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INTRODUCTION W — dogte? 1 R
= nelﬁ&i[i—m—]x da.. (2)

CHARGED particles moving in a transparent me-
dium with velocity exceeding the phase velocity of
light in this medium emit a unique radiation, part of
the spectrum of which lies in the visible region. This
radiation was first discovered and investigated by

S. I. Vavilov and P. A. Cerenkov in 1934-1938, and
was explained theoretically by I. M. Frank and L. E.
Tamm in 1937-1939. Many experimental and theoret-
ical investigations* of this phenomenon have been re-
ported since. Let us recall its principal properties.

Cerenkov radiation is characterized by sharp

directivity. The radiation angle, the particle velocity,
and the refractive index of the medium are connected

by the relationft
06— 1
cos = —’;W . ( 1)
The energy radiated by the particle as it covers a

path [ in the medium is given by the equation

*Reviews of most investigations can be found in [***].

tHere and throughout, unless specially noted, we use the
universal symbols: —angle between the radiation direction and
the direction of motion of the particle, B—particle velocity ex-
pressed as a fraction of the velocity of light, n—the refractive
index of light in the medium, A—wavelength in light, etc. These
symbols have the same meaning throughout the text. Therefore,
to avoid repetition, all symbols are defined when first introduced.

If we neglect the dispersion of the refractive index in
some wavelength region, that is, if we assume that
n(A; — Ay) =1, then we can readily obtain from (2)
the number of photons emitted by the particle along
the same path:

N =252 (he)-1 (A5 — A7) sin®® = B (Ay, A9) Isin2 8. (3)

Estimates show that for 8 ~ 1 in solid and liquid
media, where n =~ 1.5, some 200—300 photons are
produced on 1 cm of path, while in gaseous media,
for n = 1.01, the number of photons is about 10.

In spite of this small quantity of light, the Cerenkov
radiation can be used to register high-energy charged
particles with the aid of so-called Cerenkov counters.
Cerenkov counters consist, in general outline, of a
medium (radiator) in which light is produced, an op-
tical system which gathers the light, photomulti-
pliers which convert the light into electrical pulses,
and electronic apparatus which records these pulses.
There are two types of Cerenkov counters—threshold
(or integral) and angle (or differential).

Threshold counters have optical systems that are
sensitive to light emitted in a wide range of angles,
and register particles whose velocities exceed a
certain threshold value St, determined from relation
(1) under the condition that cos 6 = 1:
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Be=—-. (4)

Differential counters register particles whose
velocity B, satisfies the condition S, > Bt and lies in
a narrow interval from B, to By + AB. This is at-
tained because their optical systems are sensitive to
light emitted in the narrow angle region between 0,
and 6, + Af, respectively. The connection between
A6 and AB, or the velocity resolution of the counter,
is obtained by differentiating (1):

B — tg 080 = (nB* —1)172 A0,
Obviously, the resolving power of an angle counter
will be the better the smaller the angle to which the
optical system is set and the narrower its sensitivity
region. The best velocity resolution can be obtained
when A¢ is on the order of the natural width of the
intensity peak of the Cerenkov light.T

Cerenkov counters are frequently used to identify
particles by their mass. Since the Cerenkov radiation
depends only on the velocity, a unique relation between
these two quantities is necessary in order to deter-
mine the mass. Such a connection exists in a beam of
particles with definite momentum, the discrete ve-
locity spectrum of which corresponds to a discrete
set 'of masses. Consequently, the velocity sensitivity
regions of Cerenkov counters can be converted into
mass sensitivity regions. The threshold velocity in
a given radiator corresponds in this case to a definite
mass m¢, and the threshold counters will register
all the particles with mass smaller than my and
velocity larger than Bt. Owing to the one-to-one cor~
respondence hetween the mass and the velocity, each
particle with mass smaller than m¢ will radiate light
at a definite angle. By adjusting the optical system of
a differential counter in suitable manner, it is possi-
ble to select the required particles. An analogous re-
sult can be obtained also with an optical system set
at a constant radiation angle, if the radiator is varied
in such a way that the product n remains constant.

By combining threshold and angle counters, it is
possible to separate practically all the presently
known charged particles. However, at large energies,
as B — 1 and the difference between particle veloci-
ties becomes very small (AB <« 1), the selective
properties of the Cerenkov counters with solid or
liquid radiators are lost. In fact, for n ~ 1.5—1.3 the
threshold velocity is quite low (8t ~ 0.7—0.8), a
particle of any mass emits Cerenkov light, and the
radiation angles are close to the maximum defined by
the equality cos 6max = 1/n. Naturally, in this case
the difference in the radiation angles is very small.
From (5) we see that A6 ~ AB as § — 1. Since Af
« 1, to separate a particle with a definite mass it is

(5)*

*tg = tar.
tThe width of the peak is defined as the half-width of the
maximum at half the height.

necessary to employ optical systems that are sensi-
tive in a very narrow angle interval. The production
of such systems involves great technical difficul-
ties 34,

Cerenkov counters with gas radiators retain their
selective properties up to ultrahigh energies. Indeed,
the refractive index of a gas can be made in principle
as close to unity as desired, and consequently, it is
possible to employ the threshold properties of the
Cerenkov radiation at any energy. On the other hand,
from (5) with n ~ 1 it follows that A6 > AB, that is,
the change of the angle is much larger than the varia-
tion in the velocity. Therefore even with a small dif-
ference in velocity, it is possible to tune the optical
system to a definite angle and register particles with
definite mass, provided a sufficient amount of light is
produced.

Gaseous media used in Cerenkov counters have one
important advantage over solid and liquid media. The
refractive index of the gas depends on its density,
which varies with the pressure and temperature.

This makes it possible to tune the gas counters to
different velocity intervals. The connection between
the refractive index and the density is given by the
well-known Lorentz-Lorenz law

n2—1 R

=E Tt (6)

which in the case of gases can be approximately
written in the form

3Re 3R
M D‘zT‘ (7

where p and M are the density and molecular
weight of the gas, and R is a constant for the given
gas, called molecular refraction.

An essential shortcoming of gas-filled Cerenkov
counters is their great length. This is connected with
the fact that the radiation angle in a gas, and conse-
quently the intensity, is small. The requirement of
high particle registration efficiency makes it neces-
sary to use counters one meter or more in length.

The first experiments aimed at the observation of
Cerenkov radiation in gas were made in 1953 by A.
Ascoli and Balzanelly and R. Ascolim, who observed
light flashes when cosmic particles passed through a
volume filled with chloroform vapor. The light was
registered with a photomultiplier connected for coin-
cidence with a telescope of Geiger counters. In this
experiment, however, owing to the large background,
there was no complete assurance that the counts pro-
duced were due to directed radiation. An improved
instrument, a diagram of which is shown in Fig. 1,
has permitted the same authors &) to prove this more
convincingly. The radiation produced in a tube 80 ¢cm
long filled with dry air at normal temperature and
pressure was detected with a photomultiplier, which
was brought outside the particle beam in order to re-
duce the background. The proof that the instrument
readings were due to directional radiation was the

n?—1-=

or n—1=Dpg,
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FIG. 1. The counter of Ascoli
and Balzanelly. I, II, IlI—geiger
counters; P—parabolic mirror; S—
shutter in front of the photo-
cathode of the photomultiplier.
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decrease of the count to the background level when
the instrument was rotated through 180° about the
point O. During the background measurement, the
photomultiplier was covered with a shutter.

In one of the test series, the counter yielded the
following results:

a) count in normal position with shutter open 1.56
= 0.2 pulse/hr;

b) count in normal position with shutter closed
0.57 + 0.2 pulse/hr;

c) count with shutter open and turned through 180°
0.76 + 0.15 pulse/hr.

The agreement, within the limits of errors, of the
two differences {(a) — (b) = 0.99 £ 0.28 and (a) — (c¢)
= 0.80 = 0.25 offers evidence that the effect is due to
Cerenkov radiation.

An analogous experiment, but with a more highly
perfected setup, was made by Barclay and Jelley, who
registered cosmic particles with a counter 6 meters
long.

Recently, in connection with the introduction of
high-energy particle accelerators, gas-filled Cerenkov
counters are widely used in physical experiments.
Their operating features are the subject of this
article.

In Chapters I and II we present a theoretical analy-
sis of the main characteristics of angle and threshold
Cerenkov counters, respectively. Factors which in-
fluence the resolution of the counters in velocity and
the production of the background in them are con-
sidered. In the case of threshold counters, we con-
sider also the dependence of the curve of counter
efficiency vs. gas density.

In Chapter I are described optical systems used
in gas counters, and the aberrations of such systems
are estimated. In Chapter IV are considered gases
and methods of obtaining different intervals of re-

fractive indices. Existing constructions of threshold
and angle Cerenkov counters are given in Chapter V.
In Chapter VI reference material is given for use in
the construction of gas counters.

Some of the deductions of the present work are ap-
plicable equally well to Cerenkov counters with solid
or liquid radiators.

I. DIFFERENTIAL GAS CERENKOV COUNTERS
(DGC)

The operation of a differential counter is clear
from the foregoing description. The light emitted by
the particle at a definite angle to the trajectory of
motion is gathered by the optical system and fed to a
photomultiplier, which converts it into electrical
pulses registered by the electronic apparatus. Since
the optical system is sensitive in a narrow interval
of emission angles, the amount of light received by
the photomultiplier, and consequently the efficiency
of the counter, will have a sharply pronounced peak
against some background. The form of the efficiency
of a differential gas counter as a function of the
emission angle can be obtained by plotting, for exam-
ple, the dependence of the counting rate of particles
of a given velocity on the density of the gas. It is ob-~
vious that it is similar to the form of the Cerenkov
radiation intensity curve and has the appearance of
the curve of Fig. 2.

FIG. 2. Schematic form of the efficiency curve of a DGC
as a function of the Cerenkov-emission angle.

The width of the efficiency maximum, Afg, which
determines the resolution of the counter in velocity,
depends on the width A6, of the radiation maximum
and on the sensitivity of the electronic apparatus used
to register the photomultiplier pulses.

The factors determining the value of A6, can be
combined into three groups:

1) ‘“Angle”’ factors: angular distribution of the
particles in the beam, effects of diffraction of light
and multiple scattering of the particle in the material
of the counter.

2) “Energy’’ factors: momentum distribution of
the particles in the beam and energy loss by the par-
ticle to collision with atoms of the medium.
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3) ‘“‘Technical’’ factors: dispersion of the refrac-
tive index and errors in the optical system.

Each of these phenomena leads to a corresponding
broadening of the curve of the Cerenkov radiation
intensity.

Depending on the sensitivity of the electronic ap-
paratus, the width of the maximum efficiency of a
DGC can be either larger or smaller than Ag,.

The maximum of the counting efficiency of the DGC
as a function of the radiation angle has broad wings,
which go over into an approximately isotropic back-
ground. The presence of the background is not con-
nected with the nature of the Cerenkov radiation of
the primary particle, and is due to different physical
phenomena which occur in the walls and in the radi-
ator of the counter. Principal among these are:

a) Cerenkov radiation of the 6 electrons produced
by the incident particle.

b) Cerenkov radiation of the secondary particles
produced as a result of nuclear interaction.

¢) Diffraction of light and multiple scattering of
the particle at large angles.

d) Molecular scattering of light.

e) Large energy losses by the particle to colli-
sions with the atoms of the medium.

f) Scintillation of the gas and bremsstrahlung.

The size of the background depends also on the
surface finish of the optical system.

Let us consider in detail the factors which deter-
mine the width of the maximum of efficiency and the
background €.

A. WIDTH OF DGC EFFICIENCY MAXIMUM

Al. The maximum angle scatter of the particles in
the beam A@,; and the associated broadening of the
radiation-intensity curve are determined either by
the geometrical dimensions of the counter itself, or
by the telescope of the scintillation counters to which
the Cerenkov counter is connected for coincidence. If
the diameter of the scintillation counters D is much
smaller than the base L, on which they are arranged,
then

D
Aeur\.—i— .

To increase the intensity of the particles, the accel-
erators are equipped with systems of quadrupole
lenses, which make it possible to form almost parallel
beams. It is obvious that the divergence of the beam
will determine the lower limit of the angular scatter
of the particles passing through the Cerenkov counter.
Usually this divergence is of the order of ~ 1073 rad.
Even if the particle moves originally parallel to

the counter axis, can travel at an angle to it after
being scattered on the front wall of the counter or by
the atoms of the medium. The problem of the broad-
ening of the Cerenkov intensity curve due to multiple
scattering in a medium, with allowance for diffraction,

was solved by Dedrik ), For small scattering angles,
| 8, — 0 | < 1, the distribution of the intensity of the
Cerenkov radiation as a function of the angle is shown
in Fig. 3, where the ordinates represent the ratio of
the intensity at a given angle 6 to the maximum pos-
sible intensity at an angle 6, = cos~1(1/n By). The
abscissas represent the quantity

8= 90(92()31;/21/z ’ (8)
where (92)1/2 is the mean square angle of multiple
scattering of the particle in the counter radiator. In
the case when the radiator of the Cerenkov counter is

sufficiently thin, (6%) can be written in the form [o]
Et
(0%) = e > 9

where Eg = 21 MeV, t is the thickness in radiation
units, and k is the momentum of the particle.
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FIG. 3. Angular distribution of the intensity of Cerenkov
radiation, calculated with account of diffraction and multiple
scattering of the particle. Dashed curve—projection of angular
distribution of the particles leaving the radiator.

The parameter K on the curves of Fig. 3 is de-

fined by
1/3

K= (\i‘}%nsineolT (62>1/2> (10)

A characteristic of the width of the distribution
will be chosen to be the angle at which the intensity
of light is half the maximum value. Then, on the basis
of (8), the broadening of the Cerenkov intensity curve
due to multiple scattering, with account of diffraction,
amounts to

(02172
5
where 6,/,(k) corresponds to 1(6)/I(8,) = Y%.

For a gas counter 1.5 meters long, filled with
ethylene to a pressure of 30 atm and for a 3-BeV/c
particle we have Af, = 1.3 x 10~ rad.

Multiple scattering of particles in the front wall
of the counter also increases the angular scatter of
the particles passing through the counter, and conse-
quently causes an additional broadening of the light-
intensity maximum by an amount Af;3. A measure of

Abyz = 81/3(K) (11)
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this broadening can be assumed to be the mean-
square angle of multiple scattering. Since usually
the walls through which the particles pass are thin,
A3 is determined by relation (9), where now t is
the thickness of the wall in radiation units.

The width of the maximum of the Cerenkov radia-
tion, due to all the “‘angle’’ effects, is defined by

ABy =1/ (A01)* - (AB1o)* + (ADus)*.

(12)

With increasing energy, the mean-square angle of
multiple scattering decreases both because of the in-
crease in k and because of the decrease in t, so that
in order to tune the counter to a larger velocity it is
necessary to use a smaller refractive index, that is,
a lower gas density. Consequently, with increasing
energy, Af; will decrease and tend to a constant
limit determined by the divergence of the beam.

A2. If the momentum of the particles passing
through the counter lies within a certain interval Ak,
then the maximum of intensity of the Cerenkov radia-
tion broadens by an amount A8,, which is determined
in the case when Ak << k by the expression

1 Ak
A% =riga, &

where v = E/m and E is the total energy of the par-
ticle. We see therefore that A6, is inversely propor-
tional to the tangent of the angle 6, to which the op-
tical system is tuned. If the uncertainty of the particle
momentum were the only factor leading to a broad-
ening of the radiation intensity curve, then we would
obtain by substituting (13) and (5) the limiting Ceren-
kov-counter velocity resolution, which is independent
of the emission angle:

AB _ 1 Ak

B v &

The uncertainty in the momentum of the particles
passing through the counter is made up of the mo-
mentum scatter of the particles in the beam (Ak;)
and the energy lost to collisions in the radiator
( &ky). Ak, is determined either by calculation or by
the method of a current-carrying wire. (We shall
show below how to estimate Ak; from the curve
showing the efficiency of the DGC to a beam in which
there are particles with at least two different masses.)
Assuming that the energy lost by the particle in the
counter are small, we define Ak, as follows:
ﬁk_

dl
where dk/dl is the momentum loss per unit path.

If we neglect the statistical fluctuations of the
energy loss to collision, then we can estimate the
broadening of the maximum of the radiation intensity
curve due to the particle momentum distribution by
means of the relation

1 ky)2 kq)2
80, = i Vs D@k
from which we see that A8, decreases with increas-
ing particle energy.

(13)

(14)

Aley = I,

(15)

A3. The dependence of the refractive index on the
wavelength of the light causes the radiation of a par-
ticle which has a definite velocity to lie in accordance
with (1) within a certain angle interval Afj3. From
the point of view of increasing the intensity [see re-
lation (3)] it is convenient to use the maximum possi-
ble wavelength interval. However, a broadening of
the spectral region entails an increase in dispersion,
and consequently deteriorates the resolution of the
counter in velocity. Differentiating (1), we get

1 An
Aeal == W o

The spreading out of the Cerenkov radiation angle
as a result of the dispersion of the refractive index,
like the momentum distribution of the particles, im-
poses a limitation on the velocity resolution of the
DGC. Substitution of A8y, in (5) yields

AR _ An
p— a

The dispersion of the refractive indices of gases
is considered in Chapter IV.

Any real optical system gathers light emitted in a
certain finite angle interval, and at the same time has
several errors which lead to a broadening of the
maximum of the Cerenkov radiation by an amount
Af35. The simplest systems, their errors, and an
estimate of A6, are given in Chapter IV.

Summarizing the foregoing, we can assume that
the total width of the maximum of the angular distri-
bution curve of Cerenkov light will be characterized
by the following relation:

A8y =V/(A6,)? + (AB;)> + (ABs1)® + (ABo)2.

The minimum value of Af, for infinite energy is
determined by the divergence of the beam, the dis-
persion of the refractive index, and by the optical
system:

(16)

(17)

(18)

ABp min = VA (011)% + (A831)? 4 (AD33)2.

Accordingly, the velocity resolution of a DGC cannot
be made arbitrarily high.

B. Background in DGC

The background produces in a counter particles
whose velocity is such that they should not be regis-
tered by the counter. However, owing to the interac-
tion between these ‘‘harmful’’ particles and the ma-
terial of the counter, light is produced, part of which
lies in the sensitivity region of the optical system of
the DGC. Let us consider these interactions.

Bl. A charged particle passing through a counter
experiences collisions with electrons, as a result of
which the recoil electrons (d6-electrons) can acquire
an appreciable energy E’. From the conservation
laws it follows that

k2 cos? @

I=2
B e Gt ) 1o st

(c=1).
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Neglecting the mass of the electron in the denomina-
tor, we obtain

k2 cos2 @

B~ tme o sy

(19)

where k and m are the momentum and mass of the
incident particle, and ¢ is the angle of emission of
the §-eleciron relative to the particle trajectory.

If ¢ =0, the electron obtains a maximum energy

Einax=2m. ()",

The probability of collision of particles with electrons
was calculated by various authors (see, for example,
(o] ) For particles with zero spin, the production
probability of a §-electron with energy from E’ to

E’ + dE’ on a path [; in a gas of density p is equal to

max>

(20)

¥ (E, E')dE' = log-2C G&- (E )2 (1

C=0.157 em¥g (21)
For particles with nonzero spin, this formula is ap-
proximate. Let us calculate the total number of &-
electrons with energy above threshold
Emax
Ny= S ¥ (E, E')dE’ =2Clog
Et
(22)
The threshold energy E{ is determined by the re-
fractive index of the gas. From (4) we obtain
, nme me
Be= et ~yao1
If we are interested in the number of 6-electrons
produced in a gas whose refractive index corresponds
to the threshold of registration with a differential
counter of a particle with mass mg and velocity By,
that is, for n = nt;, then we get from (4)

2

—1= (—r .
Substituting expressions (19), (20), (23), and (24) in
(22), we obtain

Ny = 2loC gz e ’”—°<1+p21ni_’;>] .

(23)

(24)

For high-energy particles the conditions § ~ 1 and
my/k « 1 are satisfied. Therefore
Ne~2l0oC (%) ) (25)
Substituting here (7), we obtain ultimately with ac-
count of (24)
my T\ 3
)

In many cases it is sufficient, in calculations of
the probability of registering ‘‘harmiful’’ particles
via $-electrons, to determine only the number of
these particles, since (25) gives the upper limit of
the background due to the collisions with the electrons

Ne~21oC o

- (e )]

(naturally, this is correct if N5 <« 1 and the efficiency
of registration of the §-electrons is equal to unity).
If a rough estimate is not sufficient, a more accurate
calculation must be carried out.
The probability €p; of registration of a ‘‘harmful”’
particle via 6-electrons can be written in the form
Pmax
= | ¥(@)P(o)de,
Pmin
where ¥( ¢)d¢ is the probability of the formation of
d-electrons in the walls and in the gas of the counter,
emitted in the angle interval from ¢ to ¢ + d¢
relative to the particle trajectory, and P( ¢) is the
probability of registration of the §-electrons. We
obtain ¥( ¢ )d¢ from (21) and (19). For simplicity
we use an overestimate, assuming that only the factor

(26)

preceding the parentheses is irnportant in (21). Then
¥ (p)do=2Cloe g ,M j;’;?j, do. (27)

As will be shown below, if the electronic apparatus
is sensitive to pulses corresponding to the knocking
out of one electron from the photomultiplier cathode,
then P( ¢) can be written in the form

P(g)=1—eNw, (28)

where N( ¢) is the average number of photoelectrons
produced on the cathode by the Cerenkov radiation of
a 6-electron emitted at an angle ¢ to the particle
trajectory. Allowing for (3), we get

N (9) =B (M, hs) sin®a (@) e (1) L(9) ¥ (9),

where €(A) is the quantum sensitivity of the photo-
cathode, « the angle of Cerenkov radiation of the
6-electron, y(¢) the fraction of light entering the
sensitivity region of the optical system of the counter,
and I( ¢) the path of the &-electron in the counter.

If the DGC radiator is gas contained in a tube of
radius R and length I;, then by putting ¢, = tan~!
(2R/1l), we can assume that

(29)

)

{ 2 (P<(Po7
o)=Yy g

sin ¢

(30)
P>Po-

To simplify the calculations we assume that the veloc-
ity of the 6-electron is constant, that is, we neglect
the ionization and radiation losses and multiple scat-
tering.

Let us determine y(¢) (Fig. 4.). Let 6 be the
angle between the arbitrary generatrix AC of the
glow cone of the 6-electron and the direction of the
primary particle, DF the line of intersection of the
plane passing through the direction of emission of the
d-electron and the direction of the primary particle
with the base of the cone, and ¢ the angle COF. It is
obvious that the fraction of the 6-electron Cerenkov



800

radiation which enters into the sensitive region 6,—

6, of the counter optical system is proportional to

the length of the arc ab between the generatrices of

the cone that make an angle in the interval 6,—6,

with the direction of motion of the particle, that is,
133

1 1
V@ =2 Frdt=2-(—t). (31)
51
On the basis of Fig. 4 we can show that
cosgzcosﬂ-cosm cos @ (32)

sin @ sin a
From the last two relations we obtain

cos 0;—cos ¢ cos a

< < — arccos
singpsina

v () =—:t— (arccos

singsina

(33)

A feature of (32) is that cos £; , > 1 for certain
angles ¢ > ¢max and ¢ < @npin. This corresponds
to cases when the Cerenkov light from the §-electron
does not enter the sensitive region of the optical
system at all. Consequently, y(¢) differs from zero
only in the angle region ¢min < ¢ < ¢max. These
angles determine the limits of integration in (26).

>
FIG. 4. lllustrating the calculation of the probability of

registration of §-electrons in a DGC. AB—direction of primary

particle; AO—direction of emission of the electrons; S,, S,—

lines bounding the sensitive region of the optical system of
the DGC.

Substituting now in (26) the values of all the quan-
tities from (27)—(29) and (33), we obtain a rather
cumbersome expression for €p,(p, m/k)—the effi-
ciency of registration of the harmful particle via 4-
electrons—as a function of the gas density and the
ratio of the particle mass to its momentum:

m
€p; (Q’ T)

Pmax
20oC S

cos2 @
Pmin

cos 8y — cos ¢ cos a (P)
sin @sin a ()

X ( arccos

— arccos (34)

€os 9, —cos @ cos a(q;))} ] ,

sin ¢ sin a (p)

c0s 0, — cos @ cos a)

sin p dg [1 —exp {_ B (Mhs) e (M) (@) sin? a (p)

A. 8. VOVENKO et al.

where cos a(¢), sin a( @), and I( ¢) are deter-
mined by relations (1), (7), (19), and (30).

Figure 5 shows a plot of &,4(p, m/k) against the
gas pressure, calculated by graphic integration, for
a DGC filled with ethylene and having the following
characteristics: optical system sensitive in the angle
interval from 3.5 to 4.5°, length of counter I, = 100
cm, radiator tube radius R = 5 cm. The calculation
has been made for m/k = 0.05 for two values of the
photomultiplier quantum efficiency: €, = 0.01 and
€y = 0.05.

’g-‘ ¥ r—1 1
g | oi(pmyr)
7 V.
& »d
5 L
¢ pd
J L

e=a05 | /1 e
2 /

/] d
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FIG. 5. Probability of registration of a 5-electron by a dif-
ferential gas Cerenkov counter as a function of the pressure.

Expression (34) gives the most exact estimate of
the background produced by the 6-electrons. How-
ever, it is not convenient for rapid calculations. In
som? particular cases it is possible to obtain simpler
but approximate formulas. For example, in ERIPY
estimate is given for the ratio I(a)/I(6§,), where
I( @) is the intensity of the Cerenkov radiation of the
6 electron entering into the sensitive region of the
optical system of the DGC, and I(6,) is the intensity
of the Cerenkov radiation of the particle to which the
DGC is tuned (see Fig. 18 for the diagram of the
counter). Only a narrow angle interval was consid-
ered for the emission of §-electrons, the angle be-
tween generatrix AF of the cone and the particle
trajectory being in the interval from 6; to 6, (see
Fig. 4), that is, A¢ ~ A6.

Assuming that all the angles 6,, 0,, 6, and a are
small, o > 6, and A0= 0, — 6, < B,, we get

20, AO

I(@) a2
a(a—0)

T(6) no2
and
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W {a—0p) A8 =2loC (o — 6p) AB. (39)

This approximation is justified for the given counter
construction, where the angle to which the optical
system is tuned is close to the maximum angle of the
Cerenkov radiation. Expressions (35) do not depend
on the energy and on the mass of the incident parti-
cle.

Since the counter efficiency depends on the sensi-
tivity threshold of the electronic apparatus, it is ob-
vious that the higher the threshold, the less probable
is the registration of ‘‘harmful’’ particles by means
of 6-electrons.

B2. A charged particle with velocity such that it
should not be registered by the DGC can enter into a
nuclear interaction in the walls or the gas of the coun-
ter and be registered as a result. In view of the in-
sufficient information on the angular and energy dis-
tributions of the secondary particles, and also in
view of the complexity of the calculation, we shall at-
tempt only to obtain the order of magnitude of the
background resulting from nuclear interactions, and
the character of its dependence on the energy of the
primary particle.

If the energy of the incident particle is sufficiently
high, then several secondary particles may be pro-
duced as a result of the nuclear interaction, and it is
known that their angular distribution has a maximum
in the forward direction. We shall assume that, with
probability close to unity, one of the produced parti-
cles has a velocity to which the differential counter
is tuned. In this case the probability &, of recording
the nuclear interaction is determined by the proba-
bility with which one of the secondary particles will
be recorded by the other counters to which the DGC
is connected for coincidence. We can assume ap-
proximately that &), is determined by the relation

Eor =0 (0) AL, (36)

where %g-( 0) is the distribution of the secondary

particles at an angle 0° in the laboratory system,
and AQ—solid angle of the telescope in which the
DGC is connected. We shall write for the distribu-
tion of the secondary particles

maik2x

dN — d
G O =m 5 Or=—55

aQ

where m—average multiplicity of the secondary par-

ticles,%%x( 0)—differential cross section of the
cross section of the elastic scattering at angle 0°,
o¢—total cross section of interaction of the primary
particles, and x—thickness of the counter (nucleons
per cm?). Under these assumptions, the DGC back-
ground due to the nuclear interactions will increase
quadratically with increasing particle momentum.
Estimates show that when the particle momentum is
~10 BeV/c we have &p, ~ 1075,

B3. Multiple scattering of the ‘‘harmful?’’ particle
through large angles can be a source of false DGC
counts. The distribution of the intensity of Cerenkov
radiation at large scattering angles, as well as for
small angles, was obtained by Dedrik (8] Estimates
show, however, that the background due to this effect
can be neglected.

B4. When light passes through a medium, scatter-
ing connected with the density fluctuations—local
condensations and rarefactions of the molecular
system—occurs.

The intensity of light Ig(£) scattered per unit
solid angle in a direction £ on passing a path 1
through the medium is given by the Rayleigh formula
(see, for example, 1))

(n—1)?

N, sin?g/,, (37)

Is @ =200
where I, is the total intensity of the incident light,
N, is the number of molecules per em?®. The total
intensity Ig of the scattered light is obtained by in-
tegrating (37) over the entire solid angle:

1673 (n—1)2

Is= l

3 ——N‘——]o. (38)

Let us estimate yg—the fraction of the Cerenkov
light of the ‘‘harmful’’ particle entering as a result
of scattering into the sensitivity region of the optical
system of the DGC. For simplicity we assume that
the scattered light has at the same total intensity not
the distribution given by (37) but an isotropic distri-
bution

= Is
I=55, (39)

Then

_Is AQ 163 I(n—1)2M 2nsin8, A8
Y= In T M M, G (40)

where AlLi—solid angle of the sensitive region of the
counter. In a counter of length ~1 meter with a
sensitivity region from 3 to 5°, filled with ethylene
to a pressure of 30 atm, we have yg ~ 1075,

The transition to isotropic distribution of the
scattered light leads to an overestimate in the region
of small scattering angles. From (37) and (39) we
see that I = Ig(£) up to an angle £, determined by
the condition sin’t, = Y%, that is, £y ~ 35°. Since
angles smaller than 35° are used in gas counters,
this approximation is correct for such counters.

From the foregoing estimate it is clear that the
contribution of the molecular scattering to the pro-
duction of the DGC background will be negligibly
small.

B5. The particle energy loss in collisions with
atomic electrons has a statistical character, and, as
shown L. D. Landau [12], the probability of a large
loss as a result of single collisions can be appreci-
able. Consequently, in a beam with a given momen-
tum k;, a harmful particle with mass m; < m; mov-
ing with velocity By > By can lose part of the energy
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in such a way that its new velocity B{ is equal to the
velocity of the particle 8, to which the DGC is
tuned. - It is obvious that this effect begins to mani-
fest itself starting with a value of particle momentum
k such that 8] =, is realized when the maximum
possible energy is transferred to the electron. From
the condition B{ = B, it follows that

g L

]‘0 ]‘o“ke max *

At large energies ke max ® Emax [see (20)]. Tak-
ing this into account, we find that the probability of
single collisions with large energy loss must be
taken into account for a beam of particles whose mo-
mentum satisfies the condition

Z Img mo

If m, is the mass of a K meson and m, is the mass
of a 7 meson, then k, = 14 BeV/c.

B6. The scintillation of the gas and bremsstrah-
lung of the primary particle will be considered in
Chapter 1II. Getting ahead of ourselves, we shall
state that these phenomena make a negligible contri-
bution to the production of the DGC background.

The foregoing analysis shows that of all the physi-
cal processes which lead to the production of a back-
ground in a DGC, the principal ones are collisions of
the primary particle with atomic electrons and nu-
clear interactions. The remaining processes are ap-
parently of purely academic interest for DGC.

C. Determination of the Mass and Momentum of Beam
Particles with the Aid of a DGC

If we know the angle at which the efficiency of
registration with a differential counter of particles of
a given mass has a maximum, then the momentum of
the particles of the beam can be readily determined:

= my
P e D Tewe, (41)
Here n, is the refractive index of the gas, corre-
sponding to the maximum efficiency of the DGC to a
particle with mass m;. When the angle is not known
exactly, the error in the determination of k may turn
out to be appreciable:

2X —yr g, 40, (42)

where Af—inaccuracy in the angle 6.

This difficulty can be circumvented if the beam
contains particles of different masses: pions, K-
mesons, protons. Knowing the dependence of the
counting efficiency of these particles on the gas den-
sity, we can derive relations analogous to (41) for
each maximum. Then, eliminating the angle from
two equations, we obtain

En? — men2
b= mgni—ming (43)
ni—n2
2 7

where n, and n, are the refractive indices at the

maxima of efficiency for the masses m; and m, re-
spectively. Here

Ak ngny Vol nf(mi—m}) o
k &% (n3—n})? ’
An—error in the determination of the refractive index
corresponding to the maximum efficiency.
If we eliminate the angle and momentum from
three relations of the type (41), we obtain a condition )
connecting the masses of the beam particles

my (rg— ) = mi (n — 1) + m} (rg — n3). (44)

From this we can determine the mass of one of
the particles, knowing the value of the two others.
For example, if m; and m, are the masses of a
pion and proton respectively, then by measuring the
refractive indices n; j 3 with accuracy Ang g g ~ 10-5,
we can determine the K-meson mass with an error
of ~1 MeV.

The dependence of the widths of the DGC efficiency
maxima on the gas density (that is, on n® — 1) en-
ables us to determine the variance of the momentum
distribution of the particles in the beam, that is, in
some sense, to solve the inverse of the problem
treated in Sec. A2. The variance of the efficiency
cf:(nz— 1) consists of the variance of the angular
resolution 02(6) and the variance of the momentum
distribution ¢?(k):

ot —1)=[ 2252 1% o*(0) + [‘l’(';';i]zoﬂ(k)., (45)

From (1) we have

a(—";e'_—i)=2n2tg9, —a—%)—z—an-—yiT.
Equations (45) for the two maxima of efficiency

yield

cost k8 njol (n}—1)—ndod (n—1)

4 nim}—nim?

o? (k) = (46)

For small angles 6 and for ny , close to unity we get

k8 0% (ni—1)—ok(ni—1) (47)

% [y .
4 mi—m}

a? (k) ~

II. THRESHOLD GAS CERENKOV COUNTERS (TGC)

As was already noted, the directivity property of
Cerenkov radiation does not play an important role
in TGC. In practice this is manifest in the fact that
counters of this type have optical systems with a con-
stant light-gathering efficiency in some rather broad
angle interval.

The dependence of the efficiency of registration
with a threshold counter of particles with definite
velocity B8, (or with definite mass m, in a beam of
particles with momentum k) on the gas density has
the form shown in Fig. 6. The density pt corre-
sponds to a ‘‘threshold’’ refractive index (4), which
can be expressed in the form (24). With increasing
density [on the basis of (6), (3), and (1)], the glow
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FIG. 6. Schematic form of the curve of the TGC efficiency
as a function of the gas density.

angle and the quantity of radiated light increase. Ac-
cordingly (if the optical system has constant light-
gathering efficiency, starting with 0°), the amount of
light incident on the photomultiplier increases, and
the counter efficiency approaches unity.

For a given amount of light produced by the
charged particle in the gas, the TGC efficiency de-
pends on many factors, which can be broken up into
three groups.

A. Apparatus factors:

1) coefficient of gathering of light by the optical
system; 2) quantum yield and gain of photomultiplier;
3) sensitivity of the electronic apparatus; 4) noise
pulses of the photomultiplier.

B. ‘“Beam’’ factors:

1) momentum scatter of the particles of given
mass my; 2) admixture of particles with different
masses.

C. Factors dependent on the medium:

1) Cerenkov radiation of 6-electrons; 2) brems-
strahlung of primary particles; 3) gas scintillation.

The efficiency of the TGC in the region p < p¢ is
due essentially to factors of the third group, which
are responsible for the production of the counter
background £. Part of the background is due also to
the presence in the beam of lighter particles, with
velocity 8 > By, and to random coincidences connected
with the photomultiplier noise.

Factors of the first and second groups determine
the dependence of the TGC efficiency on the gas
density in the region p > p;. Let us consider each
group in detail.

A. Apparatus Factors which Influence the Efficiency
of Threshold Counters

It is obvious that the efficiency of the counter de-
pends on the average number N of the photoelectrons
knocked out by the light from the photomultiplier
cathode. The average number of photoelectrons is
proportional to the intensity of the Cerenkov radia-
tion, to the light gathering coefficient 1 (6, I), and to
the quantum sensitivity of the photomultiplier cathode
E(A):

N= ZTCG.S S sin?0n (0, Iy e (M) A 2dA dl.
AL

(48)

If the dispersion of the medium and the deceleration
of the particles in it are small, so that the change in
the angle of radiation is insignificant, we can write
for glow angles at which the light gathering is con-
stant

N =Asin®h, (49)
where A = 21¢ ffn(l)s(}\)}\‘zdld)\ is a constant
LA
for each counter, determined by the light gathering
and the quantum sensitivity of the photomultiplier.
The probability of photoelectron production is de-
scribed by binomial distribution law, with a mean
value equal to the quantum sensitivity of the photo-
cathode € = (N/M), and with a variance €(1 — €)/M,
where N and M are the numbers of photoelectrons
and photons, respectively. We see therefore that the
distribution of the number of photoelectrons has a
mean value N = €M and a variance €(1 — €)M. Since
the quantum sensitivity is small, that is, €(1 — €)M
~ N, we can assume that the photoelectrons have a
Poisson distribution

— wN,—N
w(N, N)—:—«—Nl . (50)
The statistical distribution of the photoelectrons on
the photomultiplier cathode is transformed at its out-
put into a spectrum of pulses of different amplitudes,
the counter efficiency depending on the magnitude of
the amplitude. Denoting by P(N) the probability with
which the electronic apparatus records the pulses
corresponding to the knocking out of N electrons
from the cathode, and bearing in mind that P(0) = 0,
we write for the TGC efficiency

e= S Ww, )P ()
N=0

=1—W(0, N)—IéiW(N,ZV)[l—P(N)]. (51)

If we can set the threshold of the electronic apparatus
in such a way that it registers the pulses correspond-
ing to N electrons from the photomultiplier cathode
and does not register pulses corresponding to N — 1
electrons, then

P(N)Y=0 for N'gN—-1,
P(N)=1 for N'>=N.

Then it follows from (51) that

N-—-1 NN
= —e-N— N\ —— N
e=1-—e-N 2’ yice N
N=1

For the sensitivity of the electronic apparatus
corresponding to the knocking out from the photo-
cathode of one electron we have
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g=1—eN, (52)

for two electrons

go=1—e-N{1+N) etc. (53)

The spectrum of the pulses at the output of the
photomultiplier depends not only on the distribution
of the photoelectrons but also on the fluctuations of
the gain of the photomultiplier, which is determined
essentially by the fluctuations in the first stages (see
) p. 115). The spreading of the pulse spectrum due
to the fluctuations causes the probability of appear-
ance of a pulse at the output of the photomultiplier to
remain always finite. Therefore even if the electronic
apparatus has a zero threshold, P(N) is never ex-
actly equal to unity. Consequently, the statement that
the apparatus has a sensitivity of one photoelectron,
and in the use of relation (52) in this connection, is a
certain idealization. This idealization can be justified
if 1 — P(1) «< 1. The statements that the sensitivity
of the apparatus corresponds to 2, 3, etc., photoelec-
trons and the use of relations (53), etc., are apparently
even cruder approximations.

In the analysis that follows we shall assume that
the gains of the first stages are sufficiently large and
that the threshold of the electronic apparatus is suf-
ficiently low, so that the registration efficiency is

g=1—eN,
or

—~In(l—e¢)=N. (54)

Using (1) and (49), we express the average number of
the photoelectrons in terms of the refractive index
and the mass-to-momentum ratio of the particle:

N=4 [w—0—(3) ]~ 41w -—@-11. (55

Substituting (55) and (7) in (54), we obtain the con-
nection between the efficiency of the TGC and the gas
density

3AR

In(1—-e)==(e—er). (56)

B. Influence of the Beam Particle Velocity Distribu-
tion on the Form of the TGC Efficiency Curve

The velocity spectrum in a particle beam can be
due to two causes: the momentum scatter and the
presence of particles with different masses.

The velocity spectrum can either be continuous or
consist of individual lines of finite width.

Let the probability of the particle having a velocity
in the interval between B and B, dS be egual to
W(B)dB. Any velocity 8 can be set in correspond-
ence with a threshold refractive index or a function
of the refractive index.

B=rr=7%
Ty YVitA:
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where A¢=ni? — 1. The velocity distribution can be
transformed into a distribution that depends on A¢:

W (B) dp — W (A;) dAs.

Let us consider the case when the efficiency of the
TGC is determined by relation (52), where
N=(A/m?)(A - A;) ¥ A(A — At). Then the efficiency
of the counter as a function of A, in a particle beam
with distribution W(At), is equal to

A

e(A)= S W (Ag) [ — e AA~8D] dA,, (57)
0
Let the distribution W( A¢) be bounded:
A < At mins
W (A)=0 when
( ) [ A >Atmax-
In this case the A axis can be broken up into three

regions:

1) & < Apjp- Naturally, the Cerenkov-radiation
efficiency of the TGC is equal to zero in this region,
since the refractive index is below threshold for
particles with maximum velocity.

2) Apin < A < Amax. This region corresponds to
a case when the refractive index is still lower than
threshold for some particles. The counter efficiency
here is

4
£(A) = 3 W (Ag) [1 — e~ A4=20] dp,
Apin
A

=[t—cae-2 { W (ayda,,

Amin

(58)

where A is the mean of Amip and A.

3) A > Ay, that is, the refractive index is
larger than threshold for the slowest beam particles.
For this region

Am_ax
e(A)=1—e—4a S W (A;) e*2tdA, =1 —e-AG=5) (59)
Amin
where A is the mean of Ay and Amax.

From the €(A) curve in the third region we can
determine A and the average threshold refractive
index, and consequently also the particle velocity4:15],
extrapolating to zero the dependence of In(1 — €) on
A. The abscissa intercept gives the value of & = A,
and the slope will give the value of A.

In principle, if the €( A) curve is known with
sufficient accuracy and there are no other effects to
distort the form of the TGC efficiency curve, we can
find not only the average momentum, but the entire
velocity distribution of the particle. Differentiating
(57) twice with respect to A, we obtain

di 1 a3
W ()= g+ 2

A aAT (60)

C. Efficiency of TGC Below the Radiation Threshold

C1. Let us estimate the probability of registration
of a particle by means of 6-electrons. As for the
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DGC, we assume that this probability &p; is given
by (26)

Em.ax
£y, = S Y (E,E')P(E")dE’,

£y

where ¥( E, E'YdE’ is the probability of production
of a §-electron with energy between E’ and E’ + dE’
(22), and P(E’) is the probability of its registration
by the TGC (52). To estimate £, we made several
simplifying assumptions, which can only make this
quantity larger.

1) We assume that in (52)

N=A4"sin?0,

where A’, generally speaking, depends on the length
of the 6-electron path in the counter gas, but we as-
sume that it is constant.

2) The 6-electron velocity is assumed equal to
unity, and in this case E’ = k’. Then, taking (55) into
account, we get

N=a [A-(%)”J , A=ni_1.
3) We assume the maximum d&-electron energy to
be infinite.
4) We represent the §-electron registration
probability P(E’) in the form

(61)

P(E)=N 0N <1,
P(E)=1 N>1.
After these assumptions we write & in the form
E; o
o=\ ¥(E,E)NdE' + S W (E, E')dE’, (62)
E, Ey

where E; and E, are obtained from (61) for N =0
and N = 1, respectively. Since A « 1 in gas counters,
we get

E

Il %——me E1= ‘———-——me
va’ T (63)
‘/A—T
Substituting (22) and (61) in (62) and integrating within
the limits (63), we obtain:
1) When A’A <1, thatis, when N <1 and it is
necessary to take only the first integral

sb1=ZCQl§A'A3/2; (64)

2) when A’ =1

e =20al- A8 [1— (1= )" |5 (65)
3) when A’A >> 1 we find from (65), by expanding

in a series, that the probability of registration of a

particle by means of é-electrons in the TGC is

equal to the total probability of production of 6-

electrons with energies larger than threshold (25):
gy, = No = 2CQlA™2, (66)

The gas density p is proportional to A, so that we
have in (64)

805

gbl —~ A5/2’
and in the case of (66)

Ep, ™~ A"/z.
In the approximation considered, the efficiency of
registering a particle by means of §-electrons does
not depend on the momentum of the particle.

To illustrate the quality of the approximation made,
Fig. 7 shows two curves. Curve I is the probability
for recording the particles with a threshold counter
via the 6 electrons, as a function of A, calculated
by the approximate method developed above. Curve
II is calculated more accurately, using graphic inte-
gration and a method analogous to that developed in
Chapter I, with allowance for the path length and the
deceleration of the §-electron in the gas. Curve II
has been calculated for the registration of a particle
via 6-electrons near the threshold of its Cerenkov
radiation in the given medium. Both curves pertain
to a counter 70 cm long filled with ethylene. The
product of the photomultiplier quantum sensitivity by
the light gathering coefficient is assumed to be &n
= 0.02.

/:Z/ T T L

fb1

ATAERITT

b/

T T T T T

LS AR

e

Tyt
it pLLItl)

Y/

T
Lot L UL

b /i

T T T

L 1 Laital

/g-jlglllnl.

aq ar az

43 d=n3-7

FIG. 7. Probability of registration of a particle in a TGC
by means of §-electrons, as a function of the refractive index
of the gas. I-By formula (65); II-graphical integration.

It is seen from Fig. 7 that the approximate esti-
mate agrees very well with the exact calculation in
the region of small A and does not deviate much for
large A. The approximate estimate is apparently
sufficient for most practical cases of interest.

C2. The bremsstrahlung of heavy charged parti-
cles can be calculated by using [, If we make here
several simplifying assumptions, namely: (1) we
assume that the kinetic energy of the particle is
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Table I. Energy lost by a particle to Cerenkov radiation (column
2) and to scintillation (column 3) relative to the ionization losses.
Column 4—~ratio of the scintillation losses to Cerenkov losses.

dE dE
Gas 103 dx Cer/( ion 103 )sc/ ion (dx )sc/ dx )Cer
He 0.24 2.7 11
Ar 0.19 2.4 12.5
Air 0.27 4.1073 1.5.1072
N, 0.28 2 7.1
Kr 0,14 5 36
Xe | 0.14 8.7 62

large compared with the rust mass, (2) we neglect
screening of the charge of the nucleus by the external
electrons, and (3) we assume that the potential of the
nucleus is the same as that of a point charge at dis-
tances larger than the nuclear radius rp and is con-
stant for distances smaller than rp, where rp = 1.38
x 10713 A1/3cm, then we can readily obtain the number
of photons radiated by the particle with mass m
along a path of 1 g/ cm? in the wavelength interval

Ag—Agy:
[ (") =5 i

Ny=3"1WaNA1Z2% 16

Estimates show that for a pion with momentum .
~5 BeV/c in the wavelength interval 6000—3000 A
we have Np = 1.2% 1078 (Z = 6, A = 12). Since Np

~ 1/m?, for heavier particles this quantity will be
even smaller and consequently the contribution of the
bremsstrahlung to the formation of the TGC back-
ground can be neglected.

C3. Data relative to the scintillation of gases used
in Cerenkov counters are practically nonexistent. We
can therefore present only some general qualitative
data.

The number of photons I(w) emitted by the parti-
cle as the result.of scintillations on a path length !
in a frequency interval from w to w + dw is

I(m)do)dl--——~ B(0)do- Q—-—dl

where B(w)dw is the part of the particle energy
going into radiation. The average number of photo-
electrons produced on the photomultiplier cathode by
the total light of the scintillation is determined by the
equation

N=op S -hl—me(m)B(m)de %‘1(67 lydi,

where €(w) is the quantum yield of the photomulti-
plier. We see therefore that N is proportional to the
gas density. The proportionality coefficient depends
on the nature of the gas and on the counter character-
istics. Experiment has shown (see below) that the

TGC efficiency below the Cerenkov radiation threshold
is small, that is, the role of all the phenomena of the
third group, including scintillations, is insignificant.
Consequently N < 1. On the basis of (52) we can as-
sume that the TGC efficiency due to scintillations,

£hs3, is equal to N and is proportional to the gas
density

eps =N ~0. (67)

Naturally, when choosing a gas for Cerenkov
counters, the scintillating ability of the gas must be
taken into account. By way of illustration we can
present data on the scintillations of inert gases and
nitrogen, which is used in gas scintillation counters,
and also air. The data on the relative thht yield of
scintillations of air are borrowed from

Table I gives the particle energy losses to scintil-
lation and Cerenkov radiation relative to the ioniza-
tion losses. The Cerenkov losses are calculated for
particles radiating light into the limiting angle.

From an examination of Table I we see that the
relative energy losses to scintillation in inert gases
exceed the maximum losses to Cerenkov radiation.
It must be noted, however, that small impurities of
gases such as oxygen, hydrogen, carbon dioxide,
carbon monoxide, and a few others greatly suppress
the scintillation of the inert gases and nitrogen[”] .

D. Velocity Resolution of TGC

As was shown above, the efficiency of a threshold
counter at a given refractive index is determined by
the average number of photoelectrons (52). Let &g,
and &) be respectively the efficiencies of the counters
for particles with velocities B; and B,. It is obvious
that the ratio £;/€, will be maximal at a value of n
corresponding to the radiatic» threshold for the ve-
locity B,, that is,

n=ny,= (68)

1
B -
The velocity resolution of the TGC can be defined

as the difference of two velocities (48 = 8 — B;), for
which the average number of photoelectrons formed
on the photomultiplier cathode varies from 0 to 1.
This corresponds to a counter efficiency of 63%.
Then, using (1), (49), and (68), we obtain

N_1_A(1_W>,

hence

Ap 1
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From (69) we can obtain the mass resolution of the
TGC for particles having the same momentum, while
the momentum resolution for particles having a defi-
nite mass

Am o &k ik

m k 2Am? °

We see therefore that the resolution of the TGC de-
teriorates with the increasing particle energy.
Formulas (69) and (70) show also that the larger A,
that is, the smaller the fraction of the radiated light
is gathered by the optical system of the counter on
the photocathode, and the larger the quantum yield of
the photomultiplier employed, the better the resolu-
tion obtainable with the aid of the TGC.

(70)

1. OPTICS OF GAS-FILLED CERENKOV COUNTERS

The Cerenkov radiation of a particle moving paral-
lel to the axis of a certain optical system is equiva-
lent, as a light source, to a glowing ring located at
infinity. If we use to gather the Cerenkov light a lens
with focal distance f, then the linear diameter of the
image of this ring at the focal plane is determined by

do=2f tg B, (71)

where 6, is the angle of Cerenkov radiation of a par-
ticle whose velocity is By. Particles of different ve-
locity will produce a ring image with a different
diameter. By placing an annular diaphragm in a
suitable place, we can pass the light of the required
particle and block the light from the remaining parti-
cles.

From the structural point of view, the most suit-
able is the case when the annular image of the
registered particles is reduced to a point. To this
end, as can be seen from (71), it is necessary to use
a lens with a small focal distance. However, Marshall
has pointed out ELY that for a counter of finite radius
the quantity f cannot be made arbitrarily small and
thus gather the Cerenkov light into ring of small
diameter. The minimal focal distance, determined by
law of conservation of the angular momentum of the
photon relative to the optical axis of the system, is
given by the expression

fmin = rn cos g,

where r is the radius of the counter radiator.

The requirements imposed on the optical system
of threshold and differential counters are different.
In a TGC the optical system must ensure the gather-
ing by the photomultiplier cathode of the greater part
of the Cerenkov radiation emitted by the particle,
with the quality of the annular image being immaterial
in first approximation. In the DGC, where good
spatial separation of the annular image is necessary,
produced by particles of different velocities, the re-
quirements imposed on the optical system are quite
stringent.

The quality of the image is determined by the

aberrations of the optical system. The characteristics
and the aberrations of the system depend to a con-
siderable degree on the position and dimensions of

the entrance pupil. We recall that the entrance pupil
of an optical system is called the image of the aper-
ture diaphragm in the object space. ‘ ‘

The aperture diaphragm is the imagé in the object
space of the same diaphragm of the optical system,
the image of which is seen from the center of the ob-
ject at the smallest angle.

Von Dardel 1o has shown that the entrance pupil
of the optical system of a Cerenkov counter consist-
ing of a radiator of length ! and a lens is located in
the center of the radiator, and has a diameter

D:d+ltg9,

where d is the diameter of the particle beam. If the
aperture of the objective is smaller than the cross
section of the light beam incident on it, I must be
taken to mean a certain effective length

D
Legs =2—t£6_ »

where D, is the diameter of the aperture of the ob-
jective diaphragm. To improve the gathering of the
Cerenkov light, it is possible to use a cylindrical re-
flecting tube, the axis of which coincides with the
axis of the optical system. In this case the input
pupil is the end of the tube and its diameter is equal
to the diameter of the tube.

Let us stop to discuss monochromatic aberrations
of optical systems. In calculating centered systems
we use the theory of third-order aberrations (see,
for example,[zo‘m). In real optical systems, the
image of a point from object space has the form of a
scattering figure of complicated structure. The di-
mensions and form of this figure are determined by
five coefficients SI, ST, SIII, S1V, and Sy, called the
aberration coefficients. Usually one investigates the
scattering figures under the assumption that only one
of the coefficients is not equal to zero.

The coefficient Sy determines the so-called
spherical aberration. In the presence of spherical
aberration in the optical system, an image of a point
from object space has the form of a symmetrical
scattering circle, the radius py of which is deter-
mined by the expression

=5, (5)

Coma-aberration, which is determined by the coeffi-
cient Syy, is produced when a broad inclined beam of
rays leaving the object point outside the axis is asym-
metrical relative to the principal ray of the beam.
For the simplest case of meridional coma, that is,
asymmetry of a beam of rays lying in the meridional
plane (which is the plane passing through the object
point and the optical axis), the image of the point has
the form of a bright circle of small dimensions with
gradually broadening tail of considerably smaller

(72)
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brightness. The radial length of the tail of the coma
is 3pyr, and its maximum width is 2py7, where

=781 (%), (73)

and w is the angle of inclination of the light beam to
the optical axis.

Astigmatism and curvature-of-field aberrations
are determined by the coefficients Sy and Syy, each
of which is connected with the curvature of the focal
surface in the meridional and sagittal planes (which
is perpendicular to the meridional plane and crosses
it along a line passing through the object point and
the center of the system). If the focal surfaces in the
meridional and sagittal planes do not coincide, the
image of a point from the object plane has the form
of an ellipse, the axes a and b of which are given by
the formulas

4a=(S1v—Sur) (—?) o?,

4b = (Sty + St1) (é’) o (74)

The magnitude of the astigmatism is characterized
by the difference

2q —2b= ——Sux<7D—> w?. (75)

If there is no astigmatism, that is, 2a — 2b = 0, then
the image of the point will have, as a result of the
curvature of the focal plane, the form of a scattering
circle with radius pry, where

v =755 (2) . (76)
The last of the monochromatic aberrations, distor-
tion, causes the image of a point from object space
to also have the form of a point, but at a position dif-
ferent from that given by an ideal optical system.
The shift Al of the image of the point from the posi-
tion expected in accordance with Gaussian optics is
proportional to the cube of the angle of inclination of
the beam:

Al = Syed. (17)

In real optical systems, individual types of third-
order monochromatic aberrations are rarely en-
countered in pure form. In practice one observes a
combination of aberrations of several forms, on
which are superimposed aberrations of higher orders.
Usually the design of an optical system is based on
third-order aberration theory. The effect of higher-
order aberrations is taken into account on the basis
of an exact trigonometric calculation of the path of
the rays through the optical system with subsequent
subtraction of the third-order aberrations. For op-
tical systems of Cerenkov counters it is possible to
confine oneself in many cases to the calculation of
the third-order aberrations.

It is necessary to take into account here the fact
that for Cerenkov radiation the distortion and the
curvature of the field do not influence the quality of
the annular image, since distortion does not broaden
the annular image, but only changes its diameter,
while the broadening of the annular image due to
curvature of the field can be avoided by shifting the
image plane away from the Gaussian plane.

Let us consider the monochromatic aberrations of
single concave mirrors and single lenses, these being
the most frequently encountered optical systems in
Cerenkov counters.

For a centered mirror and object at infinity, the
third-order aberration coefficients are given by the
formula 2%

i4-b
SI='——(—2:~)*. Sn=—x(14*+b)+%,]

Sm=—SGE o1, Swv=1, (78)

_ 23 (14+b) 32

where b is the coefficient of deformation of the sur-
face (for a parabolic surface b = -1, for a spherical
surface b = 0), and x is the distance from the input
pupil to the top of the mirror.

It is seen from these formulas that the parabolic
mirror, unlike the spherical mirror, does not have
spherical aberration. Nonetheless, the mirrors
usually employed are spherical, since the technology
of their manufacture is much simpler than that of
parabolic mirrors. For the case when the input pupil
coincides with the top of the mirror, the formulas for
the aberration coefficients of a spherical mirror have
the very simple form

Sn=%’ Sir= —1,
Siv=1,

Sv=0.

i
Si=—7> (79)

Let us consider the aberrations of a positive thin
lens. For an object located at infinity, maximum
spherical aberration is produced by a doubly convex
lens with a surface radius of curvature ratio 6:1 and
turned with the more convex side to the object. In
practice, almost the same spherical aberration will
be possessed by a planoconvex lens with its convex sur-
face facing the object. For an object situated at in-
finity, and for an input pupil coinciding with the lens
itself, the aberration coefficients of a planoconvex
lens have the following value G2

Sr=214%4, Sp=—0.3, Syz=1,
Siy=0.6--07, Sy=0.

From a comparison with the aberration coefficients
of a spherical mirror (79) we can readily see that
for the same relative aperture (D/f) the spherical
aberration of the lens is more than eight times

(80)
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larger than the spherical aberration of the mirror,
whereas the coma, astigmatism, and the curvature

of the surface are practically the same for the mirror
and for the lens. It therefore appears that for Ceren-
kov counters with high velocity resolution it is ad-
vantageous to use spherical mirrors and not lenses.
The main advantage of mirrors is the absence of
chromatic aberration. The chromatic aberration of

a thin lens is given by the expression

D
Quire = 75, (81)

Here Ay and A, are the limits of the spectral inter-
vals transmitted by the optical system and A, is the
wavelength corresponding to the maximum transmis-
sion of the optical system, with v}, the coefficient
of dispersion:
7 (Ao)—1
VA= (A)—n (As)

Complex lens systems make it possible to com-
pensate to some degree for the dispersion of the
Cerenkov radiation.

For an estimate of the broadening of the maximum
of the intensity curve of the Cerenkov light, we can
assume that all the errors of the optical system are
additive:

v
o=§19i. (82)

Then the angular width of the annular image of the

Cerenkov radiation will be determined by the equation
Abyy ~ 2, (83)

where f is the focal distance of the optical system.

IV. GASES USED IN CERENKOV COUNTERS

A. Over-all Requirements and Attainment of
Prescribed Refractive Index Intervals

In gaseous media it is possible to obtain in theory
refractive indices with a wide range, from unity to
quantities characteristic of liquids, but the practical
realization entails great technical difficulties.

Most frequently there is no need for covering a
large refractive-index interval in specific problems,
so that it is possible to employ in the counters vari-
ous gases that satisfy in best fashion the conditions
of the particular experiment. All, however, should
satisfy some general requirements.

The main characteristic of the DGC is the velocity
resolution, determined by Eq. (5), from which it is
seen that in order to obtain the best resolution for a
given angle 6, that is, for a given n, it is necessary
to choose a gas such that A@ is minimal. From (11)
and (15) (where Ak, ~ p) we see that Af increases
with increasing density for a given refractive index.
Consequently, it is necessary to choose the gas with
the minimum p/(n — 1) ratio.

In addition to the velocity resolution, an important

characteristic of DGC and TGC is the background,
due essentially to the production of §-electrons.

Since their number increases, for a given refractive
index, with increasing Zp/A [see (29) and (65)], the
most suitable gas has the smallest ratio Zp/A(n -~ 1).

One of the methods of obtaining different intervals
of refractive indices is the variation of the gas
pressure at constant temperature. The use of high
pressures necessitates that the walls of the counter
be sufficiently thick. This leads to an additional de-
terioration of the resolution and to an increase in the
background of the counter. It is therefore necessary
to choose a gas in which it is possible to obtain a
given refractive index at lowest pressure.

On the basis of the foregoing considerations, a
large number of gases was considered, of which the
most suitable for the use in Cerenkov counters are
listed in Table II.

In compiling Table II, the density was determined
in most cases from the experimental data on the
compressibility of gases, taken from the sources
indicated in the last column. For some gases, in
view of the lack of experimental data, the density was
determined from the curves showing the dependence
of the compressibility coefficient on the reduced
pressures and temperatures (see [45’48]). For tenta-
tive calculations, Table II gives the values of the re-
fractive indices of several gases at 20°C and at 50
atm. It is seen from the table that under such condi-
tions it is possible to obtain a value of n in the in-
terval from 1.01 to 1.06.

In order to vary n in the interval n=1.1—1.2 at
not too high pressures, it is necessary to employ
gases at temperatures and pressures that are close
to critical. The latter statement can be obtained
from the following consideration U, we write the
Lorentz-Lorenz formula in the form

n?—1 4
ey =g Vi,

where N;—number of molecules in 1 cm® and a—
optical polarizability of the molecules. It is known
that a has the same order of magnitude as r3—the
cube of the linear dimensions of the molecule. If we
assume that a = r%, then at the critical point, where
s 1 M
Qer= o
(b is the volume correction to the Van der Waals
equation, equal according to kinetic energy to
41rNr3/33, where N is the Avogadro number), we
obtain

n2CI_~1 1_

nifa T 42

or ng, = 1.13—the refractive index of any substance
at the critical point. Of all the gases listed in Table
II, ethylene at 20°C and at 50 atm comes closest to
the critical point, so that it has the maximum refrac-
tive index.
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Table II. Gases for Cerenkov counters and their characteristics

. np—1)-104 An—1
Chemical| , o | Per Q (n-1)/p, 7 (n)—1)-102 .

Gas formula Tope °C kg/“::mz (76%?8; He, cm3/g ém"}g (20!’}(‘., 50 atm) Literature
Hydrogen 1, —240 13.2 1.39 1.55 1.55 0.628 4 p 52
Oxygen 0Oy —118 5.7 2.72 0.143 0.286 1.26 4 54
Air 2.926 0.226 1.35 4, " 37
Nitrogen N, —147 34.6 2.97 0.239 0.478 1.39 4, 50
Nitric oxide NO, —93 66.1 3.03 0.226 0.452 1.50 48, " 217218
Carbon monoxide co —140 35.6 3.34 0-269 0.538 1.54 49 " 33
Ammonia NI, 132 115 3.77 0.488 0.832 0.328 %), 8.46 kg/cm? | 44, 39
Methane CH, —82,1 | 47.3 4.41 0.614 0.983 2.29 50
Carbon dioxide €Oy 3.0 75.3 4.50 0.228 0.456 3.08 ¥, p 40
Freon-14 CF, —45.5 | 38.1 4.61 0.117 0.246 2.40 49, " 70
Nitrous oxide N,O 36.5 74.1 5.15 0.260 0.520 4,11 %), 49.4 atm @ " 917218
Acetylene C.H, 35.7| 63.7 6.10 0.521 0.965 4,80 %), 43.3 " au " 32
Hydrogen sulfide H,S 100 91.8 6.19 0.402 0.760 1.36 %), 18.4 kg/cm’® %, " 37
Sulfur dioxide S0, 158 80.4 6.60 0.225 0.450 0.221 %), 3,87 a, " 62
Ethylene CoH, 9.21 51.6 6.96 0.551 0.964 6.03 ! 59
Ethane CyHg 32.3 | 49.8 7.06 0.521 0.866 4.56%),38.5 " &, " 62
Freon-13 CClFyg 28.8 | 39.4 7.82%%) 0.156 0.326 4.00%),32.4 " s1, " 55
Sulfur hexafluoride SFg 7.85 0.120 0.251 49, :: 68
Propane CgHlg 96.8 | 43.4 10.05 0.503 0.850 0.897%), 8.50 ! s, 61
Freon-12 CCl, F 112 40.9 11.27% 0.204 0.422 0.646 %), 5.79 " 51, 40
Freon C-318 \ 115 27.6 12,85%%) 0.144 0.300 13
Chloroform C H(:l3 263 55.8 14,55 0.276 0.563 13
FC-75 sOF g 221 16.3 27.4%%) 0.148 0.308

*At the saturated vapor pressure indicated alongside.
**Obtained by calculation based on molecular refraction[11:1],

B. Determination of the Refractive Index of a Gas

We have seen that gas Cerenkov counters make it
possible to determine under suitable conditions the
velocity [see (5)], the momentum [see (43)] and the
mass [see (44)] of particles. To this end it is neces-
sary to know exactly the refractive index of the gas,
which can be measured experimentally or calculated
by the Lorentz-Lorenz formula, if we know the
molecular refraction and the density. For n close
to unity, the approximate formula (7) holds, in which
D does not depend on the density and its value for
several gases can be readily obtained %2 from the
known n — 1 and p, or can be calculated by using
the additivity of the molecular refractions.

The gas density is determined experimentally or
calculated with the aid of the equations of state. Most
gases used in Cerenkov counters differ greatly from
ideal. The constants of the equations of state (Van
der Waals, Beatty-Bridgman) can be found in [23:44-46]

The validity of the Lorentz-Lorenz formula for
the calculation of the refractive indices of poly-
atomic gases is, generally speaking, not obvious.
Consequently a comparison of n was made in B0 for
freon and for sulfur hexafluoride, obtained by the in-
terference method and calculated by Eq. (6). It is
seen from Figs. 8a and b that the agreement between
the results is satisfactory.

On the basis of (5), (43), and (44) we can estimate
that for an exact determination of the velocity, mo-

mentum, or mass it is necessary to know the refrac-
tive index with an error An/n < 10~%. In view of the
lack of exact data on the compressibility of gases and
on their molecular refractions, it is practically im-
possible to ensure such accuracy by computation.

There are two methods of measuring the refrac-
tive index of a gas: with the aid of an interferometer
and by determining the dielectric constant of a gas
with a capacitor. We shall not consider the first
method, referring those interested to the original
sources 55789 The idea of the second method con-
sists in the following. The formula for capacitance in
a medium is

C"—"SCo, (84)

where € is the dielectric constant of the medium and
C, is the rating of the given capacitor in vacuum
(where € = 1). For two wavelengths A, and A,, cor-
responding to radio frequencies and to the visible
region of the spectrum, we can write

e(M)—1 n? (Ag)—1

stk:;—i-z =4 o Ex2)+2 =Be,
where A and B are constants that do not depend on
the wavelength or the gas density. Dividing one equa-
tion by the other and putting A/B = G, we get

n—1=3(a2E3—1)",

from which we have, with account of (84),

=3 C—-GC
=3¢ Ct2C, *

n—1

(85)
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FIG. 8. Comparison of the refractive indices obtained by an
interferometer method with that calculated by the Lorentz-
Lorenz formula: a) For SF; b) for CCL,F,. The measurements
were made for the wavelength 5400 A. Abscissas—pressure
(atmospheres), second scale—density (g/1).

Formula (85) is used to monitor the variation of n as
a function of the gas pressure. The constant G can
be determined if the refractive index and the values
of the capacitances at one point are known.

If the capacitance is accurate to 1073 pF [47], then
for n = 1.01 and Cy ~ 100 pF the error in the de-
termination of the refractive index will not exceed
An/(n - 1) ~ 7 % 10~* provided the constant G is
known accurately.

C. Dispersion of Gases

Absolute measurements of the refractive index of
many gases entail great difficulties in the elimination
of various impurities. Consequently relative measure-
ments are usually made, in which the refractive in-
dices are compared for all wavelengths with some
standard values n(2;). The latter is determined
beforehand by averaging of a series of measurements
wherein the entire procedure, starting with the pro-
duction of the gas, is duplicated. Although the rela-
tive variation of the dispersion is measured with high
accuracy, the error in the absolute values of n is not
smaller than for the standard value.

The variation of n(A) in the visible and ultra-
violet regions has been obtained by the interference

method in P56 for many gases used in Cerenkov
counters. In these measurements n was compared
with the refractive index A = 5461 A and reduced to
0°C and 750 mm Hg. The experimental dependence
was approximated by formulas containing two con-

stants:
nz

—1 B
n?12 =445,

I
s

1
y
or four constants

1 _ 3 a1 Ay A,
y 2 n?i2

e vty ey (86)

In Table III are given the values of the constants of
formula (86). As can be seen from the next to the
last column, the accuracy of approximation, charac-
terized by the quantity

Ytheor” Yexpt max
Yexpt
is of the order of 0.01.

Using the data of Table IIl we can show that dis-
persion of the refractive index in the wavelength
region 2500—5500 A causes the velocity resolution
of the differential Cerenkov counters to be AB/B
~ 10741075 for all the gases under consideration.

-100%,

V. CONSTRUCTION OF GAS FILLED CERENKOV
COUNTERS

A. Threshold Gas Counters

The first gas filled Cerenkov counters were of the
threshold type. Following Ascoli and Balzanelly 5,6
and Barclay and Jelley '/, who worked with TGC at
atmospheric pressure, counters were constructed
with adjustable threshold of particle registration by
velocity.

Tollestrup and Wentzel L2 described a counter
used as a monitor for high-energy gamma quanta.
The counter consisted of a tube 1 meter long, covered
on the ends with thin flanges and filled with helium at
low pressure. A converter was placed in front of the
counter. The electrons produced in the converter
emitted in the gas Cerenkov light which was deflected
at the end of the tube by a plane mirror to a type 5819
photomultiplier. The monitor did not register indi-
vidual pulses; the intensity of the beam was deter-
mined from the current in the photomultiplier cathode.

Kinsey and Wentzel 26) ysed a gas counter as a
threshold detector for pions with energy ~3 BeV.

The counter was made in the form of a tube with a
parabolic mirror on the end, and the focus of which
was located a 1P21 photomultiplier. The tube was
filled with nitrogen at a pressure of several atmos-
pheres. The gas counter connected in a triple-coinci-
dence circuit with scintillation counters had a count-
ing efficiency close to 100% for pions with energy

500 MeV above threshold.

Lindenbaum and Yuan 27 have reported the con-
struction of a counter operating with carbon dioxide
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Table III. Values of the constants in the gas dispersion formulas
Region
Chem- egf ¢ Accu-| Lit-
Gas ical A1 Ag B By appli- |racy,| era-
for-~ cation, % ture
mula
1_3n2—1 _ A-107 Ay-1077 .
® = 3mage = Bo105T T Bytosn A in B
Methane CH, | 55813 626028 64.2208 | 181.2638 | 2300—5800] 0.01| S5
Ethane CoHg | 200355 (1229245 | 72,2582 259.6137|2300—5800| 0.01| 58
Ethylene CyH,| 63682 | 851205 | 38.8407|158.77712300—5800] 0.04| 85
Propane C3Hg| 437475 (2577230 | 77.7600504.7311 | 2300—5800, 0.01| 85
Ammonia 8656.0 | 442413.8] 25.8837]131.2110 | 2300—5460| 0.02| 56
Dry air 571119.0 |  8700.3) 211.146 | 49.5608 | 2379—5462 0.01| 57
Carbon dioxide | CO, | 742030.0 |  4852.0|172.409 | 45.0378 | 2379—5462| 0.01| s8¢
Carbon .
monoxide CO 49573.7 | 630960.0) 549,894 |266.076 |2379—5462| 0.01] 58
Nitrogen NO 3482.94) 485547.0] 26.9925176.1095 | 2300—5460| 0.02| 69
| oxide
Nitrogen i NO; | 39454.3 | 750084.0] 51.6712]179.3242| 2300—5460| 0.02| 59
dioxide
oy o3m—t_ A0 Ay 108
) yT 2w T B0 T Bypaoe e Ainem
Hydrogen H, (1428582 | 754494 |116,3126|568.6707|2300—5460| 0,01} 57
Nitrogen Ny 13953450 | 837340 |[152.294 |240.651 |2300—5460 0.01’ 60

at a pressure of 100-200 atm. Hanson and Moor 28
and Beneventano et al2% used gas counters ( T; and
T,), the construction of which is shown in Figs. 9
and 10, for the registration of cosmic muons. Both
counters operated with compressed CO, at ~ 10 atm.
They were triggered by a telescope of scintillation
and Geiger counters and had efficiencies ~86 and
~97%, respectively.

Among the counters which were sort of ‘‘pioneers”
in this field, we can also include the threshold gas
counter ( T3) described by Belyakov et al ELURPYY:|
which was used to investigate the possibility of ob-
taining high registration efficiency for particles and
neat separation of rare particles against a large back-
ground of others. Its construction is shown in Fig.

Plexiglas
BB steel

J -
02468
Inches

FIG. 9. The counter of Hanson and Moor. A, B, D, E—~
Telescopic counters, M—parabolic mirror; C—photomultiplier.

FIG. 10. Gas filled Cerenkov counter for the registration
of cosmic muons.

11a. The steel tube and the flanges of the counters
were designed for a pressure of 300 atm. Figure 11b
shows the efficiency of the counter against the ethy-
lene pressure, obtained with a 393-Mev pion beam.
The curve shows clearly the presence of two plateaus,
corresponding to the count of muons and pions.
Analogous curves were obtained when the counter was
filled with air. It is interesting to note that the back-
ground of the counter below the radiation threshold
was approximately four times higher when filled with
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FIG. 11. TGC designed for 300 atm (T,). a) Counter dia-
gram: 1—steel housing, 2—aluminized glass tube 3 cm in dia-
meter; 3—aluminized glass light pipe; 4—Plexiglas window;
5_FEU-33 photomultiplier. b) Efficiency of counter T, as a
function of the ethylene pressure. The curve was obtained in
a 393-MeV 7 +-meson beam. Py py—threshold pressures for
muons and pions, respectively.

air than with ethylene. The densities of these gases
have the same ratio. The magnitude of the background
itself (~0.5%) is apparently due essentially to §-
electrons, since rotation of the counter through 180°
reduced its efficiency to the level of random coinci-
dences (0.1%), that is, the scintillations of the gas
make a small contribution to the background.

Experience with the foregoing counters has shown
that once their construction is improved, threshold
gas filled Cerenkov counters can be used success-
fully as high efficiency detectors for high-energy
charged particles. Subsequent experiments have con-
firmed this. Figure 12a shows a TGC ( T;) used for
many years as a pion detector for energies above
3 BeVv 30J, The counter consists of a steel tube, in-
side of which is inserted a tube of polished aluminum,
a plane mirror deflecting the light through 90°, a
polished aluminum cone to improve the light collec-
tion, and a type RCA-C7232A photomultiplier.

To reduce the number of noise pulses, the photo-
multiplier was cooled with dry ice located in a foam-
plastic box outside the jacket of the photomultiplier.

Figure 12b shows the counter efficiency as a func-
tion of the gas pressure (SFg), obtained with a beam
of pions with momentum 3.0 £ 0.1 BeV/c. The varia-
tion of the type of the curves as a function of the
photomultiplier voltage offers evidence that the re-
cording apparatus has a threshold corresponding to
knocking out more than one photoelectron from the
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FIG. 12. a) Diagram of counter T,: 1—aluminum flange
1.9 cm thick; 2—polished aluminum reflector; 3—flat aluminum
mirror; 4—lucite window 1.9 cm thick; 5—magnetic screen of
photomultiplier; 6—C-7232A photomultiplier; 7—dry ice; 8—
polished aluminum cone. b) Efficiency of T, as a function of
the SF, pressure at different photomultiplier voltages, meas-
ured in a beam of 3.0 BeV/c pions.

photomultiplier cathode. The count below the thresh-
old is apparently due to the small fraction of the
electrons always present in the pion beam. The
smooth bend of the efficiency curve near the threshold
of radiation can be attributed to the momentum
scatter of the particles and to the muon admixture in
the beam.

Swanson and Masek [31], on the basis of the con-
struction just discussed, produced a large TGC ( Tj)
for operation in a 2-BeV/¢c muon beam (Fig. 13a).
The counter is 2.2 meters long and has a diameter
of 32 ¢cm. The difference from the construction in
lies in the fact that in order to improve the light
gathering, a Fresnel lens of 30 cm diameter and 30
cm focal distance is used to focus the light on the
RCA 7264 photomultiplier. The efficiency of the
counter for 2 BeV/c muons and pions is shown in
Fig. 13b as a function of the gas pressure ( CO,).

[30]
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FIG. 15. Diagram of the counter of Cork et al [*]. 1—
Aluminum windows 0.75 mm in diameter; 2—cylindrical mirror
of anodized aluminum 15 cm in diameter; 3—flat mirror of
anodized aluminum; 4~lucite lens 10 cm in diameter; 5—mag-
netic shield of photomultiplier; 6—6810-A photomultiplier.
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other counters to suppress the pion background.

The gas threshold counters ( Ty, Tg, Ty), shown in
Fig. 16a, b, and c, respectively, were used in the high-
i energy laboratory of the Joint Institute for Nuclear
a0 L) L Research.[14:5%54) A characteristic feature of these

¢ a0 4w &0 & 10 ; ‘ )
b) counters is the use of an inclined parabolic or
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FIG. 13. a) Diagram of counter T,: 1—thin aluminum
window; 2—holes for gas and for pressure measurement; 3—
Fresnel lens; 4—-mirror; 5—lucite window; 6—photomultiplier
in magnetic shield. b) Efficiency of counter to muons (solid
curve) and pions (dashed curve) with momentum 2 BeV/c as
a function of the CO, pressure. Abscissas—Counter pressure
above atmospheric (in pounds per square inch).

Babaev and Landsberg [*¥J described the counter
( Tg) shown in Fig. 14. This counter was tested with
a beam of 200-MeV/c electrons and had an efficiency
~100% at a freon-13 pressure of 5 atm. When the
counter was turned through 180°, its efficiency de-
creased to 1.4%.
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FIG. 16. a) Diagram of counter T,: 1-steel tube 10 cm in
diameter; 2—aluminum reflector; 3—parabolic mirror; 4—quartz
window; 5-FEU-33 photomultiplier. b—c) Diagrams of
counters T, and T,, respectively; 1—spherical mirror; 2—
aluminized conical reflector; 3—Plexiglas window; 4—photo-
multiplier; 5—magnetic shield of photomultiplier; 6—polished
aluminum tube; 7-tube (in counter T,—steel, in counter T —
duraluminum); 8—manometer; 9—flange.

FIG. 14. Diagram of the counter T,. 1-Housing of counter;
2—cylindrical mirror; 3—flat mirror; 4—lens; 5-FEU-24 photo-
multiplier, 6—magnetic shield of photomultiplier.
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spherical mirror in order to bring the photomulti-
plier out of the particle beam. This circumstance
greatly simplifies the construction of the counter and
its manufacture. Data on tests of these counters are
given in Fig. 17. All the counters operated with
electronic apparatus having a sensitivity correspond-
ing to the formation of 1 photoelectron on the photo-
multiplier cathode.
A giant threshold gas counter has been constructed
at CERN ¥ 1t is 10 meters long, with an inside
diameter 15 cm, and is intended for the separation of
pions, muons, and electrons up to 10 BeV energy.
The counter consists of a tube made up of individual
80 cm sections, at the end of which is secured a flat
mirror, deflecting the light. The light is gathered on
a type 56 UVP photomultiplier with the aid of a
parabolic mirror. The working medium is hydrogen,
which is the most convenient gas from the point of
view of minimum production of §-electrons, energy
loss to ionization, and multiple scattering. Under
ordinary conditions the gas pressure is set such as
to make the glow angle equal to 1°. In this case a
total of 140 photons is produced in the spectral re-
gion of the photomultiplier sensitivity. Tests have
shown that when tuned for registration of the electrons
the counter has a high efficiency (better than 99%)
and a high degree of suppression of the heavier parti-
cles.

Let us consider the resolution of the described
Cerenkov threshold counters. The form of the effi-
ciency curve of the TGC near threshold of Cerenkov
radiation is influenced by many various factors (ad-

mixture of muons in the electron beam, momentum
scatter of these particles, sensitivity of the electronic
apparatus), the contribution of which is difficult to
evaluate. Therefore the determination of the threshold
pressure and the use of formulas (69) and (70) for the
calculation of the TGC velocity resolution, mass
resolution, or momentum resolution is made very
difficult. On going farther from the threshold, the
effect of the foregoing influences becomes smoothed
out and the slope of the efficiency curve is determined
to an ever increasing degree by the constant A of the
counter. It can be assumed that an efficiency of 10%
all the near-threshold phenomena become already
smoothed out. Consequently, as a characteristic of
the resolution of a counter we can choose the section
of the efficiency curve of the TGC, plotted against
pressure, between the levels 10 and 90% BYJ since
the counter efficiency is a function of sin6, it is ob-
vious that the quantities

61:1—' —Biﬂ_i
3B } (87)

1
02=1—W,

where n; and n, are the refractive indices corre-

sponding to the efficiencies 90 and 10%, will also be
constants of the counter. To derive the momentum

resolving power of the counter, we write ¢y and c4
in the form

(88)
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From this we readily obtain the value of the momen-
tum k,, for which the counter has an efficiency 10%
if it has an efficiency of 90% for ky:

k2=

myky

_———

(89)

ek (K md) tmd
It is interesting to know which pairs of particles can
separate the counter in a beam with given momentum.
From (88) we readily obtain the kinetic energy T, of
a lighter particle mj, registered by a counter with
efficiency 90%, at which the heavier particle my will
be registered with efficiency of 10%:

1
—_— .
m? cy—ey

mi—m? 1—e

T1=m1: (90)

Tables IV and V give respectively the momentum and
mass resolutions of the discussed counters, calculated
by formulas (89) and (90). An examination of these
tables shows that the threshold counters have good
momentum resolution up to approximately 1.5 BeV/c.
At larger energies, the resolution deteriorates
rapidly, in accordance with formula (70).

It is seen from Table V that the TGC are good
devices for the separation of particles by masses in
a beam with given momentum. Therefore, to separate
the light particles, the gas pressure is set in such a
way that the heavier particles are below the radiation
threshold. The counter is connected for coincidence
with scintillation counters which register both light
and heavy particles. When separating heavy particles,
the TGC is connected for anticoincidence with the
scintillation counters.

The accuracy of separation of the lighter particle
depends on the ratio of the counter background to the
efficiency on the plateau. The curves obtained by
testing the foregoing counters show that the lowest
background obtained in ~ 0.002 of the efficiency at
the plateau (counter Ty). Nothing definite can be said
with respect to the background in the other counters,
since they were tested under conditions in which the
presence of high-energy electrons in the beam was
not excluded. The background can be reduced by
connecting two or more TGC for coincidence or by
raising the sensitivity threshold of the electronic

Table IV. Momentum resolution ob-
tained with threshold Cerenkov
counters
Ry — Ry = AR (90 = 10%) MeV/c
IR ENEYENERE

R(90%).
BeV/c

1000 | 800 | 2600| 510 | 930 | 1120 | 650
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Table V. Separation of different particle pairs by

means of Cerenkov threshold counters. The table

gives the kinetic energy of the lighter particle (in

BeV), at which the heavier particleis counted with
an efficiency of 10%

{ ters u—rn | X—K K—p n—p
T3 | 0.83 | 4.2 7.4 | 83
T, | 2.2 12 19 23
Ts | 2.75 | 15 25,5 29
Tg | 2.0 11 14.5 21
Ty | 2.5 13.3 23.5 26
Tg | 2.3 |12 21 24
Ty | 3.0 16 28 32

apparatus. The purity of separation of the heavy
particles is determined by the efficiency of the
counter at the plateau and by the efficiency of the
anticoincidence circuit. The test curves of counters
T5 and Tg show that the best experimentally obtained
efficiency is 0.996. This means that if the electronic
anticoincidence circuit has an efficiency of 100%, then
it is possible to suppress with the aid of such TGC
the lighter particles by a factor better than 250.

B. Differential Gas Counters

The family of differential counters is Iess numer-
ous than the family of threshold counters. This is
connected, first, with the fact that their construction
began more recently; second, because they constitute
rather complicated instruments with precision optics.

The first to be described was a DGC (D) in which
the refractive indices of the medium could be varied
over a wide range up to 1.277[13,39,33,31

The working medium in the counter was the
fluoro-organic compound perfluorotributyl tetrahy-
drofuran (CgOFy), the commercial designation of
which is FC-75. At normal pressure and temperature
this is a liquid with low critical pressure 16.3 atm
and a critical temperature 227.1°C. Refractive indices
of the order of 1.1—1.2 can be obtained in this sub-
stance at relatively low pressure, by heating it to
~2350°C. A schematic diagram of the counter is shown
in Fig. 18a. The housing of the counter, 25 ¢m long
and 10 cm in diameter, is made of copper; the inside
surface is polished and chrome plated. The exit
window for the particle beam is a hemispherical steel
membrane 1.6 mm thick. The exit window for the
light is made of quartz 2.5 ¢m thick. The counter is
heated by a heating element surrounding its housing.
To reduce the temperature and the pressure, a
larger or smaller amount of FC-75 is admitted into
the working volume. A spare reservoir of liquid is
kept at room temperature. The pressure in the sys-
tem is varied by varying the pressure of the nitrogen
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FIG. 18. a) Diagram showing construction
of the counter D,;: 1—hemispherical steel
entrance flange 1.6 mm thick; 2—nitrogen
fed under pressure; 3—FC-75 liquid; 4—
heater; 5~heating element; 6—capacitive
density transmitter; 7—quartz window; 8—
plane mirror; 9—quartz lenses; 10—conical
reflector; 11—black disc; 12-light-tight
box; 13—magnetic shield of photomultiplier;
14—C7267 photomultiplier, b) Efficiency of
counter D, for pions with momentum 2.6

BeV/c. On the abscissas—the lower scale

is the gas pressure (in pounds per square
inch) and the upper scale is the refractive

index.

over the liquid in the spare reservoir. In order for
the liquid FC-75 flowing from the reservoir not to
change the temperature of the medium in the counter,
a thermostat-controlled heater is connected in the
line to the instrument. The refractive index of the
medium is monitored by means of a capacitive
transducer.

The optical system of the counter is designed for
registration of particles which radiate light at an
angle ~ 10° to the direction of motion. It consists of
a deflecting plane mirror, a two-lens focusing ele-
ment corrected for coma and astigmatism, but having
small spherical and chromatic aberration, and a
diaphragm made up of a black moving disc and an
aluminized conical reflector. The calculated width of
the annular image in the focal plane has dimensions
of 1.08 mm or 0.3° due to spherical aberration and
3.1 mm or 0.8° due to chromatic aberration. The
lenses are made of quartz and lucite. The Cerenkov
light is registered with an RCA-C7267 photomulti-
plier with a quartz window.

Taking into account the spectral distribution of
the intensity of the Cerenkov radiation, the trans-
parency of the quartz, and the spectral sensitivity of
the photomultiplier, it can be shown (see [ﬂ, page 127)
that when a quartz optical system is used the number
of photons reaching the surface of the photocathode of
the photomultiplier is twice as large as when lucite
or glass optics are used.

Figure 18b shows the dependence of the count in
Dy on the gas pressure, obtained in a positive pion
beam with momentum 2.6 BeV/c. The diaphragm
transmitted in this case light emitted at angles 9.5—
10.5°. The efficiency of the counter at the maximum
(68%) is a function of the threshold of the electronic
apparatus. It can be increased, but the width of the
maximum and the ratio of the background to the ef-
ficiency at the maximum increases accordingly.

The velocity resolution of the counter, calculated
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from the half width of the efficiency curve at half
height, AB/B = Ah/h = 0.0025, is close to the theo-
retical value 0.002 given by formula (7). The back-
ground in the counter is 0.0015 at a pressure of 14
atm. With further increase in the pressure, the back-
ground increases, apparently because of an increase
in the number of d-electrons.

Counters of the construction described were used
in experiments on the study of the total cross sections
of the interaction of 7 and K* mesons with protons
[36.31)  pigure 19 shows an example of the separation
of K* mesons from a beam of particles with momen-
tum 2.6 BeV/c.

A large DGC(D,), constructed at CERN [33,%,38]
is designed to operate with ethylene up to a pressure
of 70 atm* (Fig. 20). The refractive index limits are
1.0—1.15 at 22°C. A capacitive transmitter, calibrate
with the aid of a refractometer, is provided for meas-
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FIG. 19. Mass spectrum obtained with the aid of D, in a
beam of particles with momentum 2.6 BeV/c. Abscissas—
pressure in pounds per square inch.

*See [**] concerning the use of a counter of similar construc-
tion.
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urement of the refractive index in the counter. The
gas temperature is maintained constant by water
circulating around the counter and connected with a
thermostat. The Cerenkov light is focused with a
centered spherical mirror with large focal distance
f = 130 cm and with small relative aperture ( D/f),
making it possible to obtain an annular image of high
quality. The most important are the coma and astig-
matism aberrations. For particles traveling at a
distance of 8 cm from the optical axis of the mirror
and emitting light at an angle 0.1 rad, the broadening
of the ring due to coma and astigmatism is 0.6% of
the radius of the annular image. The broadening of
the ring due to dispersion of the refractive index in
the region of the spectral sensitivity of the photo-
multiplier cathode is 1%.

To take the photomultiplier outside the particle
beam, a plane mirror is used, which deflects the
Cerenkov light onto an annular diaphragm. The dia-
phragm is located at the focus of the spherical
mirror. It has a stationary central part, correspond-
ing to a radiation angle of 0.1 rad, and a variable
annular slot, the angular width of which can be regu-~
lated from 0 to 0.03 rad. Since according to (71) the
given spherical mirror gives an annular image of 26
cm diameter, it is necessary to employ an additional
optical system, in the form of an aluminized elliptical
cone, in order to gather the light passing through the
diaphragm onto the cathode of the photomultiplier.

Light strikes the photomultiplier through a quartz
window 8 c¢m in diameter. The path length of the
particles that radiate useful light ( ~500 photons) is
1 meter. The total length of the counter is 2.5 meters
and the weight is 3 tons.

The theoretical resolution of the counter is shown
in Fig. 21. An example of a velocity spectrum, de-
termined with the aid of the given counter in a parti-
cle beam with momentum 18 BeV/c and with diverg-

e

K

FIG. 20. Differential counter D,. 1—-Alumi-
num windows; 2—spherical mirror; 3—to vacuum
pump; 4—gas inlet; S—refractor prism; 6—win-
dow for observation; 7—capacitive transmitter;
8—quartz window; 9—photomultiplier; 10—
variable annular diaphragm; 11—safety valve;
12—heating element.

7”.-; t T TTTHrT L |
g
7.
/S .
B4
N
X
<1
b ’ 1
L/ .
bri (AR RS N L1 N T -1
7 2 5 0w
p, BeV/c

FIG. 21. Factors determining the theoretical velocity reso-
lution of the counter D, as a function of the particle momen-
tum. 1-Multiple scattering, 2—momentum scatter (15%), 3—
dispersion (3%), 4—beam divergence (2 x 107 rad).

ence of 1.7 mrad is shown in Fig. 22. The =, K, and
p peaks are obtained with an annular diaphragm 2
mrad wide. The counter has then an efficiency of 72%
and a velocity resolution AB/8 = 3 x 10~%. The deu-
teron peak has been measured with an annular dia-
phragm 6 mrad wide. The counter efficiency was
then cilose to 100%. The background of the counter is
~107°%,

Cork et al B¥ constructed a counter D3, which
operates simultaneously with two angle intervals.
Figure 23a shows a section through this counter. The
radiating volume of gas (methane) is in the form of
a tube 12.7 cm in diameter and 70 cm long, covered
with thin aluminum flanges ~5 mm thick. The
Cerenkov light is deflected by 90° by a plane mirror
and two side arms, which contain lucite lenses which
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FIG. 22. Velocity spectrum of beam of positive 18 BeV/c
particles, obtained with the aid of the counter D,. The second
scale on the abscissa axis—variation of the capacitance with
variation of gas pressure in the counter.

focus the light into a ring on a quartz window. If the
angular radius of the ring is smaller than 6.6°, then
the light strikes a central photomultiplier through a
conical light pipe. If the angular radius is larger
than 7.4°, the light strikes four photomultipliers lo-
cated on a ring and operating in parallel. The theo-
retical velocity resolution of the counter is AS8/B

= 2% 1073,

Counter Dj was intended for a special purpose—to
separate K mesons with momenta from 1.5 to 5
BeV/c in a particle beam. It was operated in con-
junction with a system that separated K mesons by
time of flight. The operating circuit of the counter
differed with the particle momentum: mode A—mo-
mentum larger than 1.5BeV/c, mode B-—smaller
than 1.5 BeV/c. Mode A consists in the following.
The pressure in the counter is chosen such that the
K mesons produce a Cerenkov light at an angle 6°,
which is gathered by the central photomultiplier. The
Cerenkov radiation from the 7, u, and e particles
is focused on the outer ring. The signals from the
central photomultiplier are connected for coincidence
with the scintillation counters, while the signals from
the external photomultiplier are connected for anti-
coincidence. A typical curve illustrating the opera-
tion of the counter in this mode as a function of gas
pressure is shown in Fig. 23b. The particle momen-
tum is 2 BeV/c. At a pressure of 100 fo 400 psi, the
efficiency is close to unity and the counter registers
7, u, and e particles whose light reaches the central
photomultiplier. With increasing pressure, the light
shifts to the outer ring and the count decreases
sharply, to a value ~ 10-%, The K-meson glow
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FIG. 23. a) Diagram of counter D,: 1—aluminum hemi-
spherical window ~ 5§ mm; 2—6810 A photomultiplier; 3—mag-
netic shield of photomultiplier, 4—lucite light pipe; 5—quartz
window ~ 3.8 cm; 6—-plane aluminum mirror; 7-lucite lens. b)
Efficiency curves for K mesons at different operating modes
as a function of the methane pressure. Abscissas_pressure

(in psi).

threshold is 700 psi, and the count due to these
mesons reaches a maximum at ~ 1000 psi.

In mode B, the signal from the central photomul-
tiplier is not necessary. The counter operates only
for anticoincidence. So long as the Cerenkov light
does not strike the outer ring, the apparatus counts
the particles 7 + k + p (first plateau on Fig. 23b).
With increasing pressure, the particle glow angle in-
creases, and light on the outer photomultiplier is
produced first by the 7 mesons and then by the K
mesons. Accordingly, the electronic apparatus counts
k +p particles (second plateau) and P particles
(third plateau).

An interesting example of the use of gas Cerenkov
counters is described by Cook MU The counter, the
construction of which is shown in Fig. 24a and b, was
used in measurements of elastic K™p scattering in
anticoincidence, to exclude the secondary products of
K meson decay, which distort the angular distribution
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FIG. 24. Diagram of the counter of Cook et al. a) 1, 3—Mag-
netic shield of photomultiplier; 2—7046 photomultiplier; 4—
anodized aluminum reflector; b) 5—lucite lens; 6—aluminized
spherical mirror (~ 30 x 30 cm, radius of curvature ~ 71 cm).
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of the scattered K mesons. The pressure of the gas
( SFg) was adjusted such that the particles with ve-
locity 8 = 1 emitted light at an angle of 10°. The
Cerenkov radiation was focused by a spherical
mirror on a Plexiglas stopper, which simultaneously
served as a lens.

Figure 25 shows the diagram of a DGC (Dy) de-
veloped and employed at the High-Energy Laboratory
of the Joint Institute for Nuclear Research to separate
K mesons 14248 The Cerenkov radiation is produced
in a steel tube (10 cm diameter) filled with gas. The
tube is closed on both sides with stainless steel
flanges 1 mm thick. It was initially polished, but
during the tests it was found that the counter back-
ground depends strongly on the quality of the polish.
Therefore the internal surface of the counter was
subsequently covered with black velvet, so as not to
gather the reflected light. The counter length was
1.6 mm and the velvet coating decreased the effective
length of the counter to 0.7 meters.

The optical system of the counter Dy, consisting
of a spherical mirror with focal distance 40 cm, the
axis of which is inclined to the axis of the particle
beam, is set for registration of Cerenkov radiation
emitted at an angle of 4°.

The use of an inclined mirror in place of a centered
mirror has made it possible to remove the photo-

767

FIG. 25. a) Diagram of counter D, (dimen-
sions in millimeters): 1—steel tube; 2—counter
housing; 3, 4—removable flanges; 5-FEU-24

Atmospheric air

b)

photomultiplier; 6—Plexiglas window; 7~
flanges of stainless steel, 1 mm; 8—spherical
mirror (f = 40 cm). b) Efficiency of two counters
D, to 3.4-BeV/c pions as a function of the air
pressure: Y,—10 mm diaphragm; Y,~4 mm dia-
phragm, Y, + Y,—both counters connected for
coincidence.
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multiplier from the particle beam without the use of
additional plane mirrors. The aberrations of such a
mirror can be estimated by regarding it as part of
a larger mirror, the axis of which coincides with the
radiator axis. It is clear that the aberrations of the
part of the mirror will not exceed the aberrations of
the entire surface. The calculations show that the
most essential in this case is the spherical aberra-
tion, which amounts to 10% of the image radius.
Counting efficiency curves for two DGC of this
type, with annular diaphragms 10 and 4 mm wide,
plotted against the pressure of the air in them, are
shown in Fig. 25b. The inside diameter of the dia-
phragms is the same. The curves were obtained in a
T* meson beam with momentum 3.4 BeV/c. Since
few photons are produced in the counter (~ 150), in
order to obtain high counting efficiency it is neces-
sary to select carefully a photomultiplier with a high
quantum efficiency and with large gain. The elec-
tronic apparatus must be sensitive to pulses corre-
sponding to one photoelectron from the photomulti-
plier cathode. The efficiency for different type FEU-
24 photomultipliers ranged from 40 to 96%.
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FIG. 26. Mass spectrum obtained with the aid of type D,
counters in a beam of particles with momentum 4.75 BeV/c.
Abscissa—ethylene pressure in atmospheres. Ordinates—ratio
of the count of two D, to the scintillation monitor.

FIG. 27. Diagram of the construction of the D;
counter (dimensions in centimeters). 1—Duraluminum
housing; 2—spherical aluminized mirror; 3—parabolic
mirrors; 4-qulartz windows (diameter 40 mm, thickness
20 mm); 5-FEU-33 photomultipliers; 6—magnetic
screen; 7, 8—duraluminum flanges 5 mm thick.
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The background in the counters is approximately
2%. To separate K mesons ethylene was used in-
stead of air to reduce the background. The resolution
of the counter D, determined from curve Y, of Fig.
25b (AB/B ~ 107%) is close to the theoretical value
(7 x 1074y,

Figure 26 shows an example of the mass spectrum
of a beam of 4.75 BeV/c particles, obtained with the
aid of two DGC connected for coincidence. The back-
ground in the K~ meson peak amounts to less than
1% of the count in the maximum. The diagram of the
second differential counter Dj, obtained in the high-
energy laboratory of the Joint Institute of Nuclear
Research [64], is shown in Fig. 27. Its optical system
consists of a spherical mirror with focal distance
110 cm and two parabolic mirrors, in the focus of
which are located the cathodes of the photomulti-
pliers. The reflecting surface of the parabolic mir-
rors serves simultaneously as a diaphragm. The in-
ternal surface of the counter is covered with black
velvet. The working medium is ethylene. An experi-
mental curve of the counter efficiency of the function
of the glow angle of 7* mesons with momentum 3.14
BeV/c is shown in Fig. 28. The counter velocity
resolution calculated from this curve is AB/8 =5
x 1074
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FIG. 28. Registration efficiency of D, counter to 3.14-
BeV/c positive pions as a function of the glow angle.
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Thus, from among all the presently existing dif-
ferential-counter constructions, the best velocity
resolution AB/B8 = 3 X 10* is obtained in counter Dy,
and this quantity agrees with the theoretical estimate
determined essentially by the divergence of the beam.

The magnitude of the background in the DGC de-
pends strongly on the sensitivity of the electronic ap-
paratus. At high sensitivity &y ~ 10-2. In order to
obtain &, ~ 1073107, it is necessary to reduce the
sensitivity of the apparatus, to a level corresponding
to the production of dozens of photoelectrons on the
photomultiplier cathode. Naturally, this decreases
the efficiency of the counters at the maximum.

APPENDIX

Table I. Fraction of light (%) reflected at normal inci-
dence from an opaque metallic film deposited on polished

glass

Wave- Chemically s Wave- Chemically Sputtered
length, deposited puttered length, deposited puttére

i sl;lver aluminum A spilver aluminum
1863 — 70 3160 4.2 —
1886 22 — 3261 14.6 i
1936 — 87 3380 35.5 —
1990 — 87 3404 — 83
2000 25 — 3570 74.5 —
2144 — 84 3610 — 84
2196 — 86 3850 81.4 90
2265 — 86 4200 86.6 —
2313 —_ 91 4500 90.5 91
2510 34.1 é— 2288 gg() 92
2573 — G —_
2749 — 90 5500 92.7 —
2880 21.2 — 5800 94.8 —_
2981 —_ 90 6000 92.6 92
3050 9.1 —

Table V. Radiation length t, for different substances (see [37])

Table II. Fraction of light P (%) re-

flected from athin glass polished plate

atdifferent angles of incidence and for
different refractive indices.

Angle of
incidence P, 9%

g, deg

0 7.8 8.8 | 10.2 { 11.3 | 12.6

10 7.8 8.8 10.2 | 11.3 | 12.6

20 8.0 8.9110,3 | 11.4 | 12,7

30 8.0 9.1 10.4 | 11.4 | 12.8

40 8.6 9.8 11,4} 12.2| 13.4

50 10.4 | 11.6 ] 12,7 | 13.9 | 151

60 15.2 | 16.3 | 17.4 | 18.4 | 19.4

70 27.3 1 28.1)28.9(29.6| 30,2
Refractive

index 1,50 | 1.55 | 1.60 | 1.65 | 1.70

Table III. Transparency of fused quartz
in the ultraviolet region of the

spectrum 61 *
Trans- Trans-
A my parency, A, mi parency,
Yo ,' o
247 6.0 252 62.0
220 10.1 256 73.0
224 21,2 260 82.0
226 28.0 264 87.5
230 38.0 268 90.0
232 40.9 272 91.0
234 41.9 276 91.2 |
236 41.9 280 0.6
238 4.3 290 92.0
240 41.3 300 91.8
242 41.9 — ! —
244 43.5 350 | 92.0
248 50.9 400 } 92.4
*The transparency of optical glasses in the
txalztrg}ziolet region can be found in handbooks

Table IV. Refractive index of fused quartz as a
function of the wavelength of the light (density
of fused quartz p = 2.21 g/cm?)

]
n 1.4561 ‘ 1.4564 | 1.4568 ‘ 1.4585 &1.4619 1.4632
A A 6708 6563 5893 5461 5086 | 4861

s o o wem|  Egmeme L gew|  resris
Hydrogen 62.8 Silver 9.0
Helium 93.1 Todine 8.5
Lithium 83,3 Xenon 8.5
Beryllium 66.0 Tungsten 6.8
Boron 33.6 Lead R 6.4
Carbon 43.3 Air L.t 374
Nitrogen 38.6 N—75.52%

N 0—-23,14%
Oxygen 34.6 Ar—1.34%
Fluorine 33.4 Water 36.4
Sodium 28.2 Clay (kaolin) 28.8
Aluminum 24.3 Quartz, SiO, 27.4
Silicon 22,2 Limestone CaCO, 24,2
Chlorine 19.5
Argon 19.7 Rock salt NaCl 22.2
Potassium 17.4 Nuclear emulsion
Calcium 16.3 NIKFI-R 11.4
Iron 13.9
Copper 13.0 Plastic scintillator 44,
Bromine 11.5 LiH 80.0 s
Ethane CH, 46.1 Methyl fluoride CH,F| 38.05 o =3 (Pi/toi )1
Methane CH, 47,0 Nitrous oxide N,0 37.05 i
Propane C,H, 46.0 | Nitric oxide NO 36.4 | where pj—fraction by
Ethylene C,H, 45.3 Carbon monoxide CO | 37.9 weight and toj—radia-
Acetylene C,H, 44.4 Freon-13 CCIF, 27.5 tion length of the i-th

Freon-12 CCL,F, 24.0 component,

A A 4800 4047 3034 2044 1852

n 1.4636 } 1.4697 l 1.4869 ‘ 1.5339 ,1.5743

Table VI. Explosive concen-
trations of gases mixed with
air in local heating to ~500—

600°C
Gas Per cent in air
Hydrogen 4175
Ammonia 15.7--27.4
Acetylene 2.3+-82
Ethylene 3-+33.5
Methane 5+15
Ethane 314
Propane 2.1=-95




GAS FILLED CERENKOV COUNTERS 823

tJ. V. Jelley, Cerenkov Radiation and Its Applica-
tions, Pergamon, 1958.

2B. M. Bolotvskii, UFN 62(3), 201 (1957). UFN 75,
295 (1961), Soviet Phys. Uspekhi 4, 781 (1962).

3Matulenko, Savin, and Stavinskil, PTE no. 3, 44
(1956).

4Gilly, Leontic, Lundby, Meunier, Stroot, and
Szeptycka, PICIP (Proc. of Int. Conf. on Instrum.
for High-Energy Physics, Berkley, 1960.) p. 87.

5 Ascoli, Balzanelly, and Ascoli, Nuovo cimento
10, 1345 (1953).

8 Ascoli, Balzanelly, and Ascoli, Nuovo cimento
11, 562 (1954).

"Barclay and I. Jelley, Nuovo cimento 2, 27
(1955).

8K. G. Dedrik, Phys. Rev. 87, 891 (1952).

®B. B. Rossi and K. Greisen, Revs. Modern Phys.
13, 240 (1941).

B, Rossi, High Energy Particles, Prentice Hall,
1952. '

M. V. Vol’kenshtein, Molekulyarnaya optika
(Molecular Optics) Gostekhizdat, 1951.

21,. D. Landau, Phys. USSR 8, 201 (1944).

13 Hill, Caldwell, Frisch, Osborn, Ritson, and
Schluter, Rev. Sci. Instrum. 32, 11 (1961).

" Belyakov, Vovenko, Kirillov, Kulakov, Lyubimov,
Matulenko, and Savin, PTE no. 1, 32 (1961).

57, Koch, R. Lesueur, J. phys. radium 19, 103
(1958).

6 w. Hartman and F. Berngard, Photomultipliers
(Russ. Transl.) Gostekhizdat, 1961.

ITR. Nobles, Rev. Sci. Instrum. 27, 280 (1956).

181, Marshall, Phys. Rev. 86, 685 (1952).

¥ G. von Dardel, PICIP, p. 166.

20 G. G. Slyusarev, Geometricheskaya optika
(Geometrical Optics) AN SSSR, 1946.

1, D. Maksutov, Astronomicheskaya optika
(Astronomical Optics) Gostekhizdat, 1946.

22D. S. Volosov and M. V. Tsivkin, Teoriya i
raschet svetoopticheskikh sistem (Theory and Design
of Optical Systems), Iskusstvo, 1960.

23G. W. C. Kaye and T. H. Laby, Tables of Physical
and Chemical Constants, Longmans, 1948.

2 Intern. Critical Tables, vol. 7, McGraw-Hill, New
York, 1950, p. 6—11.

%A, Tollestrup and W. Wentzel, Phys. Rev. 93, 950
(1954).

% B. Kinsey and W. Wentzel, CERN Symposium,
Geneva, vol. 2, 1956, p. 68.

'3, Lindenbaum and L. C. L. Yuan, CERN Sym-
posium, Geneva, vol. 2, 1956, p. 68.

28R . Hanson and D. Moor, Nuovo cimento 4, 1558
(1956).

29 Beneventano, Agostino, Galtieri, Rispoli, Serra,
Nuovo cimento 12, 156 (1959).

30 7. Atkinson and V. Perez-Mendez, Rev. Sci.
Instrum. 30, 864 (1959).

31R. Swanson and G. Masek, Rev. Sci. Instrum. 32,
212 (1961). »

%2 A. Babev and L. Landsberg, PTE no 6, 40 (1960).

33G. Hutchinson, Prog. Nucl. Phys. 8, 195 (1960).

34 Baldwin, Burrowes, Caldwell, Hamilton, Hill,
Osborn and Ritson, IRE Trans. Nucl. Sci., No. 3—5,
117,(1958).

% Deutsch, Intern. Conf. on High-Energy Acceler.
and Instr., CERN, Geneva, 1959, p. 593.

% Burrowes, Caldwell, Frisch, Hill, Ritson,
Schluter, and Wahling, Phys. Rev. Letts. 2, 119 (1959).

8" Burrowes, Caldwell, Frisch, Hill, Ritson, and
Schulter, Phys. Rev. Letts. 2, 117 (1959).

%8 Mermod, Winter, Weber, and von Dardel, PICIP,
p. 172.

3 Cork, Keefe, and Wentzel, PICIP, p. 84.

40 Armenteros, Coombs, Cork, Lambertson, and
Wentzel, Phys. Rev. 119, 2068 (1960).

4 Cook, Cork, Hoang, Keefe, Kerth, Wentzel, and
Zipf, Phys. Rev. 123, 320 (1961).

221 ikhachev, Lyubimov, Stavinsky, and Chzan,
PICIP, p. 89.

43 yovenko, Kulakov, Likhachev, Lyubimov,
Matulenko, Savin, and Stavinskil, PTI*f, no 2, 50 (1962).

4 gpravochnik po razdeleniyu gazovkykh smesef
(Gas Mixture Separation Handbook), Goskhimizdat,
1953.

45 Spravochnik po glubokomu okhlazhdeniyu (Deep
Cooling Handbook), Gostekhizdat, 1947.

4 M. Vukalovich and I. Novikov, Uravneniya
sostoyaniya real’nykh gazov (Equations of State of
Real Gases), GEI, 1948.

E. Gauss, Rev. Sci. Instrum. 32, 164 (1960).

®p.F. Dodge, Chemical Engineering Thermody-
namics, McGraw Hill, 1944.

9 Teplofizicheskie svoistva veshchestva (Thermo-
physical Properties of Matter), (Handbook),
Gosenergoizdat, 1956.

5 Thermodinamic Function of Gases, Ed. by F. Din,
London, 1961.

511, Baldykes, Rabochie veshchestva kholodil’nykh
mashin (Working Media for Refrigerators),
Pishchepromizdat, 1952.

52 Bhiday, Jenninga, and Kalmus, Roc. Phys. Soc.
72, 973 (1958).

53 Vovenko, Golovanov, Kulakov, Matulenko, Lyubi-
mov, Savin, and Smirnov, JETP 42, 715 (1962), Soviet
Phys. JETP 15, 498 (1962).

% yovenko, Kulakov, Matulenko, Likhachev,
Lyubimov, Savin, Smirnov, Stadingkii, Chang, and
Hsu, Preprint, Joint Inst. Nuc. Res. D-721, 1961.

3. Friberg, J. Phys. Chem. 1326, 195 (1934).

5%S. Friberg, J. Phys. Chem. 41, 378 (1927).

513. Koch, Matem. Astr. och. Fys. 8, No. 20 (1912).

58 J. Koch, Matem. Astr. och. Fys. 10, No. 1 (1914).

¥ J. Koch, Matem. Astr. och. Fys. 18, No. 3 (1924).

603, Koch, Matem. Astr. och. Fys. 9, No. 6 (1913).



824 A. 8. VOVENKO et al.

fly. p, Pryanishnikov, Kvartsevoe steklo (Quartz 85 Lindenbaum, Love, Niederer, Ozaki, Russell, and
Glass) Promstroizdat, 1956. Yuan, Phys. Rev. Letts 7(5), 185 (1961).

82 Katalog tsvetnogo stekla (Colored Glass Catalog), 8 vivargent, von Dardel, Mermod, Weber, and
No. 106, Oborongiz, 1959. Winter, Preprint, CERN.

63 Supplement to Colored Glass Catalog No 106, 8 0. I. Dovzhenko and A. A. Pomanskil, JETP 45,
Oborongiz, 1959. 268 (1963), Soviet Phys. JETP 18, 187 (1964).

84 M. Likhachev and V. Stavinsky, Nucl. Instr. 20,
261 (1963). Translated by J. G. Adashko




