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INTRODUCTION

MANY cumulation phenomena are known in which
the energy density per unit volume increases spon-
taneously, and in such a way as to attain arbitrarily
large values. They include the collapse of bubbles in
liquids, convergent shock waves (e.g., spherical
waves), and also electromagnetic shock waves
(cylindrical and conical). These phenomena arouse
in physicists an understandable interest and a natural
tendency to find the causes which ultimately limit the
increase of energy density in them.

There is as yet no complete answer to this question,
in spite of the fact that we can write exact equations
for each of these phenomena and in principle solve
them as precisely as we like.

This prepares the ground for the appearance of
hypotheses.

A review is given below of some cases of infinite
cumulation, and it is shown that dissipation phenomena
(viscosity, heat conductivity) sometimes do not act as
limiting factors. However, whenever one can carry
out a thorough stability analysis, it indicates that
cumulation is limited by instability.

On this basis, the hypothesis has been advanced
that every infinite cumulation is necessarily unstable,
and in such a way that it does not simply change in
form owing to instability, but completely breaks down
(becomes finite).

I. A REVIEW OF CUMULATION PHENOMENA

1. Collapse of Bubbles in a Liquid

The collapse or cavitation of spherical bubbles in an
incompressible liquid is evidently the first studied
case of infinite cumulation. Rayleigh discussed it in
1917.017

In the focusing stage in this phenomenon, the centri-
petal velocity of the bubble surface increases without
limit near the center, and also the pressure nearby.

A real liquid will be appreciably compressed by
the large pressure. This will change the nature of the
motion, and possibly decrease the acceleration toward
the center.

It did not change the result qualitatively[?:3] to
take the compressibility into account by using a
power-function equation of state of the form p = const
- p¥ for any y > 1.

As before, the pressure in the liquid becomes in-

finite at the focus, and also its velocity and density,
although with a lower order of infinity: whereas the
velocity of the bubble surface increases as r3/2 in an
incompressible liquid, it increases only as r 04! when
v = 3.*% The temperature remains everywhere finite.
Thus, accumulation occurs even in a compressible
liquid, and remains infinite. Near the center, the
liquid undergoes strong and rapid shear deformations,
which could lead to a strong energy dissipation due to
viscosity.

It has been possible to take the viscosity into ac-
count exactly in the incompressible-liquid problem, 4]
but even this did not alter the result: if the initial
radius of the bubble is large enough (more exactly,
if R = 8.4 Vp/p), cumulation occurs even in a viscous
liquid, without even lowering the order of infinity. The
role of the viscosity is reduced merely to a certain
diminution in the effective energy of the motion. Only
bubbles having dimensions less than critical cavitate
slowly; in this case their motion up to the focusing
point completely ‘‘forgets’’ the initial dimensions, and
independently of them, the velocity varies here accord-
ing to the law:

u=—2_7

4vQ
Thus, neither compressibility nor viscosity alone
eliminates cumulation in bubbles, at least in certain
cases.

The atomic nature of matter sets an unconditional
limit to cumulation, since wherever the dimensions of
the bubble are comparable to an atom, the liquid
ceases to resemble a continuous medium, and cumu-
lation ceases. However, this limit is very ample and
not at all fundamental. For example, for a one-centi-
meter bubble in water, it does not formally prevent
one from obtaining a velocity of the order of
10° cm/sec. However, even this ample limit can be
raised by increasing the initial dimensions of the
bubble or the pressure of the liquid.

2. Convergent Shock Waves

Convergent spherical and cylindrical waves are
also accompanied by infinite cumulation upon focusing.
Landau and Stanyukovich[®] have shown this analyti-
cally for waves in an ideal gas for y = 3, and

*Here and below the fractional exponents were found from the
exact solution describing the neighborhood of the center about
the instant of focusing.
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Guderley(®] has done this for y = 1.4.

In these cases, the density of the material is every-
where finite, but the velocity, pressure, and tempera-
ture are infinitely large: T ~r~''4 when y = 3, and
T ~r %" when y = 1.4.

The temperature gradients near the center are
infinitely large, and this could lead to a high energy
dissipation due to heat conductivity. Because of this,
the wave front becomes diffuse, and the temperature
attained in the center actually becomes finite. This
problem has been discussed inl™.

In the convergence stage in this case, a thermal
wave front precedes, but when y < 3, it is followed by
a second wave, or isothermal density discontinuity,
which is a convergent shock wave having an amplitude
growing to infinity. Thus, heat conductivity has only
eliminated the infinite temperature, but infinite density
has appeared. That is, infinite energy density still
exists. Thus, the cumulation has changed in form but
has not disappeared.

The limit on the attainable temperature due to heat
conductivity is not fundamental, like that due to the
atomic nature of matter: its maximum value is deter-
mined by the scale of the phenomenon (the dimensions
of the wave at unit amplitude), and it can be made as
large as one wishes by increasing the scale.

3. Convergent Electromagnetic Shock Waves

An electromagnetic wave can have a steplike front,
i.e., it can be a shock wave. It can arise when an
ordinary shock wave emerges from a conductor to a
surface where there is a parallel magnetic field. The
concept of this type of wave and certain examples of
cumulation in them, showing qualitatively new charac-
teristics, are discussed in[®?%],

a) Cylindrical wave. Let a cylindrical cavity in a
conductor contain a longitudinal magnetic field. In
addition, let a convergent cylindrical shock wave pass
through the material of the conductor, simultaneously
emerging at the surface of the cavity. This will give
rise to a convergent electromagnetic shock wave in
the cavity having an arbitrarily sharp front. As was
shown in[®], the width of the front in vacuo upon emerg-
ing from copper amounts to ~10 cm. However, it is
0.1 cm wide on emerging from copper cooled to 20°K
(this involves the improvement in the conductivity
upon refrigeration).

The front of the convergent wave brings about an
increase in the longitudinal magnetic field and the ap-
pearance of an annular electric field.

If the front is sharp, then the fields on it increase
as r'1/2 as it approaches the axis, i.e., it increases
without limit.

An additional interesting feature was found: the
amplitude reflected from the axis of the wave proved
to be infinite not only at the reflection site but also at
a finite distance from the axis. That is, the infinitely
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strong wave of the field, upon arising at the axis, then
passes through all the points of a finite volume.

This characteristic was found in studying the self-
similar solution of the equations for the wave near the
axis(8l: the series describing the field near the re-
flected wave diverges logarithmically as one approa-
ches it from any side.

Ya. B. Zel’dovich[1%) has obtained the same resuit
by another method by considering a cylindrical wave
as a superposition of plane waves.

The same characteristic is shown by weak cylin-
drical shock waves (acoustic waves). That is, it does
not involve the physical nature of the shock wave, but
its geometric form. (Evidently, the equations of acous-
tics, which describe only weak waves, are valid only
when the density variations due to the wave are small).

b) Conical wave. The concept of an electromagnetic
shock wave has made it possible to construct a curious
example of steady-state cumulation, apparently the
first of its kind, as described in[?7.

A convergent conical wave in a material does not
produce an infinite cumulation, since the vertex of the
cone is unavoidably truncated by the intensification
and acceleration of the wave near the axis. (This
situation is well-known as a theorem of the impossi-
bility of certain conical flow patterns.) Hence it has
been impossible to construct an example of steady-
state cumulation for ordinary shock waves.

This hindrance does not exist for the shock wave of
a field whose velocity is constant (and equal to the
velocity of light), and it can be a converging conical
wave as far as the vertex of the cone, where an infinite
cumulation occurs, and furthermore, as a steady-state
process. The fields at the front near the axis increase
here as r''/2. Just as with the cylindrical wave, the
amplitude reflected from the axis of the wave proved
to be infinite not only on the axis but also over the
whole front.

The extent of cumulation of field shock waves en-
counters no physical limitations as long as Maxwell’s
equations hold.

Owing to the constancy of velocity of all field waves,
a diffuse front remains diffuse, and in distinction from
a wave in matter, a discontinuity does not develop in
it. Diffuseness of the front, due to non-ideality of the
conductor that ‘‘set off’’ the field and gave rise to the
wave, persists as the wave converges on the axis, and
finally limits its cumulation. However, this limitation
is also not absolute, and can be overcome by increas-
ing the scale of the phenomenon.

II. ON INSTABILITY OF CUMULATION

The reason for limitation of cumulation can be
instability, i.e., loss of symmetry of the phenomenon.

We can find out by studying the behavior of small
perturbations whether a fundamental pattern of cumu-
lation is stable. However, we still do not know what it
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changes into when it is unstable. Cumulation can com-
pletely break down (the infinite energy density can
disappear), or it can merely change in form. For
example, a collapsing bubble can be deformed and
change into a torus. In collapsing, the latter in turn
could continue to show cumulation, but in a different
form.

Thus, there are two different questions: is the
fundamental process stable, and what does it change
into when unstable ? and does infinite cumulation con-
tinue to exist at all?

The second question is especially interesting, but
cannot be solved by an analysis of small perturbations.
Since we want to pay especial attention to it in par-
ticular, we shall discuss below only those cases in
which we can investigate the behavior not only of
small, but also large perturbations. We can follow
the behavior of perturbations throughout all stages of
the cumulation process, and exactly besides, in one
special case that has proved highly instructive.

Let a thin cylindrical shell of an ideal liquid move
toward its axis while rotating slowly. The shell
thickens as it converges, and the rotation of the inner
layers accelerates. Owing to the centrifugal force, the
shell does not reach the axis, but begins to expand
again. There is no infinite cumulation in this case.

The additional degree of freedom (rotation), no
matter how weakly it is excited, gradually takes up
more and more energy from the main form of motion
until it has taken over all the energy. Upon expansion,
the energy is again transformed into radial motion.

We find from the law of conservation of angular
momentum that the tangential velocity is proportional
to r'!. We can easily see that at the instant that the
radial motion stops, the energy per unit length of the
cylinder is

R
E =ngv?rtln —

where r and R are the inner and outer radii of the
cylinder, and v is the tangential velocity at the inner
boundary, i.e., the maximum velocity reached through-
out the process.

A simple calculation shows that the angular momen-
tum is

Q=mrv,

where m is the mass of the cylinder (this and other
quantities are per unit length).

We obtain from these equations

m2E
v=_"% epet |
i.e., the value of the velocity for any finite Q is not
infinitely great, but finite.

In this example, a small perturbation Q rules out
infinite cumulation, but the smaller this perturbation
is, the greater the energy density reached.

This result is natural, and fully explains the limita-
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tion of cumulation in the considered case.

The question might arise whether cumulation might
not reappear if we introduce viscosity, which will
hinder the rotation of the inner layers with respect to
the outer, and will diminish the centrifugal force.
However, as it turns out, viscosity here rules out
cumulation per se, even without rotation; a viscous
cylindrical shell stops before it reaches the axis.
Thus, cumulation has not been reintroduced by vis-
cosity in this case. However, the decay of certain
‘‘dangerous’ perturbations through dissipation is not
ruled out in other cases, of course.

Another example of a complete breakdown of cumu-
lation due to small perturbations is given by field shock
waves. The appearance of a singularity at the center
of a convergent cylindrical field wave involves the
simultaneous arrival there of the front from all sides.
This becomes especially clear if we use Zeldovich’s[10]
conception of a cylindrical wave as being the sum of
a large number of plane waves. However, if the front
is not completely cylindrical (or more precisely, if
its surface nowhere strictly coincides with a cylinder),
the simultaneous arrival at the center will not take
place, owing to the constancy of velocity, and the
singularity will disappear, i.e., cumulation will break
down.

Of course, this also holds for a conical convergent
wave. Just as for the rotating shell, the attainable
energy density at the center is greater for smaller
initial perturbations.

III. THE HYPOTHESIS OF THE INSTABILITY OF
CUMULATION

It seems natural to expect that cumulation is limi-
ted by something besides the atomic nature of matter.
As the examples have shown, dissipation does not
provide these limitations, at least in certain cases.

On the other hand, certain perturbations of the
main motion lead to the breakdown of cumulation, as
could be thoroughly investigated in two cases. On
these grounds, we can advance the following hypothe-
sis: every infinite cumulation is unstable. Attempts
to prove this have not yet succeeded. A contrary ex-
ample would be interesting, but this also has not yet
been found.

We note that the proposed proof must be very gen-
eral, and not involve any concrete form of the equa-
tions of the process, since these equations differ in
different cases (the equations of gas dynamics for
various processes and various equations of state, and
the equations of electrodynamics for waves of various
configurations).

A special case of cumulation is the collapse of the
universe, whose possibility is seemingly implied by
the equations.

E. M. Lifshitz and I. M. Khalatnikov{1!] have
studied this problem; they showed that collapse can
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occur only for a symmetrical initial state, while the
existence of asymmetry rules it out.

The hypothesis advanced here resembles this
theorem (being a generalization of it), and this en-
hances its plausibility.

The hypothesis can bear upon certain phenomena
in stars. A rapid and very strong compression of a
star or its inner part can evidently occur only when
its initial state is sufficiently symmetrical, in par-
ticular, when it shows hardly any rotation.

If this is so, then the evolution of a star and its
possible cataclysms are not unequivocally determined
by such parameters as its mass, dimensions, etc., but
can depend on how symmetrical the star is, or in par-
ticular, how rapidly it is rotating.

In technology, the limitation of cumulation can be
of interest in studying the pinch effect in pulsed dis-
charges in gases.

CONCLUSION

The phenomenon of cumulation is encountered in
nature and in technology. It is natural to expect that it
is somehow limited. In a number of cases, it has not
been possible to point out physical limitations, but in
other cases it has been shown that cumulation com-
pletely breaks down owing to instability. This has
provided grounds for the hypothesis that every cumu-
lation process is unstable, and that instability not
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only alters the fundamental process of infinite cumu-
lation, but rules it out completely.

It would be of interest either to prove this hypothe-
sis, or to reject it through some example.
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