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1. QUANTUM NUMBERS OF HADRONS

1. Baryon Number

/YFTER Einstein established the equivalence of
energy and mass it became incomprehensible why
ordinary matter was stable. Why doesn't it annihilate,
say by being converted to radiation?

If any process is not realized, it is natural to at-
tribute this to a selection rule imposed by some con-
servation law. The laws of conservation of energy,
momentum and angular momentum do not forbid the
annihilation of matter. The stability of matter indi-
cates the existence of another class of conservation
laws.

One such conservation law has been known for a
long time. This is the law of conservation of charge.
This law enables us to understand qualitatively the
nature of the stability of the electron. We argue as
follows. The spectrum of masses of particles is d is -
crete, like the energy levels of a quantum mechanical
system. Among these levels there is always a lowest

level, and this state is stable. But the electron has
the smallest mass of all the charged particles.

But the conservation of charge does not forbid the
conversion of a proton into a positron with the emis-
sion of a photon or the annihilation of a neutral atom.
The proton retains its stability if we attribute to it,
in addition to charge, another conserved quantity
which is not possessed by the electron. We call this
quantity the baryonic charge or baryon number. We
shall denote the baryon number by A. Suppose that
the proton has A = 1 (just as the electric charge is
expressed in units of the charge on the electron). If
the proton has the smallest mass of all the baryons
(baryonically charged particles), it will be stable.
For nuclei A will obviously coincide with the mass
number. These two conservation laws, for the charge
Q and the baryon number A, already guarantee the
possible existence of our universe consisting of nuclei
and electrons.

The baryon number does not exhaust the "charges"
that have had to be introduced in the physics of ele-
mentary particles. We now know two other similar

147

Copyright by American Institute of Physics 1965



148 V. B . B E R E S T E T S K I I

V,

rigorous conservation laws. But these apply to lep-
tons, and will not be needed in what follows.

2. Gauge Groups

After having introduced the baryon number, it is
useful to find a place for it in the formal scheme of
quantum mechanics.

In quantum mechanics every conservation law ex-
presses a particular symmetry of the system. This
symmetry appears as a group of transformations that
can be applied to the wave function of the system.
The laws of conservation of momentum, angular mo-
mentum and energy reflect the symmetry properties
of space and time. ( They may therefore be said to be
geometric. ^ ). For example, the homogeneity of
space leads to the group of transformations
ip — e^xip, where x is the displacement of the sys-
tem (or the displacement of the coordinate origin,
taken with the opposite sign), and Rk is its momen-
tum. The fact that such a transformation is admissi-
ble at any moment of time expresses, from this point
of view, the law of conservation of momentum. In fact,
suppose for example that there is a collision of two
particles. Suppose that before the collision the part i-
cles had momenta fikj and Kk2, and that their wave
functions were i/)j and ip2- Then in the displacement
the wave function ip = ipiip2 w a s subjected to the t rans-
formation i/) — ei^ip, where k = kj + k2. The proper-
ties of the particles and their number after the colli-
sion can have changed arbitrarily, but the form of this
transformation must not be changed, i.e., k = const.

Now we imagine that the properties of the particles
and their interactions are such that the wave function
of the system can be subjected to an analogous t rans-
formation with a phase factor: ip — e^aip, where a,
like x, plays the role of the parameter of the t rans-
formation, while G, like k, characterizes the state of
the system. If we assume the parameter a to be uni-
versal, i.e., like the displacement of the origin of co-
ordinates, it is the same for all systems, and that the
transformation is admissible at any time, then this
will signify the presence of an additional conservation
law, G = const.

We must emphasize that the parameter a is no
longer directly related to the properties of space and
time. In contrast to the geometrical symmetries,
such a symmetry might therefore be called dynamical.
(In treating collisions of particles, one customarily
regards all conservation laws as kinematical.)

The transformation ip — e^a ip represents the
general form of transformation admissible in quantum
mechanics, depending on one parameter. This follows
from the fact that a transformation should not change
the square modulus of the wave function, leaving
\ip\2 invariant (the unitarity property).

This group is called the gauge group. In this case,
where we know the equations of motion, the gauge
group should of course be contained in them. This

state of affairs exists in electrodynamics, whose
equations are invariant under the transformation
ip —- e^a1ip, where Q is the charge of the system.
Introducing the baryon number, we postulate the ex-
istence of another gauge group ip —- e^aa-ip, where
A is the baryon number.

The introduction of a gauge group is in a way
equivalent to introducing an additional degree of
freedom of the system. For the same dependence on
all other variables, states of the system are distin-
guished by different values of the quantum number G.
We may say that the wave function depends on an addi-
tional continuous variable, the group parameter a.
For an infinitesimal change of the parameter, the wave
function >p changes by

where G = -id/da is a hermitian operator whose
eigenvalue is the quantum number G. We have here
the usual connection between an infinitesimal t rans-
formation (generator) of the group and a physical
quantity. G and a are canonically conjugate quanti-
ties.

Let us give an example in which a is used as an
additional coordinate. Let us consider two particles
(proton and neutron), differing only in their charge
Q = 1, 0, which are in the same state, i.e., the de-
pendence of their wave functions on space and spin
is the same; we denote the wave function by <p. Then
the proton wave function is p = cpe^a, and the neutron
function n = q>. Their different dependence on a
makes the functions orthogonal:

*n da = 0.

( The last integral can be taken either between infinite
limits or over an interval of 2ir; cf. later in par. 4.)

If a particle has charge Q and baryon number A,
the corresponding antiparticle should be assigned the
quantum numbers — Q and - A . This follows imme-
diately from the fact that the antiparticle is described
by a wave function that is the complex conjugate of the
wave function for the particle. Thus the gauge t rans-
formations for them differ in the sign of the phase.

3. Hypercharge

A rather large number of baryons are known, i.e.,
particles for which the baryon number is A = 1.
Among these the proton has the least mass. All the
other baryons are unstable, and in the course of time
transform into a proton and a number of leptons and
photons guaranteeing the fulfilment of the other con-
servation laws. A further classification of the baryons
and the study of their symmetry properties is possible
only by using approximations associated with dividing
their interactions into three types: strong, electro-
magnetic, and weak. We shall be interested in the
particles possessing the property of strong interac-
tion. We call them hadrons.'-2-'
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If we consider processes in which we can neglect
the weak interaction ("switch it off"), the hadrons
are subjected to two additional conservation laws, to
which there correspond two gauge groups.

First, only the weak interaction can change the
electric charge of a system of hadrons, transferring
leptons ( electrons and muons ) to it. Thus when the
weak interaction is switched off, we have not only
conservation of the total charge Q of the closed sys-
tem, but we have separate conservation of the leptonic
charge Q i and the charge of the hadrons, which we
shall denote by Z(Q = Q/ + Z) . The law of conserva-
tion of the charge of the leptons splits further into two
separate conservation laws: for the charge of the elec-
trons Q e and the charge of the muons Q„. We may
say that we are dealing not with one gauge group
ip —- eiQa ip, but with three independent groups

tf. - eiZaz, e
iQeae, e i Q M % . Switching on the weak

interaction reduces the symmetry, which manifests
itself in the "synchronization" of the three param-
eters: az = ae = a„; at the same time the three con-
servation laws are coalesced into one.

Thus when the weak interaction is switched off, we
may consider the law of conservation of the charge
Z of the hadrons independently of the presence of
other particles.

Secondly, there also exist hadrons ( strange par-
ticles) which become stable when the weak interaction
is switched off, even though all the conservation laws,
including the conservation of A and Z, do not forbid
their decay (in particular, there exist baryons for
which A = Z = 1, as for the proton). The way to de-
scribe this stability is as above. We must introduce
still another additive quantum number; it is called the
hypercharge, and is denoted by Y (the difference
Y — A = S is called the strangeness). To this con-
servation law there corresponds the gauge group

It appears that we can assign to each of the hadrons
known at present a value of Y so that the conservation
of the total hypercharge together with the conservation
of Z and A can explain the allowed or forbidden
nature of reactions which are caused by strong and
electromagnetic interactions. In particular, for
nuclei Y = A.

4. Combining of Hadrons

When we say that a "nucleus consists of nucleons",
we mean the following two properties of nuclei. First,
the nucleus with quantum numbers A and Z can be
gotten from Z protons and A—Z neutrons without
using weak interactions; secondly, the mass defect of
the nucleus is small.

There are systems for which the first assumption
is satisfied but not the second. In this case, instead
of the word "consists of" we shall say "can be built
up from" or " i s composed of." We thus obtain, in

particular, a class of particles, the mesons, which
are hadrons with A = 0. The nonstrange (Y = 0)
mesons are built up from nucleons and antinucleons.
The unstable baryons (baryon resonances) are made
up of a nucleon and a meson.

Since Y = A for nucleons, this relation is pre-
served for all composites of nucleons. Strange part i-
cles can be gotten from "nucleonic" particles by
adding only particles of the type of the A hyperon
(A = 1, Z = 0, Y = 0) and its antiparticle X All the
hadrons known at present are composed of the appro-
priate number of p, n and A (the "Sakata tr iplet")
and their antiparticles.

This scheme contains no model aspects. It merely
expresses a definite property of the hadrons—that they
are composite. We know that the quantum numbers
A, Z and Y are integers. These quantum numbers
are the eigenvalues of the generators of the corre-
sponding gauge groups. Thus the gauge groups are
cyclic, like the group of rotations about an axis: the
transformations corresponding to the parameters a
and a + 2irn are identical. We have no way of inter-
preting this property other than the simple scheme of
composites. Here the three "fundamental" particles,
p, n, and A, are not distinguished from the other
stable particles. Instead of them we can, for example,
use others, say p, A and _+. An example of the use
of such a composition of the particles is given in Sec. 3.

5. The U2 and SU2 Groups

The masses of the two nucleons differ very little
from one another (AM/M =* 0.0014). This gave rise
to a fruitful idea: all the differences between proton
and neutron are caused solely by their different elec-
tromagnetic properties. Actually the electromagnetic
interaction is characterized by a small parameter of
this same order of magnitude, e2/Rc = 0.0073.

Let us switch off the electromagnetic interaction,
just as earlier we switched off the weak interaction.
We then get a typical picture of quantum mechanical
degeneracy. There are two states (p and n) differ-
ing only in one quantum number (Z = 1, 0), which
plays no role in the interaction, just like two atomic
states which differ only in their magnetic quantum
number, in the absence of an external field. Any
superposition tfi p + tp n has the same properties as
the neutron or the proton.

The set of two quantities ip = ( 2) is called an iso-

spinor. We shall also call it a t-spinor or (when
there is no danger of a misunderstanding) simply a
spinor. The equivalence of different superpositions
means that a spinor can be subjected to the transfor-
mation ifi —- Vtp, where V is a 2-by-2 matrix. The
transformation must preserve the normalization and
orthogonality of two linearly independent states (like
p and n). This means that the matrix V must be
unitary:
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(where V+ is the hermitian conjugate of V).
The collection of such transformations forms a

group, which is called the group U2 (the group of
unitary transformations of a two-dimensional linear
complex space).

From the unitarity of V it follows that the modulus
of its determinant is equal to unity, i.e.,

det V = e2ia.

Thus every matrix V can be written in the form

V = Ueia,

where U is a unitary matrix with unit determinant
(unimodular):

UU+ = 1, det£/=l .
Thus each transformation of the group U2 can be

split into two (commutative) transformations. The
first reduces to multiplication by an arbitrary phase
factor e l a . These transformations form a gauge
group. Groups of this sort corresponding to the
quantum numbers A, Z, and Y were already treated
earlier.

We need therefore only look at the second t rans-
formation, which is accomplished by the matrix U.
The set of such (unitary unimodular) transformations
form a group that is called SU2. This is precisely the
group that expresses the identity of proton and neutron
with respect to the strong interaction. We shall also
call it the isospin group (isogroup).

In a purely mathematical sense, the group SU2 is
equivalent (isomorphic) to the group of rotations of
three-dimensional (real) space. On the one hand
this is a fortunate circumstance, since the formal
apparatus for SU2 is just the familiar algebra of
three-dimensional vectors, spinors, and quantum
mechanical angular momentum operators. On the
other hand, this coincidence has its psychologically
bad points. Rotations in the unphysical " isospace"
are operations whose physical meaning is unclear.
But the primary operations are not these rotations
but rather the unitary transformations. Their mean-
ing is clear—they reflect the degeneracy of the nucleon.
We still do not understand the nature of this degener-
acy.

Those properties of particles that are related to
the isogroup are widely used and well known. Never-
theless we shall devote the next paragraph to SU2;
this will enable us to present the properties of SU3

economically.

2. THE ISOSPIN GROUP

1. The Generators of SU2 and the Nucleon Diagram.

A matrix U which is a transformation of the group SU2, like any
unitary matrix can be written in the form

where H is a hermitian matrix. Since det U = 1, Sp H = 0.
Under infinitesimal transformations,

There are altogether three ( 2 x 2 - 1 ) linearly independent
2x2 hermitian matrices with zero trace. These are the Pauli
matrices o^ (i = 1,2,3). Thus the Pauli matrices are the genera-
tors of SU2. This last statement means that

We shall also call these matrices isospin (or simply spin) oper-
ators. We see that the group SU2 contains three real parameters
ctj (like the group of 3-dimensional rotations).

We shall assume that the Pauli matrices are normalized so
that of = %. Let p and n be eigenfunctions of o3. The eigenvalues
of CT3 are + '/£• This quantum number (the "isospin projection")
distinguishes p from n. It therefore serves the same function as
Z, but more symmetrically. Obviously Z = '/2 + o3. Thus the charge
gauge group appears as a subgroup of SU2 (a.z = Oj).

The other two generators transform one of the nucleons into
the other. If we introduce the matrices

c± = <Tj ± ia2,

then
CT+n = p, a_p =

All the properties of the generators are illustrated
by the "nucleon diagram" ( Fig. 1). It shows an axis
on which the two points (± V2) correspond to the
nucleons (eigenstates of cr3); the arrows show the
effect of the operators a±. It is easy to obtain the
commutation properties of the operators by using the
diagram. For example, let us find [a+a_]. Suppose
we apply this operator to p:

(a+o\_ — a_a+)p

Thus

a_y = a+n = p =

1 = 2a,.

Instead of the matrices ai or a± it is sometimes convenient to
consider four matrices o*k (j,k = 1,2) defined as follows:

aj=—oi =
i.e., so that

One can give a general expression for the matrix elements of u\
(we use the convention of labelling the rows of the matrix by a
superscript and the columns by a subscript):

from which we find the expression for the commutators:

FIG. 1. The nucleon diagram. The arrows show the effect of
the operators T+ (CT+); the horizontal axis is the axis of T3; the
points are the nucleon states: p (T3 = V9 and n (T3 = —V2).
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where the parameters af form a hermitian matrix with zero trace:

2. The Doublet of Antinucleons.

The wave function of an antinucleon is the complex conjugate
of the wave function for the nucleon. Since the transformations of
SU2 are complex, the quantities that are the complex conjugates
of the components of a spinor transform differently from the com-
ponents themselves.

These transformations (by means of the matrix U*) form an-
other group. Though it is in one-to-one correspondence (isomor-
phic) to SU2, it is not identical with it. This group is called the
contragradient SU2 group. It is easy to see that its generators
(which we denote by CT£) are related to the generators of SU2 by
the relation.

o'h= _o*.
We can write the wave function of the antinucleon as a super-
position

The quantities cpa(where we write the indices as subscripts)
transform like ipa*, we call them covariant spinors in contrast to
the contravariant 0a.

But we can avoid having to deal with two types of spinors.
The components i//a can be written as linear combinations form-
ing the spinor t/ia. These are eap <p^ (where we sum over fi),
and where €afi is the unit antisymmetric tensor (£12 = e21 = 1,
e11 = e22 = 0).

This last result follows from the existence of two quadratic
forms that are invariant under these transformations. Let i/i and cp
be two spinors. Then the form i/jaya* is invariant because of the
unitarity, and the form £a.0<J>ayP because of the unimodularity of
the transformations (ea/?U§'Uj'= £aS')- Comparison of these
two invariants proves our assertion:

Thus the wave function of the antinucleon has the form

tp'n* — tp2p*.

3. Isomultiplels.

The wave function of a system consisting of p particles (nu-
cleons and antinucleons) is a product (or a linear combination of
products) of wave functions of the particles. Each of these is an
isospinor \jja. Thus the wave function of the system is an isospi-
nor of rank p, 0°>' ••• a p , i.e., it transforms like a spinor with
respect to each index ccr. We shall sometimes denote a spinor by
its rank: (p). The spinor (p) has 2 P components which are trans-
formed in a definite way by each transformation of SU2- This fact
is expressed by the statement: the transformations of the spinor
(p) form a group which is a representation of the group SU2.

An infinitesimal transformation of the spinor (p) = x[i has the
form

3
6iJ) = ; 2

where cq or cxj are the parameters of SU2, while Ti or Tjj are the
generators of the representation:

r=i r=l
It is understood that each operator <j(r) acts only on its own index
(degree of freedom) ccr in the spinor xjj " ar--.

We then see that the generators T have the same commutation
properties as the corresponding matrices tx.

In general the spinor (p) is reducible. By this we mean that we
can form linear combinations of its components that form a spinor
of lower rank. Reducibility is related to the existence of the in-
variant €ag 0 a", which was already discussed above. The quan-
tities eag

. . a . . B.. form a spinor of rank p-2. (We note that by
multiplying a spinor by eag we can "lower" one of its indices:

Irreducible spinors are of special importance. These are
spinors that are symmetric in all indices; multiplication by eaf}
reduces them to zero. (If we write an irreducible spinor as cpg" ,
then cpjj!" = 0.) We shall denote an irreducible spinor of rank p by
[p]. We agree to write the rank of an irreducible spinor as p = 2T;
T denotes the isospin of the state.

It is easy to see that the number of independent components
of an irreducible spinor is p + 1. (The number of indices that are
equal to unity can vary from 0 up to p, while the others are equal
to two.) Correspondingly, there are p + 1 linearly independent
states. They form an isomultiplet (t-multiplet). All these states
(components of the isomultiplet) are equivalent with respect to
strong interactions.

The components of an isomultiplet can be uniquely classified
according to the eigenvalues of the generator T3 (the spin pro-
jection). Since T3 = Scr3

(r) = 1{±%), T3 takes on values from -T
to T in unit steps (a total of 2T + 1 different values).

It is easy to see that the action of the generators T+ and
T2 = ST? = y2 ST? Tk, is analogous to the action of at and a\

jk K

i.e., if we denote the state defined by given values of T and T3
by |T, T3>, then

> = 0,T± IT, T3)~ | T, T3±l), T+\ | T, —T, T) =T_ |
T2|I\7I

3> = r(T-j-l)|7', T3).
Isospinors can be divided into two classes. Spinors of even

rank (integral T) are called tensors of rank T. The spinors of odd
rank are called true spinors. The two classes of spinors differ in
their behavior under the "center" of the SU2 group, i.e., under the
two transformations given by the matrices U = yT = ± 1. One of
them is the identity transformation, the other gives multiplication
by ( —l)p, i.e., it is the identity for tensors and changes the sign
of spinors. (In the three-dimensional rotation group these are the
rotations through 0 or 2n.)

4. Expansion of Products.

Irreducible spinors play a special role in the theory because
they determine a new quantum number, the isospin T, a quantity
that is conserved in strong ineractions. Suppose that the initial
state of the system ("before the collision") is characterized by
definite values of T and T3. The collision matrix is invariant
under the transformations of the isogroup. Therefore the final
state has these same values of the quantum numbers T and T3.

Since T3 can change under the transformations of the isogroup,
(each component of the isomultiplet goes over into a linear com-
bination of components of the same isomultiplet), the scattering
matrix in general is independent of T3. It does depend on the
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value of T, but is diagonal in it: the different isomultiplets be-
have independently of one another. We may therefore assign a
definite isospin to all bound states of the nucleon system
(particles, resonances), that are described by the poles of the
scattering matrix. The mass and width of a resonance (for decays
caused by strong interaction) is the same for all terms of an iso-
multiplet. (This was the starting point for the introduction of the
isogroup in the case of the nucleon doublet.)

The wave function of a system of two particles if/ = fpj [p2]
does not have a definite isospin —the corresponding spinor is
reducible. It can, however, be written as the sum of irreduc-
ible spinors. This expansion is called the Clebsch-Gordan series.

It is quite simple to explain the structure of this series, if we
don't attempt to find the coefficients of the series.

[pj [p2] is the spinor (Pl + p2) = yi "• " °P.. £1 •• 0Pj.
which is symmetric separately in the pt first and the p2 last
indices. By symmetrizing it completely we get the irreducible
spinor of rank p1 + p2. Multiplying the initial spinor by €ap
and symmetrizing the result, we get [pt + p2 - 2]. Repeating the
process until we exhaust the smaller of the two numbers p, or p2,
we get the Clebsch-Gordan series

We note that all the terms of the series are either tensors (for
integral T, + T2) or true spinors (for half-integral T, + T2), and
that a given value of p occurs only once in the series.

5. Tensor Operators.

The scattering matrix (in the approximation that includes only
the strong interaction) is an example of an invariant operator, not
changing the isospin structure of the system wave function. All
other operators ("operators on the isogroup") can be constructed
from the Pauli matrices ajj.

Let us consider the action of at on the (1st rank) spinor x//a:

Then

Since ,̂ this means that

forms an irreducible spinor of rank two (a vector).
Thus ô  (or oi) may be called a vector operator. This property

is preserved in its action on a spinor of arbitrary rank (p), i.e.,
^P lcrklP'> = r̂i (where the operator ay acts on one of the spinor
indices). Furthermore, one can form an arbitrary linear combina-
tion of Pauli matrices

4 = 2 ^ ( r )

r
and this is also a vector operator: <p|R{c |p > = cpĵ . It is easy to
obtain the commutation relations of an arbitrary vector operator
with the generators of the group. They have the standard form

Let us check that a vector operator behaves like a vector in
the sense of the Clebsch-Gordan series, i.e., that

In fact, the spinor [p] is symmetric in all its indices. The opera-
tor o\.^, acting on the index <xr, makes it unsymmetric relative to
all the others. By means of symmetrization and antisymmetriza-
tion (i.e., multiplication by e), we get two irreducible spinors,

tp] and [p — 2]. Furthermore, each of the spinors contains an
arbitrary number of indices antisymmetric in pairs (0 a ' " a p ~
xh ai •• apeaS€y"...). If the operator acts on one of these indices,
the antisymmetry is destroyed and we have a reducible spinor
(p + 2), which is symmetric in p indices. Reducing it, we get
[p + 2] and [p]. Thus, RJ

k | p > contains the three terms listed
above.

We can construct products of the operators o'k^ (with different
r). They form tensor operators (the total number of indices j,k is
always even). They can be made irreducible by treating the in-
dices j,k in the same way as for spinors. The components of an
irreducible tensor can be denoted by 0[p], This means that
<p.|Op]|p.> = [p].

The effect of the irreducible tensor operator O[p] on the wave
function [pj will be given by the corresponding Clebsch-Gordan
series:

From this we obtain, first of all, a selection rule: the matrix ele-
ments <p21 0[p] | pl > differ from zero only for T. + T2 > T > ] T.-T,
Secondly, since each value of p appears once in the Clebsch-
Gordan series, the matrix elements of operators of the same rank
differ only by an invariant factor. In particular, the diagonal matrix
elements of all vector operators differ from the matrix elements
of the generators only by a scalar factor:

Suppose that we have to form an invariant expression Je from
0, xfj , and n, where xp is an arbitrary isospinor, while n is an
isovector (X is the Yukawa interaction Lagrangian). Such an in-
variant is unique (i.e., for combining states of the same iso-
multiplet):

6. Displaced Isomultiplets

Thus, all the nucleonic (nonstrange) hadrons can
be assigned to definite isomultiplets. At present we
know the nonstrange baryon doublet N and quadruplet
A, the meson singlet r\ a.nd triplet it, etc.

The strange hadrons are obtained from the
nucleonic ones by adding A particles. If the wave
function of the A is an isoscalar (a t-singlet), we
can form the same kind of isomultiplet of strange
particles from each nucleonic isomultiplet. Since
Y = 0 for the A particle, the particles belonging to
the corresponding isomultiplet will differ from the
original particles only in their baryon number. We
thus get the mesonic doublets N + A ^ K , the baryon
triplet ir + A ~— E, a doublet H + A —* S» a singlet
K" + H ~* &, etc. If we compare the multiplets for a
given baryon number A, they will be displaced in the
hypercharge Y.

We have already remarked before that the group of
the charge Z is contained as a subgroup in the iso-
group. Thus the charge Z is uniquely related to the
quantum number T3. For the nucleon, Z = '/2 + T3.
Thus, because of the additivity of these quantum num-
bers, we have for any nucleonic system

or, since A = Y,
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Since the strange multiplets differ from the corre-
sponding nonstrange ones only in the number A, with
no change in Y, T and T3, the last relation remains
valid for them too.

From it we get a definite relation between Y and
T. Since Z is an integer and since 2T3 has the same
parity as 2T, Y and 2T are integers with the same
parity:

Y = 27" (mod 2).

We note that this relation is not connected with the
isogroup, since Y is a quantum number foreign to the
isogroup. The connection of Y with T is a conse-
quence of compositeness, as is the integral nature of
A and Z.

We average the equation Z = Y/2 + T3 over the
multiplet. Since T3 = 0 (where the dash denotes an
average),

— Y

The center of charge of the multiplet is independent
of A. If we compare multiplets with the same A and
different Y, the center of charge is displaced for the
strange particles:

where S = Y - A is the strangeness.

7. The Electromagnetic Interaction

The electromagnetic interaction does not possess
the symmetry of the isogroup. It is therefore,
strictly speaking, not possible to classify particles
according to isomultiplets, when we consider electro-
magnetic processes. But if the electromagnetic inter-
action is treated approximately as a weak-perturba-
tion, the scattering amplitude can be expressed as the
matrix element of some operator with respect to the
unperturbed functions, i.e., the components of the iso-
multiplets.

The breakdown of the isosymmetry manifests it-
self in the fact that such an operator is no longer an
invariant; it can be expressed in terms of certain
definite components of a tensor operator. For first
order processes ( radiation, scattering of an electron
by a hadron), this is the vertex operator r*e ' ( Fig. 2).
It is a function of the four-momentum q transferred
by the field. With respect to space-time properties
r( e ) is a polar vector.

We shall be interested only in the isostructure of
the operator T^eK We can find out its character by
noting that for q = 0 the form factor of particle a,
i.e., <a | r< e ) (0 ) | a) = ( r ' e ) ( 0 ) ) a (more precisely,
its time component, which is the only nonvanishing
one), reduces to the charge:

<r< r )(0)>~z= *- + T3.

FIG. 2. Vertex for interaction of a hadron with the electro-
magnetic field. Solid line - hadron; dashed line — field.

In the sense of the isogroup, this expression consists
of an isoscalar and the components of an isovector.

It is natural to assume that the isotensor character
of the operator r ' e ) is independent of q. Then

where v(0 ' is an isoscalar, and v is an isovector
operator (e is the electron charge, introduced for
purposes of normalization). This constitutes the
basic hypothesis concerning the character of the
interaction of hadrons with the electromagnetic field
(the "hypothesis of minimal interaction"). It is also
assumed that v<0) and v are invariants under the
group of Y, i.e., the electromagnetic interaction does
not change the strangeness of particles.

The picture for justifying this hypothesis is the
following. In the last analysis the interaction with the
electromagnetic field is produced via the charges of
the " b a r e " proton or antiproton, for which

Because of the strong (isoinvariant) interaction,
each hadron gives rise to a collection of particles,
among which some are charged (protons and anti-
protons). The interaction should be taken into ac-
count once, i.e., we must add the individual vertices
with arbitrary weights. This can give nothing other
than v(0> + v3.

From the form of the operator it follows that the
form factors of particles have the structure

where ci and c2 are fixed functions for a given
multiplet.

This formula gives definite relations when the
number of components of the multiplet exceeds two,
i.e., when T > V2. For example, for the triplet of 2
hyperons it gives ^

In particular, such a relation should hold between the
magnetic moments of these particles.

The probability amplitude for radiation (i.e., for
decay of hadron a into hadron b and a photon) has
the form (b \ r(e) | a) . From the structure of the
operator F^e) we get the selection r u l e ^ AT = 0,
±1 .

An operator describing a second order process
must have the isotensor structure of the product of
two vertex operators, i.e., be expressed in the form
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FIG. 3. Feynman diagram for the electromagnetic correction
to the hadron mass. The solid line is the hadron, the dashed line
the radiation and absorption of a virtual photon.

where c is an isoscalar, R an isovector, and L an
isotensor of second rank. In particular this is the
structure of the amplitude for the Compton effect on
a hadron and the electromagnetic mass AM, which is
given by the diagram of Fig. 3. It follows that

This formula obviously gives definite relations if
T > 1. Thus, for the A quadruplet1^

A++ — A- = 3(A+ — A°)

(where the masses are denoted by the symbols for the
corresponding particles).

8. The Weak Interaction

In general the weak interaction conserves neither
Z nor Y. Therefore four types of processes are
possible. First, there are two types of processes in
which Z changes. Since the total charge Q is con-
served, leptons arise in such processes. One such
process is leptonic decay without change of Y, the
other with change of Y. Secondly there are two types
of processes in which Z does not change and no lep-
tons are emitted. One of these, with change of Y, is
the nonleptonic decay of hadrons; the other, without
change of Y, may appear on the background of strong
and electromagnetic interactions because of noncon-
servation of parity (parity nonconserving nuclear
forces).

One can find a natural place for leptonic processes
without strangeness change on the nucleon diagram
(cf. Fig. 1): n ^ p is such a transition. The decay
is described by the vertex diagram ( cf. Fig. 3), in
which the leptons play the role of the photon. For
concreteness we shall assume that the leptons carry
negative charge Qj = - 1 . Then the change in charge
of the hadron is AZ = 1 (n — p), and the "weak"
vertex operator for the nucleon will have the form
r(w) „ a+ (rpne p r o c e s g w i t n ^Z = - 1 will obviously
be determined by the operator r^w)+ ~ o_.) The fun-
damental hypothesis about the character of the weak
interaction is that in general the weak vertex operator
for a hadron is constructed additively from nucleon
vertices, just as in the case of electromagnetic inter-
action. Then F<w) must be a component ((+)-compo-
nent) of some isovector.

The vertex r ' w ) is a sum of two terms, differing
in their space inversion properties: one is a polar
4-vector and the other an axial 4-vector. Each of
these two terms must have the isovector property.
Thus

where v and a are isovectors (v is a polar 4-vector,
and a is axial), while g^ is a constant. One of the
most important properties of the weak interaction is
the identity of the isovector v with the isovector that
enters in the electromagnetic vertex F^e ' .

The parity nonconserving nuclear forces (proc-
esses with AY = AZ = 0) are expressed by an opera-
tor that is diagonal in T3. We can find the isostruc-
ture of this operator if we suppose that it contains
the product of two vertices F<w) and r(w)+ ("tied
in" by the strong interaction). The product of two
isovector operators gives O[2^O[2: | = O [ 0 ] + O M

+ o'-4-'. Thus the isospin selection rules will be

A7- = 0, ± 1 , ± 2 .

There is no place for the other two types of weak
process on the nucleon diagram. The corresponding
operators cannot be expressed as operators of the
isogroup.

We note that for processes with AY * 0, the iso-
spin changes by a half-integral number. But within
the framework of the isogroup one can construct only
tensor operators. There are no proper spinor opera-
tors. It is therefore impossible, within the frame-
work of the isogroup, to formulate the principle of the
universal weak interaction. Later (cf. Sec. 7) we
shall see that the SU3 group gives a natural descrip-
tion also for processes with AY * 0.

3. THE SECOND ISOSPIN GROUP

1. u-Multiplets

Our whole presentation reduces to the following.
To each hadron one must ascribe, in addition to the
rigorously conserved baryon number A, two other
similar types of additive quantum numbers: the
charge Z and the hypercharge Y. The conservation
laws associated with them are approximate, being
violated by the weak interaction, which we assume to
have been switched off. Moreover, we have not dealt
on the same footing with both Z and Y. Calling atten-
tion to the fact that one of them, Y, plays the more im-
portant role in strong interactions, we switched off
the electromagnetic interaction. After that the
hadrons were distributed over isomultiplets
(t-multiplets), the main quantum numbers were Y
and T, while Z, which is uniquely related to T3, be-
came an index distinguishing the identical components
of the multiplet. The significance of Z as the electric
charge appears only after the electromagnetic inter-
action is switched on, destroying the symmetry under
the isogroup.

Let us now try to interchange the roles of charge
and hypercharge. We shall try to justify the similarity
in the naming and description of the two quantum num-
bers. For this purpose we momentarily forget about
the smallness of the electromagnetic interaction.
Suppose that the quantum number Z is essential and
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that the proton and neutron do not form a t-multiplet,
but are simply two different hadrons.

There is another pair of particles that replace the
pair of nucleons for us. These are the proton and the
_+ hyperon. For both particles, Z = 1 (just as for
the nucleons Y = 1). Their difference is in their dif-
ferent values of Y = 1 and 0 (just as, for nucleons,
Z = 1, 0). We shall call these two baryons ( since we
lack a term analogous to "nucleon") B+ particles.

The two nucleons have a small mass difference,
and this was the origin of the idea of degeneracy in Z.
The two B+ particles also do not differ very much in
mass, AM/M — 0.2. This number is not so small as
for the case of the nucleons, but it still small enough
to justify the following hypothesis, which is of funda-
mental importance for the following.

Strong interactions can be divided into two classes:
the truly strong (i.e., the "very strong," which we
shall from now on call simply the "s t rong" or
s-interaction) and the medium strong (we call it the
medium or m-interaction). The medium interaction
is approximately as much weaker than the strong as
the mass difference of _+ and p is smaller than
their average mass. The strong interaction is the
same for the two B+ particles. It for the most part
determines their masses. The medium interaction
splits this doublet. Thus the s-interaction is inde-
pendent of Y; only the m-interaction depends on Y.

Now we can completely interchange the roles of
Y and Z. Switching off the medium interaction, we
retain the electromagnetic interaction. Then p and
S+ are two degenerate states, differing in the quantum
number Y, which plays no role in the interaction.
This symmetry is that of SU2. Everything that was
said about this group can be taken over to this new
basis. It is sufficient to replace p, n by p, 2+ on the
nucleon diagram. In order to distinguish this new iso-
group from the earlier one, we shall call it the u-iso-

group C6] Correspondingly its generators will be
called u-spin operators and will be denoted by Uj
(i = 1, 2, 3) or Ufc (j, k= 1, 2). The rank of an i r -
reducible spinor will be denoted by 2U, and the corre-
sponding multiplet will be called a u-multiplet. The
components of a u-multiplet will be classified accord-
ing to the eigenvalues of the generator U3, which we
shall call the projection of the u-spin ( U3 = U, . . ., - U).

Just as we can construct all nonstrange t-multiplets
( Y = A) from the fundamental t-doublets (nucleons
N and antinucleons N), we construct all those u-
multiplets for which Z = A from the fundamental u-
doublets B+ and B+. We can construct all the known
hadrons if, as in the t-multiplet scheme, we introduce
in addition the baryonic u-singlet A (A = 1, Z = Y
= U = 0). The connection between the value of Y and
the u-spin projection U3 for a given multiplet will be

( "the center of hypercharge") will be

Y = —

Both these formulas are exactly the same as for
t-multiplets, except that the roles of Z and Y are
interchanged. From them it follows that only those
u-multiplets are possible for which Z and 2U have
the same parity:

2£/ = Z(mod2).

In particular, singly charged particles can have only
half integral u-spin.

We give some examples of composition of
u-multiplets.

1) The meson doublet (A = 0, Z = 1, U = %) :

JI+ J

2) p7r+-resonance, singlet (A = 1, Z = 2, U = 0):

B+~B+-\-X—» A++.

3) Negatively charged baryon doublet (A = 1,
Z = - 1 , U= V2):

B+ -:- A + A -> B~ =

( This doublet could have been used as the starting
point in place of B+.)

4) Negatively charged baryon quartet (A = 1,
Z = - 1 , U = 3/2):

We note that before the discovery of the Si" hyperon
only three baryons were known with Z = - 1 and angu-
lar momentum J = 3/2. But from the relation 2U = Z
( mod 2 ) they could not constitute a u-triplet. At
least one additional component was needed, i.e., the
ST.

2. The Medium Strong Interaction

If we extend the analogy between the t-spin and
u-spin schemes, the medium interaction should lead
to a splitting of u-multiplets just as the electromag-
netic interaction splits a t-multiplet. The use of per-
turbation theory should give cruder but still reason-
able results. The medium interaction can be ex-
pressed as a tensor operator of the u-group.

If we use the analogy quite literally, the hyper-
charge Y (like the charge Z ) should characterize
the interaction with some field. It is natural to repre-
sent the vertex for this interaction in the form

while the average value of Y over a u-multiplet

where m° is a u-scalar and m3 a vector. If the
splitting of the mass of a u-multiplet is determined
by a diagram of the type of Fig. 3, the formula for
the masses of components of a u-multiplet should
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have the form

Applying this formula to the quartet B"*, one can
express the mass of the W hyperon in terms of the
masses of the other three particles:

Q-=A-+3(E- *)

(the masses being denoted by the symbols for the
particles). The value of the constant is

will be valid for the amplitude for the Compton effect
(pictured as a two-photon vertex; Fig. 5). We shall
not write them out in detail; it is sufficient to under-
stand by ( r ) a the amplitude for the Compton effect
on particle a.

FIG. 5. Schematic diagram for the Compton effect on a hadron.
Dashed lines - incident and scattered photon, solid line — hadron.

We know that the experimental data, to good accu-
racy, satisfy the first relation and lead to the value
c3 = 0, i.e., the masses are equidistant:

Q-— S"* = E-* — 2"* = 2"* — A".

The situation is as if the mass splitting were directly
determined by a vertex operator r^ m ' (cf. the dia-
gram of Fig. 4 instead of Fig. 3). This question will
be discussed in Sec. 5. In this case the same relation
also holds for the triplet

namely,

£«* =

no* _ £0* _ jo* A0.

3. Electromagnetic Interaction

The classification of particles into u-multiplets is
most natural for treating electromagnetic processes.
Since such processes, by definition, are impossible
when the electromagnetic interaction is switched off,
the absolute smallness of the latter compared to the
medium interactions is here unimportant. We can
therefore in first approximation neglect the
m -interaction.

Then the electromagnetic vertex of the hadron is a
u-scalar: all terms of a u-multiplet are equivalent.
Consequently the electromagnetic form factors are
the same for all components of a u-multiplet.'-7"9^
For example,

< iV —<r)p, <r>s- —<r>a-,

This applies in particular to the values of magnetic
moments of the particles.

Obviously these same relations will be valid for
the interaction with the electromagnetic field in
second order. For example, these same relations

FIG. 4. Feynman diagram describing the correction to the
hadron mass due to the medium strong interaction. Solid line —
hadron; cross — contribution of the medium interaction, depend-
ing on the hypercharge.

Similar relations will also hold for the amplitude
for decay of particle a into particle b with emission
of a photon, if a and b belong to similar u-multi-
p l e t s . ^ An example is the meson doublet M**

K+* K+

= ( + ), decaying into the doublet M* = („.+ ):

If the u-spins of particles a and b are different,
such decays are forbidden.

One can include the medium interaction as a per-
turbation. If we represent the electromagnetic
vertex as an operator applied to unperturbed states,
r ' e ) will have the same u-tensor structure as the
mass operator. The formulas of par. 2 will there-
fore be valid, if we understand the symbols for
particles to stand for their electromagnetic form
factors or their Compton amplitudes, etc.^10^

4. Extension of a Group

We should point out that the basis on which the
scheme of u-multiplets was constructed is not very
satisfactory. Switching off the medium interaction
while keeping the electromagnetic is not very good.
The symmetry of the t-group is still better satisfied
than that of the u-group. The proton, for example,
differs more in mass from its partner in a u-doublet,
the S+ hyperon, than from the neutron which is in a
different u-multiplet. Thus the splitting within a
u-multiplet is of the same order as the distance be-
tween multiplets and, strictly speaking, the classifi-
cation according to u-spin is meaningless.

In the real examples that were given above, we
chose those u-multiplets for which the distance to the
nearest multiplets with the same value for Z and the
other quantum numbers is largest. But this is not
always the case.

For example, we have introduced the u-singlet A.
But we cannot say what relation it bears to the real
A particle. In fact in our scheme there is a
u-triplet

Bo-

lts components U3 = ± 1 can be identified with the
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real neutron and E° hyperon. But the component
having U3 = 0 will combine with the u-singlet. These
superpositions will represent both the real _° and A
particles. There is no possibility of identifying the
coefficients of this superposition within the framework
of the group considered here.

It will be more consistent to switch off both the
medium and the electromagnetic interactions. Then
the two quantum numbers Z and Y become equivalent,
as a result of which we get a higher symmetry char-
acterizing the truly strong interaction. What will this
symmetry be? The corresponding group should ob-
viously include as subgroups the two SU2 groups al-
ready considered: the t-group and the u-group, each
of which contains in turn as a subgroup one of the
gauge groups of Z or Y.

A general picture of this symmetry can be gotten
from the experimental data on the mass spectrum of
the baryons. There are eight baryons with masses
the same to within about 20% and with the same values
for their other quantum numbers (angular momentum
J and parity P) . This octet is shown in Fig. 6. The
axes are labelled Z and Y, and the points are
labelled by the names of the members of the octet.
The horizontal lines contain t-multiplets, the vertical
lines contain the members of u-multiplets. Both r e s -
olutions are equivalent; in both cases there is one
singlet and two doublets.

All the members of the octet are equivalent with
respect to the s-interaction. We are dealing with a
higher degeneracy than that considered earlier. The
properties of the baryons are expressed by the super-

8
position a n d the group should express the

equivalence of all such superpositions.
But it is by no means necessary that this be the

group SU8. The latter would lead to the appearance
of too large a set of quantum numbers, which are
still not required by the experiments. We want the
group to contain the two additive quantum numbers

Z° Z +

Y and Z. We have seen that the whole octet, as a
t- or a u-multiplet, can be constructed from three
fundamental particles bearing different sets of values
of Y and Z. It is therefore natural to assume that
the symmetry of the s-interaction is expressed by
the group SU3.

We point out that the triplet of baryons whose use
as fundamental constituents made possible the compo-
sition of all the hadrons was not the same for the
cases of composition in the t- and u-isogroup bases.
It appears to be impossible to choose three real par-
ticles which would form the fundamental triple of the
group SU3 so that they can be used to build up all the
hadrons in the same way as the nonstrange hadrons
are constructed using the nucleon doublet of the SU2

group. By " r e a l " we here mean not only particles
known at present, but any particles with integral
quantum numbers A, Y and Z.

We shall return to the consideration of this ques-
tion later, but now we proceed to consider the proper-
ties of SU3.

4. THE SU3 GROUP

1. The Generators of SU3 and the Quark Diagram

And so we shall consider three states (particles)
that are equivalent with respect to the strong interac-
tion. We shall denote the corresponding wave func-
tions by " p " , " n " and " A " . The quotation marks
are to remind us that we do not mean the real part i -
cles denoted by these symbols. These hypothetical
particles we shall call quarks.'-11-'

We can consider the superposition

•§x «p» -j- if2 «n

The set of three quantities

FIG. 6. The octet of Q/i) + baryons. The abscissa gives the
charge, the ordinate the hypercharge; the points are labelled by
the particle symbols.

we shall call a superspinor or an f-spinor (and when
there is no basis for a misunderstanding, simply a
spinor). The equivalence of difference superpositions
means that an f-spinor can be subjected to unitary
transformation. Separating out the (baryonic) gauge
subgroup, we can restrict ourselves to the unimodular
transformations ip ~- Uip:

UlT = 1, det U = 1 ( U is a 3 x 3 matrix). These
transformations form the group SU3.

If we write U as eiH, where H is a hermitian matrix with zero
trace, the infinitesimal transformations take the form

8

Here Ai is a set of linearly independent 3x3 hermitian matrices
with zero trace; it is clear that there are eight of them (3x3—1).
Correspondingly the group contains eight real parameters 04. We
can also write the formula for 80 in the form[12]
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where the parameters ctj form a hermitian matrix with zero trace,
while the Â  are nine real matrices related by the conditions

These matrices and their commutation relations can be written
explicitly (as in Sec. 2, we use the convention of labelling rows
by a superscript and columns by a subscript):

1

and
, i, l i xi

All these formulas are repetitions of the corresponding formulas
of Sec. 2.1. They differ only in having the index run over three
values instead of two. The generators Aj or Â  will be called
superspin or f-spin operators.

The structure of the SU3 group can be understood
very easily using the "quark diagram" shown in Fig.
7. Points corresponding to the quarks are at the ver-
tices of an equilateral triangle. This is the only sym-
metrical arrangement of points, and from it there al-
ready follows that each is characterized by two coor-
dinates, i.e., each of the particles is labelled by two
quantum numbers. On the other hand it is easy to see
that of the eight matrices \[, two can be taken to be
simultaneously diagonal, and the two quantum numbers
regarded as eigenvalues of these operators.

Such a choice can be made in different ways. On
the quark diagram the natural origin of coordinates is
the center of the triangle, and one can draw six
natural axes; three passing through the vertices
(denoted by Z, Y, X) and three parallel to the edges
(denoted by U3, T3, V3). Any pair of these axes de-
termines the coordinates of the points, i.e., the quan-
tum numbers of the quarks. The values for the others
are expressed in terms of these two. It is most con-
venient to use one of the three pairs of cartesian
axes (YT3, ZU3 or XV3). It is also convenient to

«/7» •

a) b)
FIG. 7. a) Quark diagram. The quark symbols are at the vertices

of the triangle. The axes passing through the vertices are the
"charges" Z,Y,X; the axes parallel to the edges are the isospin
projections U3, T3, V3. Each quark is determined by any pair of
quantum numbers (coordinates in the plane), b) Quark diagram.
The arrows give the action of the six nondiagonal components of
the f-spin. They break up into three pairs, isospin components of
the three types: T+, U+, V+.

choose the natural scale: let the unit along the Z, Y
and X axes be the altitude of the triangle, and along
the U3, T3 and V3 axes, the side of the triangle.

Relative to the axes Y, T3, for example, the coor-
dinates of the quarks have the following values:

p

We see that relative to these axes the three quarks
split into a pair " p " and " n " that are symmetric
with respect to the Y axis, and a singlet " A " on the
Y axis. We may say that the pair form a t-doublet,
and the third particle a singlet. Actually, the differ-
ence in values for the doublet and singlet is equal to
unity, the difference in Z values for the two terms of
the doublet is also unity, i.e., the quantum number dif-
ferences in the triplet " p " , " n " , " A " are the same
as for the Sakata triplet p, n, A. The quantum num-
bers T3 are the eigenvalues of the operator T3

(T3 = ± V2 for T = V2; T3 = 0 for T = 0). We complete
the separating of the t-group from the f-group by in-
troducing the two operators T±, whose actions are

shown on the diagram by arrows: T+"n" = " p " ,
T_"p" = "n" , T ± "A" = 0; we shall regard Y as the
eigenvalue of the corresponding (hypercharge)
operator Y.

Similarly the axes Z, U3 divide the quark triplet
into a doublet:

— •3-, —,-J and a singlet f—•, CM.

Their coordinates are eigenvalues of the operators
for the charge Z and the u-spin projection U3. We
note that now the difference in values of Z between
the doublet and singlet is unity and the difference in
values of U3 for the two terms of the doublet is unity,
i.e., the relations in the quark triplet are the same as
in the triple B-, A ( cf. Sec. 3). Also introducing the
operators U±, we separate out of the f-group the
second isogroup, the u-group. Thus the quark triplet
combines within itself the possibilities of composition
of hadrons both according to t-spin and u-spin. But
this is achieved at the expense of having a fractional
charge for the quarks. This question will be discussed
in more detail later ( cf. par. 7 of this section).

Finally one can have a third resolution into a
doublet ( " p" , "A" ) and a singlet " n . " This will be
a third isogroup, which we shall call the v-group. To
it there correspond operators V3 and V±.

We have thus introduced six nondiagonal operators
T±, U-t, V±. Together with the two diagonal operators
they fill out the set of eight generators of the SU3

group. This permits us to investigate its content
completely.

We remark that in addition to the t- and u-iso-
groups, whose appearance as subgroups we worked to
achieve, we also found the v-group. Other groups
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which, like SU3, give two additive quantum numbers
( groups of rank two) contain a larger number of
analogous subgroups.

By means of the quark diagrams one can also
follow the action of the operators and find their com-
mutation relations. It is clear that the relations with-
in a given isogroup (between U3, U± and similar
sets) are the same as for the Pauli matrices. For
example, let us find [ T+, V_]. To do this we use the
quark diagram and consider

(T+V_ — V_TJ «n» = — V_ «p» = — «A» = — U_

i.e.,

It is easy to see, in particular, that all the opera-
tors leaving the same vertex or arriving at the same
vertex of the diagram commute, for example,

[U+V+J = 0, [U+T_]=0.

It also easy to see that each of the "charge oper-
a to r s" Z, Y, X commutes with the components of the
corresponding ("perpendicular") spin, i.e.,

In conclusion, we give the relations between the
various diagonal generators:

T3-r-U3 = X = Y—Z,

and the expressions for the generators AiL in terms

of the "charges" and isospins:

x\ = z, x\ = x, ^ = - Y ,

X\ == T_, X\ = U_, X\ = V_.

( The mnemonic is: the operator \^, transforms quark

number j into quark number k, if the particles are
labelled in the order " p " , " n " , "A" . )

The corresponding expressions for the operators
A.j have the form

X V3Y
8 = ~2 '

(where the normalization is such that

- '/ . - 1).
j .k

2. Antiquarks

To the antiquarks there obviously corresponds the
superposition of the complex conjugate wave functions

The superposition coefficients tpa (with subscript
a = 1, 2, 3) form a (covariant) spinor, transforming
according to the contragredient group SU3. We shall
write it as a row ip = (ipv ip2> ^3)- Here an essential
difference between SU3 and SU2 appears. We cannot
form a linear combination of the components ipa

~ ipa* which transforms like tpa. The transforma-
tions of SU3 leave only one quadratic form invariant,
namely tpa*il>a. This is guaranteed by the unitarity
of the transformation. The invariant associated with
the unimodularity is now not a quadratic but a cubic
form, since the transformation matrix and its deter-
minant are of third order.

Thus we must consider the existence of two inde-
pendent types of spinors ipa and ipa (tpa ~ ipa* ). If
we write the infinitesimal transformation of the spinor
ij>a in the form

( keeping our convention relating position of indices
to labels of rows or columns), then it easy to see
from a comparison of the matrices U and U* that

Thus the quantum numbers for the antiquarks are
opposite to those for the corresponding quarks. This
is illustrated by the antiquark diagram ( Fig. 8). It is
obtained from the quark diagram of Fig. 7 by inver-
sion of the triangle in its center, while the directions
of the axes are maintained as before. We shall denote
the nondiagonal generators by the same symbols T±,
U±, V±, understanding them to be the matrices

A.J when they act on spinors 4>a and the matrices \^.

when they act on spinors ipa. Thus the operators in
the diagram of Fig. 8 change the sign of the corre-
sponding states (for example, T+"p"* = —"n"*).

i «P»* + »* -!- "§3 «A»*.

FIG. 8. Antiquark diagram. We show that these are not re-
ducible to quarks. The triangle has a different arrangement of
vertices compared to Fig. 7, but the same directions for the
coordinate axes. The action of the generators is accompanied
by a change of sign.

3. Supermultiplets.

The wave function of a system consisting of p quarks and q
antiquarks is obviously described by a superspinor of higher rank
<A J . The meaning of this notation is clear: relative to

P i • • • P I

e a c h s u p e r s c r i p t < / / b e h a v e s u n d e r t r a n s f o r m a t i o n s o f S U 3 l i k e t h e
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spinor 1/1 a, but relative to the subscripts it behaves like the cov-
ariant spinor t/î . The rank of a superspinor is thus determined by
two numbers p and q; this is the essential difference between
SUj and SU2, and is related to the essential difference in the
transformation properties of quarks and antiquarks. We shall some-
times denote a superspinor by its rank symbols:(q).

The group of transformations of the f-spinor (q) is a represen-
tation of the SU3 group. The generators of this group are the oper-
ators

l l
It then follows that the commutation properties of the Fk coincide
with the properties of the \'k

 :

Pj + p2 + p3 = p, for fixed p, the number p2 can vary from 0 to p—p1
(while p3 varies from p—p, to 0). This gives p—pt + 1 different
components. Now varying the value of pL from 0 up to p, we get
the total number of different components with fixed subscripts to

p
be Np = 2 (p-p. + 1) = Vi (p + 1) (p + 2). Similarly, the number

Pi=0
of different components with fixed upper indices will be Nq. We
thus get altogether NpNq components, but these are not indepen-
dent, since they are related by the zero trace conditions. The
trace is a spinor (q_i). This means that among the components
of [q] there are still Np_iNq_i relations. Finally the number
of independent components of the spinor [q] is equal to Npq =
NpNq-Np_iNq_i, i.e.,

The symmetry properties of the generators are also preserved: Some values of Npq = Nqp are given in Table I.

2
3=1

Just as for the Fk, we can separate out of the components of
the generators F^ the isospin operators T,U,V and the charges
Z,Y,X. We shall denote isospins and charges by these same
symbols for spinors of any rank. We shall not repeat the relations
between them and the Fk, since it is sufficient to replace \3

k by
Fjin the formulas of section 1. We can similarly introduce eight
generators Fj corresponding to the matrices Ai.

It is obvious that we still have the commutativity of each
charge with the "perpendicular" isospin.

In general the f-spinor (q) is reducible. There are two opera-
tions of contraction relative to the SU3 group (whereas there was
only one for SU2). The first, which is related to the unitarity of
the transformations, is the contraction of one superscript with
one subscript, or multiplication by 87,!

Table I. Number of particles in a

i.e.,

« ) •

T h e s e c o n d o p e r a t i o n i s r e l a t e d t o t h e u n i m o d u l a r i t y o f t h e

t r a n s f o r m a t i o n . T h e q u a n t i t i e s e ( x , 3 l ^ a ' S l / o r fiCX/3l'0a/3 v < w h e r e

e a 0 v a n d e a @ v a r e u n i t a n t i s y m m e t r i c s y m b o l s , a r e i n v a r i a n t s .

T h u s

l h O l O 2 O 3 . . = m a 3

i . e . ,

o r , a n a l o g o u s l y ,

U J \q+2j •
It is obvious that an f-spinor will be irreducible if all three of

the multiplications by S^, ea/3l/ and ea^vmake it vanish. In
other words, an irreducible spinor is symmetric in both its upper
and lower indices (separately), and any trace (on one upper and
one lower index) vanishes. We shall sometimes denote an irre-
ducible spinor of rank p,q by the symbol [{j].

Let us count the number of independent components of the
irreducible spinor [{jj. Because of the symmetry, only those com-
ponents are different which differ in one of the three numbers p,,
p2 and p3, which give the numbers of ones, twos and threes in the
superscripts (for fixed subscripts), without regard to order. Since

supermultiplet, Npq

0

1

2

3

4

0

1

1

3

8

2

•6

15

27

3

10

24

42

64

4

15

35

60

90

125

T h e n u m b e r N p q i s s o m e t i m e s u s e d a s t h e s y m b o l f o r t h e c o r r e -

s p o n d i n g s p i n o r . F o r p > q , w e c a n d e n o t e [ q ] b y l N p q S , w h i l e f o r

p < q , w e u s e i N p q l ; f o r e x a m p l e , [ j j ] = l l O ) , [ 3 ] = i l O ! .

I f t h e w a v e f u n c t i o n o f a s t a t e i s a n i r r e d u c i b l e s p i n o r [ j j ] ,

t h e r e a r e N p q d e g e n e r a t e s t a t e s . T h e s e f o r m a s u p e r m u l t i p l e t .

T h e s u p e r m u l t i p l e t i s d e n o t e d b y t h e s a m e s y m b o l a s t h e c o r r e -

s p o n d i n g s p i n o r . E a c h c o m p o n e n t o f a s u p e r m u l t i p l e t i s i d e n t i c a l

t o a n y o t h e r w i t h r e s p e c t t o s - i n t e r a c t i o n s . T h i s m e a n s t h a t t h e

s c a t t e r i n g m a t r i x i s i n d e p e n d e n t o f t h e q u a n t u m n u m b e r s t h a t

d i s t i n g u i s h t h e c o m p o n e n t s , a n d i s d i a g o n a l w i t h r e s p e c t t o t h e

p a i r s o f n u m b e r s p , q t h a t d e t e r m i n e t h e r a n k o f t h e i r r e d u c i b l e

f - s p i n o r .

A s u p e r m u l t i p l e t c a n b e c h a r a c t e r i z e d b y a n o t h e r p a i r o f n u m -

b e r s , w h i c h c a n b e e x p r e s s e d i n t e r m s o f p a n d q . T h e s e a r e t h e

q u a d r a t i c a n d c u b i c i n v a r i a n t s w h i c h c a n b e f o r m e d f r o m t h e c o m -

p o n e n t s o f t h e g e n e r a t o r s o f t h e i r r e d u c i b l e r e p r e s e n t a t i o n F k ,

j u s t a s t h e r a n k o f a n i s o s p i n o r c a n b e g i v e n b y t h e s q u a r e o f t h e

s p i n o p e r a t o r T 2 . T h e s e a r e t h e i n v a r i a n t s 2,Fk F j ( w h i c h w e

s h a l l m e e t l a t e r ) a n d S F k F i F j . T h e y a r e c a l l e d t h e C a s i m i r

o p e r a t o r s .

W e d i s t i n g u i s h e d i s o s p i n o r s o f t w o t y p e s : t e n s o r s a n d t r u e

s p i n o r s . S i m i l a r l y t h e r e a r e s u p e r s p i n o r s o f t h r e e t y p e s , w h i c h

d i f f e r i n t h e i r b e h a v i o r u n d e r t h e t r a n s f o r m a t i o n s o f t h e c e n t e r o f

S U 3 . T h e c e n t e r o f S U 3 i s m a d e u p o f t h e t h r e e m a t r i c e s U = \ f l .

W e d e n o t e t h e m b y \ } v = e
l 2 n v f z {v = 0 , + 1 ) . U n d e r t h e s e t r a n s -

f o r m a t i o n s , a s p i n o r o f r a n k p , q i s m u l t i p l i e d b y e i 2 " ( p ~ q ) v ^ 3 .

F r o m t h i s i t i s c l e a r t h a t

f o r p - q = 3
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Spinors that do not change under the transformations of the center
will be called tensors (supertensors, f-tensors), spinors which
are multiplied by a factor e

± l 2 n v / 3 will be called true spinors.
We shall call the tensor [j] a vector. The number of its components
(eight) is equal to the number of parameters of the group.

4. The Isomultiplet Diagram

The components within a supermultiplet should
differ in three quantum numbers. Actually, for given
p and q, the components of an irreducible spinor are
determined by four numbers, for example p1( p2, qj,
q2 (the numbers of ones and twos among the super-
scripts and subscripts), where these are still con-
nected by the zero trace conditions. It is convenient
to characterize each component by the eigenvalues of
three commuting operators—one of the charges and
the corresponding isospin, for example, Y, T, T3 or
Z, U, U3.

Let us see how many isomultiplets are contained
within a given supermultiplet and which ones they are.
If we picture a supermultiplet by points in the T3, Y
plane, some of the points will be multiple, since we
have seen that two quantum numbers are not sufficient
for a unique characterization of the components. We
can therefore form superpositions of them corre-
sponding to definite values of T. To find the values
of T, we need not find the superposition coefficients
explicitly. It will be sufficient merely to find the
multiplicity of the corresponding points.

The values of T3 and Y can be found by summing the con-
tribution from each of the spinor indices. It is easy to see,
for example, from the quark diagram, that

y.

1 1 1
= y (ft — p2) rr (<7i -q2), Y = ^

1

First we find the maximum value of T3; this will occur for

Pi = P, q2 = <1 (i-e-. ^M".2 ):

This value occurs once; the point is nondegenerate, and
can correspond only to the maximum value of T = To:

Tn = -
To this isomultiplet there corresponds a unique value of the hyper-
charge

I0---3—•

We have obtained the first, farthest right, point in Fig. 9. The
abscissa is the value of 2T, and the ordinate is the value of Y.
Forconcreteness, we shall suppose that p > q. (In the converse
case the diagram is reflected in the Y axis.)

Now we find the components with values Y = Yo, T3 = To - 1.
In general there will be three of these, which are obtained from
the preceding one, if: 1) one superscript is replaced by a two, or
2) one subscript is replaced by a one, or 3) a superscript and a
subscript are replaced by threes. But since the sum of these three
components is zero (zero trace), only two independent components
remain. One of the combinations of components must be assigned
to the isomultiplet T = To, the second forms the start of a new
isomultiplet T = To — 1. On the diagram this second point appears
on the same horizontal line.

"a ZT

FIG. 9. Isomultiplet diagram. Each isomultiplet appearing in a
given supermultiplet [£] is shown by a point in the (2T,Y) plane.
The points fill a rectangle which can be constructed if one knows
T0 = (p + q)/2, Y0 = (p-q) /3

Starting from these two components we find three more inde-
pendent components with values T3 = To — 2. They enter into the
previous isomultiplets T = To, To — 1 and give the start of a new
isomultiplet T = To — 2. Continuing the process, we shift each
time by one unit to the left along the horizontal in Fig. 9 until the
number of components ceases to increase. This will occur when
all the subscripts become ones (q, = q) for the value T3 = To - q.
Thus, for Y = Yo, one can have values T = To, To - 1, ..., E=S.

Now we consider the initial component if>\\\\\\. We shall change
the indices so as to change the value of Y. The minimal change
occurs if we replace one index by a three. If we change a super-
script (Pl = p - 1, p3 = 1), we get Y = Yo - 1, T, = To - % while
if we change a subscript (q2 = q - 1, q, = 1) we get Y = Yo + 1,
T3 = To -

 l/i. Each of these components belongs to a definite
isomultiplet T = To - V2. Starting from each of these two points,
we find in the same way as before all the points located to their
left along these two horizontal lines:

for y=v o +i , r = r f f l - l , r o - f . ..., - ^ = - + i .

Such a procedure gives all the points shown in the
diagram. It is now easy to formulate a simple rule
for its construction.'-13^ The diagram shows a region
bounded by a rectangle. The vertices are the follow-
ing points (2T, Y):

1) (2r0, Yo), 2) (0, -2Y0),

3) (p, To-- (q. — in 77-

The sides are at an angle of 45° to the coordinate axes,
so that the first two points are sufficient for the con-
struction. The points showing the isomultiplets are
at all points of the boundary having integral coordi-
nates, and in the interior, so that the distance between
neighboring points on the same horizontal (or verti-
cal) line is equal to 2.

We mention two important cases where the iso-
multiplet diagram has an especially simple form.
For p = q the rectangle becomes a square with its
vertex at the origin and symmetric about the T axis.
For q = 0 or p = 0 the rectangle degenerates into a
line. Then Y and T are uniquely related (in the
plane T3, Y, there are then no multiple points).
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ZT ZT

a) (ml b) {27) c)
FIG. 10. Isomultiplet diagrams, a) octet; b) decuplet; c) super-

multiplet \Tl\ = [*] on the figure:

Figure 10 gives isomultiplet diagrams for the
octet [}], the decuplet [p] and the supermultiplet
{27}= [11.

It is easy to go over from the diagram in the 2T,
Y plane to the one in the 2T3', Y plane. How to do this
is clear from Fig. 11; we must reflect all the points
in the Y axis and fill the horizontals with points
separated from one another by two units. The pres -
ence of points in the interior of the rectangle of Fig.
10 leads to multiple points in Fig. 11 (indicated by
circles).

y\

ZT3

{8} {JO}

2T,

{27}
FIG. 11. Structure of supermultiplets in the (2T3, Y) plane.

Each point corresponds to a particle. Multiple points are ringed
by the appropriate number of circles.

We have used a classification of components ac-
cording to values of Y and T. It is obvious that one
could do exactly the same thing in the quantum num-
bers Z, U or X, V. The diagrams would have exactly
the same form, but with the direction of the Y axis
changed. This difference is related to the definition
of the Y axis (cf. Fig. 7).

5. Expansion of a Product.

Let us now try to construct the Clebsch-Gordan series for
superspinors, i.e., find the structure of the expansion

As in the case of isospinors, we shall not be interested in the
explicit form of the coefficients, but only in the values of p and q

which enter in the sum. However, here a new situation arises as
compared to SU2. As we shall see, each value of p,q can be multi-
ple, i.e. may appear more than once in the expansion.

To construct the expansion, we shall use the contraction oper-
ations which already have served us earlier. There are three such
operations: 1) symmetrization, 2) contraction, i.e., multiplication
by 8 g, 3) raising and lowering of indices, i.e., multiplication by
ea/3y and ea^y. We explain the simple algorithm, [14' 15] which
quickly gives the result, on a numerical example. Suppose that

^we want to multiply^] by [4]:

r 5 T r 4 "I
L 2 JL 4 J = [ . ] •

•[5L-

III-
4 + 2N

\ / \
\
.V
\ .

/

[',].

•m
The meaning of this diagram is the following: a reducible spinor
is indicated by two terms, each giving the number of indices sym-
metric among themselves. Arrows to the right denote symmetri-
zation, after whi ch the spinor becomes irreducible without chang-
ing its rank. Arrows downward denote contraction, which can be
done only "crisscross," since contractions of the initial (irre-
ducible spinors are necessarily zero. The contraction process is
continued until all the superscripts or subscripts are exhausted.
The diagram shows clearly how the multiplicity arises (the multi-
plicity is indicated at the right by a subscript). We note the
"trapezoid rule": the multiplicity increases by unity with each
contraction (starting from unity) until the smallest term in one of
the two pairs is exhausted. The multiplicity increases symmetri-
cally from both ends, and remains constant in the center.

Thus we have obtained the first group of terms of the series
(it is now clear how to write them):

m+m,+m,+m,

Next raise subscripts:
J •

Each of the subsc r ip t terms i s reduced by uni ty , whi le a one i s

added to the top a s a s e p a r a t e term. T h i s l a s t term d o e s not

pa r t i c ipa t e in the further con t rac t ions , s i n c e i t appea red b e c a u s e

of an t i symmetr iza t ion r e l a t i v e to the s u b s c r i p t s .

We carry out symmetr iza t ion and contrac t ion with each of the

sp ino r s ob ta ined :

J
U + 2

4 + 2 \ p n ^ r 1 0 ! . r 9 1
2 ; ^ [ _ 2 j + L i J - r L o J
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For the last group of terms remaining we "lower" indices:

V2 + V \.2 + i + \J + {y2 + i + 2j + K2 + i + 3j + 1̂2 + 4 + V
Again there follows symmetrization and contraction. We shall
carry it out only for the first term:

(There is no need to go further, since the first two terms in the
lower row are already exhausted, the remaining one belongs to
the third term. And so we go on.)

This example shows how to proceed in the general case. We
can use the equation NPiqiNp2q2 - 2Npq as a check. We give the
results for some simple cases that are important in the applica-
tions:

m t n - m + m -

6. Tensor Operators.

As in the case of isospinors, it is easy to see that we can
form a vector from the spinor ifia and its complex conjugate by
means of the matrices A :̂

If xjj is an irreducible spinor of arbitrary rank, the result will be
the same as above if we assume that the operator Ak acts on one
of its superscripts. If we replace the operator Ak by the operator
Ak = 2crAk , then because of the symmetry of the spinor wer
get the same vector cpk except for a factor:

/P | ,vi| ''\ = <fj.
\ q ' " l q / V/'

We note that the vector operator Ak acts only on the super-
scripts of the spinor. The subscripts were not used in construct-
ing the vector, but were only contracted. Now we can construct a
vector on the lower indices.

If t/jn is a covariant spinor,

it is obvious from the foregoing that

< ? l O ~ = q > i - <

A second vector can be gotten using the operator D^= S\ ',
, —;-, r=l

From the definition of Dj, we easily find its commutation proper-
ties:

the first of these relations is obviously valid for an vector opera-

tor Gk:

We note an essential difference as compared to SU2- There
there was one vector, constructed bilinearly from the components
of a spinor of arbitrary rank, and to it there corresponded one
vector operator: the generator of the representation Tk. In SU3

we have two vectors and two "natural" operators: one of them is
the generator F^, the other is Dk- The operator Dk also has non-

zero matrix elements <̂  2 ' \ , unlike the generator Fk.

But from now on we shall understand the operator Dk to mean
only its matrix elements "diagonal" in p and q.

Such a matrix Dk can be expressed in terms of the generator
Fk of the representation without explicitly using the operators
Ak and Ak- In fact, any quadratic combination of the F^ that
forms a vector must be a linear combination of F^ and Dk (since
there exist only the two vector matrices / P \T{\ P \ and
\ „ I Dfc I / ) • ^ w e require symmetric action on superscripts

and subscripts and zero trace, we get an expression differing

from Dk only by a normalization factor C (depending on p and q):

We also give the explicit form of the components of DJ
k, ex-

pressed in terms of charges and isospins. We shall use the same

notation as for the corresponding components of Fk, but with the

index d:

By using the operator

we can form the vector

ij('1

Thus in general we can construct two linearly independent

vectors from the irreducible spinor [q] and its complex conjugate

(i.e., the spinor [p]). This also follows from the general Clebsch-

Gordan series as applied to the product [q] [ p ] . To these two

vectors there correspond two vector operators.
If we construct the vector using the generator of the respresen-

tation

Df = X ' = = c ( 4 - F M - 4 - - V 1 ! ),

~

D i - T ^ = C YT_+-{U + V_)

DJ -^ V? = c( — XV_ + i - {T_U^} \

Here I 1 denotes an anticommutator. The expressions for U+, V+,

T+ are gotten from those for U_, V^, T ! by replacing U_, V_,

T_ by U+, V+, T + ; F2 is the square of the generator
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It is easy to find the eigenvalues of F2 from the expression for
this operator. Since it is an invariant we can consider that com-
ponent of the f-multiplet for which T3 = (p + q) /2,i.e., where only
the component 4>\\\'.\\ is different from zero. From the diagram for

As for the charge and hypercharge of the quarks,
we may still arbitrarily identify them with the num-
bers for the corresponding generators Z and Y, the
coordinates on the quark diagram. No group or elec-
trodynamic requirements will be contradicted by this
shift of coordinates on the quark diagram. Suppose

' 1 5 'the supertriplet we see that then T+lj, = V+(A = U_^ = 0. Therefore t h e electric charge is not Z, but Qh :L l 5 ]

(X + Y + Z) + 2(T3 + V3U3) = ±

We note that the classification of the supermultiplet according
to (Y,T) isomultiplets is equivalent to classification according to
eigenvalues of the operators F* and D,.

The existence of the two f-vector matrices F^ and D̂  has the
consequence that the general expression for the "Yukawa
Lagrangian" for the strong interactions will contain two constants.
Let xfi be an arbitrary f-spinor and n p a vector. Then

By definition, the matrices F^ acting on the components of an
f-multiplet keep it within the same multiplet. The general vector
operators A^ and A^ do not have this property. It is obviously
possible to construct an arbitrary irreducible tensor operator of
rank p,q: 0 [q]. Such an operator has matrix elements

H
/Pi I QIII 1 Pi \ for states appearing in the Clebsch-Gordan
\ ? ! ' 91 /
series.

7. The Problem of Composition

All the presently known supermultiplets are of the
tensor type. These are the two meson octets, the
octet (possible not single) and decuplet of baryons,
and also, apparently, singlets (mesonic and baryonic).
This is understandable within our scheme of compo-
sition, based on the quarks—particles with fractional
charge and hypercharge. We have seen (cf. par. 4 of
this section) that the hypercharges and charges of
particles in the supermultiplet [P] are equal to

(p - q ) /3 + an integer. Consequently they are inte-
gral only for tensor multiplets.

Now we shall discuss the question whether one can
replace the quarks by a triplet of more "normal"
particles.^ 'J First let us convince ourselves that we
must ascribe a fractional baryonic charge to the
quarks. Suppose this charge is Ao. Then for a
hadron composed from v quarks and V antiquarks,
A = Ao ( v — V). If this hadron belongs to the super-
multiplet [P], then t ' - T r = p - q + 3n1 (where n! is

an integer), while for tensor multiplets, p - q = 3n2.
Thus, A = 3nA0 (with n an integer). We see that
only Ao = l/3n guarantees an integral value for A.
Since baryons are fermions, n must be odd (the
simplest case being n = 1).

From the fact that the baryon number is fractional,
we deduce the stability of the quark (or the analogous
formation, for example, of a "diquark" with A = 2/3),
since it cannot transform into any collection of part i-
cles with integral A.

where c is some constant. If we choose c = 1 for
quarks and c = - 1 for antiquarks, their electric
charges will coincide with the charge of the corre-
spondingly named real particles p, n, A (and their
antiparticles). The number c, like the baryon
number, will be additive. It may be called the super-
charge. Since A = 3Aon for any hadron in a tensor
supermultiplet, c = 3A.

Here, however, we come into contradiction with
the properties of the baryon multiplets. The average
value of Z over a supermultiplet is zero. This is
directly seen from the quark diagram: the sum of the
vectors drawn from the center of the triangle to its
vertices is equal to zero. Because of additivity, every
supermultiplet will also have this property, i.e., Z
= 0 and consequently Q^ = c/3 = A. But for the real
baryon supermultiplets Qh = 0, i.e., c = 0. This
means that also for the quarks c = 0, i.e., the quarks
have a fractional electric charge.

A search has been instituted for quarks as charged
particles differing from ordinary particles in their
ionization properties. If quarks were found, this
would mean the discovery of the "truly primary"
elementary particles. Even if they do not occur,
the corresponding fields could still represent the
primary fields. One could say that the Lagrangian
for hadrons should be constructed from just these
three fields. The one- or two-particle states of such
a field with fractional A and Z may correspond to
very large (even infinite) masses, but the multipar-
ticle bound states are just the known hadrons. Since
the present field theories can neither prove or dis-
prove this assertion, it is difficult to say whether this
contains more than a statement of the fact that the
hadrons have the SU3 symmetry, but that only tensor
representations of the group are realized in nature.

This last thesis is the content of the "eightfold
way" of Gell-Mann and Ne'eman,^18'"-' which is the
starting point for the successful application of SU3.
We can take the baryon octet as the basis for compo-
sition. From it (together with the antibaryon octet)
we can obviously construct all the tensor multiplets.
But we then lose the basis for introducing the SU3

group, which was the threefold degeneracy of the
fundamental particles.

From now on we shall not essentially go beyond
the framework of the eightfold way, although for con-
venience we may sometimes use the term "quark"
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as a shorthand way of expressing the symmetry prop-
erties of the hadrons.

There is another possibility for composition of
hadrons that have the SU3 symmetry. t18>fl] We may
choose as basis instead of the quarks a triplet of
"normal" particles (i.e., ones with integer A and
Z like the Sakata triplet) but introduce a fourth fun-
damental particle, regarding it as a supersinglet.
The fourth particle enables us to eliminate the con-
tradiction described above.

Suppose that we ascribe to the fundamental triplet
the baryonic number Ao = 1 and supercharge c = 1
(with c = — 1 for the antiparticles). The construc-
tion of the mesons is not changed. For them, inde-
pendent of the values of AQ and c,

m m - m - " - « - 0.

The baryons are obtained from the mesons by adding
the baryon singlet, for which A = 1, c = 0 (this
baryon has spin J = l/2).

Thus the required properties of the known super-
multiplets are assured: tensorial character and zero
value of the supercharge. We avoid the quarks at the
expense of first, introducing a fourth fundamental
particle, and secondly having the possibility of a
class of particles for which c * 0 ( supercharged
particles).'-15-' If it turns out that such particles
exist, this will, on the one hand, give a pictorial
meaning to the SU3 symmetry and, on the other hand,
will pose a series of new problems. Is c rigorously
conserved, like A, or approximately, like Y?
Doesn't there exist still another step in the hierarchy
of interactions, combining the supermultiplets into
"ultramultiplets", just as the introduction of s- and
m-interactions combined isomultiplets into a super-
multiplet? Shouldn't we change from the triangle of
the SU3 group to the tetrahedron of the SU4 group,'-9-'
in order to absorb the quantum number c, just as Y
was absorbed before? We shall not discuss these
questions.

(symmetric and antisymmetric), we can avoid the use
of the theory of the rotation group.

The wave function of a particle that is a member
of the decuplet is the f-tensor [jj]. Of the two num-
bers p and q, giving the rank of the tensor, one is
zero. Therefore the states within the decuplet are
characterized by only two quantum numbers, instead
of the three needed for the general case. This means
that if we draw their points in a plane, each point
uniquely determines a state. There are no multiple
points.

FIG. 12. Decuplet diagram in symmetric form. The triangle
is similar to the triangle in the quark diagram.

The decuplet diagram is shown in Fig. 12. It is
similar to the quark diagram, being an equilateral
triangle. The three axes passing through the ver-
tices of the triangle correspond to the quantum num-
bers X, Y, Z, and the three axes parallel to the sides
of the triangle, to the quantum numbers V3, T3, U3.
The charges X, Y, Z are measured in the scale;
altitude of the triangle equals three (p = 3); the spin
projections are measured in the scale: side of triangle
equals three. The isomultiplets are arranged along a
line parallel to the corresponding side.

Each point (state) can be characterized by any
pair of these quantum numbers. All the other quan-
tum numbers are uniquely related to any given pair;
for example, if we choose Y and Z, then

5. THE DECUPLET AND OCTET

1. The Decuplet Diagram

In the preceding section we presented almost all
the algebra related to the SU3 group. Only the ex-
pressions for the Clebsch-Gordan coefficients are
lacking for carrying out all operations.

However, since the supermultiplets known at
present correspond to the simplest f-tensors: [ }]
and [ J], most of the results obtained to date do not
require the general expressions for the Clebsch-
Gordan coefficients. The situation so far is like that
in the usual algebra of three-dimensional vectors.
So long as our operations are restricted to vector
multiplication or operations with second rank tensors

An important point is that we can also associate
with each state a definite value of any of the three
isospins, i.e., it is a simultaneous eigenstate of T2,
U2 and V2. The isospin value is uniquely related to
the corresponding charge:

These relations follow from the isomultiplet diagrams
(Fig. 10b).

Each state can be represented as a tensor basis
function which is the product of three quarks. To the
center of the triangle there correspond the basis
states " p , " " n , " and "A , " to the vertices the states
" p " 3 , "n" 3 , "A"3 , etc. We give the relation between
the basis states and the symbols of the particles of
the(3 /2) + baryon decuplet:
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A++ = «p3», A+ = «p2»«n», A° = «p»«n2», A" = «n3»,

2+* = «p2»A, 2°* = «p» «n» «A», 2~* = «n2» «A»,

S° = «p»«A2», B~ = «n»«A2»,

Q- = «A3».

Since we are dealing with the f-spinor ipaPy which
has no subscripts, the two f-vector operators FL

and D̂  coincide. The action of the vector operator

FJ on each of the basis states is easily found, either

directly from the quark diagram or by using the
properties of the isospin operators. We can freely
use all three isospins T, U, V, since we can at our
convenience assign any one of them to each state.

2. Vector Basis Functions

The octet diagram (for the example of the ('/2)+

baryons) was shown in Fig. 6, where we chose Z and
Y as cartesian axes. One point in the diagram
( Y = Z = 0) was double. This expresses the fact that
when Y = 0 we have two isomultiplets: T = 0 and
T = 1, or, when Z = 0, we have U = 0 or U = 1 (cf.
the isomultiplet diagram, Fig. 10a).

Because of this fact (which is related to having
q * 0), the properties of the f-vector [}] are some-
what more complicated than those of the tensor [$].
But they are still quite simple.

We introduce nine "vector basis functions," each
of which is a composite of one quark and one anti-
quark. We use the notation given in Table II.

Table II. Scheme for composition
of f-vectors from quarks and

antiquarks

^̂ ^ anti-
^^. quark

quark ^ \ ^

«p»

«n»

«A»

«p»»

vi

n~

Y.~

«n»*

Jl+

v2

x°

«A»*

x+

K"

V3

Figure 13 repeats the diagram of Fig. 6 in different
notation corresponding to the labelling of the basis
states (which were chosen to agree with the symbols
for the (0 -) mesons). The nondiagonal boxes in
Table II give the nondegenerate states located on the
perimeter of the hexagon in the diagram of Fig. 13.
We can assign to each of them definite values for any
of the isospins (T, U, V). The two states located at
the center of the diagram and labelled /r° and rj rep-
resent the two linearly independent combinations of
the three basis states v[

n-

i X"

n" n"

> x

FIG. 13. Octet diagram in coordinates Z,Y. The points show
the basis states of the f-vector.

cj + c2 + c3 = 0.

These superpositions can be chosen in different
ways. If we require the states to have a definite
t-spin, these will be

-i=(v1 (T = 0).

If we require definite values of the u-spin, then

The structure of these expressions is obvious; 7rj!
together with TT* forms a t-triplet made up from the

two doublets and (_ , , ,,+ ); similarly ir°a, K°,

.<n>> "A"*

"K° form a u-triplet built up from ( , , . , , ) and ( (( 1>if\

7r° and T) are the corresponding orthogonal super-

positions.
From these expressions we get the relations

satisfying the irreducibility condition

If we use these relations the effect of all the gen-
erators F? can be reduced to the action of the iso-
spin operators; each time we need only choose the
corresponding basis element. For example, ( cf. Fig.
13) T+7r- — 7r', while U+7c0 ~* ?ru. To determine

U+TT|! or T+7r̂  one must carry out the resolution of the

first basis in terms of the second. It is simplest to
use the combinations of the basis states v^. Table III,a
shows the action of the generators F? = A.J +~\i on the

K k k
basis states, as obtained directly from the diagrams
for quarks and antiquarks. The components FJ are
written as charge and isospin operators.

One can also find the action of the second vector
operator D^ = A.̂  - A.J. The action of its components

is given in Table III,b. The components have the same
notation as for F] (with the same j , k), but have ank
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Table HI
a) Action of operator F

(The boxes of the table contain the result of action of the operators
at the left on the basis states in the top row)

Y

Z

X

T+

T_

u+

u_

v+

v_

vi

0

0

0

—31+

n~

0

0

—x+

x~

2̂

0

0

0

n+

—n~

—x°

x°

0

0

0

0

0

0

0

x°

—x°

x+

—vr

Jl+

0

Ji+

0

V2—V)

—x+

0

0

x»

n~

0

—n—

ji~

v4—v2

0

0

x~

~x°

0

X+

X+

x+

0

0

x»

0

—n+

0

v3—vt

x~

—X"

—x~

0

-x<>

0

JI^

0

v,-v3

0

x°

x»

0

x"

x+

0

0

v3—v2

—JI~

x»

—x0

0

—x0

0

—x~

v2—v3

0

n+

0

b) Action of the operator D

yd

zd

Xd

Td

Td

ui

Vd_

Vd
+

Vd

2
y v i
4yv,

2
- 3 V '

31+

n~

0

0

x+

X~

Vl

2

')
-3V2
4
JV2

n+

n~

x»

x»

0

0

v2

4-3V3

-3V3

2
— 3V3

0

0

X<1

x°

x+

x~

V3

0

V1+V2

x+

0

0

xd

31+

2
T n -

1
-g-ji-
1
3 r

v4 + v2

0

0

x~

x»

0

3I~

3 x

—-JX+

0

x°

0

31+

0

vl + ̂ 3

X+

1
- y x "

1

2
- 3-x-

x»

0

31 +

0

Vl+V3

0

x~

j-0

- 1 -

4 -

x+

0

0

V2+V3

0

n~

x"

1 —
—-3X0

- I -

0

x~

V2+V3

0

31+

0

x°

added index d. We note that for the octet the coeffi-
cient in the expression for D? (p. 163) is C = 2/3.

3. Real Vectors and Charge Conjugation

Just as the basis vectors in ordinary three-
dimensional space can be chosen to be real
(cartesian) or complex (spiral) , the f-vector basis
can be chosen to be real (the group SU3 being de-
fined by eight real parameters) or " sp i ra l . " The
basis vectors used above were " sp i r a l , " as one sees
from their definition. Six of the basis vectors are

complex conjugate in pairs (while the fj or n° and
7] are real) .

One can introduce real basis vectors. We call
them 7rj, K[, K? (i = 1, 2) and define them by the
following relations:

± iU

The actual wave functions of the particles may be
either real or complex vectors. An example of sets
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of real vectors are the meson octets.
Let us consider the 0- mesons (for which the in-

trinsic angular momentum, the spin in the usual
sense of the word, is J = 0, parity - ) . The particles
are described by the correspondingly named spiral
basis vectors: n, K (or K), TJ. The reasons for the
distinction of the spiral vectors is that they are eigen-
functions of the charge Z and hypercharge Y (when
Y = Z = 0 we have the real basis vectors 7r°, TJ°). Be-
cause of the strict conservation of electric charge, we
always deal with states of definite Z. The situation is
different for the hypercharge. When Z = 0, in various
problems we have to consider states with undeter-
mined Y, described by real basis vectors. These
are the states K\ and K!>, which have a definite charge
parity.

Charge conjugation is the operation of replacing
the quarks by antiquarks (reflection of Table II in
the diagonal). From the definition of our basis vec-
tors it follows that under charge conjugation each of
the spiral basis vectors is transformed into its com-
plex conjugate. The real vectors TT0, TJ0, t2, K2, «;> do
not change, while 7Tj, K1( K\ change sign. ^20^

The behavior of the 0" meson octet under charge
conjugation coincides with that of the correspondingly
named basis vectors. We shall by convention say that
it has positive Cs-parity ( C s = + 1). By this it is
understood that for 7r°, 77, KJj, C = + 1. while for K\,
C = - 1 .

This is not the case in general. The wave function
for a particle may contain, in addition to the appro-
priate basis vector, a factor having definite proper-
ties under charge conjugation (just as it may have
with respect to other transformations not included in
SU3). It is important that this factor is invariant
under SU3, and the same for all members of the octet.
An example of an octet with negative Cs-parity is the
1" meson octet. The symbols for these mesons are
related as follows to the basis vectors:

K* x, (p
The fact that Cs = - 1 means that for p°, ip and KJ*,
C = - 1, while for K.f, C = + 1.

The wave functions for members of the baryon
octets are complex vectors. The invariant factor
multiplying the corresponding basis vector is essen-
tially complex in this case. It depends on baryon
number, and under charge conjugation the latter
changes sign. The baryon octet goes over into the
octet of antibaryons. We cannot ascribe a quantum
number Cs to a complex vector. Only the spiral
basis vectors have a real meaning.

For the baryon octet the relation between the part i-
cles and the basis vectors is the following:

6. MEDIUM AND ELECTROMAGNETIC
INTERACTION

1. Vector Perturbations

The most important applications of the theory of
supersymmetry of hadrons are not to relations valid
when the symmetry is rigorously observed, but rather
to the regularities in violations of the symmetry asso-
ciated with perturbations having lower symmetry. If
these perturbations are small, we can retain the
classification of states according to quantum numbers
of-the supermultiplets and assign a definite f-tensor
structure to the perturbation.

In Sees. 2 and 3 we studied the isostructure of the
medium and electromagnetic interactions. It was
made clear that they can be expressed in terms of
isoscalars and isovectors. Under analogous assump-
tions we can write our perturbations as components
of f-tensor operators.

To determine the form of the electromagnetic
vertex we can start from the same "principle of
minimal interaction." But the result will depend on
which model we take as our basis, i.e., which particles
we choose as fundamental.

If these are the quarks, their electric charge coin-
cides with Z. From combining of charges of all the
quarks, taking account of their strong interaction
(i.e. , the invariant s-interaction) only that same
component of some vector can appear, so that

where v is an f-vector (and a polar 4-vector).
If this triplet is of the Sakata type, for which the

charge is Z + V3, the vertex will contain an additional
f-scalar v°:

Limiting ourselves only to transformations of the
t-group or u-group, it is obvious that we come back
to our earlier expressions (Sec. 2.7, Sec. 3.3). In
fact, with respect to the u-group vj is a scalar, while
for the t-group it is the sum of a scalar and the third
component of a vector (cf. the explicit expressions
for \ j and D? in Sec. 3).

(e)

2 -> n, A
n —

•n. p-

k k
T h e p u r e l y p h e n o m e n o l o g i c a l e x p r e s s i o n r'

= e ( v + v}) i s t h e g e n e r a l e x p r e s s i o n h a v i n g t h e r e -

q u i r e d i s o s t r u c t u r e .

On t h e o t h e r hand , t h e m e d i u m i n t e r a c t i o n i s a

s c a l a r w i t h r e s p e c t to t h e t - g r o u p a n d a c o m b i n a t i o n

of a s c a l a r and t h e t h i r d c o m p o n e n t of a v e c t o r r e l a -

t i v e to t he u - g r o u p . T h e g e n e r a l e x p r e s s i o n f o r t h e

v e r t e x r * m ) w i l l b e

w h e r e m i s a n f - v e c t o r . The s c a l a r d o e s not a p p e a r
h e r e . By d e f i n i t i o n i t b e l o n g s t o t h e s - i n t e r a c t i o n .
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2. The Gell-Mann—Okubo Mass Formula

To treat the question of the splitting of the energy
levels of the multiplet, i.e., the masses of particles,
it is obviously necessary to include the larger of the
two perturbations, i.e., the medium interaction.
( Then the masses of particles within a supermultiplet
will differ by amounts depending on T and Y.) Sev-
eral questions then arise.

The first concerns the energy scale, which should
serve as a criterion of the smallness of the perturba-
tion. It was already mentioned in Sec. 3 that one can
use as a basis for introducing the concept of medium
strong interaction the fact that the mass differences
within the baryon octet are relatively small compared
to the mass of their center of gravity (say, the A
hyperon). Thus, in the absence of more rigorous
criteria, our energy scale will be the baryon mass of
1 GeV, and smallness will mean smallness compared
to this number.

At the same time we are not forced to require that
the splitting of any multiplet be small compared to the
center of gravity of that same multiplet. In quantum
mechanics, in applying perturbation theory one r e -
quires only smallness of the splitting compared to the
distance to the next unperturbed level (with suitable
quantum numbers). We shall therefore also apply the
perturbation method to the meson multiplets, for
which the splitting is the same in absolute value as
for the baryons, i.e., is much larger compared to the
center of gravity of the meson multiplet.

In this connection it is irrelevant which quantity
we apply the perturbation formulas to—the mass M
or its square M2. Actually good results are obtained
if we apply them to M2. As a justification for this we
may use the argument that all physical quantities
(scattering amplitudes) are functions of the rela-
tivistic invariant p2 = M2 (the square of the
4-momentum), so that M2, and not M, is the more
natural quantity.'-21-' In the absence of more detailed
pictures of the mechanism of the splitting, we shall
stop with this argument and write the splitting
formula in the form M2 = M2, + SM2. If (5M2 « M2,
this is equivalent to the formula M = Mo + SM. But
this is not so for the case of the mesons.

Finally the third question concerns the expression
for 6M2 in terms of the perturbation operator. In
Sec. 3 we saw that although the natural (field theory)
picture should lead to the Feynman diagram of Fig. 3,
i.e., to a second order perturbation, the first order
formula corresponding to the diagram of Fig. 4 gives
good results.

A "c l ea r " picture of such a perturbation can be
gotten from the quark model. Suppose that one of the
three quarks, say the "A" , is different from the
others right from the start. Its lines on Feynman
diagrams will contain "mass interactions" of the
same type as appear in the theory of mass renormali-

zation ( cf. Fig. 4). The set of diagrams containing
various strong interactions, in which at one point a
" c r o s s " for medium interaction is included ( cf.
Fig. 4) leads to the first order splitting formula

where the brackets denote the average value of the
operator.

After these remarks it is easy to get the splitting
formula.[16'12^ In fact, we saw ( cf. Sec. 4.6) that
any f-vector (i.e., its diagonal elements) is expres-
sible in terms of two vectors F and D. Therefore,

m; = ClF! + c2DJ.

Since F\ = Y, while the expression for D| in terms of
T and Y was given in Sec. 4.6,

The masses of the particles of known multiplets
are given well by this formula. For the baryon octet
it gives the relation

where the particle symbols stand for the values of
M2 (or M).

For the mesons, replacement of Y by - Y for a
given T means charge conjugation, in which the mass
is unchanged. Thus for the meson octets c t = 0. For
the octet of 0- mesons we get

where the particle symbols mean the values of M2.
For the 1" mesons this gives

GeV2.

Actually q) = 1.040 GeV2. The discrepancy can be
attributed to the nearness of the singlet u, = 0.613 GeV2,
which spoils the conditions for the applicability of per-
turbation theory.

For the decuplet, T is expressed in terms of Y:
T = 1 + Y/2. Thus the mass formula takes the form

This is the equal spacing formula, obtained in Sec. 3
for the special case of particles with the same charge:

Q- — S* = S* — 2* = 2* — A.

3. Electromagnetic Mass Splitting

In Sec. 2 we found formulas for the splitting of the
mass within a multiplet. They were based on the
properties of the electromagnetic vertex under the
t-group. Now, using the properties of the vertices
for electromagnetic and medium interaction under the
f-group
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we can get a formula relating the electromagnetic
splittings of different t-multiplets contained in the
same supermultiplet.

Let us consider the interaction in the approxima-
tion in which the two perturbations add. Actually this
will be a good approximation if we treat the electro-
magnetic interaction in first approximation (i.e.,
according to second order perturbation theory) and
the medium interaction in second or even third order.
Then the splitting formula will be the sum of two
functions, each of which depends on two (different)
variables:

6M2 =/("')(Y, T) + fm(Z, U).

Finding the mass difference for particles in one
t- or u-multiplet, we get the desired relations, which
should thus have high accuracy.

Let us consider the six particles forming the
hexagon of Fig. 6 (excluding the interior points).
They enter into three t-multiplets (N, 2, H) and
three u-multiplets (B+, B°, B -). Denoting the contri-
bution of the medium interaction by m, and of the
electromagnetic by e, we get

n = mN-\-e0,

(here the particle symbols denote the corresponding
masses, the subscripts on m correspond to the
t-multiplets, and those on e to the u-multiplets),
from h h ^ 1 8 ^

For the decuplet the analogous formula has the
form of a sum of two functions of one variable,

since Y is related uniquely to T, and Z to U. This
gives various relations, for example,

A0 — A+ + 2+* — 2°* = 0,
A"—A"+ 2°* — 2"* = 0.

4. The Case of Multiple Points

All the relations obtained above were based on the
fact that r ( m ) is a t-scalar, while r ' e ' is a u-scalar
(cf. Sees. 2 and 3). The SU3 group gives a connection
between properties relative to the t- and u-groups;
r ( m ) is a combination of a u-scalar and a component
of a u-vector, while r ( e ) is a combination of a scalar
and the component of a t-vector. These relations
represent differences taken along the directions
U = const or T = const on the diagram for a given
supermultiplet.

Multiple points lead to specific relations which
cannot be gotten within the framework of the iso-
groups alone. Consider the u-triplet B° (Z = 0) in

the baryon octet.'-7>8^ The relation for the electro-
magnetic form factors (neglecting the m-interaction)
has the form

2 U does not represent a real particle because the
medium strong interaction mixes the u-triplet 2U

and the u-singlet Au. The real particle is closer
to the state _t, in which we neglect only the electro-
magnetic corrections. Thus we must use the relation
between the u- and t-basis vectors (cf. Sec. 5.2), i.e.,

Thus,

= | <rle)>A+{ - i J <A | r«

The last term is the matrix element for the decay of
the 2° into a A with emission of a photon. (All these
quantities are functions of the momentum q t rans-
ferred to the field; it is obvious that a definite q
corresponds to real emission; in addition, in the
formula it is understood that (A | T^ | 2°) is real.)
From the orthogonality of the states | 2U ) and | Au) ,
we get

(A | F« j 2»> = ^ «-•>>*> - (r»>>A).

Actually the decay 2° —- A + y is a magnetic di-
pole transition, so the quantities appearing on the
right of this formula are magnetic form factors.
Since q is relatively small, we may suppose that the
corresponding form factors coincide with the magnetic
moments of the particles.

Eliminating (r( e>) vo and ( A | r < e ) | 2 ° ) from the
^u

last three relations between the form factors, we get

These relations supplement those obtained in Sees. 2
and 3.

They can be obtained from the general expression
for r^ e ' = v° + v}. Since (v{) reduces to a combina-
tion of F} and Dj, using the explicit expressions for
these (Sec. 4.6) (where F2/3 = 1 for the octet), we
get

If r(e) does not contain a scalar term (which
corresponds to the quark model, cf. par. 3), we get
still another important relation from the last expres-
sion; it can help explain the nature of the electromag-
netic interaction. Set cx = 0 in the formula, and apply
it to AU(Z = U= 0) and (Z = 0, U = 1), i.e.,

Then, having expressed

i= -ct.

in terms of
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and ( r ( e ) ) 2 o using the relat ion (Sec. 5.2),

1 3 2 " + A ) ,A B = -

which gives

we get

I 2°),

Substituting this resu l t in the preceding relation,
we get^7 '8^

Using the relat ion between 2° and 2 and
the formulas for the e lec t romagnet ic m a s s splitting,
one can get an in teres t ing relat ion express ing the
mixing coefficient for the t - t r ip le t and t -s inglet in
t e r m s of the rea l pa r t i c l e s A and 2°, which we r e -
gard approximately as s ta tes with definite t -spin.
These coefficients a r e expressed in t e r m s of the non-
diagonal e l emen t s (_° | e | A) of the s a m e mat r ix e
whose diagonal e lements ( e ) = ^ ( Z , U) gave the
elect romagnet ic mass cor rec t ions . If | 2
+ | A t ) y, then

= !-?>

» —A

(the pa r t i c le symbols in the denominator denote the
m a s s e s ) .

To de termine this ma t r ix element we shall use the
s a m e method and the s a m e approximation as in pa r . 3.
We f i r s t consider the e a r l i e r express ions for the

m a s s e s p =
and add to them

+ e+, n = + e0, and 2+ = + e+

To find the last mat r ix element we use the fact that
the ma t r ix e is diagonal with r e spec t to s ta tes with
definite u-spin:

and the relat ion

Eliminating (A^ | e | A^) from these relat ions, we get

From the four express ions for the m a s s e s there now
follows

7. THE WEAK INTERACTION

1. The Cabibbo P a r a m e t e r

In Sec. 2.8 the weak interact ion p r o c e s s e s for
hadrons were discussed from the point of view of the

isogroup. This permi t ted us to t rea t only p roces se s
with no change in s t r angeness . From the point of
view of the SU3 symmetry , both types of p r o c e s s e s ,
AY = 0 and AY * 0 can be studied on an equal footing.

Let us again consider the ver tex r ^ w ) , responsible
for the leptonic decay of the hadron with inc rease in
charge (AZ = 1) .

We look at the quark d iagram. Figure 14 shows
the two direct ions corresponding to the t rans i t ions of
in te res t . The f i rs t is " n " —* " p " , which is descr ibed
by one of the t - sp in opera tors T+. It de te rmines the
decays without change in s t rangeness (AY = 0),
which were d iscussed in Sec. 2.8. The second is
" A " —• " p " , which is descr ibed by one of the v-spin
opera to r s V+. It de te rmines decays with change in
s t rangeness (AY = 1).

«/7» *

FIG. 14. Structure of the weak interaction. The two directions
on the quark diagram that are responsible for leptonic decays are
shown: without change (T+) and with change (V+) of strangeness.

Both opera tors T+ and V+ a r e components of the
superspin (genera to r of SU3) X, which is an f-vector:

(for the notation cf. Sec. 4 .1) . It is natural to a s sume
that, in general , leptonic decays of the AY = 1 type
a r e de termined by the s a m e components (1 and \) of
some f-vector . If we pic ture the hadrons as being
made up from quarks ( o r other pa r t i c l e s forming a
fundamental t r ip l e t ) , it is impossible to construct
anything else in f i rs t approximation. In fact, as ide
from single action of the opera tor A.J, there a r e only

the invariant s t rong interact ions which do not change
the vector cha rac te r of the vertex.

Then the general express ion for this ver tex will be

Since CP- invar iance requ i res the coefficients a and
P to be real , while the overall normalizat ion of the
vector R is as yet a rb i t r a ry , this express ion can be
wri t ten in the form

r<u" = cos d R? + sin d RJ.

We shall call 1? the Cabibbo p a r a m e t e r .
The formula for the leptonic decay vertex in the

form of components of an f-vector containing the
p a r a m e t e r £ is perhaps the most interest ing appl i -
cation of the hypothesis of supersymmet ry ( SU3)
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for hadrons . F i rs t , as we have seen, for this s y m -
met ry both types of leptonic decay (AY = 0 and
AY s* 0) a r e a p r i o r i on the same footing. The
f-vector p roper t i e s of the operator Rj a r e such that
for decays with change of hypercharge one gets the
select ion rule

A v A 7 AT *
AY = AZ, _ 7 - T ,

which is confirmed by experiment . Among the com-
ponents of the vector opera tor of the group SU3, it
tu rns out that there is an opera tor Rj ~ V+ having
the p roper t i e s of a spinor relat ive to the t -group
(cf. Sec. 2 .8) .

Secondly, despite the a p r io r i equal s ta tus of the
two di rec t ions " n " — " p " and " A " — " p " on the
quark d iagram, we see that the general express ion
for r(w) contains a p a r a m e t e r •&. This leads to a
new formulation of the principle of universal i ty of
the weak interact ion.

The express ion for I ^ w ' can be interpreted as
follows, comparing it with quanti t ies charac ter iz ing
other in teract ions . The s t rong interact ion is i nva r i -
ant under SU3, and therefore the amplitudes given by
it a re s c a l a r s . All three interact ions that dest roy
this symmet ry can be charac ter ized by their " a x e s , "
i .e. , the i r vector bas is functions. The ver t i ces for
the medium and e lect romagnet ic interact ions can be
wri t ten in the form (cf. Sees. 6.1 and 5.2)

V3\

T '"> = (mv"u)), (vv'e)),

where the parentheses contain s c a l a r products of
f -vec tors , where

( the notation for the vector bas i s functions is that of
Sec. 5.2, Table II).

The ver tex for leptonic decay H w ) can also be
wri t ten as

where
v+ = n+ cos ft + K+ sin ft

(7r+, K* a r e the vector bas i s functions, cf. Table I I ) .
Since K+ and n+ form a u-doublet (for K+ " t h e spin
is along the U3 a x i s " , for 7r+ it is "oppos i te to the
U3 a x i s " ) , the express ion for v+ gives the express ion
for a rotation in u-sp in space (v* = e i a^2K+ , a. = 2J-
- n, i .e. , rotation of the U3 axis through angle a;
Fig. 15) .

In other words , v+ is a superposi t ion of bas i s
vectors with the s a m e value of Z (Z = 1 ) and dif-
ferent values of U2 ( i . e . , Y = 1, 0 ) . The meaning of
this is s imple . The leptons ca r ry a definite charge,
and the total charge is conserved, so v* has a defi-
nite Z. But the hypercharge is not conserved, and the
weak interact ion " d o e s n ' t know" this quantum number .
Therefore the re is no reason why v* should coincide

FIG. 15. The Cabibbo parameter in the plane of the u-spin
vector. U3 is the axis given by the strong interaction; U3 is the
axis determining the weak interaction.

with rr+ ( this would correspond to the value $ = 0
and would forbid decays with change of s t r angeness )
or with K+ ( this would correspond to £ = n/2 and
would forbid decays with no change of s t r angeness )
or with the b isec tor of these d i rec t ions (cos •$• =
s in $).

This las t case would mean equal probabili ty for the
two types of leptonic decay (AY = 0 and AY = 1 ) .
This equality of probability was used e a r l i e r as a
formulation of the universal i ty of the weak interact ion.
We see, however, that such a requirement would mean
requir ing invariance of the weak interact ion under the
u-group, (no dependence of r/(w) on U3, i .e., on Y),
for which there is no bas i s .

Let us turn again to the quark d iagram. For the
st rong ( t ru ly s trong) interact ions, there is no dif-
ference between " p " , " n " and " A . " We can place
any of the i r or thonormal superposi t ions " p ' " , "a'",
" A ; " at the ve r t i ces of the t r iangle . The choice of
the Z axis se ts the law of conservation of charge.
Among the th ree pa r t i c les , " p " is distinguished.
The choice of the other two ver t ices of the t r iangle
is st i l l a rb i t r a ry . It is determined by which p e r t u r -
bations we want to include. If the medium interact ion
is included, the quantum number Y is the one ( o r
U3 = Y - Z / 2 ) and " n " and " A " appear at ver t i ces
of the t r iangle . But if the weak interact ion is included
( or if we switch off the medium interact ion) it se lec ts
i ts axes (U3 or Y') and its superposi t ions of " n "
and " A " - " n " ' and " A " ' having the proper ty that the
" n " ' decays while the " A ' " is s table.

«n'» = cos ft «n'» 4- sin ft «A»,

The quark diagram for the leptonic decay takes the
form shown in Fig. 16. The d i rec t ion " n " ' —• " p "
de te rmines the leptonic decay, and to it cor responds
the opera to r T+ = (A.y+).

2. Leptonic Decays

Let us consider some consequences of the genera l
express ion for the leptonic decay ver tex r ( w ) . t 2 3 ^

The s imples t leptonic decay p r o c e s s is the decay
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FIG. 16. Structure of the weak interaction. After rotation of
the axes, only one direction remains (that of the isooperator T+).

of a meson into two leptons. The decay amplitude
reduces to the ma t r ix element of r ( w ) for the t r a n s i -
tion of the meson into vacuum. Let us compare the
decays KT — jT + V and 7r~ —- ju" + T>. For the f irst ,
AT = 1/2, AY = 1, and it is determined by the ope ra -
to r Rj. For the second, AT = 1, AY = 0; it is given
by the opera tor ~R\. Since both mesons belong to the
same octet,

<O|RJ|tf-> = <0|RJ|n->.

Thus the rat io of amplitudes is

We see that the measurement of the decay p roba -
bi l i t ies Ku; and TTw2 pe rmi t s a d i rec t determinat ion
of J. From these data, £ » 0.26.

So far we have not paid attention to the space t ime
proper t i e s ( in the sense of the Lorentz group) of the
quantity R. For decays with s t rangeness conse rva -
tion, it is well established that r ( w ) consis ts of two
t e r m s : a polar vector t e r m and an axial vector .
This proper ty must now also be extended to decays
with change in s t rangeness , so that R must have the
form

where v is a polar 4-vector , and a an axial 4-vector ,
and both a r e f -vec tors . The corresponding compo-
nents of these f -vectors form the i sovectors con-
s idered in Sec. 2.8, and

gg, = g COS ft.

The isovector v, appearing at the ver tex for l ep -
tonic decay with conservation of s t r angeness , as
pointed out in Sec. 2.8, coincides with the isovector
giving the e lect romagnet ic vertex. Therefore the
f-vector v introduced above must coincide with the
one introduced in Sec. 6.1 in the express ion for the
elect romagnet ic vertex.

Most of the known leptonic decay p roces se s a r e
p r o c e s s e s of t ransformat ion of one hadron, belonging
to a superoctet , into another belonging to the same
octet. Then the quanti t ies v and a, which a r e in
genera l functions of the momentum q t r ans fe r r ed to
the leptons, should be taken as constants , cor respond-
ing to the i r values when q = 0. But then ( in the r e s t

sys tem of the decaying par t i c le ) the polar 4-vec tor
v can have only a t ime component v0, and the axial
4-vec tor a only i ts space components a, proport ional
to the in t r ins ic angular momentum opera tor J.

One can de termine v0 from a compar ison with the
elect romagnet ic vertex. Since we a r e t reat ing t r a n s i -
tions within a given octet, v, like any f-vector, can be
expressed in the form (cf. Sec. 3.6)

For the e lect romagnet ic ver tex this gives

r(e> = ev1
1 = e(c1Z-f e2Z").

But, when q = 0 the e lectromagnet ic ver tex ( m o r e
prec ise ly , i ts t ime component) coincides with the
e lec t r ic charge eZ. Consequently

c j - l , c2 = 0.

Thus the t ime component of the ver tex r ( w ) is
equal to

r<0*> = g (cos ftT+ + sin ft V+).

This express ion de te rmines the /3 decays of the IT
and K mesons ( t rans i t ions without par i ty change of
pa r t i c l e s with in t r ins ic angular momentum J = 0):

(JI° | r(m> | IT ) = g cos ft (it01 T+ I it") = y'2 g cos ft,

(it01 r (w) \K') = g sin ft (n° | V+ | K~) = —\=r g sin ft

( the ma t r ix e lements can be found from Table Ilia,
using the relat ion 7r° = (1/V~2)( J^ - v2)).

The f irst of these was used for an exper imenta l
t e s t of the basic hypothesis of the identity of the i s o -
vectors for j3 decay and for the e lect romagnet ic
ver tex. We see that the rat io of the probabil i t ies
for these two decays is determined only by the
Cabibbo p a r a m e t e r . The existing experimental
data agree with the value of •& given above.

The value of the constant g is found from com-
par i son of leptonic decays of hadrons with the l ep -
tonic decay of the lepton (muon) . By definition, for
the muon decay ver tex (free of s t rong in teract ions)

This is the formulation of the universal weak i n t e r -
action. The appearance of the Cabibbo p a r a m e t e r in
the ra t io of f W and r ( w ) shows that universal i ty
does not necessar i ly mean equality of the constants
for JH and /3 decay. (The la t ter is more prec ise ly
determined from the O14 decay) . The value of $
given above leads to a difference between these two
constants of about 2%. Such a difference actually
exis ts , but it is difficult to say what it should be
ascr ibed to, in view of the uncertainty about radiat ive
cor rec t ions for hadrons .

For the axial vector a we can wr i te the general
express ion in the form
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Correspondingly the spatial components of the vertex
are equal to

r(u" = gJ {aTJ + pT+) cos 0 + (aVJ + 0V+) sin •&}.

The two constants appearing here can be found from
studies of the /3 decays of baryons without change of
strangeness. For the/3 decay of the neutron (ac-
cording to Table III, where n — K°, p — K+ )

p| JT+

where ( j ) is a quantity depending on the polarization
of the particles. From the experimental data, a + (3
= 1.15.

For the decay S" — A ( cf. Table III, 2" — /r-,
A—

<A|T+ |2-)=0, (A|TJ|_">=

From the experimental data, a — 0.7.
A large number of other decays can be analyzed on

the basis of the expressions for the vertices, with the
already known constants. The smallness of sin2 $
gives a natural explanation of the small probability
for j3 decay of hyperons (with change of strangeness)
as compared to the ordinary ji decays.

3. Nonleptonic Decays and Weak Nuclear Forces

It was already mentioned in Sec. 2.8 that there are
two types of processes of weak interaction occurring
without participation of leptons and, consequently,
with conservation of charge of the hadrons (AZ = 0).
These are the nonleptonic decays (AY ^ 0) and
processes caused by weak nuclear forces not con-
serving parity. Both these processes differ essentially
in character from leptonic processes. For leptonic
decays, the presence of part of the system which has
no strong interactions reduced the scattering matrix
to the vertex operator. This cannot be done for
processes proceeding without emission of leptons.
Therefore, strictly speaking one cannot obtain quanti-
tative consequences for the processes with AZ = 0
from the properties of the leptonic decays.

This applies also to the f-tensor character of the
scattering matrix determining these processes. It is
natural, however, to assume that the scattering
matrix (cf. Sec. 2.8) contains a sort of product of
two vertices ( for the "decaying" and "emitted"
hadrons). Then its transformation properties are
expressed by the product of the two vertices
p(w)p(w)+ i n ^ i s restricted form, we can then apply
the principle of universality of the weak interaction to
processes without leptons.

The empirical rules are known for nonleptonic
decays: AY = 1, AT = 1/2, i.e., the same as for lep-

tonic decays with change of strangeness. Obviously
both rules will be satisfied if the scattering matrix
(like the leptonic decay vertex) is a component of a
supervector. But this is not a consequence of the
principle of universality in the formulation given
above, since the product of two f-vectors contains,
in particular, the tensor [2] , and the corresponding
operator will allow transitions with AY = 2 and
AT = 3/2. Thus further hypotheses are needed, r e -
ducing, for example, to the requirement that the
properties of strong interactions should particularly
enhance the f-vector part of the scattering matrix.E24^

In any case we shall assume that the scattering
matrix for processes of weak interaction without
leptons is determined by some f-vector operator.
We call it S<h).

S* ' should consist of two terms, differing in their
properties under space inversion. One of them should
be a 4-scalar, the other a 4-pseudoscalar. The first
gives processes with conservation of P-parity, the
second with nonconservation of P-parity. Since the
combined CP-parity must be conserved, the first
term must be C-even, and the second C-odd. But, as
shown in Sec. 5.3, the components of an f-vector have
different C-parity; namely, for the components cor-
responding to projections along vj, v2, K2, K\ (i.e.,
for the components s{n), with i = 1, 3, 4, 6, 8),

i
C = Cs; for projections along 7rj, KU K\ (i = 2, 5, 7)
C = - C s , where Cs = ± 1 is the same number for all
of the f-vector.

Let us explain how the components s(h) can enter
into the amplitudes for weak interaction processes.
First let us consider the weak nuclear forces. Since
both Z and Y are conserved for these processes, the
scattering matrix contains only components of ^)
commuting with Z = F{ and Y = Fjj, i.e., S ^ ' and

slh ) 3 , or in the other notation, S<h> and
6 8

If we assume that these components satisfy the r e -
quirement of conservation of CP-parity, then we
must automatically assume that the f-vector Ŝ  ' has
no projections along nlt Kt, K? ( S ^ = 0 for i = 2, 5, 7).

i
With respect to the t-group the first is the component
of an isovector and the second an isoscalar. There
then follows the selection rule AT = 0, 1.

It is worthy of note that the selection rule becomes
more rigorous if we assume that the vector s ' n ' is
the product of two vector vertices.^25^ Let
So = Ry Ro - %6 a R2, where R is a vector having
components R3 ~ sin S- and R2 ~ cos ,?, where t? is
the Cabibbo parameter (the other components being
zero) . Then

i-, 53 = s i n d - i , 5 3 = | s i n * .

Because of the smallness of sin21? we have the in-
equality sjn) « Sjn). Thus the isosinglet component

o o
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is the main thing, and we have AT = 0. Thus the ex-
perimental investigation of selection rules for the
weak nuclear forces is of particular interest for the
whole theory of the weak interaction.

4. 6 -Decay

Now we turn to the nonleptonic decays. In such
processes Z is conserved, while Y changes. This
means that the corresponding components of the vector
g(n) a r e nondiagonal and commute with Z = F\. Since
the u-spin operators commute with Z and Ul = F6

and U2 = F7 (the directions not changing Z on the
quark diagram: " n " —̂ " A " ) , the nonleptonic proc-
esses can be determined by the components S* ' and
s' ' . But the latter, as we have seen, is excluded by
the requirement of conservation of CP-parity.

Thus the nonleptonic decays are given by the basis
vector K2 (the component ( h ) [ 2 0 ^

If we picture the vector S^n' as the product of two
vector vertices S^n^ ~ RR+, we can use the transfor-
mation by the rotation in u-space (cf. part. 1) that
takes v+ into ir+f, i.e., r<w> ~ T+. Then S*h> will
contain the component T3 of a t '-vector or a t' scalar.
This means, if we look at the diagram in Fig. 16, that
in nonleptonic processes there are no transformations
of one particle into another "A" ' does not partici-
pate at all in the weak interaction (cf. par. 1).

The amplitude for nonleptonic decay should thus
be regarded as an isoscalar, or the third component
of an isovector, with respect to the transformed
states. Let us consider the decay K°t —» 2?r ( 0-decay).
[20] This process proceeds with change of P and
change of C ( CK{ = - ! ) • The CP conservation law

allows this decay and forbids the decay K<> ~~ 2ir
(since Cĵ o = +1). But all the t' scalars formed

from three mesons, of the type (K'K)r)', (K'criK') n'.,

and t' vectors of the type (K'cr3K')7]' etc. are
C-even. Thus 9 -decay is forbidden by the symmetry
properties of the strong interaction.

The fact that the observed 8-decay should be r e -
garded as forbidden is very important in comparing
the probability for this decay with the K+ — 2ir decay.
The latter is forbidden by the AT = 1/2 rule, so that
it is natural to assume that the probability contains
the small coefficient (1/137)2 (because of the elec-
tromagnetic interaction). But the experimental ratio
of these two decays is 700. If the decay probability
for K\ —- 2?r itself contains a small coefficient (1/5)2 ,
we get just the required magnitude.

CONCLUDING REMARKS

The symmetry theory of hadrons, based on SU3,
contains quite a number of results: first, the classi-
fication of particles into supermultiplets and formulas
for their splitting; second, the properties of electro-

magnetic and weak interactions. (To date, the results
concerning the strong interactions are less definite.)

The relations predicted by the theory are con-
firmed to the accuracy to which the theory can pre-
tend. For a number of relations, such as those be-
tween magnetic moments and decay probabilities, the
accuracy of the experiments is still not good enough.
Undoubtedly the predictions of the theory will stimu-
late appropriate experiments.

All the comparisons so far refer to corrections of
first order in the medium interaction. Since the cor-
responding expansion parameter is not very small
( ~ 1/5), and the physical picture of this interaction
is not entirely clear, the existing agreement does not
yet give one a great feeling of security. Effects in
which one can test the predictions of the theory to
high accuracy will therefore be especially important.
Of particular importance is the resultL25J for Ieptonic
decays with change in strangeness, produced by polar
vector interactions. In Sec. 7.2 it was shown that such
interactions are described by the same f-vector as
for the electromagnetic interaction. This property
is conserved, not only in zeroth, but also in first
order in the medium interaction. The deviation
should consequently already be of order (1/5 )2.

Finally, further experiments on the spectrum of
elementary particles will be particularly important.
There are particles known at present whose assign-
ment to supermultiplets is still not clear.

If we look carefully at the table of elementary
particles in the region of the established supermulti-
plets, we note the fact that the two meson octets and
the two baryon supermultiplets (octet and decuplet)
are not well separated from one another, while the
intervals within them are approximately the same.
Thus, for example, p - K « K* - K (the symbols de-
note the squares of the masses) and H - 2 « E*
- 2*.

This leads to the idea of a possible extension of the
symmetry group to include the spin angular momen-
tum of the particles. The development of this idea
leads to various interesting results. We are now
dealing with the group SU6, which contains SU3 and
SU2 (the space of rotations associated with the trans-
formation of the spin angular momentum). A similar
symmetry under SU4, which includes the isogroup
SU2 and the group of the spin angular momentum SU2,
was considered long ago by Wigner^27^ for describing
the properties of the lightest nuclei. For the SU6

group a vector is a quantity tyrt (a, /3 = 1, 2, . . . , 6,
ipa = 0), having 35 components. If we assume that

they are all on an equal footing in zeroth approxima-
tion, while in first approximation they split into the
supermultiplets of SU3 with definite J, this splitting
will be the following:

35 = 8x 1 + 8 x 3 + 1 x 3 ,

where each term denotes N(2J + 1) (where N is the
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number of particles in the SU3 supermultiplet). Thus
we have a 0" octet, a 1" octet and a 1 - singlet (all
with the same parity). It is extremely interesting
that this higher symmetry predicts, in addition to the
1-superoctet, a 1" supersinglet, i.e., two isosinglets
1 - (<p and u>) with almost the same mass, so that the
real particles <p and u> are superpositions of particles
of the superoctet and supersinglet, and the theory en-
ables us to find the coefficients of this superposition.
We note that as before the 0" mesons form only an
octet (the 0" meson (supersinglet) now known has a
mass of 960 MeV, which is far from the center of the
octet).

For the baryons, the simplest quantity transform-
ing according to SU6 is the quantity ip^Py
( a, j3, y = 1, 2, . . . , 6), symmetric in all indices. It
has 56 components and splits as follows:

56=10x4 + 8 x 2 ,

i.e., a 3/2 decuplet and a 1/2 octet—just the known
supermultiplets of baryons.

The SU6 theory allows one to obtain the mass rela-
tions given earlier. We shall limit ourselves to these
few remarks about this very promising, but not unique,
direction for generalization of the hadron symmetry.
It is still not clear whether one can reconcile such a
symmetry with the requirements of relativistic
invariance.

A peculiarity of the new types of symmetry is that
they are actually seriously violated by the real inter-
actions. We are trying to establish the "original"
symmetry, not knowing precisely what the word
"original" means. Illusions are therefore possible,
and perhaps unavoidable.

Because of the low precision of its results, the
symmetry theory does not have the required clear
foundation. Everything would be understandable if
quarks existed. Then the developing theories would
be similar to the nuclear shell theory. But there are
no quarks, and it is already strange to assume the
possible existence of such particles. They are stable
and yet are never found by us in ordinary matter.

If supercharged particles exist, the theory should
be generalized accordingly. The corresponding higher
symmetry has not yet manifested itself.

We may say that the symmetry theory based on
SU3 and its generalizations leads to an understanding
of new nontrivial aspects of the structure of elemen-
tary particles.
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