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THE study of the birefringence which arises in a
gaseous or liquid medium under the action of an ex-
ternal potential field (electric or magnetic) is one of
the well-known methods of studying the structure of
the molecules of a substance being investigated.[2’5’“]
However, when applied to solutions of flexible
chain macromolecules, this method proves not to be
very productive. In fact, every chain molecule can be
divided into statistical segments whose spatial orien-
tations are mutually independent. If a segment is
anisotropic in its optical (electric) or magnetic
polarizability, then it will rotate in an external field
(electric or magnetic) and orient itself with its axis
of greatest polarizability in the direction of the field.
However, owing to the lack of correlation of the
orientations of the different segments, the macro-
scopic anisotropy of the solution that arises here is
simply proportional to the total number of segments,
independently of whether they form part of longer or
shorter chains. Hence the electric (Kerr electro-
optic effect) and magnetic (Cotton-Mouton magneto-
optic effect) birefringence of the polymer solution is
proportional fo the weight concentration of the solute,
is practically independent of its molecular weight,
and usually differs little from the effect observed in
a solution of the monomer of equal concentration.*
The situation changes radically when the optical
anisotropy of the solution is produced by mechanical
forces, e.g., shear forces in laminar flow (the dy-
namooptic Maxwell effect). The birefringence of the
solution that arises here, just as in the case of the
potential fields, ultimately results from the orienta-
tion of segments. However, these orientations are
mutually correlated over the volume of the macro-

*This is not true of chain molecules having a marked secondary
structure giving rise to rigidity of the chain and a high degree of
mutual orientation of its elements (e.g., rigid helical structures of
polypeptide chains).
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molecule, since the mechanical forces of flow give
rise to translational and rotational motion, as well
as to deformation of the macromolecule as a whole.

Hence, the Maxwell effect in a polymer solution is
determined by the geometric, mechanical, and optical
properties of the solute macromolecules, and by
studying it we can get some very direct information
on their dimensions and configuration.

In this review we shall not attempt any thorough
presentation of the theory and experimental studies
on the Maxwell phenomenon. The pertinent material
can be found in other reviews.l 1% We shall throw
some light briefly here only on some current experi-
mental and theoretical results that can be used to
characterize the dimensions, shapes, and structures
of macromolecules in solution.

I. APPARATUS

1. Mechanical Part

In observing flow birefringence the best form of
instrument is a cylindrical apparatus. In this appar-
atus, the liquid being studied is placed in the gap he-
tween two coaxial cylinders, one of which is station-
ary, while the other rotates uniformly. The liquid is
examined in the direction of the elements of the
cylinder (the z axis in Fig. 1). Here, in the small
region included in the observer’s field of view (Fig.
1), the laminar flow arising in the gap can be con-
sidered to be practically uniform. It will have a con-
stant velocity gradient g = du/dx = du/dR in the di-
rection of the radius R, equal to

21 Rv
= iR (1)
where v is the number of rotations per second of the
cylinder, and R = 1/2(Ra + Rj) is the mean radius,
and AR = Ry — Rj is the width of the gap.
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FIG. 1. Velocity-gradient distribution in a cylindrical appara-
tus having an inner rotor.[’] y —flow direction, 1 and 2— principal
optical directions corresponding to the refractive indices ny and

ng.

The liquid becomes optically anisotropic under the
action of the shear stresses in the flow. Here, when
the light beam is normal to the direction of the grad-
ient g or the flow velocity u (i.e., parallel to the
axis of the cylinder), the properties of the anisotropic
layer resemble the optical properties of a crystal
plate having a principal section forming an angle x
with the flow direction y. This angle is called the
orientation angle or the ‘‘extinction’’ angle.

The orientation angle is the first of the two funda-
mental quantities to be determined experimentally by
studying the Maxwell effect.

The second fundamental qguantity to be determined
is the difference between the two principal refractive
indices An = ny ~ ny of the liquid. Of these, the
former (ny) corresponds to a ray whose electric
vector is parallel to the principal section (in the plane
of the drawing—axis 1) of the anisotropic layer, and
the latter (n,) is perpendicular to the principal sec-
tion (axis 1) of the layer. An characterizes the mag-
nitude of the birefringence, and can be either positive
or negative.

The literature gives descriptions of a large num-
ber of possible designs of cylindrical apparatus and
optical systems used by various investigators.[1'39]

In the quantitative study of the Maxwell effect, the
fundamental experimental prerequisite is to maintain
laminar flow.

The study of the conditions for laminarity when
cylindrical apparatus is used!'""12) has shown that
these conditions are essentially different, depending
on whether the rotor of the apparatus is the outer or
the inner cylinder.

For an apparatus with an inner rotor, the value of
the critical velocity gradient go (the maximum gradi-
ent at which the flow remains laminar) is

2
fe= 3 B @

where n is the viscosity, and p is the density of the

liquid. The constant A depends on AR/R, and for all
apparatus used in practice, it can be taken to be 0.0571.

In an apparatus having an outer rotor, turbulence
of flow sets in at a considerably higher number of
revolutions per second than in one having an inner
rotor. Thus, for example, when R/AR = 60, the
critical gradient is six times as great for the outer-
rotor case, while for R/AR = 10, it is fifty times as
great as for an inner rotor of the same dimensions.

Hence, in principle, the use of apparatus having
outer rotors is greatly preferable, especially in
studying dilute solutions in solvents of low viscosity
using gaps that are not too narrow (e.g., as is neces-
sary in measuring orientation angles).

However, many of the instruments in use having
an outer rotor show a very essential defect, that of
rotating glass windows. At high rates of revolution,
centrifugal stresses appear in the glass and produce
an appreciable birefringence. Besides, the rotating
glass practically always introduces a time-dependent
birefringence that reduces the accuracy of measure-
ment of the fundamental effect.

These phenomena have given rise to erroneous
conclusions in certain studies. 2240

This defect is eliminated in an apparatus having a
perforated outer rotor L2-44] (dynamooptimeter), in
which the glass of the windows is fixed rigidly to the
stator.

A diagram of this instrument is shown in Fig. 2.
Observations can be performed either under outer-
rotor (with gap ARy) or inner-rotor conditions (with
gap AR,). The inner thermostatic system A and the
outer system B minimize the temperature gradients
and their concomitant optical distortions.[“5

L)

N H
N

i
g

N
i
N
Ky
3
N
\
N
N
N
N

o N A N NN\ s S0
|

FIG. 2. Diagram of a cylindrical apparatus.[****] R _ rotor;
P —bearing; O - axle; D and E — stator; AR and AR - viewing
gaps; S - viewing windows; F — perforation in the rotor for ob-
servation; C ~pulley; A and B --thermostatic jacket.
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Similar variants of analogous instruments have
also been described in other papers.:46:40

Experiment has shown that instruments of this
type are most suitable for studying the weak bire-
fringence of dilute solutions.

2. Optical Part

In the overwhelming majority of the existing
studies, visual-observation systems have been used
in the optical part of the apparatus.

Here one can use one of the known standard sys-
tems 1869 for measuring optical phase differences
and directions of the principal section (orientation
angles). The compensator is selected in accordance
with the magnitude of the birefringence to be meas-
ured.

To study the weak effects observed in dilute poly
mer solutions, the system shown in Fig. 3 can be
recommended. 4244

Here the very sensitive system of Brace
used as the compensator. It consists of a thin mica
compensating plate K (several hundredths of a
wavelength A) fastened to the graduated circle B,
and a very thin half-shadow plate N (several thou-
sandths of A) covering half the field of view.

An essential part of the apparatus is the thin lens
L (of strain-free glass with a small aperture) pro-
jecting an image of the half-shadow plate into the
gap in the cylindrical apparatus D, on which the
telescope T is focused. Such an arrangement[m
facilitates the diminution of errors due to stray light

[49, 48] ig

*S

FIG. 3. Diagram of the optical part of the visual apparatus. P
and A — polarizer and analyzer, linked by the arm R; S .- mono-
chromator slit, projected by lens O on the half-shadow plate.
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reflected by the glass walls of the gap,[m tempera-
ture gradients in the solution,[‘m and the presence of
dust.

The phase difference 6 caused by the solution is
measured by setting the compensator K (by rotating
the circle B, ) to the position of equal illumination of
both halves of the field of view (the half-shadow
azimuth). Here

8 = (sin 2@ — sin 204) 8in §,, (3)

where o and g are the half-shadow azimuths of the
compensator, as measured from the plane of polariza-
tion of the polarizer in the presence and absence,
respectively, of a velocity gradient in the liquid; 6,

is the phase difference due to the compensator.

The principal optical directions of the anisotropic
layer (1 or 2 in Fig. 1) are found by setting at the
half-shadow positions by rotation of the entire optical
system (circle By). The orientation angle x is de-
fined as half the angle between two half-shadow posi~
tions, one of which corresponds to clockwise rotation
of the rotor, and the other, counterclockwise.

With a rotor length ~ 10 cm, this system ensures
reliable measurements of An ~ 107% and of rotation
angles with an accuracy of 0.5° when An = 1078,

For measurements of small values of An, one can
also use the compensator of Szivess ,[5”37] and for
determining y, the Bravais plat;e.[52

A highly sensitive apparatus for measuring bire-
fringence %-%) by a photoelectric method has been
recently proposed. A diagram of one such instru-
ment 55 is shown in Fig. 4. In the optical instru-
mentation (Fig. 3), instead of the half-shadow plate
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FIG. 4. Diagram of an apparatus for photoelectric recqrd-
ing(**] of An and x. 1—SVDSh-250 lamp; 2-— condenser lens; 3 —
screen with aperture; 5 and 9 — crossed polarizer and analyzer;

6 — dynamooptimeter gap; 7 — elliptical modulator; 8 — mica com-
pensator; 10 —movable mirror; 11— viewing tube; 12— photomulti-
plier; 13 —resonance amplifier; 14 — oscillograph; 15 — phase
shifter; 16 — audio generator; 17 — rotation arm.
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N, an elliptic light modulator 7 (Fig. 4) is introduced,
with a system 12—16 for photoelectric recording of
the light signal.

The basis of the modulator, which is firmly
fastened to the rotation arm 17, is a small electrody-
namic seismoreceiver having a coil supplied with
current from the audio generator 16. The mechanical
part of the seismoreceiver generates in a glass plate
(by the photoelastic effect) a harmonically-varying
optical anisotropy &= 8¢ sin wt, with an axis at an
azimuth angle of 45° from the principal sections of
the polarizer 5 and the analyzer 9.

Now, let a light ray incident on the photomultiplier
12 pass through an anisotropic layer 6 of the liquid
being studied (of azimuth angle « and anisotropy 6)
and the mica compensator 8 (of azimuth angle o, and
anisotropy &4), as well as the modulator 7. Then at
the output of the amplifier 13 (under the condition that
8y (and 6) < 1) one can measure a voltage

V = A(sin 2¢-sin 6 — sin 2a,-sin 85) 840 sin wt, (4)

where A is a constant proportional to the light flux
incident on the polarizer 5, to the amplification co-
efficient of the amplifier 13, and to the current sensi-
tivity of the photomultiplier 12.

Thus the amplitude of the harmonic signal applied
to one pair of plates of the oscillograph 14 (from the
amplifier 13) depends linearly on §. This fact makes
the photoelectric method more sensitive than the
visual method (in which the light flux acting on the
eye is proportional to 89,

The amplitude of the signal becomes zero (as de-
termined by the pattern on the oscillograph screen)
either when the birefringence of the liquid is com-
pensated by the compensator (sin 2a - sin § = 2a, ' sin
8¢), or when the entire system is rotated (by arm 17)
to the extinction position ( @ = 0) with the compen-
sator left out ( oy = 0). Thus, the orientation angle
x and the anisotropy 6 are determined by the same
methods as in visual optics.

The viewing tube 11 and the movable mirror 10
are for visual measurements and checks.

An analogous principle has been used in ©°*, where
a rotating crystal plate was used as the elliptical
modulator.

The sensitivity of the photoelectric method of
measurement is at least an order of magnitude
greater than that of a visual method using an analo-
gous optical system.

(54

In studying dilute solutions, we must take into ac-
count the effect of the solvent in the total birefring-
ence of the solution in finding the values of An and
the orientation angle y of the birefringence of the
solute polymer. This can be done by using Eq[s. (18)
and (19) of Sadron for a polydisperse system. 56-59]

II. THEORETICAL PREMISES OF THE MAXWELL
EFFECT

A. Suspensions and Solutions of Rigid Particles and
Macromolecules

The theory of the flow birefringence of solutions of
absolutely rigid non-interacting particles has been
developed by a number of investigators, who have
used various molecular models (rigid rods, dumb-
bells, rigid strings of beads, ellipsoids).® 98] These
studies are treated in one of the cited reviews.!®]
Peterlin and Stuart %) have worked out the theory in
a very complete and finished form.

The fundamental condition for the existence of a
Maxwell effect in such systems is asymmetry of
shape of the particles. Solutions of rigid spherical
particles do not exhibit flow birefringence.

1. Hydrodynamic properties. Rigid particles in a
laminar flow are subjected to viscous forces setting
them into rotational motion (see Fig. 1). For parti-
cles having asymmetric shapes, this rotation is non-
uniform and has a minimum velocity at the angular
position of the particle where its long axis is parallel
to the flow (in the y direction in Fig. 1). This pro-
duces a preferential kinematic orientation of the long
axes of the particles in the flow direction.

However, the rotational Brownian movement inter-
feres with this orientation and decreases the asym-
metry of the angular distribution function of the axes
of the particles. Besides, the rotational Brownian
movement changes the direction of the maximum of
the distribution function away from the flow direction
y toward a direction rotated by 45° from the flow.

If the particles of the suspension are optically
anisotropic, their preferential orientation will give
rise to a macroscopic anisotropy of the solution.
Here, for a monodisperse system, one of the two
principal optical directions (1 in Fig. 1) will coincide
with the direction of preferential orientation of the
particles, forming the angle y (the orientation angle)
with the flow direction.

For a suspension of particles having the geometric
and optical proE)erties of ellipsoids of revolution, the
theory gives res

=2 (v —y)) 1(0, )= ZX v(gi—g2) (0 P)
- 25 )1 (0, ) ®
1= X(Gv p)' (6)

Here n is the refractive index of the solution, N
is the number of particles per cm?; Y1 — 72 is the
difference between the two principal polarizabilities
of the particle, v is the volume of the particle, Cy
= Nv is the volume concentration of the solution,
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is the specific anisotropy of the substance in the par-
ticles; f(o, p) is a2 mechanical factor (the orientation
function); L/d = p is the ratio of the longitudinal (L)
to the transverse (d) axis of the ellipsoids. The
orientation parameter ¢ is equal to

o= (7

where Dy is the rotational diffusion coefficient of
the particles. Dy depends on the viscosity 7, of the
solvent and the dimensions and shape of the particles.
For ellipsoids of rotation,[%:|
kT

be=—mmar ®

where
_ - 2p%—1 p+V pi—1 9
fom=4(p /(21)1/102_11 PRV 1). 9)

Here, v, is the ‘““hydrodynamic’’ volume of the parti-
cle.
For highly extended ellipsoids (p » 1)},

k
D.= (s )(In2p—0.5), (10)
and for highly extended cylinders (rods),"
kT ,
D, = <W>(1n 2p—0.8). (10"

The orientation parameter ¢ can also be expressed
in terms of the molecular weight M of the particles
and the intrinsic viscosity [n] of the solution:
6B
F(p) '
f=MIn) 7107_%«—»

where the function F(p) varies from 2.5 (for p=1)
to 0.8 (for p= ). F(p) has been tabulated by W.
Kuhn[ and by R. Simha.(72.6]

Thus, the magnitude of the birefringence An is
determined by the product of two factors, the me-
chanical factor f( ¢, p) and the optical factor
N(y; — Y¥). Since for rigid non-interacting particles,
the optical factor does not vary with change in g, the
relation of An to ¢ is determined only by the func-
tion (o).

The orientation angle x is also determined only
by the mechanical factor, and is independent of the
optical properties of the particles.

The functions f(o, p) and y (o, p) have been de-

o= (11)

(12)

rived [653 in the form of power series in ¢ and
Y bt
bo— p2+1 .

Shercza, Edsall, and Gadd (%) have carried out the
numerical summation for various values of p, and
have prepared tables of the functions f and y.

The appropriate curves for two values of p are
shown in Fig. 5.

The initial slopes of these curves give the intrin-

OF MACROMOLECULES 643
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FIG. 5. The orientation angle y and the orientation factor
f(o, p) for the different axial ratios p indicated on the curves.

sic values of the birefringence [n] and the orienta-
tion angle [¢/g]:

o An N __ 2mN gby 2mbov ;
[n] —CEHJ‘ gnoc - 15”M7]()Dr (Yi 'YZ) 15,”] D (gl—OZ)’
20 (13)
K3 J‘t/4 X _ _
[+ ]=lim ) =—(E) = 9

g0 g0

Here C = NM/Ny is the concentration of the solution
in g/ecm?® NA is Avogadro’s number and ¥V = vNA/M
is the partial specific volume of the solute.

By using Egs. (7), (11), and (12), in place of (14},
Mining

we can write
[ ] 2RTF p)

Eq. (14) permits us to calculate Dy from the ex-
perimental values of { ¢/g], and by taking into ac-
count Eq. (8) or (10), to characterize the geometric
properties of the particles.

By comparing the experimental values of [ ¢/g],
[n), and V, we can find the length and thickness of
the ellipsoids.

By using Dy and the experimental value of [n],
we can determine from Eq. (13) the anisotropy v,

— v, of the particle (if we know the molecular weight
M) or the specific anisotropy g; — g, (if we know the
partial specific volume V). In some cases in deter-
mining 7y — ¥y, We can replace the measurements of
[ @/g] by measurements of the intrinsic viscosity [7]
of the solution. Thus, from Egs. (11), (12), and (13),
we can derive

(15)

In] __ b,
a1 = ek (V1 ¥2) Ty -

which permits us to determine vy, — v, from the ex-

(16)
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perimental data for [n] and [n], if we have even a
rough estimate of p.

We note that the quantity g, — g, which enters into
(5) and (13) denotes the anisotropy per unit volume of
the substance in the particles, and thus is insensitive
to solvation and swelling, just as v is. In contrast,
the hydrodynamic volume v, includes also the volume
(Eq. (8)) of the solvent immobilized by the particle,
and thus can vary greatly upon swelling.

2. Optical properties. The difference between the
principal polarizabilities y; — v, of a rigid particle
can in general be separated into two parts: the in-
trinsic anisotropy and the form anisotropy of the
particles. The former arises from the anisotropy of
the substance in the particle, which has differing re-
fractive indices in different directions (n¢, ny). Form
anisotropy occurs in particles whose shapes are not
spherical, and whose mean refractive index differs
from the index ng of the surrounding medium.

For ellipsoids having axial symmetry in their
geometric and optical properties,

(n}—n3) (j—nj)
g
L) (4n+ 250 L)
1/ k : ] 2
(17)

& (nf—nf)+ (Ly—Ly)

Yi— Y2 =0 (g1~ ga)= v,

2 2
ny—n

(‘!m-{— Py :

where n; and n, are the refractive indices of the
substance in the particle for rays polarized respec-
tively in the directions of the longitudinal and trans-
verse axes; L, and L, are functions depending only
on p.

Here the first term gives the intrinsic anisotropy
of the particle, and the second term gives the form
anisotropy.

The intrinsic anisotropy can be either positive or
negative, depending on the sign of n} — n}, while the
form anisotropy is always positive (L, > Ly).

The relation of the quantity Ly, — L, to p is shown
in Fig. 6 (curve 1). The form anisotropy increases
with increasing asymmetry of the particles; it prac-
tically attains its limiting value when p = 10, for
which L, — Ly = 2r. When n (~ ny & ny) = ng, the
form anisotropy is zero.

3. Concluding remarks. The brief treatment
given of the basic conclusions of the orientation
theory shows that from the experimentally-found
values of [n] and [ ¢/g], together with the relations
An = f(g) and x = x(g), we can calculate the basic
geometric parameters (the dimensions and asym-
metry of shape) and the optical anisotropy of rigid
particles if we can apply the model of ellipsoids of
revolution to them.

The geometric characteristics of a particle often
reflect its internal structure, and thus can play an
essential role (and sometimes even a deciding one) in
establishing this structure.

The optical anisotropy may be of no lesser im-
portance. Primarily, we must try to distinguish ex-
perimentally the effect of the intrinsic anisotropy
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FIG. 6. The optical form factor L, — L1 as a function of the
asymmetry of the particle. 1: Ly -~ Ly = f(p); 2: Ly — L = f(x).

from the form anisotropy. The best way to do this is
to study the birefringence An of the substance being
studied in several solvents differing in their refrac-
tive indices ng, and to extrapolate the An data to ng
= ni (the refractive index of the solute).

The magnitude and sign of the intrinsic anisotropy
of the particle reflect the degree of order of its con-
stituent parts (atomic groups or valence bonds). Thus
they can serve as an essential characteristic its in-
internal structure.

The experimentally-found value of the form aniso-
tropy for particles with not too great asymmetry
(p < 10) can be used (Eq. (17) and Fig. 6) to deter-
mine the axial ratio p.

If we measure the increment of the refractive
index dn/dC and the partial specific volume ¥ in the

solute-solvent system, and use the equation (2
dn 27w g2y
Rl T S (18)

we can determine gy + 2g,.

By comparing this value with that of g; — g,, we
can calculate g, and g,. When we use the formulas
given above for An and x, we must remember that
they are all derived under the assumption that the
system of particles being studied is absolutely mono-~
disperse.

As Sadron 15 has shown, polydispersity can lead
to a dependence of the quantity An and of the orienta-
tion angle x of the birefringence on the velocity
gradient that does not agree at all with the curves of
Fig. 5.

According to Sadron,[sej for a polydisperse system,

An? = (F_ An; sin in)a—&— (Z An; cos in)a, (19)

(2] Anisin 2;)

=t *

tg2x= XA'H cos 2X; ’ (20)
i

where the summation is made over all i types of
particles in the mixture; each of these types, in the
absence of the others, will give an anisotropy of the
solution of Anj, characterized by an orientation
angle xi, at the given velocity gradient.

*tg = tan
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As has been shown, 1% data on flow birefring-
ence, with application of Eqgs. (19) and (20), can give
information on the polydispersity of a dissolved
sample.

B. Solutions of Chain Macromolecules

Chain macromolecules, which take the form of
randomly wound coils in solution, are an example of
particles that undergo not only orientation, but also
deformation in a laminar flow.

Hence, the dynamic birefringence observed in
these solutions is a complex orientation-deformation
effect, in which the relative roles of orientation and
deformation depend on the geometric, hydrodynamic,
and mechanical properties of the molecular chains,
i.e., ultimately, on their structure.

Here we must bear in mind the fact that, in com-
parison with the case discussed above of ideally rigid
particles, solutions of flexible chain molecules are
highly complex systems, both in their hydrodynamic
and optical properties. At present, not nearly all of
the experimentally-established laws and peculiarities
of the Maxwell phenomenon in these systems have
been completely and indisputably explained.

1. Optical properties of chain molecules. The
conformational properties of true molecular chains
in solutions can be described well theoretically in
terms of a model of freely-linked linear segments
whose spatial orientations are mutually independent.
Such a freely-linked chain takes the form of a ran-
domly-wound Gaussian coil, in full accord with the
shape of a real flexible chain molecule of sufficiently
large molecular weight in the absence of volume ef-
fects (in an ideal solvent).

The theory shows (5~ that the ‘‘external’’ shape
of a random coil differs on the average from spheri-
cal, and can be described by a prolate spheroid whose
mean length H is twice as great as its mean width Q.
On the average, the molecular coil has the greatest
geometrical extension in the direction of the vector h
joining the ends of the chain molecule.

As Kuhn and Griin "% have shown, the direction of
h is also the direction of preferential orientation of
the statistical segments comprising the molecular
chain.

If the optical polarizability of the segment is
anisotropic, the preferential orientation of the seg-
ments within the molecular coil will give rise to an
optical anisotropy of the entire chain (intrinsic aniso-
tropy).

For a chain molecule in a solvent of refractive
index ng, this anisotropy is [rs]

3 /7 ni42N\2 h2 h2
—‘Yz)i=g( 3 )(Gx—az)f{=ei’h—7'

Here 7y, and 7y, are the principal polarizabilities of
the molecule in the direction of h and normal to h; o
and «, are the principal polarizabilities of the seg-

[3,75]

(21)
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ment; h? is the mean square of the quantity h for the
undeformed molecule.

If the refractive index ng of the solvent differs
from the refractive index nyg of the solute polymer,
an additional anisotropy of the molecule arises, due
to the optical interaction of the individual parts of the
chain with one another.

Here we must distinguish the interaction of ele-
ments sufficiently separated along the chain (optical
long-range action) from the interaction of neighboring
elements of the chain (optical short-range action).

Owing to the non-spherical distribution of mass in
the coiled Gaussian chain, the optical long-range ac-
tion in the chain molecule results in an anisotropy of
the polarizing field within the molecular coil. This
anisotropy is positive in sign and directly depends on
the shape of the molecular coil (macroform aniso-
tropy).

The difference between the principal polarizabili-
ties of the macromolecule (in the h direction and

normal to it) corresponding to the macroform effect
g [79,80,43,81]

n +2 ni—n? ~2 M2
(Yt—Yz)fz( > (Zﬁz—sa\’f;/ o (L2 — Ly)=0; (L —Ly),
(22)

where p is the density of the polymer, and
v=20.36 (f1_2)3/2 is the volume of the molecular coil in
the solution (including the volume of solvent enclosed).
L, — L, is the optical form factor, which is the func-
tion of the axial ratio F §iven by curve 1 in Fig. 6. It
can also be expressed %) as a function of the parame-
ter x = h/(h?)”2, The relation of Ly — Ly to x is
given by curve 2 in Fig. 6. The graph shows that in
the range 0.5 < x = 1.5 (i.e., when the deformation of
the molecule is small), Ly — Ly ~ 3x, and hence,*
L
B2 )

Neighboring elements (monomer units) of the chain
are mutually arranged in a definite linear order.
Hence the optical interaction cannot be spherically
symmetrical. This asymmetric short-range action in
the chain gives rise to local anisotropy of the polar-
izing field, similar to the way that the asymmetry of
shape of the entire chain gives rise to the mean
anisotropy of the field. The local anisotropy of the
field depends on the microstructure of the molecular
chain and increases with increase in its equilibrium
rigidity (the dimensions of the segment and its asym-
metry of shape). Consequently, the effect arises of
an additional anisotropy in the polarizability of the
macromolecule (microform anisotropy), which is also
positive in sign.

The difference between the principal polarizabili-

(Y1 — Vo)1, 2<1.5 = 30; (23)

*Eq. (23) coincides with the expression for the form anisotropy
derived by Copic.B***] Eq. (22) is more general in meaning, i.e.,
it can also be applied in the case of large deformations of the
molecular coil.
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ties of the macromolecules (along the vector h and

normal to it) corresponding to the microform effect
ig [85,86]

3 P2 N2 Sl N2 Mys »
(Yi‘_Yz)fu"—'g(“’r) ( Antng ) —QWX'(Lz--LA)sh—2

he
=0 — . (24)

Here (L, — L;)g is the function of the asymmetry of
shape of the segment ps given by curve 1 in Fig. 6,
M, is the molecular weight of the monomer unit of
" the chain, and s is the number of monomer units in
the segment.

The total difference between the principal polariza-
pilities of the chain molecule equals the sum of the
three cited effects:

Vim Y2 = (8 81) 2= + 8 (Ls — L), (25)

where 0i, 6f, and 0fg are determined by Eqgs. (21),
(22), and (24), respectively.

We can easily see by comparing (22) and (24) that
for a given macromolecule (M, My, nx) in a certain
solvent (ng), the relative role of the macroform
anisotropy 6f and the microform anisotropy 6fg de-
pends on the conformation of the molecular chain.

As h? increases, expression (22) decreases,
while (24) increases, owing to the increase in the ef-
fective length of the segment. This means that the
more open the structure of the molecular coil is (the
less the molecule is coiled), i.e., the smaller the
equilibrium flexibility of the chain, the greater the
value of 6fg and the smaller the value of 6 in the
total anisotropy of the molecule. Hence, the experi-
mentally determined quantity 6s5/6f can serve as a
measure of the equilibrium rigidity of the chain
molecule.

2. Hydrodynamic properties of chain molecules.
Among the various models [1-1%T used in describing
the hydrodynamic properties of chain molecules in
solution in treating the phenomenon of flow bire-
fringence, those of fundamental importance are due
to W. Kuhn, [%-%8] B, zimm, [®J and R. Cerf. [8:30:92]

Kuhn’s model is the simplest. In it, the actual
chain is replaced by a deformable (elastic) dumbbell
of length h; the hydrodynamic force which should
actually be exerted on a quarter of the molecular
chain by the solvent is applied to each of the two end-
points. The hydrodynamic interaction of the parts of
the chain is not calculated from theory, but is esti-
mated from model experiments.m Only motion of the
macromolecule in the plane of flow is considered
(two-dimensional motion).

In addition to ideally flexible chains, Kuhn also
treated the effect of kinetic rigidity of macromole-
cules on their hydrodynamic properties, and intro-
duced for this purpose the concept of internal viscos-~
ity.[87’88] Internal viscosity (kinetic rigidity) charac-
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terizes the length of time the molecular chain takes

to change in conformation, and is determined by the
height of the potential barriers hindering free rotation
of the atomic groups about the valence bonds of the
chain.

Besides (owing to mathematical difficulties), Kuhn
solved the problem of the dynamooptical properties
of kinetically rigid chain molecules only in the limit-
ing case of very high internal viscosity, which is
equivalent to the case of absolutely rigid particles
discussed in Section II, A. Hence the functions
x =x(g) and An = f(g) for a solution of chains of
high internal viscosity are expressed by the curves
of Fig. 5. Zimm B9 uses a more refined hydrody-
namic model of a chain molecule, a sequence of
freely-linked subchains.®3% He treats the spatial
(three-dimensional) motion of such a chain in a shear
field by taking into account the hydrodynamic interac-
tions of its parts by the Kirkwood-Riseman method.
However, here he takes the molecular chain to be
ideally kinetically flexible, and ignores the internal
viscosity. Cerf 0% yges the same model as Zimm
(subchains) to describe the hydrodynamic properties
of a chain molecule, but he supplements it by taking
into account the effect of internal viscosity. Here he
modifies the definition of internal viscosity intro-
duced by Kuhn by bringing it closer to the idea of the
viscosity nj of a continuous liquid medium. Hence,
the dynamic properties of Cerf’s molecular model
turn out to resemble the dynamics of the model of a
viscoelastic sphere that he had used in previous
studies.?-%] According to Cerf, we can use the ratio
of the internal viscosity coefficient n; of the mole-
cule to the viscosity n, of the solvent as a criterion
for classifying molecules according to their rigidi-
ties. When ng < nj (in arbitrary units), the molecules
are rigid, and the birefringence of the solution ob-
served at small shear stresses (8 — 0) is the re-
sult of their orientation in the flow. When 7y > 5y
(in the same units), the molecules are flexible, and
the birefringence is due to their deformation in the
flow, even at infinitesimally small shear stresses
(B— 0).

Thus, of the three models enumerated above, we
can consider the hydrodynamic model of Cerf to be
the most complete, and probably the most perfected.
However, it is also the most complex. Hence, the
problem of the dynamooptical properties of solutions
of chain molecules has thus far been solved within the
framework of this model only for the case of g — 0,
i.e., for infinitesimally small shear stresses.

On the contrary, by using the model of ideally
flexible subchains (neglecting the internal viscosity),
Zimm was able to solve the dynamooptical problem
completely and derive the relations An = f(g) and
X = x(g) for a broad range of velocity gradients g.
However, here he did not take into account the form
effect in the optical part of the problem, but kept only
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the first term, 6;h%h?, in Eq. (25) for the polariza-
bility difference of the molecule.

Finally, the use of the simplified hydrodynamic
model of an elastic dumbbell without internal viscos-
ity made it possible to solve the problem of the dy-
namooptic properties of flexible chain molecules for
a wide range of velocity gradients, taking into ac-
count not only the intrinsic anisotropy (86] of the
chains, but also their form anisotropy, 4828 j o,
using all the terms of Eq. (25).

3. The magnitude and orientation of the birefring-
ence in a solution of chain molecules. The theoretical
results are summarized below for chain molecules of
varying kinetic rigidities, as derived from the hydro-
dynamic and optical models mentioned above. All the
formulas refer to infinitely dilute solutions ( C — 0)
of a monodisperse polymer.

a) Ideally flexible chains (without internal viscos-
ity). 1. Hydrodynamic model: elastic dumbbell.
Optical properties given by Eq. (25). The magnitude

of the birefringence is given by the expression (82,84,85]
. An™\ 3ng M 1 F 3N
lim (72 ) = O +0)BVIE R+ (5 ) 60 (),
(26)

where 6y, 0f, 0¢g, and B are defined respectively by
Eqgs. (21), (22), (24), and (12); &(B) is a function with
limiting values:

lim @ (8) =B and lim @ (B) = 4%,
B0 Broo

The second term on the right-hand side of Eq. (26),
which is determined by 6f, is always positive. The
first term (proportional to 0] + 6fg) can have either
sign (ffg is positive, and 6 can be either positive
or negative ). Hence, the relation An = £(f) for the
total birefringence is complicated in form, and in
some cases (when §j < 0), it can involve a change in
the sign of the observed effect. Figure 7 shows the
graphs of the relation An = f(3) for the cases in
which 6j + 6fg and 6f are positive (curve 4), or op-
posite in sign (curve 5).

The form of the curve for the orientation angle
x = x (8) depends essentially on the relative roles of
the macroform 6f and the intrinsic anisotropy 6j
effects in the observed birefringence. If we neglect
the second term (the macroform effect) in (25) and
(26), the value of the orientation angle will not depend
on the optical properties of the system, will be deter-
mined by the hydrodynamic properties of the macro-

molecules, and will be expressed by the equation L86]
. 1
tg 2y = 'k 27)

The overall form of the relation (27) qualitatively
agrees with the curves for x (o) (Fig. 5). If we take
into account the macroform effect (the term in (26)
containing 6y), the measured orientation angle is
determined by the expression [

1—z

g2 (h—xo) =517 €23, (28)

L

20

-5

4

3 5

~75L

FIG. 7. The function (An/C) (3ns/47) M/N4a) = £(B) for solu-
tions of flexible chain molecules. Curves: 1.-(3/2)*6;®(B) for
fc=3; 2—(0; + Bgs) BV 1 + Bz for 6; + f¢s = +2; 3~ (0%

+ Ogs)BY 1 + B2 for 6; + B¢ = —2; 4— additive effect of curves 1
and 2; 5— additive effect of curves 1 and 3.

where
= (0it0) BV TP

(3) 00®

Here y; is the value of the orientation angle charac-
terizing the hydrodynamic properties of the system.
It can be determined from Eq. (27). Furthermore,

Yo = % (ot + %0
and

6= %(Xf — %)
Here yj and yy are the extinction angles correspond-
ing to the two parts into which the molecular system
is arbitrarily divided. The first part gives the
birefringence proportional to (6 + 8g5)BV 1 + B2, and
the second part is proportional to (3/2 )29f<1>(B).

It follows from Eq. (28) that in the range of 3
values where the birefringence changes sign(x = ~1),
the extinction-angle curves are discontinuous, and
show an ““anomalous’’ course. Thus, the value of the
extinction angle for such systems reflects not only
the hydrodynamic properties of the system, but also
to a considerable extent its optical properties. Here,
a minute hydrodynamic polydispersity (an insignifi-
cant value of 6) will result in quite appreciable
changes in the experimental curve x(f).

In the range of small shear stresses (8 — 0), Eq.
(26) gives for the intrinsic value of the hirefringence:

tim (20 ) = () = [l -+ [nlye + (n, (29)
&0

where the three components of the birefringence, the
effect of the intrinsic anisotropy [n}j, the microform
anisotropy [n]fg, and the macroform anisotropy
[n]t are, respectively:
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ir)s = o D gy (0= ), (30)
[ﬂ]fs'—‘%q%ﬂ[mo Mos(L; — Ly),, (31)
nly = 0,058® “(:g;f; ;:5 —n2)2 M (32)
Here, & = 2.1 X 102 ig the Flory coefficient, and

{n]y is the intrinsic viscosity of the solution for
g— 0.

For the intrinsic value of the orientation angle
7L S A . R
m === [ g ]

C—0
g0

Eq. (27) gives

[LP_‘! g Moo
g .

T RT (33)

where a = 0.5.

If we take into account the form effect (the second
term of Eq. ([25)) Eq. (33) must be supplemented by
the equation [84100]

1 Z
[%] - [%] 1122 :

Here C; and C, are constant, unequal factors;
1 9Oy .
4010y 7
[ ¢/g] is the intrinsic value of the extinction angle in
the absence of the form effect, as determined, e.g.,
from (33); [ ¢/g]y is the same quantity in a system
showing the form effect. In the region Cy;Z & -1, the
quantity [ ¢/gly essentially depends on the optical
properties of the system.

2. Hydrodynamic model: freely-linked sequence
of subchains. Optical properties of the molecule
given by the first term of Eq. (25) (Zimm [89]). Corre-
spondingly, the value of the birefringence is

An Y 3n, TT70E nte 0ot
lim(45) Je - <08 VI (05 ctg 2

(34)

Z =

:Cﬂ_'o

(35)%

The orientation angle is determined by the expression
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in the case of weak hydrodynamic interaction (a hy-
drodynamically free-draining molecular coil) or by

tg2x—i§§ (37)

in the case of strong hydrodynamic interaction (a non-
free-draining coil).

Thus, the theory gives Eq. (30) for the intrinsic
value of the birefringence [n], i.e., a result com-
pletely agreeing with that for an elastic dumbbell.

The intrinsic value of the orientation angle [ ¢/g]
also can be expressed by Eq. (33), where we must
assume: a = 0.2 for a free-draining coil, and a = 0.1
for a non-free-draining coil.

Thus, the use of the more refined hydrodynamic

*ctg = cot
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model of subchains, which leads to a considerable
complication of the mathematical side of the probiem,
essentially makes no fundamental changes in the final
result of the elastic-dumbbell theory (but changes
only the values of the numerical coefficients). At the
same time, the mathematical complications hinder '
the full utilization of the optical properties of the
macromolecules, thus greatly limiting the possibili-
ties of the theory. Hence, in spite of the apparent
primitiveness of Kuhn’s hydrodynamic model, its ap-
plication in many cases seems fruitful and quite
justified.

b) Molecular chains of large internal viscosity
(kinetically rigid). In the limiting case of highly rigid
chains, macromolecules do not undergo deformation
in a flow. The birefringence is due to their orienta-
tion, and hence, independently of the model applied,
the relations An = f(B) and x = ¥ (B) qualitatively
agree with the curves of Fig. 5.

The intrinsic value [n] is determined as before
by Eqgs. (29)—(32), both for rigid dumbbells and for
rigid subchains.

The intrinsic orientation angle also is determined
by Egs. (33) and (34), but the proportionality coeffi-
cient differs for the two models.

In the rigid-dumbbell case,’® a = 3/2. For rigid
subchains: with complete hydrodynamic free draining,
a = 0.9, and with complete lack of free draining,
a=0.1.

¢) Flexible chains having a small but appreciable
internal viscosity. We assume that nj << 7, and
hence, the observed birefringence is of deformational
type. However, the internal viscosity is not infinites-
imally small {as in case (a)), and can exert an effect
on the dynamooptical properties of the solution.

This intermediate case between absolutely rigid
and ideally flexible molecules has been examined
using a hydrodynamic model of subchains [90-92) gpq

- an optical model taking the macroform effect (Eq.

(25)) into account.% The problem has been solved
only in the region 8 — 0, i.e., only the intrinsic
values [n] and { ¢/g] were obtained.

The expression derived for [n] has a form simi-
lar to (29), and contains terms [n]; and [n];.[100
Here the part [n]; corresponding to the intrinsic
anisotropy completely coincides with Eq. (30). Thus,
the existence of an appreciable internal viscosity in
the chain has no effect on the magnitude of the bire-
fringence. On the contrary, the expression for [ ¢/g]
depends considerably on the internal viscosity. In the
absence of a macroform effect ( 6f = 0), the theory
gives

(Q’]_aM["ﬂoﬂo_}_ka’;f’

(38)
where a = 0.2 and b = 0.0062 with weak hydrodynamic
interaction, and a = 0.1, b = 0.0045 with strong hy-
drodynamic interaction; F is a constant coefficient
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characterizing the internal viscosity #j of the mole -
cule that does not depend on M.

Zimm'’s result (for 8 -— 0) is a special case of
Eq. (38) with F — 0.

d) The extinction angle and kinetic rigidity of the
chain. For all the discussed models of ideally flexi-
ble (Eq. (33)) and absolutely rigid (Eqgs. (33) and (15))
macromolecules, the relation of [ ¢/g] to M[n]n, is
represented by a straight line passing through the
origin (curve 1 in Fig. 8). For rigid molecules, such
a relation means that the observed birefringence is
of orientational nature. When there is a deformation
effect showing the influence of internal viscosity (Eq.
(38)), the corresponding relation has the form of
curve 2 in Fig. 8, cutting the vertical axis at an in-
tercept proportional to Fh¥kT. The slopes of the
straight lines 1 and 2 are determined by the values
of the coefficient a in Eqgs. (33) and (38), respectively.

For every real polymer, the relative roles of
orientation and deformation in the Maxwell effect are
determined by the ratio of coefficients of the internal
viscosity 1j (or F) to the viscosity n, of the surround-
ing medium. As 7, (and hence, also M[7n]n,) in-
creases, the orientation process (curve 1) is replaced
by the deformation process (curve 2). Hence, the
relation of [ ¢/g] to M[n]n, for the polymer chain
is represented by curve 3, for which the straight
lines 1 and 2 are asymptotes.

4

A

FIG. 8. The relation of [¢/g] to Mlnlng for chain molecules.*]
1 —orientational birefringence; 2 — deformational birefrigence;
3 ~the relation for a real molecule.

Thus, the form of the experimental curve for
[@/g] =f(M[n]ny), according to Cerf, can give in-
formation on the kinetic rigidity of a molecular chain
and serve as a fundamental criterion for solving the
problem of the relative roles of the effects of defor-
mation and orientation in the birefringence observed
in the region of small shear stresses, 8 — 0. How-
ever, we must remember here that to obtain adequate
hydrodynamic characteristics from measurements of
the extinction angle, we must use a solvent in which
the value of CyZ in Eq. (34) differs appreciably from
minus unity.

e) The magnitude of the birefringence and the
anisotropy of the macromolecule. In distinction from
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the extinction angle, the expression for the intrinsic
birefringence [n] is practically independent of the
hydrodynamic properties of the molecular model ap-
plied. In this sense Eqs. (29)—(32) are universal, and
can be used to determine the optical characteristics
of macromolecules independently of their mechanical
properties. Here we can obtain from Egs. (30) and
(31) information on the parameters characterizing
the microstructure of the chain (the segment aniso-
tropy and the equilibrium rigidity), and from Eq. (32)
we can find the asymmetry of the equilibrium form
of the molecular coil. To do this, we must transform
Eq. (32) into the form B0

s n2+2 Nz M 3 p2)2
s = ("5 ) g —(n—"”gA[bofo (La— Ly}, (39)

where fj, by, and L; — L, are the functions taking
part in Eqgs. (9), (13), and (17), respectively. Equation
(39) permits us to determine p from the experimental
values of {nlf and M.

4. Concentration-dependence. None of the dis-
cussed theories pay any attention to intermolecular
interactions, and hence are applicable only to experi-
mental data extrapolated to infinite dilution. Peter-
lin [101,102] has proposed a semiempirical relation
permitting one to take into account the intermolecular
interactions in solution, and thus to limit the experi-
mental procedure to the study of rather concentrated
solutions, in which the technique of observing and
measuring the Maxwell effect is considerably simpler.
This relation is based on the assumption that the in-
termolecular interaction in a concentrated solution
increases the effective hydrodynamic forces acting
on the molecule in the flow to the same extent that it
increases the reduced viscosity of the solution

#__ M—MNe
¥ =~

According to Peterlin, Eq. (27) and the part of (26)
corresponding to the intrinsic anisotropy 6i can be '
applied also to concentrated solutions if we replace
[n] by [n]* therein, and correspondingly, replace
the parameter § by

(40)

M —
pr= YO (41)
Here, instead of Eqgs. (27) and (26), we have
tg 2= (42)
A 4 (n3+2)? ——y
‘gﬁéLT&"liTJIIT‘T(Ua—Gz)V1+ﬁ z (43)
from which it also follows that
A . 4 {(n?4-2)2
T m_"no) sin2y =2 _—‘ns (ay— ay). (44)

The latter equations are of great practical signifi-
cance, since they permit us to determine the segment
anisotropy «{ -~ @, from the values of An, y, and
n — ny found experimentally in a solution of any con-
centration whatever, even if we do not know the con-
centration.
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Equation (44) has also been derived by Lodge,[103:104)

who considered a concentrated polymer solution as
being a disordered network of tangled molecular
chains that can be deformed in the shear field of the
flow. Equations (42)—(44) refer to the case in which
the solution shows no form effect.

The concentration-dependence of the form bire-
fringence will be discussed in Sec. III.

III. EXPERIMENTAL DATA

In discussing the experimental data on flow bire-
fringence, we cannot in all cases easily solve the
problem of whether we should treat the solution being
studied as a system of rigid particles, or must bear
in mind their deformation in the flow.

Often the division of particles into two classes,
rigid and deformable particles, is provisional, since
one given macromolecule under different conditions
(e.g., in different shear-stress ranges) can behave
either as a highly rigid or a rather flexible body.

The following assumption can obviously serve as a
general criterion for classification of a given system.
If orientation of the molecules plays the basic role in
an observed flow birefringence, then the molecules
can be treated as being kinetically rigid, even if they
indubitably exhibit deformability (flexibility) in other
phenomena.

The equations of the theory of flow birefringence of
rigid particles (Sec. II, A) are commonly applied to
solutions of biopolymer molecules, although not nearly
all of the latter can be considered to be completely
rigid.

On the other hand, the fact that a molecule is
kinetically rigid and the birefringence is due to
orientation still does not imply that the most correct
model for its geometric and optical properties is a
rigid prolate ellipsoid or a straight rod, rather than
a randomly coiled chain. This fact is not always taken
into account sufficiently.

The section on biopolymers will take up several
typical examples in which the hydrodynamic and op-
tical properties of macromolecules can be repre-
sented by models of continuous ellipsoids or rods,
and some cases are also given in which a randomly
coiled chain is a more adequate model.

A. Biological polymers

The most characteristic representatives of high-
molecular-weight substances whose solutions contain
rigid particles of rodlike shape are the viruses, pro-
teins, and polypeptides.

An essential point is that the dimensions and
shapes of many of these particles can be directly de-
termined with the electron microscope and compared
with the values of the rotational diffusion coefficient
obtained from measurements of the orientation angle
of the birefringence.
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1. Tobhacco mosaic virus (TMV). Among the
various viruses, the dynamooptical properties of
TMYV solutions have been studied in greatest detail,
and the dimehsions and shape of these particles have
also been characterized rather fully by other meth-
odsg.[105]

Sedimentation, [1%-111] giffugion, and partial
specific volume measurements of TMV in solution
indicate that the molecular weight of the particles
M = 40 x 10%. If we represent the TMV particle by a
solid ellipsoid of revolution, (5! we can conclude
from these same data that it has the shape of a
straight rod of length 3 X 10~° ¢m and diameter
0.15 X 107° ¢cm. The values found agree with the width
found from the X-ray diffraction data,12-114] ang
confirm well the direct determination of the mean
length of the TMV rod from electron micrographs.
[115-118] peterminations of the mean molecular weight
and length of the TMV particles by the light-scatter-
ing method give the same results,[11,115]

Thus the hydrodynamic, optical, X-ray, and elec-
tron-microscope studies give a rather complete and
consistent picture of the morphological properties of
TMV particles. This permits us to use them as a
convenient object for testing the orientation theory of
flow birefringence.

In order to compare the relative roles of orienta-
tion and deformation in the birefringence phenomenon,
Cerf %] measured the orientation angles of TMV
solutions, while varying the viscosity 7, of the me-
dium (by adding glycerol). The relation [ ¢/g]
= f(ny) obtained is represented by a straight line
passing through the origin, in complete agreement
with Eq. (15) (or line 1 in Fig. 8), thus illustrating
the rigidity of the TMV particles.

The overall course of the curve relating the
orientation angle and the magnitude of the birefring-
ence to the velocity gradient g has been studied in a
number of references 119:39:46,110,111,120] ¢ TV
solutions over a broad range of shear stresses. The
range of stresses was extended particularly greatly
(from 1 to 400 dyne/cm? in the study of Leray,"
who constructed a special apparatus for this purpose.

The experimentally-obtained relation of the mag-
nitude An = f(g) and the orientation x = x(g) of the
birefringence agrees qualitatively in all cases with
the orientation theory, resembling in form the curves
of Fig. 5. However, if we use the experimental values
of the orientation angle y for various values of g to
calculate the rotational diffusion coefficients Dy by
the formulas of the rigid-ellipsoid theory (Eqgs. (6)
and (7) and the tables of (e8] ), we get values of Dy
that increase with increasing g. The corresponding
values of the particle length L (calculated by Egs.
(8), (9), and (10)) vary from L = 5 x 107% cm for in-
finitesimal g to L = 3x 107% cm for large g. Thus,
the dynamooptical data give satisfactory quantitative
agreement with the results of other methods only at

107,109]
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large shear stresses, while at small g values, the
experimental value of L turns out to be 1.5—2 times
as large as the true length of the TMV particles.

This is illustrated by Fig. 9,''J which shows the
calculated particle lengths L as a function of the
velocity gradient g. Such a result is characteristic
of a polydisperse system. However, taking into ac-
count the actual length distribution of the particles
(determined from electron micrographs) by using
Sadron’s formulas (19) and (20) for a polydisperse
solution [11%:3:110] goeg not make appreciable changes
in the experimental values of the particle length, nor
does the use of carefully prepared monodisperse
samples.[t11]

&4
0
5200 -
.
o
Yy
.
.
L]
L7778 .,
L) %
P
doogl"paool". . oe ¢ o o o ©
N 1 3 1 1
3@00 /2774 2000 7/ L7744 5000
g, sec™.

FIG. 9. The relation of L to g for TMV.[**]

We should note also a certain lack of agreement
between the value of An and the orientation angle
of the birefringence. At large g values, the curve
An = f(g) practically attains saturation, while x has
here a value differing from zero.

Possibly we should seek the reason for the ob-
served differences hetween the electron-microscope
and dynamooptical data in the differences in the
morphological properties of the particles in a dried
preparation and in solution,[121’122] or in the approxi-
mations made in calculating the length,12%:124) For
particles of such great dimensions as the TMV par-
ticles, the effect of deviations from the conditions of
the quasistatic theory in the optical problem is also
not ruled out.[”] In any case, we should bear in mind
the fact that a small proportion of associated parti-
cles in the solution can lead to a very appreciable
lowering of the curve for the function x(g) in the
region of small g, whereas the breakdown of the ag-
gregates and the destruction of the particles them-
selves in the flow must decrease the slope of the
x(g) curve at very high shear stresses.

Under these conditions, we can consider the L
values obtained at moderately large g to be the most
representative values of the true mean dimensions of
TMV particles.

By using the experimental curve for the bire-
fringence An = f(g) and the rotational diffusion co-
efficient D, in Eq. (13), we can calculate the differ-
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ence between the two principal specific polarizabili-

ties gy — g, of the particle. The experimental values
of g, — gy for different samg)les lie in the range from
0.9 x 10301190 t5 4.6 x 1073 (38,

It is hard to state reliably at present to what ex-
tent these g; — g, values express the intrinsic
anisotropy of the material in the particles, or are a
form effect, since the only study of the relation of the
birefringence of TMV to the refractive index ng of
the solvent was made in an old investigation by
Lauffer.['%] He used an experimental technique more
suitable for qualitative than quantitative measure-
ments. The refractive index was varied by changing
the composition of the water-glycerol-aniline mix-
ture used as the solvent. According to Lauffer, the
curve &n = f(ng) is of parabolic shape, and in the
region of ng near the refractive index of the virus
(ng =~ 1.57) it gives An ~ 0, which should corre-
spond to particles of zero intrinsic anisotropy (see
(17)). However, since the right-hand branch of the
parabola (in the region ng > nk) was not obtained
experimentally, the possibility is not eliminated that
the observed solvent effect is due more to a change
in the morphological properties of the virus particles
than to the increase in the refractive index of the
medium upon addition of aniline.

On the other hand, for an isotropic rodlike particle
(p = 20) having a refractive index nk = 1.57 in a
glycerol-water mixture (ng = 1.4), the theoretical
g; — gy value corresponding to the form effect is
(g4 — g») & 5 X 1073 according to Eq. (17). This is
even somewhat greater than the above-mentioned ex-
perimental values for the total anisotropy of the par-
ticle.

Thus the experimentally-found value of the bire-
fringence of the TMV solution can be completely as-
cribed to the form effect, in agreement with Lauffer’s
result.

A final quantitative solution of the problem of the
anisotropy of TMV particles will require further
special experiments.

2. Proteins. Numerous studies of the dynamoopti-
cal properties of solutions of a number of protein
polymers can be found in the articles of Edsall and
his associates, 126127 and also in the monographs 46,
The results have been interpreted in terms of the
rigid-ellipsoid model. They show good agreement of
the geometric parameters of the particles obtained
by the birefrin%ence method with the data found by
other methods, 128~130) tpyg favoring the orientational
character of the observed birefringence. For illustra-
tion, we can cite the result of Boedtker and Doty,[m]
who studied the dimensions and shape of particles of
soluble collagen by various methods in solution, in-
cluding flow birefringence.

At collagen concentrations below 0.1 g/100 em? in
buffer solutions, the intrinsic value and the orienta-~
tion of the birefringence are practically independent
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Table I. The molecular weight
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M, length L, and diameter d of

particles of soluble collagen, as obtained by various methods
(from Boedtker and Doty [131)

of the concentration. The particle length L calcu-
lated from the orientation angle in the range of
gradients from 0 to 5500 sec™! varied from 3 x 107°
em to 2.5 X 1075 ¢m, respectively, indicating that the
polydispersity of the sample was negligible.

The trend of the birefringence An with varying g
corresponded to the theory of orientation of rigid
particles, and the sign of the effect was positive. The
found value of the specific anisotropy of the particles
was gy — g5 = 2.4 X 1073, Using the experimental
values of the refractive increment dn/dC = 0.187 of
collagen solutions and the partial specific volume
v = 0.7, the authors found from Eq. (18) the ratio of
the principal refractive indices of the particle n,/n,
= 0.998. Thus they concluded that collagen particles
are optically isotropic, and the observed birefring-
ence is a form effect.

The birefringence data are to be compared with
the results obtained by other methods. The final re-
sults are given in Table I. They show completely
satisfactory agreement among the data obtained by
the various methods. The direct determination of the
length distribution of collagen particles that Hall [132]
has made by the electron-microscope method also
corroborates these data. Thus, on the one hand, the
study of the dynamooptical properties of collagen
solutions confirms the correctness of the ideas that
its molecules show considerable rigidity, are of rod-
like form, and of triple-helical structure.l’3¥ On the
other hand, it illustrates the applicability of the equa-
tions of the orientation theory to such systems.

3. Polypeptides. The development of methods of
synthesizing polypeptide chains [1%:13] hag made it
possible to study dynamooptical properties using
structures that can serve as models for the rigid
helical conformations of native proteins, while at the
same time having an assigned chain structure (iden-
tity of the repeating units, molecular weight, poly-
dispersity of samples, etc.)

Among the known synthetic polypeptides, the most
complete information on hydrodynamic and morpho-
logical properties has been obtained for poly-v-
benzyl-L-glutamate (134 (PBG). The conformation of
this molecule in solutions has been studied by the
methods of light scattering, 1313 viscosimetry, 136138

Method M L d
Osmotic pressure (Mp) 3.10-105 — —
Light-scattering (My) 3.45-10% 3.1-107°% 13.0-1078
Viscosity and My, — 2.97-10°6 13.6.1078
Sedimentation and viscosity 3.00-105 — 12,8.1078
Birefringence and viscosity 3.50-105 2.90.1075 13.5-1078
|
spectroscopy, ¥ polarimetry, 13134 diffusion and
sedimentation,[lm and also by the method of orienta-

tion in an electric field.[1417146:280] A} these studies
give analogous results, according to which PBG
molecules in a number of organic solvents (e.g., m-
cresol) are reinforced by intramolecular hydrogen
bonds, and thus can exist as rigid a-helices 4 hav-
ing the ‘‘hydrodynamic’’ shape of a cylinder of diameter
~ 15 A and length 1.5 A per monomer unit in the
chain. The length of the cylindrical particle is thus
L = 1.5 M/M, A, where M is the molecular weight
of the chain, and M, = 219 is the monomer unit.
These conclusions are corroborated by data obtained
by studying the angular distribution of X-ray scatter-
ing 1148 of PBG in the solid state.

Yang (%90 has studied the flow birefringence of
solutions of a PBG sample ( My, = 2.08 X 10°,
L = 1430 .&) in cresol, and of another sample of
higher molecular weight ( My, = 3.34 x 10°, L = 2300 &)
in dichloroethane (ethylene dichloride) and obtained
similar results. The relation An =f(g)} in m-
cresol is shown in Fig. 10. The curves have the
usual form for an orientation effect in a system of
rigid particles. The initial slopes of the An/g curves
corresponding to different concentrations are given
in Table II. By using the data on the viscosity n of
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FIG. 10. The birefringence of poly-y-benzyl-L-glutamate in
m-cresol**) (5 = 1.39 x 10 An).




FLOW BIREFRINGENCE AND THE STRUCTURE OF MACROMOLECULES

the same solutions,[1®) we can calculate the intrinsic
value of the birefringence An/g (1 — ny) correspond-
ing to different concentrations. The obtained values
(the last column in the table) agree within the limits
of error for all concentrations. The same regularity
is illustrated by the graphs in Fig. 11,[‘46] which
shows the relation of An to g(n — ny) for the PBG
sample in three solvents. Thus Peterlin’s theory of
the concentration-dependence of the birefringence
(Eq. (43)) proves to be applicable to solutions of

rigid rodlike particles. The concentration-dependence
of the orientation angle also agrees with Eq. (42).

The function yx(g) reduced to zero concentration
generally agrees with the orientation theory. However,
the length L of the cylindrical particles for the sam-
ple of Table II, as calculated from the angles y as g
was varied from zero to 5000 sec™!, varied from 2300
to 1380 A, thus indicating a considerable polydis-
persity of the sample.

a0

sl

z 700

%7

FIG. 11. The relation of An to the shear stress g(y — 7o) for a
sample of PBG (M = 10°){**¢] in dichloroethane (0), dimethyl-
formamide (@), and chloroform (0).

In studying the morphological properties of PBG
molecules, it is useful to combine the methods of
flow birefringence and electric birefringence.[146,261]

In distinction from flexible chain molecules having
no secondary structure, the rigid PBG helices in
solution exhibit a strong positive birefringence in an
electric field,[%) thus indicating the high degree of
order of their internal structure.

In an alternating electric field one observes a
sharp frequency-dependence of the Kerr constant,
indicating the dipole nature of the process of orienta-
tion and relaxation. This is illustrated by Fig. 12,
which shows the relation Any, = f( v) for solutions of
the sample of Fig. 11 in chloroform .46

By using these curves and the theory [2]’ we can
calculate the relaxation time of dipole orientation 7¢
and the rotational diffusion coefficient Dy = 1/27¢,
and thereby also the length L of the rodlike molecule
(by Eq. (10)). The corresponding data are given in
Table III.
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FIG. 12. The relation of the magnitude of the electrical bire-
fringence (in relative units) of solutions of PBG in chloroform to
the frequency v = w/2r of the applied field.['**] 1: C = 1.5%; 2:
C = 1.0%; 3: C=0.5%; 4: C = 0.3%; 5: C + 0.2%; 6: C = 0.15%.

Table II. Birefringence and viscosity of solu-
tions of PBG in m-cresol at 25°C 14

An l
s A L1012 _ 02 e et IO
C, g/100 cm’| (An/g)g_p* 10 | n—no)- 10 [y(n Xniuglf 0 '
0.02 I 500 0.9 556
0.04 1080 1.84 587
0.10 2600 4.97 5325
0.167 5560 9.0 815 ‘

If we assume the basic molecular structure to be
the «@-helix (1.5 A per monomer unit), we can de-
termine from the length L. the molecular weight M,
whose value is also given in Table III. It agrees well
with the value obtained by viscosimetry (M, ~ 0.95
X 105), thus corroborating the hypothesis of the «-
helical structure.

The second and third columns of the table give the
data on the optical anisotropy of the same sample ob-
tained from the flow-birefringence measurements.
The difference between the principal polarizabilities
of the molecule (in vacuo) v, - vy, is calculated by
Eq. (16), in which the Lorentz factor ((n2 + 2)/3)2 has
been introduced, and it has been assumed that
bo/F(p) = 1. The fourth column of the table gives the
experimental values of the specific (1500 Kery con-
stant Kg of PBG in a direct-current field.

By comparing these quantities with the value of
Y4 — s, we can calculate 15U the axial component p
of the dipole moment of the molecule. The values of
u are also given in Table III. The last column gives
the value of u(My/M) = yu,, the dipole moment per
monomer unit of the molecule. The value of p,
agrees with the value obtained by measuring the
dielectric constant of PBG solutions.!' This means
that the directions of the valence bonds N-H and
C=0 (linked by the intramolecular hydrogen bonds)
are near the axis of the helix.

The polarizability difference v; — vy given in
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Table III. Dynamooptic, electrooptic, and morphological properties

of PBG molecules in solution

[148]

An (V1Y) s

—_— 10 i
Solvent =) 1010 X 10

2oy |Ky 108 t-105,

D..10-3, | L,
r A

M.10-6| - 1018 1Mo
sec . » S 1018

sec”

Dichloro-
ethane 295
Chloro-
form 342

3600 7,6
4200 3,6

1390 3,0
1650 2.8

1.0 50 700} 1,02
1,3 38 880( 1.30

Table III includes both the intrinsic anisotropy of the
molecule and the form effect.

By using Yang’s data (Table II) obtained in m-
cresol (in which ny ~ ng), we can estimate the in-
trinsic anisotropy (from Eq. (16)). For the sample of
My, = 2.08 x 10°, we find ¥, — ¥, = 7000 X 10~% cm?
(in vacuo). This value is two orders of magnitude
greater than the anisotropy of flexible chain mole-
cules of synthetic polymers having no secondary
structure (see Sec. III, B). However, the anisotropy
per monomer unit with respect to the principal axes
of the helix

ay—ay=(yi—y2) J-=7-10% cm’

is quite small.

For a monomer unit of PBG of absolutely rigid
structure [(-NH-CHR-CO-},, where R is
—( CH,)y—COO—-CHy—C¢Hj], the anisotropy a) — a;
should be negative. The fact that it actually has a
small positive value indicates that the ester side-
chain is considerably more flexible than the helical
main chain, which is reinforced by hydrogen bonds.

Thus, the combination of the two cited methods
permits us to obtain rather full information on the
geometrical, optical, and electric parameters of PBG
molecules. This information agrees well with the
a-helical structure.

The data obtained in chloroform agree somewhat
more poorly with the properties of the a-helix model
than the results obtained in dichloroethane. This fact
can result either from phenomena of molecular asso-
ciation in chloroform, or from some change in the
conformation of the molecules upon substitution of
the one solvent for the other. )

The study of the frequency-dependence of the
electrooptic effect shows that the relaxation time 7
and the corresponding effective lengths L can be
considered to be frequency-independent only in a first
approximation, and only in the range of sufficiently
high frequencies v. On the contrary, as v decreases,
T and L increase appreciably.

This is illustrated by Fig. 13. This phenomenon
resembles the effect of variation of Dy and L ob-
served in the study of the orientation angles x (see
Fig. 9), and is obviously due to the polydispersity of
the sample.

4. Nucleic acids. Recently, much attention has

7+ 10% i

N

~
T

o 7 7

FIG. 13. The relation of the relaxation time 7 of the Kerr effect
and the corresponding effective molecular length L to the electric-
field frequency v for solutions of various concentrations of PBG in
dichloroethane.['**} 1: 7 = v); 0 —0.3%; —0.25%; +—0.20%; A —
0.13%, x —0.10%; 2: L = L(v).;

been attracted to the study of the structures of the
nucleic acid molecules, "™ deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA), in connection with
the important biological functions of these polymers.

a) DNA. A number of studies [52-174) have dealt
with the dynamooptical properties of DNA solutions.
In all cases, a large effect of negative sign has been
found, with a value increasing with the velocity
gradient, in accordance with the theory of orientation
of rigid particles (see Fig. 5).

The high rigidity of the dissolved macromolecules
is also manifested in the insignificant influence of the
ionic state of the solution on the hydrodynamic prop-
erties of the molecules. Figure 14 [55) shows the rela-
tion of the orientation angle y to the velocity gradient
g for aqueous solutions of DNA having various con-
centrations of added salt ( NaCl).

In distinction from the behavior of solutions of
flexible polyelectrolytes, the points remained
clustered about a single curve as the ionic strength
was varied by a factor of 10%, indicating the invaria-
bility of the dimensions of the DNA molecule under
these conditions, and thus illustrating their consid-
erable rigidity.

Studies of the rigidity of DNA molecules by Cerf’s
method have been made by Cerf 154! and by Leray.
[165,166,173) The final results are given by the graph of
Fig. 15,[173] where the intrinsic value of the orienta-
tion angle [ ¢/g] is shown as a function of the viscos-
ity n, of the solvent or as a function of the parameter
M {[7n]n, for three DNA samples (Nos. 2, 3, and 4 of
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FIG. 14. The relation of the orientation angle y to the velocity
gradient g for aqueous solutions of DNA for various ionic strengths
of the solutions.[*5*] The points correspond to intervals of varia-
tion of the DNA concentration from 8 x 107 to 20 x 107 g/100cm®,
and salt concentrations from 1 x 107 to 10000 x 107 g/100 cm®.
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FIG. 15. The relation of [/g] to the viscosity of the solvent
for three DNA samples.['”]

Table IV). In all cases in the region of small 7, the
points lie on straight lines passing through the origin.
As 71, was increased, the curve [ ¢/g] = f(n,) for
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two of the samples showed a sharp break, while this
range of 1, values was apparently not attained with
the third sample.

Such a trend in the function, according to Cerf,
corresponds to the case of semirigid macromolecules
(see Fig. 8), for which the observable birefringence
is an orientation effect in the region of small 71, but
a deformation effect in the region of large 7y. In
‘“‘normal’’ coordinates (with M {n]n, as abscissa),
the initial slopes of the curves for all three samples
agree, in accordance with the theory.

At the same time, according to the data obtained,
the kinetic rigidity (internal viscosity) of the third
sample {No. 4) must be considerably higher than for
the first two, since it did not exhibit a break in the
straight line graph. Here the greater kinetic rigidity
of the sample is accompanied by a lesser equilibrium
rigidity (though having a greater molecular weight,
sample No. 4 gives practically the same viscosity as
sample No. 3). In itself, this fact compels us to treat
with caution any attempts to interpret the presented
data quantitatively, in any case, in the sense of
establishing a relation between the rigidity and
molecular structure of different DNA samples. How-
ever, the obtained results indisputably show that in
the region of small velocity gradients when the vis-
cosity of the solvent is not too great, the dynamoopti-
cal effect in DNA solutions can be described within
the framework of the theory of orientation of rigid
particles.

Table IV gives the dynamooptical parameters for
some DNA samples. Here Dy = Dyng, and a is the
numerical coefficient in Eqs. (33) and (38). The a
coefficients agree in order of magnitude with the
value predicted by theory (a does not depend greatly
on the model characteristics of the particle), but they
differ rather greatly for different DNA samples. Dy
systematically (and very sharply) declines with in-
creasing molecular weight, in qualitative agreement
with the theory. It would seem premature at present

Table IV. Characteristic constants of the birefringence of some
samples of native DNA (thymus) from the data of different authors

*Unpublished

.10-3,| D i a1 R
Author 10| L0 IR e 5] 108 [orge vosf 4, &
1. Wissler(r52] — - 2.03 — — — — —
. Sch de
2 aﬁdwg;‘,f[éq 6 1.5 0.48 10.48) —0.88 | —4.3 | 400 | 2100
3. Lerayl™] 6 5.7 012 |0.48] — = — | =
. Lefay[m] 11 6.5 0.06 [0.47] —0.20 | —1.56 | 144 | 760
& B ein 6.85| 4.8 0.046 |1.43] —1.0 | —6.7 | 620 | 3200
e 3 5.9 | 5.1 0.18 [0.38] —1.5 | —2.4 | 220 | 1170
-\ an 5.85] 5.3¢ | 0.21 [0.35{ —1.0 | —1.25 | 116 | 600
7.{Reichmann 3.5 | 3.07 | 2.8 |04 —41 | 0.8 75 | 400
8.)[+42:19%] (2.5)
9. Andreeva and
Tsvetkoy* 6.5 | 5.0 0.10 |0.62] ~0.40 | —1.4 | 130 | 680
10. Frisman['™*] | 5 4.0 — — — _5 460 | 2400
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to speak of quantitative agreement, in view of the in-
sufficient number of systematic experimental studies.
If we represent the DNA molecule by the model of a
rigid continuous ellipsoid (as was usually done in the
earlier studies), and use the experimental D, values
and Eqs. (8)—(10), we obtain lengths exceeding tens
of thousands of }mgstrb'm units in a number of cases.
Here the model ellipsoid is transformed into a thin

straight rod with the enormous asymmetry of p = 500.

The stable existence of molecules of such a configu-
ration in solution is improbable, since it is hard to
imagine even for the Watson-Crick double helix that
such a shape would not be destroyed by the thermal
motion of the parts of the molecule and by defects in
the secondary structure. Besides, such a conforma-
tion does not agree with the optical properties of the
macromolecules.

The great spread in the values of g; — g, and
[n]/[n] obtained by different authors cannot be as-
cribed to experimental errors. It is apparently due
to actual differences in the morphological properties
of the studied samples, since we know that a change
in the morphology (e.g., denaturation) shows a more
marked influence on the optical anisotropy than on
the hydrodynamic properties of DNA molecules.[™d

The values of [n]/[n] (which are negative in sign)
are two orders of magnitude greater than the [n]/[7]
values usually obtained from flexible chain polymers,
thus indicating the high degree of order of the struc-
tural elements of the DNA chain.

These properties fully agree with the gererally
accepted molecular model of Watson and Crick, 178
in which the rigid double-helix structure is rein-
forced by hydrogen bonds linking the purine and
pyrimidine bases of the DNA chains. Here the planes
of the optically-anisotropic bases are normal to the
axis of the double helix, giving rise to the large nega-
tive anisotropy of the entire molecule.

On the other hand, a theoretical estimate ' of the
anisotropy of the monomer unit (or nucleotide pair) of
DNA with respect to the helical axes gives a value
aj —aj & —190 x 1072 cm®. Assuming this value of
a| — aj, if we represent the DNA molecule by the
model of a rigid rod, we get a value for its aniso-~

tropy vy — Yy exceeding the experimental value by a
factor of tens (or even hundreds).

Nevertheless, we can interpret the experimental
values of [n}/[n] reasonably by representing the
DNA molecule by the model of a random coil of great
rigidity.[!" I we take into account the fact that for
a rigid chain such as DNA, the macroform effect
[n]s constitutes an insignificant fraction of the ob-
served birefringence [n] (see Table V), we can re-
duce Egs. (29), (30), and (31) to the form

(n24-2)2 2
=g s [ s (@)

Table V gives the results obtained by using the
experimental data of Table IV and Eq. (45) for sample
No. 9, while the last column of Table IV gives the
results for all the others. They show that, in order to
explain the experimental values of the optical aniso-
tropy, we can represent the DNA molecule by the
model of a chain of freely-linked linear segments.
The molecular weight Mg of each of these segments
amounts to hundreds of thousands, while its length A
amounts to hundreds or thousands of ,&ngstrﬁm units.

The quantity s characterizes the average number
of nucleotide pairs joined in an ordered double-helix
structure, while A is the average length of such an
ordered helical region. Thus, these quantities give
information on the dimensions of the regions in the
DNA chain through which the ‘‘long-range order’’ in
the orientation of the planes of the bases extends;
this order is responsible for the negative anisotropy
of the chain, and is maintained by the intramolecular
hydrogen bonds. The ordered structural elements
are linked by regions where the secondary structure
of the molecule (the hydrogen bonds of the bases) is
weakened for some reason, thus causing a certain
flexibility of the chain (Fig. 16).258) At the same
time, the dynamooptical properties of DNA obviously
do not correspond to the model of a straight rod,
since in this case the number s of monomers per
segment would simply be equal to the degree of poly-
merization. The anisotropy of the molecule, e.g., for
the sample given in Table V, would correspondingly
be M/Mg = 50 times as great as the value found ex-

Table V. Birefringence and the mean dimensions of the
ordered regions of double~helical chain of DNA

Experimental data
M {nlo [nl My dn/dC o176
6.5-108 5-108 ~0.71.1073 660 0,172 0.56
Calculated
[n]f o= s M, A [n],,
-+1-107¢ -190-10728 200 130-108 680 A |40.64-1073
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FIG. 16. Optical model of the
DNA molecule.

perimentally. The hydrodynamic properties of DNA
solutions also agree better with the molecular model
of a random coil than with that of a rigid rod.[1"

The values cited for s and A were obtained under
the assumption that the planes of the bases within the
ordered elements are strictly normal to the axis of
the helix. Local defects in the double-helix regions
only slightly affecting the overall geometry of the
chain can decrease appreciably the optical anisotropy
of these regions, and hence also the experimental
values of s and A. This would seem to explain the
great divergence in the values obtained from different
samples (Table IV).

This fact shows that the birefringence can be used
as a sensitive method of comparative analysis of DNA
samples of differing origins, and in particular, of
studying the degree of order of their helical struc-
tures. This method has actually been applied in sev-
eral instances, e.g., in studying processes of denatu-
ration of DNA,L68-112,17¢]

What has been said is also illustrated by the fact
that the effects of heat and changes in the ionic
strength of the solution have a weaker influence on
the hydrodynamic characteristics (155, 179) (Fig. 14) of
DNA solutions than on the optical anisotropy.uu]

b) RNA. The information on the morphological
properties of RNA is more scanty than for DNA. In
spite of the great similarity in the chemical struc-
tures of these two polynucleotides, the hydrodynamic
properties of their solutions differ greatly. In the
case of RNA, they agree with the properties of ordi-
nary flexible polyelectrolytes, and depend greatly on
the ionic strength, the pH, and the temperature of
the solution.180-183]

At the same time, the presence of a hypochromic
effect [sic!] (an increase in the ultraviolet absorption)
upon heating or upon decreasing the ionic strength of
the solution indicates the existence of imperfect
helical regions in the chain. When the helical struc-
ture is destroyed (by the action of heat or by decrease
in ionic strength), the dimensions of the RNA mole-
cules in solution expand, in distinction from DNA.
Hence we can conclude " that the helical regions

FIG. 17. Model of the RNA
molecule (according to Doty).
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FIG. 18. The orientation angle and the magnitude of the bire-
fringence for RNA solutions. RNA concentration C = 2.8 x 107
g/cm’.

are linked by single molecular chains of RNA having
the conformation of randomly coiled flexible chain
molecules (Fig. 17).

The data on the dynamooptical properties of RNA
are as yet very sparse.[184'185]

Figure 18 shows the results 184 ohtained in a neu-
tral aqueous solution of an RNA sample from
Escherichia coli. The birefringence is positive and
considerably smaller in magnitude than that in DNA
solutions. The An = f(g) graph is curved toward the
horizontal axis, as is typical of flexible chains of
polyelectrolytes in solutions of low ionic strength.um
An increase inthe ionic strength of the solution re-
sults in coiling of the flexible RNA chain, and sharply
reduces the magnitude of the birefringence.

Analogous results were obtained in (8] from RNA
samples of a different origin, and a study was made
of the concentration-dependence of the effect for
various ionic strengths (rather small, not exceeding
0.01) of the solution. The nature of the concentation-
dependence also resembles that of flexible polyelec-
trolytes in the ionized state. At a moderate ionic
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strength (buffered 0.01 M NaCl), the value of the
anisotropy of the molecule y; — ¥y = +1100 X 10%° cm
for a sample from TMV. If we assume the model of
Fig. 17, we can take this large value (for a flexible
chain polymer) as consisting of three components: the
negative anisotropy of the single coiled chains of the
molecule (like polystyrene or poly-p-vinylnaphtha-
lene), the slight (probably positive) anisotropy intro-
duced by the helical regions (whose axes are oriented
practically at random), and the positive form aniso-
tropy. At small salt concentrations (as in the dis-
cussed cases), the form effect is of decisive import
ance (186557 for 3 flexible polyelectrolyte chain, and
results in a positive total birefringence (cf. the data
of Table XVII).

Thus the currently known dynamooptical proper-
ties of RNA solutions do not contradict the model of
Fig. 17. However, they cannot prove it beyond ques-
tion, since they are fundamentally determined by the
electrostatic interactions of the charged chain, which
blur out the effect of the secondary structure. To
study the latter, we must screen the interaction of
the charges by increasing the ionic strength of the
solution. Here, however, owing to the coiling of the
molecules, the birefringence declines sharply, and
the experiment requires increase in the concentra-
tion of the solutions, improvement of their purifica-
tion, and an increase in the sensitivity of the appara-
tus.

3

B. Polymers with flexible chain molecules

Even the first systematic studies of the relations
An=f(g) and x = x(%) in the solutions of a number
of synthetic polymers 187 gshowed that the deforma-
tion of the macromolecules in the flow plays the basic
role in the dynamic birefringence of these systems
(at least at appreciable shear stresses). Hence, in
the quantitative interpretation of the experimental
data for polymers having flexible chain molecules,
we must rely on a theory taking this deformation into
account (Sec. II, B).

In comparing theory with experiment, we must
take into account the influence of concentration effects,
which commonly play a very essential role in the
systems being discussed.

1. Concentration-dependence (in the absence of a
form effect). Among the proposed methodsL87,188,%3
for extrapolating the experimental data to zero con-
centration, the one deserving greatest attention is
that of Peterlin, based on Eqgs. (40)—(44). In this
method, the experimental data on An and y obtained
from solutions of a given polymer at various concen-
trations C are to be plotted in the form of the rela-
tions An/AT=f(A71/C) and x = x( AT/C), where AT
=(n — ng) g is the effective shear stress, and 7 is
the viscosity of the solution of concentration C at a
velocity gradient of g. Here, according to (43) and
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(42), the data corresponding to different concentra-
tions must lie on a single curve.

a) The relation of An to C. In the region of small
shear stresses (g — 0), Eq. (43) implies the con-
stancy of An/AT for all concentrations. This result
is confirmed by voluminous experimental material,
and is illustrated by Figs. 19 and 20, where the rela-
tion (An/AT)g—eq =f(C) is shown for a series of
solutions under the condition ni = ng. The points for
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FIG. 19. Anisotropy of solutions at various concentrations. a)
1 polyethyleneterephthalate in a 1:1 dichloroethane-phenol mix-
ture, M = 3 x 10*; 2 - PMMA (atactic) in toluene, M = (0.004 — 4)
x 10%; 3—PMA (polymethylacrylate) in benzene; 4 — ® — polyvinyl-
pyrrolidone in benzyl alcohol; 5— O — poly-p-tert-butylphenyl-
methacrylate in bromobenzene, M = (0.2 — 20) x 10°; 6 ~ 0 — poly-
styrene (atactic) in bromoform, M = (0.2 — 17) x 10°; 7 — poly-p-
methylstyrene in bromoform, M = (0.3 -0.7) x 10°; 8 —poly-2,5-
dimethylistyrene in bromoform; 9 — @ — isotactic polystyrene in
bromoform; 10 — O — poly-p-chlorostyrene in bromoform, M
= (0.55—9) x 10°; 11 ~ poly-2,5-dichlorostyrene in bromoform.
b) 1 —-polydimethylsiloxane in benzene,M = (1.8 —0.7) x 10°%; 2—
polymethylmethacrylate in toluene; 3 — polybutylmethacrylate
in benzene; 4 — @ — polyphenylmethacrylate in bromobenzene;
5 - polypropylene in carbon tetrachloride; 6 — ® — polyvinyl-
acetate in benzene; 7 —polyvinylacetate in toluene; 8 — poly-
methylphenylsiloxane in benzene; 9 — poly-tett-butylmetha-
crylate (atactic) in benzene; 10 — poly-tert-butylmethacrylate
(isotactic) in benzene; 11— isotactic PMMA in benzene; 12—
syndiotactic PMMA in benzene.
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FIG. 20. Anisotropy of solutions at various concentrations. a)
1~ ethylcellulose in carbon tetrachloride, M = (0.3 — 1) x 10*; 2 -
® — polyisobutylene in benzene; 3 — O — natural rubber, M
= (2.6 — 26) x 10° in benzene; 4 — polynaphthylmethacrylate in
tetrabromoethane; 5 — polyphenylmethacrylamide in o-toluidine;

6 — polychlorophenylmethacrylamide in o-toluidine; 7 — polycarbe-
thoxyphenylmethacrylamide in o-toluidine; 8 — poly-3,4-dichloro-
styrene in tetrabromoethane; b) 1~ nitrocellulose (y = 2.8), lower
scale (in cyclohexanone), M = 1 x 10%; 2 — poly-3-vinylnaphthalene
in tetrabromoethane; 3 — cellulose tribenzoate in bromobenzene.

a given polymer-solvent system lie on a single
straight line parallel to the concentration axis, inde-
pendent not only of the concentration of the solution,
but also of the molecular weight of the dissolved sam-
ple and its degree of polydispersity.

This means that the birefringence in all the studied
systems not only shows a concentration-dependence
following Eq. (43), but also varies with the molecular
weight M of the polymer in accordance with Kuhn’s
theory.

Thus, from measurements of the value of the bire-
fringence of the solution and its viscosity made under
the condition g — 0, using Eq. (43), we can reliably
determine the segment anisotropy «; — o,y of a poly-
mer molecule without recourse to studies of the con-
centration-dependences of An and 7. The experi-
mental data on the concentration-dependence of the
birefringence are considerably less complete in the
region of large shear stresses, where a deviation
from proportionality between An and A7 is clearly

659

manifested. Hence, in order to get the value of
(An/C)c— in the region of large g, we must resort
to the ordinary graphical extrapolation of the experi-
mental data to zero concentration.

b) The orientation angle. The concentration-de-
pendence of the orientation angle has been studied in
a number of references (49187 198) yhoge results can
be summarized as follows.

At low enough concentrations of solutions in low-
viscosity solvents, the experimental points plotted in
coordinates of xy = x(A7/C) practically all cluster
about a single curve (Fig. 21). With increase of con-
centration we observe a deviation from this rule that
increases with increasing velocity gradient and sol-
vent viscosity (Fig. 22). Experiment shows that for
every actual polymer-solvent system, we can choose
an experimentally-attainable region of concentrations

g(n — no)/C for 2
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FIG. 21. The variation of the orientation angle ¢ = ¢ (Ar/C)
for polymethylmethacrylate fractions (M = 2.3 x 10°) in two sol-
vents.[*?] 1— solvent: acetone, g = 0.3 x 107%; x~C = 0.98
x 107, +-C=0.81x10%, 0—- C=0.67 x 10, A - C=0.55
x 107, 0~ C=0.28 x 102 g/cm®; 2 —solvent: bromoform-tetra-
bromoethane mixture, ng = 3 x 107, @ ~C =0.23 x 107, x- C
=0.18x 10, 0 C=0.12 x 107 g/cm’.
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FIG. 22. The variation of the orientation angle ¢ = ¢ (Ar/C)
for polymethylmethacrylate fractions (M = 2.3 x 10°) in tetra-
bromoethane (3¢ = 15.3 x 107) at the temperature 7°C.1***]

1—0O—C=0,03-10-%2 — ] — C=0.08-10-*;"3—X—C

=0.12.10-% 4~ 4 —C=0.16710-% 5 — @ —C==0.368-10-*
g/cm’,
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and velocity gradients for which the concentration-
dependence of the orientation angle will approximate
Eg. (42). Hence the drawing of x = x { A7/C) curves
is a useful method for simplifying the extrapolation
of the experimental values to zero concentration.

2. The relation of X and An to the shear stress.
It was found in even the first studies 78] and later
confirmed [(29:31:42,44,189-138] 4},5¢ the experimental re-
lation Xg—p = x(g) for an infinitely dilute solution
qualitatively resembles the theoretical relations (27),
(36) or (37), but does not agree with them quantita-
tively. If we fit the initial slopes of the theoretical
and experimental curves for x = x(f8), the latter
curves will be flatter with further increase in 8 than
the former. Figure 23 is presented as an illustration.
Apparently, one of the basic reasons for this discrep-
ancy is polydispersity (see Figs. 9 and 13), which is

practically unavoidable in any actual polymer fraction.

In addition, we must also bear in mind the possible
effect of kinetic rigidity of the molecular chain [as is
not taken into account in Egs. (27), (36), or (37)]. In
Kuhn’s dumbbell model the internal viscosity not only
increases the initial slope of the x (8) curve, but
also causes the curve to be flatter at large B3, thus
bringing the theoretical x(B) curve closer to the
experimental 7

By representing the molecule by the model of a
viscoelastic sphere, Cerf 87 showed that one can get
a theoretical x (8) curve similar to the experimental
curve by assuming certain properties of the model.

Thus the fact that the theoretical relation x ()
given by Egs. (36) or (37) only qualitatively agrees
with the experimental relation does not seem para-
doxical, since Zimm’s theory does not take-into ac-
count such an important kinetic factor as the internal
viscosity of the molecule.

An analogous situation occurs in the relation of the
value of the birefringence to the shear stress. This
is illustrated by Fig. 24, which shows, in addition to
the theoretical curve (from Eq. (26) with 6f = 0), the
experimental values of (4&n/C)g— for a high-
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FIG. 23. The relation y = x(83). 1-Experimental curve for a
fraction of poly-p-tert-butylphenylmethacrylate (PptBPMA, M
= 7.4 x 10%) in bromobenzene [2°*2°*]; 2 _ from Eq. (27), with initial
slopes fitted by choice of the coefficient in Eq. (27).

[\ £ 4
7
142 z s
2 /
b /’
Ik . P
S18
. (/
Y -
NN
N2 5 -
g -
/”
4 5 ”ﬁ (for 2)
By (for 3)

FIG. 24. The relation of the birefringence (An/C)c —q to the
shear stress. 1-From Eq. (26); 2 ~experimental data for a
PptBPMA fraction (M= 24 x 10°) in bromobenzenel®* **°] as a
function of 8 = Mlylp.g/RT; 3 — the same, as a function of 8
=Mlylo7,8/RT where [ylg = lim [5).

g-0

molecular-weight fraction of poly-p-tertiary-butyl-
phenylmethacrylate ( PptBPMA) as a function of 8 or
Bo. While the forms of the theoretical and experi-
mental curves are qualitatively similar, however, at
large f values the experimental curves rise consid-
erably less steeply than the theoretical (with equal
initial slopes).

The experimental data approach the theoretical if
we take into account the dependence of [7n] on the
shear stress (curve 2). Peterlin has recently dis-
cussed this fact.[194,195]

The discrepancy between theory and experiment
in the region of large 8 might be due either to the
inadequacy of the hydrodynamic parameters of Kuhn’s
model or to the neglect of the influence of the internal
viscosity. A comparison of the experimental data
with Eq. (35), which is based on a more refined model,
gives better results, but it does not completely elim-
inate these discrepancies.

We should point out that, although each of the ex-
perimental relations An=f(8) and x = x(B) by it-
self diverges from the theoretical relations (26) and
(27), the direct relation between An and y expressed
by Eq. (44) is confirmed well by the experimental
data over a broad range of concentrations and shear
stresses.[58:19%-19%8) Thig fact indicates that the dis-
crepancies between theory and experiment found in
the orientation and the magnitude of the birefringence
are caused by similar mechanisms. Perhaps the es-
sential role in these mechanisms is played by the
kinetic rigidity of the molecular chains, which hinders
their uncoiling in the flow.

3. The relative roles of orientation and deforma-
tion at small shear stresses. While we can reliably
state on the basis of the existing data that the Maxwell
effect in solutions of chain molecules at large shear
stresses is fundamentally due to the deformation of
the macromolecules, the problem of the relative roles
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of deformation and orientation at low flow rates re-
quires special treatment.

A number of studies [%6:1"% have dealt with the re-
lation of the intrinsic value of the orientation angle
[¢/g] to the solvent viscosity n,. The objects of
study were solutions of polystyrene fractions. The
interval of measurement of 7, covered the range
from 0.6 to 4 centipoise.

The found relation [ ¢/g] = f(n,) in all cases has
the form of an inclined straight line intersecting the
[ 9/g] axis at a finite intercept. That is, it corre-
sponds to Eq. (38) or curve 2 in Fig. 8. This result
shows that for the studied polystyrene samples in the
stated range of variation of 7, deformation of the
molecules plays the fundamental role in the bire-
fringence.

A number of other studies have taken up the rela-
tion of [ ¢/g) to M at constant 71, in solvents of low
viscosity (ny < 2 X 107%). Fractions of polystyrene,
(44,189, 191] polyisobutylene,mo] PptBPMA,[” rubber,
(1991 and nitrocellulose 2% have been studied. It was
found that at constant ny, the value of | ¢/g] increases
proportionally to M[n],. This is illustrated by Fig.
25, which gives the relation of [ ¢/g]/M to [7n]gm0
for the first three of the cited polymers. In these
cases the birefringence is an orientation effect, and
the relation between [ ¢/g] and M corresponds to
line 1 in Fig. 8. A complete [¢/g] =1{(ny) curve (of
the type of curve 3 in Fig. 8) including both asympto-
tic branches has been obtained from solutions of
polymethylmethacrylate (M = 2.3 X 10%) ina range
of solvent viscosities 7, from 0.3 x 1072 to 15 x 1072
poise. The results are shown in Fig. 26.1%% They
illustrate the transition from orientational to defor-
mational birefringence as 7, increases. The values
of the coefficient a in Eq. (33) calculated from the
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FIG. 25. [¢/gl/M as a function of [7lgng for solutions of frac-
tions of certain polymers. @ — Polystyrene in benzene['*] (M from
0.9 x 10° to 5.2 x 10°), 5o = 0.65 x 107; 0 - polyiscbutylene in
hexane[**°I(M from 1.24 x 10° to 9.8 x 10°), 5o = 0.32 x 107% +
— poly-p-tert-butylphenylmethacrylate (PptBPMA) in bromo-
benzenel”’] (M from 1.1 x 10° to 24 x 10° to 24 x 10%), 7o
= 1.3 x 107 (on the small scale).
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FIG. 26. The relation [¢/g] = f(M{5]pno/RT) for PMMA fractions
(M = 2.3 x 10°). Range of 7¢ from 0.3 x 107 to 15 x 107 poise.[*2]

experimental data on the slopes of the initial straight
lines in Figs. 25 and 26 are given in Table VI. In
order of magnitude they lie within the limits pre-
dicted by theory for the various models, and are also
close to the a values given in Table IV. The lack of
systematic experimental material at present does
not permit us to say how much the differences in the
found values of a express structural characteristics
of the studied polymer-solvent systems, rather than
involving experimental errors.

However, the data presented undoubtedly show that
the dynamic birefringence of a solution of a chain
polymer in solvents of low viscosity 7, in the range
of small shear stresses A7 is an orientation effect
that goes over into a deformation effect as 1y or A7
increases. This fact is of considerable importance,
since it permits us to apply the theory of orientation
of rigid particles to solutions of chain macromole-
cules under conditions of small ny4 and g. It also
permits us to use the experimental values of {¢/g!
to determine rotational diffusion coefficients of
molecules and thus to obtain information on their
dimensions in solution. Besides, in a number of
cases these data can be used to determine the molec-
ular weight. As for the quantitative agreement of the
theory of internal viscosity of chain molecules with
the experimental data, in particular the relation of
the second term in Eq. (38) to the molecular parame-
ters M and [n}, this problem still requires further
study.

4. The intrinsic value of the birefringence and the
optical anisotropy of macromolecules. Table VII
gives the values of the segment anisotropy ay — a,
for a number of polymers, as calculated from the
experimental values of (An/AT)g__,O or [nl]/[n],
(obtained under the condition ng = ng, see Figs. 19
and 20) using Eq. (43) or (30). The value of a4 — @y
is an important characteristic of the microstructure
of the chain, and does not depend on its length (pro-
vided the latter is great enough). The problem of the
effect of the nature of the solvent on the measured
value of [n]/[n], and hence also on &, — a,, has
been discussed in 29, The temperature-dependence
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Table VI. The value of the coefficient a in Eq. (33) for certain
polymers in solution

Polymer Solvent no-102 M.10-6 a
Polystyrene[*? 4] Toluene 0.60 } o 0.85
Y Methylethylketone 0.40 0.45—1.9 1.0
Polystyrene|!® Benzene 0.65 0.9—5.2 0.33
Polystyrene]'*! Bromoform 2.0 0.57—4.3 0,32
PptBPMA[* Bromobenzene 1.13 1.1—24 0.3
Polyisobutylene 1] n-hexane 0.32 1.2~9.8 0.34
Nitrocellulose[20%] Ethyl acetate 0.45 2.0
Buty! acetate 0,22 0.15—1.0 1.0
Cyclohexanone 2.15 0.85
Rubber{1*] Benzene 0.65 0.30
Polymethylmethacrylate | Acetone 0,30 ] 0.60
[13] Methylethylketone 0.40 2.3 0.80
Butyl acetate 0.72 * 0.60
Bromoform 2.0 0.70

Table VII. The segment (@; — &) and monomer-unit (a; — a)
anisotropies of the macromolecules of certain polymers

r(otg— ay—ay) .
Polymer Formula Solvent -(,?{ozi“‘;’ma (@ g‘L) 3
xX1025 cm’
1. Polyethylene ~CHy—-CHa— Xylene -I-50 -7
(PET)
2. Polypropy- ~CH-CHg— Carbon tetra- | 4-30 +3.5
lene (PP) CHg chloride
(atactic and
isotactic) CHg —+50 +8.2
3. Polyisobu- \
tylene (PIB) -(\‘—CHQ-
CHs
4. Polybuta- —CHy=~CH~=CH-CHg— Benzene 30 +4.3
diene (PB)
5. Natural H ICHg Benzene, -+50
rubber Ll" Ll‘ toluene
(NR) N
CHy CHg
6. Gutta per- CHs Benzene 485
cha (GUT) cHy ©
/ N2 N\ s
o] CHg
|
H
7. Polyethylen- 0 1:1 dichloro- 470
eterephtha- _ Ol OO _ ethane-phenol
Late (TEN) CHy~0~C—CgHy ﬁ 0-CHj
o
) 7
8. Poly-1,4-di- cH \C < > Bromoform +78
isopropenyl- 3_/ T
benzene CH—-C
PAN
CHg CHg
9. Poly-4,4' -di- C{Is/ CHg CHjy Bromoform -+-142
isopropenyl- G >C—CH
) 3
diphenyl- PAVAAVAN
ethane é l ’ I l
H /N
CH,
10. Polydi- CHs Benzene +4 7 +O. 96
methylsil- —AI—O—
oxane ‘H
(PDMS) CHs
11. Polymethyl- CHg Benzene —66 -13.5
phenylsil- -—gi-—o
oxane |
(PMPS) CeHs
12. Polyacrylon- ~CH--CHg~ Dimethyl- -23 -1.8
itrile (P AN) Cl: N formamide
13. Polyvinyl- ~CH—CHs— Benzyl -5 -10
pyrrolidone lll alcohol
(PVP) \
H‘zC( IC=O
HaC!
B TCHg




Table VII (continued)

Polymer Formula Solvent (;11 [;lgzc)ml (f:]ilg;: c;s Polymer Formula Solvent ;"i‘&é‘ Zc)m’ (:1“0—2?%;13
25. Poly-n- T . _ 15
14. Polystyrene —CH-CHp— Bromoform —145 —18 butylacry- (‘:H CHy gz;‘uzee:: ‘1(15 5 _—(1)'37 !
(atactic) sHs late (PnBA) | 0:=C—0—(CIT)3CH3 : :
(PS) —CH~CHp— Bromof 2% 23 26. Polyme- : CHa Benzene 42 +4-0.3
15. Polystyrene romotorm - thylmetha- i
(isot actic) CeHs crylate ~ﬁl—CHs—
16, Sotnron ~CH—CH,— Bromoform —147 | —20 47, PAMA) 0=C—0—CHj
methyl- A : thylymetha- CH;3 Benzene +25 +3.5
styrene . crylate —~C—CHz—~
(atactic) P (isotactic) | .
(PpMS) N/ (PMMAT) O0=0—-0—CHsg
CHg 28. Poly-n- CHg Benzene —14 -21
17. Poly-p- ~CH-CHp— Bromoform — 140 -19 butylmetha- ,(‘: —CHae
methyl- | crylate | =
styrene /\, (atactic) 0=C—~0(CH2)3CHs
(isotactic) ( ‘ o (P;IBMA) CHj Benzene —2 —0.3
(PpMSI) L 29. Poly-n- )
CH, butylmetha- —C—CHa—
lat .
18, Poly-p- ~CH-~CHy— Bromoform —230 -35 f::of azt ic) 0=C—~0(CH2)3CH3
chloro- /| _ (PnBMAD )
styrene N 30. Poly-tert- CH3 Benzene +2.1 40.3
(PpCS) \ ‘} butylmetha- —é—CHz— CHg
NS crylate | s/
Ccl (PtBMA) 0=C—0-—C<CH3
19. Poly-2,5-di- —CH-CHz— Bromoform —180 —25 CHj
methylsty- /|\ 31. Poly-tert- CH3 Benzene +19.8 +3.0
rene (P-2,5- CH | butylmetha- C—-ICH CH
DMS) crylate - = Va 2
\. /CHs (isotactic) 0=C-0—-C—CHs
N
20. Poly-2,5-di- —?H—CHz— Bromoform - 265 —30 (PtBMAD CHgs
chlorosty=~ A 32, Polyphenyl- CH3 Bromobenzene | —10.5 —-1.5
rene (P-2,5- Cl methacry- é cH
DCS) late (PPMA) —(CHe
\scl o-c-0-{_>
21, Polys3,4-di- —l(“HfCHq_— Tetrabromo- —300 —25 33. Poly-p-tert- CHj Bromobenzene | —90 —-7.5
chlorosty- AN ethane butylphenyl- | CH3
rene (P-3,4- [ methacrylate —F‘_CH2___ ,
DCS) | (PptBPMA) osto-¢  S-cTCHs
N/ — “eu
c 1 o Tetrabromo- 60 -8.5
22. Poly-f- —CH-CHa— Tetrabromo- | _ 430 ~30 34. Poly-4- CHy ethane A
i ethane napthylmetha- ) n
vinylnaph-~ | —C—CHa~
PaN crylate e
thalene Pa | / AN
(PAVN) ; 1 ( NMA) O=C—O—\_W_<——>
\l/\\ 35, Polyphenyl- CHg o-Toluidine —103 —13
i methacryla-
N mide —C~CHe—
23. Polyvinyl- —CH~CHy— Benzene +5.4 +0.8 (PPMAM) O=\ N
acetate O—C—CHs Toluene +13.5 +2.0 H-N-( >
(PVA) | 36. Polychloro- CHs o-Toluidine —160 —20
phenylmetha- } {
24. Poly- ~CH—-CHa— Benzene +17 —+2.5 crylamide "?‘CH?‘"
methyl- 0=C—0—CHg Toluene +26 +3.6 (PCPMAM) o=C
acrylate TN
(PMA) H—~N-{ _ Ja :
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Table VII (continued)

(o —otg) (@)~ ))
Polymer Formula Solvent 025 e N 1“025 L
37. Polycarbe- CH3 o-Toluidine — 230 ~23
thoxyphenyl~ —Q—CHo—
methacryla- -
mide 0=[
(PCEPMAM) H-N-(T " $-C-0-CaHs
38. Ethylcellu- 0CeHs  OCeHp Carbon tetra- -i-430 +21
lose (EC) >_—< chloride
0= )~
Z
CH.0CoHy
39. Nitrocellu- ONO2  ONOg Cyclohexa- — 300 -18
lose (NC) >—~/ none
-0-( O>_
S—
CH30NOg
40. Cellulose 0OCOCgHs OCOCgHs Bromobenzene — N4 —90
tribenzoate
(CTB) o/ X _
\.—0/
CH20COCgHp

was studied in solutions of polyisobutylene (M = 5
X 106) in benzene (an ideal solvent at 24°C) and poly-
3, 4-dichlorostyrene (M = 2 X 105) in tetrabromo-
ethane (an ideal solvent at 41°C). In both cases the
increment dn/dC in the system did not exceed 0.003.
Thus an influence of the form effect was ruled out.

The results obtained are given in Table VIII.

A more than twofold increase in [n] with in-
creasing temperature was accompanied in both cases
by a proportional increase in [n]. Here [n]/[n] and
the segment anisotropy oy — @, remained constant
within the experimental limits of error.

This result shows that to a first degree of ap-
proximation the value of a; — @, does not depend on
the thermodynamic interaction of the molecular chain
with the solvent. It implies that the process of
swelling of the molecular coil in a good solvent must
be represented, to a first degree of approximation,
by a model in which the nature of the segment distri-
bution changes from Gaussian to non-Gaussian,
rather than by a change in the length of the segments.

Here the size of the segment and its optical aniso-
tropy remain practically constant, being determined
by short-range action, i.e., the skeletal rigidity of
the molecular chain. However, we must note that
cases are known of specific interaction of a solvent
with a molecular chain. Here, while the conforma-
tional properties (equilibrium flexibility) are not
altered appreciably, the interactions result in quite
considerable changes in the anisotropy of the mono-
mer unit, and hence, in the segment anisotropy.

5. The macroform effect. a) Relation to the re-
fractive index ng of the solvent. A parabolic relation
of the birefringence to the refractive index of the
solvent has been established experimentally for a
number of polymers.[81’79’187’29’202_204’219’220 As il-
lustrative examples, Fig. 27 gives the curves for
[n] =f(ng) for polymethylmethacrylate (whose in-
trinsic anisotropy is positive) and PptBPMA (whose
intrinsic anisotropy is negative). In agreement with
Egs. (29), (31), and (32), the minimum of the para-
bola on both curves corresponds to the condition ny

Table VIII. Characteristic hydrodynamic and optical

constants of polymers at various temperatures Lo1]
t°, G no-102 | [n]-10~2 | [n]-108 %}— -1010 ng (“%3?3
Poly-3,4-dichlorostyrene in tetrabromoethane
41 6.35 0.15 ~3.9 -24.9 1.6265 — 304
45 5.79 0.25 —6.6 —-25.2 1,6241 —312
50 5.20 0.36 -9.6 —26.5 1.6221 —-321
Polyisobutylene in benzene

24 0.625 2.4 10.3 4.3 1.499 51
30 0.562 3.0 14.0 4.0 1.494 52
40 0.492 4.9 20.6 4.2 1.488 54
50 0.437 5.6 241 4.3 1.480 56
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FIG. 27. The relation [n] = f(ng): 1 — for PptBPMALI(M

= 0.57 x 10%, ny = 1.55); 2— for PMMA[®2] (M = 4.2 x 10°, nc = 1.50).

= ng. The scatter of the experimental points some-
times observed involves not only experimental er-
rors, but may also be due to the differing nature of
the interaction of the polymer with different solvents
(cf. Sec. III, B, 9, g). For this reason, one should not
use mixtures of two solvents of differing ng.!"™ The
quantity [n]f (see Eq. (32)) is determined from the
experimental values of [n] and [n]y by using the
expression (202

inl il ) e M2 N
[nlf . ["Il I” 3 [n]k Ng <I1i+2 ) 3

where the quantities with the subscript k refer to a
solvent in which the form effect is absent.

Table IX gives the results for polymethylmetha-
crylate (PMMA) fractions. The axial ratios p of the
molecular coils and the Flory coefficients & were
calculated from the experimental data by Egs. (39)
and (32), respectively. The found asymmetry of shape
of the macromolecules agrees well with the calculated
value (p = 2) predicted by the statistical theory of
chain molecules,m while the values of the coefficient
& correspond to the values ordinarily found by the
light-scattering method.

b) Relation to the molecular weight. A character-
istic peculiarity of the macroform effect is its de-

(46)
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pendence on the molecular weight, which differs from
the corresponding dependence of the intrinsic aniso-
tropy effect. If we plot the total quantity {n]/[n] de-
termined experimentally for a series of fractions of
the same polymer in a given solvent as a function of
M/[7n], then according to Eqgs. (29)—(32) and (39), the
points must lie on a straight line. From the slope of
this line we can determine & or p = H/Q, while from
the intercept on the vertical axis we can determine
the segment anisotropy (including the microform
anisotropy as well). This is illustrated by Fig. 28,
which shows the given relation for certain polymers.
The essential point is that the fact that the line
(n]/[n]=£(M/[n]) is inclined directly indicates
that the macroform effect plays an appreciable role
in the observed birefringence, since not only the in~
trinsic anisotropy but also the microform effect give
a relation of [n]/[n] to M (or to M/[7n]) having the
form of a straight line parallel to the horizontal axis)
[see Eq. (31)]. This fact can be used in practice to
distinguish the macroform effect in the total bire-
fringence. The horizontal dotted lines in Fig. 28
represent the corresponding relation as obtained for
the same polymers in solvents in which the form ef-
fect is absent. The inclined lines and the correspond-
ing horizontal lines intersect the vertical axis at
practically the same point. This means that the form
effect observed in solutions of flexible chain polymers
of molecular weight above 10° can be considered
practically to be the macroform effect [n]g, without
consideration of the considerably smaller microform
effect [n]fg.

Table X gives the values of the asymmetry factors
p and the Flory coefficients & calculated for certain
polymers from the slopes of the straight lines of
Fig. 28.

The scatter in the found values of & is quite con-
siderable. However, a much more important point is
that the absolute value of these quantities is near
2 x 1023, the most probable value of &. This fact
shows that the hydrodynamic and optical properties
of the molecular model on which Egs. (32) and (39)

Table IX. The asymmetry of form p of the molecular coil and the
Flory coefficient & as calculated from the experimental values of
the form birefringence [n]f for polymethylmethacrylate fractions
(M = 4.2 x 10%) in various solvents.[2 (The function f(p)
= befy (Ly — L¢) is that entering into Eq. (39)).

( | \ { i

Solvent s ; Mo-102 J[W],cm’/g' [n]-107 i[n],.mvk f(p) p ;o 10 »:;?

| § ) ' ! ) 5

! ‘ r ] e z

Acetone 1350 | 035 | 370 | 13.0 [425 1 27 (2.4 2.6 |

Ethyl acetate 1372|054 | 445 | LS (L0 2T |24 26 |

Chloroform 1450 | 0.59 | 845 3.3¢ | 2.3 | 31 |25] 3.0 |

| Toluene 1.498 | 059 387 0.48 | 0 N R e
Chlorobenzene | 1.523 | 0.80 595 | 087, 0.1 | 13 |19 1.3
Bromobenzene 1.560 117 565 | 2.55 ! 1.8t 2t 2.2 2.0

Bromoform 1598 | 2008 | 892 | .00 42 | 18 200 13

i ! | i | |
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FIG. 28. The relation of ([n]/[x]) - [45kTns/4n(n% + 2)°] to
M/[n). 1—e — PIB in hexane[“"]; 2 — X — PDMS in toluene[*s};
3— 0 — PBMA in ethyl acetatel®®’]; polystyrenel*®); 4 V _ in
dioxan, ny — ng = 0.18; 5~ ¥ — in butanone, nx — ng = 0.22; 6 —
0O — in bromoform, ny — ng X 0.

are based adequately reflect the behavior of chain
polymer molecules in solution.

c) Concentration-dependence. The concentration-
dependence of the form birefringence is especially
specific.

If, as suggested by Peterlin, we take into account
the increase in the hydrodynamic interaction of the
macromolecules with increasing concentration by re-
placing 8 by f* (Eq. (41)), then in the region § — 0
we obtain instead of Eq. (26):

An An %4 * * 9 s
(F)g-»o = [ g (n—1p) ]g—»o T BnAT (ei + O+ 6 >’
(47)
where the asterisk indicates that the quantity thus
denoted has been obtained for a solution of finite con-
centration. 6] = 6;, independently of the concentra-
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tion (see Sec. III, B, 1). At concentrations C < 10%,
we can practically neglect the concentration-depend-
ence of O?S as well, and assume 9?8 ~ ffg. On the
contrary, as C increases, 9; rapidly decreases from
the value 9?= 6¢ (for C — 0) to zero (at large
enough C). This effect is quite general [203:209-214,190]
for all polymer-solvent systems. For polymers hav-
ing a negative intrinsic anisotropy, it can bring about
a sign change of the birefringence as C increases.
[210,212] The ohserved decrease in 9; can be explained
(216] by the filling of the volume of the solution with
molecular coils, their mutual penetration, and the '
concomitant decrease in the optical inhomogeneity of
the system as C increases. The observed effect is
determined by the quantity [n] C, which character-
izes the fraction of the volume occupied by the coils
in the solution, and can be expressed by the equation

07 =ef(1—k1[7ﬂc+kz meEcr+-..0),

where k; and k, are constant coefficients.

The correctness of Eq. (48) has been shown ex-
perimentally for a number of polymers. This is il-
lustrated by Fig. 29, which shows the relation of
Gf/ef to [n] C for a series of poly-p-carbethoxy-
phenylmethacrylamide (PCEPMAM) fractions in
ethyl acetate 2% and of polyisobutylene in hexane.[1%0
The points, which correspond to samples of molecular
weights covering the range from 0.2 X 108 to 10 x 108,
cluster about a single curve. For many of the studied
systems, the observed values of k; lie between the
limits from 0.3 to 0.4.

The photoelastic method as applied to a polymer
swollen in solvents of differing refractive indices has
proved useful in determining the form anisotropy in
the high-concentration range.[m] Here the form
anisotropy is clearly manifested even in systems in
which the polymer concentration is as great as 50%
or greater. One can show [25] that under these condi-
tions it is practically reduced to the microform ef-
fect.

Figure 30 shows the total effective anisotropy of

(48)

Table X. The asymmetry of form of the molecular coil p = H/Q
and the Flory coefficient &, calculated from the experimental
value of the macroform effect

Polymer M- 10-6 Solvent , 4 @.10-23
Polydimethylsiloxane[ %] 0.15—3.0 Toluene ‘ 1.6 0.9
Polyiscbutylene[ | 0.6—9.8 Hexane | 2.0 1.6
Polystyrene[®1,211] 0.45—1.92 | Toluene, butanone 2.1 1.8

Butanone 1.9 1.5
Polymethylmethacrylate See Table IX
[20241 208] 2.2 2.1
Poly-n-butylmethacrylate]2°7] 0.96—-2.2 Ethy! acetate 2.0 1.6
Poly-p-tert-butylphenyl- Carbon
methacryl ateﬁ”'] 0.2—9.3 tetrachloride 2.3 2.5
Polyphenylmethacrylamide[209] | 0.16—1.6 Ethyl acetate 2.1 1.8
Poly-p~carbethoxyphenyl-
{ methacrylamide 09} 0.22—1.14 | Ethyl acetate 2.2 2.0
|
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FIG. 29. The concentration-dependence of the relative form

anisotropy §3/0s for fractions of PIB in hexanel*°] and PCEPMAM
in ethyl acetate.*®

PIB: + —-M = 9.8 - 10° [] = 680 cm®/g; ® — M = 6.9 - 10°, [7] = 590
cm’/g; A — M =53 10% [y] = 490 cm’/g; A_M=4.3.10%[g]
~380 cm®/g; ¥ — M= 1.2 - 10°, [] = 180 cm®/g. PCEPMAM []
—M=1.136 - 10, [5] = 1.09 - 10? cm’/g; X — M = 1.045 - 10°,

[17] =1.02 - 10 em®/g; 0 -~ M = 0.760 . 10°, [7]] = 0.79 . 10’°cm®/¢g;
A —M=0.539 - 10°, [5] = 0.60 - 10° cm®/g; V — M = 0.226 - 10°,
) = 0.30 - 10° cm'/g.
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FIG. 30. The concentration-dependence of the form anisotropy
of polystyrene in dioxan,
3nkT (M) 5/ 3 \?

Ay —v2)*= 7o (At )", 102,

“3\#Et2/

o flow birefringence,[m] M = 0.7 x 10°, o —photoelastic effect
in the swollen polymer.['5]

the polystyrene macromolecule (M = 0.7 X 105)
An
_AT>E—>0

Table XI. The intrinsic viscosity [7], form birefrin-

gence [n]f, asymmetry p, and form anisotropy 6f of

the macromolecules of polybutylmethacrylate in iso-
propyl alcohol at various temperatures t (262

__ 3nkT
T 4m

(Y1—y2)*

[n]- 1072,
Fraction £, °C "cm!/g {nl;-108 p 81025 cm’
1. M =6.4-108 45 2,72 ’ 25 2.06 152
30 1.68 [ 50 2.00 223
: 25 1.17 45 1.95 288
‘ 21.5 0.74 44 1.90 405
(N
2. M =2.2.408 45 1.51 27 2.30 134 :
30 0.98 24 2.20 184 !
25 0.76 22 2.15 247
21.5 0.54 20 2.10 278
|
3. M =2,0-108 52 0.29 1.82 2.10 47
25 i 0.174 1.69 2.00 73
! 21 ‘ 0.151 1.77 | 2.06 88
i

in dioxan at different concentrations of the solvent,
from data on flow birefringence and the photoelastic-
ity of the gel. Even at concentrations C >10%, the
observed form effect is practically due to the micro-
form of the chain alone.

d) Relation to the nature of the solvent. While the
choice of a thermodynamically better solvent brings
about a parallel increase in the intrinsic birefring-
ence [n)i and the viscosity [n1] of the solution (see
Table VIII), we find a completely different result with
regard to the form effect.

This is illustrated by Table XI, which gives the
results of measurements of the intrinsic viscosity
and the birefringence of polybutylmethacrylate frac~
tions in isopropyl alcohol L262) (an ideal solvent at
t = 21.5°C). The volume effects, while markedly al-
tering the dimensions of the molecular coils in the
solution (i.e., [7]), have little effect on the value of
the form birefringence [n]y.

This result corresponds to Eq. (39), according to
which [n]f can only change upon going to better sol-
vents to the extent that the form asymmetry function
bgfy( Ly — L) changes. The values of p calculated
from (39) using the experimental [n]¢ values show
that the volume effects, while greatly increasing the
dimensions of the macromolecules, change their
asymmetry of shape only very slightly. A theoretical
calculation has confirmed this conclusion.21€

Thus, the swelling of the molecular coil in solution
owing to long-range forces occurs practically iso~
tropically, both in the sense of the invariance of the
segment anisotropy of the macromolecule and with
regard to its geometric shape. Here the swelling of
the macromolecule is accompanied by a decrease in
its macroform anisotropy 6y (see Eq. (47) and Table
XD), as is predicted by Eq. (22).

6. The microform effect and rigidity of the chain.
Figure 30 graphically illustrates that in dilute solu-
tions (C — 0), even for a polymer of relatively low
molecular weight (M =7 x 10%), the ratio 655/6¢
does not exceed 20%. For samples of higher molecu-
lar weight it is even smaller, and for a flexible chain,
when M is of the order of several hundred thousand,
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the role of the microform in the total effect can be
practically neglected.

The situation changes radically for a rigid chain.
A comparison of Eq. (22) with (24), or (31) with (32),
shows that an increase in the dimensions of the
macromolecule (i.e., an increase in v, s, and [7],)
with M remaining constant entails an increase in the
relative values of 6¢g and [nlgg as compared with
6¢ and [n]¢. Hence, for a chain having a large equili-
brium rigidity, the form birefringence is practically
determined by the microform effect, while we can
neglect the macroform effect.

An example of such polymers are the cellulose
derivatives.

In Fig. 31, curves 1—6 give the value of
(An/AT)g—( for nitrocellulose fractions in butyl
acetate (ng — ng = 0.10) as a function of {n] C. The
dotted lines represent the same relation for the same
samples in a solvent in which the form effect is ab-
sent (cyclohexanone).[2%0:208] [, distinction from the
graphs shown in Fig. 29 and 30, the form anisotropy
for nitrocellulose is practically independent of the
concentration, and hence must be ascribed to the
microform effect.

We can convince ourselves of this from the results
of applying Egs. (30), (31), (32), and (39) to the ob-
tained experimental data. If we assume that the ex-
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tions in butyl acetate.[

31. The relation of (An/Ar) to []C for nitrocellulose frac-

200,208

1 — M=1.03.10%;
¢ — M=52.10%

2 —M=8.14.10%;

3 —
5§ — M=4.25-106; 6 —
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perimentally-determined form anisotropy is due to
the macroform effect [n]g, the values of p calculated
from (39) prove to be tens of times greater, and the
values of & (calculated from (32)) hundreds of times
greater than the value for Gaussian coils. This com-
pletely invalidates the assumptions made.

On the contrary, the assumption that the entire
observed form effect is practically the microform
effect [n]gg gives (from Eq. (31)) quite reasonable
values of s (see Table XII) agreeing with the results
from other methods.[m'zm

Here the value of [n]f (calculated from (32) with
a value & = 2 x 10%%) proves to be two orders of
magnitude smaller than the value of [n]gg.

Analogous results have been obtained for ethyl-
cellulose 20 and cellulose tribenzoate, 2 as well
as for DNA.U4 18] The gystematic increase of the
effective segment length with increasing M indicates
a deviation of the molecular configuration from the
conformation of an ideal Gaussian chain.

Thus the microform anisotropy depends on the
equilibrium rigidity of the chain, and can be used to
characterize it.

7. The form effect at high shear stresses. The
results of the theory of these phenomena have been
discussed in Sec. II, B, 3, a, 1, and are represented
by Egs. (26) and (28). Form birefringence can be ob-
served in its pure form in a polymer whose intrinsic
anisotropy is insignificantly small, such as, e.g.,
polymethylmethacrylate (o, — ap = 2 X 1072 em?).
In this case, with an appropriate solvent, the curve
An = £(B) (Fig. 32) has a form 21920 gualitatively
agreeing with the theoretical relation (26) or curve 1
of Fig. 7, thus sharply differing from the experi-
mental relation An = f(B) observed in the absence of
a form effect (e.g., Fig. 24).

In a polymer-solvent system showing a negative
intrinsic anisotropy and an appreciable form effect,
the relation An = f(8) can involve a sign change in
An.226:193] Thig ig illustrated by Fig. 33, which shows
the corresponding curves for a series of PptBPMA
fractions in carbon tetrachloride.[1%%:208] The overall
course of the experimental curves corresponds to the
theoretical relation (26) or curve 5 of Fig. 7. How-
ever, theory and experiment agree quantitatively
only in the region of small 3. The curves bend

Table XII. The form anisotropy and the thermodynamic rigidity
parameter (s) for nitrocellulose fractions in butyl acetate

soto-s | o) prros | D0 00ge 1w arto-6 | St tos | (20 0 en
1,03 | 37 —1460 | 6.1 | 1170 | 32 0.525 121.3 | -—500 | 3.1 | 430 20
0.814 | 28,91 —750 | 4.8 680 | 24 0.425 [13.0 | —270 | 2.5 | 280 22
0.778 | 27.6 | —650 | 4.6 580 1 21 0.153 + 5.751 —113 | 0.9 | 100 18
1
i 1 I

°
*Number of monomer units (of length 10.3 A) per segment.
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FIG. 32. The relation of the form birefringence to the shear
stress. 1 —experimental curve for a PMMA sample (M = 2.5 x 10%)
in tetrabromoethane;[**?] 2 _the theoretical relation according to
Eq. (26) (comesponding to curve 1in Fig. 7).
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FIG. 33. The relation of the birefringence to 8 for PptBPMA
fractions in carbon tetrachloride.{***"***]

1— M = 13,2-106; 2 — M = 7.4-106; 3 — M
=6.0-10%;, ¢ — M=2.2-106;, 5§ —M=1.67-106,

further and cross the horizontal axis at considerably
higher shear stresses (larger ) than the theory
predicts.

This fact might involve either the imperfection of
the hydrodynamic model of the molecule {(an elastic
dumbbell) or the manifestation of internal viscosity,
which is not taken into account in Eq. (26). Hence we
can suppose that further experimental studies of the
effect of sign inversion of An at large $ will be use-
ful in extending our knowledge on the kinetic rigidity
and dynamics of macromolecules in solution.

The sign inversion of An is accompanied by an
‘‘anomalous’’ dependence of the extinction angle on
the velocity gradient. [222,183,99] g phenomenon can
be explained by the effect of the polydispersity of the
shapes of the molecules and described by Eq. (28).
We give as an illustration Fig. 34, where the circles
represent the experimental data, and the curves are
calculated by Eq. (28).

These results show that in solutions in which a
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FIG. 34. The relation of the orientation angle y to g (or 3) for
solutions of a PptBPMA fraction (M = 7.4 x 10°) in carbon tetra-
chloride. Circles — experimental data;[**] curves calculated by
Eq. (28), assuming that § = 2.2°.

negative anisotropy of the molecule compensates a
positive form effect, a very small ‘‘natural’’ poly-
dispersity in the chain conformations can lead to
marked anomalies in the experimental data on the
orientation angles.

This fact must be taken 1nto account in using ex-
perimental y values to characterize the hydrody-
namic properties of macromolecules.

8. Optical anisotropy and equilibrium rigidity of
the molecular chain. As the data of Table VII illus-
trate, the segment anisotropy for various polymers
can vary within very broad limits and can have either
sign. This means that the anisotropy of a molecular
chain is sensitive to its structure. The fundamental
parameters determining the polarizability difference
of a segment are the anisotropy of the monomer unit
and the equilibrium rigidity of the chain.

The latter is characterized by the segment length
A (or the number s of monomer units per segment),
and is experimentally determined from the statistical
dimensions of the chain in an ideal solvent (i.e., the
root-mean-square distance between its ends (h} e,
according to the formula

hZ
=sh=—+ (49)
where L is the length of the fully—extended chain, and
A is the length of the monomer unit in the direction of
L.

For the simplest case of a chain consisting of
valence bonds of the same length linked with one
another at a valence angle v:

R3/RE
s=—0N_ (50)
v cos? >
where h} is the mean-square statistical length for
completely free rotation about the bonds, and v is
the number of bonds per monomer unit.
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FIG. 35. The monomer unit of poly-n-butylmethacrylate.

The polarizability of the monomer unit along the
principal axes 1, 2, and 3 of a fully-extended trans-
chain can be characterized by the three components
along these axes: ay, ay, az (Fig. 35). While these
quantities may turn out not to be the principal polari-
zabilities of the monomer (the polarizability tensor
of the monomer may not be diagonal with respect to
the axes 1, 2, 3), however, it is precisely these com-
ponents that are of fundamental significance in the
anisotropy of the entire chain. A measure of the
anisotropy of the monomer unit is the difference in
its polarizability in the directions parallel (a) = a,)
and perpendicular (a) = (ay + a3)/2) to the chain:
aj — a). From the definition of a segment,

, A(ay—a))
a—ap=s(a) —ay)=—7"h—L, (51)
or, taking (49) into account,
ay—ay = 2RO (52)
3
In a number of theoretical studies,[?2-23 calcula-

tions have been made of the anisotropy and statistical
dimensions of chain molecules using a model more
adequate than the segmented chain of Kuhn. These
calculations have shown that for all the models, the
relations between the dimensions of the chain and its
anisotropy practically maintain the form of the simple
relation (52) based on Kuhn’s statistics.

The values of a) — a; calculated by Eq. (52) from
the experimental data (ay — a3, hze, and L) are
given in Table VII. They are a characteristic of the

TSVETKOV

structure of the monomer unit of the chain, and in
distinction from «; — oy, they do not depend on its
rigidity. Thus, for example, the great segment
anisotropy of ethylcellulose in comparison with other
polymers results from its rigidity, while the value of
a) —ay = 21 x 1072 obtained for it is close to the
anisotropy of the monomer units of a number of other
chain molecules. In its positive sign and order of
magnitude, it agrees with the value that we might ex-
pect on the basis of a theoretical estimate (the aniso-
tropy of a pair of rigidly linked cyclohexane rings is
about 50 x 1072 cm3).

What has been said above is true also of nitrocel-
lulose, for which some results of studies are given in
Table XIII.

In distinction from all other linear polymers with
flexible chains, the segment anisotropy of nitrocellu-
lose increases somewhat with the molecular weight,
as is illustrated by the deviation of its properties
from those of Gaussian chains. At the same time,
this increase is accompanied by a proportional in-
crease in the effective segment length calculated
from viscosimetry and light-scattering data. Owing
to such a correlation in the hydrodynamic and optical
properties of the molecule, the anisotropy of the
monomer unit a; — a; calculated from (52) remains
constant as the molecular weight varies (within the
limits of experimental error).

9. Optical anisotropy and structure of the chain.
Experiment shows that the anisotropy of the mono-
mer unit of the chain is a sensitive indicator of its
structure, and thus can often be used to analyze this
structure.

In this aspect, we can make some general remarks
from an examination of the data of Table VII.

The molecules of carbon-chain polymers not con-
taining large side-chain groups usually show a posi-
tive anisotropy, e.g., Nos. 1—6.

The introduction into the main chain of cyclic
structures, especially aromatic ones, increases the
positive anisotropy of the chain, since the benzene
ring has minimum polarizability in a direction nor-
mal to itself (Nos. 7—9). This property can prove
useful in solving the problem of how benzene rings
are arranged in chains being studied. (234,2%]

The polysiloxane chain (No. 10) is very weakly

Table XIII. The geometric and optical parameters of nitrocellulose
molecules (with constant degree of substitution = 2.75; 13.4% nitro-

gen) from viscosimetric and dynamooptical data

[208]

[[

hT — (o —ay ) Tz — (@—a))

atos | Mol A A VORI | atos | e | s | CER [Tkaes
10.32 77.1 | 426 —824 —19.6 4,25 | 23.84{ 320 —556 —17,9
8.14 61.4 | 430 —647 —15.5 2.85 | 14.3 ] 290 —541 —19.3
7,78 55.2 | 405 —583 —14.9 2.15 9.8 | 260 —491 —21.6
5.50 33.6 | 350 —620 —18.0 1,53 6,2 | 230 —490 —19.4
5.25 33.9 | 368 —573 —186,0 1.47 5.9 230 —498 —22.3
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anisotropic, which is explained by the closeness of
the values of the anisotropies of the SiO and SiC
bonds. 205!

a) The effect of the side-chain groups. As the
length of the side-chain radicals increases, the posi-
tive anisotropy of the chain decreases, changes sign,
and then increases in negative value (Nos. 1, 2, 12,
13 or 23~25, or 26, 28). The introduction into the
side-chain radicals of anisotropically polarized bonds
and atomic groups, e.g., rings containing conjugated
bonds, has an especially strong effect on the negative
anisotropy (No. 10, 11 or 14-—-22, or 26, 32—34, or
35—37, or 38—40).

Figure 36 illustrates'2® the effect of the number
of side-chain nitrate groups per glucose ring on the
mean anisotropy of the monomer unit of nitrocellu-
lose. As the nitrogen content (degree of nitration) in-
creases, the negative anisotropy of the monomer
aj — aj increases in line with the greater polariza-
bility of the

0
-0 N<<O
group in the direction of its symmetry axis. These
results permit us to estimate the hindrance of rota-
tion of the nitrate groups about the valence bonds
linking them to the main chain. They can also be used
to determine the degree of nitration of cellulose.

b) Flexibility of the side-chain groups. The nega-
tive anisotropy of the chain introduced by the side-
chain groups depends on the flexihility of the latter.
Thus, for example, the negative anisotropy created
by an aromatic ring introduced into the side chain

e-a,
-0k
s FIG. 36. The relation of the
anisotropy of the monomer unit
of nitrocellulose to the degree
of nitration (a, — a;) - 10*
-0+ cm’®,
o

% nitrogen
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proves to diminish, the farther this ring is removed
from the main chain, since then the flexibility of the
side-chain imparts to it a greater freedom to rotate.
Hence the negative anisotropy of polyphenylmetha-
crylate (No. 32) is much less than that of polystyrene
(No. 14), although in both cases the polarizability
difference of the molecule is mainly due to the aniso-
tropy of the benzene ring. For the same reason,
poly-B8-naphthylmethacrylate (No. 34) is considerably
less anisotropic than poly-g-vinylnaphthalene (No.
22), although the polarizability of the naphthalene
ring plays the decisive role in the anisotropy of both
molecules. Obviously, this fact can be used to study
the flexibility of the side chain.

If we consider the side group as a rigid chain (an
aromatic ring or a rigid trans-chain) having a cer-
tain freedom of rotation about the valence bond join-
ing it to the main chain (the b, axis in Fig. 35), we
can easily derive the expression [208:206]

1 : 9
ay—a; =(a “aL)O“r’bz—g [by 4 bs + 3(bs — b,) sin® @], (53)

relating the anisotropy aj — aj of the monomer unit
to the angle ¢ between the plane of the group and the
main-chain direction. Here (a) — a| ), is the por-
tion of the anisotropy of the monomer due to all its
bonds except for the side group; by, by, and b; are
the principal polarizabilities of the side group along
the axes of the rotating coordinate system. {aj — a|)g,
by, by, and by can usually be calculated from the
known polarizabilities of the bonds constituting the
monomer unit. Then the experimental value of

aj) — a) permits us to determine the angle ¢. The
deviation of the angle ¢ from the value #/2 charac-
terizes the inclination of the plane of the side group
from the position corresponding to a rigid trans-
configuration.

As an example of the application of Eq. (53),
Table XIV gives data for some polymers having aro-
matic side radicals. In the calculation, the values of
aj — a, are taken from Table VII, and the bond
polarizabilities are taken from Denbigh.?3") The ob-
tained results show that in all the cases examined,
the rotation of the phenyl groups is rather weakly
hindered (free rotation corresponds to ¢ = 45°), and
in a number of cases (except Nos. 16, 17, 11, 15, and
20), it varies little upon introducing substituents into

Table XIV. The angle between the plane of the side group and the
molecular chain direction

No. i No. in |

Table \IIIH Polymer @° Pable VII Polymer ] Q°
14 PS (atactic) 52 20 P-2,5-DCS 58
15 PS5 (isotactic) 59 21 P-3,4-DCS 52
16 PpMS (atactic) 45.5 19 P-2,5-DMS 51
17 PpMS (isotactic) 44,7 22 PAVN 50
11 PMPS 45

18 | PpCS 53

|
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the ring. The great hindrance of the benzene ring in
No. 20 is apparently due to the closeness of one of
the chlorine-atom substituents to the main chain. In
No. 15, the reason for it is the stereospecificity of
the chain. The weakened hindrance in No. 11 can be
explained by the great distances between the benzene
rings in the phenylmethylsiloxane chain.

¢) The effect of isomerism. The optical aniso-
tropy of the chain is also sensitive to cis-trans iso-
merism. Thus, for example, the trans configuration
of polyisoprene (No. 6) corresponds to a greater
anisotropy than the cis form, No. 5.

When we go from a side group of linear structure
(No. 28) to the branched tertiary isomer (No. 30), we
find a decrease in the positive anisotropy of the side
chain (in its own coordinate axes), resulting in a de-
crease in the negative anisotropy of the molecule (in
the coordinate axes of the main chain) and a sign
change in aj; — a) from negative to positive.

d) Deformation of valence angles. In the case of
No. 3 of Table VII, the experimental data deviate from
the general rule that the positive anisotropy of the
chain decreases with increase in the size of the side
groups. The replacement of the C-H side linkage by
the more anisotropic CHj group in going from poly-
propylene (No. 2) to polyisobutylene (No. 3) increases
the anisotropy @; — @,. Further, the presence of a
considerable anisotropy in polyisobutylene is quite
paradoxical when we consider the tetrahedral sym-
metry of its structure.

These departures from the general rule can be
ascribed to partial non-additivity of the various
bonds (the anisotropy of a C-C bond in the chain is
greater than the anisotropy of the same bond in a
side group). However, perhaps, it can be ascribed in
greater degree to the deformation of the valence
angle of the main chain of the polymer, 204199 owing
to interaction of the side methyl groups. Apparently
an analogous phenomenon occurs in the chains of the
polymethacrylate series. 206

e) Graft polymerization and anisotropy of the
chain. The increase in the negative anisotropy of a
molecule as the side groups are lengthened is due to
the fact that a long side group itself has a positive
anisotropy (i.e., a maximum polarizability in its own
chain direction). However, another situation is pos-
sible, and has been realized in the grafting of poly-

styrene chains onto a polymethylmethacrylate (244 or
polybutylmethacrylate chain. In this case, the side
chain being grafted on is optically negatively aniso-
tropic (No. 14, Table VII). That is, it has maximum
polarizability in a direction normal to the side chain,
or in a direction parallel to the main chain. Hence,
the graft polymer obtained has a very large positive
anisotropy,[mj although its main chain in itseif is
optically almost isotropic (No. 26, Table VII), while
the polystyrene chain, which comprises nine-tenths
of its mass, is negatively anisotropic.

This is illustrated by Table XV.

These results show that optical anisotropy can be
used as a method of studying the structure of graft
polymers, as well as branched macromolecules.

The huge positive value of «; — o, observed in
the graft polymer indicates that its chains are more
rigid than those of the component being copolymerized.

f) Stereospecificity and optical anisotropy of
molecules.[243,244] Experiment shows that stereo-
specificity of molecular chains has practically no ef-
fect on their statistical dimensions in solution. 245241
Hence, the study of the geometric and hydrodynamic
properties of macromolecules in solution cannot give
information on their microtacticity.

On the other hand, optical anisotropy of chain
molecules has proved in a number of cases to be very
sensitive to their stereospecificity. Some appropriate
examples are given in Table VII (Nos. 14 and 15, or
26 and 27, or 28 and 29, or 30 and 31).

In all the studied cases, the anisotropy of the
atactic and syndiotactic stereoisomers turned out
practically to coincide, indicating the similarity in
structure of these two isomers.

On the other hand, the anisotropy of an isotactic
sample can be either considerably larger in absolute
value (polystyrene, polymethylmethacrylate, poly-
tert-butylmethacrylate) or considerably smaller
(poly-n-butylmethacrylate) than that of an atactic
sample.

The difference in anisotropy of the monomer unit
in the stereoisomers is due to the differing nature
of the rotation of their side groups.

Here the approach of the plane of the side group
to the direction of the main chain will increase the
positive anisotropy of the monomer and of the entire
chain (or decrease their negative anisotropy). This

Table XV. Composition and segment anisotropy oy — a, of

PMMA - PS graft polymers 242

% (by

| Molecular Molecular Average Number of Molecular
weight of the | weight of number of grafted mass) | weight of | (a; — as)
main PMMA | the grafted | grafts per | chains per sit:"fl:‘: the graft X1025 em®
chain PS chains molecule 1021&"5“2;"“ polymer polymer
l the main
’ chain \
' I
7-10% 2.108 1 315 45 ! 90 7-108 1870
58-104 2.103 | 1850 32 86 41.5-108 -+-750
58-104 10-103 420 7 88 48.108 47000
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Table XVI
In solu~ ici
tion In bulk (photoelasticity)
(flow bi-
Polymer refrin%- 101
ence € A — @ . i1s
~ T.oC | o dyne @158 g0 [Crystallizability
l 1

PMMA atactic 52,5 110 [from —3.0{from=~3,0}from 53.5| Amorphous
(benzene), to +4.8 | to +4.8 | to 52.5

PMMA isotactic 50 14.6 4.0 52 Crystalline
(benzene)

PnBMA atactic 50.5 30 —10 —2.6 49 Amorphous

: i ) (benzene) !

PnBMA isotactic 49 1 15 30 8.0 47,8 | Amorphous
(benzene)

PtBMA atactic 59.5 118 14 4.1 52 Amorphous
(benzene)

PtBMA isotactic 46 70 77 14 48 Amorphous
(benzene)

situation occurs in all the studied polymers of the
methacrylate series. Table XVI gives the correspond-
ing values of ¢ calculated from the experimental
values of a| — a; using Eq. (53).

The opposite situation occurs with polystyrene: ¢
is greater for the isotactic polymer than for the
atactic (see Table XIV).

The decrease in ¢ with increasing microtacticity
observed in the polymethacrylates implies a decrease
in the rigidity of the side groups when the chain

structure is rearranged from atactic to stereospecific.

The data given agree with the results of a study of the
photoelasticity of the same samples,[236:248] a5 are
given in Table XVI.

Stereospecificity not only lowers the glass-transi-
tion temperature T, i.e., makes the polymer chain
softer, but it also shifts the value of the photoelastic
coefficient € and the corresponding values of «; and
@y and ¢ in the same direction as for the molecule
in solution.

The study of the time-dependence of the photo-
elasticity also permits us to detect the slight effects
of stereoblock structure (microcrystallites), which
cannot be detected by x-ray diffraction analysis.

The great sensitivity of the molecular anisotropy
to stereospecificity is apparently a general property
of the esters of the polymethacrylate series. In these
molecules, the positive anisotropy of the main chain
is appreciably compensated by the negative aniso-
tropy of the side groups. Hence, small variations in
the flexibility of the side groups and the correspond-
ing changes in their anisotropy can sharply displace
this compensation equilibrium in the molecule and
lead to changes in the magnitude and sign of the
anisotropy.

At the same time, a change in the stereospecificity
in the polypropylene chain, which has the symmetric
CHj; side group, does not alter the optical anisotropy
of the macromolecule, since the nature of the rota-
tion of this group can have no effect on the polariza-
bility difference of the chain. The effect of stereo-

specificity on the anisotropy is also weakened by the
introduction of a methyl group in the para-position in
the benzene ring of polystyrene (Tables VII and XIV,
Nos. 16 and 17).

The found relation of @y — @, to the microtacticity
of the chain does not involve the ability of the polymer
to crystallize. It can occur both in amorphous and
crystallizable samples (see Table XVI).

g) The effect of the surrounding medium. It was
shown above (III, B, 4) that the segment anisotropy of
a chain is a characteristic of its microstructure, and
does not depend on the thermodynamic nature of the
solvent.

Experiment also shows that for polymers of suffi-
ciently large intrinsic anisotropy (polystyrene and its
halogenated derivates, PptBPMA, polyisobutylene,
rubber, etc.), the segment anisotropy ay — a4 of the
chain found from the birefringence in solution (see
Table VII) is near the value of oy — a4, obtained from
photoelasticity measurements of the same samples.
[227,228,240,199,81,250] rhyg, in these cases the change of
the medium from the low-molecular-weight solvent
to that of the polymer itself does not alter the aniso-
tropy of the chain significantly.

Likewise, the swelling of rubber or polystyrene in
appropriate solvents (nk = ng) has practically no

etszectjon the segment anisotropy of these polymers.
251,215

However, cases are known in which a variation in
the surrounding medium entails considerable changes
in the magnitude and sometimes even in the sign of
the intrinsic anisotropy of the macromolecule.

Thus, for example, for the polymers Nos. 23—25
of Table VII, a change of the solvent from benzene to
toluene increases the positive (or decreases the nega-
tive) anisotropy of the chain by a factor of two. Also,
for samples Nos. 23, 24, and 29, the anisotropy in
solution and in bulk differs even in sign (cf. Table
XVI).

The sensitivity of the anisotropy of polyvinylace-
tate to changes in the medium is also illustrated by
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-y 0%

FIG. 37. The rela-
tion of the anisotropy
of PVA swollen in var-
ious solvents to the
degree of swelling
(from the photoelasti-
city of the gels).[2**]

1 —bromobenzene; 2—
xylene; 3 —toluene;

4 —benzene; 5—bromo-
form; 6 — chloroform;

7 — acetone; 8 —tetra-

tetrachloride.

Fig. 37, which gives the values of y; — ¥5 = (3/5) x
(a4 — ay) (obtained from measurements of the photo-
elasticity of the gel) as a function of the degree of
swelling in different solvents.[?5] The points on the
vertical axis correspond to the data in dilute solu-
tions (flow birefringence).#"2:224] Such a strong de-
pendence of the anisotropy on the properties of the
surrounding medium is specific for the molecules of
the polyacrylate and methacrylate series. It is prob-
ably due to changes in the rotation of the side groups
with change in the interaction with the surrounding
medium (just as in the case of the effect of stereo-
specificity). Here, as was pointed out above (see
Table XVI), very small differences in the angles ¢
can lead to large changes in the anisotropy observed
experimentally.

Obviously, these phenomena can be used as a
sensitive method for studying interactions in a poly-
mer-solvent system.

10. Polyelectrolytes. The problem of the dynamic
birefringence in solutions of flexible chain polyions
is highly complex and poorly worked out.

The difficulty of the problem is due not so much to
its hydrodynamic aspect as to its optical aspect.
Since polyelectrolytes are soluble practically only in
an aqueous medium, we cannot use solvents of differ-

bromoethane; 9 — carbon

ing refractive indices. Hence, the experimental
distinction of the form effects from the intrinsic
anisotropy by the direct methods applicable to solu-
tions of nonelectrolyte polymers is ruled out in this
case. This fact greatly hinders the quantitative in-
terpretation of the results. A number of studies have
dealt with the dynamooptical properties of certain
polyelectrolytes: polymethacrylic 253263 and poly-
acrylic #5527 5¢ids, poly-4-vinyl-n-butylpyridinium
bromide, 25458 godium alginate, (%€ and poly-4-
vinylpyridinium chloride. L186)

Increase in the degree of ionization and decrease
in the ionic strength of the buffer solution, which
lead to uncoiling of the chain and increase in the
dimensions of the polyion, sharply reduce the orienta-
tion angle and increase the magnitude of the bire-
fringence. The decrease in the orientation angles
qualitatively agrees with the increase in viscosity of
the solution observed here.

For all the studied polyelectrolytes at low enough
ionic strengths of the solution (when the molecular
coil is uncoiled enough), the birefringence is positive.
This fact is of fundamental significance, since it
shows that the anisotropy of a sufficiently uncoiled
polyion chain is determined by the form effect.

This is graphically shown by Table XVII, which
gives the anisotropy of polyvinylpyridine

—CH—CH,p—
VAN

v

N/
N

in ethanol (non-polyelectrolyte) and its quaternary
salt — CH—CHy—
VAN

v

N/
N
|
H+cCl”

in aqueous solution (polyelectrolyte).[25¢,186]
The intrinsic negative anisotropy of the polyvinyl-
pyridine molecule (cf., e.g., No. 14 of Table VII) is

Table XVII. Anisotropy of polyvinylpyridine in ethanol

and of its quaternary salt in aqueous solution

{186,256]

Polyvinylpyridine

Polyvinylpyridinium chloride — CH — CHy—
AN

(ay — a2)-1025

An A
(2%)- 5010 (M52 gyp | Sme- 1010 | (a1 —0i2)- 1025
g—+0

-+ 630

[SCR -]

OO
s <]
SN CFT

25 115 1820
17.8 123 1860
3.35 221 3450
0.45 265 4120
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obviously overcompensated by the form effect, and

the effective segment polarizability difference oy — o,
(calculated from (30)) has a large positive value. The
intrinsic anisotropy of the quaternary salt should

have an even greater negative value (cf. Nos. 14 and
18 in Table VII). Nevertheless, in aqueous solution

(in which polyelectrolyte effects are large), its ef-
fective anisotropy is positive and very large.

Thus, the uncoiling of a polyion chain under the
action of the electrostatic repulsion forces of the
charged groups entails a sharp increase in the posi-
tive form effect overbalancing the role of the in-
trinsic (negative) anisotropy of the molecule. A de-
crease in the concentration of the solution entails a
decrease in its ionic strength (non-isoionic dilution),
a weakening of the screening effect of the counterions,
and a still greater uncoiling of the molecules. The
latter results in an increase in the reduced viscosity
Tlsp/C and the anisotropy «; — ay (see Table XVII),
as well as a decrease in the orientation angles with
dilution.

The use of the method of isoionic dilution 5%
permits us to weaken the influence of concentration
effects on the shape of the polyion molecules and to
get data that reflect their optical properties more
adequately.

This is illustrated by Fig. 38, which shows the re-
lation of An/g(7n — 71,) to the concentration for solu-
tions of several fractions of polymethacrylic acid
(PMA) (0.012 M NaCl).23 The reduced anisotropy
depends very slightly on the polymer concentration,
indicating the prevailing role of the microform effect
in the birefringence (compare with the curves of
Figs. 29 and 31).

The large value of the microform effect at low
ionic strengths of the solution corresponds to Eqs.
(22) and (24), which predict a decrease in the relative
value of the quantity 6 (in comparison with 6fg) as
the volume v of the molecular coil is increased.

The data of Table XVIII indicate the same. At a
constant ionic strength I, the quantity [n}/[n] is
practically independent of the molecular weight, in-
dicating the segment character of the observed aniso-
tropy. As the molecule goes from the uncharged to
the charged state, a certain decline in [n]/[n] takes
place in the first stages of ionization. This can be

675
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FIG. 38. The concentration-dependence[***] of An/g(n — no)
for PMA fractions in buffer solution (I = 0.012 M) (isoionic
dilution).

® — M=8.3-10%; O — M=23-10%

explained by the decrease in the relative role of the
macroform effect as the coil is unwound (cf. Table
XI). Further increase in the dimensions of the
molecule (at an ionic strength of 0.0012 M in NaCl)
involves an increase in [n]/[7n] owing to the in-
crease in the effective segment length, and corre-
spondingly, of the microform anisotropy.

Further analysis of the experimental data
shows that the dynamooptical properties of PMA
solutions are complicated by the influence of hydrogen
bonds and their partial rupture upon ionization of the
molecule.

While in solutions of ionized PMA the overall ef-
fect of the intrinsic (positive) anisotropy and the
macroform and microform effects result in a large
positive birefringence, in solutions of polyacrylic
acid (PAA), the overall effect proves to be consid-
erably smaller (Fig. 39).250

Apparently, a mutual compensation of a negative
intrinsic anisotropy of the chain and a positive form
effect takes place here.

As the concentration of the solution increases, the
relative role of the form effect declines, and the
birefringence changes sign from positive to negative.
(255,267 Thus, the PAA molecule in the ionized state
in sufficiently concentrated solutions shows a nega-
tive intrinsic anisotropy. However, this does not mean
that in the un-ionized state (or in another solvent)
this anisotropy would also be negative. Solutions in
dioxan (Table XIX) show a positive anisotropy, which
decreases very sharply, however, with decreasing

[263]

Table XVIII. Dynamooptical data on solutions of PMA fractions in
the un-ionized and ionized states (@ = degree of ionization) 263

0.002 M HCl e=0.6,1=0,012 M a=0.‘6,1=0.0012M|
M- 10-5 M. 10-5
Ml-10-2 %“]T-xow [n]-10-2 ET"}JOIO [n]-10-2 [[% 1010

7.2 0,51 15.8 8.3 19 9.5 40 34
4.4 0.44 15.0 5.0 10 10,0 — —
2.0 0.30 14.2 2.3 7.0 11.4 20 34
1.0 0.21 13.6 0.6 2.8 10,0 5 36
0.4 0.07 11.0 0.13 0.65 12.3 — —
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FIG. 39. The concentration-dependence of An/g(n — 7¢) (as a
function of Cly]) for PAA fractions in buffer solution (I = 0.012
M,[2*"] isoionic dilution).

1 — M=1.8.108; 2 — M=13.106; 3 — M==0.53.108;
=0.16-106; 5 — M=0.38.108,

4 — M

Table XIX. Dynamoop-
tical properties of solu-
tions of PAA fractions
in dioxan (inun-ionized
state), T = 30°C

Inl
i ““T)

M-10-5 | [n]-10-2

[
= O Q0 GO
[S 2 R
[

coop
K ~1=3

wraug
o

BERR

molecular weight (macroform effect).

For PMA, just as for its esters (see Sec. III, B, 9,
g), we should expect the intrinsic anisotropy, of the
chain to be very sensitive to interaction with the
surrounding medium (and even more so to electro-
static interactions), since small changes in the rota-
tion of the side groups in polymers of this class re-
sult in quite appreciable differences in the optical
properties of the monomer unit. Hence the observed
changes in the magnitude and sign of the birefring-
ence of PAA solutions as the ionic strength, the de-
gree of ionization, and the concentration are varied
might be due not only to conformational changes in
the chain, but also to the direct influence of the elec-
trostatic interactions on the anisotropy of the mono-
mer unit.

It seems likely that we could choose a more suit-
able model than PAA for studying the general dynamo-
optical properties characteristic of a broad class of
polyelectrolytes, e.g., the quaternary salts of poly-
vinylpyridine and its derivatives. Unfortunately, the
experimental material obtained for this class of
polymers is not yet sufficient. In any case, the first
problem that we must solve in studies of this sort is
how to distinguish reliably the effects of the intrinsic
anisotropy and the (macro- and micro-)form effects.

The relation of the magnitude of the birefringence
to the velocity gradient An = f(g) in polyion solu-
tions at low enough ionic strengths is usually given
by a graph curved toward the horizontal axis, like the
curves of Fig. 5.[299-250,268) Thig shows that the elec-
trostatic repulsion of the charged groups of the
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macromolecule not only unwinds the molecular chain,
but also increases its kinetic rigidity appreciably.
Hence, the birefringence under these conditions is to
a considerable extent an orientation effect.

At the same time, while the effective values of the
chain anisotropy are large, according to the data of
Tables XVII and XVIII, they are many times smaller
than the values that we could obtain if the molecular
chain were unfolded to a shape similar to a straight
rod. Hence, in describing the hydrodynamic and op-
tical properties of a chain polyion in solution, the
conformation of a slightly-coiled stiff random coil
is a much better model than one in the form of a rod-
like particle.

NOTATION

A—segment length,
Dy—rotational diffusion coefficient of the parti-
cles,
Do—Dy17,
F—coefficient characterizing the internal vis-
cosity,
L—longitudinal axis of the particle, length of
the completely extended molecular chain,
L4, Ly—optical form factor (functions of the axial
ratio p of the coil),
My—molecular weight of the monomer unit,
Mg—molecular weight of the segment,
M—molecular weight of the polymer,
Mp—number-average molecular weight,
My—weight-average molecular weight,
N—number of particles per em?,
NA—Avogadro’s number,
R—universal gas constant,
R—mean radius of the dynamooptimeter cylinder,
AR—~width of the gap in the dynamooptimeter,
s—number of monomer units per segment,
T—absolute temperature,
Tg—glass-transition temperature,
&—Flory coefficient,
fj—intrinsic anisotropy of the chain,
f¢—macroform anisotropy,
6fs—microform anisotropy,
a—proportionality coefficient,
a; — aj—polarizability difference of the monomer
unit,
bg—a function of p,
C—concentration of the solution in g/cm®,
Cy—volume concentration of the solution,
d-—transverse axis of the particle,
fy—a function of p,
f (o, p)—mechanical factor (a function of the orienta-
tion),
g—velocity gradient of flow,
gk—critical velocity gradient,
g1 — g2 = (v{ — v9)/v—specific anisotropy of the sub-
stance of the particle,
h—distance between the ends of the macro-
molecule,
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h®’_mean square distance between the ends of
__ the chain,
h%—the same in an ideal solvent,
hi—the same, with free rotation about the
valence bonds,
k—the Boltzmann factor,
[n]—intrinsic value of the birefringence,
[n]j—intrinsic value of the intrinsic birefringence
[n]fg—intrinsic value of the microform birefring-
ence,
{n};—intrinsic value of the macroform birefring-
ence,
n; — ny = An—difference between the two principal
refractive indices of the liquid,
ng—refractive index of the solvent,
n—refractive index of the dry polymer,
p—axial ratio of the particle,
u—velocity of flow,
v—volume of the particle,
vo—hydrodynamic volume of the particle,
vV—partial molar volume of the particle,
oy — ay—polarizability difference of the segment,
B =M[n|nig/RT—a parameter,
vy — Yo—difference between the two principal polari-
zabilities of the particle,
6—phase difference due to the solution,
Sy—phase difference due to the compensator,
€—photoelastic coefficient,
1, nyg—viscosities of the solution and solvent, re-
spectively,
[n]—intrinsic viscosity of the polymer,
[n],—intrinsic viscosity of the polymer extra-
polated to zero velocity gradient,
ni—internal viscosity of the molecule,
[n]*—reduced viscosity of the solution,
A—wavelength of light, length of the monomer
unit in the direction of the axis of the chain
molecule,
v—number of bonds per monomer unit,
p—density of the polymer,
o= g/Dr—orientation factor,
7—relaxation time,
AT =(n — n,) g—effective shear stress,
[ ¢/g]—intrinsic value of the orientation angle,
g—angle between the plane of a side group and
the chain direction in the macromolecule,
x—extinction angle,
w—vibration frequency (circular).
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