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1. Introduction

J.HE probe method is one of the main methods of de-
termining plasa parameters . This review is devoted
to an exposition of the contemporary status of the
probe techniques.

In the attempt to relate the properties of a plasma
with the elementary processes that occur in it calls
for knowledge of such parameters as the electron con-
centration n0 and the electron velocity distribution
fo(v) at a given point of the plasma. The probe method,
proposed by Langmuir in 1923, consists of placing an
electric probe, that is, a small spherical, cylindrical,
or plane electrode at a given location in the discharge,
and making the probe potential lower or higher than
the plasma potential u0 at this point. If the probe po-
tential differs from u0, then an electric field is pro-
duced in its surrounding space, accelerating charges
of one sign and repelling charges of the opposite sign.
In practice, probe measurements are made with the
circuit shown in Fig. 1. The probe is kept at varying
potentials relative to the cathode or the anode. The
total probe current i consists of the ion current ip
and the electron current i e .

The probe characteristic is the dependence of the
total probe current on the probe potential. Its general
form is shown in Fig. 2. The characteristic can be
qualitatively interpreted in the following manner: at a
large negative probe potential the entire probe current
is due to the positive ions (Section AB). When the
negative potential is decreased an electron current due

FIG. 1. Probe measurement circuit.

F

FIG. 2. General view of probe
characteristic.

to the fast electrons that pass through the retarding
field at the probe is superimposed on the ion current.
This superposition explains the rapid decrease of the
current and the subsequent reversal of its sign at po-
tentials that are even lower than the space potential*
(Section ВС). With decreasing negative probe potential,
the current increases rapidly, owing to the decrease in
the retarding field at the probe. Even in this region
(CD) the electron current greatly exceeds the ion cur-
rent. When the field retarding the electrons disappears
and turns into an accelerating field, the law governing

*The space potential is called the potential of that part of
the plasma in which the probe is situated.
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the increase of the electron current changes, and this
is manifest in a more or less sharp break in the char-
acteristic near the space potential (Section DE).

In order to find the plasma parameters, it is neces-
sary to calculate the type of probe characteristic, using
some simplified theoretical scheme, and to compare it
with the observed characteristic. The electron part is
employed (region CE of Fig. 2) in the overwhelming
majority of investigations. This is connected with the
simplicity of the theory E1·2^ for this part of the charac-
terist ic. There are many cases of practical importance,
however, in which the use of the electron part is impos-
sible or difficult. These include: (1) discharges at
large current densities, when it is difficult to obtain
the entire region CE, because of overheating of the
probe or because of the jumping of the discharge over
to the probe; (2) discharges in a magnetic field, when
the electron part is greatly distorted; (3) electrodeless
discharges. In such cases it is convenient to employ
the ion part of the characteristic AC of Fig. 2. The
advantages lie in the fact that the current flowing in
the probe is not large. The magnetic field influences
less this part of the characteristic, since both ions and
fast electrons move to the probe. Finally, in the two-
probe method, the ion part can be reproduced almost
completely.

The theory of the ion part of the characteristic was
first presented by Langmuir and Mott-Smitht1 '2^. The
theory was based on separating the plasma around the
probe into a quasineutral plasma and a space-charge
sheath, and assuming that there is no field at all in the
quasineutral plasma. This theory turned out to be in-
correct. Since the ion energy in the discharge is much
smaller than the electron energy, even a weak field
penetrating into the quasineutral region greatly dis-
torts the motion of the ions. This field causes the ions
to be gathered not by the surface of the probe or of the
sheath, but by a large-radius surface lying in the
quasineutral region. A correct theory of the ion satura-
tion current with a negative probe potential was first
presented by Bohm, Burhop, and M a s s e y ^ and devel-
oped further by others C*-«I1.

Attempts were made to determine the plasma pa-
rameters from the electron saturation region EF
(Fig. 2). However, the form of this part of the charac-
teristic is greatly influenced by reflections. These at-
tempts therefore were not continued. The electron
saturation region will not be considered in the present
review.

The properties of the plasma near the probe are
modified by the presence of the probe. However, at
sufficiently large distances from the probe the plasma
remains practically unperturbed. In the present r e -
view we consider the conditions under which the p r e s -
sure of the gas is sufficiently small, so that this d i s-
tance (an estimate of which will be presented below)
is much smaller than the mean free paths of the elec-
trons and ions. Then the collisions do not exert any

influence on the motion of the particles in the per-
turbed region.

At such pressures we can therefore disregard col-
lisions completely when calculating the probe current.

In Ch. I—HI we assume the unperturbed plasma to
be homogeneous, isotropic, and consisting of only elec-
trons and positive ions of one sort. Cases when these
conditions are violated are considered in Ch. IV.

1. ELECTRON PART OF PROBE CHARACTERISTIC

WITH NEGATIVE PROBE POTENTIAL

2. Theory

According to the Liouville theorem, the electron
distribution function does not change along the particle
trajectory in the space r, v. Therefore

/(r, v) = /(ro,vo), (1)

where r and ν are the coordinate and velocity of the
particle, which has at the initial instant a coordinate
r 0 and a velocity v0. We shall assume that the electron
distribution in the unperturbed region is isotropic and
homogeneous, so that the distribution function depends
only on the energy

/(ro, vo) = п./, ( = £ · ) .

Then according to (1) and the energy conservation law

we get

/(r.v) = i (2)

f(r, v) will be determined by formula (2) only for those
values of r and ν which the electron can attain as it
moves from the unperturbed region without crossing
the probe surface. At values of r and ν for which this
is impossible, f ( r ,v) will be distorted; in particular,
f(r, v) = 0 for these values in the case of a completely
absorbing probe. The region of these values of r and
ν will be called the region screened by the probe. To
find the limits of the screened region it is necessary,
generally speaking, to know the variation of the poten-
tial - V ( r ) and to solve completely the problem of m e -
chanical motion of the electron in this field. To deter-
mine whether the phase-space point r, ν is situated in
the screened region or not it is necessary to trace the
particle trajectory before it reaches this point. If this
preceding trajectory goes from the unperturbed region
to the point r without crossing the probe, then the
point r, ν belongs to the unscreened region. If the sur-
face of the probe is convex, the boundaries of the
screened region on the probe surface can be readily
obtained. It is obvious that at each point of the probe
surface the distribution of the electrons that have ve-
locities directed towards the probe will not be distorted
by the probe surface. The distribution of electrons
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with velocities directed away from the probe is dis-
torted. In other words, if i? is the angle between the
electron velocity vector on the probe surface and the
inward normal to the surface, then the distribution
function on the surface f(a,v) is determined by for-
mula (2) in which we must replace - V ( r ) by the probe
potential -V for ^ < 7r/2; the distribution function is
distorted when 4 > ж/2, and is in particular equal to
zero in the case of an absorbing probe. (If the surface
of the probe were not convex, then the part of the r e -
gion with & < π/2 would also be screened.) Thus, the
electron distribution function at the probe surface does
not depend on the variation of the potential between the
probe and the unperturbed plasma, but depends on the
probe potential. The same pertains to the electron
current density in the probe, which is determined by
the following expression (in the case of an absorbing
probe)

π/2 oo

je = 2ne { sin θ dO ^ и cos θ/ (α, y)v*du

= пепа \ tr/o [
Ь

g- + ev J dv,

or

2пеп0

'' rrfi
(3)

We note that the density of the electron current does
not depend in this case on the form of the probe, if the
probe surface is convex. Differentiating (3) twice with
respect to V, we obtain

dF2/e = ^2-"o/o(eV). (4)

This formula*, which makes it possible to determine
the electron velocity distribution function in the un-
perturbed region from the second derivative of the
electron current in the probe, was first used by Druy-
vesteint1 2-!. Methods of experimental determination of
the second derivative of the electron current will be
detailed later (Sec. 27). If the electrons have in the
unperturbed region a Maxwellian distribution, that is,

then

Formula (5) was first derived by Langmuir and is

*If we introduce in place of fo(e) an energy distribution
function ίά(ε) with the aid of the relation

then

w i d e l y u s e d i n p l a s m a r e s e a r c h . T h e f o r m of t h e p r o b e

c h a r a c t e r i s t i c f o r t h e c a s e w h e n t h e e l e c t r o n v e l o c i t i e s

h a v e a D r u y v e s t e i n d i s t r i b u t i o n w a s c a l c u l a t e d i n ^i3^.

W e n o t e i n c o n c l u s i o n t h a t i n t h e p r e s e n c e of e l a s t i c

r e f l e c t i o n of t h e e l e c t r o n s f r o m t h e p r o b e

π/2 со

/β = 2πβη0 { cos·» sin θ d* { v3 [I — a{v, 0)j/0 C!Y + eV') dv,
о о

where a(v,t?) —reflection coefficient. If f0 is a Max-
wellian function, then the expression for the probe cur-
rent density will differ from (5) only by a factor
(1 - ave A e ) , which does not depend on the probe
potential (the bar denotes averaging over the Max-
wellian distribution), so that reflection does not influ-
ence the determination of the temperature T e . Data on
the electron reflection coefficient are given for several
surfaces, for example, in ^ u ^.

3. Simplest Method of Processing the Characteristic

The total probe current on section CDEF (Fig. 2)
is practically all due to the electrons, and consequently
the characteristic is described by Eq. (3). The pres-
ence of a linear section in region CD on a semilog plot
of i vs. u, as in Fig. 3., is evidence that the electron
velocity distribution is Maxwellian [see (5)]. The tem-
perature of this distribution can then be determined
from the slope of the linear section, using the relation

r,· e da
A dlnl

e 1
' * tgif

(ψ — angle between the linear section and the abscissa
axis).

The location of the break in the semilog character-
istic determines the space potential u0. The current
corresponding to the space potential makes it possible
to find the electron concentration in the unperturbed
plasma [ see (5) with V = 0 ]

no = -=r-~- . (7)

I n f a c t , t h e b r e a k i n t h e c h a r a c t e r i s t i c i s n o t a b r u p t .

S t r i c t l y s p e a k i n g , t h e s p a c e p o t e n t i a l c o r r e s p o n d s t o

t h e s t a r t of t h e d e v i a t i o n of t h e c h a r a c t e r i s t i c f r o m

l i n e a r i t y . H o w e v e r , t h e c o n c e n t r a t i o n d e t e r m i n e d f r o m

t h e c u r r e n t a t t h i s p o i n t i s o v e r e s t i m a t e d b e c a u s e of

t h e r e f l e c t i o n of t h e e l e c t r o n s f r o m t h e p r o b e . T h e

m a g n i t u d e of t h i s r e f l e c t i o n c a n n o t b e r e a d i l y e s t i -

m a t e d , s i n c e t h e s t a t e of t h e p r o b e s u r f a c e i s u n k n o w n .

FIG. 3. Electron part of probe
characteristic in a semilog plot. The
deviation from linearity of the lower
part of the curve is due to the pres-
ence of the ion current.

(4a)

in\i\

-•m-tt

*tg = tan.



770 Yu. M. KAGAN a n d V. I . P E R E L '

Langmuir proposed a method for determining the space
potential from the point of intersection of sections CD
and EF (Fig. 3). One can hope that in this method ac-
count is taken, to some degree, of the influence of r e -
flection on the magnitude of the current at the space
potential, since the reflections have a smaller effect
on section EF, corresponding to the motion of the elec-
trons in the attracting field of the probe. On the other
hand, comparison of the electron concentrations in a
low-pressure mercury discharge, obtained by the probe
and microwave methods, shows in this case a some-
what better agreement when the space potential is de-
termined from the deviation of the characteristic from
linearity ^15^.

4. Elimination of the Influence of the Ion Current

In order to eliminate the ion current in those parts
of the characteristic where it is comparable with the
electron current (section ВС of Fig. 2), it is advisable
to use the first derivative of the probe current with r e -
spect to the potential ^ . The electron component could
be separated from the total current by extrapolating the
ion part from Sec. AB of Fig. 2. However, as will be
shown later, the law governing such extrapolation is
not known accurately, and the extrapolation e r r o r s can
greatly influence the value of the electron current in
the region ВС. Since the ion current changes much
more slowly than the electron current in region ВС
(the ions move in an attracting field, while the elec-
trons move in a retarding field), we get

di die
du '

For a Maxwellian distribution the plot of In (die/du)
against u is a straight line, the slope of which deter-
mines T e . This method of determining T e is impor-
tant when the region of the characteristic CD is dis -
torted or cannot be obtained (see Sec. 1).

II. ION PART OF PROBE CHARACTERISTIC WITH
NEGATIVE PROBE POTENTIAL

5. Concept of Limited Motion

At large negative probe potentials in region AB, the
total probe current is practically equal to the ion cur-
rent. Therefore, to use this part of the characteristic
it is necessary to develop a theory for the ion current
in a probe that attracts ions. We shall examine the
characteristic features of the motion in an attracting
field with a spherical probe as an example. In this
case the energy and momentum conservation laws
apply:

Mvl

j = rasinu,
(8)

FIG. 4. Motion of ion in the
attracting field of the probe.

vector and the direction of the velocity at the point r
(Fig. 4).

When the ion is at the minimum distance r = r m

from the probe, we have sin S- = 1. From (8) we obtain
the connection between the impact parameter and the
minimum distance between the ion and the probe:

(9)

In the case of repulsion, eV(r) < 0 and G ( r m ) is
a monotonically increasing function of r m . Therefore
for each value of the impact parameter there will exist
a minimum distance from the particle to the probe.
The particles reaching the probe are those for which
p 2 < G(a) . In the case of attraction eV(r) > 0 and
the function G(rm) is a product of two factors, of
which one increases with distance from the probe and
the other decreases. Two possibilities exist in this
case:

a) G ( r m ) is a monotonic increasing function of
I'm (Fig. 5a). Then, as in the case of repulsion, the
particles for which p 2 s G(a) will reach the probe.

b) G ( r m ) is a nonmonotonic function of r m . Let
the smallest value of this function be attained at the
point r/, which generally speaking depends on v 0

(Fig. 5, curve b). Then the impact parameters which
satisfy the condition p 2 < G(rj) will not correspond
to any minimum distance, that is, particles with such
impact parameters will strike the probe.* If r j > a,
then the role of the gathering surface will be assumed
not by the surface of the probe, but by a sphere of r a -
dius r j . We shall call this the case of limitation mo-
tion. As will be shown later, this is precisely the case
which is realized when an ion moves in the attracting
field of the probe.

In the case of a cylindrical probe, all the formulas
and derivations of this section remain valid if we de-
fine v 0 or ν as the projections of the velocity on a
plane perpendicular to the probe axis, and define r
and ρ as the corresponding distances in this plane.

FIG. 5. Plot of G(rm): a) in
the absence of limitation motion;
b) in the presence of limitation
motion.

1
1
1
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/
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where ρ —impact parameter, v0 —velocity of the ion
away from the probe, 4 —angle between the radius

•When p2 > G(r;) the minimum distance is determined by the
root of (9) corresponding to the section on which G(r) increases.
In fact, when r = rm the radial velocity component is f = 0. It is
furthermore easy to show that r = (Vo/2r̂ ) dG/dr when r = rm,
so that r > 0 on the section where the function G increases.
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a n d f o r a M a x w e l l i a n d i s t r i b u t i o n

6. Simplified Theory of Ion Part of the Characteristic face is the probe surface and щ = a. Then

Formulas for the ion current on the surface of the
sheath can be obtained by starting from simple physical
considerations'-3·6-'. The presence of limited motion
signifies that outside the sheath, in the quasineutral
region, there is a surface such that an ion reaching it
strikes the probe. Consequently, the ions strike the
surface of the sheath almost radially. The potential on
the surface of the layer V s should be of the order of
kT e , since the sheath begins where the electron con-
centration begins to drop noticeably. If the ion tem-
perature is smaller than the electron temperature,
then the velocity of the ion on the boundary of the
sheath is (2eVs/M)^2. The concentration of the ions
at the external boundary of the sheath is determined
from the condition of quasineutrality by the expression
n0 exp ( - e V s / k T e ) . * We thus have for the ion current
in the probe

(13)

In v i e w of t h e f a c t t h a t t h e l i m i t i n g m o t i o n a c t u a l l y

d o e s t a k e p l a c e ( s e e b e l o w ) , f o r m u l a (13) i s n o t c o r -

r e c t . H o w e v e r , f o r a r e a l c a l c u l a t i o n of t h e c u r r e n t b y

m e a n s of f o r m u l a (12) i t i s n e c e s s a r y t o k n o w t h e v a r i -

a t i o n of t h e p o t e n t i a l i n t h e v i c i n i t y of t h e p r o b e , w h i c h

s h o u l d d e t e r m i n e a l s o t h e d e p e n d e n c e of r j o n v 0 . E x -

p r e s s i o n (12) c a n b e s i m p l i f i e d b y r e p l a c i n g t h e r e a l

i o n d i s t r i b u t i o n o v e r t h e v e l o c i t i e s i n t h e u n p e r t u r b e d

p l a s m a b y a d i s t r i b u t i o n i n w h i c h a l l t h e i o n s h a v e

i d e n t i c a l e n e r g y e 0 , t h a t i s , b y p u t t i n g

Μ

ip = en0 e (10)

where S s — area of the sheath surface. Expression
(10) is not very sensitive to the choice of the value of
Bs, if it is of the order of kTe. We then obtain

ip = cn0 e (H)

where с — a coefficient of the order of unity, which
coincides with the formulas obtained below for the
spherical (c = 0.8) and cylindrical (c = 0.4) cases.
The foregoing instructive derivation enables us to
apply formula (11) to probes of different shapes, for
example to a finite plane probe, the rigorous calcula-
tion for which is difficult. The surface area of the
sheath Ss can be chosen in practice equal to the area
of the probe surface. In fact, S s increases somewhat
with the increasing of the potential, and therefore the
ion part of the characteristic does not have a strict
saturation.

A. SPHERICAL PROBE

7. General Expression for Ion Current

We consider ions which have away from the probe
velocities in the interval d3v0. The flux of such par-
ticles to the probe is equal to the flux through the area
πρ§ = 7rG(r;) (p 0 —maximum impact parameter, at
which the ion reaches the probe), that is, equal to
no7rG(rz) F 0 (v 0 )v 0 d 3 v 0 . The total current is obtained
by integrating this expression with respect to the ini-
tial velocities:

i p = 4jt2en0 ^ G (rt) Fo (vo) νζ dv0. (12)

I n t h e a b s e n c e of l i m i t i n g m o t i o n , t h e g a t h e r i n g s u r -

*We assume approximately that the electrons have a Boltzmann
distribution in the repelling field of the probe.

(14)

S u c h a s u b s t i t u t i o n i s v a l i d b e c a u s e t h e i o n s a r e i n a n

a c c e l e r a t i n g f i e l d . T h e r e i s a c e r t a i n v a g u e n e s s i n t h e

d e f i n i t i o n of e 0 , w h i c h s h o u l d b e e q u a l t o t h e a v e r a g e

i o n e n e r g y i n t h e u n p e r t u r b e d p l a s m a , a c c u r a t e t o a

f a c t o r of t h e o r d e r of u n i t y . A s w i l l b e s h o w n b e l o w ,

t h e i o n c u r r e n t i n t h e p r o b e i s p r a c t i c a l l y i n d e p e n d e n t

of e 0 if T p < T e . W i t h t h e a i d of (12) a n d (14) w e g e t

enovp
eV(ri) Mv-p

- = ε 0 . (15)
" p ~ 4 L i 4 ε0 J ' 2

F o r m u l a (15) d i f f e r s f r o m (13) i n t h a t t h e r o l e of t h e

p r o b e r a d i u s i s a s s u m e d b y t h e r o l e of t h e l i m i t a t i o n

s p h e r e .

8. C o n n e c t i o n B e t w e e n t h e Ion C o n c e n t r a t i o n in t h e

V ic in i ty of t h e P r o b e and t h e P o t e n t i a l D i s t r i b u t i o n

L e t u s f ind t h e c o n c e n t r a t i o n of t h e i o n s i n t h e v i c i n -

i t y of t h e p r o b e t h a t a t t r a c t s t h e m . T o t h i s e n d i t i s

n e c e s s a r y , i n a c c o r d a n c e w i t h S e c . 2, t o o b t a i n t h e

l i m i t s of t h e s c r e e n i n g r e g i o n . W e s h a l l a s s u m e t h a t

t h e f u n c t i o n G ( r ) h a s t h e f o r m s h o w n i n F i g . 5 b .

The phase-space point r, ν belongs to the un-
screened region, if the ion reaches it from the unper-
turbed plasma. To this end it is first necessary to
satisfy the condition

M = = ^ 2 . _ e F ( r ) > o . (i6)

When r > r j , the point r ,v will belong to the un-
screened region if S- > 7г/2, or else if i? < тг/2 but
p 2 > G(rjr). According to the conservation laws (8),
the last condition can be rewritten in the form

w h e r e

(17)

T h e i o n c a n a r r i v e a t t h e p o i n t r < r j f r o m t h e u n p e r -
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turbed region if i? > тг/2 and p 2 < G(rj), that is, if
t? > $i, where

v2^2 , щ > -γ . /-I OS
[its}

The ion concentration at a distance r from the probe
can thus be written in the form

where

(ϋ, r)= С

π

(ί), г) = \

r> rt

( 1 9 )

C a l c u l a t i o n o f t h e c o n c e n t r a t i o n n p ( r ) b y m e a n s o f

( 1 9 ) c a l l s f o r k n o w l e d g e o f t h e v a r i a t i o n o f t h e p o t e n t i a l

V ( r ) , s i n c e i t d e t e r m i n e s t h e f u n c t i o n r j ( v ) . E x p r e s -

s i o n ( 1 9 ) i s s i m p l i f i e d b y u s i n g a p p r o x i m a t i o n ( 1 4 ) . W e

t h e n o b t a i n f o r t h e i o n c o n c e n t r a t i o n t h e e x p r e s s i o n ^

( 2 0 )

w h e r e t h e p l u s s i g n i s t a k e n i f r > r j a n d t h e m i n u s

s i g n i f r < r £ .

W i t h o u t l i m i t a t i o n m o t i o n , r ; = a a n d t h e r e g i o n

r < r j w o u l d n o t e x i s t .

9 . D i s t r i b u t i o n o f t h e P o t e n t i a l i n t h e V i c i n i t y o f t h e

P r o b e ( Q u a s i n e u t r a l R e g i o n )

T h e d i s t r i b u t i o n o f t h e p o t e n t i a l i n t h e v i c i n i t y o f t h e

p r o b e s h o u l d b e o b t a i n e d f r o m t h e P o i s s o n e q u a t i o n . A t

d i s t a n c e s f r o m t h e p r o b e w h e r e e [ V ( a ) - V ( r ) ] » k T e ,

t h e c o n c e n t r a t i o n o f t h e e l e c t r o n s p r a c t i c a l l y c o i n c i d e

w i t h t h e B o l t z m a n n c o n c e n t r a t i o n ^

ί-ί
N e a r t h e p r o b e , w h e r e V ( r ) « V ( a ) w h e n e V ( a )

» k T e ( l a r g e n e g a t i v e p r o b e p o t e n t i a l s ) , t h e c o n c e n -

t r a t i o n o f t h e e l e c t r o n s b e c o m e s n e g l i g i b l y s m a l l c o m -

p a r e d w i t h t h e i o n c o n c e n t r a t i o n . T h e r e f o r e w e c a n

r e p l a c e n e i n t h e P o i s s o n e q u a t i o n b y t h e B o l t z m a n n

d i s t r i b u t i o n , f o r a l l r . T h e i o n c o n c e n t r a t i o n i s d e -

t e r m i n e d b y ( 2 0 ) . W e i n t r o d u c e d i m e n s i o n l e s s v a r i -

a b l e s . T h e n t h e P o i s s o n e q u a t i o n t a k e s t h e f o r m

( 2 1 )

A t d i s t a n c e s e x c e e d i n g s e v e r a l D e b y e r a d i i f r o m

t h e p r o b e , w e c a n n e g l e c t t h e l e f t h a l f o f ( 2 1 ) . I n o t h e r

w o r d s , a t s u c h d i s t a n c e s t h e p l a s m a c a n b e r e g a r d e d

a s q u a s i n e u t r a l . T h e q u a s i n e u t r a l i t y c o n d i t i o n i s

( 2 3 )

T o d e t e r m i n e t h e p o t e n t i a l o f t h e l i m i t a t i o n s p h e r e

щ, we put χ = 1 and η = щ in (23); we then get

for small γ (the electrons are " h o t t e r " than the ions),
as is the case in low-pressure cold plasmas, we obtain

Лг = 3у. (25)

Thus, in this case the potential of the limitation sphere
is of the order of the energy of the ions in the unper-
turbed plasma. A plot of щ against γ is shown in
Fig. 6.

ΰ,25

FIG. 6. i7s(y) (1) and ι

r 7O у

) (2) (spherical probe).

To find the distribution of the potential in the quasi-
neutrality region it is convenient to solve (23) with r e -
spect to χ

(26)

The general character of the potential, obtained
from this equation, can be seen from Fig. 7.* The part
of the curve represented by the dashed line has no
physical meaning. When χ < x s , (26) has no solution.
This shows that in this region the quasineutrality con-
dition is certainly not applicable. We can assume ap-
proximately χ = Xs on the boundary between the region
of quasineutrality and the region of the space-charge

*It follows from (26) that

where

is a monotonic function of the potential and consequently of the
distance from the probe. It is seen therefore that G(r) has one
minimum for f = 1/2 (that is, on the limitation sphere). Thus, in
the quasineutrality region the assumed form of the function G(r)
is justified.
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FIG. 7. Schematic variation of
the potential in the quasineutrality
region.

sheath ^ . To find the limit of the layer x s and the
potential η3 on the sheath layer boundary, it is nec-
essary to find the maximum of the right half of (26).
We obtain for η 3 the equation

( 2 7>

The dependence of η 8 and x s

Figs. 6 and 8. For small γ

TIS = 0 . 5 , a n d а ; в = 1

on γ is shown in

(28)

The potential on the sheath for all values of γ is of
the order of the electron energy in the unperturbed
plasma. If the electrons are hotter than the ions, then
the radius of the sheath is several times smaller than
the radius of the limitation sphere.

W

0.75

0.5
ar Ю у

FIG. 8. Radius of sheath as a function of the parameter у for

a spherical probe.

In view of the fact that the point χ = x s can be only
approximately assumed to be the boundary of the
sheath, and in fact the boundary of the sheath lies at
χ > Xs, it is advantageous to check the conditions
under which quasineutrality is attained on the limita-
tion sphere. The quasineutrality condition is

4

The concentration difference np — n e can be estimated
by substituting in a left half of the Poisson equation (21)
the solution obtained from (23). Then the condition of
quasineutrality on the limitation sphere assumes the
form

(29)

of the probe. In the most frequently encountered case
of small condition (30) is usually satisfied.

10. Region of Space Charge Sheath

Inside the sheath, the potential increases rapidly on
approaching the probe and the concentration of the
electrons and the ions decreases, the electron concen-
tration decreasing much more rapidly than the ion con-
centration. Therefore the charge density has a maxi-
mum at some distance r p from the center of the probe.
The distribution of the potential, of the concentrations
n p and n e , and the charge density are shown schemat-
ically in Fig. 9. This type of distribution is confirmed
by numerical calculation Μ . The value of rp can be
estimated from the following considerations.

FIG. 9. Schematic distribution of the potential, of the concen-
tration of charge particles, and the charge density in the region
of the sheath.

We use the relation

dx '

dq
dx
dQ/дц

(31)

In the region between r s and rp the concentration in-
creases and dp/dx > 0. According to (22) Эр/Эх < О.
If the potential increases monotonically, as is con-
firmed by numerical calculations, then drj/dx > 0, and
consequently in this region, which we shall call, fol-
lowing WenzlM, the reflection region, we should have
the inequality

dQ
3η-

Υ

e - i > 0.

It f o l l o w s t h e r e f o r e t h a t

w h e r e

^

In the case when γ « 1, Eq. (29) goes over into the in- As γ — Ο we have
equality

S 1_ V О

"•«I. (30)

For estimates we can take in place of r s the radius We can expect a large drj/dx at χ = x p if the probe po-
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tent ia l i s sufficiently l a rge , and the value of ( x s / x p ) 2

approaches its upper limit ψ (γ). Comparison with
numerical calculations (see Sec. 11) confirms the
correctness of this assumption. The value of η at
which the maximum is reached in formula (32) can
be regarded as the potential ηρ on the inner boundary
on the reflection region. As у —• 0, η ρ —• 1.5.

For χ < Xp, there occurs an ion-layer region, in
which we can neglect the concentration of the electrons
compared with the concentration of the ions. In addi-
tion, we can assume in this region that the ions travel
normally to the surface of the probe, that is, щ/у » 1.
Under these conditions, the Poisson equation (21) as-
sumes the form

- f e y ι d χ*άΆ_γΊ ^ " γ
^rtj x"-'dx dx Αχ2 γ Ά

(33)

The assumption that the ions move normally to the
probe is well satisfied even on the outer boundary of
the ion layer (for γ « 1). For large y, the ions on
the outer boundary of the ion layer move almost iso-
tropically, but if the probe potential is large compared
with the ion temperature, the condition for normal mo-
tion is established almost immediately beyond the
boundary of the ion layer.

Equation (33) coincides with the Langmuir equation
for the potential distribution in a spherical capacitor
with allowance for space charge. Langmuir and
Blodgett'-16^ solved this equation for the case when
the ions are emitted by the outer sphere, under con-
ditions wherein the potential and the field are equal
to zero on the sphere. This solution can be used if the
probe potential is large compared with the potential on
the layer boundary. This solution leads to the well-
known "three-halves" law, which in our notation has
the form

1 + -
16 (34)

where p 2 ( r p / a ) are functions tabulated in

11. Form of Probe Characteristic

Formula (15) can be written in the form

iP = inr'p ena γ -jji α (γ), (35)

0.7

05

0.3

"naxW

"о ' г зу

FIG. 10. am a x(y) and amia(y) (spherical probe).

where

The maximum and minimum values of a(y) c o r r e -
sponding to the maximum and minimum values of
( x s /xp ) 2 are shown in Fig. 10. The considerations
advanced in Sec. 10 show that at sufficiently large
negative probe potentials it is necessary to choose for
a(y) its maximum value. For y — 0 , a m ax(Y) =
= 0.82.* To determine the current to the probe it is
necessary to find the radius of the ion layer Гр. This
can be done by using Eq. (34), which is best rewritten
in the usual form of the " three-halves" law:

(36)

Formulas (35) and (36) enable us, after eliminating
, to determine the form of the probe characteristic:

(37)

where

ч' = ё.Г-^У

kTe
Μ

The c h a r a c t e r i s t i c c a l c u l a t e d by f o r m u l a (37) i s s h o w n

i n F i g . 1 1 . T h e s a m e f i gure s h o w s for c o m p a r i s o n t h e

r e s u l t s of n u m e r i c a l c a l c u l a t i o n s Cie,ii,n]_ ^ e c h o s e

for a(y) i t s m a x i m u m v a l u e . It i s s e e n f r o m the f i g-

u r e that t h e a p p r o x i m a t e t h e o r y a g r e e s s p l e n d i d l y w i t h

t h e r e s u l t s of the n u m e r i c a l c a l c u l a t i o n s . S o m e d e v i a -

t i o n s b e g i n t o s h o w up on ly at s m a l l p r o b e p o t e n t i a l s .

ro ЮО 1}

FIG. 11 . Ion part of the character is t ic (spher ical probe).

Solid curve — calculat ion by formula (37); points — numerical

solut ion of the P o i s s o n equation:

О - у = O.lt"], · - У = Ot10-"] (ip = i'p, η = η ').

In the region of very small potentials (not shown in the
figure), when the thickness of the sheath is small com-

1The value a(0) = 1 was used in [6] as an estimate. A
value <z(0) = 0.43 was obtained in [']. This value coincides with
amin(0) and is obtained when the reflecting layer is neglected.
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pared with the radius of the probe, better agreement
with the numerical calculations is obtained from for-
mula (37) in which the minimum value is taken for a.

12. Determination of the Plasma Parameters from the
Ion Part of the Characteristic

To determine the concentration of the charged par-
ticles n0 it is necessary to determine the probe cur-
rent at a sufficiently large negative probe potential V,
when the electron current certainly does not come into
play, so that i = ip. From the given values of ip and
V we determine with the aid of (36) the value of
p 2 ( r p / a ) , while the tables of the function p 2(x)^ 1 6^
yield r p . Formula (35) is then used to determine the
concentration n0. The ion temperature is usually un-
known, so that there is some uncertainty in the value
of α (γ) . However, under usual discharge conditions
γ < 0.1, and a m a x ( y ) , as can be seen from Fig. 10,
lies between 0.8 and 0.6. To determine the electron
temperature which is contained in (35), it is necessary
to employ the usual method, provided it is possible to
plot the part of the electronic characteristic, on which
the influence of the ion current is insignificant. Other-
wise it becomes necessary to use the method of differ-
entiation, described in Sec. 4, in order to eliminate the
influence of the ion current. It is possible then to em-
ploy part ВС of the characteristic (see Fig. 2) near
the "floating" probe potential.

Formula (36) contains the potential of the plasma
relative to the probe V. If direct determination of the
plasma potential (see Sec. 3) is difficult, an estimate
is afforded by the fact that at the point of the ion part
of the characteristic where the total probe current is
equal to zero (point N on Fig. 2) we have i e = ip,
that is, according to (5) and (35)

( 3 8 )

where r p t is the radius of the layer at the point N.
Assuming approximately r p t = a, we can obtain Vt

(the potential of the plasma relative to the point N) and
by the same token the potential of the plasma relative
to the probe at any point of the characteristic. If V
» Vj, then the inaccuracy in the determination of Vj
influences little the calculated value of the concentra-
tion. It follows from (38) that eVj/kTe depends little
on the conditions in the plasma and depends essentially
on the type of gas. This circumstance, and also the
predicted value of eVt / k T e have been confirmed ex-
perimentally C63. In Μ there is also a comparison of
the charged-particle concentrations obtained from the
electron and ion parts of the characteristic for a dis-
charge in mercury vapor.

B. CYLINDRICAL PROBE

13. Ion Current and Concentration of Charge Particles

If v0 is the maximum impact parameter, at which
an ion with initial velocity v0 reaches the probe, then
the ion current per unit length of the probe is given by
the formula

\ PoFo (v0) v\ dv0. (39)

According to Sec. 5, p2, = G(rj) . We assume for s im-
plicity that the ions away from the probe have identical
energy of motion in the plane perpendicular to the
probe axis, that is, we assume

Then we get

(40)

(41)

We proceed to determine the ion concentration. Rea-
soning as in Sec. 8 for the cylindrical case, and using
approximation (40), we obtain

for

Щ for r<r. j . j

(42)

In (42) it is necessary to take the value of the arc-
sine between zero and π/2 in both cases. If there is
no limitation motion, then rj_, = a and there exist no
regions r < r£. In the region r < rj the Poisson equa-
tion has in dimensionless variables the form

h V 1 d dn
J t i i dx

(43)

(44)

For the electron concentration we assume a Boltz-
mann distribution, for the same reason as in the case
of the spherical probe ^ .

14. Distribution of Potential in Quasineutral Region
and Current in the Probe

The quasineutrality condition for the region r < r L
has in dimensionless variables the form

(45)

Putting χ = 1 and η = η^, we obtain the potential
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for the limiting cylinder

η, = In 2 = 0.69.

Let us solve Eq. (45) with respect to x:

— sin

(46)

(47)

At some value of TJS, the function in the right half
of (47) has a maximum. This means that when χ < x s

the assumption of quasineutrality is known not to be
valid. To find x s we have the equation

= 2πγ. (48)

The dependence of ?7S and x s on γ is given in Fig.
12. As γ —' 0 we have

• 0.99, z s - ^ 0 , 9 2 . (49)

We note that for a cylindrical probe the limitation
surface lies closer to the surface of the layer than for
a spherical probe. The condition of quasineutrality on
the limiting cylinder can be obtained in analogy with
the spherical probe (in this case we can assume
vi 3 r s ) :

О.75

FIG. 12. xs(y) and ηΒ(γ) (cylindrical probe).

1 5 . R e g i o n of S p a c e - c h a r g e Sheath

R e a s o n i n g a s i n t h e c a s e of a s p h e r i c a l p r o b e

(Sec. 10) we arrive at the conclusion that 9ρ/9η > 0
up to the maximum of the charge density. Using for-
mula (44), we obtain the inequality which must be sat-
isfied by the cylinder radius corresponding to the max-
imum charge density:

φ (γ) = max •! ———

W h e n y = 0

П (50)

-} =lAp(0) =
This value is attained when η = ηρ = 1.8.

In the ion-layer region we can neglect for χ < Xp

*tg = tan.

the concentration of the electrons and replace the arc-
sine in the ion concentration by the argument, putting
η/γ » 1. This is equivalent to assuming that the ions
move normally to the probe inside the cylinder x p .
When γ « 1 such an assumption leads to an e r ror of
15% in the concentration on the surface Xp.

Under these assumptions, the Poisson equation in-
side the ion layer assumes the form

\ r ι J x dx' dx У η
(51)

Equation (50) coincides with Langmuir's equation
for a cylindrical capacitor. A solution of this equation
for the case when the ions are emitted by the external
cylinder was given in the paper by Langmuir and
Blodgett [ 1 63. This solution ("three-halves" law) can
be used also under the same assumptions as in the case
of the spherical probe.

16. Form of Probe Characteristic and Its Processing

Formula (41) can be written in the form

ip = 2 r a r p n 0 | / ^ a ' ( Y ) , (52)

where

a'(Y)=

The maximum and minimum values of α'(γ) are
given in Fig. 13. As in the case of the spherical probe,
at sufficiently large negative probe potentials it is nec-
essary to use a m a x ( y ) .

/ r

/y/

FIG. 13. a^
г г 3 у

(y) and tx'min(y) (cylindrical probe).

When γ = 0 we have aniax(y) = 0.37. To determine
the radius of the ionic layer we use the "three-halves"
law:

/"_£_ vV2

(53)

After eliminating r p from (52) and (53), we obtain
the form of the probe characteristic

(54)

where
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, __eV_ Γ ft2 I
~ kTe\ a*al (γ) J кте

The characteristic calculated by formula (54) is
shown in Fig. 14. The characteristic is processed in
the same way as in the case of a spherical probe (see
Sec. 12). The roles of formulas (35) and (36) are now
assumed by (52) and (53). When γ < 0.1 we have
« т а х ( т ) ~ 0.4. Tables of the functions /3 2 (r p /a) are
contained in t1G>18^. The plasma potential relative to
the isolated probe is obtained from the same consid-
erations as for the spherical probe:

(55)

In C8>193 there is a detailed comparison of the con-
centrations of the charged particles, the electron tem-
peratures, and the space potentials obtained by proc-
essing the electronic and ionic parts of the character-
istic for discharges in mercury vapor Μ and in a r -
gon E19^. The agreement should be regarded as good.*

shown in Fig. 15. If the probes are identical and the
plasma homogeneous, then the characteristic is sym-
metrical with respect to the point where the current
vanishes. Δ is equal in magnitude to the potential dif-
ference between the portions of the plasma in which the
probes are located. Obviously, the currents flowing in
the probes should be identical in magnitude and oppo-
site in sign. Therefore the potential of the more posi-
tive probe can be only slightly higher than the potential
of the floating probe, owing to the steep increase of the
electron current with increasing probe potential. When
the difference in potential between the probes is large
(regions AB and CD of Fig. 15), practically the entire
potential difference is equal to the potential of the
more negative probe (relative to the floating probe).
Then practically the entire current in the negative
probe is due to ions. Thus, if we align those points of
the two-probe and single-probe characteristics in
which the current in the circuit is equal to zero (points
N of Figs. 2 and 15), then these characteristics coin-
cide in the far ion parts (AB).

7O 7DO

FIG. 14. Ion part of the characteristic. Cylindrical probe.
Calculation by formula (54).

Ш. THE METHOD OF TWO PROBES

17. Principles of the Method

In those cases when there is no electrode with spe-
cified potential in the discharge gap (decaying plasma,
high-frequency discharge) direct use of the single-
probe method is impossible. One way of overcoming
this difficulty is to use the method of two probes'-20"23-',
which consists in the following: two identical probes
are introduced into the discharge gap and the current
in the probe circuit is measured as a function of the
potential difference between the probes. The approxi-
mate form of the resultant probe characteristic is

*We note, however, that too high a coefficient of (52) was used
inW, thus reducing the concentration in the ion part by a factor
of 2.5, so that the space potential for the electron part was de-
termined from the deviation from linearity, and not from the cros-
sing of the asymptotes, and the electron concentration was under-
estimated. Int1'] the concentration in the ion part was calculated
by using (52) with the correct coefficient, but no account was
taken of the space-charge thickness.

A/I

FIG. 15. Schematic form of two-probe characteristic.

The form of the characteristics in the region ВС
can be obtained by using the fact that the probe cur-
rents are equal in magnitude:

eV~
= ioe

 hT°-ip(V), (56)

(57)

where v' and v" are the potentials of the plasma re la-
tive to the first and second probes, and i(u) is the
current in the two-probe circuit. For the electron we
use formula (5). If we eliminate V and V" from (56)
and (57), we obtain the equation of the characteristic
i (u) . For this purpose it is necessary to know the de-
pendence of the ion current on the probe potential. If
we assume the ion current to be independent of the po-
tential, then we obtain for the characteristic an equa-
tion in the form C2°]

(58)'

This expression agrees with the form of the charac-
teristic in the region ВС. At large u it leads to satu-
ration, this being the consequence of failure to take

*th = tanh.
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into account the dependence of the ion current on the
potential.*

18. Determination of the Plasma Parameters from
the Two-probe Characteristic

Several methods were proposed to determine the
electron temperature T e ^ 2 1 · 2 0 ^ . The simplest method
uses the slope of the two-probe characteristic at the
point where u = Δ. We shall assume that the probes
and the plasma sections adjacent to them are identical.
Differentiating (56) with respect to u and putting u = Δ,
and consequently V = V = Vi, making use of the fact
that at the point u = Δ we have as a result of (57) and
the equivalence of the probes the condition

dV
du '

dV"
du 2 "

and recognizing that when u = Δ the electron current
is equal to the ion current, we get

(59)

From (59) we can determine the electron tempera-
ture by measuring the slope of the characteristic at
u = Δ. The ion current and its derivative at the poten-
tial of the isolated probe can be determined by extrapo-
lation from the large potentials, at which the ion cur-
rent coincides with the total current in the two-probe
circuit, and

dV du

The extrapolation method should be based on the form
of the dependence of the probe ion current on the probe
potential relative to the plasma. As follows from Sees.
11 and 16, this dependence is complicated and has a
different form for different discharge parameters.
Therefore it is convenient to use (59) in practice in
those cases when the slope of the remote parts of the
two-probe characteristic is small compared with the
slope at the point where the current is equal to zero.
In this case the quantity (dip/dV)yi can be neglected,
and the ip(Vj) depends little on the method of extrapo-
lation, and can be obtained for example by linear ex-
trapolation, t

In the case when the characteristic is not symmet-
rical, which may be the consequence of the inequality

*The form of the characteristic was obtained inM under the
assumption that the ion current in the probe depends linearly on
the probe potential.

tMore complicated extrapolation methods were proposed in
many paperst20'24]. These postulated in fact a linear dependence
of the probe ion current on the probe potential relative to the
plasma. Starting from this dependence, the authors found the
form of the two-probe characteristic and the corresponding ex-
trapolation method. The quantity (dip/dV)vi was determined in
this case from the slope of the remote part of the two-probe
characteristic.

of the probes or of the charged-particle concentrations
around the probes, (59) cannot be used. In this case
(56) is replaced by

i(u) = i"oe
 kTli — ip (60)

We obtain from this a formula in place of (59) for
the case of an asymmetrical c h a r a c t e r i s t i c ^ :

di di"p
w!+we

lv) f

All the quantities in the right half of (61) are taken
for the values of the potential at which the current in
the two-probe circuit is equal to zero. As in the case
of identical probe, it is convenient to use (61) in p r a c -
tice when the slopes of the remote parts of the char-
acteristics are small compared with the slope at the
point N. In this case (61) assumes the form

ip ip
Z

di\- (62)

Another method of finding the electron temperature
consists in the following E203.

Using (57) and (60) we get

In (63)

where

ip, ip, and ie are obtained from the two-probe charac-
teristic, as shown in Fig. 16 (we note that in this
method the ion current must be extrapolated). If we
plot the left half of (63) as a function of u, we obtain
the electron temperature from the slope of the result-
ant line, and knowing T e we can determine the con-
centration of the electrons by using the already men-
tioned equality of the ion parts of the two-probe and
single-probe characteristics, provided the two are
aligned at the point N. The method described in Sees.
11 and 16 can be used.

The method proposed in t 2 0 " 2 2 ^ for determining the
concentrations is incorrect, since it is based on the
Langmuir theory for the ion current. Frequently com-
parisons of the two-probe method with the single-probe
methodE23>26«2?] ( i n the case when the latter is applica-
ble) and with microwave methods C28>29] have shown
good agreement between the results.

FIG. 16. Illustrating the determination of the electron tem-
perature by the method of Malter and Johnson: ab = i'e,
ac = ip, cd = ip.
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19. The Counterprobe and Triple-probe Methods

In this section we consider methods of obtaining the
single-probe characteristic using a two-probe circuit.
The idea of the counterprobe method consists in the
following t 3 0 ] . If the dimensions of one probe greatly
exceed those of the other, then considerable changes
in the potential of the smaller probe are possible. Its
potential may become higher than that of the isolated
probe and even higher than the plasma potential,
whereas the potential of the larger probe remains
practically unchanged at approximately the potential
of the isolated probe. This can be understood from
the following considerations: since one of the probes
is small, the current in the two-probe circuit should
be small. Therefore the potential of the larger probe
cannot differ greatly from the potential of the isolated
probe. In the case of sufficiently large difference in
dimensions, even the electron current in the small
probe, which is at the plasma potential, can become
offset by the current in the large probe, the potential
of which is somewhat lower than the floating probe po-
tential. The probe characteristic then turns into the
single-probe characteristic of the small probe and can
be processed by the usual Langmuir method. To find
a criterion by which to judge whether the larger probe
is sufficiently large to serve as a counterprobe, we
use Eq. (60), assuming the first probe to be large and
the second small.

Let us differentiate both halves, neglecting the var i-
ation of the ion current compared with the variation of
the corresponding electron current. We then obtain

(64)

Equation (64) has been written out for the case
where the potential of the small probe is close to the
space potential, and the counterprobe is at the poten-
tial of the floating probe V .̂ The characteristic will
be practically that of a single probe if dV « dV". If
the probe and the counter probe are under identical
conditions, then using (11), (64), and the fact that

i0 =-ζ-enoueS,

w e o b t a i n t h e c r i t e r i o n f o r t h e a p p l i c a b i l i t y of t h e

c o u n t e r p r o b e m e t h o d i n t h e f o r m

(65)

w h e r e S ' a n d S" a r e t h e s u r f a c e a r e a s of t h e c o u n t e r -

p r o b e a n d t h e p r o b e . If t h e c o u n t e r p r o b e i s i n a r e g i o n

w i t h r e d u c e d c h a r g e d - p a r t i c l e c o n c e n t r a t i o n , t h e n c o n -

d i t i o n (65) i s i n s u f f i c i e n t . T h e n e e d f o r i n t r o d u c i n g t h e

c o u n t e r p r o b e d i r e c t l y i n t h e d i s c h a r g e g a p , w h e r e i t

u n a v o i d a b l y d i s t o r t s t h e p l a s m a , i s t h e m a i n s h o r t -

c o m i n g of t h i s m e t h o d .

In C2 4>3 13 t h e r e i s p r o p o s e d a t r i p l e - p r o b e m e t h o d ,

w h i c h , l i k e t h e c o u n t e r p r o b e m e t h o d , m a k e s i t p o s s i b l e

t o o b t a i n t h e s i n g l e - p r o b e c h a r a c t e r i s t i c . T h r e e p r o b e s

a r e c o n n e c t e d a s s h o w n i n F i g . 1 7 . I n e a c h m e a s u r e -

m e n t , t h e p o t e n t i o m e t e r s l i d e w i r e i s s e t i n a p o s i t i o n

s u c h t h a t t h e c u r r e n t i n t h e c i r c u i t of p r o b e 3 i s e q u a l

t o z e r o . T h i s m e a n s t h a t p r o b e 3 i s a l w a y s a t t h e f l o a t -

i n g - p r o b e p o t e n t i a l . T h e d e p e n d e n c e of t h e c u r r e n t i n

t h e c i r c u i t of p r o b e s 1 a n d 2 o n t h e p o t e n t i a l V 2 i s t h e

s i n g l e - p r o b e c h a r a c t e r i s t i c of p r o b e 2, w h i c h , i n p r i n -

c i p l e , c a n b e p r o c e s s e d b y t h e m e t h o d s d e s c r i b e d i n

Chapters I and П. However, if probes 1 and 2 are com-
parable in dimensions, then only the very start of the
electron part of the characteristic is obtained. In order
to obtain the entire electron part of the single-probe
characteristic of probe 2, probe 1 must be so much
larger than probe 2 that the ion current in probe 1 bal-
ances out the electron current in probe 2 at the space
potential. This calls for a fixed ratio of the areas:

S' .
S"

(66)

(The criterion given in I-31^ is incorrect, because the
authors used the Langmuir theory for the ion current.)

FIG. 17. Diagram of the triple-probe
method.

Criterion (66) is less stringent than the criterion for
the applicability of the counterprobe method (65). The
reason for it is that in the three-probe method there is
no need to maintain the potential of probe 1 constant.
The fact that the entire electron part of the s ingle-
probe characteristic is obtained in the three-probe
method makes it possible to obtain the energy distr i-
bution of the electrons with the aid of formula (4).

A modification of the triple-probe method was used
in E32^, where the potential difference between probes
1 and 2 was kept constant, and the area of the smaller
probe 2, which was at a higher potential relative to the
plasma than the larger probe 1, was varied. The de-
pendence of the current in the two-probe circuit and of
the potential V2 on the area of probe 2 makes it pos-
sible to determine the electron concentration and tem-
perature. An inconvenience of this method is the use
of a probe of variable length. In addition, at small
probe dimensions, distortions may be produced as a
result of the influence of the insulation.

20. Influence of High-frequency Field on the Probe
Characteristic

Measurement of field intensity. One of the main
uses of the two-probe method is for a high-frequency
discharge. A typical two-probe measurement circuit
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FIG. 18. The two-probe method used in
a high-frequency discharge.

is shown in Fig. 18. The choke and the capacitor keep
the high-frequency current component out of the meas-
uring circuit. The high-frequency component may be
the result of periodic variations of the potential dif-
ference between the sections of the plasma adjacent
to the probes. Owing to the nonlinearity of the probe
characteristic, this variable potential difference dis-
torts also the dc component of the current in the probe
circuit.

The distortion can be reduced by locating the probes
in an equipotential plane. Such an arrangement is not
convenient in narrow tubes, since the plasma proper-
ties vary in the radial direction. Too small a distance
between probes can lead to their mutual screening. It
is therefore advantageous sometimes to locate the
probes along the axis of the discharge. Let us con-
sider the influence of the high frequency field on the
form of the probe characteristics'-3 3-'. Since the ion
current depends little on the probe potential, the high
frequency field hardly exerts any influence on it.
Therefore the method described above for determining
the concentration using the ion part of the character-
istic can be used also in a high frequency discharge.
The electron current depends strongly on the potential,
and therefore the high frequency field can influence the
form of the characteristic near the plane where the
probe current is equal to zero. If the frequency is not
too large, then the current in the probe at each instant
of time is determined by Eq. (58). (We assume for
simplicity that the ion current does not depend on the
potential and that the probes, as well as the concentra-
tion and temperature of the plasma electrons near the
probes, are identical.) By Δ we must mean the in-
stantaneous difference of potentials between the por-
tions of the plasma adjacent to the probes:

Δ =Eddsma>t + &o,

where Ед is the maximum value of the projection of
the intensity of the high-frequency field on the line
joining the probes, Δ ο is the DC component of the po-
tential difference, and d is the distance between
probes.* To obtain the experimentally measured dc

*Such an adiabatic analysis is applicable if the time neces-
sary for the electron to pass through the perturbed region is much
shorter than the period of the oscillations. At a temperature
T e ~ 1 0 4 O K and a probe radius 0.1 mm, this holds up to a fre-

quency ν ~ 109 cps.

c o m p o n e n t of t h e t w o - p r o b e c u r r e n t w e a v e r a g e (58)

o v e r t h e t i m e . W e t h e n g e t

(и — Δ ο —
ЩГ

dx- (67)

I t i s s e e n f r o m (67) t h a t t h e c u r r e n t i s e q u a l t o z e r o

at the point where u = Δο, that is, the high frequency
field does not cause a shift of the characteristic. How-
ever, the slope of the characteristic at the point where
the current is equal to zero depends on the high fre-
quency field. Namely,

С
\

dx
chM sin ях

(68)"

w h e r e A = e E ( j d / 2 k T e . F r o m (68) w e s e e t h a t t h e h i g h

f r e q u e n c y f i e l d i s i n s i g n i f i c a n t o n l y if A « 1. T h e n u -

m e r i c a l v a l u e s of t h e i n t e g r a l a r e 1, 0 .89, 0 . 6 7 , 0.36

f o r A = 0, 0 .5 , 1, a n d 2, r e s p e c t i v e l y . In C3 3>3 43 i t w a s

p r o p o s e d t o u s e f o r m u l a (68) f o r t h e m e a s u r e m e n t of

t h e i n t e n s i t y of t h e h i g h f r e q u e n c y f ie ld i n t h e d i s -

c h a r g e . T o t h i s e n d , t w o p r o b e s o n a g r o u n d - g l a s s

j o i n t a r e l o c a t e d f i r s t i n a n e q u i p o t e n t i a l p l a n e ( E d = 0 )

and the electron temperature Тц is measured. The
probes are then rotated about the axis, and the value of
Ε and the field intensity E(j are determined with the
aid of (68).

A different method of measuring the field intensity
was proposed in C35^. The triple-probe circuit em-
ployed consists in paralleling the identical probes 1
and 2 and making their total area equal to the area of
probe 3, which is placed between them. A two-probe
characteristic is plotted for probe 3 and probes 1—2.
The presence of a high-frequency field causes the
probe characteristic to shift and the field is deter-
mined from this shift. However, the expression ob-
tained for the shift is incorrect, since it was errone-
ously assumed that the potential difference between the
double probe 1—2 and the plasma at the probe 3 is in-
dependent of the time. A correct expression for the
current in the probe circuit averaged over the period
(under the usual assumption that ip = const) is :

i (и) = ι.
1 - е

l+e Ю
dx, (69)

w h e r e u i s the potential dif ference between the double

probe 1—2 and probe 3, Δο is the dc component of the
difference in the plasma potentials near probes 1 and
2, and d is the distance between probes 1 and 3 or 2
and 3.

Formula (69) shows that the presence of a high fre-
quency field (as well as the presence of a dc component
Δο) causes a shift in the characteristic (u * 0 with i
= 0). This method has so far not been used with the
correct formula (69).

In E283 attention was called to one feature of probe

*ch = cosh.
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measurement in a high-frequency discharge, namely
that the plasma of the high-frequency discharge can
have a large alternating potential relative to ground.
The capacitance of the probe leads relative to ground
can be sufficiently large (particularly if account is
taken of the fact that the probe leads are usually
shielded). The ac voltage applied between the plasma
and the ground is rectified because of the nonlinearity
of the current-voltage characteristic of the probe. This
leads to the appearance of additional direct current in
the measuring probe circuit, and to an overestimate of
the concentration of the charge particles measured by
the two-probe method. The role of this effect has been
insufficiently studied, but the data given in ^28^ show
that the distortion is not too large.

IV. USE OF THE PROBE METHOD UNDER MORE
COMPLICATED CONDITIONS

21. Probe Measurements in Mixtures

If the plasma contains two kinds of positive ions,
with different masses, then the theory of the ion part
of the characteristic must be modified. If the charges
and ion energies are identical, then the Poisson equa-
tion (21) [and (43)] are written in the same form also
in the case of a mixture, and the electron concentration
is n0 = n p i + np2, where n p i and n p 2 are the ion con-
centrations of the components. Thus, the distribution
of the potential around the probe will be the same as
in the case when only one kind of ion is present. Let
us consider by way of an example the case of a cylin-
drical probe E363.

According to Sec. 16 we have the following expres-
sion for the ion current per unit probe length:

) . (70)УШГ. α' (γ)

To determine the radius r p of the ion layer, we use
the " three halves" law, which in the presence of two
kinds of ions takes the form

(71)

From this we obtain for the radius of the ion layer r p

the relation

(72); VkTe e
no

By measuring the total ion current i p at a large
negative potential V, and by determining the electron
concentration n0 and T e from the electron part of the
characteristic, we can find n P l and n P z from (70) and
from the condition that the plasma be neutral.

It must be borne in mind that even small errors in
the determination of n0 from the electron part of the
characteristic can in some cases lead to large errors
in determination of the concentrations of the compo-
nents. This method, however, can be used to obtain
qualitative results [37>383.

22. Probe Measurements in Electronegative Gases

This question has been treated in only a few inves-
tigations, and the experimental material is very scanty
[3,39-44] _ ψ β consider first the part of the character-
istic adjacent to the space potential and corresponding
to small negative probe potentials. If

δ = n-= « Λ/Μ-Τ*

(the subscript " - " pertains to negative ions), then the
negative-ion current is much smaller than the electron
current in this part of the characteristic. If we recog-
nize that usually T_ ~ T p « T e then, say for oxygen,
the influence of the negative ions will not be felt even a
at the space potential if n_/n e « 103. At negative
probe potentials, the negative-ion current will make an
even smaller relative contribution. In this case we can
obtain n e and T e from this part of the characteristic
by the usual method. However, even if the above-
mentioned criterion is satisfied but δ » 1, then the
presence of a large number of negative ions will be
manifest in the fact that the ratio of the electron sat-
uration current to the saturation current of the posi-
tive ions will greatly decrease [from the condition of
quasineutrality of the plasma n p = n e + n_ = n e ( 1 + δ )].
Therefore, to process the electronic part of the char-
acteristic by the Langmuir method it may be necessary
to eliminate the positive-ion current (Sec. 4). In fact,
when working with electronegative gases there are fre-
quently striations in the plasma and the electron dis-
tribution deviates appreciably from Maxwellian. In
these cases it is advantageous to seek the electron en-
ergy distribution function by using formula (4a). An
example of a distribution obtained in this manner for
a discharge in oxygen'-*0-! ^s s n own in Fig. 19. The
narrow peak at low energies corresponds to the nega-
tive ions. In the presence of electrons and negative
singly-charged ions, formula (4a) is transformed into

FIG. 19. Energy distribution of nega-
tively charged particles in a discharge
in oxygen in the ptesence of striationsM.

Ю го

The concentration ratio obtained for the case cor-
responding to Fig. 19 by separating the particle re-
sponding to the negative ions and integrating over the
energies, with allowance for the mass difference, was
n_/n e ~ 20.
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The theory of the ion part of the characteristic in
the presence of negative ions was presented for a
spherical probe in E39^ . We use here the method de-
veloped in Ch. II. For simplicity we assume that

ψ " ~r~p~ = = Υ»
1 e 1 e

For a spherical probe this method leads to the follow-
ing results for δ » 1:

ηδ=0.75γ, z s=0,96,

As can be seen, the boundary of the layer is in this
case very close to the limitation sphere. For the cur-
rent in the probe we obtain

inrpenpOvp

-κ(δ,ν). (73)

When δ » 1 we get 1.6 < к < 2.2.
The result of ^39^, obtained from qualitative con-

siderations, differs from (73) by a numerical factor.
In analogous fashion we obtain for a cylindrical

probe with δ » 1
1nrpenpiivp

1,3 < κ' < 1,6. (74)

The results obtained show that when there are. much
fewer electrons than negative ions, the potential on the
boundary of the layer is of the order of kTp /e and the
velocity of the positive ions on the boundary of the layer
is of the order of the thermal velocity.

The radius of the ion layer r p is determined from
the " three halves" law.*

The plasma potential relative to the isolated probe
Vj is determined for δ » 1 from the equation

γ . / T W ιι -p- , -
e he+e

(75)

W i t h i n c r e a s i n g c o n c e n t r a t i o n of t h e n e g a t i v e i o n s , Vt

d e c r e a s e s a n d b e c o m e s of t h e o r d e r of k T p / e w h e n

δ » VTeM/mTp .
We note that the theory developed above does not

make it possible to determine all the plasma param-
eters of interest to us. However, if T_ and Tp can be
estimated from some supplementary considerations,
then in the case when

it is possible to determine n e and T e from the elec
tron part and np from the ion part.

*The use of the "three halves" law for r < rp is valid if
positive ions predominate in this region. When the potentials
reached are approximately equal to kTe/e, the electron concen-
tration changes insignificantly, whereas the ion concentration
decreases by a factor (Te/Tp)'4 Therefore the condition δ » 1

i s still insufficient to permit neglect of the electron concentra-

tion in the region r < r p . To this end it i s necessary to satisfy

the more stringent condition δ » (T e /Tp) ' / 2 .

2 3 . P r o b e M e a s u r e m e n t s in t h e P r e s e n c e of M a g n e t i c

F i e l d s

T h e t h e o r y of p r o b e m e a s u r e m e n t s i n t h e p r e s e n c e

of a m a g n e t i c f i e ld h a s b e e n t r e a t e d i n s e v e r a l w o r k s

[3,45,46]^ j^f. n o r e i i a b l e t h e o r y of p r o b e m e a s u r e m e n t s

i n a m a g n e t i c f i e ld e x i s t s s o f a r . In ^ 4 5 ^ t h e r e i s c a l -

c u l a t e d t h e e l e c t r o n c u r r e n t i n a n i n f i n i t e c y l i n d r i c a l

o r p l a n e p r o b e u n d e r t h e a s s u m p t i o n t h a t a t s o m e d i s -

t a n c e d f r o m t h e p r o b e t h e c h a r g e d p a r t i c l e s h a v e t h e

s a m e c o n c e n t r a t i o n i n v e l o c i t y d i s t r i b u t i o n a s i n t h e

u n p e r t u r b e d p l a s m a . I n a l a y e r of t h i c k n e s s d, t h e

p a r t i c l e s m o v e w i t h o u t c o l l i s i o n u n d e r t h e i n f l u e n c e

of t h e e l e c t r i c a n d m a g n e t i c f i e l d s . If t h e s u r f a c e of

t h e p r o b e i s p a r a l l e l t o t h e m a g n e t i c f i e l d , t h e n o n l y

t h o s e p a r t i c l e s w h o s e L a r m o r r a d i u s i s l a r g e r t h a n

d w i l l s t r i k e t h e p r o b e . W i t h i n c r e a s i n g m a g n e t i c

f i e l d , t h e n u m b e r of s u c h p a r t i c l e s d e c r e a s e s a n d t h e

c u r r e n t i n t h e p r o b e a l s o d e c r e a s e s . A t n e g a t i v e p r o b e

p o t e n t i a l s , t h e i n f l u e n c e of t h e m a g n e t i c f i e l d o n t h e

e l e c t r o n c u r r e n t d e c r e a s e s w i t h i n c r e a s i n g a b s o l u t e

v a l u e of t h e p o t e n t i a l . T h e r e a s o n f o r i t i s t h a t a t l a r g e

n e g a t i v e p o t e n t i a l s t h e p r o b e r e c e i v e s o n l y t h e f a s t

e l e c t r o n s , w h o s e L a r m o r r a d i u s i s l a r g e . T h e v a l u e

of d i t s e l f r e m a i n s u n d e t e r m i n e d , a n d i t i s p r o p o s e d

t o a s s u m e t h a t i t i s of t h e o r d e r of t h e m e a n f r e e p a t h

λ. No account is taken here of several factors: the par-
ticles whose Larmor radius is smaller than λ can
reach the probe as a result of diffusion; an important
role may be played in the magnetic field by particle
currents moving along the magnetic force lines, and
consequently the finite size of the probe is essential;
the depletion of the plasma at a distance d may also
become essential.

In the case when the surface of the plane probe is
perpendicular to the direction of the magnetic field,
the magnetic field at first glance does not affect the
probe current at all. This circumstance could yield
a good method of measuring the plasma parameters in
a magnetic field. However, with the increasing mag-
netic field, the depletion of the plasma in the cylindri-
cal region terminated by the probe may become sig-
nificant. The reason for it is that the particles rapidly
leave this region and go to the probe, while the diffu-
sion from the neighboring regions is made difficult by
the magnetic field.

An approximate expression is derived in '-3-' for the
electron current when the probe is at a probe potential
somewhat higher than the plasma potential. In this
derivation explicit account is taken of the diffusion
character of the motion of the electrons transversely
to the magnetic field, of the depletion of the plasma in
the vicinity of the probe, and of the finite size of the
probe. To obtain the solution, it is necessary to use
the diffusion equation also for the direction along the
magnetic field. The problem is formulated in this
fashion. The motion is assumed to be due to diffusion
up to a distance on the order of the mean free path λ
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from the probe, in the direction of the magnetic field,
and up to a distance equal to the Larmor radius R
from the probe in a perpendicular direction. If the
probe potential is sufficiently positive to prevent the
ions from reaching the probe, then the ions in the vi-
cinity of the probe can be assumed to have a Boltz-
mann distribution. If, in addition, we assume the
plasma to be quasineutral, then

η = np = ne = noe
hTv , (76)

w h e r e V, a s u s u a l , i s t h e p o t e n t i a l , of t h e u n p e r t u r b e d

p l a s m a r e l a t i v e t o t h e g i v e n p o i n t , s o t h a t i n t h e c a s e

u n d e r c o n s i d e r a t i o n V < 0. In t h e d i f f u s i o n r e g i o n , t h e

e l e c t r o n c u r r e n t s t o t h e p r o b e i n t h e l o n g i t u d i n a l a n d

t r a n s v e r s e d i r e c t i o n s a r e g i v e n b y t h e f o r m u l a s

/ιι= - J

(77)

where γ = T p / T e , and the ζ axis coincides with the
direction of the magnetic field.

Neglecting the ionization in the perturbed region,
we can write div j = 0, or

(78)

E q u a t i o n (78) c a n b e r e d u c e d t o t h e L a p l a c e e q u a -

t i o n b y i n t r o d u c i n g t h e v a r i a b l e s = V a z . L e t u s s u r -

r o u n d t h e p r o b e w i t h a n i n f i n i t e l y l o n g c y l i n d r i c a l s u r -

f a c e , t h e a x i s of w h i c h i s d i r e c t e d a l o n g t h e m a g n e t i c

f i e l d . T h e c u r r e n t i n t h e p r o b e i s g i v e n b y t h e f o r m u l a

ie = e \ j x da -•-•, das. (79)

Here d a s is the cylinder area element in coordi-
nates s, x, and y. For the side surface of the cylinder
we have das = V« da. To calculate the integral (79)
we can use the following electrostatic analogy. If the
body has a potential V then, according to the Gauss
theorem, the charge on the body is, on the one hand,

and on the other hand it is equal to CV, where С is
the capacitance of the body. Thus,

where Vo is the potential at infinity.
In our case the analog of the potential is the con-

centration n, which, like the potential itself, satisfies
the Laplace equation. Therefore

\ Vj_re das = 4:tC (n0 — щ).

where щ is the concentration on the boundary of the
diffusion region. Thus,

The motion of the particles from the boundary of
the diffusion region to the probe is almost free (it is
assumed that γ « 1, and the weak positive potential
which drives the ions away does not influence the mo-
tion of the electrons). Consequently

i. = ^ , (81)

where S is the area of the probe. Eliminating n t from
(80) and (81), we get

1 + : veS ( 8 2 )

In the limiting case of strong magnetic fields
« S/16\C (where λ is the mean free path along the
field), formula (82) assumes the form

ie= , C. (83)

It i s s e e n f r o m ( 8 3 ) t h a t t h e c u r r e n t s i n p r o b e s o f

e q u a l s h a p e o r d i m e n s i o n s d i f f e r o n l y a s a r e s u l t o f

the difference in the capacitances С It must be em-
phasized that in Eqs. (80)—(83) С stands for the ca-
pacitance of the body whose surface is obtained by
multiplying all the longitudinal dimensions of the dif-
fusion region by VaT. Therefore the value of С of
the same probe depends on the probe orientation re la-
tive to the magnetic field. For a disc of radius a or i-
ented perpendicular to the field, the boundary of the
diffusion region can be approximated by the surface
of an ellipsoid of revolution of radius a + R (where R
is the Larmor radius) and height λ. To calculate the
capacitance C, the longitudinal dimensions should be
multiplied by y[~a . If the field is so large that \V~a~
« a and R « a, then С is the capacitance of a disc
of radius a, that is, Ci = 2а/тг. Substituting this value
in (83), we find that the presence of a magnetic field
decreases the electron current to a plane probe or i-
ented perpendicular to the field in a ratio R/a (if we
choose for / a " its classical value R/λ). This is con-
nected with the aforementioned depletion of the plasma
ahead of the probe.

We now consider a disc of radius a, oriented par-
allel to the magnetic field. С is in this case the ca-
pacitance of an ellipsoid with major semiaxis a and
minor semiaxes R and (a + A)V~aT. For the case

/a « 1 and J~a « 1, its capacitance is equal to

C,,=α fin, ; ι-1,

where β = 4 if λ/a « I and β = 2 if λ/a » 1. For the
ratio of the electron currents in parallel and perpen-
dicular probes we obtain

- · (84)

ie = e (1 n0 - (80) It is seen from (84) that the ratio of the currents de-
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pends little on the magnetic field. The ratio of the
electron current at space potential to the ion current
at large negative probe potentials will be

(85)

It is assumed here that the radius of the probe is
larger than the Larmor radius of the electrons and
smaller than the Larmor radius for ions. For the ion
current we have used formula (11).

All the formulas presented contain a — the ratio
of the diffusion coefficients transverse to and along the
magnetic field. The classical expression for a in
strong fields is

— 5 - -
(86)

However, in strong magnetic fields, there can be
anomalous diffusion connected with the different in-
stabilities in the plasma [3>4TH. This raises additional
difficulties when using probes in a strong magnetic
field. Even if the coefficient of transverse diffusion
is known, Eq. (83) still does not make it possible to
determine the concentration of electrons η 0, for in a
magnetic field the point of inflection on a semilog char-
acteristic can be weakly pronounced, and the space po-
tential may therefore be unknown. In addition, there
is no method for determining the electron temperature.
At the present time probes can be used only in not too
strong magnetic fields, namely when the Larmor r a -
dius for the ions is much larger than the probe dimen-
sions^4 8^. In this case the magnetic field does not in-
fluence the ion part of the characteristic and it is pos-
sible to employ the theory presented in Ch. II. The
usual method of determining the electron temperature
Те can be used only if the Larmor radius of the elec-
trons that constitute the current flow at the given point
of the characteristic is large compared with the probe
dimensions. Since the current is produced by faster
and faster electrons with increasing negative probe
potential, it is advantageous to determine Те from the
portion of the characteristic adjacent to the potential
of the isolated probe, using differentiation to eliminate
the ion current (see Sec. 4) . It is also possible to em-
ploy the two-probe method [29,49>5°]. д spherical probe
made of a ferromagnet was used in E51H. A jumplike
change in the probe current was observed when the
probe temperature passed through the Curie point.
These changes were due to a decrease in the tangential
component of the magnetic field when the probe went
over into the ferromagnetic state.

24. Probe Measurements in the Presence of Direc-
tional Motion in the Plasma

In the preceding exposition we assumed an isotropic
electron distribution function away from the probe. In
real conditions the electrons always have directional
motion and current flows through the discharge gap.

This leads to a distortion of the probe characteristics.
There is no reliable theory of probe measurements for
cases when this distortion is large. When a cylindrical
probe is used, this distortion can be avoided if the
probe axis is directed along the current. If the axis
of the cylindrical probe is perpendicular to the current
direction, then the directional motion influences the
form of the probe characteristic. A rigorous solution
of the problem is impossible, since the potential dis-
tribution around the probe does not have cylindrical
symmetry.

In И the problem was solved neglecting the asym-
metry of the potential. The employed electron distribu-
tion relative to the velocity components perpendicular
to the probe axis was

Шт.
(87)

with u the drift velocity. Such an analysis can, in our
opinion, give only an estimate of the influence of the
directional motion at low drift belocities. Calculation
has shown that the characteristics remain approxi-
mately straight even in the presence of drift, up to
mu 2/2kT e ~ 0.5, but the temperature T e determined
from the slope will be exaggerated.

In the case of a spherical probe, if we neglect the
asymmetry of the potential, the electron current in a
probe situated in a retarding field depends only on the
electron energy distribution. The directional motion
influences the probe characteristic only via the energy
distribution. It is stated on this basis in E11^ that it is
possible to employ Eq. (4) in the presence of direc-
tional motion. However, the unavoidable asymmetry
of the potential makes this statement doubtful. An
asymmetry of the field was observed experimentally
in »*:.

The directional velocity was measured many times
with a unilateral plane probe [5 3"5 63, that is, a probe
with one side covered (for example, with mica). The
initial premise is that the probe, which is at the space
potential, receives all the particles which move in the
direction towards the open surface. Then the differ-
ence in the current densities (when the probe faces the
cathode and then the anode) is equal to the density of
the directional current in the discharge j 0 = noue. The
concentration n0 can be determined from the charac-
teristic of the probe when it is turned parallel to the
discharge axis.

A compensation circuit for the determination of the
current difference, which is usually small, is proposed
in ^ 5 6 3. The idea of the method is to keep the probe in
one position and to measure the current difference
arising when the probe is rotated.

The described methods of determining the rate of
electron drift with the aid of a plane probe appear in-
effective to us for the following reasons: The main
assumption that when the probe is at the space poten-
tial the field surrounding it is equal to zero is not cor-
rect in the presence of electron drift relative to the
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ions. In fact, let us assume that the field is equal to
zero and the particles move freely. We can show that
this leads us to a contradiction. The concentrations
of the electrons and the ions moving away from the
probe to one side are unequal. For example, the con-
centration of the electrons moving in the electron-
drift direction exceeds the concentration of the ions
moving in the same direction by an amount ~ nou/v e,
where v e is the thermal velocity of the electrons.
For the opposite direction the inverse holds true, thus
ensuring quasineutrality in the unperturbed region.
However, near the probe, where the screening is ap-
preciable, quasineutrality is violated. If, for example,
the probe faces the cathode, then the electron concen-
tration near the probe will exceed the ion concentra-
tion, since there are no particles to move in a direc-
tion opposite that of the electron drift. A layer of
negative space charge with density noeu/v e will be
produced adjacent to the probe and will have a thick-
ness on the order of the probe dimensions. Inside this
layer there will be a potential minimum of magnitude
~ — n 0ea 2u/v e, where a is the probe dimension. For
a = 0.5 cm and n0 = 1010, the minimum of the potential
in volts will be 300u/v e. Thus, a deep potential min-
imum is produced even in the case of a small drift,
thus contradicting the initial assumption that the par-
ticles move freely. In fact, the produced minimum will
be smaller, since the particles do not move freely and
tend to neutralize the space charge. However, the po-
tential minimum remains and reflects some of the
electrons from the probe. The assumption of free
motion of particles around a probe at the space poten-
tial is apparently incorrect. If the probe is at the
plasma potential and faces the cathode, its current
will be smaller than that calculated assuming free
motion. The methods described above should there-
fore yield undervalued drift velocities.

It is indicated in ["] that in the main it is possible
to determine the directed part of the electron distribu-
tion function from the dependence of the difference of
currents obtained for two opposite probe positions on
their potential relative to the plasma. This method is
analogous to the Druyvestein method for the isotropic
part of the distribution and calls for differentiation of
the current difference with respect to the probe poten-
tial. This method was used experimentally in E583.

A plane probe was also used to study an electron
beam in which the random velocity was smaller than
the directional velocity'-53'55^. Such conditions obtain
in the cathode part of a discharge, where the fast elec-
trons moving from the cathode have not yet acquired a
directional velocity. The density of electron current
in a flat probe facing the cathode will be

novzf(vx)dvz,

w h e r e the ζ axis is p e r p e n d i c u l a r to the p r o b e on the

probe side, f (v z ) is the distribution of the electrons
with respect to the v z component, and n0 is the con-
centration of the beam far away from the probe. If we
assume for the distribution function the approximation

1/2

2kT.

then

where

i

W l , ( 8 8 )

2 *(•"*

i s the probabi l i ty in tegra l , and

2кГ„

dx

2eV\
~m ) •

If the drift velocity is much l a r g e r than the t h e r m a l

velocity, we can neglect the f i rs t t e r m of (88), which

b e c o m e s

w h e r e j 0 = e n o u i s t h e c u r r e n t d e n s i t y i n t h e b e a m .

T h e v a l u e o f j 0 c a n b e d e t e r m i n e d f r o m s a t u r a t i o n

a t l o w n e g a t i v e p r o b e p o t e n t i a l s . T h e q u a n t i t y

*~1(2j e/jo — 1) [ Φ"1 is the inverse of Φ(χ)] should
thus be a linear function of the square root of the probe
potential. From the slope of the resultant line we can
determine the temperature in the beam. In ^55И this
method was used to investigate an electron beam from
an incandescent filament placed in a discharge. At
large distances from the filament, good straight lines
were observed and the temperature obtained from them
corresponded to the filament temperature.

Let us stop in conclusion to discuss the case when
the plasma moves as a whole relative to the probe.
This occurs when a probe-bearing rocket moves in the
ionosphere, or in probe measurements of a plasma jet
under laboratory conditions. In ^59^ there is an approx-
imate calculation of the ion current in a spherical probe
which is at a negative potential and moves in the iono-
sphere, with a rough account of the deformation of the
ion sheath around the probe. The calculations were
used to find the dependence of the ion concentration on
the altitude from rocket measurement data.

V. IMPROVEMENT OF PROBE MEASUREMENT
TECHNIQUES AND ERRORS OF THE METHOD

25. Determination of the Space Potential

In order to determine more precisely the space po-
tential in the cases when the point of inflection on the
characteristic is not sufficiently pronounced (see Sec.
3 ), several other methods were proposed.

In C60.61] variation of the first derivative of the probe
current with respect to the potential was used, since
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the derivative has a more pronounced variation on go-
ing through the space potential than the current itself.
The space potential is then taken to be the place where
the first derivative has a maximum. The second deriv-
ative of the probe current with respect to the potential
is even more sensitive 441»62H; this derivative reverses
sign near a probe potential equal to the space potential.
It is advantageous to use for the space potential the
point of the maximum of the second derivative E62]
(Fig. 20).

FIG. 20. Variation of the first and
second derivatives (2 and 1, respec-
tively) of the probe current near the
space potential.

A method proposed in ^63^ is based on measuring
the noise amplitude in the probe circuit. The maximum
of the noise amplitude is observed at a probe potential
equal to the space potential. This, however, does not
agree with the data of E64J.

Another method is based И on the use of a hot
probe. The probe was made in the form of a wire
which could be made incandescent by an external volt-
age source and raised to a temperature corresponding
to noticeable electron emission. The characteristics
were plotted with the probe both cold and hot. The
parts of these characteristics corresponding to a probe
positive relative to the plasma coincided, since the po-
tential difference between the probe and the plasma
blocked the emission. At negative probe potentials,
the current in the hot probe was smaller than in the
cold one, owing to the presence of emission from the
hot probe. The space potential was taken to be the po-
tential at which the divergence of the characteristics
began.

26. Oscillographic Methods of Plotting Probe Charac-
teristics

The general oscillographic measurement scheme
consists in the following (Fig. 21). An alternating po-
tential difference is applied between the probe and one
of the electrodes (if one probe is used) or between the

Ί<
j

Й

FIG. 21. Simplest diagram for oscillographic measurements.

two probes (in the two-probe method) and is fed
through an amplifier to the horizontal deflecting plates
of an oscilloscope. (In the case of one probe, a dc bias
is introduced to cancel approximately for the potential
difference between the plasma at the probe and the
electrode.)

A small ohmic resistance is connected in the probe
circuit. The voltage drop on this resistance, which is
proportional to the probe current, is applied through
an amplifier to the vertical plates of the oscilloscope.
The characteristic is obtained on the oscilloscope
screen in the usual scale, regardless of the wave form
of the ac potential difference.

This general circuit is used with various modifica-
tions in the following cases.

1. Discharges in which the parameters do not change
with time. This includes a dc discharge and a high fre-
quency discharge for which the period is smaller than
the relaxation time.

In this case the purpose of using the oscillographic
procedure is to reduce the time consumed in the meas-
urement process. Both the simplest variant of the
single-probe scheme'-66^ and its obvious improvement
consisting of making the amplifier for the vertical de-
flecting plates logarithmic E67J were used many times
for dc discharges. It is possible to display on the os-
cilloscope screen the entire electron part of the char-
acteristic in a semilog scale. A semiconductor diode,
the voltage drop on which is linear with the logarithm
of the flowing current, in a wide range, can also be
used for this purpose. Such a diode is introduced into
the circuit in place of the small ohmic resistance ̂ 68 .̂

At large current densities, to prevent heating the
probe, it is advisable to apply the voltage between the
probe and the electrode from a pulse generator with
low duty cycle C69].

2. Discharges with periodically varying parameters.
These include both discharges with periods larger than
the relaxation time and discharges under pulsed con-
ditions and in the deionization mode.

It is of interest in these cases to study the plasma
parameters as functions of the phase of the discharge.
There are two possible measurements in principle. In
the first oscillograms are taken of the probe current
with the probe potential fixed for all discharge phases.
The points pertaining to the same phase are chosen
from the family of probe-current oscillograms plotted
at different potentials and the probe characteristic
plotted for this phase C20»57·65]. An analogous method
is used for the two-probe circuit in a pulsed dis-
charge с 2 9 . 5 0 ] .

In the second case a definite discharge phase is
singled out. If the periodic potential difference in the
probe circuit is not synchronized with the period of the
discharge, then the probe characteristic for the given
phase is obtained on the oscilloscope screen. To single
out a definite phase of the discharge it is possible, for
example, to cut off the oscilloscope gun by means of a
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large negative potential during the entire period with
the exception of short time intervals corresponding to
the given phase E10^.

We note that in the case of periodic discharges
which we are considering it is also possible to dis-
pense with the oscilloscope, by connecting in the probe
circuit a switching device which closes the circuit at
a definite discharge phase. The characteristic is then
plotted point by point ^ 5 7 3.

3. Discharges with aperiodically varying param-
eters . These include irrgular pulsed discharges and
various cases when it becomes necessary to deal with
a nonstationary plasma. In these cases the oscillo-
graphic method is the only one possible, for otherwise
one would have to plot the entire characteristic within
a time interval during which the parameters of the
plasma do not change noticeably. The method has been
employed for a powerful pulsed discharge to obtain
oscillograms of the characteristic^ 1 7 ' 5 0^ and for rapid
plotting of the characteristics in a dc discharge ^ 7 13,
The limitations on the rate at which the characteristic
is plotted are considered at the end of the present sec-
tion.

In addition to the oscillographic method described
above, different modifications were proposed, in which
alternating potential differences with special wave-
forms were applied to the probe. In one of the meth-
ods tn^ the ac potential difference between the probe
and one of the electrodes has a sawtooth form so that
during one half cycle we have U = pt. The vertical
plates of the oscilloscope, as in the preceding case,
are connected to a small ohmic resistance in series
with the probe circuit. The deflection of the beam in
the vertical direction is then given by

o n e p a i r of o s c i l l o s c o p e p l a t e s a n d t h e d e r i v a t i v e of

t h i s v o l t a g e d r o p i s a p p l i e d t o t h e s e c o n d p a i r , t h e n t h e

s l o p e of t h e o b t a i n e d l i n e d e t e r m i n e s T e . T h e s p a c e

p o t e n t i a l i s d e t e r m i n e d a s t h e l o c a t i o n of t h e s h a r p d e -

c r e a s e i n d i e / d t .

W e n o t e i n c o n c l u s i o n t h a t t h e r e a r e m a n y f a c t o r s

w h i c h l i m i t t h e r a t e w i t h w h i c h t h e c h a r a c t e r i s t i c c a n

b e p l o t t e d . F i r s t , i n t h e c a s e of r a p i d v a r i a t i o n of t h e

p r o b e p o t e n t i a l , t h e i o n l a y e r m a y n o t h a v e t i m e t o b e

f o r m e d . T h e t i m e of f o r m a t i o n of t h e l a y e r i s o n t h e

o r d e r of t h e r a t i o of t h e t h i c k n e s s of t h e p l a s m a r e g i o n

p e r t u r b e d b y t h e p r o b e t o t h e i o n v e l o c i t y . T h i s c o n -

d i t i o n i s n o t s t r i n g e n t , s i n c e t h i s t i m e i s u s u a l l y of t h e

o r d e r of m i c r o s e c o n d s .

A n o t h e r m o r e s e r i o u s l i m i t a t i o n i s c o n n e c t e d w i t h

t h e p r e s e n c e of p a r a s i t i c c a p a c i t a n c e s i n t h e m e a s u r -

i n g c i r c u i t ( F i g . 2 2 ) . T h e p r e s e n c e of s u c h c a p a c i -

t a n c e s c a u s e s p a r a s i t i c c u r r e n t s of t h e o r d e r of C V / T

(where τ is the time necessary to plot one character-
istic ) to appear in the probe circuit. In order for this
measurement to be possible, the probe current must
exceed the parasitic current. For example, if С = 10
pF, V = 100 V, and τ = 1 μββο, the parasitic current
is ~ 1 mA.

FIG. 22. Parasitic capacitances in oscillograph circuit.

for the electron part of the characteristic in the case
of a Maxwellian distribution. The voltage applied to
the horizontal deflection plates is from a special gen-
erator synchronized with the sawtooth generator, and
decreases exponentially during the half cycle. Then
the horizontal deflection follows the law

χ = X o e - ( / t .

By choosing τ it is possible to obtain a linear plot on
the oscilloscope screen. Then kT e = ерт. By increas
ing the amplitude of the sawtooth voltage it is possible
to obtain a value above which rectification becomes
impossible. This enables us to determine the space
potential.

Another method'-73-' is based on a relation which fol-
lows from (5):

кТ„ ~~ dV l 0 g l" ~ i dV ~ UкТ„ dV
die _ 1 die I dV
IT ~~L· It i It

If the potential between the probe and the electrode
varies linearly in time and if the voltage drop across
a small resistance, proportional to i e , is applied to

27. Methods of Differentiating the Probe Characteristic

In many cases it is necessary to determine the first
or second derivative of the probe current with respect
to the probe potential. This is necessary in order to
exclude the ion current (see Fig. 4) and to find the
electron velocity distribution [ see (4)].

1. Methods of graphic differentiation. The simplest
method is to divide the interval of the potentials into
small sections AV and replace the derivative by the
quantity Δϊ/Δν. This procedure was carried out twice
by Druyvestein^12^ to find the energy distribution of the
electrons in the positive column in neon. A certain
modification of this procedure was used in E74^. A
single differentiation was used to find the electron
temperature T e by determining the start of the elec-
tronic part of the characteristic t 8> 7 5^. This method
is generally speaking not very accurate, while in the
case of double differentiation the e r r o r s increase
greatly and only qualitative results can be expected.

Some modification of the graphic method of double
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differentiation ^76^ is to plot the characteristic in a
semilogarithmic scale (in which it is smoother) and
use the relation

1 d4 f d .Λ2 di

This analysis method was used to find the energy
distribution of the electrons in a glow discharge.

2. Method of superposition of an alternating poten-
tial. In addition to the constant potential difference
there is connected in the probe circuit an ac sinusoidal
potential generator щ = A cos ωί (Fig. 23). The po-
tential is then u + Uj, and the current

i = f(u + Acosat).

If t h e a m p l i t u d e A i s s u f f i c i e n t l y s m a l l , t h e n

i = / (u) + /' (и) A cos ωί + -|- /" (и) A2 cos2 ωί + . . .

FIG. 23. Simplest circuit for
measuring the derivatives of the
probe current by superposition
of an alternating potential.

We see therefore that by measuring the ac compo-
nent of the current at the frequency ω in the probe
circuit it is possible to determine the first derivative
of the probe current f'(ii). By measuring the addition
to the dc component, resulting from turning on the ac
voltage, we can determine the second derivative of the
probe current f"(u). By varying the potential differ-
ence u with the aid of a potentiometer, we obtain the
first or second derivative of the current in the r e -
quired portion of the characteristic.

To measure the first derivative we can, for exam-
ple, connect in the probe circuit a small inductance'-60-',
which serves as the primary winding of a step-up
transformer. The amplitude of the ac potential differ-
ence produced in the secondary winding can be ob-
served on the oscilloscope screen or with a galvanom-
eter connected in the circuit in place of the oscillo-
scope, in series with a rectifier unit. This method can
lead to e r rors if considerable oscillations are present
in the plasma. To reduce these e r r o r s , a judicious
choice of the frequency ω is necessary, as well as the
use of a fi lter [ 6 1^.

To measure the second derivative f"(u) it is nec-
essary to measure the small addition to the dc com-
ponent of the probe current. To this end a special
compensating circuit was used in ^78^. An essential

shortcoming of this method is that it can be used only
under exceedingly stable discharge conditions. The
method of obtaining the second derivative can be im-
proved by using in place of a sinusoidal potential dif-
ference a variable potential difference in the form

u1 = A (1 + cos cuii) sin<B2i,

where Wj « ω2. Then

- / » + . · . ] cos ω,ί + Σ,

where 2 is the sum of the ω2 components that de-
crease in amplitude and of the multiple and combina-
tion frequency components. Thus, in this case f"(u)
determines the amplitude of the ac component with
frequency ω4 and facilitates its measurement. The
voltage-drop component of frequency Uj, produced
across a small resistance connected in the probe cir-
cuit, is separated with the aid of a narrow band ampli-
fier and applied through a detector to the vertical
plates of the oscilloscope. The potential difference u
applied to the horizontal deflecting plates comes from
a generator that produces a slowly varying potential
difference and is connected between the probe and the
electrode. This made it possible to produce rapidly
(within 25 seconds) the entire f" (u) curve on the
oscilloscope screen. This method was used to inves-
tigate the electron energy distribution in a mercury
discharge in the presence of striations'-7 9^. A similar
method is described in ^41^, where the e r r o r s of pro-
cedures of this type are also discussed. We note that
it is also possible to measure the amplitude of the har-
monic ωι directly, with a vacuum tube voltmeter con-
nected past the narrow band amplifier. The f"(u)
curve is plotted in this case point by point.

3. Use of differentiating networks. In this method
the potential of the probe relative to the anode is var-
ied by applying a voltage from a sawtooth generator,
which produces a linear dependence of the voltage on
the time. The voltage drop on a small resistance in
the probe circuit is proportional to the probe current
and is applied to the vertical deflecting plates of the
oscilloscope. The voltage applied to the horizontal
plates is from a sawtooth generator. In view of the
proportionality between the probe sawtooth voltage to
the time, the oscilloscope screen displays the depend-
ence of the derivative of the probe current with respect
to the probe potential as a function of the probe poten-
tial. The method is used to obtain both the first^ 8 0 ] and
the second derivative'-81-'. This method can be used in
cases when the conditions in the plasma vary rapidly.

28. Some Other Probe Applications

Let us dwell briefly on some additional possibilities
of the use of probes.
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Two probes placed in different points of the plasma
can be used to measure the potential difference be-
tween these points. To this end it would be necessary
to determine the space potential for each of the probes
and take their difference. If the probes as well as the
properties of the plasma at the locations of the probes
are identical, then it is possible to use simply the dif-
ference between the potentials of the floating probes.
The latter is determined as the potential difference
between the two probes when the current in the two-
probe circuit is equal to zero. If the properties of the
plasma at the probe locations are not the same, then
this method results in an e r ror of the order of k T e / e .

With the aid of a wall probe it is possible to meas-
ure the flux of charged particles at the wall of a dis-
charge tube. To this end we use the fact that the ion
current depends little on the probe potential, and ex-
trapolate the current from large negative probe poten-
tials to the wall potential (usually the current at the
wall is zero and consequently the wall potential corre-
sponds to the floating potential of the probe.

Different methods for determining the gas density
with the aid of probes were proposed in [82>83H. д п at-
tempt was made in E84] to determine the plasma pa-
rameters by measuring the energy flux to the probe
at different probe potentials.

Attempts were made frequently to determine the ion
temperature T p from the ion part of the characteristic.
All these attempts were based on the old Langmuir
ion-current theory and are therefore inconsistent. As
can be seen from the results of Ch. II, the ion current
is practically independent of the ion temperature at
large negative probe potentials, so that determination
of Tp by the probe method is practically impossible.
To determine T p it is possible to use the method of r e -
tarding fieldC5»85] and spectrochemical methods^8 6 '8 7-'.

High frequency methods were recently developed for
plasma research. The probes are used here as minia-
ture oscillating systems. The properties of such a
system depend on the dielectric constant of the plasma
in which it is immersed, and make it possible to de-
termine the electron concentration^8 8^.

In many investigations the probe was used to study
the spectrum of plasma noise ^89^. The electron tem-
perature can be determined from the intensity of the
noise in the microwave ^ ^

29. Sources of Errors in Probe Measurements

In order that the probe measurements yield correct
results, the conditions under which the probe operates
must correspond to the theoretical scheme considered
above. Under real conditions there are many external
factors which can distort the results of the probe
measurements and make their interpretation difficult.
Let us consider in succession the influence of these
factors.

1. Contamination of the probe surface. Contamina-
tions may change the work function of the probe or

form surface layers with large ohmic resistances. If
the probe electron current is small and the probe is
cold, a deposit is formed on the probe. With increas-
ing electron current in the probe, when the latter be-
comes heated, or in the case of large negative probe
potentials when ion bombardment becomes appreciable,
the contaminations are evaporated from the surface.
The probe characteristic can be made perfectly repro-
ducible if it is measured sufficiently slowly, but none-
theless the characteristic will be deformed. The point
is that the variation of the probe potential registered
by the voltmeter will differ from the variation of the
potential at the surface of the probe, if the work func-
tion or the potential drop on the surface layer changes
at the same time. In addition, variations of the sur-
face conditions change the electron reflection coeffi-
cient^1 4^. All these factors influence essentially the
part of the characteristic which corresponds to low
negative probe potentials and is used to determine the
temperature of the electron gas or the velocity distr i-
bution of the electrons. Some influence of contamina-
tion by mercury was observed in E9I>92], The charac-
teristic becomes strongly distorted if the probe be-
comes contaminated with vapor of the lubricant'-90-' or
of barium oxide (when working with oxide cathodes ).
To prevent this distortion it is necessary to clean the
probe by electron or ion bombardment before the
measurements, and to perform the measurements
quite rapidly. A pulse circuit which combines con-
tinuous cleaning of the probe with rapid plotting of the
characteristic is proposed in ЕП>Ш3.

2. Probe dimensions and insulation. The dimensions
of the probe in a positive column are limited by many
circumstances. Too large a probe introduces essen-
tially geometric distortion in the discharge gap. In ad-
dition, the electric distortion connected with the distr i-
bution of the current in the discharge circuit and in the
probe circuit is significant. Changes of this kind are
caused by distortions in the region of the probe char-
acteristic near the space potential'-94·95-'. However,
even if the ion part of the probe characteristic is used
and the probe current is much smaller, the probe must
still be sufficiently small E10^.

The plasma region perturbed by the probe has di-
mensions on the order of the impact parameter p 0 at
which the ion strikes the probe. The theory proposed
above for the ion part of the probe characteristic neg-
lects ionization in this region. It can be assumed for
estimating purposes that all the ions produced in this
region as a result of ionization reach the probe. The
current due to these ions is zn0V, where ζ is the
number of ionizations per electron and V is the vol-
ume of the perturbed region, ζ can be estimated from
the balance condition of the positive column E96^. If the
mean free path λ of the ion is much larger than the
tube radius R, then

i s 0.8 \/'~2kTP
Μ

1
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In the opposite case

7 _ /9 A\2 ° a ~ ? -ι/
T ~T~ Ж

(when Те » Τ) . The condition that the probe current
due to ionization in the perturbed region be small com-
pared with the current that goes to the probe from the
unperturbed plasma [formulas (35) and (52)], leads to
the following limitations of the probe dimensions (when
T e » T) . In the case of low pressures (λ » R)

3/4
R

for a spherical probe and

for a cylindrical probe. At high pressures (λ « R)

5/4

for a spherical probe and
3/2

).2-£L(.±_) R

for a cylindrical probe. The sheath radius r s can be
assumed to be equal to the radius of the probe in the
estimates.

Another limitation on the probe dimensions is con-
nected with neglecting the collisions in the unperturbed
region. For the ion current (when Те » Τ) this is
legitimate if p 0 « λ, that is,

1/2

1/4

for a c y l i n d r i c a l p r o b e and

for a s p h e r i c a l p r o b e . F o r t h e e l e c t r o n p a r t of t h e

c h a r a c t e r i s t i c , c o l l i s i o n s c a n b e n e g l e c t e d if the p r o b e

d i m e n s i o n i s m u c h s m a l l e r than t h e m e a n f r e e path of

t h e e l e c t r o n W " 3 .

It i s po inted out in C11^ that i o n s c a n h a v e c l o s e d

o r b i t s i n t h e a t t r a c t i n g f ie ld of the p r o b e . The i o n m a y

g o into s u c h an orb i t on ly a s a r e s u l t of c o l l i s i o n s .

H o w e v e r , t h e popu lat ion of t h e s e o r b i t s w i l l not depend

on t h e c o l l i s i o n f requency, s i n c e t h e i o n c a n l e a v e the

orb i t on ly a s a r e s u l t of c o l l i s i o n s . The a u t h o r s g i v e

for the r a t i o of t h e p r o b e r a d i u s t o the D e b y e r a d i u s ,

a l o w e r l i m i t at w h i c h t h e r e a r e s t i l l no c l o s e d o r b i t s .

If the r a d i u s of t h e p r o b e i s s m a l l e r than that d e t e r -

m i n e d by t h i s c r i t e r i o n , then t h e " c a p t u r e d " i o n s m a y

in f luence t h e d i s t r i b u t i o n of t h e c h a r g e and of t h e p o -

t e n t i a l . An a c c o u n t of t h i s in f luence i s v e r y di f f icult,

but it s e e m s t o u s that i t i s s m a l l under o r d i n a r y d i s -

c h a r g e c o n d i t i o n s . In o r d e r for t h e i o n t o g o into a

c l o s e d orb i t , i t s centr i fuga l f o r c e m u s t b e c o m e equal

to the a t t r a c t i o n f o r c e . Y e t a f ter c o l l i s i o n w i t h n e u -

t r a l a t o m s ( c h a r g e e x c h a n g e ) the i o n s b e c o m e t h e r -

m a l . T h e r e f o r e a v e r y s m a l l f r a c t i o n of t h e c o l l i s i o n s

c a n c a u s e an i o n t o g o into a c l o s e d orbit , w h e r e a s any

c o l l i s i o n c a n t a k e t h e i o n out of the orbit .

The n o n - w o r k i n g p a r t of t h e p r o b e i s p r o t e c t e d w i t h

an i n s u l a t o r , w h i c h b e c o m e s c h a r g e d n e g a t i v e l y in t h e

d i s c h a r g e and i s s u r r o u n d e d by a l a y e r of p o s i t i v e

s p a c e c h a r g e . The l a t t e r d e c r e a s e s the e f f e c t i v e s u r -

f a c e of t h e p r o b e , and t h i s c a n l e a d to e r r o r s in the

d e t e r m i n a t i o n of the c o n c e n t r a t i o n n 0 . An a t t e m p t to

study t h i s e f fec t w a s m a d e i n &*!. i n C 8 5 ] i t i s i n d i -

c a t e d that the c h a r a c t e r i s t i c s of a p l a n e p r o b e b e -

c o m e s d i s t o r t e d n e a r the w a l l , o w i n g to the i n f l u e n c e

of t h e s p a c e - c h a r g e l a y e r at the w a l l . In t h e s a m e i n -

v e s t i g a t i o n , a s tudy w a s m a d e of t h e p r o b e c h a r a c t e r -

i s t i c s for s e v e r a l c y l i n d r i c a l and s p h e r i c a l p r o b e s of

d i f ferent l e n g t h s and d i a m e t e r s , and w i t h d i f ferent

t h i c k n e s s of t h e i n s u l a t i n g s u r f a c e . On t h e b a s i s of

s u c h a c o m p a r i s o n , the author h a s r e a c h e d t h e c o n -

c l u s i o n that t h e m o s t s u i t a b l e for m e a s u r e m e n t s a r e

th in c y l i n d r i c a l p r o b e s w i t h l o n g n o n - i n s u l a t e d s u r -

f a c e s and th in i n s u l a t i o n . When a s h o r t c y l i n d r i c a l

p r o b e i s u s e d , an e r r o r m a y a r i s e a s a r e s u l t of f a i l -

u r e to t a k e into a c c o u n t the c u r r e n t in the end s e c t i o n

of the l a y e r . T h i s q u e s t i o n i s c o n s i d e r e d in ^ " 3 .

3 . Ef fect of o s c i l l a t i o n s of the p l a s m a potent ia l on

t h e p r o b e c h a r a c t e r i s t i c . O s c i l l a t i o n s of t h e p l a s m a

potent ia l in the v i c i n i t y of the p r o b e c a n g r e a t l y d e -

f o r m t h e e l e c t r o n and t h e s t a r t of t h e i o n p a r t of the

c h a r a c t e r i s t i c . If t h e f r e q u e n c y of t h e s e o s c i l l a t i o n s

i s not t o o high, s o that the e l e c t r o n c u r r e n t c a n r e a c h

s t e a d y s t a t e w i th in one p e r i o d ( w i t h i n a p p r o x i m a t e l y

t h e t i m e of p a s s a g e of t h e e l e c t r o n through t h e p e r -

turbed r e g i o n ) , t h e n the i n s t r u m e n t a v e r a g e s the c u r -

rent . T h e s t r o n g n o n l i n e a r i t y of the p r o b e c h a r a c t e r -

i s t i c c a u s e s d i s t o r t i o n (F ig . 24) M .

As can be seen from Fig. 24, the temperature Те
will be overestimated. The influence of the oscilla-
tions on the probe current was observed in [50,95,100]
and methods were proposed to suppress the oscilla-
tions. The question of the influence of oscillations on
the characteristic is also discussed in C1103.

4. Effect of an electron emission from the probe.
The emission may be due to impact by positive ions,
metastable atoms, and photons. This leads to an over-
estimate of the ion current at negative probe potentials.
In order to estimate the emission due to positive ions,

• u

FIG. 24. Influence of oscillations on the probe character-
istic. The dashed line shows the distorted characteristic.
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it is necessary to know the coefficient of secondary
emission from the probe material for ions with energy
corresponding to the negative potential of the probe.
For energies lower than 100 V, the emission coefficient
is of the order of ΙΟ"1—1Ο~2 [ 5 τ : ]. It must be borne in
mind that contamination of the probe surface may in-
crease the emission coefficient.

Emission under the influence of metastable atoms
and photons was investigated in many studies [101>i°2.53.
This effect should be most strongly pronounced in inert
gases, which have high excitation potentials. In ^ the
value obtained for the ratio of the emission current for
a discharge in argon, at pressures 10"3—1 mm Hg and
currents 200—100 mA (under the influence of meta-
stable atoms and photons), to the ion current in the
probe is from 5 to 20%. To estimate the emission it is
necessary to know the concentration of the excited
atoms in the discharge. The emission current under
the influence of the metastable atoms is given by the
expression ,

en™vS у

w h e r e n m i s t h e c o n c e n t r a t i o n o f t h e m e t a s t a b l e a t o m s ,

ν their average velocity, S the probe surface area,
and y m the emission coefficient, which is of the order
of 10"1—1O"2^5 T > 1 0 9^. The emission current under the
influence of photons can be estimated from the for-

-•Yph.

where na — concentration of the excited atoms, kg —
absorption coefficient, τ — lifetime of the excited
atom, and yph —quantum yield. Some data on γ ρ η

are contained in С57»109!. An example of such an esti-
mate is given in C104^. At large negative probe poten-
tials (on the order of hundreds of electron volts), in-
tense impact ionization by electrons knocked out from
the probe is possible, along with avalanche formation.
This is apparently the cause of the sharp increase of
the ion current in the probe, observed at these poten-
tials. This section of the characteristic can therefore
not be used for the measurement of the plasma pa-
rameters .

30. Conclusion

The method of Langmuir probes is reliably based
both theoretically and experimentally for the investi-
gation of an isotropic low-pressure plasma in suffi-
ciently weak magnetic fields. Further development
of probe procedures must proceed, in our opinion,
along the following main lines.

1. Use of probes at pressures when the mean free
path of the plasma particles is smaller than the probe
dimensions. Attempts to extend the probe theory to
t h i s c a s e w e r e m a d e i n С1О5,Ю6] ш [104] а m e t h o d i s

g i v e n f o r f i n d i n g t h e p l a s m a p a r a m e t e r s a n d f o r t h e

m e a s u r e m e n t of t h e p a r a m e t e r s i n m e r c u r y a n d i n e r t

g a s e s i n t h e p r e s s u r e i n t e r v a l 1—20 m m Hg. It i s d e -

s i r a b l e t o a c c u m u l a t e f u r t h e r e x p e r i m e n t a l m a t e r i a l ,

p a r t i c u l a r l y a t h i g h p r e s s u r e s .

2 . P r o b e m e a s u r e m e n t s i n t h e p r e s e n c e of d i r e c -

t i o n a l m o t i o n i n t h e p l a s m a . T h e m a t e r i a l r e p o r t e d i n

S e c . 24 s h o w s t h a t t h e r e i s s t i l l n o s a t i s f a c t o r y s o l u -

t i o n of t h i s p r o b l e m .

3. U s e of p r o b e s i n t h e p r e s e n c e of a s t r o n g m a g -

n e t i c f i e l d . In s p i t e of t h e i m p o r t a n c e of t h i s q u e s t i o n ,

t h e r e h a s b e e n n o a p p r e c i a b l e p r o g r e s s i n t h i s d i r e c -

t i o n t o d a t e .

4 . N o t s t r i c t l y M a x w e l l i a n v e l o c i t y d i s t r i b u t i o n of

t h e e l e c t r o n s . D e v i a t i o n s a r e p a r t i c u l a r l y s i g n i f i c a n t

i n t h e e n e r g y r e g i o n i n w h i c h i n e l a s t i c c o l l i s i o n s a r e

possible С1 0 7>ш]_ Particular interest attaches there-
fore to further improvement of methods for determin-
ing the electron distribution function, particularly at
high energies.

LIST OF SYMBOLS

fo(v), F0(v) — electron and ion velocity distribution func-
tions in plasma,

u0 — plasma potential relative to the anode or
cathode (space potential),

u — potential of probe relative to the anode or
cathode,

—V(r) — potential of a given point in the vicinity of
the probe relative to the unperturbed plasma,

—V(a) = —V — potential of the probe relative to the unper-
turbed plasma,

—Vj — potential of isolated (floating) probe relative
to the unperturbed plasma,

—ie — electron current in probe,
ip — ion current in probe,
i — total current in probe,

—i0 — electron current in probe at space potential,
—je — density of electron current in probe,

n0 — concentration of electrons in plasma,
ne(0» np(r) — concentration of electrons and ions in the

vicinity of the probe,
Te> Tp — temperatures of electron and ion gases,
ve, vp — average velocities of electrons and ions,

е„ — quantity on the order of the average ion

energy,

a — probe radius,

rp — radius of ion layer,

r s — radius of space charge sheath.

r; — radius of limitation sphere,

S — probe area

h = (кТе/4пп0е
2Ул- Debye radius,

e — absolute value of electron (ion) charge,

m, Μ — masses of electron and ion,

χ = r/th x s =. r s/r/, x p = гр/гг, у = £о/кТе,

ту = eV(r)/kT e, η ι = eV(r,)/kT e, η5 =

= eV(r s )/kT e , 7/p = eV(r p )/kT e - dimensionless

quantities.
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