 14 | 12 10
50 | 19 [ 16 { 13
| 60 | 23 20 17
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p=1 —2%<}J 3] (n";'—k)! + 2 7 (nn;k)! ) v 2.3)
k=0 . h=0

which represents a generalization of (2.1) to the case

of the inequality Xq.q < X < Xn-[.

Setting for the sake of simplicity q =7 = s, which
corresponds to a decrease of the experimental error
from Y, (xy — X;) to Y5 (Xp-g — Xg+1), and selecting
a definite reliability, one can with the aid of (2.3)
find the number s corresponding to this degree of
reliability. In Table III and in Fig. 2 we have shown
the dependence of s on n for p = 0.9, 0.99 and 0.999.

Let us also consider the case when one of the
values of the quantity being measured sharply differs
from all the rest. Usually such a value is simply
discarded. However, by doing this we lower not only
the experimental error but also the reliability of the
result. Therefore, in each specific case one should
first of all consider as to whether it is better to re-
duce the experimental error or the degree of relia-
bility, and in accordance with this either to retain
or to reject the ‘‘inconsistent’”” measurement.

On getting in formula (2.3) ¢ =0 and I =1 we ob-
tain N

p=01—-2(1/2)"— 5 . 2.4)

From this we can see that rejection of the ““in-
consistent’’ value is permissible only for sufficiently
large values of n.

To illustrate the method of estimating the true
value outlined above we shall utilize the 58 measure-
ments of the charge of the electron by R. Millikan
(in multiples of 10710 cgs esu) (Table IV).
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We arrange these numbers in increasing order:

4.740 4,747 4.749 4.758 4.761 4.764
4.764 4.764 4.765 4.767 4.768 4.769
4.769 4.771 4.711 4.772 4.772 4.772
4.774 4.775 4.775 4.776 4771 4.777
4.778 4.779 4.779 4.779 4.784 4.781
4.782 4,783 4.783 4,785 4785 4.785
4.788 4.788 4.789 4.789 4.790 4.790
4.790 4.791 4.791 4.791 4.792 4.792
4.795 4.797 4.799 4.799 4.801 4.805
4.806 4.808 4.809 4.810

We select the degree of reliability p = 0.9. From
Table III it can be seen that a reliability 0.9 for
n = 58 corresponds to s = 23. Discarding 23 num-
bers from each end of the series of numbers given
above we obtain the outer numbers of the remaining
part: 4.777 and 4.785.

Consequently, the desired true value lies within
the limits between 4.777 and 4.785, i.e., the charge
of the electron with a reliability of 0.9 is equal to

(4.781 £ 0.004)- 10710,

We shall further investigate how does the estimate
of the true value of the charge of the electron look
for a small number of measurements, equal, for ex-
ample, to five,

Utilizing formula (2.2) we find directly from
Table IV for each of the eleven groups denoted by
Roman numerals the approximate value and the
experimental error. These results are shown in

Table IV
‘ I ’ 11 IV v Vi
4.781 4.764 4.777 4.809 4.761 4.769
4.795 4.776 4.765 4.790 4.792 4.806
4.769 4,771 4.785 4.779 4.758 4.779
4.792 4.789 4.805 4.788 4.764 4.785
4.779 4,772 4.768 4.772 4.810 4.790
V11 VIII X l X1 XII
\

4.775 4.789 4.801 4.791 4.799 4.777
4772 4.764 4.785 4.788 4.799 4.749
4.791 4,774 4.783 4.783 | 4.797 4.781
4.782 4.778 4.808 4.740 4.790 —
4.767 4.791 4.7 4.775 4.747 —
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Table V
I
|
f Group Result Group Result
i J
I |4.78240.013 VII |4.77940.012
r II | 4.77740.012 VIIT |4.77740.014
II1 | 4.77540,020 IX [4.78940.019
IV 14.77940.019 X 14.76540.025
V. 14.78440.026 X1 [4.773+40.026
’ VI 14.787+0.019

Table V; they correspond in accordance with formula
(2.5) to a degree of reliability p = 0.94.

As can be seen from Table V a decrease in the
number of measurements leads to an increase in the
experimental error.

3. INVESTIGATION OF RELATIONS

The result of an experimental investigation of the

relation between two quantities is given by the table:
(3.1)

x‘xi Ty Ty... Ty

v v ys ...

where

Z1<x2<$3< e < Zpn-

On the basis of this table we have to make an
estimate of the true function y = F (x).

Assuming, for simplicity, that only the y’s are
subject to experimental error and that these errors
do not depend on x, we shall represent the data of the
table on a graph representing each pair of values
(Xi, yi) by a corresponding point (Fig. 3).

Further we shall draw two smooth curves one
above all these points and the other below all these
points in such a way that the distance between the
curves (along the y axis) would be a minimum and
constant along the whole extent of the curve.

It can be easily seen that the distance between
these limiting curves is equal to twice the experi-
mental error which we would have obtained if we had
measured y N times for a certain fixed value of xj.

From this, in accordance with (2.1), the probability
of finding the true value of y, F(xi), between the
curves is equal to 1-2 (Y, )N, while the probability
that the true function at all points xq, X3, X3, ..., XN

)
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does not lie outside the limiting region will be given

b
y p=01—201/2"".

(3.2a)
We also note here that if at each point we have
carried out several measurements of y, then

N
p=[1-2(1)"T"

where Nt is the total number of measurements.

However, in this case the result can also be
represented in a different manner. Having calculated
for each x; the approximate value ;i and the experi-
mental error Ayj, we plot on the graph instead of
the point (xj, yi) a vertical bar whose length is
equal 2Ayj, and whose center coincides with ;’i-
Drawing the limiting curves respectively to join the
top and the bottom ends of the bars we have

(3.2b)

P=DP1p2Ps ... Pn» (3.2c)

where py, ps, Py, ... are the degrees of reliability
corresponding to the approximate values ;1, ;2,
Y3 -

It is understood, of course, that the limitations
imposed by the preceding formulas do not refer to
the intervals between the neighboring values of x.
For p arbitrarily close to unity the true function
can have, for example, the shape shown in Fig. 4.

But even when we have reasons for assuming
that in the ‘‘gaps’’ between the measurements the
function does not go outside the boundaries of the
limiting region, it cannot be determined completely
accurately, since within the region there are con-
tained a large number of different functions and it is
not known which of them is the true one.

Therefore, we can call the curve y = ¥ (x) lying
in the middle between the two boundary curves the
approximate function, half of the interval between the
bounding curves AF (x) the experimental error, and
the probability p the reliability of the investigation
of the relation (Fig. 5).

The data of the table (3.1) can also be represented
in analytic form. With this aim in view utilizing the
graph of the approximate function we obtain for
equidistant values of x: x3, xq + w, X9 + 2w, ... the
values of y corresponding to them: yg, vy, Vo, - - -
Further, we obtain the
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first differences: AP =y, — yo, AP =y, — y,,

AP =y3 — Yo - . .,
the second differences: A® = AP — AP, A®
= AD AR
the third differences: A® = AP — AP, . ..
Lo Yo
A:)U
Zy AZ
A<11> A'(Ja)
Ty Y AP
A(;) A;S)
T3 Ys AP
A(31) A(za)
Ty Yau AP
A(dl)

Ts  Ys

If the m-th differences are constant, while the
(m + 1)-th differences are equal to zero, then the
function under consideration can be represented by
the polynomial y = ay + a;x + apx% + . .. + amx™,
Having obtained in this fashion the degree of the
polynomial we can easily evaluate its coefficients:

~ AD
ay =——,
m=1 o
Ay =Y — 1ay; (3.3a)
( ~ A@)
I @2 =547 °
m:2 { 5 _ Ay
|
| ag=y—za, —z%a, (3.3h)
etc., where y, x, x... , A (1), A(Z), ... correspond to
values averaged over all the lines of the table of dif-
Table VI
te G 1 Y, Sec. )‘I e G Yy, Sec. ‘
—10.0 ‘ 2.60 | 9.4 0.94 |
—5.4 | 2.01 ‘ 14.8 1.06
1.0 | 1.34 | 19.4 1.25 |
4.6 | 1.08 |
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ferences.

It now remains for us to find from the graph the
experimental error AF (x) and to write the result
so obtained in the form

Y =ag-Fax -t a? L ... ™+ AF (). (3.4)

In order to illustrate the conclusions of this sec-
tion we consider the following example.

The normal operating temperature of a chronome-
ter is considered to he T = 15°C. P. G. Shtul’kerts,
in an investigation of the effect of the deviations from
this temperature t = (T -~ 15) on the daily deviation
of the chronometer, has obtained the results shown
in Table VI.

It is required to make an estimate of the true
function y = F (t).

We plot on millimeter graph paper the data of the
table and draw the limiting curves (Fig. 6). In ac-
cordance with formula (3.2a) for N=7 p =~ 0.9. As
a result of this one can assert with this degree of
reliability that the true function lies between the
limiting curves.

We now represent this result in analytic form.
For the median curve (not shown in the diagram) we
obtain the values of y corresponding to equidistant
values of t, and construct Table VII.

Table VII
! ¥ All) A2 2
—10 2.62 100
i .30 - 3(2) 0.02 84
—6 2.00 To5e 0.04 36
—4 1.74 0an 0.02 16
—2 1.50 Tois 0.06 4
0 1.32 o1 0.06 0
2 1.20 Tois 0.02 4
4 1.10 008 0.04 16
6 1.04 oo 0.02 36
8 1.00 003 0.02 64
10 0.98 Tols 0.00 100
12 1.00 o os 0.02 144
14 1.04 o8 0.02 196
16 1.10 +0-10 0.04 256
18 1.20 +0*12 0.02 324
20 1.32 +0. 400
5.00 1.403 —0.0866 0.0285 110
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Since, as can be seen from the table, the second
differences are approximately constant, the approx-

imate function can be approximated by the polynomial

Y=g+ @yl + ayt?.

Turning to (3.3b) we evaluate the coefficients:

ay =205 = 0.0036,

ay= —2%%_2.5.00.0.0036= —0.079,

@o=1.403 4 5.00- 0,079 — 110. 0.0036 = 1.40,

From the graph of Fig. 6 we obtain the experi-
mental error AF (x) =0.08. Thus, we obtain finally

y=1,40—0.079¢ + 0.0036£% + 0.08.

Tyu. v. Linnik, Metod naimen’shikh kvadratov i
osnovy teorii obrabotki nablyudenii (The Method of
Least Squares and the Foundations of the Theory of
the Reduction of Observations), Moscow, Fizmatgiz,
1962.

2N. V. Smirnov and I. V. Dunin-Barkovskii,
Kratkii kurs matematicheskoi statistiki (A Short
Course on Mathematical Statistics), Moscow
Fizmatgiz, 1959.

3M. I. Kornfel’d, ZhTF 24, 448 (1956).

4M. I. Kornfel’d, DAN SSSR 103, 213 (1955).

Translated by G. Volkoff




