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INTRODUCTION second case the monopole transition competes with

IN the most general case, the transition of a nucleus
from an excited state to a lower one can proceed via
simultaneous emission of several photons, conversion
electrons, and electron-positron pairs.* However,
the most probable process accompanying a nuclear
transition is usually the emission of a single photon.
The emission of one electron or of one pair has a
lower probability, but becomes particularly impor-
tant if the single-photon transition is forbidden. All
the remaining processes are much less probable
compared with the first three, and play a considera-
ble role only in those cases when the first three
processes are simultaneously forbidden.

We can classify nuclear transition by the magni-
tude of the total angular momentum L carried away
by the emitted photons, electrons, and pairs. Thus,
for example, if L = 2, then the transition is called
quadrupole; if L = 1, the transition is dipole.T On
the other hand, if the total angular momentum of the
particles emitted in a nuclear transition is zero, this
is a monopole transition.

Since the angular momentum of one photon cannot
be equal to zero, single photon emission is absolutely
forbidden in monopole transitions. I

From the angular momentum conservation law we
have |Jj — Jf| = L. = Jj + Jf, where Ji and Jf are
the total angular momenta of the nucleus in the initial
and final states. It follows therefore that monopole
transitions are possible only if the total angular mo-
mentum of the nucleus remains unchanged, that is,
when (a) Jj=Jf=0 and (b) Jj = Jf = 0. In the
former case the monopole transition is the only one
possible (zero-zero nuclear transition), and in the

*The latter is possible if the energy of the nuclear transition is
A > Zmyc?, where m,c? is the electron rest energy.

T According to the conventional classification of transitions in
the theory of multipole radiation.[*7]

1In the customarily employed first two orders of perturbation

theory (see the end of Sec. 1 conceming the higher approximations).

the other non-monopole transitions (J-J nuclear
transition).

Monopole transitions can be broken up into two
classes, depending on whether the parity of the state
of the nucleus changes during the transition or not.
Monopole transition without change in parity are
called electric or EO0 transitions, while monopole
transitions with change in parity are called magnetic
or MO transitions (in accordance with the standard
classification [T }. The main cause of EO0 transi-
tions is the Coulomb interaction between the nucleons
of the nucleus and the electrons of the atomic shell
or the Dirac background.* The remaining interac-
tions, both electromagnetic and non-electromagnetic,
are usually negligibly small in E0 transitions. To
the contrary, MO transitions are caused also by non-
Coulomb electromagnetic and non-electromagnetic
interactions, and for suitable values of the transition
energy and of the charge of the nucleus, the latter
can predominate over the former.

In EO transitions, the most probable processes
are the emission of one internal-conversion electron
or electron-positron pair. These processes are com-
pletely forbidden in MO transitions (in the customar-
ily employed first two orders of perturbation theory).
In the latter case, simultaneous emission of two par-
ticles is the most probable (for example, the emis-
sion of two photons or of one photon and one electron
and similar processes).

A characteristic feature of E0 transitions is that
the Coulomb interaction between the protons of the
nucleon and the electrons of the shell or the Dirac
background, which causes these transitions, takes
place inside the nucleus (since the monopole moment
is constant outside the nuclear volume).¥ Therefore

*Therefore E° transitions are also called Coulomb transitions.

It must be noted that the principal role is played here by the
Coulomb interaction between the protons and those electrons which
are in states with total angular momentum j = 1/2, for they stay
inside the nucleus longer than the others.
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the probability of electric monopole transitions de-
pends to a considerable degree on the distribution of
the charges in the nucleus and on the state of the
nucleus. It follows therefore that the investigation of
EO transitions of nuclei is quite useful for the study
of the subtle details of nuclear structure or the suita-
bility of some particular nuclear model.

Monopole transitions can be observed both in
naturally radioactive elements and in nuclei which
are products of various nuclear reactions. It is also
possible to excite monopole transitions by inelastic
collisions hetween the electrons and the nuclei.

For a long time (from 1930 through 1948) there
were only two known electric monopole transitions,

the 0*—0* transitions of RaC’( Po?!*) and O, This

was followed by discovery of the 0*—0* transition of
Ge'? (1948), and starting with 1952—of C'2 and many
other nuclei. For a theoretical explanation of 0*—0*
transitions various nuclear models are used with
lesser or greater success (singie-particle, shell,
unified, etc.). Since 1955, EO0 transitions of the
2*—2* type, occurring in even-even nuclei such as
pt'%, U2%, pu?®, etc. are also under investigation.
In connection with the description of the levels of
some of these nuclei on the basis of the non-axial
nuclear model of A. S. Davydov and G. F. Filippov,
investigations of EO transitions of the 2"—2* type
assume particular significance.

At present there are already more than 20 known
observed electric monopole transitions. The data on
the experimental observation of magnetic monopole
transitions are still doubtful (see page 729).

Sections 1 and 2 of this review are devoted to the
general theory and electron excitation of monopole
transitions. In the other two sections are given ex-
amples of monopole transitions of individual nuclei
and theoretical estimates of the nuclear matrix ele-
ment of the monopole on the basis of various nuclear
models. Brief deductions are given in the conclusion.

1. GENERAL THEORY OF MONOPOLE NUCLEAR
TRANSITIONS

We consider first electric monopole transitions.
The cause of the EO transitions is the Coulomb in-
teraction of the nucleus with the electron shell of the
atom (attempts to attribute one of the causes to non-
electromagnetic interactions will be discussed later).

As already mentioned in the introduction, deexcita-
tion of the excited nucleon via an EO0 transition cannot
be accompanied by emission of a single y quantum.
On the other hand, two-photon emission and other
multiple-particle emission in E0 transitions are
much less probable than the emission of conversion
electrons or the creation of electron-positron pairs.

An important problem of the theory is the calcula-
tion of the probability of electron conversion in EO
transitions. The calculations are by perturbation

theory, according to which the general formula for
the probability of the conversion transition has the
form 15

W=2x3|Hjy|* e, (1.1)

where the summation is over all possible initial and
final states of the electron spin and pf is the ‘‘state
density’’ of the conversion electron, that is, the num-
ber of states of the continuous spectrum per unit
energy interval*, while H{; is given in the relativistic
system of units, assuming an electromagnetic inter-
action between the nucleus and the electron shell of
the atom, by the relation%

1
Hiy= a2 { dr' { dr {47 () oy (1) i ()

Vaue Vauc

iR | p g’ |

— 970 % (M) e ()} i (1.2)
Here Vyye is the region occupied by the nucleus (we
shall henceforth not indicate explicitly integration
over this region), yj—relativistic wave function of the
electron in the initial statet , y—wave function of
the electron in the final state belonging to the contin-
uous energy spectrum, p(r’) and j(r’)—density of
the charges and currents produced by the nucleons of
the nucleus; a—Dirac velocity operator, a—fine-
structure constant, and k—energy of the transition.
Relation (1.2) can be represented in the form

1
Hy=—a | (jy@A®—ey@o@idr,  (1.3)
where A(r) and ¢(r) are the potentials of the
nuclear charges and currents. In view of the fact that
the EO transition is due to the spherically-symmetri-
cal part of the density of these charges and currents,
we can put 59

P(r)=9(r), (1.4)

where ¢(r) and A(r) are scalar functions.
Eliminating with the aid of the gauge transforma-
tion the vector potential from (1.3), and making the

substitution p(r’) — pif(r’) = e\P’f“ ¥;, where ¥y and

¥ are the wave functions of the initial and final states
of the nucleus, and taking into account the interaction
between the electron and all the protons of the nu-
cleus, we readily reduce the matrix element Hjs to
the form

A (r)= A (r),

Hy=—a3) { {05097 0 Vo) b () 1722 -

2) Tl (1.5)
*In the calculation of the probability of pair conversion it is
necessary to insert into p¢ also a factor that depends on the posi-

tron momentum and energy.[*]

TIn a state belonging to the discrete energy spectrum, if we
calculate the probability of electron econversion, or in a state be-
longing to the continuous spectrum of the negative energy levels,
if the probability of pair conversions is calculated.
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Inasmuch as integration in (1.5) is over the volume
of the nucleus, the quantity H{f and consequently the
probability of the EO transition depends on the
values of the electron wave functions inside the
nucleus. It follows therefore that the EO0 transitions
are due principally to the interaction between the
nucleons and the electrons whose probability of stay
inside the nucleus is maximal. These are the elec-
trons 19 with angular momentum j = Y.

The formula (1.5) can be also written in the form

Hij= S Qs (F) @ (') dr, (1.6)
where & satisfies the equation
AD = —epfp;. (1.7

Since p(r’) is spherically symmetrical, (1.6) will
differ from zero only for the symmetrical part of the
potential &. Because of this, it is first necessary to
average the right half of (1.7) over the angles and re-
place the Laplace operator by its radial part before
proceeding to the solution.

By assuming that the electron wave function y
varies very little inside the nucleus, we can regard
it as constant in the zeroth approximation. Then Eq.
(1.7) is written in the form

AD = — egy, (1.7%)

where
20 =17(0)9, (0),

and only the symmetrical solution of (1.7/) gives a
non-zero contribution to (1.6). This solution will
consist of the general symmetrical solution of the
equation A% = 0, and the particular solution of the
d?(ré )
dr?

(1.8)

o1 .
equation 7 = —ep,, that is,

C
O=Cr+2— 5 or.
The potential & cannot equal C,; because of the
orthogonality of the nuclear wave functions. We can-

not put & = Cp/r for & must be finite at the center
of the nucleus. It follows therefore that

(1.9)

®= ——%gm. (1.10)
Substituting (1.10) in (1.6) we get
Hig= — 2597 (0) :(0) Qo (1.11)
where
Q=1 g VI, radr (1.12)

is the ‘‘zeroth moment” of the nucleus'™. We see
from (1.12) that Q, is comparable in order of magni-
tude with the quadrupole moment of the nucleus.

The matrix element Hj; can be calculated with
greater accuracy by taking into account the variation
of the electron wave function y inside the nucleus.

To this end we expand the radial part of the function
¢ in a Taylor series about the point r = 0 and con-
fine ourselves to the first two terms of the expansion
00, If we assume that the nuclear charge density
obeys the condition rzq( r)— 0 as r — 0, then the
expansions of the radial parts of the ‘‘large’’ and
‘‘small’”’ components of the Dirac wave functions ¢,
for the case when the conversion electron is in
states with j = 1/2, will have the respective forms

(gsl/21 fp1/2)=C(1+ar2+...), (1.13)
(Fsjyr 8o1y)) =C(O+br4...). (1.14)

Using (1.13) and (1.14) and calculations similar to
those of Church and Weneser ") we obtain

Hiy =+ oC,CiRY, (1.15)

where
Q=2SW}[(%)Z'—U<%>L+...]‘I’idr (1.16)
P

(the summation is over all the protons of the nucleus),
R is the radius of the nucleus, and

o= — (%) (a;+bibs+a}) R (1.17)

The dimensionless parameter p is called the re-
duced nuclear matrix element of the electric mono-
pole 1, while the quantity

M =oR? (1.18)

is the nuclear matrix element of the electric mono-
pole.*

Let us focus our attention on the estimate of 0. In
particular [0

Oy mpy =35 | (E=VP+(E+1) =V +5 @k 4 (k£2)],

(1.19)
where € is the total energy of the bound electron, V
the electrostatic potential at the center of the nucleus
(of the order of ¢Z/R), and k is the nuclear transi-
tion energy (in units of m,c?). For | V| > € the
correction ¢ depends very little on the type of elec-
tron shell or the nuclear transition energy. In this
case o is approximately equal to

o R?_ (a2)

15 B < 1. (1.20)

Figure 1 shows a plot of o against Z for a definite
nuclear transition energy A = 511 keV under various
assumptions concerning the distribution of the charge
in the nucleus H%, Curve 1 corresponds to uniform
distribution of the charge over the surface of the nu-
cleus, curve 2 is obtained for uniform volume distri-
bution of the nuclear charge, and curve 3 corresponds
to a nuclear charge with density q(r) ~ 1/r. In all
cases, as can be seen from the plot, ¢ lies in the

*We shall henceforth leave out the word ““electric.”’
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approximate range 1072 = ¢ = 107! for 50 < Z =< 90.
Consequently, the second term in the sum under the
integral sign in (1.16) is usually neglected, and if it
is further recognized that the remaining terms of the
sum are also small, the matrix elements M and p
are determined exclusively by the properties of the
nuclear wave functions; they assume the respective
forms

(1.21)

= S‘I’;(gﬁ,)‘l’idr,
0= { % (3 7) viar.

We have determined the matrix elements M and
p for EO transitions evoked by the interaction be-
tween the nuclear nucleons and the j = % electron.
For the case of interaction between the nucleus and
an electron with any j, we obtain the values of M and
p from (1.21) and (1.22) by making the substitutions
rf)—’ ( rp)2J+1 and (rp/R)? — (rp /R)H*! respec-
tively [12. In the calculatmn of the probability of the
EO0 transition with the aid of the electron Coulomb
functions of a point nucleus we obtain for M (13]

= S W;(Z ("p)zv> ¥;dr,

(1.22)

(1.21%)

where
v=V (i+5) —o2.

After substituting (1.15) in (1.1) we can write the
conversion probability in E0 transition in the form

W, =0, (1.23)

where the factor Qe does not depend on the spin
states of the nucleus and is completely determined
by the electron wave functions. A relatively simple
analytic formula for Qg, called the reduced proba-
bility of the conversion EO transition, is obtained in
the socalled ‘‘point nucleus’’ approximation (], Then
a=b = 0. The constants Cj and Cf are determined
from the electron Coulomb functions for a point
nucleus, if we put r = R. If ¢aZR and pR « 1 (p is
the momentum of the electron), then the reduced
probability Qe for the K shell will, in accordance

with Church and Weneser, be given by the formula

2 1 €+
“x gﬁr(znn POV 20zRY2F (2, p),  (1.24)
where
—_ 23+ gy—g NAZS iaZe
F(Z’p)_[T(ZY_—l—ﬁF@ R)Y e Pl[‘(y-}— )' (1. 25)

is the Ferm1 function for the ﬁ decay, vy=[1
—(aZ)?]V? and € = (p? + 1)V2. The result (1.24) is
quite close to the results of other calculations of
Lk [13_14’7]. In particular, according to Thomas BLY
Qg is obtained from (1.24) by multiplication by a
factor [1+ (1 —¥)/V3(1+ v)]% which does not
differ much from unity.* The result of the approxi-
mate calculation of Qg made by Blatt and Weisskopf
1) exceeds (1.24), taken in the nonrelativistic ap-
prox1mat10n£ ﬂ, by a factor of 4.1
The calculation of the relative reduced probabili-
ties © for different shells or subshells, according to
Church and Weneser, yields
K _ 2P (g F (Z, pr) (1) 2%V42 (1.26)
L p,(er+¥)F(Z, p)(z+2) 2y+1)’ )
L_et9e—eE+y b 5 (140 (a2
Ly @—x)x+1)e—V ' Ly (aZ)2(el— y2) ’

where

(1.27)

z=V2(1+y), ex..=V pko+1.

In the absence of screening €g =k + vy and €1, =k
+x/2, where k is the nuclear transition energy (in
units of mgyc?).

Figure 2 shows graphically the dependence of Qg
on Z and k, established on the basis of (1.24) and
(1.25), corrected for (a) the finite nuclear size, (b)
the screening effect, and (c) account of the terms of
order a¢ZR and pR in the Dirac wave function (]

The calculation of {ig with finite nuclear size
effects taken into account leads to an increase in the
result of (1.24) by a small amount, which increases
with Z. In view of the fact that usually € « | V|, the
effect of the finite nuclear size is practically the
same on the bound and on the free electrons, and de-
pends very little on the nuclear transition energy.
The reduced probability Qg changes relatively little
with the three nuclear charge distributions which
were considered above (see Fig. 1) (by 10% for q(r)
~&(r — R), by 30% for q(r) ~ r’ and by 50% for

q(r) ~ r'l) The curves of Fig. 2 have been obtained
assuming a uniform charge distribution over the
volume of a nucleus with radius 1.20 x 1073 AY3 cm

The screening reduces somewhat the result (1.24)
and is stronger for L electrons than for K electrons.
The effect of screening on the electron functions of

*Thomas obtained his result assuming some definite distribu-
tion of nuclear charge. This distribution, however, is not specified
in [14].

{ Owing to the neglect of one monopole term in the expansion
of 1/|r — rp| in multipoles.
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the continuous spectrum is appreciable only near the
conversion threshold, so that with increasing nuclear
transition energy it decreases rather rapidly (the
correction to © due to this effect is not included in
the curves of Fig. 2). The effect of screening de-
creases with increasing Z.

An account of all three corrections in accordance
with Church and Weneser L1 leads to an increase of
&, for both K and L shells, compared with (1.24),
by 25 and 15% respectively for Z = 85 and by smaller
values for low Z.

The dependence of £ on the energy of the nuclear
transition is due to the behavior of the continuum
electron wave function near the nucleus. Figure 2
shows that { increases relatively weakly with k, but
depends strongly on Z. The considerable growth of
Q with Z is explained as follows. The EO transi-
tions, as already mentioned, are due to Coulomb
interaction between the nuclear protons and the
atomic electrons which penetrate inside the nucleus.
EO conversion will consequently be most probable in
atomic shells (or subshells) located as close as pos-
sible to the center of the nucleus. It follows there-
fore that @ should increase approximately like
(R/az)® or Z* (here ayz = ap/Z and a, is the radius
of the first Bohr orbit). Since the shells (or sub-
shells) that are closest to the center of the nucleus

do not have an orbital angular momentum different
from zero, the EO0 conversion takes place predom-
inantly on the s/, subshells (K, Lj, Myr). However,
the K shell is the closest among them, Ly is some-
what farther, and Mj still farther. Therefore & will
be maximal on the K shell, less on the Ly subshell,
and still less on the My subshell. In the nonrelativ-
istic case the relative probability of the E0 conver-
sion on these subshells is given by the simple rela-
tion [15]
K:LI:M1=1:%:%.

Figure 3 shows the dependence of the relative EO0
conversion K/L on Z and k, established under the
assumption that the reduced nuclear matrix elements
of the monopole p is the same for the K and for the
L shells. In the calculation of the curves of Fig. 3,
no account was taken of the effect of screening on the
electron wave functions of the continuous spectrum,
which noticeably affects the accuracy of K/L only
near the threshold of conversion on the K shell (1]
(the latter is noted in Figs. 2 and 3 by dashed lines).
As can be seen from Fig. 3, K/L decreases notice-
ably with increasing Z and increases with k, as is
the case also in multipole transitions (see "~1, at
that K/L for the Ml transitions increases with
increasing transition energy just as weakly as K/L
for the EO transitions, while K/L increases for E2
transitions much faster with k [t ).

The results of the Church and Weneser calcula-
tions for Li/LjI are shown in Fig. 4 for EO transi-
tions. For comparison, the same figure shows the
k-dependence of the ratio Li/Lir for M1 transitions
(dashed curves) for Z = 25, 55, and 85. Comparison
shows that EO transitions can be distinguished from
M1 transitions by the values of Li/Ljy. In addition,
from the behavior of the curves of the EO transitions
it can be concluded that EO conversion on the Ly
subshell becomes appreciable only for heavy elements
and large transition energies.
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Table I
Nucleus | &, met | Qg sec™ 2. sec™ LL—I % | KiLp ¥Lrr *L
I
Cafd 6.7 ~4.107 | 5.05-108 342 0.99 | 7.8 0.965 0.97
Gels 1.4 0 2.56.108 198 0.96 | 7.4 0.83 0.945
Zrys 3.5 ~1.4.108 1.16-1080 | 102 0.87 | 7.6 0.88 0.88
Ppqles 2.27 — 3.54-1010 71 0.88 | 6.9 0.87 0.87
S H 2.85 ~8.7-108 | 8.45-1012 19.6 | 0.68 | 5.3 0.77 0.75

E; conversion on the Lyiy subshell is very small
for all values of Z and k, and is weaker than the E,
conversion on the Ly subshell by a factor 108—10° €],
Therefore direct E0 conversion on the Ly subshell
has very low probability. It is indicated [16] that there
is another way of LJII-electron conversion, in which
the Ly electron first goes over into a virtual sy,
state (or py/, state) with simultaneous emission of
an El-quantum (or M1 and E2 quanta), after which
it ‘“‘converts’’ in the EO nuclear transition. The
probability of such a process, calculated by
Grechukhin [1®) with the aid of the Coulomb functions
of the electron in the field of the nucleus, without ac-
count of screening, turns out to exceed, in the case
of the emission of an El-quantum, the probability of
direct EO conversion on the LJII subshell by more
than 10—10° times. On the other hand, the case of
emission of M1 and E2 quanta by the Ljj1 electron
with subsequent EO0 conversion has much lower prob-
ability.

E0 conversion on the My 1 and other shells,
located above the M shells, has so far not been
sufficiently well investigated. In ! the ratio LI/Mg
is estimated to be approximately equal to 3 (for the
cases of practical significance).

The theoretical results on electron EO0 conversion,
obtained by Church and Weneser and given by us in
Figs. 2—4, have been qualitatively confirmed by
Grechukhin’s calculation "%, carried out with the aid
of relativistic wave functions of the electron (situated
in a field of a nucleus with uniform volume charge)
without account of screening.* Grechukhin gives an
analytic expression for Qg (which we do not present
here because of its unwieldiness) and numerical
values of Qk, K/L1 and Lj/Ly for several E0 nu-
clear transitions (Table I). In the table are indicated
also the ratios («) of the values of g, Qy,11, and
Q1,, calculated with the aid of the Coulomb functions
of the point nucleus, to the values of the same quanti-
ties calculated with account of the finite nuclear size.

The effect of the finite nuclear size on the value
of ik was also investigated by Reiner [”_18], who
showed that the results of different calculations of the

*A quantitative comparison of Grechukhin results with those
of Church and Weneser is made difficult by the fact that the latter
have been obtained with account of the screening and are presented
only in graphic form.

probability of electronic E0 conversion can be
represented in the form

We(E0)=B(Z)F(Z, &, R)IM[’, (1.28)

where the factors F(Z, €, R) are the same for all
the results.

The difference in the calculation methods is mani-
fest only in the value of B(Z). Thus, for WK (EO0)
calculated in the ‘‘point’’ nucleus approximation we
have in accordance with (1.24) and (1.25)

B(2)=4(1+17, (1.29)

while a calculation of WK ( E0) under the assumption
of a uniform volume charge distribution yields

.__§_ 2 2y i
BO=5 0V mmraronm] - 190

where y;(R) and yx,(R) are the values of the radial
functions which are the solutions of the Dirac equa-
tion in the region r < R and on the surface of the
nucleus, respectively. x;(R) and xy(R) are normal-
ized to obtain lim xs(r)=1 as r — 0.

Figure 5 shows plots of B(Z) for different cal-
culations of Wk (E0) 18, Curves 1—4 have been ob-
tained: (1) assuming uniform distribution of the
nuclear charge ¥, (2) assuming a ““point”’ nucleus H1
[from Formulas (1.24) and (1.25)], (3) after Thomas!14,
and (4) with the aid of the Coulomb functions of the
point nucleus [1%.

The results of Church and Weneser were than re-
fined somewhat by Listengarten and Band (18] They
have shown that if we take account of the effective
screening on the electron wave functions of the con-
tinuous spectrum in calculating the reduced EO0 con-
version probability, then the results of Church and

6(2)
40+ 1

356 2
o+ J

20

10+
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Weneser must be reduced by 8% (Z = 98), 6% (Z = 73),
and 2% ( Z = 49) at transition energies that differ
little {by 50—100 ke V) from the threshold value of the
energy for conversion. Listengarten and Band used in
their calculations also the model of a nucleus in the
form of a uniformly charged sphere of radius

R = 1.20 x 10" AY3 ¢m, and, in addition, the statis-
tical Thomas-Fermi-Dirac atomic model (see [19]).
Figures 6 and 7 show their results for & (Z, k) in
the case of EO conversion on the Ly subshell, and
the ratio K/LJ.

A monopole electric nuclear transition can be ac-
companied at transition energies A > moc2 by produc-
tion of electron-positron pairs. The probability of a
pair conversion can also be represented in the form
(1.23)

W (EO) = 02Qx (EO), (1.31)

w2
98

NS

T T T TTTT
—

f MI1(2-98) .~

L\

-

T
—

0"

—
1

T T T
K
)
-
I 11 () ll

IQ ” /
g.;w’ E_/ 77 —::j]
] [ 3
L ~
SR 1
e
)
w0 6 —
- 4
| |
49
wiE Y
- ‘\:/ .
c N
1 i 1 PV
q02 aos Qo g2 850 109
e G
/7701,‘
FIG. 6.
L .
b 49 ]
] ————— _
N
N 6! ]
e
sl .
N 8
— M1(z-98) |
I \\___JQ’——"-/
¢} ~ J
a, alz A . ali L J~A;A_Lll” 1 za
k-pidy
FIG. 7.

721

where the factor {.; depends principally on the form
of the wave functions belonging to the continuous
spectrum of both the positive and negative electron
levels, and p is the reduced nuclear matrix element
of the monopole. The differential probability for the
production of electron-positron pairs, calculated in
the Born aplﬁ)roximation after Oppenheimer [203,
Sakharov 2 , and Dalitz [22] i the relativistic unit
system is of the form

dWy =P (8)de; dQ=| M P52% (e, 6 — 1+ p, p-cos8) de. dQ,
(1.32)

where 60 is the angle between the directions of mo-
tion of the electron and positron, p,, p_, €,, and €_
their momenta and energies, and the transition energy
is A=¢g_+ &_. Integration of (1.32) with respect to
df or d&, establishes the form of the positron spec-
trum or the angular distribution of the electrons and
positrons.

The total probability W, was first obtained in the
Born approximation for very large transition ener-
gies (A > myc?) by Oppenheimer and Schwinger 2%

AS e2 \2
ia) (5e) -
A more accurate expression for Wy, calculated in

the Born approximation, is given by Dalitz ?%) (in the
relativistic system of units)

om P () ($40)

1 4 \2
x {i+5<s+??o:2(s+?> E(s)

(1 —s2) (52455 —2)
— s K(S)} ’

Wi (E 0)=|M;2E§_ﬂ (1.33)

(1.34)

where s = (k — 2)/(k + 2), k is the transition energy
in myc? units, and K(s) and E(s) are the first and
second complete elliptic integrals.

If we take into account the interaction between the
pair components, then (1.32) must be multipled by a
correction factor, calculated in the Born approxima-
tion by Sakharov D‘ﬂ,

2nn

T= 1—p—2m0 °

(1.35)
Here n = ez/v, where e is the electron charge and v
is the relative velocity, both in the relativistic sys-
tem of units. The calculation is based on the assump-
tion that the interaction between the electron and the
positron influences appreciably the value of dWy

only at small relative velocities, so that this interac-
tion can be treated in the center of gravity system of
the electron and positron as a simple Coulomb inter-
action —e¥r.

Dalitz 22 investigated the influence of vacuum
polarization, radiative corrections, and internal
bremsstrahlung, and also the influence of the Coulomb
field of the nucleus on the probability of the EO pair
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conversion. We shall not write out the rather cum-
bersome formulas he obtained for dWy, and only
present for illustration the changes which occur in
the differential angular distribution of the electrons
and positrons, that is, in the function

(0, &4, e)=¢e;6_.— 1+ p,p_cosH. (1.36)

Calculations with account of vacuum polarization
and radiative corrections yield*

e2(e.—e_)u

a0 (1.3DT

(0, ey, e )=¢e,ec—1+ p,p_cosO4
where u is connected with the relative velocity v by

v=th2u. (1.38)

The influence of the Coulomb field also changes {
the function (1.36):

F(0, e, e )=g,6_ —1+0?Z%4 (p,p-— 0?2 cosB. (1.39)

Investigations have shown 2] that the electron-
positron interaction, which is accounted for by the
factor (1.35), plays a role only at transition energies
A that are low, close to the threshold, while the
radiative corrections, on the contrary, play a role at
large transition energies. However for medium A,
for example for A (0'%)=6.05 MeV, the radiative
corrections can reduce Wy only by 0.7% . Numerical
calculations for O!® lead to the conclusion that the
corrections produce the greatest effect at small
angles 6 = 0 (by 2.3% for the solid angle £ = 10°,
due to the interaction of the pair particles) and for
9 = 180° (by 5%, due to the internal bremsstrahlung).
The Coulomb field, as can be seen from Dalitz’
formula (1.39), has little influence on the angular
distribution in the case of small Z, with the excep-
tion of angles close to § = 180°, for which the number
of slow electrons and positrons is largest. Even for
6 = 180°, the total number of pairs for O de-
creases, according to Dalitz, by less than 1% as a
result of this effect 2,

The internal bremsstrahlung accompanying the EO
conversion was investigated also by I. S. Shapiro and
Yu. V. Orlov 2620, They calculated in the Born ap-
proximation on the differential and integral relative
probabilities of this radiation, emitted both by the
conversion electron 26 and by the pair components b1
in 0—0F transitions. Figure 8 shows by way of an
example the energy spectrum of internal brems-
strahiung photons obtained by Orlov L1 , accompany-
ing the pair EO conversion of the following nuclei:

1) O with transition energy 6.06 MeV, and 2) C'?
with transition energy 7.66 MeV. The abscissas are
the photon energies w (in mgy? units), and the

*The expression for f(f,e+, e-) obtained with account of internal

bremsstrahlung, is too cumbersome.[??]

tsh = sinh, th = tanh,

{Formula (1.39) has been obtained for electrons with j = 1/2.
For j = 3/2 it is necessary to replace a’Z* by A%,

ordinates are the values of wN;(w) and wN;(w),
which are the differential relative probabilities of
internal bremsstrahlung for O and C!2, respec-
tively, multiplied by w. The integral relative proba-
bility of this process is Ny = 3.3 x 1073 for 0% and
N, = 3.96 x 107° for C'2. These values agree also in
order of magnitude with the integral relative proba-
bility of internal bremsstrahlung accompanying elec-
tron EO0 conversion Ge, 210,

More accurate calculations for both the differen-
tial and integral probabilities of pair conversion in
the EO transition, carried out with account of the
Coulomb field of the nucleus, are contained in [12-14:28],
In (% vukawa and Sakata have determined the form of
the positron spectrum for Z = 84 and a transition
energy 1416 keV. Thomas obtained L] the following
formula for Wy, assuming a certain distribution of
the nuclear charge (which, however, is not specifically
described)

. B—1
W= |M\2§n(8;ﬁ S (e4e-—¥")

X p+p- F(Z, p.) F(Z, p-) des, (1.40)
where €_, p_ and €,, p, are the total energies and
momenta of the electron and positron, respectively,
k is the transition energy in mgc? units, and the
functions F, and F_ are given by (1.25). The inte-
gration in (1.40) has been carried out by numerical
means. Grechukhin "% gives a rather cumbersome
analytic expression for the differential probability
dW,, obtained with the aid of the wave functions y;
and yf of an electron with arbitrary j, situated in
the field of a uniformly charged spherical nucleus.
The calculations have been carried out without ac-
count of screening. Owing to the use of the condition
k’R « 1 in the calculations (k’ is the electron wave
vector), the region of applicability of the foregoing
expression is limited to electron energies €, < 15
MeV. The numerical values of the total probability
Wi are given by Grechukhin only for three nuclei and
for three values of the transition energy L12] (see
Table I).

Zyryanova and Krutov (28] expressed the total
probability of pair E0 conversion in 0¥—0% transi-
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tions in terms of the area of the positron spectrum S,
by means of a very simple relation

4

, nat 3 2 -1
W (E0) = Q0 (E0) =* I A° ST sec™! (1.41)
In the derivation of this relation, the following esti-
mate was used, after Drell and Rose®™, for the

nuclear matrix element of the rr}onopole
e 3\2
M= e (2m002 4 ) *

By comparing (1.42) with the experimental values of
M for O, RaC’, and Ge'? it is established ), that
p can range for these nuclei between % and Y,.*

The value of S is calculated from

(1.42)

h—1{ h—1{
S={ Flen 2yde= | {(ift+gogty

1 1

+ (Foaff + 85285 hr=r des, (1.43)

where f and g are the radial parts of the wave func-
tions of the y; and yf electron with j = % in the
notation of Rose *”, and k is the transition energy
in mgc? units. To obtain a more accurate value of S
it is necessary to substitute in the integrand values
of the functions f and g averaged over the entire
volume of the nucleus (and not their values at the
point r = R, as is done in (1.43)), but the estimates
made by Zyryanova and Krutov for Z = 84 and

k = 5 show that the more accurate values of S differ
from the less accurate ones, calculated by Formula
(1.43), by not more than 20%. The function F(&,, Z)
determines the form of the positron spectrum. Fig-
ures 9-11 show the ratio F/Fy, 5« as a function of
the kinetic energy of the positron T, for different
values of Z and A. In the calculation of the curves,
use was made of the tables for relativistic wave
functions of the electron in the field of an extended

£ / } ‘mua:
10
1 2-0 7 /><?<

yd ///
/

N1\

N
X

06

AN

04 / /// /
w4 A A
/-~
/] 100 200 300 400
A=1432 kev T,,keV
FIG. 9.

*A less accurate estimate for M, suitable only for O' and Ge’?,
is given in [®];

M=(1.5-2) (ﬁ%)z i (1.429)
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nucleus, calculated for g decay by Dzhelepov and
Zyryanova (31,

As can be seen from the figures, the form of the
positron spectrum depends strongly both on Z and
on the energy of the nuclear transition. We can there-
fore conclude that the frequently used in the investi-
gation of internal conversion of multipole radiation
extrapolation of the theoretical data on the form of
the positron spectrum, obtained for one value of Z
and one transition energy, to other values of the
transition energy can lead to considerable errors in
case of EO0 conversion.

Rather large errors (particularly for large Z) are
obtained also when the total probability of pair EO
conversion Wg( E0) is calculated in the Born ap-
proximation. This is indicated by the rather strong
dependence of the integral S (which is proportional
to W (EO)) on Z, as established by Zyryanova and
Krutov 2% for three values of the transition energy
(Table II). These authors have shown that the criter-
ion for the applicability of the Born approximation,
laZ/B.L 1% «< 1, (By are the average electron and
positron velocities in the relativistic system of
units), which holds true for the calculation of the
total probability of pair conversion in the case of
multipole transitions, is not suited for E0 conver-
sion. In Fig. 12 are compared the curves of the
ratio Wr/Wr(z=0) against Z in zero-zero nuclear
transitions without change of parity, and in E2
transitions, for two values of the transition energy,
k = 2.8 and k = 5.2, satisfying the foregoing criterion
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Table II. Area S of positron spectra,
in relativistic units

z
A, keV
0 25 | s | 84
1422 0.104 0.132 0.239 0.946
2022 2.41 2.98 5.29 21.8
2622 13.6 16.5 28.3 103
W Wy,

5.2
[
/V
2 7/
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28
[/
30 40 &0 80
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FIG. 12.

(at not too large Z). It is seen from the figure that
Wy/Wr (z=0) for 0*—0* transitions increases with
Z rapidly beginning with Z > 30, whereas for the
E2 transition this ratio differs little from unity even
at large values of Z.

In spite of the different behavior of the ratio
Wi/ Wg (z=0) for 0*—0* and multipole transitions as
a function of Z, the shapes of the corresponding
positron spectra, obtained by most accurate calcula-
tions, are practically the same (at least for not too
large values of £,). This is seen from a comparison
of the curves on Fig. 13. They show the shape of the
positron spectra (the dependence of F on £_) in the
case of Z = 84 and k = 3 for the pair conversion
Oi——Oi, E1, and E2 transitions (curves 0—0, D, and

AT |
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FIG. 13.

Q, respectively). The D and Q curves are based on
the exact calculations of Jaeger and Hulm EB]’ while

‘the 0—0 curve has been obtained by the method de-

scribed above 28, Owing to the fact that for large

values of €, the D and Q curves have been obtained
by extrapolation (the last calculated point is for €,

= 1.75), the question of whether the ends of the D
and Q curves coincide with the end of the 0—~0 curve
remains open.

The dependence of the results of the calculation on
whether the nucleus is pointlike or extended was also
investigated 28] 1t was found that the point nucleus
approximation leads to an overestimate of Wr( E0)
(and not to an underestimate, as is the case in the
calculations of Wg (E0)), compared with the more
accurate values obtained with allowance for finite
nuclear size, with the maximum deviation reaching
20% for large Z. The shape of the positron spectra
remains the same for both methods 8.

The total E0-transition probability, neglecting
two-particle and many-particle emission, can be
written in the form

W (E0) = W, (EO) + W (EQ) =, (1.44)

where 7 is the lifetime of the excited nucleus rela-
tive to the EO transition, and by We is meant here
the probability of total electron conversion, that is,
the conversion on all the shells of the atom. If we
neglect the interaction between the protons of the
nucleus and the atomic-shell or Dirac-background
electrons which have an angular momentum j = Y,
as is customarily done, then Formula (1.44) can be
rewritten

0*(Qe(E0) + 2 (E0) =1,

= {1 (2

Subsequently, by establishing T from the experi-
mental data and taking suitable theoretical values of
Qg (EO0) and §i7( EO) from the formulas and plots
presented above (pages 718-720), we can determine
from (1.45) the values of p and M = pR2

It is easiest to measure T in the case when the
EO transition is the only one possible, that is, in
0*—0" nuclear transitions. It is much more difficult
to do so for nuclear transitions of the type J* — J*,
which we now proceed to consider.

If we assume that the form of the wave functions
of the electron depends little in the field of an ex-~
tended nucleus on whether the total angular momen-
tum of the nucleus is equal to zero or not, then the
entire theory developed above applies equally for
0f — 0* and J* — J* nuclear transitions (it is
understood that J* = 0). All the foregoing formulas
remain then in force without change, and the J*

— J* case differs from 0% — 0% only in the differ-
ent values of the nuclear matrix element p.

(1.45)

where
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As indicated above, the EO transitions of the type
J*¥ — J* can compete with the different multipole
transitions. In particular, a deexcitation of an excited
nucleus, of the type 2*—2%, can proceed via any of
the most probable transitions E0, M1, and E2, the
two latter being accompanied either by internal con-
version or by emission of ¥ quanta. There are ex-
amples of even-even nuclei (Ptm’196 and Hg'®),
where all these transitions can be observed 32111,
The lowest levels of such nuclei fit a simple scheme
shown in Fig. 14.

2"

ZQ

00

FIG. 14,

Of great importance is a comparison of the
theoretical data on the E0, M1, and E2 transitions,
since it allows us to predict the cases when observa-
tion of EO0 transitions in experiment is most promis-
ing. Figure 15 shows the probabilities Wk ( E0),

WK (M1), Wy(Ml), WK (E2), and Wy (E2) as func-
tions of Z for a transition energy of 511 keV (the
EO0, M1, M1 (dashed) and the E2 and E2 (dashed)
curves, respectively)!J. The symbols K and y in-
dicate internal conversion on the K shell and emis-
sion of the y quantum of suitable multipolarity. The
EO curve has been obtained on the basis of the known
dependence of the reduced EO0 transition probability
2 on Z and k (see Fig. 2) under the assumption that
the nuclear matrix element is p = 1 (The ‘‘Weisskopf
approximation”[33]). This order of magnitude of p
corresponds to one-proton transitions with total
overlap of the initial and final nuclear wave functions.

The remaining curves are calculated using the data

1"
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1 L 1 1

4 & N & .902100

FIG. 15.

of Rose [2], also in the ‘‘Weisskopf approximation.”’
The behavior of the curves (Fig. 15) shows that for
large Z the ‘‘Weisskopf probability’’ of the EO
transition is much larger than the ‘‘Weisskopf proba-
bilities’” WK (E2) and Wy (E2), and becomes al-
most comparable with the ‘‘Weisskopf probabilities’’
WK (M1) and Wy (M1) {particularly for the already
mentioned nuclei, the 2—2 transitions of which are
characterized by a considerable attenuation of the
M1l-component of the radiation [34] ). If we take ac-
count of the fact that with increasing transition
energy the probabilities W, (M1) and WV(EZ) in-
crease in proportion to k? and k°, respectively %%,
while the probability Wk ( E0), as seen from Fig. 2,
increases much more slowly with k, we can conclude
that the prospects of observing experimentally an E0
transition of the 2*—2* type are most favorable for
large Z and small k.

The formula from which the probability of an EO
transition of the type 2*—2* is determined from the
experimental data is derived in the following fashion
(], If we denote the total coefficient of internal con-
version on the K shell in a 2*—2* nuclear transition
by pX, and the coefficients of K conversion for the
E2 and M1 transitions by a? and BF respectively,
then on the basis of the additivity of the probabilities
of the E0, M1, and E2 transitions { Wg = Wg( E0)

+ WK (M1) + WK (E2)] there is established between
the ratios

Wg(E0) 2 Wy(M1)

W_BK‘ W—‘Sz (1.46)
a connection

ek =(B* —ab) — 8 (B — B). (1.47)

According to [“j, S:IZ{ is a measure of the contribu-

tion of EO conversion to the mixed nuclear transi-
tion 2¥—2*. The numerical value of this quantity is
usually obtained from the theoretical values of ag(
and K, following Rose (8,21 6y more accurately,
following Sliv 0357% and the experimental values of
BK and 6%. The total conversion coefficient BK is
measured in experiment indirectly + (the results of
such measurements can be found for some nuclei, for
example, in %)), On the other hand, 62 can be ob-
tained from the experimental data on the angular cor-
relation between the cascade-emitted y quanta in
mixed 2*—2* and subsequent 2*—0* nuclear transi-
tions.

According to the theory [37’38], the correlation func-
tion has in this case the form

*The most accurate calculations of ¢X and 8X, with account of
the so-called intra-nuclear matrix elements, can be made by the
method developed in [24-%¢,

1The presence of an E0 transition is detected from the excess
of conversion electrons.
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W (vv; M+ E2) =Pyt -t [45 4284, 4 847) P,

+ g AP, (1.48)
where Pj(cos (4)) are Legendre polynomials and
the parameters A§, A,, Al®, and A are tabulated
in B8, The coefficients of P, and P, are obtained
from experiment; knowing these coefficients, we can
caleulate 1) 2 and then €k from (1.47). The proba-
bility Wik (E0) is obtained from the first relation in
(1.46). The probability of emission of an E2 quan-
tum in the nuclear transition 2*—2%, which is needed
for this purpose, is assumed to be 1.5—2 times
larger than the experimentally determined probability
Wy (E2) in the subsequent 2*—0* transition of the
nucleus. Such an estimate is presented on the basis
of the collective model of the nucleus in 343 %, with
the aid of the method described above, estimates are
made in B2t of p for several even-even nuclei (see
Sec. 3). The latest analysis, however, has shown [43]
that this method is inaccurate. The shortcoming of
the method lies primarily in the fact that the small
uncertainty in the most exact theoretical values of
the coefficients a? and B{{ (an insignificant inac-
curacy in the new intranuclear matrix elements) and
in the experimental values of BK (which are on the
borderline of the experimental feasibility) leads to
considerable differences in the estimates of p. This
uncertainty has a much smaller effect on the coeffi-
cients of Pj(cos ) in the anguiar correlation func-
tions.

It is established in % that if account is taken of
the latter circumstance with respect to the angular
correlation of the cascade emission of the K-conver-
sion electron in the 2*—2* transition and the y
quantum in the subsequent 2*—0%* transition, then
experiments on the determination of this correlation
(and on the determination of the y-vy correlation) will
be perfectly sufficient for a more accurate estimate
of p. The angular correlation function of the type
eK — v for the mixed transition E0 + M1 + E2 has
the form 13

i+ p2
14-p2t¢2

boPs,

W (exy; EO+M14E2) = W (exy; E2+ M1)

q® g7
T et (1.49)

where
W (exys M1+ E2) = Pot 5 (B345+ 2pbyda+ POJAT) Py
+ o (54D P, (1.50)

o Wx(M1)
= Wg(E2) '

2 _ Wk (EOQ)

- - (1.51)

*Theoretical as well as experimental investigations of E2 tran-
sitions of the type 2*—-0% in even-even nuclei are also treated in

[40-41]‘

p has here the same sign as §. The sign of §, on the
other hand, is determined from the y-y angular
correlation. The parameters A§'™ and A, are the
same as in (1.48). The values of the parameters b?,
bs, b;n, and b§ are given in (38:43) £ hoth a point and
an extended nucleus. The parameter b, is defined as
depending only on the interference between the con-
version EO0 and E2 electrons, and is calculated
theoretically. The effect of the new conversion in-
tranuclear matrix elements for the E2 and M1 tran-
sitions on the angular correlation eg-vy is neglected
(at least for the type of nuclei under consideration).
Figure 16 shows the parameter b, plotted against
the energy of the nuclear transition, k, obtained in (4%
for the particular case Z = 78 and the cascade 2*’
— 2* — 0* [where we know Wi, (E2) for the 2%/

— 2" transition]. (This plot can be readily general-
ized to cover any other nuclear spin sequence, pro-
vided only that Z remains unchanged.) By measuring
experimentally the coefficients of the polynomials P,
and P4, we can determine p and ¢, and then use the
formulas

Wi (EO) = X W, (E2) and Wy (E0) = Qxg? (1.51%

to estimate p. Since measurement of the coefficient
of P, entails certain difficulties (3] we can confine
ourselves to measurement of only one coefficient,
that of P,, using the formula p? = B%i 62/a%< to deter-
mine p (the signs of § and p coincide), and deter-
mining 8% from the y-y angular correlation. The
conversion coefficients g{* and a£< are taken from
the theory (Rose [181:8 oy Sliv (138,

As noted above, the EO0 transition is absolutely
forbidden only with respect to the emission of a
single photon. As to the simultaneous emission of
two or more photons, for example, or the emission
of one photon and one conversion electron, such
processes (as well as other processes of second and
higher order) can occur in E0 transitions, although

+J2 T T T
”a o
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their probability is much lower than the probability
of pure internal electron and pair conversion. A
characteristic feature of all the foregoing processes
of simultaneous emission of many particles (both
photons and electrons) is that these particles should
have a continuous energy spectrum.

Let us concentrate our attention first on photon
emission. Since the probability of simultaneous
emission of more than two quanta is a quantity of
higher order of smallness compared with the proba-
bility of a two-quantum emission, we shall confine
the discussion to the latter. The differential proba-
bility of emitting two electric multipolarity v quanta
in a nuclear 0—0 transition without a change in
parity is calculated by perturbation theory and is
expressed in a relativistic system of units by the
formula M44- 4.5

AW aro =%M% 1
1M s

(Qra,) fs QL) st

(QLMz) fs (QLMl) Si
Eit+Eg—o
]2}(m1m2)3 doy, (1.52)
where QrM;—electric multiple moments, and w; and
and w, are the frequencies of the y quanta. Summa-

tion is over all possible (virtual) states of the nu-
cleus with total angular momentum J’ = L* and with
parity opposite to the parity of the 0 states. Formula
(1.52) is suitable also for simultaneous emission of
two magnetic quanta, if we replace QLMj in (1 5 f by
the magnetic multipole moments MLM; (see [ 5.1
and sum over the virtual states J’ = L. with the same
parity as the 0 states.

The first to calculate the total probability of
monopole emission of two dipole electric quanta were
Oppenheimer and Schwinger in 1939 ¥ for 0*—0*
transition of the O!® nucleus; account was taken there
of only one virtual state with J’ = 1 and negative
parity, the energy of which was A’ = 20 MeV. On the
other hand, the energy of the 0*—0* transition was
A = 6.06 MeV. The calculations yielded the formula

ssaroa ) (A,> | M (1.53)

The total probability W, (Ws of two-photon emis-
sion in EO transition was calculated by Grechukhm[ 2
for the case when the nucleus has so-called ‘‘dipole
levels’’ of high density I . Then there are grounds for

Weoree=

*If the two-quantum EQ transition is of the J* - J* type, then
the summation should be catried out over the virtual states with

J=\J—L\, |J—L{+4,...,J L1, JIL

tThis formula would be the same if the transition were 0-—0~,
and the virtual state were to have J” =1 and positive parity.

$By ‘““dipole’’ is meant here a nuclear level to which the nu-
cleus can go from the ground level by absorbing a dipole quantum.
The sharp increase in the density of such levels in the vicinity of
energies A" = 40 A2 MeV can apparently be attributed to the
fact that some nuclei have a giant resonance in the absorption of
photons with frequencies close to wres = A’/h.[1247]
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assuming that the calculation of Wy, w, can be re-
stricted to summation over those virtual states which
belong to these levels. Recognizing that the energy
of the dipole level A’ is much larger than the energy
of the E0 transition A, and using in rough approxi-
mation the connection between the following matrix
elements:

V¥ (3

>p’

rory ) Vidr ~ — 3 S v} <2 8 ) Wedr, (1.54)

which has been established on the basis of 148,
Grechukhin calculated ') the following simple for-
mula for the probability of simultaneous emission of
two electric dipole quanta, in the relativistic system
of units,

Weorog ~ € 1890n ) S'e*Re, (1.55)
where S’ satisfies the inequality
a a2 a a2 A
{1+ <S<{t+5—Sm ) =%
(1.56)

If we put S’ =1, then Formula (1.55) coincides, apart
from a constant factor, with (1.53).

The dependence of the differential probability on
the photon energy (that is, the form of the vy spectrum)
in the case of simultaneous emission of one photon and
one conversion electron, was investigated theoreti-
cally by means of a formula [4€] analogous to (1.52),
in 1948, by Goldberger U8) in conneation with the pro-
posed presence of 0—0 transitions in the Ir!* nu-
cleus[m. The curves for this dependence, both for
the 0* — 1= — 0% transition (17 virtual state, Fig.
17, curves Ia) and for the 0* — 1* — 0* transition
(1% virtual state, Fig. 18, curves Ib) were obtained
only with account of one virtual state with J’ = 1, the
energy of which is 20 times larger (Fig. 1718,
curves I with B = 20) or smaller (Fig. 17—18, curves
I with B = 0)* then the transition energy A = 58
keV.t It is seen from Figs. 17 and 18 that the en-
ergy distribution of the y quanta (the abscissas
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£ a )
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FIG. 17. FIG. 18.

*Curves Ila and [Ib will be discussed later.
tThis energy is not sufficient for conversion on the K shell.
Therefore an L electron is emitted together with the photon.
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represent the y-quantum energy in units of A) has
such a sharply pronounced maximum that in the ex-
perimental observation of such a spectrum it can be
taken as a single y line. Table III lists the results
of the calculations of the average lifetime of the
excited nucleus with respect to 0—0 transitions of
different types.*

Table I

Transition 7, sec
Ia0*>1"~0" | = 0] 5.4-1072
» =~20| 1.18-10°2

16 0*~>1*~0" |= 0| 2.40-102
» =201 7,45-106
ITa 0"~ 1*—+0* |= 0| 3.22.1073
0" 1-—= 0" |~20| 8.70-1073
0 -0+ — | 4.26-1078

Both the processes considered above, as well as
other processes of second and higher order, are the
only ones possible for electromagnetic interaction
between a nucleus and the electron shell of the atom,
if we deal with 0—0 transitions with change of parity,
that is, with MO transitions. These 0*—0% transi-
tions were also investigated in the cited paper by
Goldberger Las], Assuming that the deexcitation of the
excited nucleus (Ir'®) is accompanied in the 0%—0"
transition also by emission of one photon and one
conversion electron, the author has calculated, for
the same initial data as in the 0¥*—0% transition, the
form of the y spectra (see Fig. 17—18, curves Ila and
IIb), and the average lifetime of the nucleus in the
excited 0% state. The forms of the curves for the
EO0 and MO transitions turned out to be similar, and
for the case when only an intermediate state which is
very close to the ground state (B ~ 0) is considered
in the calculations, they coincide (see Figs. 17—18).
The average lifetime 7 of the nucleus in the excited
state, relative to simultaneous emission of one pho-
ton and one conversion electron, is even smaller in
the MO transition than in the EO transition, but it is
approximately 10% times larger compared with pure
electron EO conversion. On the other hand, com-
pared with the lifetime of isomeric states, 7 is
10°—10" times smaller.

Second-order processes different from the one
considered but also occurring in MO transitions
were investigated even earlier by Sachs [463, whose
work was closely related with the question that arose
at the end of the thirties, whether the 0*—0 transi-
tions can be regarded as isomer transitions. He con-
siders in that paper two-photon MO transitions with
simultaneous emission of two conversion electrons.

*The process of simultaneous emission of one photon and one
conversion electron in an EQ transition can be accompanied by
internal bremsstrahlung, but the probability of the latter is 10’
times smaller than that of the former[*"].

The simultaneous emission of two electron-posi-
tron pairs in MO transitions is considered to be im-
possible for the following reasons. One of the states
of the nuclei between which the 0*—0" transition
occurs, should have a sufficiently large lifetime, in
view of the fact that this transition is strongly for-
bidden. As is well-known, the lifetime of a nucleus
is the longer, the smaller the difference between the
excited and normal energy levels. Inasmuch as a
very large energy, corresponding to a very large
difference in the indicated energy levels, is neces-
sary for the production of two pairs, the lifetime of
the corresponding excited states should be very short,
and this contradicts the strong forbiddenness of the
0*—0% transition.

The formula for the differential probability of two-
quantum emission in MO transitions is obtained from
(1.52) by simply replacing one of the electric mo-
ments by a magnetic moment, so that in this case one
of the emitted quanta should belong to the electric
radiation and the other to the magnetic one. An esti-
mate of the total probability W, ¢, is made in [l
taking into account one of the virtual states with
J’ =1, the energy of which A’ = 1 MeV is much
higher than the energy of the transition A (by a fac-
tor of 100 and more). The dependence of Wo,w, for
0*—07 transition on 8 and A turns out to be the
same as for the 0*—0" transition. Table IV lists
estimates of the average lifetime of the excited 0%
state 7y, w, relative to two-photon emission, as a
function of the transition energy A.

Table IV
A, eV | Ty, oy S€C| TKy, Ko S€C[ TLy, Lo S€C | 1 (AJ=5).sec
108 4102 2-408 2-107 3.108
5-104 5:104 5-107 2-108 3.108
2.5-104 6-108 1010 9.109 3.1011
104 4409 — 4-1010 —
5-108 5.1011 — 7-1011 —

The process of internal two-electron conversion
on the K and L shells is treated analogously. For
example, the starting formula for the probability of
simultaneous emission of two K conversion electrons
is of the form &

A—Zeg

’ His Hyq 2
Wik, = 271 g o(e) e (e) | —tiefre |2 g
0

E;—E;—eg—¢’

(1.57)

where Hjg and Hgf are matrix elements of the inter-
action operator of the shell electron with the electric
and magnetic moments of the nucleus, Ei and Eg are
the energies of the nucleus in the initial and inter-
mediate states, €k is the ionization energy of the K
electron, € and €’ are the kinetic energies of the
conversion electrons, and p(€) and p(€') are the
densities of the electron states. In order to apply
Formula (1.57) to the conversion of L electrons, it
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is necessary to replace €K by £1,, where £7, is the
L electron ionization energy. Estimates for Wk K,
and Wry,41,, are given under the same initial assump-
tions as for W wy: As a result of the calculations,
the following relationship was established for Wk k;:

Wi, o0 (A — 2e4)? (A" — eg)7? (1.58)

with an analogous relation for Wy 1,,. The depend-
ence on A of the lifetimes of the nucleus, Tggy and
T14L2 relative to the transition 0*—07, for the case
of two-electron K and L conversion, is also given
in Table IV 4] (with £ = 10* eV and &g = 10% eV).
For comparison, the lifetimes of an excited nucleus
relative to a transition in which the total angular mo-
mentum of the nucleus changes by 5, taken from G513,
are also shown. It is seen from Table IV that only for
small energies of the 0*—0" transition does its
probability drop sufficiently to become comparable
with the probability of a transition with AJ =5. In
this case the transitions 0*—0" can be distinguished
from the transitions with large AJ only by the shape
of the ¥ spectra or of the conversion spectra. It was
indeed by these features that it was then established
[52-53) that the isomer transitions are characterized
by a considerable change in the total angular momen-
tum J of the nucleus (and are not 0—0 transitions
with change in parity).

The theory of monopole transitions developed
above is based on the assumption that they are
caused by electromagnetic interaction between the
nucleons of the nuclei and the electrons of the atomic
shell or of the Dirac background. The question of
non-electromagnetic interaction between these parti-
cles, which could also lead to the occurrence of
monopole transitions, was considered only as applied
to 0—0 transitions of O, A theory of non-electro-
magnetic interaction is developed in [20:28:54-56] jp
analogy with the S-decay theory. It is assumed that
the nucleons of O!f interact directly with the elec-
tron-positron field. The probability of the 0*—0°
transition is calculated from Formula (1.1). The
perturbation operator H’ is taken 29 ip the form
customary for 8 decay

H=g¢ S (¥0¥) (y*Ov) du, (1.59)
where g is the constant of the electron-nucleon in-
teraction, ¥ and y are the wave functions of the
nucleon and electron in the occupation-number repre-
sentation, and O is an operator which determines the
type of the interaction. Analysis has shown (29,54] that
if the transition under consideration is once forbidden
with pseudo-vector coupling, then the spectrum shape
of the positrons and the angular distribution of the
electron-positron pairs will agree with the experi-
mental results. However, in view of the once-for-
bidden nature of the transition, the parities of the
initial and final 0-states of the O nucleus should be

different, but in fact they are the same (1,577 Shapiro
%] jndicates that if the operator O is chosen such as
to make the expressions ¥*O¥ and y*Oy four-vec-
tors, then by taking H’ in the form of a product of
the time components of these vectors it is possible
to obtain an angular distribution of electron-positron
pairs agreeing with the experimental data, with the
parities of both zero-states now the same.

In spite of these qualitative successes of the
theory of direct non-electromagnetic interaction in
explaining the 0—0 transition of the O nucleus, it
nevertheless is not confirmed by experiment quanti-
tatively. Calculating the probability of the 0—0
transition of O by means of formula (1.1) with ac-
count of (1.59), and comparing it with the experimental
data, we can determine the constant g, which was
found to be 12%-58

2 \3
8~ 5m°62 (;r%—cé) N (1.60)
where m; is the electron mass. The value of this
constant obtained, on the other hand, from experi-
ments on electron-neutron scattering 59] is incom-
parably smaller: .
e2

g ~0.2myc? ——)3 .

et (1.61)
If we now take account of the fact that the nonelec-
tromagnetic electron-proton and electron-neutron
interactions should be the same in magnitude, then
the inconsistency of the explanation of the transition
under consideration by attributing it to direct non-
electromagnetic electron-nucleon interaction becomes
obvious. At best one can merely state that the proba-
bility of the 0*—0* transition of O, calculated
under the assumption of a direct non-electromagnetic
interaction, is only a very small correction (on the
order of 10'3) to the probability of this transition due
to the electromagnetic electron-nucleon interaction.
Attempts were made % to relate the 0*—0*
transitions in O with non-electromagnetic electron-
nucleon interaction relized via a meson field. Ac-
cording to this theory, the process of electron-
positron pair production in the 0"—07 transition canbe
described as follows. At first the nucleus goes from
the excited state to the normal state, emitting a
virtual meson. Then the electron, which is in a state
with negative energy, absorbs this meson and goes
over into a state with positive energy. It is shown
in % that under a suitable choice of the type of
meson and the form of the operator for the energy of
interaction between the meson field and the light
particles we can reconcile the theory with experiment,
both with respect to the shape of the positron spec-
trum, and with respect to the angular distribution of
the pairs, but, contrary to the experimental data, the
parities of the initial and final zero-states of O'®
must then be different.
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Thus, we have verified with the 0*—0* transition
of the O nucleus as an example that the non-elec~
tromagnetic electron-nucleon interactions can be
neglected in EO transitions. It is easy to note, how-
ever, that in MO transitions, the role of these inter-
actions can become appreciable. The point is that the
electromagnetic interactions in M0 transitions lead
only to the occurrence of multi-particle emission
processes, the probabilities of which may turn out to
be much smaller (by approximately 10? times, for
suitable values of Z and k) than the probabilities
for the emission of one conversion electron or pair,
induced by non-electromagnetic electron-nucleon
interactions.

In this connection, attempts were made in 5% to
detect electron positron pairs with total energy 10.98
MeV, emitted in the MO transition 0~ — 0* of O,
A determination of the probability of such a transi-
tion would make it possible to check whether this M0
transition is due to non-electromagnetic interactions.
The experiment has shown that the number of pairs
with energy close to 11 MeV is so small that there
are not sufficient grounds for attributing these pairs
to the 0 — 0* transition. They are more likely to
belong to the cosmic radiation background. Nonethe-
less, the following estimates are given in 5% (1) the
ratios of the number of 10.98-MeV pairs to the num-
ber of pairs and to the number of y quanta with
energy 3.86 MeV (0*—1~ transition) turn out to be
respectively < 2x 1072 and < 2 x 107%, and (2) the
lifetimes are 7;(0” — 0*) > 2 X 1078 sec.

In addition to the multiple emission processes in
EO transitions, which we have considered above,
studies were made recently of other higher-approxi-
mation effects, particularly the so-called ‘‘electron
and electron-nuclear bridges’’ 29218 By way of an
example of an ‘‘electron bridge’’ we can mention the
following process. As a result of interaction with the
nucleus, the atomic-shell electron absorbs the
virtual photon emitted by the nucleus and goes over
into a state in the continuum, after which it returns
to the initial state, emitting a y quantum. The calcu-
lation of the probability of the ‘‘electron bridge’’
process has shown 2127213 that the theoretical value
of We (E0) is not only made more exact, but in the
case of an unfilled atomic shell and in a preferred
direction the E0 nuclear transitions can be accom-
panied by single-photon emission, which to be sure
has very low intensity and cannot be measured by
modern experimental techniques (Wy(E0)/Wg (EO0)
= +107% for an electron in an unfilled K shell ).

It has also been established 212-213) that for Mo
transitions the forbiddenness of the single-electron
conversion (or single-photon) deexcitation of the nu-
cleus (or deexcitation of the nucleus by emission of
one conversion pair) is lifted by the ‘‘electron-
nuclear bridge’’ process. In the simplest case this

process consists of a double exchange of virtual
photons between the nucleus and the shell electron,
with the transition of the latter first to intermediate
and then from intermediate into final states. An
estimate of the probability of single~conversion de-
excitation of the nucleus in an MO transition through
an ‘‘electron-nuclear bridge’” is made in 213) 5 the
basis of a single-particle nuclear model and yields
WK (MO0) = 2 x 10! sec™!, that is, a value which is
already experimentally observable. It must be noted
that the contribution from the higher subshells ( Lyj,
Ly, MiIf, - --) to the single-electron MO conversion
is much larger than in the case of E0 conversion.

2. EXCITATION OF ELECTRIC MONOPOLE
TRANSITIONS BY ELECTRONS

The investigation of both elastic and inelastic
scattering of different particles by an atomic nucleus
is one of the most important methods of studying
nuclear properties. If the particles are charged and
have energy much lower than the Coulomb barrier of
the nucleus (precisely such particles will be dealt
with in this section), then the scattering of the parti-
cles will follow the well-known laws of electromag-
netic phenomena. The results of the investigations of
particle scattering can be then interpreted more
rigorously and more accurately than in the case when
the interactions between the particles and the nucleus
are of non-electromagnetic character.

As a result of the inelastic collision between a
particle and a nucleus the latter goes over from the
ground state into an excited state. Theoretical and
experimental investigations have shown that the be-
havior of the inelastically scattered particles can
yield information on the energy and probability of this
transition and also on its multipolarity and type.

Electrons exhibit characteristic features in in-
elastic collisions with nuclei. Electrons have that
advantage over heavy charged particles moving with
subbarrier velocities, that they penetrate freely in-
side the nucleus and can pass through it¥, so that a
study of inelastic electron scattering can give more
accurate information on the details of the structure
and the wave functions of the nucleus (particularly in
monopole transitions) than does the investigation of
inelastically scattered heavy particles.

The theory of monopole excitation of nuclei by
electrons is based on the general theory of inelastic
electron scattering. This raises the following ques-
tion: find the effective cross section for inelastic
scattering of electrons if we know 1) the initial and
final states of the nucleus plus electron system, de-
scribed by wave functions ¥i, ¥f and yi, ¢f, respec-

*We assume here, of course, that the conditions under which
non-electromagnetic interactions between the electron and the
nucleons in the nucleus can be neglected are satisfied.
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tively; 2) the energy A transferred by the electron
to the nucleus, and 3) the interaction between the
electron and the nucleons of the nucleus, described

by the formula
= S (em—— —f—jA> dr,

where ¢ and A are the field potentials, and p and j
are the charge and current densities produced by all
the system particles (that is, by the nucleons and the
electron). Exact quantum mechanical calculations
have shown [51"64], that the excitation cross sections
do not change if the interaction V is replaced by the
simpler expression Lee]x

(2.1)

h]r 'y ikjr—r,|

in
~_ez lr—rpr ec:ES |i~rn|

where k = A/ﬁc, v and r are the velocity and radius
vector of the electron, and p and n are indices per-
taining to the proton and nucleon, respectively. The
presence of the factors exp[ik | r — ry |] in (22)
takes account of retardation effects.

Let us consider the case when k | r — r, | is
small, that is, the delay effect can be neglected.
Then we should have

=V1+ Vz, (2.2)

|r—r| <A, (2.3)

where A is the wavelength corresponding to the
transition energy A. The order of magnitude of A
differs for the known monopole transitions of differ-
ent nuclei, but is in no case less than 107! cm. If we
now recognize that the electron must penetrate in-
side the nucleus in order to excite the monopole
transition (see Sec. 1), condition (2.3) is satisfied.

We now expand the interaction V’ in a multipole
series. However, in view of the fact that in the expan-
sion of the second term of V, there is no monopole
term (64-86:9] e confine ourselves to an expansion of
the Coulomb part V, of the interaction (2.2) [with ac-
count of condition (2.3)]. This expansion can be car-
ried out in two ways®®

€2
V,_:—E—Ir—__r—;l—
P

= —4ne? 2L+1 m YZO, Q)Y 0, D) (2.4)
p, LM
for rp < re and
€2
__er——rp}
b4
= —4ne® | 2L+1 LH YE@©, ®)YYE (6, @) (2.5)

»LM
for rp > re.
The first series will not yield monopole transitions,

*In the relativistic case we must take in place of v the Dirac
velocity operator ca.
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since the term with L = 0 does not depend on Tp and
its matrix element will vanish because of the ortho-
gonality of the nuclear wave functions. A nonzero
monopole matrix element is contained only in the ex-
pansion (2.5). Since the latter applies only to elec-
trons, it is they which can excite the monopole transi-
tions directly.

The problem of the electron excitation of monopole
transitions is simplest to deal with in the Born ap-
proximation. In this case both the initial and final
states of the electron, yj and ¢, are plane waves;
this is possible under the following conditions:

1. The kinetic energy of the electron is much
larger than the transition energy

T>A. (2.6)

2. The inequality

Ze

<, (2.7)

holds, where v is the electron velocity. Inequality
(2.7) signifies essentially that the de Broglie wave-~
length of the electron exceeds greatly the classical
minimum distance from the electron to the center of
the nucleus %3], For extremely relativistic electron
velocities, (2.7) turns into the inequality*

<<1 i.e. 157<<1 (2.8)

hc
The theory of inelastic scattering of charged parti-
cles by a nucleus yields in the Born approximation
the following formula for the differential effective
cross section [63“65]

da (8, @) =¥ | (ky, \Pfl Ik, W) [d2, (2.9)

12vu lr—r |1

where k; and kf are the wave vectors of the electron
in the initial and final states. After integrating in
(2.9) over the electron wave functions we obtain for

the differential cross section of monopole excitation
[63,64]

dO'Eo (6) ZPZ

4m002 k2
1'2kikf + i'k

kf
(kf _'_.2cose>

-t 2cosh

Q. (2.10)

*It is indicated in [7:°*] that for a sufficiently large magnitude
or range of the scattering potential, condition (2.8) must be re-
placed by the more rigorous condition

2

% In %‘)’_ <, 2.8
where a, is the Bohr radius and 1] is the smallest of the follow-
ing quantities: the de Broglie wavelength of the electron, the radius
of the nucleus, and the ratio a,/Z. This condition is so stringent
that even C'? is at the borderline of its applicability. On the other
hand, experiments on the inelastic scattering of fast electrons by
C'? give for the effective cross section ¢ values that are compar-
able with the results of the Born-approximation calculation.[®]
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Here

Fro(J—J, K)=Fgy(K)=

1 , ,

(1| Si&ra|i) (2109
bl

is the so-called form factor for the EO transition,

jo{Krp) is the Bessel spherical function j1,(Krp)

with L = 0. In the extreme relativistic case, taking

into account (2.6) and the equation*

t
RE = b [k} 4 &} — 2k,ky cos 0] ~ 20k sin - (2.11)
we obtain for the differential cross section of mono-
pole excitation ¥

0

2

ze 2:35_7__{L]<f]s\

"“) 4klsine 9 L2 ~
2 D

The first factor in (2.12) (in front of the curly
brackets) is the differential cross section for elastic
scattering of electrons by a point charge in the rela-
tivistic Born approximation.

We assume now that Krp <« 1 (or, which is the
same, KR «< 1). Then the form factor in (2.12) can
be expressed in terms of the nuclear matrix element
of the monopole M, using the expansion

fo (erp) =1 =G0 1

dOEo (6) =

jo (KTp) ] i) ]2} Q.

(2.12)

(2.15)

Confining ourselves to the first two terms of the
series (2.15) and recognizing that the first yields
zero after substitution in the form factor (in view of
the orthogonality of the nuclear wave functions), we
obtain for the square of the form factori

| Fro(J— T, K)|=~?’§;_2|(7'Z,; NP EMp
»

=g (2.16)

If we recognize that when f =1 and KR « 1, the
square of the form factor (2.10’) is almost equal to
unity and (2.12) yields in this case the differential

*It is easy to see that (2.11) and all the formulas-derived on its
basis will not be applicable for small scattering angles.
tIn the EL transition, the square of the form factor is[**]

4n2 K2
|FeL(K)|? = 7z WB(CL K),
12 L4 1Y 2.13)

where B(CL, K) is a quantity obtained from the reduced probability
of radiative transition

B(BL) =~ 2J+1 2 l(J,, M,'Z rLy Y (0p 0,,)‘J;. Mx)l
(2.14)

| Fgr (Js = Jp K) 2=

L (2L+1) !

by the substitution rp — jL(Krg). The effective cross

section for the EL transition is also expressed by (2.12), except
that the form factor is given by (2.13).

i1t is easy to see from (2.13)—(2.14) that the same K-dependence
will hold for the electric quadrupole form factor when KR <« 1. If
we estimate the form factors for the monopole and quadrupole excita-
tions on the basis of the single-particle model of the nucleus, we
find that the cross sections of these excitations will be almost
equal in magnitude for identical experimental conditions.[*]
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cross section for elastic scattering of electrons, do,
then the ratio of dog, to do will be given approxi-.
mately by (2.16), that is, we have

4oz, ]M[
Y

The smaller K, the more accurate (2.17). This
formula is used to determine the nuclear matrix
element of the monopole from the experimental data
on elastic and inelastic electron scattering (see
below).

A theoretical analysis of the cross sections calcu-
lated in the Born approximation for both elastic and
inelastic electron scattering [formulas (2.12)—(2.14)],
as a function of the values of K, has shown® that
when KR <« 1 the elastic scattering predominates.
With increasing KR, the excitation cross section of
transitions with low multipolarity L (in particular,
monopole transitions) increases first, and when KR
>>1 the transitions with high multipolarity begin to
be most intensely excited.

The case of excitation of monopole transitions by
electrons having threshold energies (that is, kinetic
energies close to the energies of the monopole transi-
tions), was first considered theoretically by K. Ter-
Martirosyan [9), He obtained the following formula
for the differential effective cross section of electron
excitation of electric monopole transitions (in the
relativistic system of units)

dogy = (az)z Np;pr - ! fees 4+ 1 — (0Z)?

(2.17)

+ [pips— (aZ)?] cos 0} S, dQ, (2.18)

where a—fine structure constant, Npj and Npf are
coefficients of the type

aZe '2
2.19
= (2.19)
=v1 —-(aZ)% pi, pf, &, and &f are the initial and
final momenta and energies of the electron. On the
other hand, S; is given by

i
Sc.=},—3

noze
Np=@p2r-e » [T (y+i

) 2

A0y
I 2y-+-1)*
where Ay = Hi/myc is the Compton wavelength, intro-
duced to facilitate the transition to the ordinary units,
and Qf; is connected with the nuclear matrix element
of the monopole by the equation

(— 1)M$CJ‘, -M. foé‘}) =

(2.20)

]

X VirvW,dr, (2.21)

3
wip M vy @&y +D

Cgol —Mj, Jf, Mg are the Clebsch-Gordan coefficients,

and ¥j and ¥ are the nuclear wave functions. In
0-0 trans1t10ns and for negligibly small «Z, the
quantity Qlf is the usual nuclear matrix element of
the monopole for single-particle excitation of the
nucleus.

Formula (2.8) has been obtained with the aid of the
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wave functions of an electron in a nuclear Coulomb
field, without account of the finite nuclear size and
the screening effect. It is assumed that the excitation
energy A is not very large, A « 100 AY3 Mev (A—
atomic weight of the nucleus being excited), so that
piR « 1, where p; is the initial momentum of the
electron in the relativistic unit system and R is the
nuclear radius. The latter condition is equivalent to
including in the calculations only those scattered-
electron states which are characterized by the quan-
tum numbers j = Y.

The electron wave functions used in the calcula-
tions are taken in the form of four-component rela-
tivistic functions yp;, »; and Ypr, yy where vj and vg
are the quantum numbers determining the spin states
of the electron before and after scattering, while pj
and pf are the initial and final momenta of the elec-
tron at infinity. As r — ¥pi, vj 18 represented
asymptotically in the form of the sum of a plane and
an outgoing spherical wave, while Ypg,vs 18 the sum
of a plane and an incoming spherical wave.

From (2.18) we obtain by integrating with respect
to 6

S SR NN, B (g1~ @2)7). (2.22)

At the threshold value of the incoming-electron
energy (that is, for pf— 0 or & — 1 — k), the quan-
tity ¢¢/S¢ has a non-zero limit equal to

. 2m2 (aZ)2 N_.
hmgﬂ’=—“-(;—)-(202)2v—l {_N_’;?}

L (k42— @272 (2.23)
pf—0 -0

ei=h+1{

(because lim PfNps = 7( 227)2Y 1y, Starting from
Pf—0

this limit, og¢/Sy increases monotorically with pf.

Figure 19 shows curves of ogy/S, against & — 1,

calculated ™ for the particular case A= 1 MeV

~ 2myc?, for a nucleus with Z = 50 and Z = 80. An

approximate numerical estimate el yields for S, a

value 107%-10"% cm?. For comparison we present

the results obtained in the Born approximation in

accordance with the formula [

. dogy, _ (0Z)® py .
Jm = ="18 " p (% 1+ pipseos)dQ,  (2.24)
i Om_ 2n(aZ)®  pj .
0lel_)mo P o (ese;-+-1). (2.25)

The calculation of ofy with account of the finite
nuclear size was made by Grechukhin ['%, but like-

’ -
7 k=1 MeV 2-00

L
Y
(=Y
g \S
—
Born
approximation

FIG. 19.

wise for a scattered electron with j = %, and with
not too high an energy (&j < 15 MeV for heavy
nuclei). The calculation yielded a rather cumber-
some formula for o, (see [127).

The dependence of the differential effective cross
section of the monopole excitation by electrons on
the angle between the momenta p; and pf can be
represented by the function (12] (after integrating over
the energies €; and &)

2950 %o (14 bycos8) g 107 [‘S;—J .

L (2.26)

Table VU2 gives the numerical values of o, and
by for the excitation of electric monopole transitions
of Ca®, Ge™, zr®, Pd!% and RaC’(Po?!*) for inci-
dent-electron energy values 10 mgc? and 20 moc2
(when €; = 20 mc? the phase shift due to the finite
size of the nuclei must be taken into account; this was
not done in (1% ).

The influence of the finite nuclear size on the
results of the calculations of oE, is illustrated in
Table VI Dﬂ,which lists the ratio of ogy calculated
for the foregoing monopole transitions with the aid of
the Coulomb functions of the point nucleus to the
values calculated with finite nuclear size taken into
account. Table VI shows that the finite size of the
nuclei leads to a considerable change (a reduction to
almost one-half) of the effective cross section of
monopole excitation by electrons only in the case of
large Z.

Experiments aimed at observing the excitation of
either monopole or multipole nuclear transitions by
fast electrons, so as to confirm the values of o cal-
culated in the Born approximation, were carried out

Table V
Energy Energy Energy Energy
10 mgc2 20 moc2 10 mqc2 20 mqc2
Nucleus Nucleus
Ty b Go b [+ b 0o b

caty 0.054]/0.93|0.34] 1
Gejz |1.08 |0.97 (3.2 | 1
zrde  |0.98 | 0.97 [ 3.7 | 1

Pdjge 2.5210.99] 7.4 1
Pojit 67 | 0.98 {190 1
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Table VI
Nucleus casd Gel} Zrig pajs’ poll?
% 0.98 0.97 1.0 1.16 ‘ 1.87

principally at Stanford 973, To obtain fast electrons
(with energy 190 MeV and more), a linear accelerator
was used. The electrons were scattered by thin
targets and then magnetically analyzed and detected
with Cerenkov counters so as to obtain the angular
distributions of different groups (a detailed descrip-
tion of the experiments is found in Hofstadter’s re-
view (13 ).

Monopole excitation has been established for the
time being only in the scattering of electrons by C12
nuclei. Inelastic and elastic scattering on these
nuclei were observed simultaneously. Figure 20
shows the energy distribution of the scattered elec-
trons for a definite scattering angle %73, The initial
electron energy is 187 MeV and the scattering angle
80°. We see that the curve is characterized by max-
ima of the elastic (first peak on the right) and in-
elastic scattering (the remaining peaks are shifted
relative to the first by amounts equal to the excitation
energies of the corresponding nuclear levels), the
second of the inelastic peaks (counting from the right),
for an approximate energy of 177 MeV, corresponds
to electric monopole excitation of C'? with transition
energy 7.6 MeV.* The width of the maxima deviates
from Gaussian on the low-energy side, owing to the
presence of the so-called ‘‘tail’”’ due fo the radiation
processes in the target. The strongest such ‘‘tail”’
is possessed by the elastic-scattering maximum.

L
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I |
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. |
T
1 ¥

I U4 6 18 10 /62 166 186 168
Energy, MeV

FIG. 20.

Number of Counts

*Experimental results on the observation of a 7.6-MeV 0+-0+
EQ transition from excited C'? produced in various nuclear reac-
tions, are found, for example, in [74-77] (for more details see Sec. 3,
page 310-311).

This ‘‘tail’’ decreases approximately in inverse
proportion to the difference between the given energy
and the energy corresponding to the maximum of
elastic scattering.

Investigations of the inelastic scattering of an
electron with initial energies of 150 and 80 MeV have
shown 6970 that at higher initial electron energies,
the inelastic peaks are better separated, while the
elastic peak grows relatively more slowly with in-
crease in these energies (this essentially confirms
the theory; see page 732). In addition, it turns out
that at higher initial electron energies, the ‘‘tails”’
indicated above will be smaller so that it will be much
easier to separate the inelastic peaks against a lower
background. It must be noted, however, that at very
high initial electron energies (for example, for KR
> 1), the nuclear transitions with large L (and not
with L = 0) will most probably be excited.

In comparisons of the experimental values of the
effective excitation cross section with the theoretical
values account must be taken of the radiative correc-
tions and the bremsstrahlung effect. According to
Schwinger('8:7% the radiative corrections reduce the
observed excitation intensity by approximately 8% at
small angles and almost 20% at large scattering
angles * The bremsstrahlung effect is somewhat
more appreciable: it causes the excitation intensity
to decrease by 20% at small angles and by almost
40% at large scattering angles!® "%, Figure 21 shows
(1,780 curves, plotted with account of these correc-
tions, for the effective cross sections as functions of
the scattering angle for both elastic (curve 1) and
inelastic scattering (curves 2, 3, and 4 for the excita-
tion of the levels 4.43, 7.66 (0* level) and 9.61 MeV,
respectively). It is seen from the figure that curves
2, 3 and 4 for inelastic scattering are much less
steep than the curve for the elastic scattering (the
height of the elastic peak varies by approximately
2 x 10% times in the angle interval from 35 to 138°).
In the case of sufficiently large scattering angles,
therefore, the cross section for the excitation of any
of the levels becomes larger than the cross-section
for elastic scattering. In addition, inasmuch as curves
2 and 4 are almost parallel, we can conclude that the
4.43 and 9.61 MeV levels correspond to excited
nuclear states with identical total angular momenta
and parities (states 2%).

*It must be noted that the radiative corrections vary slowly with
the angle and therefore influence principally the absolute effective
excitation cross section.
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In the interpretation of the experimental results it
is frequently convenient to deal not with the differen-
tial effective excitation cross section but with the
“measured’’ square of the form factor | F(K) |3
defined as the ratio of the measured differential ef-
fective excitation cross section to the calculated
differential effective cross section for elastic scat-
tering by a point nucleus. In particular, in the case
of monopole excitation of C!? (A =7.66 MeV), this
“‘measured’”’ form factor was used successfully by
Schiff ] to determine the nuclear matrix element
M ( Clz) of the monopole in accordance with Formula
(2.17) (by extrapolating the experimental values of
(dogo/do)V? to the limiting values obtained for
K — 0). He obtained M (C'"?) = 3.8 x 1072 cm?.* 1t is
possible to obtain M also from the absolute value of
the cross section of monopole excitation as a function
of the scattering angle, but this method of determin-
ing the nuclear matrix element of the monopole is
considered to be less reliable. 8"

The experimental data on the excitation of nuclear
transitions by electrons with threshold energies are
so far skimpy. The dependence of the cross section
o for the excitation of Cd!!* on the kinetic energy
€j — 1 of the incoming electrons was investigated in
CMJ_ It was found that this cross section is practically
zero until the kinetic energy of the electrons reaches
the excitation energy, after which it increases
abruptly, and then ¢ decreases monotonically to the
next excitation threshold, then increases suddenly,
and the process repeats. Owing to the lack of enough
experimental data, it is difficult to compare them

*A somewhat different Schiff value for M, approximately 5 x 107
cm?, is given in [¢*].
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with the theory of monopole excitations of nuclei by

electrons with threshold energies e,

3. EXAMPLES OF MONOPOLE TRANSITIONS OF
NUCLEI

We consider now the observed monopole transi-
tions of individual nuclei. All turned out to be E0
transitions (one attempt of observing the MO transi-
tion was discussed at the end of Sec. 1). Most of the
reliably established EO transitions are of the 0*—07
type. Transitions of this type were identified prin-
cipally by observing the concomitant emission of the
internal conversion electrons and electron-positron
pairs, with complete absence of y quanta of energy
equal to the transition energy. The monopole nature
of the investigated transition is further confirmed by
the agreement between the experimental values of
K/L, Li/L1, WK/Wr and other quantities with the
theoretical values (see Sec. 1).

The presence of E0 transition admixtures in
nuclear transitions of the ‘“J* — J*»’ type can be
detected by observing some excess of conversion
electrons or electron-positron pairs over the number
that should be emitted in the conversion processes
that compete with the corresponding vy radiation in
the absence of the EO0 transition. For a quantitative
determination of the E0 admixture, the angular cor-
relations of various cascade processes are investi-
gated and the results compared with theory (see Sec.
1).

0. One of the most thoroughly investigated
mon—opole transitions[20-2%:28,54-58,82-86] 5 ype 0+ _0*
transition of the O nucleus. This transition is pro-
duced by proton bombardment of F'? via the reaction

oF1® 4 H! — 1 Ne2* — ;Het 4 50, (3.1)

The O nucleus can occur in either the ground state
or in four excited states with energies that differ
relatively little from one another (Fig. 22) ). Three
of these states (which we denote by YO'®) are charac-
terized by the fact that the transition between them
and the ground state are accompanied by emission of
photons. On the other hand, the transition from the
fourth and lowest excited state, "0, to the ground
state gives rise to electron-positron pairs. The
latter cannot be attributed to internal conversion of
the photons, for in this case the number of pairs
should be much smaller (1%) than the number of
photons, whereas actually these numbers are com-
parable (. I addition, photons with energy equal to
the difference of the levels 70 and 0O (6.051—
0.010 MeV)[mﬂ are missing from the radiative spec-
trum of O'%, whereas photons with energies 7.09,
6.99, and 6.14 MeV, values equal to the differences of
the YO and O levels, are present there. If it is
also taken into account that the spin of O in the
ground state vanishes, then it follows on the basis of



736
NBZU
g n an a
L)
o't 2 5 S
709 -—-—————:fz,“i (\.@
609 Y/
614 9
6.04 ] (1]
Vil Ye| Bof 7
FIG. 22.

the general theory of monopole transitions (Sec. 1)
that the "0 — 0'® transition is 0—0.

It has been demonstrated experimentally ] that
the O levels responsible for the emission of pho-
tons on the one hand, and of electron-positron pairs
on the other, appear at different resonant proton
energies. This means that there are several groups
of levels of the compound nucleus Ne?’, and « decay
from one group is accompanied by a transition to the
levels YO *, while decay from the other group
causes transitions to the level "0 (See Fig. 22). If
we assume that the data on the level groups of Ne?’
are perfectly reliable (this pertains particularly to the
am group), then it can be shown (] that the transition
701 — O occurs without a change in parity. Indeed,
the transition from the am group can be both to the
7O level and to the normal level. We denote the
parity of the ar state by d,,. Then the parities of
the states "0 and O will respectively be dj
= dgr(-1)L7 and dy = dyg (-1)L0, where L; and
Ly are the angular momenta carried away by the «
particle in the transitions @"Ne?® %8 Tt and
amye20 @5 01 (see Fig. 22). Since the angular mo-
menta in the states "0 and O!® are equal to zero,
Ly and L, are equal to each other. Consequently
also dy = dy, that is, the parities of the nuclear wave
functions describing the states "O!* and O are
identical, and since A and Z of O!® are both even,
they are also positive.

According to general theory of monopole transi-
tions (Sec. 1), the transition Tol* — 0% ghould be
accompanied not only by pair but also by electron in-
ternal conversion. However, as shown by calcula-
tions Dﬂ, the probability of the latter is smaller than
the probability of the former by a factor 28,000. So
far, no EO0 conversion electrons from O have been
observed.

As already noted (see page 721), the energy dis-
tribution of the positrons can be obtained by starting
with Formula (1.32), which expresses the differential
probability for the production of an electron-positron
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pair in 0—0 transitions.* It is then possible to com-
pare the result with the experimental data. The re-
sults of this comparison turned out to be fully satis-
factory (183,

The angular distribution of the electron positron
pairs obtained on the basis of (1.32) is also in fair
agreement with experiment (84,851, «

This distribution was investigated in 34 by the
coincidence method with two different setups (‘‘close”
and ‘‘far’’) of counter-telescopes relative to the
source of the electron-positron pairs (that is, rela-
tive to the location of the proton-bombarded CaF,
target). After integration of (1.32) with respect to
the energy and account of the counter efficiency, the
theoretical formula for the angular distribution as-
sumes the form

P (8)¢heor= A [1+(0.9937 = 8) cos 0], (3.2)

where 6’ depends on the dimensions of the useful

area and the location of the counters (for infinitesi-
mally small counters 6’ = 0). For the two specific
mentioned counter installations we obtain from (3.2)534

1) P (O)ineor =~ A[14(0.95510.003) cos 6], (3.3)

2) P (0)iheor ~A[14(0.974+0.002) cos 6]. (3.4)
On the other hand, the experimental dependence of the
function P(8) on 6 was found to be for these two
cases

1) P(0)exp = A[14(0.94810.012) cos 0],

2) P(6)exp = A[14-(0.980+0,009) cos 6].

(3.5)
(3.6)

Comparing (3.3), (3.4) with (3.5), (3.6) we see that
the theoretical and experimental coefficients of cos 6
differ from each other in the mean by 0.002 + 0.008,
that is, by an insignificant amount. Some contradic-
tion between the theoretical and experimental angular
distributions of the pairs, observed in [5%:88] must be
attributed to insufficient experimental accuracy B

Present day experiment is incapable of detecting
the different corrections to the angular distribution
of the pairs (radiative) and also the corrections that
take into account the internal bremsstrahlung and the
Coulomb interaction between the pair components, as
well as other corrections (see page 722) although
it is predicted[8] that the presence of such correc-
tions can be established in the future.

*We recall that this formula has been derived assuming a Cou-
lomb interaction between the protons of the nucleus and the elec-
trons of the Dirac background.

t According to Groshev and Shapiro[ﬂi difficulties still remain in
explaining why the transition from the level 7"Ne®® (see Fig. 22) is
possible to the level 7"0!*** (with emission of an a particle), and is
impossible to the level 0, although the levels "0** and 0 dif-
fer only in energy. It is supposed|[*! that a way out of the difficulty
can be found by introducing additional selection rules with respect
to some imprecise quantum number.
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The experimental value of the total pair-conversion
probability Wy for the 0*—0* of the O nucleus is
equal to ~ 1.4 x 10! sec™ according to the latest
data'®J], From a comparison with the reduced prob-
ability $, calculated from Formula (1.34), a value
3.8 x 10”% cm? has been obtained for the nuclear ma-
trix element of the monopole [#1; this is presently re-
garded as the most accurate value. The correspond-
ing reduced monopole nuclear matrix element is
p(O¥) ~ % (for R=1.2 x 108 AY3)*  Theoretical
estimates of the nuclear monopole matrix element of
0% pased on different nuclear models are discussed
in Sec. 4.

RaC’(Po?!*). As long ago as in 1930 it was sug-
gested [88:15] that the conversion line corresponding to
the transition energy 1416 keV, observed in the RaC
( Pom) spectrum, belongs to the 0*—0* transitiont,
since no corresponding line was found in the vy spec-
trum. Many years, however, have passed before the
assumed EO0 transition in RaC’ was fully confirmed
by various quantitative data.

A comparison of the relative conversion coeffi-
cients K/L, Ly/Ly, and Lyrp/Lyp (which pertain to
the transition from the 1416 keV level to the ground
level ) with their theoretical values for different mul-
tipoles has shown[%8-%0] that the considered transition
cannot belong to any of the electric or magnetic mul-
tipole transitions, meaning that it is a 0—0 transition.
On the other hand, comparison of say the experimen-
tal values of K/I. with the theoretical ones for EO
transitions (Church and Weneser [11]) is satisfactory.

However, the de-excitation of the excited nucleus
in the EO transition can proceed also via production
of electron-~positron pairs. The theoretical ratio of
the probability of E0 conversion on the K shell to a
probability of pair conversion, is equal for RaC’ to
170 (after Thomas [14]) or 420 (after Sakharov[21]),
Experiment yields for Wi /W, values in the range
440 = WK /Wr =< 625082,91,92], These values are seen
to be closer to the second of the given theoretical re-
sults. It is nevertheless assumed that the experimen-
tal values of W are insufficiently accurate (since
their determination entabils non-unique operations[%3]).

At the present time the following sequence has been
established for the low-lying excited levels of RaC’
(Fig. 230%%,%4]) The excited 0* state (1416 keV) is
in this case the sixth and not the first excited state,
as was the case with the O nucleus.

Various types of de-excitation of the nucleus from
the 1416-keV level were investigated, such as emission
of long-range o particles (group @j), conversion
transition to the ground level, single-photon or con-
version transitions to the 609-keV level. The remain-
ing possible processes accompanying this de-excita-

*A value p(G™) = 1/2 is given in [***7],
t The states are positive because RaC’ is even-even.
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tion of the nucleus have low probability and were not
observed %],

The most important problem is to determine the
absolute probability of the EO0 transition or (which is
the same) the partial lifetime T¢ of the 1416 keV level
relative to the conversion transition to the ground
state. Unfortunately, the value of 7,_ has not yet been
accurately determined. One of the methods for esti-
mating it is based on the relation

A N,

e—~€
Ay,  Ng. '

og o3

(3.7)

where Ae- and A, are the probabilities of the con-
sidered conversion transition and emission of long-
range a particles, and Ne- and Ny, are the numbers
of internal-conversion electrons and « particles of
group a3 per decay, which are known from experi-
ment; Aq, is obtained from the experimental value of
the probability for the emission of « particles from
the ground state of RaC’ (group ;). By extrapolat-
ing the known formula from o-decay theory to the case
of the excited levels [#3:%5] we obtain

— 4o % Z(2ug—sin 2ug)

A=De , (3.8)

where v — velocity with which the a particle and the
nucleus move apart, uy = cos™! (ER/2Ze?), E is the
total energy released in ergs, and o is the fine-
structure constant. Dzhelepov and Shestopalova (53]
obtained in this manner a value 7g = 3.0 x 10710 sec
for the partial lifetime of the 1416 keV state (for R
= 1.2 x 10718 AY3 ¢m ), which differs noticeably from
the earlier estimates of Bethe (%1 (7,_ = 8 x 107!! sec)
and Drell and Rose [25] (14-= 2.5 x 107! gec).

The accuracy of the result (7¢-)} depends on the ex-
tent to which Formula (3.8), derived for a spherical
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nucleus, is applicable to the somewhat deformed RaC’
nucleus (AR/R = 0.2 [*7]), In a rougher approxima-
tion it is possible to calculate T,- by comparing the
sought probability with the probability of y-quantum
emission in the transition from the 1416 keV to the
609-keV level, using the Weisskopf approximation
(with corrections by the Sunyar method%"J) to ob-
tain the theoretical value of Ay. In this case Tg-

was found to equal 3.5 x 10712 gec (9],

In view of the lack of sufficiently accurate data on
the absolute probability of the EO0 transition of RaC’,
comparison of the experimental and theoretical data
cannot yield (see Sec. 1) exact values of the reduced
nuclear monopole matrix element p. An estimate of
p for RaC’ was first made in 1930 by Fowler, who
used the single-particle model of the nucleus to calcu-
late the EQ-transition probability.* He obtained for p
a value close to ¥,. In later work(#%], comparison
of the reduced E0-transition probability calculated
with account of the finite nuclear size with the experi-
mental partial lifetime of the 0* state of RaC’,
namely To-=2.5x 107! sec, yielded for p values in
the range ¥ =p =¥ and a value of ¥%®¥). If we use
in this comparison Te- = 3.0 x 10710 sec, p is de-
creased by a factor of approximately 3.5.

Ge™ ", The 0*—0* transition of Ge™ with energy
0.69 MeV is the third observed monopole nuclear tran-
sition. As was established in (1011 the excited Ge™
nucleus with energy 0.69 MeV is produced by bombard-
ment of Ga®™ with slow neutrons and subsequent g de-
cay. The transition of Ge™ from the first excited
(0.69-MeV) state to the ground state is accompanied
by emission of an intense conversion line with energy
close to 0.69 MeV, without a corresponding y quan-
tum. The lifetime of this excited state 75~ was found
to be 3 x 107 sec(192], The presence of strongly con-~
verted high-energy radiation together with the short
lifetime of the excited state indicate that the 0.69-MeV
transition of Ge’ cannot be classified as isomeric [103]
but must be a monopole transition of the 0*—0* type
[101,104] .

Comparing the experimental value of 7g-(0"*) of
Ge™ with theory[1!] (allowing for Wy = 0) we obtain
[102] ,(Ge™) = 0.11. An earlier estimate [%8] of
p(Ge™) was twice as large.

A type 0—0 EO0 transition was also observed in
Ge', which is the B-decay product of Ga'®; the 0**
state is in this case a second-excited state with en-
ergy 1.215 MeV, so that the nucleus can become de-
excited both by electron E0-conversion (no pair EO
conversion was observed) and by cascade emission of
two vy quanta with energies (0.173 + 0.002) and (1.042
+ 0.005) MeV. The partial lifetime of the 0** state of
Ge" relative to the emission of the E0-conversion K

*This model consisted of an a particle moving in a nuclear field
with a potential in the form of a spherically-symmetrical box with
walls of 1) infinite and 2) finite height.
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electrons was found to be To-= (24 + 1.2) x 1077 sec
(1021, comparison of Te- with theory yields p(Ge™)
= 0.09, that is, a value differing little from p(Ge™).

C¥2. The opinion was expressed in 1954 [1%5] that
the small number of electron-posgitron pairs with max-
imum energy 7.66 MeV, observed in the Be¥(ay)C!?
reaction, offers evidence of the presence of an electric
monopole transition of the 0*—0* type in C!?, inas-
much as no corresponding y emission (that is, emis-
sion with energy 7.66 MeV )* was observed. On the
other hand, observation of y quanta with energies 3.16
and 4.43 MeVL™] indicates a cascade. The cascade
type, 0 — 27 — 0%, was then established on the basis
of an investigation of the angular correlation of these
quanta in 7], The existence of excited levels 0* and
2* of C' was also confirmed by experiment on in-
elastic scattering of electrons [%-™]  which were al-
ready mentioned in Sec. 2. From the data of these
experiments a value of 3.8 x 1072 ¢m? was obtained [80]
for the C!2 nuclear monopole matrix element (its theo-
retical estimates are given in Sec. 4).

Pursuant to this, particular attention was paid to the
study of the excited 0* state of Cn, in connection with
the question of the sources of stellar energy and the
theory of the origin of elements. It was predicted for
the first time in (1971 that the carbon nucleus produced
in the assumed cascade of nuclear reactions He* + He!
— Be® and Be®(ay)C!2, which occurs in the later
stages of stellar evolutionf —red giants—should be in
an excited state with energy 7.6—7.7 MeV. It is pre-
cisely the presence of this resonance level in C!?
which causes the probability of the Be®(ay)C? reac-
tion to become comparable with the probability of a
reaction of the inverse type at sufficiently high tem~
peratures.

The probability of two successive nuclear reactions
2He* — Be® and Be®(ay) — C'?1 is given by the for-
mula L1981

Q
(QXa)? Vi ¢ *T gec™! (3.9)

Ty+Ta

where m, is the a-particle mass, T the absolute
temperature, p the density, xn the concentration of
helium (by weight), and Q an energy equal to the dif-
ference between the energy of the excited 0% state and
the binding energy of C!2 (in mass units Q = m(C!?)
—3mg ). The quantity T'y is the partial width of the
7.66 MeV level of C!? for transition of this nucleus to
the ground level, and Ty is the partial width of the

5 .5
— 32878 —
W=t

*The 7.66 MeV level of C'* was observed as long ago as in
1952[°¢],

{When almost the entire hydrogen in the core of the star is con-
verted into helium and gravitational contraction causes the tempera-
ture of this core to reach 10°°K and the density to reach 10°
g/em.[1]

$Much attention is paid presently to the theory of these reac-
tions, since reactions similar to Be®(ay)C'? can explain the forma-
tion of the nuclei 0*° Ne* and others (for example, C”(ay)O“),[“"]




MONOPOLE TRANSITIONS OF ATOMIC NUCLEI

7.66 MeV level for a decay. Inasmuch as I'g > T'y
(1101, we have I'y[y/(Ty + Ig) ~ Ty and W is pro-
portional to 'y. On the other hand, the partial width
I\, consists of the partial width of the 0** level for
monopole transition and the partial width for the above-
indicated y cascade, that is, I‘y =IT'(E0) +T"(E2). We
see therefore that for an exact determination of the
probability of carbon production in a stellar medium

it is necessary to have as accurate a value of the prob-
ability of the C!? electric transition as possible (along
with T (E2)).

Using the experimental value given ahove for the
C!2 nuclear monopole matrix element, Salpeter [110]
obtained I'(E0) ~ T'gx = 4 x 107 eV, where Tgz is
the partial width of the 0% level for emission of mon-
opole electron-positron pairs (the remaining proc-
esses accompanying the EO transition are neglected).
The upper limit for Te+ was established in (111 py
using the experimentally measured ratio of the number
of monopole pairs to the number of vy quanta with 4.43
MeV energy and known relative populations of the 7.66
and 4.43 MeV levels([112], The result obtained was
I'ex < 7 x 107% eV which does not contradict Salpeter’s
estimate. On the other hand, the ratio I'g+ /T, is ap-
proximately 7 x 10~% according to [13] and 6.6 x 107
according to 1141, and much smaller than the value
Ts.3y/Tq ~ (3.3 £ 0.9) x 107 (18] where Ty 55 is
the partial width of the 7.66 MeV level for the emis~
gion of a 3.23-MeV y quantum.

Because the energy Q in (3.9) depends greatly on
the exact value of the excitation energy of the 0" state,
more and more accurate measurements were made of
the 7.66-MeV level. By way of an example we present
some values of this level: (7.66 £ 0.02) MeV [116] (1955),
(7.658 + 0.027) MeV 117 (1956), (7.653 + 0.008) MeV
(193] (1957), and (7.654 + 0.009 ) MeV (101 and finally
7.656 MeV [118],

Zr®®. The presence of a 0*—0" for Zr®® was pre-
dicted theoretically by Ford (18], According to a shell
model, the protons in nuclei beyond Z = 38 are first
placed in the p;, levels (the first at Z = 39 and sec-
ond at Z = 40), and then in the gy, levels. Inasmuch
as the 0-order scheme gives a sufficiently large dif-
ference between the particle levels gg/; and p,/y, the
proton shell of Zr?® can be regarded as almost filled.
The discovery of the isomer transition 5~ — 0% with
energy 2.3 MeV[12%] confirms the quasi-filling of the
proton shell of Zr® and simultaneously points to the
existence of a configuration pysy gy (‘577 state of
Zr%). In the 0-order scheme, the levels determined
by the nucleon configurations pyp, py/2 8y, and g,z,/z
are at equal distances from one another (Fig. 24, left
half of the level diagram ). If on the other hand we take
account of the residual interaction between the nucle-
ons, then these levels split and drop in such a way that
the downward shift of the levels of the (g,/,)? and
(pys2)? configurations is much larger than that of the
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levels of the (py/,8y/,) configurations, and conse-
quently the 0** level is located below the 5~ level

(119,1213% (pje 24). Thus, the first excited state of
Zr®, as can be seen from Fig. 24, is a 0" state.

The transition from this state to the normal state
was observed then experimentally (1231 In the B ra-
diation of Y%%(3, Y% — ,1Zr%) there were observed
conversion electrons belonging to Zr®® with energy
1.75 MeV (1.734 % 0.005 MeV according to [124]), In-
asmuch as no photons were found with such energy, we
must assume that we are dealing here with internal
conversion of a monopole transition of the 0% — 0*
type. This deduction is confirmed also by the obser-
vation of the positron spectrum of Zr®® with maximum
positron energy 0.8 MeV.

Electron and pair conversion of the 0*—0* transi-
tions of Zr? were subsequently investigated in detail,
with the ratios of the number of conversion electrons
and the number of pairs to the number of g electronsT
emitted by v per second determined with greater
accuracy, and with measurement of the lifetime of the
excited 0% state of Zr®® and other quantities charac-
terizing to a greater or lesser degree the considered
0*—0* transitions [124-132,102]

In [124] tpe experimental and theoretical data con-
cerning the values of K/(Lj+ Mj) and Wg /Wy for the
EO transition of Zr® are compared and p is deter-
mined from Formula (1.45), using the experimental
value of the lifetime Tt of the excited 0* state of Zr%,
The best agreement between theory and experiment
was found for We /Wi, The theoretical value of
We /Wy is 2.4 (as given by Zyryanova and Krutov [28]
and Church and Weneser[11]) or 2.8 (as given by
Thomas (14 and Church and Weneser [11]), while the
experimental value [12] j5 3.0. The result of the com-

*M]ore accurate calculations of all these levels can be found
in [122],

tOn the basis of these ratios we obtain the values of K/(Ly
+ My), Wg/Wq, and We/Wy.
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parison is somewhat worse for K/(Ly + My), the ex-
perimental value of which is 5(124] or 4[131] while
theoretically K/(Lp + My) = 7.1 (see [11,132]),

The measured lifetimes 7(0**) vary. For exam-
ple in [2%] the value given is T= (8.5 + 3) x 107° see,
whereas [132] gives (90 + 6) x 107 sec*, that is, one
order of magnitude larger. In this connection, two
values are obtained for the reduced nuclear monopole
matrix element, p = 0.18 in the first case['?4] and
p = 0.56 in the second[132],

Pt!%, The first two excited and the ground level of
Pt'* form the sequence 2"’ — 2* — 0* with transition
energies 334.0 (2*' —2%) and 356.5 keV (2* — 0%).
The nuclear transition 2%’ — 2% is a mixture of the
EQ, M1, and E2 transitions. From the theory of such
transitions, developed in pages 725-727, it follows that
in order to determine the EO0 admixture in the 2’ — 2°*
transition of Pt'® it is possible to use the following
four independent experiments: experiments on the es-
tablishment of the angular correlations y—y and
ek—y*1 in the cascade 2%/ — 2% — 0¥, on the meas-
urement of the absolute probability W3,(E2) of the E2
transition in the second link of the cascade (2% — 0%)1,
and the determination of the total coefficient of internal
conversion in the first link of the cascade (2% — 2%).
Gerholm and Petterson[3%] used the results of the first
three experiments to calculate q?(Pt'*) = Wg(E0)/
WK(E2) and the nuclear matrix element of the mono-
pole p(Pt!®8), namely the results of investigations 3
of the egx—y angular correlation and experimental val-
ues of the probability W,(E2) and of 6% = W, (M1)/
Wy (E2) 361341 since the coefficients of Pj(cos 0)
in the function (1.49), which describes the ex—y an-
gular correlation were investigated in [133] with al-
lowance for the possible time dependence of the per-
turbation due to the magnetic interaction between the
electron shell excited by the preceding K capture or
the K conversion and the nuclear magnetic moment,
the value obtained for ¢ lies in the range 0.24 <q
=< (0.56 + 0.01) (the lower limit for g has been ob-
tained with account of the indicated perturbation, and
the upper one without it).

The uncertainty in p is somewhat larger. It is due
not only to the uncertainty in the number q, but also
in the uncertainty of the quantity W-'y( E2) [see (1.51%)].
On the other hand, the uncertainty of WY( E2) is ex-
plained by the fact that this quantity is not determined

*Approximately the same values of 7 were obtained also in
[mz,no]'

11t should be noted that investigations of the angular correla-
tion in the case of Pt**® are preferred in the sense that the cor-
relation function is practically independent of the theoretical un-
certainty in the K-conversion coefficient for Ml-radiation. [+31%¢]

{Measurement of W'y (E2) is essential, since the absolute
probability of emission of an E2 quantum, W'y(E2), in the first
link of the cascade (2*” » 2*) has not yet been determined experi-
mentally.
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by experiment, but is usually obtained from the known
experimental value of W4,(E2) by using the ratio of the
reduced probabilities B(E2; 2*’ — 2*)/B(E2; 2 — 07)
= b, established on the basis of various model-depend-
ent considerations, and which therefore assumes vari-
ous values.* Thus, for example, according to the ‘‘free
oscillation’’ model [3:138] we have b = 2. Then p lies
in the range(133] 0,017 <p < (0.039 = 0.007). On the
other hand, if b is calculated with the aid of the Davy-
dov and Filippov theory of non-axial nucleil13]  ijtg
value is 1% and we obtain 0.013 =< p < 0.04.[140]

Gerholm and Petterson 3] give one more estimate,
with a wider range 0.009 =< p < 0.05, obtained under
the assumption that Y, < B(E2; 2*’ — 2)/B(E2; 2* — 0)
<27

It must be noted that the first estimate of p(Pt!%)
was made by Church and Weneser [11+32] who used the
experimental data on the y—vy angular correlation,
w;,(Ez), and the total conversion coefficient BK (this
method of determining p is described in pages 725-
726). They obtained p < 1/34, which does not contradict
the estimates indicated above for the nuclear monopole
matrix element.

Rare earths (Ce!?, Sm'%?, and Gd!%?). It was estab-
lished in [142-143] that in B decay of Lal4®, and also in
electron capture or 8 decay of Pr!4?, the Cel4’ nu-
cleus can occur in an excited 0* state with energy
1902 keV. Two conversion K and L lines, correspond-
ing to an averaged transition energy 1902 keV, were ob-
served in the Ce!*" spectrum. No corresponding y line
was found (4 x 10™* quantum per decay). Measurement
of the relative conversion yielded K/L = 6.33. An es-
timate of the lower boundary for the conversion coeffi~
cient yields X' > 0.38. One cannot attribute such a
high value of gK to a high-multipolarity transition
(L > 10), for in this case the 1902-keV state would be
an isomer state with a lifetime > 10! years, whereas
in fact the lifetime is approximately equal to 38 hours.
Consequently, it can be concluded that the transition
under consideration is a 0*—0" transition.

Investigations have shown[12:143] that the 1902 keV
level of Ce“’o, which is the second excited level, is
much more frequently excited in the decay of Pr'4
than in the decay of La'*®. The number of excitations
of this level amounts in the second case to 0.013% of
the number of excitations in the first case.

EO transitions were also observed in Smi%? and

*The quantity B(E2; 2% > 27)/B(E2; 27 > 0%) = b was also
determined recently experimentally, principally from data on the
y-y angular correlation and measurements of the relative conver-
sion coefficients K/L.[***] The most promising with respect to the
determination of b are experiments on the Coulomb excitation of
the 2% level.['*"]

TThe value b = B(E2; 2*' » 2+)/B(E2; 2* - 0) = 1/2 is taken
from [1*°], in which it was established for Pt***, It is assumed in [***]
that the values of b for Pt'** and Pt'*® should be the same. After cor-
recting the mistake noted by Listengarten and Band[®] we obtain
finally 0.013 < p < 0.070.
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FIG. 25. (Transition on the left 1” — 2*:831.6 keV).

Gd'2, which are the decay products of Eu'®?, Figure

25 shows a diagram of the low-~lying collective purely
rotational (two lower) and B-vibrational (two upper)
levels of Sm!%? and Gd!®?, with indication of the EO
transitions (1441 * The levels shown dashed in the fig-
ure arise in the decay of the isomer Eul®? with half
life 12.2 years. The diagram shows also the percen-
tage ratios of the numbers of the observed transitions
to the number of Eu'!® decay events.

Sm!®, Two types of EO transitions have been es-
tablished: 0*—0* with energy 685 keV[145] apg 2*—2*
with energy 689 keV (18] (see Fig. 25). Using the
theoretical values (1473 of B(E2; 2*/ — 2*)/B(E2;

2" — 0%) ~ 1% and of the conversion coefficient

a?(z“ — 0%) for Sm1%2, and also the experimental
data on the electron conversion of the 689 and 811 keV
transitions (48] an estimate was made in [14€] of the
ratio of the intensity of the EO conversion and radia-
tion of E2 quanta in the 2%’ — 2% transition. This
ratio was found to equal approximately 0.07.

Subsequently the investigations of the y-ray and
internal conversion electron spectra produced in the
(ny) reaction on Ga!®® and Ga'® have shown[?1] that
some of the transitions of Ga'*® and Ga'®® can be clas-
sified as monopole (as 0" —0" and 0*—2" transitions
with energies 1010 and 1041 keV respectively in the
case of Ga'®® and as 27—2" transitions with energies
1436, 1373, 1405, and 1454 keV in the case of Gal!%®),

U422 The radioactive isotope U%* is usually ob-
tained as a result of o decay of Pu®®, g decay of the
isomer Pa?!, or electron capture by Np®!. Investi-
gations of both the y and conversion spectrum of U234
have established [49~152] two EO transitions of the
U nucleus, one of 0" —0* type with energy 812 keVT,
and the second 2% —2* with energy 810 keV.

Several groups of conversion electrons (K, L, Mj,

*The transition 2_2% is indicated on the basis of [**¢],
tA somewhat different value for the energy of this transition,
805 keV, is also given in the literature,[**?]

and Nj electrons) accompanying the foregoing EO
transitions, were observed in [1%2]. The ratio of the
intensities of the K-electron lines for the 810 and 812
keV transitions was found to be 1: (4 + 1), from which
it follows that the probability of the second of these
transitions is much larger than that of the first. The
identification of the 810 and 812 keV EO0 transitions
was confirmed by comparing the experimental value
(152] of K:Lj: Mg and of K:(Lp+ Mj) with the theo-
retical ones[11,1%], Figure 26 shows the scheme of
several low-lying levels* of U%! which is the decay
product of Np?*, with indication of the EO0 transitions
and their relative intensities [152],

Electric monopole transitions of the 0*—0* type
with energy 816.4 keV and the 2* —2* with energy
817.5 keV have been observed[%5] also for the U232
nucleus, produced as a result of 8~ decay of Pa%?,

In addition to the foregoing examples of EO0 transi-
tions, it must be noted that EO transitions were ob-

served also for Cal®%? (gsee [203,216,132]) pyll6 (gee
[124]) * ogllt (gee [1541), THBOB2 (gee [165-1561)
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*The state 17, corresponding to the 787 keV level, has not yet
been sufficiently accurately established in {521,
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U236,288,240 (gge [156-157]) py238 (gee [153,158]) gpg
Bi*1? (gee [1%]), The EO0 transition of Bi?!2 is the
only type 0" —0" transition observed to date (A = 176
keV, with 07 and 0 the fourth and second excited
states[1%]), The existence of electric monopole tran-
sitions of the type J—J was also predicted and an es-
timate of the parameter p was made by the method
described in pages 288-289 on the basis of the experi-
mental data for Hgl®® (see [111), Pt192 (gee [11]) and
Aul® (see [37)), A summary of the most important
experimental data on EO transitions is given in Table
ViI.

Of particular interest is the transition of Au!®?
since, unlike all the other nuclei given above, it can
have an angular momentum with half integer J only.
The scheme of the Au!®? levels produced as a result
of 8 decay of Pt!*" or electron capture of Hgl®" is
given in Fig. 27087], The values of the number J cor-
responding to the levels shown in the scheme have been
accurately determined, with the exception of the 268-
keV level.

There are grounds for assuming(87] that the 191-
keV transition of Au!®’, which corresponds to an ap-
preciable experimental internal conversion coefficient
B® = 2.501893 ghould be regarded as an (EO0 + M1)
transition of the Y%—, type (to this end it is suffi-
cient to prove that J = ¥, for the 268-keV level ).

The 268 keV level cannot be assigned J = 3/2, since
B€ would then be =< 1.[%7] values of J larger than ¥,
are excluded, for they would contradict the character
of the B decay (873, Consequently the 191-keV transi-
tion is actually Y,—Y%.

Since electric quadrupole radiation is forbidden in
the ¥, — ¥, transition, formula (1.47) for the E0 ad-
mixture simplifies greatly. We have
_ W, (EO) -+ W, (M) W, (EO)

fe= W, (M1) T Wy (M) (3.10)

+B3-
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Substituting in (3.10) the experimental value g€ = 2.5
(160] | the theoretical value B$ = 1.0, and the value of
Wy (M1) calculated by the Moszkowski formula [2], we
get We(E0) ~ 4 x 10!! sec™, and then in the usual
manner p ~ 0.5087], After correcting the error noted
by Listengarten and Band, we have p = 0.70.

4. THEORETICAL ESTIMATES OF THE NUCLEAR
MONOPOLE MATRIX ELEMENT

In Sec. 1 we developed a general theory for EO
transitions, according to which the most important
characteristics are the quantities M and p—the nu-
clear and reduced nuclear monopole matrix elements.
It was also shown (Secs. 1—3) how to obtain the ex~
perimental values of M and p by comparing the re-
sults of the theory with the experimental data. A very
important problem is the comparison of these exper-
imental values with the theoretical estimates of M
and p made on the basis of different nuclear models,
for it is possible to establish in this way the degree

Table VII. The subscript in the designation for the spins of the ex-
cited nuclei denotes the serial number of the excited state, et—
conversion with production of electron-positron pairs, e”—elec-
tron conversion (the remaining notation is explained in the text)

Nucleus Transition A, Mev Cg?::r- ‘;gg)’ Pexp
+ 1
1. Cr2 04— 0+ 7.656 | e ~1.5-1071t =
2. 018 0f —> O+ 6.051 | = 7.2-10711 0.42
3. Ca0 0f — O+ 3.348 | e*, e 3.4-10°9 0.15
4. Cat? 0f — 0+ 1.836 |.e*, e 0.41
5. Ge?0 0f — 0+ 1.215 e 241077 0.09
6. Ge? 0f — 0+ 0.69 e 3.1077 0.11
7. Zreo 0f — 0+ 1734 | e, e* 90-107 0.056
8. cdud 0f — 0+ 1.308 e 5.10710 0.63
9. Pdie 0F — 0+ 1.137 e > 1078
10. Ptise % —> 2 0.334 e 0.013--0.070
+ +
11, Aute? (%) - (—12—> 0.191 e 2.5-10712 0.70
2 1
12. RaC’(PO214) 0f — OF 1.416 | o= = | 2.5-10m 0.17
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to which any particular model is applicable to any
specific nucleus whose monopole transition is ob-
served.

The theoretical estimates of p are based on dif-
ferent model representations of the nucleus. It is
simplest to estimate p by starting with the single-
particle model. Since in this case the states of the
nucleus are distinguished by the states of the
“‘external’’ nucleon moving in the field of a fixed
nuclear residue (‘‘core’’), the value of p can be
readily expressed in the form

0= Z ‘F*(r”>‘Pdr_\A2 «6\)Su,—au dr

= ('% + 6p>Q”

where u; and uf are the wave functions of the initial
and final states of the nucleon. In the first term the
7/A? in the sum preceding the integral takes into
account the core recoil [7]’ whereas the second term
6, has a value 0 or 1, depending on whether the ex-
ternal nucleon is a neutron or a proton. The numeri-
cal value of the integral p’ can be obtained only by
making some specific assumption with respect to the
form of the averaged potential of the nucleons and the
solution of the corresponding Schrodinger equation.
In very rough approximation, putting uf = uj = const
for r = R and u¢ = uj = 0 for r > R, we obtain p’
= 0.6. In all other cases we should expect p’ < 0.

As can be seen from (4.1), for single-proton transi-
tions in medium and heavy nuclei p =~ p’, meaning
that p < 0.6. Even in the lightest nuclei for which
0*—07 transitions can still be observed, this estimate
varies little (for example p = 0.625 for c?).

Estimates of M were made for C' and O on the
basis of the a-particle model %, According to this
model, the nuclei C!? and O consist of three and
four o« particles, respectively. In the equilibrium
position, the « particles are located at the vertices
of an equilateral triangle ( C'?) or tetrahedron (018 ).
The excited 0% state of each of these nuclei is char-
acterized by radial oscillations with equal phase,
executed by the « particles about the equilibrium
position (‘‘pulsating’’) model.

Schiff [80] gives a general formula with which to
calculate the nuclear matrix element M in this case:

M=ZRoh I/E%S, (4.2)

where myp is the mass of the nucleon, A the excita-
tion energy, and Ry the distance from the center of
the « particle (in the equilibrium position) to the
center of the nucleus. Assuming that the nuclear
radius R is larger than the radius Rg by 1.0 x 1071
80], Formula (4.2) yields M = 11 x 10726 and 17
x 1072 ¢m? for C!? and O, respectively. These
results turned out to be much overvalued (by three
and almost five times, respectively) compared with

(4.1)

6 [,

the numerical values of M obtained by experiment.*
According to [84:80:88) the latter are practically the
same for 0% and C!? and are equal to (3.8—5) X 107%
cm?,

In B there are also estimates of M for C!? and
ot represented in the form of spherical drops of a
slightly compressible liquid (the ‘‘liquid drop’’ model
of the nucleus), the charge and mass of the nuclei
being uniformly distributed. It is assumed that the
excited 0* state of each of the nuclei corresponds to
excitation of radically-symmetrical pulsating oscil-
lations of the spherical drop such that the variation
of the density of the liquid at a distance r from the
center of the sphere is proportional to jy(7r/R),
where j, is the spherical Bessel function and R is
the radius of the nucleus. If only such oscillations of
the drop nucleus are assumed in the calculation of
M, we obtain as a result

sz Rh '/
Tmr Am A°

The numerical values of M, calculated by Formula
(4.3) for C' and O, exceed the corresponding ex-
perimental values even more than in the case of the
a-particle model.

We present one more estimate of p, based on the
liquid drop model of the nucleus, in which account is
taken, in addition to the radial oscillations connected
with the compressibility of the nucleus, also of the
polarization oscillations of the proton and neutron
components of the nuclear liquid, the frequency of
the latter being much smaller than the frequency of
the former. If the nucleus goes from the ground
state into the excited state as a result of polarization
oscillations, then in the region of the transition en-
ergy A& where the spectrum of the nucleus becomes
continuous the nuclear matrix element of the E0-pole
can be estimated with the aid of the following rela-

(4.3)

tion [,
08 (8) = g {1~ 5 ImF (@)
T -A—ZI.—;—E"—ReF(x)}, (4.4)
where
F@=10=2) %Zsci;sigﬁﬂsm 4, (4.5)
kR~ 208’[&2'.35_. _ Feres:H (4.7)

Here g( A)—density of the nuclear levels that can
be excited in the EO transition I' and &peg—width
and ‘‘resonant’’ energy of the known dipole ‘‘reso-
nance,”” which appears in (yp) and (yn) reactions,

*The value of M, likewise calculated in [*] using the a par-
ticle model, was almost four times larger than the experimental
value.
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and N is the number of neutrons. The derivation of
(4.4) is based on a comparison of the polarizabilities
of the drop, determined by the classical and by the
quantum methods, in response to a small perturba-
tion V = Ar%el! acting on this drop [,

Estimates of M and p based on the shell model
of the nucleus were made in B0 162-167)  {a¢ yg ex-
amine in detail the theoretical investigations of M,*
using as an example the 0*—0* transition of C!?,
since among all the nuclei with observed EO transi-
tions this nucleus comes closest to those light nuclei
that are most successfully explained by the shell
models.

We assume first, in accordance with Schiff (8%
that j—j coupling exists between the nucleons of C!2.
The ground state 0* of C' is characterized by the
presence of four neutrons and four protons in the
p3/e shell. We can expect the lowest excited state of
the nucleus to occur when a small number of nu-
cleons go from the py, shell to the py/y, dg/y, OT Sy
shells. It is easy to see that the transition of at least
two nucleons is necessary for the formation of an
excited 07" state.

If we now assume that all the nucleons in the
nucleus are independent (do not interact with one
another and move in the averaged centrally-symmetri-
cal potential field), then the 0*—07 transition will be
forbidden due to the vanishing of the nuclear matrix
element of the monopole. On the other hand, the
vanishing of the quantity

M= S W*;(}jrg)qridrz g W}‘(Z—;-(i-{—ti)r?‘lf,-dr
P i

( tj—isotopic spin operator) is due to the fact that the
operator Z (rp)2 of the electric monopole EO is a
p

sum of operators each of which acts only on the wave
function of one of the nucleons, and the configurations
of the pure states of the system of independent parti-
cles should differ from one another in the 0*—0*
transition by not less than two nucleons. The 0*—0*
transition becomes possible already when account is
taken of the residual interaction between the nucleons
as a perturbation, since this interaction causes the
perturbed states to have components that differ in
their configurations by only one nucleon, so that the
matrix element of the monopole will no longer be
equal to zero.

Assuming that the excited 0* state with resultant
vanishing isotopic spin of the C!? nucleus is realized
as a result of a two-nucleon transition from the py/,
shell to the py/, shell, and that the nuclear potential
is in the form of a rectangular well of infinite depth,
while the residual interaction between the two nu-

*From an estimate of the value of M we can estimate the di-
mensionless parameter p by using the relation p = M/R?, where
R is the nuclear radius.
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cleons is given by the formula Vif = ¢é(rj - ry)
where C is a constant, Schiff obtained 8% the follow-
ing expression for M by perturbation theory:

M= ~1,58-10%CR, (4.8)

where R is in cm and C in MeV-em?®, It was as-

sumed in the calculations, on the basis of 681 that the
excited 0* state of C!* with energy 7.66-MeV is
made up of two substates of the type (T, J) = (1, 0),
two nucleons py/y, and two ‘‘holes®’ psy/,. If we sub-
stitute the possible numerical values of C and R in
(4.8), we obtain for M a result which is smaller than
the experimental (Mexpt = 3.8 X 107 cm?) by a
factor of 6 B9,

For a nucleon coupling other than j-j, the theory
of the excited 0* state of C!? and the calculation of
M are given in 62). There are five different LS
states of a nucleus with (T, J) = (0, 0) belonging to
the one and the same configuration 1p°. If the ground
and excited 0* states are linear combinations of the
indicated LS states, then M vanishes in all possible
cases of intermediate coupling, even when the re-
sultant isospin of at least one of the 0* states is
equal to 0 [162] m order to obtain a nonvanishing
nuclear monopole matrix element it is necessary to
take into account the admixture of other configura-
tions in the 1p8 configuration, particularly the con-
figuration 1p’2p. Inasmuch as the admixture of the
1p'2p configuration (we neglect the admixture of the
remaining configurations) leads to very cumbersome
mathematical manipulations when account is taken of
the residual interaction of the nucleons as a perturba-
tion and when an intermediate coupling is assumed
(in particular, to diagonalization of a 19-row matrix),
the calculation of the admixture and subsequent esti-
mate of M have been made for the limiting case of
LS coupling (with account of the spin-orbit interac-
tion as an additional perturbation). Such a simplifica~
tion, in the opinion of Sherman and Ravenhall L1e2] is
justified, since their analysis of the experimental
data %9 gives grounds for assuming that the LS
coupling is apparently close to reality.

As a result of the calculation, the following formula
was obtained for the nuclear matrix element of the
monopole

M= —0.032V, (%) 1072, (4.9)
where V; is a parameter determining the depth of
the potential of interaction between two nucleons, in
the form [re]

_rz
VIZ = - V;e R?2 * [0‘01 + 0.010162 -+ 0.41t1t2

+0.93 (0105) (t1 t2)], (4.10)

where «’ is the constant in the spin orbit interaction
o’ Zojli, oy and t; are the spin and isospin of the
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i-th nucleon, respectively, lj—orbital momentum of
this nucleon, and K’ is the Slater integral (4.

In the derivation of (4.9) the wave functions em-
ployed corresponded to a parabolic nuclear potential.
The choice of these functions and of the parameter a,
which determines the width of the potential well*,
was also based on the analysis of the experimental
data (162,690

After substituting in (4.9) the most probable values
of a’/K’ = 5151180 gpg vi= ~13 MeV (the latter is
obtained by diagonalizing the interaction (4.10) for
three states of the configurations 1p® and 1p'2p [162)),
the numerical value of M was found to be one-third
the experimental value.

According to modern theory of the atomic nucleus,
the structures of C'* and O¥ are similar in many
respects (this is indicated, in particular, by the fact
that the experimental values of M are almost the
same for both) and the entire calculation method de-~
scribed above can be applied also for the nucleus o,

The calculations of M and p for O!® on the basis
of the shell model were made in [(163716T]_ pp [163] 34 4o
stated that if the experimental values for M are iden-
tical for C'2 and O, then the configurations of the
excited 0% of these nuclei should differ as little as
possible from each other. Such configurations, in
particular, are 18%2s1p® for C? and 1s%2s1p!? for
O'%. We see that they are produced by single-nucleon
excitation of the internal shell, which is the same for
both nuclei. Assuming that the excited 0* state of
ol belongs to the 1s:32'.:*.1p12 configuration, R&dmond
(163] calculated with the aid of the wave functions of
the harmonic oscillator the nuclear monopole matrix
element M. It is seen from his calculations that the
value of M calculated by the shell model exceeds
somewhat the result obtained by calculation in the
single~particle approximation (this fact is noted also
in 14y, In addition, it was found that if we choose
the width of the oscillator potential well a such that
the mean square deviation of the individual nucleon
from the center of the nucleus, calculated with the
aid of the wave functions of the harmonic oscillator,
is equal to the mean square deviation of the nucleon
from the center of the spherical nucleus that is uni-
formly filled with nucleons, then the theoretical
value of M coincides with the experimental one. On
the other hand, if the width of the oscillator potential
well is taken from the experimental data (691 as is
done in L162]’ the theoretical value of M will again be
much smaller than the experimental one. Elliot L164]
indicates also that upon suitable choice of the con-
stant a in the wave function of the harmonic oscilla-
tor, it is possible to attain complete agreement be-
tween the theoretical and experimental values of M
by assuming that the excited 0* state of O is

*See, for example, [ 173 (except that a is denoted there by r,).

realized by uniform shift of the configurations
1s%2s1p!? and 1s'1p'!2p (both by 50%).

The investigations made in (65~ 167 of the depend-
ence of the theoretical values of the nuclear monopole
matrix element and the energy of the excited 0°*
state of O on the particular mixture of configura-
tions making up this state, and also on the choice of
the particular constant a in the harmonic-oscillator
wave function, shows that it is impossible to attain
simultaneous agreement of the theoretical results
with the experimental data of M and of the excitation
energy.

The shell model was used also for a theoretical
calculation of the lifetime of the first-excited 07
states (meaning also the matrix element M) of VA St
and Ge'?. Since the 0* state of Zr% is due to a two
proton excitation of the pl/, — g type (see page
739), we can employ in the calculationof 7(0**) the
already mentioned method of Schiff ®% (see page
744). The calculation yielded "% 7(0**) = 5.1
x 107% ¢7% gec, where C is the constant in the nu-
cleon-nucleon interaction of the type 3 E Co(ry - rj).

i#]
Comparing the theoretical value with the experimental
one Texpt & (90 + 6) X 1073 sec, we get C = 0.23.
Assuming that the 0* state of Ge'? is also due to a
two-proton excitation (the p§, — f2/, transition or its
inverse ), we can calculate analogously Ttheor{0'*)Ge,
which was found to equal™!™~ 181 7.6 x 107%C? gec.
Comparing it with the experimental data, we obtain
C = 0.16. On the other hand, if we determine C from
the singlet nucleon-nucleon interaction with a rec-
tangular potential well 35 MeV deep and with effective
radius 2 X 107! ¢cm, then we get C = 1.2. We can
therefore conclude that if the theory presented above
for the 0* states of Zr*® and Ge'? and the approxi-
mations employed are meaningful, then 80—86% of
the nucleon-nucleon interaction enter the central
nuclear potential and only 20—14% of this interaction
belongs to the perturbation. This conclusion contra-
dicts the theoretical proof given in "% that the nu-
clear monopole matrix element M is determined in
two-nucleon transitions by the total nucleon-nucleon
interaction.

Attempts have been made to reconcile the theory
with experiment by a way somewhat different than
that described above. Since the estimates of M ob-
tained on the basis of the shell model are usually too
low, and the values of M calculated with the aid of
the collective models ( ¢-particle and liquid-drop)
are too large compared with the experimental re-
sults, the thought arises that the most promising
nuclear model for obtaining accurate estimates of M
should be more ‘‘collective’’ than the shell model and
less ‘‘collective’’ than the a-particle and liquid-drop
models. This idea is adhered to by the authors of[‘”],
who start with the o particle model of the O!® nu-
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cleus * and then show that the wave functions de-
scribing the «-particle states can be used to obtain
approximate shell-model functions. With the aid

of .the latter, calculated on the basis of pulsating
particle oscillations for a mixture of configurations
of the type 1s™12s and 1p'12p with allowance for
small admixtures of configurations of the type
1p~21d?, 1p~%1d2s, and 1p~22s?, a value almost three
times larger than the experimental one was obtained
for M(O')(Mtheor = 11 x 107% cm?).

The collective motion of the nucleons was taken
into account in the calculation of M( O¥) by an en-
tirely different method in 17018}, For example,
Griffin '™ describes the collective motion of the
nucleus by the so-called ‘‘generating’’ coordinates
method, which he developed together with Wheeler (179,
According to this method, the wave function of the
nucleus is represented in the form of the integral

¥ ()= (zy, ..., m:S Oy, ..., za; @) f(a)de, 4.11)
where xi = (Xi, ¥i, Zi, Ozj, tz;) are the spatial co-
ordinates, the spin coordinates, and the isospin co-
ordinates of the i-th nucleon, and « is a ‘‘generat-
ing’’ coordinate, corresponding to the collective
degree of freedom of the nucleus (deformation co-
ordinate). The form of the function f(«) is estab-
lished by a variational method "8%, The function &,
on the other hand, is given in the form of a determi-
nant

(D(‘Zlv ceey ZAS (l): (A!)—§

where the dependence of the single-nucleon wave
functions uj on « is determined by the character of
nuclear deformation.

Thus, for the case of volume oscillations, the
“‘generating’’ coordinate « is contained in the func-
tion uj in the following manner:

u; (255 @) = u; (zj67%, ye=%, zj6=% Oz L2 0), (4.13)
while for quadrupole oscillations
o [+4
u; (x5 @) =u; (;62, y;e2, z;e~%, 0o i 0).  (4.14)

*The g particle model was used first for a description of O*
in [*7¢],

1By minimizing the integral [¥*HWdr, where

He 3 (i a W)

2
Tij

F Vi u Vig=Voe (W mP™y bPby nPh)

is a general expression for the interaction between two nucleons
with account of nuclear forces of different types.[!”]

The spatial part of the function uj is chosen in
the form of the wave function of the three-dimensional
harmonic oscillator, and the constant a in the ex-
ponential factor exp (—r%2a?) is determined by the
method indicated above (see page 000) for different
values of ry(ry= 1.5, 1.2, and 1.28; R =ryx 1071
AY3 cm). By using the ‘‘generating’’ coordinates
under the assumption that the first excited 0* state
of O is due to volume oscillations [uj is given by
(4.13)], one calculates the energy of the first excited
0* state and the nuclear monopole matrix element
M (0'). The results of the calculation made for dif-
ferent values of the constants W, m, b, Py, and r,
turn out to be highly exaggerated (by 2—5 times) as
compared with the experimental data [ Mtheor ( 016)
='(17—22) x 107% cm?, while Mexp(O0') = 3.8 x 107%
cm?], it having turned out that the frequencies of the
collective oscillations are comparable with the fre-
quencies of the single-particle excitations. It is
concluded therefore that even the low excited states
of the nucleus are apparently mixtures of the collec-
tive and single-particle excitations.

Ferrel and Visscher 11" have proposed, like
Griffin 177 that the first lowest excited states of O
are due to volume oscillations in accordance with
(4.13). The wave functions for these states are
written by them on the basis of (8% in the form (4.11).

3
O (@, 0) =@ (e~oz, 0)e 2, (4.15)

where A is the mass number and & (x, 0) is defined
by means of a determinant of the type (4.12). Ex-
panding subsequently @ (x, o) in powers of o and
retaining the first-power term, the authors prove
that the wave function describing the first excited
collective state of the nucleus is approximately equal
to the wave function obtained on the basis of the

shell model for a mixture of the two configurations
1s™!2s and 1p !2p. The contribution made to the en-
ergy of the first excited 0* state from the single-
particle energies of the nucleons 2s and 2p, and also
the form of the function Vjj necessary to calculate
the resonant contribution to the excitation energy, is
established by using different experimental data and
assumptions (in particular, it is assumed that the
radii of the nuclei O, O, and N'® are equal). As
a result of estimates and calculations, the values
obtained for the energy of the first excited 0* state
and of the nuclear monopole matrix element M are
1—1/2 and 2 times respectively larger than the experi-
mental data. In addition, it is indicated [0 that if
the amplitudes of the volume oscillations of the s
and p shells are assumed different, and also account
is taken in the wave function of admixture of states
arising in two-nucleon excitations from the 1p to the
2s and 1d shell, it is possible to obtain complete
agreement between the theoretical and experimental
results. Griffin " however, regards the results of
Ferrel and Visscher as doubtful, owing to the insuf-
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ficient justification for using the various experimental
data in the estimates of the 0*-excitation energy.

According to Griffin, in a rigorous calculation
based only on the choice of some particular function
Vij» Ferrel and Visscher should obtain results close
to his own (see page 746), since their wave functions
are approximations of his wave functions.

The nuclear wave functions obtained by Ferrel and
Visscher by the method described above were subse-
quently used by them (80 in a theoretical calculation
of the form factors F(K) for the electron monopole
excitations (see Sec. 2) of C!? and O, A determi-
nant of the form (4.12) made up of the single-particle
functions of the harmonic oscillator, was chosen for
the function & (x, 0). The calculations yielded

13 =
FO* (K)col - ( ) 36a< 13a e A (4'16)
for C!% and
5K2
FO‘ (K)col.: m / 10(1) € Aa (4.17)

for O'®, where a is a constant determining the width
of the oscillator potential well.* A comparison of the
theoretical form factor Fy, (K) for C!? with a so-
called ‘‘measured’’ value (see page 735) shows[!6Z
that the former is larger than the latter by 25%. It is
concluded therefore that the 0* state of C'? is
realized in part by collective and in part by single-
nucleon excitations. A somewhat different opinion is
expressed in 82 with respect to O!f. Inasmuch as
the closed p shell of the O nucleus does not have
low-lying excited nucleon configurations, there are
grounds for assuming that the 0* state of O'® will
already be a purely collective state.

Touchard accounts differently for the collective
motion of the nucleons in the calculations of M and
of the energy of the first excited 0* state of 0. He
assumes that the centrally-symmetrical potential
of the shell model varies slowly in time. As shown
by Inglis 1%, such an assumption is equivalent to
introducing an additional dynamic variable, which
determines the collective degree of freedom of the
nucleons, in this case the volume oscillations of O,
By way of a central potential, the potential of the

isotropic harmonic oscillator was chosen (182]
, L1 R,
VV(I', G)Z—VOT'-_Z_ m02(t)7‘2, (4.18)

where o’ = ’°r}, 1/B’ is the width of the potential
well, r, the effective radius of the nuclear forces,
and m, the nucleon mass. By virtue of the slow

variation of o’ with time, it is possible to use the

*The recoil of the nucleus and the difference between the labora-
tory and the c.m.s. coordinates were neglected in the calculations.

These simplifications lead to an error of several per cent at the
electron energies usually employed in the experiments. Since the
percentage of the error is proportional to the recoil velocity, the
error increases with increasing energy.

adiabatic approximation method in the calculation of
the wave function [18%]. The calculation yields for the
wave function, in first order with respect to ¢’, the
expression

’
Un (0/) n hr-yorad 0

\"| o | ) (4.19)

dng (07) ’

W = uy (') + iho’ Y,
where the functions u(c’) describes the stationary
states of the nucleon system at the given instant of
time. The energy is calculated from the formula

?‘P*H‘I’dr— E(@)+4 B(o)o", (4.20)
where H is the Hamiltonian and
0) ]2
Ny 2
B(o')=2n* kwno @ (4.21)
h#()

In using Formulas (4.18)—(4.20), the values of
A(Ow) and M(Ole) are calculated. In the calcula-
tion of E(o ), the expression used for Vl] is the
same as in L128] (see pages 745-746). The calculation
yields for M (0O') a value which is 2—3 times larger
than the experimental one. The nuclear matrix
element of the monopole is proportional to VA, If we
take A equal to the experimental value 6.05 MeV,
then the theoretical value of M will be only slightly
larger than the experimental one (4/3). In conclusion
it must be stated that the most doubtful aspect of this
method is that in spite of the use of the adiabatic ap-
proximation, the energy of the collective motion of
the nucleons is comparable with the energy of the
individual nucleon, obtained on the basis of the inde-
pendent-particle model assuming a nuclear oscillator
field.

Theoretical estimates of the nuclear matrix ele-
ment of the monopole for medium and heavy even-
even* nuclei is usually based on the unified model.
There are grounds for assuming that the low-lying
levels of almost all these nuclei have a purely collec-
tive character®6%14] 1t hag been established by
experiment that the angular momenta of the nuclei in
the ground and in the first two excited states usually
form one of three sequences: 1) 0*—2*—0"*, 2) 0*—2*
—2%, and 3) 0*—2*—4" (with possible E0 transitions
in the first and second cases). Depending on the ratio
E,/E; of the energies of the second and first excited
levels, obtained from the experimental data, all the
nuclei mentioned above can be approximately broken
up into two groups. The first group includes those
with Ey/E; >3. They are situated in the intervals
150 < A <190 and A >214. The second group includes
nuclei with E,/E; = 2.5. Their low-lying levels are
practically equidistant from one another. These
nuclei are situated in the interval 60 = A = 150 and
190 = A < 214,185

*The theory of the remaining nuclei has not yet been suffi-
ciently well developed.
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Table VIII
|
| Nucleus (0{[ ex(‘))*) Qexp Cexp Mtheor(0+*—0+), Ctheor | CQtheor
| (036 i | (0* 501 | (2% 2% 10-26 cm? @*—0% | (@+—2*)
| ‘ |
. Lo 1
‘i Caz 3.8 5 112, 13b, sMexp S ]
| 1
i F) Mexp d
‘: 10e, 14,7f, 178,
1 19%, 0,6!
j o 3.8 0.42 Mexpk™t, 107
I 17—22% (2—3)
| Mexp®
© Ca4o 0.15 exp 0.26m
PSem 0.465P | 0.0465P
| Sem 0.390P | 0.0332P
A 0.056 0.1g™
Ru100 0.352P | 0.0275P
Ses0 0.227° | 0.016P
Pdiot 0.306% | 0.0217°
Pd108 0.3707 | 0.0286°
Cdno 0.262P | 0.01687
| ' 0.019°
1 Cals 0.6
| 3 0.290P | 4 oo+
l Tel22,126 0.201p | 0.0108P
" Tel24 0.153p | 0,0073®
Cdis4 0.046r
Erl66 0.006°
I QOslss 0.014r
P94 | 0.040"
P19 0.013—0.070 0.030r
1
Hgl98 — 0.0457
g <7
i
} a, e, g—a-particle model [s0160178]; 4, h__liquid drop model [*3; ¢, d, i, 1—shell model
with state 01*, corresponding in the case of C!? to the configuration ¢ 1p"2p2T“°j; d mix-
ure of configurations 1p® and 1p"2p [“g‘] (in the case of 0'%, the configurations i 1p-22p?
f;“’ , k15125 {1%]) and [ mixture of 50% configuration 1s*!2s and 50% configuration
1p-i2p [“‘E; , n—collective m dei with ‘‘generating coordinates’’ after Ferrel and
Visscher ":‘j and after Griffin [177]; o—model of ‘“forced rotation’* of Ix:glis"f352 ; pP—
model of quadrupole collective excitations “’?; r—Davydov and Filippov model of non-
axial nuclei (with account of non-adiabaticity [1*]).
I

It is assumed that the nuclei of the first group have
axial symmetry and that within the limits of applica-
bility of the adiabatic approximation the character of
their lowest collective excitations is purely rotational.
Located above the rotational band of such nuclei is
the B-vibrational band (with K = 0, where K is the
projection of the angular momentum on the symmetry
axis of the nucleus), the y-vibrational band (with
K = 2) and other level bands; E0 transitions of axial
nuclei are possible only between the S-vibrational
levels and the rotational levels of the ground band
(owing to the selection rules | AK | < L).*

The second group of nuclei is presumed to
possess no axial symmetry and their lowest levels
are assumed to be excited because of surface quadru-
pole oscillations (model of quadrupole collective ex-
citations (5] or rotations with conservation of the
form of the nuclear surface (the ‘‘model of nonaxial
nuclei” of A. S. Davydov and G. F. Filippov 13},

An estimate of the reduced nuclear monopole

*Of course, if the adiabaticity conditions are satisfied.

matrix element p under the assumption of hydrody-
namic phonon excitations of the quadrupole type (the
first of these models) was made by Grechukhin [12/185),
A calculation carried out in the harmonic approxima-
tion yielded

Q0" =0 =2z |/ 2 (4.22)
for two-phonon transitions and
0@ —2y=—22p /L (4.23)

for single-phonon transitions (2*’ and 2* are
neighboring states). Here B? = BHw/2C, where w is
the frequency of the quadrupole oscillations and C
the stiffness parameter.

The estimate (4.23) is only the lower limit, for if
anharmonicity is taken into account, two-phonon
transitions of the type 2%’ — 2% are also possible.

Numerical values of (4.22) and (4.23) for known
values of 8% are listed in Table VIII.

Estimates of p (2% —2*) for different nuclei
were made on the basis of the Davydov and Filippov
method by Rostovskii ELLI According to this model,




MONOPOLE TRANSITIONS OF ATOMIC NUCLEI

the first excited state 2* pertains to the ground-

state band of rotational states and 2%’ is the so-called
““anomalous’’ rotational state of the nucleus, occur-
ring only when the ‘‘non-axiality’’ parameter y dif-
fers from 0 88) If both states are assumed to be
purely rotational, then the EO0 transition between the
states 2*'—27* will be completely forbidden because

~_ L 2 [187]
the operator EO= Erp is scalar . On the other

hand, if the coupling between the rotation and the 3
vibrations is taken into account in the calculation of
the nuclear wave functions describing the states 2%/
and 2%, the probability of E0 transition between the
2* and 2% will already differ from zero.*

Rostovskii 4% calculated the value of p(2% — 2%)
for Pt'%, Hg!%, cd!'™ and other nuclei (see Table
VIII) under the assumption that the rotation and g
vibration occur with adiabatic slowness, but account
is taken of the dependence of the equilibrium value of
v on the parameter B (which determines the devia-
tion of the nuclear shape from spherical).t The
wave functions used in the calculation are repre-
sented as a superposition of rotational-vibrational
functions, the form of which has been established on
the basis of [139:186:180-192] e coefficients determin-
ing the superposition are determined by perturbation
theory in the first approximation. The data on the
levels 2% and 2* of different nuclei, which are
needed for the calculation, and are taken from
[153,193-1%)  The results of the calculationstare in
good agreement with the experimental values of p
(wherever the latter are available; see Table VIII).

On the basis of the general theory of collective
excitations due to rotation and 8 and 7y vibrations of
the nuclear surface, a theory developed by Davydov
(197,198]  egtimates were made in 1% for the values of
p of even-even nuclei, both spherical and nonspheri-
cal.

1. Spherical nuclei. a) For the EO transition he-
tween the first excited 8 vibrational and ground-state

levels with 0 spins the value obtained igl199]
00— 0= =32 1/ 2§, (4.24)

Here ,8%0~mean square of the amplitude of the zero-
point oscillations of the nuclear surface, equal to
h/VBC; B—inertial parameter, and C—one of the two
stiffness parameters contained in the expression for
the potential energy of the nucleus

V(B V) =5 C (B — o)+ C:B2 (v —Vo)%,

which is used in the indicated theory of Davydov? .

(4.25)

*This dependence was established in [*#15°],

tSince to each level with any J there corresponds in the theory
of nonaxial nucleus an ‘‘anomalous’’ level with the same J, the EO
transitions

1C, Cy, B,, and y, are parameters of the theory. For spherical
nuclei 3, = 0 and (4.25) has the form usually employed in the model
of quadrupole collective excitations in the harmonic approxima-
tion.[1¢5]

between all levels of this type are possible in principle.
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The energy of the 0°—07 transition is Eg = 2hw,
where w =V C/B. It is easy to note that the results
of (4.24) and (4.22) coincide.

b) In the case of an E0 transition between the
first excited vy-vibrational state (with energy Ey
= 3Hw) and the ground 0* state, calculation yields
a smaller value of p, namely

0 (O —07) =——L g2,
8V 2 n°

¢) For the transition between the first 0-; and Oé

levels

(4.26)

0 (05 — 0 = =2V 73,
8V 7 n?

d) The value of p (22—21) for the transition be-
tween the second and first excited 2* levels with
energies 2hw and hw respectively coincides with
(4.23).

2. Nonspherical nuclei with minimum of potential
energy corresponding to a value vy, = 0. The calcula-
tion of the values of p( Oé — 0%), p(0y — 07), and
p(0f — 0{,) is made in this case [% assuming a
small non-adiabaticity parameter u = 1/8, Viw/C
(p < I/3) (introduced in [2003) and a small value of
T = puvw/2wy, where wy =V Cy/B and w =V C/B
are the frequencies of the y and § vibrations, re-
spectively (with T' < 15).

The following results were obtained:

(4.27)

1) 0 (0507 =2V 2 zZpp2 (4.28)
for a transition energy Ep = hw;
2) 00— 07 =L 278 oy (4.29)
28n2
for a transition energy E,y = 2hwy;
135’5 E
3) 00— 05 =—2V0 7 % (4.30)
281 2 a2
4) @ (@2—21)= =%V zgaps (4.31)
Tn2

It is seen from (4.28) and (4.29) that the O; — 0*
transition is much less probable than the OE — 0
transition.

3. Nonspherical nuclei with y, = 10°. A calculation
of the reduced nuclear monopole matrix element p
has also been made (1993 4 the approximation where
the parameters p and I' are small. The value of
p( Og — 0*) was found to coincide with (4.28). The
remaining formulas for p are in the form

. —15V'5 Ep .
e (t3—0 ):__lg_t ‘/E—inBgsm3y[,, (4.32)
28n2

o (Of— 0 = —2 ¥ VB zwpsint v, (4.33)

5672

From all the foregoing and from relations (4.24)
and (4.26)—(4.33) it follows that to find the numerical
values of p it is sufficient to determine experi-
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mentally the parameters B and C in the case of
spherical nuclei and the parameters B, C, Cy» Yo, and
p in the case of nonspherical nuclei. Comparison of
the theoretical value of p with the experimental ones
can then be used to establish the ¥ and S8 vibrations
that give rise to the nuclear states with zero spins.

It is easy to note that the ratio of p( O.;*, — 0%) to
p( 0;, — og) or to p(Oé — 0y) is equal to 1/3vV5/2
for spherical nuclei, and is inversely proportional to
¢ for nonspherical nuclei. These ratios can also be
used to establish the character of the levels of nuclei
with zero spin.

Mention should also be made of the theoretical
estimates given in "% for the ratio of M(0* — 0%)
to the reduced probability B( E2; 0" — 2*) in the
level sequence 0* — 2* — 0* (denoted by E0/E2)
for the nuclei Sm!®? (Fig. 25) and Pu’3® (see [153).
The calculation is based on the notion of a nucleus in
the form of a uniformly charged spheroid, which
executes quadrupole oscillations about an equilibrium
deformation without change in volume. As a result of
the calculations, identical values of E0/E2 = 0.23
have been obtained for both nuclei. The experimental
value of E0/E2 for Pu®® is equal to 0.14, that is, it
differs little from the theoretical value. For Sm!?,
the experimental value is E0/E2 = 0.016. The devia-
t[;g)rjl from the theory is large and difficult to explain

L%

The theory of EO0 transitions of nuclei with odd A
is so far in the development stage. It is established
in[18") that for nuclei of the ‘‘neutron plus even core”’
type the probability of E0 transition will differ from
zero if the model of quadrupole collective excitations
is used for the description of the core. The order of
magnitude of p will in this case be comparable with
the values of p given by relations (4.21) and (4.22).
It is also shown there that the probability of EO
transitions of these nuclei is equal to zero if the core
is described by the Davydov and Filippov model and
if it is assumed that the form of the nuclear surface
remains unchanged upon interaction between the core
and the external nucleon.

A summary of experimental and theoretical values
of M and p for different nuclei is given in Table VIII.

CONCLUSION

On the basis of the foregoing exposition we can
make the following brief conclusions and remarks.
The general theory of monopole transitions of nuclei

*[n [*1] E0/E2 is also calculated by starting with a model in
which a coherent superposition of individual excitations of the most
readily polatized protons{®?] situated near the Fermi surface is
used to describe the quadrupole oscillations of the nuclei under

consideration.
As a result of the calculation made with the aid of the wave

functions of the individual nucleons situated in the anisotropic har-
monic oscillator potential field, we obtain, assuming the volume of
the nucleus to remain constant, EQ/E2 = 0.50 for Pu*** and EO/E2
=0.61 for Sm**%,

L. A. BORISOGLEBSKII]

is sufficiently fully developed {to be sure, this ap-
plies more to E0 transitions than to M0 fransitions;
Sec. 1). On the other hand, the experimental investi-
gations of monopole transitions, although abundant,
are insufficient (Sec. 3). So far the investigations
cover principally electric monopole transitions of the
0*—0* and 2¥—2* type, which occur in even-even
nuclei. There is only one example of observed EO
transitions of the type 0°—0~ (Bi?!?) and Y*—4*
(Aum). It is also reported in 200 that an EO transi-
tion 4*—4* has been observed in Np?*®. Experimental
data on the observation of magnetic monopole transi-
tions (0~ —0* in O, page 729) are so far skimpy
and doubtful.

Of great importance is the question of the excita~
tion of monopole transitions. Although in most cases
monopole transitions were observed in daughter
nuclei following B decay, nevertheless the fraction
of these transitions per single S-decay event is very
small. Therefore the observation of monopole transi-
tions is made most difficult by the background pro-
duced by other possible transitions.

To excite monopole transitions (principally in
light nuclei) it is also possible to employ nuclear re-
actions which result in product nuclei that are in
excited states. The deexcitation of these nuclei oc-

‘curs most frequently via monopole transitions. The

main possible reactions are of the type (p, p'y),
(p,v), (p, @’y), (n,vy), and (n, n’y), the latter re-
action having, in accordance with %%), many advan-
tages. Among these advantages are, for example, the
well defined reaction threshold, which makes it pos-
sible to establish with sufficient accuracy the excita-
tion energy of the product nucleus, as well as the
appreciable effective reaction cross section, which
is independent of Z.

The most promising method of exciting E0 transi-
tions is the method of Coulomb excitation of nuclei.
Direct monopole excitation of the nuclei is possible
only by inelastic scattering of the electrons by nuclei
(so far only one case of such interaction was inves-
tigated—excitation of the 7.66 MeV level of Clz; Sec.
2). However, indirect excitation of monopole transi-
tions via inelastic collisions of heavy charged parti-
cles with nuclei is also possible. The incoming parti-
cle first gives rise to multipole transition of the
nucleus from the ground state to an excited one which
lies sufficiently high. It is quite possible that during
the subsequent deexcitation of the nucleus via the
intermediate levels there occur also monopole transi-
tions.

An important role is played in the study of EO
transitions by the knowledge of the_ theoretical values
of the nuclear matrix elements M and p. It is from
the coincidence of these theoretical values with the
experimental ones that the structure and character
of the nuclear levels between which the EQ transition
occurs can be judged. Unfortunately, in spirit of the
rather large number of papers devoted to theoretical
estimates of M and p, based on different nuclear
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models, this agreement occurs only in individual
cases (see Table VIII). In this connection, further
development and improvement of the different nu-
clear models (principally the unified model) are
urgently needed.
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