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XHE concept of experimental error does not have a
clear meaning until we have indicated its reliability,
i.e., the probability of finding the desired quantity
within the limits of error .

The present note is devoted to an estimate of the
reliability of the simplest experiments. In more
complicated cases the reader should refer to the
mathematical theory of the reduction of observations

1. COMPARISON OF OBJECTS

To distinguish one physical object from another
means to indicate which of them A or B possesses
a definite attribute.

However, because of unavoidable accidental dis-
turbances the distinctive attribute may be ascribed
not only to the object which in fact possesses this
attribute, but also to the other object. In other words,
there exists a probability W^ that the attribute will
be ascribed to object A, and the probability WB
= 1 - WA that the attribute will be ascribed to object
B.

In accordance with this the degree of distinguish-
ability of the objects can be conveniently charac-
terized by the quantity

= wA-w, (1.1)

which is equal to zero for indistinguishable objects,
and is equal to plus or minus unity for maximally
distinguishable objects.

We assume that in the experimental determination
of this quantity (i.e., in comparing the objects) n
experiments (tests) have been carried out. If in
m ^ cases the attribute was ascribed to object A
and in mg = n - m ^ cases the attribute was as -
cribed to object B, then the degree of distinguish-
ability is approximately equal to

ft =
 mA mB (1.2)

The problem now consists of making a judgment
of the true degree of distinguishability U on the
basis of the approximate value of the degree of dis-
tinguishability U.

This problem is equivalent to the statistical prob-
lem of finding the probability of an event on the basis
of a number of independent experiments (cf., for
example, L ', page 136).

Its solution shows that for n —• °°, and in p rac t i ce
already for n > 100, the inequalit ies

Table I

p

t

0 0.7 0.9

0 1.04 ; 1.64

0.99

2.58

0.999

3.29

f —P V l — tr-4-Pl/l —t (1.3)

hold with the probabili ty p , where

while the dependence of t on p is given in Table I.
For j3 « 1 in place of the inequalit ies (1.3) we

can wr i te

U = U ±MJ,
where

(1.4)

In future we shall call AU the exper imental e r r o r ,
and p the re l iabi l i ty in determining the degree of
dist inguishabil i ty.

Thus, the formulas above enable us to a s s e r t with
a re l iabi l i ty p that the difference U - U does not
lie outside the l imi ts of e r r o r ±AU.

In scientific questions one can hardly be satisfied
with the re l iabi l i ty of any asser t ion sma l l e r than 0.9.
In accepting this number , i .e. , having reconciled
oneself to the fact that in one case out of ten our
asse r t ion will turn out to be incor rec t , it can be
easi ly seen from (1.4) that in o rder to achieve a
tolerably acceptable exper imenta l e r r o r a very large
number of exper iments is requ i red .

For U close to zero an exper imenta l e r r o r of 0.1
cor responds to 250 exper iments , an exper imental
e r r o r of 0.01 cor responds to 25,000 exper iments ,
and an exper imental e r r o r of 0.001 cor responds to
two and a half million exper iments !

For U — 1 one needs a considerably sma l l e r num-
ber of exper iments . However, one mus t have in mind
that in this case the approximate nature of (1.3) b e -
gins to be felt and the es t imate of the number of ex -
pe r imen t s becomes inexact.

In o r d e r to i l lus t ra te the considerat ions outlined
above we shall outline the r e su l t s of an investigation
of a p rocedure of comparison in which the dis t inguish-
ability of objects was determined by the unaided eye
(M. I. Kornfe l ' d D : i ) .

A c i rc le drawn in India ink on white paper was
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A, mm

u

0

0

.10

.09

0.

0.

15

38

Table

0.20

0.57

i 11

0.25

0.62

0.

0.

31

75

0

0

40

78

1.00

0.98

photographed and prints were made with different
magnifications from the negative so obtained. Seven
pairs were formed from these prints. On one of the
prints of each pair the circle had a diameter of 12
mm, and in the other one a diameter differing by
A = 0.10; 0.15; 0.20; 0.25; 0.30; 0.40; 1.00 mm.

The experimenter by "shuffling" a given pair of
prints by means of a special device was required
each time to indicate which one of them contained the
larger circle. The number of correct (and erroneous)
conclusions was recorded automatically and from
this by means of formula (1.2) the approximate de-
gree of distinguishability of the circles U was de-
termined.

Twenty eight persons participated in this work.
For each pair of prints one thousand experiments
were carried out by different persons (100 experi-
ments in one sitting). The results are shown in
Table II and in Fig. 1 where the vertical lines cor-
respond to the error evaluated with the aid of formula
(1.4) for a reliability of 0.9 and for the number of
experiments equal to 1000.

The curve shows first of all the existence of an
interval of insensitivity situated in the diagram to
the left of the vertical dotted line. The differences
between circles lying within the limits of this inter-
val are not detected by the eye even after a very
large number of experiments, which apparently cor-
responds to the discrete nature of the receptors in
the eye.

The shape of the curve beyond the interval of in-
sensitivity can be explained by a superposition of
random disturbances on the actual difference between
the circles. The greater is this difference the
smaller the role is played by the disturbances and,
consequently, the closer to unity is the degree of
distinguishability.

The data obtained show that the resolving power
of the eye in the usual sense of this term depends on
the degree of reliability with which we desire to
distinguish one object from another, i.e., what frac-
tion of erroneous conclusions we regard as being
admissible. For example, for 30% erroneous con-
clusions the resolving power is equal to 0.15 mm,
for 10% it is equal to 0.4 mm, for 1% it is equal to
1 mm etc.

2. MEASUREMENT OF MAGNITUDES

As a result of unavoidable random disturbances a
repetition of the procedure of measuring a magnitude
leads, as a rule, every time to a different result.

1/
7.0

as

as

a*

0.4 as
FIG. 1.

as

The problem consists of arriving at an estimate of
the true magnitude on the basis of several numbers
obtained in repeated measurements.

This problem can be solved in the following
manner (cf. ^).

In accordance with the definitions adopted in the
preceding section, in comparing two indistinguishable
objects it is equally probable to ascribe a distinguish-
ing attribute to either one of them. In terms of the
measuring operation this means that in measuring
the magnitude of an object it is equally probable to
obtain a number which is greater than or less than
the true magnitude.

We denote the true magnitude by x and arrange
the numbers obtained in the n measurements in in-
creasing order: xj, x2, x3 xn . Then, in accord-
ance with what has been said the probability of the
inequality x < xj, as well as the probability of the
inequality x > xn , will be equal to (%)n.

From this we get for the probability that neither
one of these inequalities is satisfied, i.e., for the
probability of the inequality xj < x < xn,

p = 1-2(1/2)". (2.1)

Thus, with a degree of reliability p one can
assert that x lies between the limits of xj and xn .
In future instead of giving the limits of this interval
we shall write

x — x _ Ax,
where

1 .). (2.2a)

Ax-I(*„—.*.). (2.2b)

We shall call the first of these numbers the
approximate value of the quantity, and the second
number the experimental error of the measurement.
When the number of measurements is great and the
reliability calculated by means of (2.1) appears to us
to be unnecessarily high, we can discard at the be-
ginning and at the end of the series Xj, X2, X3 xn
respectively q and I numbers, and by this reduce
the experimental error .

In order to calculate the reliability of the result
obtained by this method one can utilize the expres-
sion
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r

10
20
30
40
50
60

p ^ 0.9

2
6

10
14
19
23

V= 0.99

4
8
12
16
20

P 3S 0.009

2
6

10
13
17

s
25

№

ro

5

0

' 2"" y k\(n — k ( 2 - 3 )

70 Z0 30 40 50 S0 n

F I G . 2.

4.740
4.764
4.769
4.774
4.778
4.782
4.788
4.790
4.795
4.806

4.747
4.764
4.771
4.775
4.779
4.783
4.788
4.791
4.797
4.808

4.749
4.765
4.771
4.775
4.779
4.783
4.789
4.791
4.799
4.809

4.758
4.767
4.772
4.776
4.779
4.785
4.789
4.791
4.799
4.810

4.761
4.768
4.772
4.777
4.781
4.785
4.790
4.792
4.801

4.764
4.769
4.772
4.777
4.781
4.785
4.790
4.792
4.805

w h i c h r e p r e s e n t s a g e n e r a l i z a t i o n of ( 2 . 1 ) t o t h e c a s e W e a r r a n g e t h e s e n u m b e r s i n i n c r e a s i n g o r d e r :

o f t h e i n e q u a l i t y X q + 1 < x < x n _ / .

S e t t i n g f o r t h e s a k e o f s i m p l i c i t y q = I = s , w h i c h

c o r r e s p o n d s t o a d e c r e a s e of t h e e x p e r i m e n t a l e r r o r

f r o m V 2 ( x n - x j ) t o V 2 ( x n _ s - x s + 1 ) , a n d s e l e c t i n g

a d e f i n i t e r e l i a b i l i t y , o n e c a n w i t h t h e a i d of ( 2 . 3 )

f i n d t h e n u m b e r s c o r r e s p o n d i n g t o t h i s d e g r e e o f

r e l i a b i l i t y . I n T a b l e I I I a n d i n F i g . 2 w e h a v e s h o w n

t h e d e p e n d e n c e of s o n n f o r p s 0 . 9 , 0 . 9 9 a n d 0 . 9 9 9 .

L e t u s a l s o c o n s i d e r t h e c a s e w h e n o n e o f t h e

v a l u e s o f t h e q u a n t i t y b e i n g m e a s u r e d s h a r p l y d i f f e r s

f r o m a l l t h e r e s t . U s u a l l y s u c h a v a l u e i s s i m p l y

d i s c a r d e d . H o w e v e r , b y d o i n g t h i s w e l o w e r n o t o n l y

t h e e x p e r i m e n t a l e r r o r b u t a l s o t h e r e l i a b i l i t y o f t h e

r e s u l t . T h e r e f o r e , i n e a c h s p e c i f i c c a s e o n e s h o u l d

f i r s t o f a l l c o n s i d e r a s t o w h e t h e r i t i s b e t t e r t o r e -

d u c e t h e e x p e r i m e n t a l e r r o r o r t h e d e g r e e o f r e l i a -

b i l i t y , a n d i n a c c o r d a n c e w i t h t h i s e i t h e r t o r e t a i n

o r t o r e j e c t t h e " i n c o n s i s t e n t " m e a s u r e m e n t .

O n s e t t i n g i n f o r m u l a ( 2 . 3 ) q = 0 a n d 1 = 1 w e o b -

t a i n

p - [ l — - 2 ( 1 / 2 ) " ] - ^ . { 2 A )

F r o m t h i s w e c a n s e e t h a t r e j e c t i o n o f t h e " i n -

c o n s i s t e n t " v a l u e i s p e r m i s s i b l e o n l y f o r s u f f i c i e n t l y

l a r g e v a l u e s of n .

T o i l l u s t r a t e t h e m e t h o d o f e s t i m a t i n g t h e t r u e

v a l u e o u t l i n e d a b o v e w e s h a l l u t i l i z e t h e 5 8 m e a s u r e -

m e n t s o f t h e c h a r g e o f t h e e l e c t r o n b y R . M i l l i k a n

( i n m u l t i p l e s o f 1 0 " " 1 0 c g s e s u ) ( T a b l e I V ) .

W e s e l e c t t h e d e g r e e of r e l i a b i l i t y p = 0 . 9 . F r o m

T a b l e I I I i t c a n b e s e e n t h a t a r e l i a b i l i t y 0 . 9 f o r

n = 5 8 c o r r e s p o n d s t o s = 2 3 . D i s c a r d i n g 2 3 n u m -

b e r s f r o m e a c h e n d o f t h e s e r i e s o f n u m b e r s g i v e n

a b o v e w e o b t a i n t h e o u t e r n u m b e r s o f t h e r e m a i n i n g

p a r t : 4 . 7 7 7 a n d 4 . 7 8 5 .

C o n s e q u e n t l y , t h e d e s i r e d t r u e v a l u e l i e s w i t h i n

t h e l i m i t s b e t w e e n 4 . 7 7 7 a n d 4 . 7 8 5 , i . e . , t h e c h a r g e

o f t h e e l e c t r o n w i t h a r e l i a b i l i t y o f 0 . 9 i s e q u a l t o

( 4 . 7 8 1 ± 0 . 0 0 4 ) - l O " 1 " .

W e s h a l l f u r t h e r i n v e s t i g a t e h o w d o e s t h e e s t i m a t e

o f t h e t r u e v a l u e o f t h e c h a r g e of t h e e l e c t r o n l o o k

f o r a s m a l l n u m b e r o f m e a s u r e m e n t s , e q u a l , f o r e x -

a m p l e , t o f i v e .

U t i l i z i n g f o r m u l a ( 2 . 2 ) w e f i n d d i r e c t l y f r o m

T a b l e I V f o r e a c h o f t h e e l e v e n g r o u p s d e n o t e d b y

R o m a n n u m e r a l s t h e a p p r o x i m a t e v a l u e a n d t h e

e x p e r i m e n t a l e r r o r . T h e s e r e s u l t s a r e s h o w n i n

T a b l e I V

I

4.781
4.795
4.769
4.792
4.779

VII

4.775
4.772
4.791
4.782
4.767

II

4.764
4.776
4.771
4.789
4.772

VIII

4.789
4.764
4.774
4.778
4.791

III

4.777
4.765
4.785
4.805
4.768

IX

4.801
4.785
4.783
4.808
4.771

IV

4.809
4.790
4.779
4.788
4.772

X

4.791
4.788
4.783
4.740
4.775

V

4.761
4.792
4.758
4.764
4.810

XI

4.799
4.799
4.797
4.790
4.747

VI

4.769
4.806
4.779
4.785
4.790

XII

4.777
4.749
4.781
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Table V

Group

I
II

III
IV
V

VI

Result

4.782+0.013
4.777+0.012
4.775+0.020
4.779+0.019
4.784+0.026
4.787+0.019

Group

VII
VIII

IX
X

XI

Result

4.779+0.012
4.777+0.014
4.789+0.019
4.765+0.025
4.773+0.026

Table V; they correspond in accordance with formula
(2.5) to a degree of reliability p = 0.94.

As can be seen from Table V a decrease in the
number of measurements leads to an increase in the
experimental error .

3. INVESTIGATION OF RELATIONS

The result of an experimental investigation of the
relation between two quantities is given by the table:

(3.1)

where V I Vi 2/2 y3

... <xN.

On the basis of this table we have to make an
estimate of the true function y = F (x).

Assuming, for simplicity, that only the y's are
subject to experimental error and that these errors
do not depend on x, we shall represent the data of the
table on a graph representing each pair of values
(xi, yi) by a corresponding point (Fig. 3).

Further we shall draw two smooth curves one
above all these points and the other below all these
points in such a way that the distance between the
curves (along the y axis) would be a minimum and
constant along the whole extent of the curve.

It can be easily seen that the distance between
these limiting curves is equal to twice the experi-
mental error which we would have obtained if we had
measured y N times for a certain fixed value of xi-

From this, in accordance with (2.1), the probability
of finding the true value of y, F (xi), between the
curves is equal to 1-2 (V2) , while the probability
that the true function at all points x1( x2, x3, . . . ,XN

FIG. 4.

does not lie outside the limiting region will be given

y p = [ l - 2 ( l / 2 ) V .
(3.2a)

We also note here that if at each point we have
carried out several measurements of y, then

' - [ ' -»(!)"]"• (3.2b)
where *Jt is the total number of measurements.

However, in this case the result can also be
represented in a different manner. Having calculated
for each XJ the approximate value yi and the experi-
mental error Ayj, we plot on the graph instead of
the point (xi, yi) a vertical bar whose length is
equal 2Ayj, and whose center coincides with yj.
Drawing the limiting curves respectively to join the
top and the bottom ends of the bars we have

P = PlP2P3PN, (3.2c)

FIG. 3.

where pt, p2, p3, ... are the degrees of reliability
corresponding to the approximate values y4, y2,
Y3. • • •

I t i s u n d e r s t o o d , o f c o u r s e , t h a t t h e l i m i t a t i o n s

i m p o s e d b y t h e p r e c e d i n g f o r m u l a s d o n o t r e f e r t o

t h e i n t e r v a l s b e t w e e n t h e n e i g h b o r i n g v a l u e s o f x .

F o r p a r b i t r a r i l y c l o s e t o u n i t y t h e t r u e f u n c t i o n

c a n h a v e , f o r e x a m p l e , t h e s h a p e s h o w n i n F i g . 4 .

B u t e v e n w h e n w e h a v e r e a s o n s f o r a s s u m i n g

t h a t i n t h e " g a p s " b e t w e e n t h e m e a s u r e m e n t s t h e

f u n c t i o n d o e s n o t g o o u t s i d e t h e b o u n d a r i e s o f t h e

l i m i t i n g r e g i o n , i t c a n n o t b e d e t e r m i n e d c o m p l e t e l y

a c c u r a t e l y , s i n c e w i t h i n t h e r e g i o n t h e r e a r e c o n -

t a i n e d a l a r g e n u m b e r o f d i f f e r e n t f u n c t i o n s a n d i t i s

n o t k n o w n w h i c h o f t h e m i s t h e t r u e o n e .

T h e r e f o r e , w e c a n c a l l t h e c u r v e y = ¥ ( x ) l y i n g

i n t h e m i d d l e b e t w e e n t h e t w o b o u n d a r y c u r v e s t h e

a p p r o x i m a t e f u n c t i o n , h a l f o f t h e i n t e r v a l b e t w e e n t h e

b o u n d i n g c u r v e s A F ( x ) t h e e x p e r i m e n t a l e r r o r , a n d

t h e p r o b a b i l i t y p t h e r e l i a b i l i t y o f t h e i n v e s t i g a t i o n

o f t h e r e l a t i o n ( F i g . 5 ) .

T h e d a t a o f t h e t a b l e ( 3 . 1 ) c a n a l s o b e r e p r e s e n t e d

i n a n a l y t i c f o r m . W i t h t h i s a i m i n v i e w u t i l i z i n g t h e

g r a p h o f t h e a p p r o x i m a t e f u n c t i o n w e o b t a i n f o r

e q u i d i s t a n t v a l u e s o f x : x 0 , x 0 + w , x 0 + 2u>, . . . t h e

v a l u e s o f y c o r r e s p o n d i n g t o t h e m : y 0 , yt, y 2 , . . .

F u r t h e r , w e o b t a i n t h e
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FIG. 5.

first differences: A<i> = yi _ ^ A<i> = y2 - Vl,

A'11 =Vs — J/2, • • •,
the second differences: A™ = A"' — AJ,11, AJ2)

=. A«> _ A^1', . . .,

the third differences: A<3) = Af — AJ,2), . . .

x0 Vo

A'
y2

A;

A<

2/5

If the m-th differences are constant, while the
(m + 1 )-th differences are equal to zero, then the
function under consideration can be represented by
the polynomial y = a0 + atx + ajx2 + . . . + a m x m .
Having obtained in this fashion the degree of the
polynomial we can easily evaluate its coefficients:

m=l
~ A'1'a, =

(3.3a)

a2 = -A<2)

A'D

I ao=y — xai — x2a2 (3.3b)

etc., where y, x, x2 . . ., A ' , A , . . . correspond to
values averaged over all the lines of the table of dif-

Table VI

(°C

—10.0
—5.4

1.0
4.6

y, sec.

2.60
2.01
1.34
1.08

t°

9.
14.
19.

G

4
8
4

V,

0
1
1

sec.

.94

.06

.25

-72 -d 0 4
FIG. 6.

7S 30 t

ferences.
It now remains for us to find from the graph the

experimental error AF ( x ) and to write the result
so obtained in the form

= ao-\-a^x + a2x
2

mxm ± AF (x). (3.4)

In order to illustrate the conclusions of this sec-
tion we consider the following example.

The normal operating temperature of a chronome-
ter is considered to be T= 15°C. P. G. Shtul'kerts,
in an investigation of the effect of the deviations from
this temperature t = (T - 15) on the daily deviation
of the chronometer, has obtained the results shown
in Table VI.

It is required to make an estimate of the true
function y = F ( t ) .

We plot on millimeter graph paper the data of the
table and draw the limiting curves (Fig. 6). In ac-
cordance with formula (3.2a) for N = 7 p s 0.9. As
a result of this one can assert with this degree of
reliability that the true function lies between the
limiting curves.

We now represent this result in analytic form.
For the median curve (not shown in the diagram) we
obtain the values of y corresponding to equidistant
values of t, and construct Table VII.

Table VII

(

—10
—8
—6
—-4
—2

0
2
4
6
8

10
12
14
16
18
20

5-00

y

(

2.62
2.30
2.00
.74
.50
.32
.20
.10
.04
.00

).98
.00

1.04
.10

1.20
1.32

1.403

Ad)

—0.32
—0.30
—0.26
—0.24
—0.18
—0.12
—0.10
—0.06
—0.04
—0.02
+ 0.02
+0.04
+ 0.06
+0.10
+ 0.12

—0.0866

A<2>

0.02
0.04
0.02
0.06
0.06
0.02
0.04
0.02
0.02
0.00
0.02
0.02
0.04
0.02

0.0285

100
64
36
16
4
0
4

16
36
64

100
144
196
256
324
400

110
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Since, as can be seen from the table, the second
differences are approximately constant, the approx-
imate function can be approximated by the polynomial

Turning to (3.3b) we evaluate the coefficients:

0,0285
a2 —

0.0866
2-4 - = 0.0036,

2-5.00-0.0036= -0.079,

a"0 = 1.403+ 5.00-0.079 —110-0.0036 = 1.40.

From the graph of Fig. 6 we obtain the experi-
mental error AF (x) = 0.08. Thus, we obtain finally

Yu. V. Linnik, Metod naimen'shikh kvadratov i
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y = 1.40-0.079* + 0.0036** ± 0.08. Translated by G. Volkoff


