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I. INTRODUCTION

THE first experimental studies of nuclear quadrupole
interactions in crystals were carried out in 1950, when
Pound ] investigated in detail some features of the
splitting of nuclear magnetic resonance lines due to
the quadrupole interaction constants and Dehmelt and
Kruger (2] observed absorption of radio waves in zero
magnetic field. These two pioneering investigations
determined the research that followed. One of the re-
sultant trends involved large quadrupole interaction
constants and weak magnetic fields (so-called nuclear
quadrupole resonance) while the other involved
strong magnetic fields and quadrupole couplings (nu-
clear magnetic resonance split by quadrupole interac-
tion). For almost eight years the development of both
theory and experiment followed these trends, and im-
portant results were obtained to turn these methods
into a new means of structural analysis of single crys-
tals. Dozens and hundreds of papers were published
both on nuclear quadrupole resonance (particularly in
zero magnetic field) and on nuclear magnetic reso-
nance split by quadrupole interaction. In the case of
nuclear quadrupole resonance (NQR), the energy of
the magnetic interaction with the external magnetic
field H, can be regarded as a perturbation to the
quadrupole energy, so that it is possible to calculate
relatively easily by perturbation theory the energy lev-
els and their dependence on the angles between the di-
rection of Hy and the principle axes of the electric
field gradient tensor of the crystal. The theory for
nuclear magnetic resonance (NMR) is constructed
analogously, but in this case the perturbation is the
quadrupole interaction energy. A detailed discussion
of all the questions connected with these trends can

be found in the literature. Thus, NQR is dealt with by

Grechishkin[3], Das and Hahn[%], and Fedin and Semin
5], The study of quadrupole effects in NMR is treated
in the review by Cohen and Reif(®], and briefly in the
books by Andrew (] and Lsche (8],

In 1958%:19] caleulations and experiments were
performed for the case when the quadrupole and mag-
netic interactions were of the same order. It is pos-
sible to introduce a dimensionless parameter R
= 4uH,;/eQqz4, where eQqy, is the quadrupole cou-
pling constant and u is the magnetic moment of the
nucleus. Obviously, R «< 1 and R >» 1 correspond to
NQR and NMR respectively. The case R~ 1 is called
nuclear spin resonance (NSR).

Since the experiments made in weak and strong
fields* have been sufficiently well described in our
literature, we touch upon them only briefly, paying
principal attention to intermediate fields. We note
that there is no such review in the foreign literature,
although the theoretical and experimental material ac-
cumulated by now is already quite extensive.

In order to make the exposition that follows more
understandable, we shall dwell briefly on quadrupole
effects in NMR and the Zeeman effect in NQR. Nuclei
with spin larger than ¥, can have, in addition to a
magnetic dipole moment, also an electric quadrupole
moment, which is a measure of the deviation of the
shape of the nucleus from spherical. Such nuclei, in-
teracting with the intracrystalline electric fields, can
produce complicated spectral patterns when a perma-
nent magnetic field is applied. This question was first
investigated by Pound[!] who showed that when the
gradient of the electric field had axial symmetry the
resonance spectrum in the single crystal was split by

*Magnetic fields are called weak or strong if 4uHg < eQqz; or
4uHg > eQqyz, respectively.
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the quadrupole effects into 2J components (J = spin).
For example, in resonance of Na? (J = 3/2) in a single
crystal of NaNO;, a triplet was observed in a strong
magnetic field, the splitting reaching in NaNO; sev-
eral times ten kes, which is much larger than the
dipole-dipole line width.

Using first-order perturbation theory, it is easy to
obtain the following expression for the frequencies of
the spectrum:

Vinom—1 = Vo + Sigjz(zzf]zi%“ (3cos?6 —1), (1)
where m — magnetic quantum number, vy = uHy/J —
NMR frequency in the absence of quadrupole effects,
eQqzz — quadrupole coupling constant, 4 — magnetic
moment of the nucleus, J — spin of the nucleus, and

6 — angle between the symmetry axis of the electric
field and the direction of the external magnetic field
Hy. Pound measured the splitting between the central
and side components as a function of ¢ and found that
Ay = 83.5 (3 cos?@ ~ 1) kes for NaNO;. Hence

1/4 eQqy, = 83.5 kes.

Analogous investigations were made also in Al;O4
for A1%" nuclei (J = 5/2), with five spectrum compo-
nents observed. As 6 was varied, the central com-
ponent of the spectrum also shifted, owing to second-
order effects (the splitting amounted to 25 percent of
the central frequency, and first-order perturbation
theory was no longer valid). However, Pound con-
sidered only the relatively rarely encountered case
of an axially symmetrical electric field gradient.
Therefore Volkoff constructed a theory for the more
general case of arbitrary electric field symmetry ],
Volkoff’s method makes it possible to determine the
direction of the principal axes of the electric field
gradient relative to the principle axes of the crystal,
and to measure eQqzz and 7 = (dxx —qyy)/dzz (the
asymmetry parameter), where qxx, Qyy, and qzp are
the components of the electric field gradient tensor of
the crystal.

In this method, three arbitrary mutually perpendic-
ular axes X, Y, and Z are chosen in the crystal. Let
X, Y, and Z have direction cosines Aj, ui, and vj with
respect to the principal axes of the electric field gra-
dient tensor. By examining the symmetry of the crys-
tal lattice it is frequently possible to align one of the
principal axes of the electric field gradient tensor
with the crystal axis. If Hy is alternately directed
perpendicular to X, Y, or Z and if the crystal is ro-
tated each time around the H; direction, then first-
order perturbation theory gives the following expres-
sion for the splitting 2Av between two spectral com-
ponents due to the transitions m — m ~1 and
—-(m~1)— —m:

2Av= A+ Bcos20 -+ Csin0, (2)

where for rotation of the crystal about the x axis we
have

1 3
Ac=2k [ =g M+gati-=) ],

3 1
Be=2k [ 5 (=v)+yn(—vi—ui++) ],
Cx =2k [ —3pgvs+ 1 (uave— pvo)l,

_ 3 (2m-—1)
k=eQq.. STET—1]

3)

|
|

m is the largest magnetic quantum number.
It can be shown that

At A, + A, =0,

A,—By,=A4,+ B,,

4, —B,=A.+ By,
N ] @)

Ay—B.=A,+ B,

Carrying out all three rotations, we can easily obtain
the coefficients A, B, and C. Therefore, by solving
the system of algebraic equations (3), we obtain all
the structural parameters.

The possibilities of this method were demonstrated
with spodumene LiAl(SiOj), as an example[1],

For the resonance of the Li' nucleus (J = 3/2) in
this crystal, they obtained

1 =0.793, (k| =18.9 kes, eQg.,=75.6 kes
A= —0.074, Ay =0.997, A3 =10.020,

ny = 0,746, pg = 0.042, us = 0.663,

vy = 0.662; vy = 0.063; vy = —0.747,

with the X axis coinciding with the b axis of mono-
clinic spodumene (Cy = Cy = 0), and the Z axis,
chosen as the direction perpendicular to b and ¢, so
that the a axis was between Y and Z.

Calculations of higher-order perturbations were
carried out by Volkoff (1] and also by Bersonn[!3],
These calculations were also experimentally con-
firmed for the resonance of AI?" (J =%,) in spodu-
mene [14,15]

Volkoff’s method is presently widely used, for it
gives the frequencies as functions of the angles of ro-
tation in a Cartesian frame.

Euler angles are used in the method of Itoh and his
co-workers (%], This method is more complicated
than Volkoff’s and offers no advantages over the latter
with respect to the accuracy with which the constants
are determined. In practice, Itoh’s method was used
only for the resonance of Na?® (J =%,) in sodium thio-
sulfate (NayS,035H,0), whereas Volkoff’s method was
used not only for spodumene but for other objects, for
example the resonance of B!!(J =%,) in kernite
Na,B,0y + 4H,0, 1] for AI*' in HBeAlSiO;, [18], ete.

Finally, Brown and Williams[1%20] analyzed the
spectrum of Be®(J = %,) in beryl BesAlSigOyq. Their
method, however, yielded results only for the case
when the magnetic field H;, was parallel to the prin-
cipal axes.

Kornfel’d and Lemanov (211 studied the intensity of
satellites in mixed NaNO; — AgNO; crystals as a
function of the AgNO; content. They showed that the
critical-sphere model is applicable (see, for exam-
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ple,t31) and found that its radius was equal to 13 A.*
Thus, the intensities of the satellites of the main line
characterize the degree of order in the crystal, a fact
which can be used to study solid solutions or plastic-
ally deformed crystals. [22]

Lemanov [%3]| for example, studied the effect of
elastic deformation on the Na?¥ absorption line in
rock salt crystals and determined the components of
the tensor that relates the elastic deformation of the
lattice with the electric field gradient.

We shall not consider here the numerous results
obtained in strong fields, since they can be found else-
wherel8],

We now stop briefly to discuss the data obtained in
weak magnetic fields (NQR). The theory of the Zee-
man effect in NQR for the case n = 0 was first devel-
oped by Bersonn (], who also used perturbation the-
ory methods. Dean (28] giscussed especially the case
of spin %. Cohen[?] made numerical calculations for
spins %, %, and %,

The following expression was obtained for the en-
ergy levels.

Eim=Eim (O)
+ %‘1 [a% cos? 0 4 (bi, + ¢2, + 2b,,¢ 08 2¢) 5in20]'2,  (5)

where E.p,(0) —value of the energy at Hy = 0,y
—gyromagnetic ratio of the nucleus, m —magnetic
quantum number, and

an,=2m,

b“zzj-}-,—i, =0 <for m>%>,

Cip= —Cyp= ——<J—%> (]-;—%) (J_;,.%>% ,

i
¢ (6)
em=0 (for m>%> !

From this we can obtain for the transition frequencies
® = g (mij_’_mz)i\%]—o([m‘] + [mal), (7)

where
[m] = [ak cos? O+ (b + cim + 2bmey, cos 2¢) sin 0]z, (8)

Thus, two pairs of lines are observed for J = %,. The
pair with the larger splitting (yHy([m;] + [m,]) is
called the B pair, while the pair with the smaller
splitting is called the « pair. We see from (7) that
the o pair becomes a singlet when [m;] = [m,]

(Fig. 1). For the % == %, transitions the zero-splitting
region depends on the angles 6 and ¢, and forms a
cone around the Z axis. The angle between Hy and Z
has for zero splitting a maximum in the XZ plane and
a minimum in the YZ plane, where X, Y, and Z are
the principal axes of the electric field gradient tensor.

*The critical sphere is defined as a volume inside the crystal,
surrounding the impurity, in which the effect of the impurity ion on
the resonating nuclei is such that their frequencies shift outside of
the resonance line.
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FIG. 1. NQR spectrum of CI*® in the single crystal 8 —n — CgH4Cl,.

Therefore, using the method of the zero-splitting
cone[#], we can determine the directions of X, Y,
and Z. On the other hand, knowledge of 6, in two
planes [8y(¢ = 0°) and 6y(¢ = 90°)] makes it pos-
sible to calculate the asymmetry parameter

ne sin2 0, (0°) —sin2 6, (90°) ©)
T Y sin2 8, (0°)4-sin2 8, (90°)

Relations (7)—(9) were used for structural analysis of
some single crystals. We note that nuclear spin reso-
nance in powders can not usually be observed, since
the spectrum is smeared there over a broad region.

The Zeeman effect in NQR was investigated for C1%
in the single crystal NaClO; in [7~%] and yielded the
structural data. This method was used to study some
20 crystals. A more detailed discussion of the Zee-
man effect in NQR can be found in [4].

Thus, the theory for both strong and weak magnetic
fields was developed by using perturbation theory. If
eQqg; is sufficiently large (for example, for organic
compounds of chlorine ), NMR split by quadrupole in-
teractions cannot be realized by presently available
means (attainable magnetic fields). It is then conven-
ient to use the method of weak magnetic fields. How-
ever, for medium values of eQqyy it is possible, by
varying the magnetic field, to trace continuously the
transition from NQR to NMR and vice versa. It will
be shown below that many interesting phenomena can
be observed in the intermediate region, for example
the crossing of the energy levels, and these can be used
for structure determinations.

In the present review we report primarily the re-
sults for intermediate magnetic fields, where pertur-
bation theory can no longer be used and the problem
is thus considerably complicated. We note that the re-

gion of intermediate fields was discussed very briefly
in [3:4,6]
in [9%580,

II. NSR ENERGY LEVELS AND FREQUENCIES
1. Energy Levels for Resonating Nuclei with Spin 1
3
or %.
We consider some theoretical results for interme-
diate magnetic fields, where perturbation theory can-

not be used. If the asymmetry parameter n =0 and
the magnetic field lies in the XZ plane, then the solu-
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tion of the problem entails no particular difficulty (291,
In the case of arbitrary 7 and arbitrary direction of
H, relative to the principal axes of the electric field
gradient tensor, the calculation becomes much more
complicated (30, we shall not discuss the procedure
for obtaining the spin Hamiltonian, since it was de-
scribed in the reviews [4’6], and present it in the form
obtained in [3%1;

5 41?33” 5l BR-+F |
—UﬁH(,(] cose»r I smﬂcoscp+ 4sm6 smcp>
(10)

where I, I,, and I. are the projection operators of
the mechanical momentum of the nucleus I, g the
nuclear gyromagnetic factor, 8 the nuclear magneton,
6 the angle between Hy and Z, and ¢ the azimuth
angle.

The matrix elements of the mechanical momentum
can be calculated from the formulas (3% 321

(m|1,|m)y=m,

(J, m|12]J, m)y=J(J+1),
(J, m| I\, mF2) (12)
=[(J+tm)(J Ltm—)(J Fm+1)(J Fm+2)]'72
J, m{ I |, mFY)y=[(J + m)(J+ m+1)12
If J =1, then the matrix of the Hamiltonian (10) is
written in the form
abc
quu(b d e) 12)
ecf
with elements
a:—i——lrcme d*z %cosﬁ ]I
| ____ R . i .
b=, e= 4‘/2_(smecoscp J sin 6 sin @), ¢ (13)
c= —45§(sinecoscp+jsin@sincp), f= —% , J

where R = 4uHy/eQqz, and u is the magnetic moment
of the nucleus. The rows and the columns of the ma-
trix (12) correspond to the magnetic quantum numbers
m=+1, —1, and 0. The parameter R can assume
values from 0 to «. To find the NSR energy levels
it is necessary to diagonalize the matrix, i.e., to solve
a third-degree determinant. With an electronic com-
puter it is not too difficult to solve such a problem for
specific research objects. In some cases, however,
the problem can be solved rigorously. For resonating
nuclei with spins J =1 or J =%, this can be done if
the magnetic field is parallel to one of the principal
axes of the electric field gradient tensor, X, Y, or Z.
For J = 1 we can obtain[30];

1) If 6 =0 and ¢ = 0, then the solution of the secu-
lar equation is written in the form

1 1.~
Mo=( 327 VTR ) eQqss, |

1 (14)
Ag= — 5 eQq,,.
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2) Analogously, for § =7/2 and ¢ =0
1— —_
Ay, 2= (““g—ni%— V(3+ﬂ)2+432> eQqz2,
h /L (15)
3‘\4 T) €QCIzz-
3) For 6 =7/2 and ¢ = 7/2 we obtain
l(,2i<—mi 81 (3—m) +4Rz\qu 225

Ay = <Z+ %)e()q”.

In urea CO(NH,), we have eQqzz = 3.5 Mc for N
(J=1) and 7 = 0.3243%3], The numerical results
for this compound are given in Fig. 2.

(16)

A,
' A Mol :
48 44/
057 7L As
0'4 - a” H H i
17743 _02_ﬂ,402773/,520242Jﬁ
—”g 2008 820206 % -qu|
' R/l
_”'4 L 8
i‘, -JJN
AZ
a) b)
A
25- /AI
a4
A,
azf ’
0 —L
gk Qe Q812 162024 56 R
_”’4 -
._0.6'_
_Hi-
Az
€)

FIG. 2. NSR energy levels in single crystal of urea (N'* resonance).

a)9=0,<o=0;b)9=%,w:O:c)9=%,¢=

NJ:I

It will be made clear in what follows that in this
case transitions between any pair of levels are pos-
sible. The frequency v;; increases with increasing
R, while V3.9 decreases (Fig. 2a). This makes it
possible to observe when the frequencies v;; and
V3,2 coincide w1th the frequency vy 1, v3,4 = V31
for R=v1-n% or for Hy= (quzz/4“)‘/1 n?
However, this case is difficult to investigate experi-
mentally. A simpler case is the equality vs ;= v, 4
which is realized for R= v9—n2 (point of level
crossing) orfor Hy=(eQqz; /41 ) v9—n2 . In this
case a single line should be observed at a frequency
Vo g = A €Qqy, (~5.2 Mc). Measurement of the fre-
quency vy ; at this point yields the asymmetry pa-
rameter 7 and the quadrupole coupling constant

GpHO

n= ‘/ ( Vg, 4

In urea, one of the nuclear resonance frequencies be-
comes equal to the proton resonance frequency at H,

=450 or 700 Oe. This equalization of the frequencies

of systems of different levels should stimulate spin-
spin interaction between the protons and nuclei of the

(17)
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nitrogen. Such a system is analogous to resonant radio
circuits tuned to the same frequency, and ‘‘pumping’’
of energy from one nuclear spin system to the other
can be expected in this case. Since the spin-lat-
tice relaxation time of the nitrogen nuclei is shorter
than the proton relaxation time (due to the quadrupole
effect) the relaxation time of the hydrogen nuclei will
become shorter. These questions will be considered
later on. In the case 6 = /2 and ¢ = /2, the levels
Ay and A3 cross at the point R =V 2n? + 6y . Thus, the
position of the crossing points is determined uniquely
by the value of the asymmetry parameter. In the lat-
ter case (Fig. 2c) the crossing of the levels for urea
occurs in a magnetic field ~ 4170 Oe. Then a singlet
should be observed at v = 3.479 Mc.

The case J = 3 is also of practical interest (reso-
nance of B!?). For H, =0 we can easily obtain closed
formulas for an arbitrary asymmetry parameter

1:—17)&1"\— ‘/1”1'—"]>

b= ) 1 (B -+ 30+ ),
1
hy = jo" V 1 (6—3n-+2),
A=0, (17a)

xr——i(i—l/winZ),
ho=1 "+1/150(6+3n+n2)
=514 ) i 6 —3nr ).

All the energy levels are expressed here in units of

eQqyz.
If the spin of the resonating nuclei is %, then the

matrix of the Hamiltonian (10) is written in the form

aef O
quu<;:§§£)
Ohebd

(18)

with elements

1 R R . o
a=— cosh, f:——4Vg(smﬁcoscpﬂsmf)smw)v

1 R R
b=2—+zcosﬂ, g:———E—(IHGCOS(p—jSIHGSIH(p)

1, R . L
c__erWcose, h_—4V§(51necos¢—151n6slnq;),
d= % %cosﬂ, i:—%(sinecoscp-{—]'sinﬂsinq:),
e::—n—..
4V 3

(19)

All the rows and columns of the matrix (18) correspond
to magnetic quantum numbers m = +3, — %, +%, and
~%,. Diagonalization of this matrix for ¢ = 0 and ¢

= 0 makes it possible to obtain in closed form

M= 2V (B 5 2] 0ge, |

i‘/(b ) +48' 12]6()‘1”

(19%)
Ay, =

V. S. GRECHISHKIN and N. E. AINBINDER

Analogously, if 8 =7/2 and ¢ = 0, we get
_ R _IN?,  (R—w* R
M, 2= [ + l/(ﬁﬁ'j) + —E] eQq.., [

, (20)
ma= [ £V (B3 +ELT 1 2] g 'J

For 6 =7/2 and ¢ = /2 the energy levels will be

Ay o= :i: ‘/( ) 4) +(R+"l)2_£'] 0

As, s = :i: ]/(———) +(R 'fl + 12]quu.

Thus, we can obtain the exact solution of the prob-
lem in six different cases. For the resonance of Na?®
in NayS,03°5H,O we have eQqzz = 0.8 Mc and 2.26
Me, 11 = 0.334 (for NSR only the larger quadrupole
coupling is of interest; the lower value, which leads
to a certain complication of the spectrum, is disre-
garded). Here, too, we observe crossing of the en-
ergy levels in two cases. When 9 =0 and ¢ = 0 the
crossing is at R= v9—n%, and when 6 = 7/2 and
¢ =7/2 it occurs at the point R = vV 2% + 6n (Fig. 3).

(21)

A A
72} Ay 10
V3 40,
a8 as
a2} a4
g4t M
4’; BRI —2 2 7
_az_éw l J6¢0R 14
-4 46)
-4 Ay 8
2y Az ~1G)
a)
A
Pl %
a4 y

AL T L
I3

L

2 P>
<)

FIG. 3. NSR energy levels in sodium thiosulfate (Na* resonance).

a)0=0,6=0,b)0=n/2,$=0;¢c)0=0/2, p=n/2

By measuring the absorption frequencies at the
points of level crossing we candetermine n witha good
degree of accuracy, since a unique connection exists
between R(H,) and the asymmetry parameter. We
note that the expression for the crossing points does
not depend on the magnitude of the nuclear spin.

If sin? 6 = 2/(3 —7 cos 2¢ ), then the secular equa-
tion for the eigenvalues becomes biquadratic, and
therefore

A o, 34=+€Oq:z

X ‘/16 (1

ER?
154 T3 V-(Rz+37lz)+9 (9—mn?) cos? 0.

(21a)
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In this case the energy levels are symmetrical with
respect to the abscissa axis, which causes the transi-
tion frequency v, 3 to equal v 3 and vy 4 to equal
vy,3 for arbitrary R. This case is of interest in the
production of so-called ‘‘negative’’ temperatures,
when the application of the pumping field saturates
the transitions v, ; and v, 3 simultaneously so that
an excess population of the A; level over A, is ob-
tained. The frequencies of transitions v, 1 and vy 3
are the same here, so that the saturating voltage is
applied at the frequency vg = vy 1 = vy 3.

In the case of arbitrary ¢ and ¢, the energy levels
can be readily constructed for specific crystals. We
note that the crossing of the level occurs only at the
two orientations of H, indicated above.

2. NSR Energy Levels for Spin %,

The first numerical calculations of the NSR spec-
trum for the Al%' resonance in LiAl(SiO4), were
made in [3]. The calculations were carried out only
for the case when Hyll Z. In (9] these calculations
were continued and an electronic computer used. The
eigenvalues of the Hamiltonian were tabulated for the
magnetic field in the XZ plane.

The calculation reduces to diagonalization of the
following matrix:

ah0g00
he jikO
0jelig
quZZ gi 0 b ] 0l (22)
Okijdh
00g0h ¢
where the rows and the columns correspond to the
eigenvectors of the operator Iy with m = %, %, —%;
%, =Y, —%/5, and the matrix elements are
1 R R .
auz—fcosﬂ, g=—4‘/gsln9,
1 3R
b= ———"2cos0, p.-_ "0
207720 Vi’
1 R _
€= ————-0c080, . ViR
:1> 20 i=—t Bsin 0, (23)
d.::—5—{—20 cos®, . 311:’
2092
o= — f—{— S5 cos 0, :
20 20 = —%g sin 0.
1 R
fvf Z+ —4‘005 9,

For spodumene 7= 0.93 and eQqyy, = 2.95 Mc (Al?*").
In the calculation, § was varied from 0 to 90° in steps
of 10° and R from 0 to 3.2 in steps of 0.4. Figure 4
shows the energy levels for two values of 0. It is seen
from the figure that when 6 = 0° level crossing points
are also observed. On the other hand, if 6 = 10° there
is no crossing of the levels. The matrices given above
make it possible to calculate relatively rapidly the en-
ergy levels for specific substances by diagonalizing
these matrices. (3]

571
A;
10+ v,
Yz
VJ R
g5t S S — ¥,
%"5
L 1 1 i i 1
a7 a8 18 24 32 40 R 0 a8 16 Z/I JZ#
a) b)

FIG. 4. NSR energy levels in spodumene (resonance of Al¥"),

a) 6=0°, b) 0=10

III. RELATIVE INTENSITIES OF NSR LINES
1. Relative Intensity of Zeeman Components in NQR

Following the discovery by Kruger [3] of the Zee-
man effect in NQR, much research was done on the
splitting of the energy levels. The intensity in the ab-
sence of axial symmetry of the electric gradient ten-
sor (n = 0) was considered only partially by Dean[?4],
Cohen (%], and Toyama®']. The reason for this situ-
ation was that intensity calculations were much more
complicated than energy-level calculations.

Toyama (3] caleculated the relative intensities of
the Zeeman spectrum for an arbitrary half-integer
spin. Using perturbation theory to second order in-
clusive, he obtained rather cumbersome expressions
for relative line intensities, but valid for arbitrary
crystal rotation angles. In the case J = 3/2 his expres-
sions are valid (in a weak field Hy) for arbitrary 7

(Fig. 5). In all other cases, the relations given by
10 14
Hliz  p=p
J8VH Lz az a8
44
ast a6 a6
a8
a4t 17 a4
azr az
0 - Io i ” 1 1
0% a0 8, e 0w a° 60°, wdo
ay ¢ y 7
10 17
FAIF] BNy oz
28vH Ly q8HLy  pg
a6
a6r a4 2z
a4 q=0
4221

)80

R T
<)

i 1
@)0° 00"{2) a0° é0° P

g d)

FIG. 5. Relative intensities of the Zeeman components of the
NQR spectrum for spin J = 3/2.
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Toyama hold only when the asymmetry parameter 7
is small and the spin is not high. In the case of in-
teger spin (J = 1) Toyama gives only expressions
for the energy levels and the transition intensities,
but without indicating the placement of the crystal
relative to the constant and alternating fields.

His expressions are: energy levels

E,= —24,
{ Ez,3=A[1ﬂ:<n2*$>”2] »

where A = %quzz and y —gyromagnetic ratio of
the nucleus; transition intensities:

13T

| ()"

These expressions agree with those obtained in
(see below) for the particular case when the external
constant magnetic field H, is directed along the Z
axis (§ = 0, ¢ = 0), and the alternating field Hy di-
rected along X, Y, and Z, respectively. The depend-
ence of the intensity on the direction of the constant
field H, in the XZ plane and on the parameter yH/Any
= R/7n (in our notation) is also given for J = 1. This
dependence is shown in Fig. 6. We now proceed to
consider results of line intensity calculations which
are valid for intermediate magnetic fields.

[30,38]

10

a9

a8

a7

4 A4

a"ﬂ"(z} ?0" 5,00 wa°
—

FIG. 6. Dependence of intensity of the transition v3 j for J =1
on the direction of the constant magnetic field and the parameter
yH/ Ay,

2. Generalized NSR Equations

The macroscopic equations of nuclear magnetic
resonance were first derived by Bloch (391, These
equations are valid with sufficient degree of accuracy
for liquids [40]‘ many phenomena in which can be ex~

plained quite lucidly by solving Bloch’s equations (417431,

A generalization of these equations to the case of
NSR is found in (], Assume thatthese are two energy
levels E; and E,:

Fob1=Eppy, o= Exp,.

The perturbation operator (the effect of the radio-
frequency field) is written in the form

(24)

S = —yiiH, (25)

where y —gyromagnetic ratio of the nucleus, I —

mechanical momentum operator of the nucleus, and

H —time dependent external radio-frequency field.
We introduce the notation

(W5 [ L) = (93 | 1| B1) = P
(IIJ,|[U|¢2——(1P2|1y|lpi)—l5, (26)
W L) =7 | L) =T
We assume that the solution of the time-dependent
Schridinger equation
171 = (Ho+ 1) ¥ (27)
is represented in the form
Y =ap, + bip,. (28)
Substituting (28) in (27) we get
= —(%) a—iy (PH.+TH,+ iSH,)b,
(29)

b—-_——CTz)b——w(PHx-i—THz-lSHy)a-

The mathematical expectation of the mechanical mo-
mentum operators will be

I:(t) =P (a*b+b*a), |
T, (t)=iS (a*b—b*a). |
On the other hand, the difference in the level popula-
tions is given by n = a*a ~ b*. Taking derivatives
of Iy (t), Iy(t) and n and substituting & and b from
(29) we get

(30)

Fe(t)= ( )o)ol (t) — 2yPSH,n,
I, (t)=2yS (PH.+ PH) n— <ﬁ> ool = (2),
> BT () — PLAETE 7, ),

These equations are analogous to Bloch’s equations.
Let the radio-frequency field be specified in the form

b
|> (31)
|

ri=2y

H,=2H,sin 6, sin ¢, cos o, (32)

H,=2Hcos0cos ot,

where 6, is the angle between the axis of the radio
frequency coil and the Z axis, and ¢ is the azimuth
angle. Solving (31), we find that in the single-coil
method the absorbed power is proportional to

H .= 2Hsin 0, cos ¢, cos wt, ]

b, ~ §%sin? 0, sin® ¢, + (P sin 0, cos ¢, -+ T cos 6,)2. (33)

Thus, the solution of the generalized NSR equations
can be used for line-intensity estimates.

3. Relative Intensities of NSR Lines for Spin 1 or %,

The calculations of the absorption-line intensities
for the case of resonating nuclei with spin 1 or %,
were made in [38],

If the eigenvalues of the Hamiltonian (10) are known,
then the eigenfunctions are calculated by the usual
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method (311, We consider first the results for spin 1,

For 6 =0 and ¢ = 0 (magnetic field directed along
the principal axis Z of the electric field gradient ten-
sor) we can obtain after some manipulations

W= C+ Cay,

A (34)
M=+ VW,

where
n

Ci= :
Y Vawrm VR
: R+V R A2 .
(,2 S - ———
V2@ 2R V R
W= Cipr+ Cope, ]

- (35)
7»2=%‘—% Vni+ R, J}

where
C,= L —,
V2(Re-f-vp)—2R V Ribn?
C— R—V R
Y Vegetmw Vit

1
Wy=1p3, Az= -3 - (36)

Here ¥; — orthonormalized eigenfunctions of the un-
perturbed Hamiltonian, corresponding to eigenvalues
Ai, while ; — orthonormalized eigenfunctions of the
operator I,. If the axis of the radio-frequency coil is
directed along X, then ¢, = 7/2, ¢; =0, and the ab-
sorption is proportional to P.

Let us consider the transition from the level Aj to
the level A;:

1
0 0 —V—E c
1
Py =001 0 0 V3 C: . (37)
1 1 0 0

Hence
1
Pa= gt yymere

We calculate analogously the transition probabilities
for other cases. The results of the calculations, which
are listed in Table I, can be used for all single crys-
tals. The numerical calculations for urea are given in
Fig. 7. In (a) are shown the relative intensities of the
lines excited when H; i Hy, where H,; is the radio fre-
quency field. Lines 1 and 6 are excitedif Hy | X and H;
Il 'Y, whereX, Y, Z — principal axes of the electric field
gradient tensor. Lines 1 and 6 correspond in this case
to the transitions v, 3 and vy 3, respectively. Lines 2
and 5 are excited if Hy Il Y, and Hy Il X, and corre-
spond to v, 5 and vy 3, respectively. On the other hand,
if Hyll Z, then line 2 corresponds to vy ; and 5 to vy 3.

Finally, lines 3 and 4 are excited if Hy Il Z and H;
il X or Hy Il Y. If Hy |l X, then line 3 corresponds to
v o and 4 to vy 3. Analogously, when Hy Il Y line 3
pertains to v; , and 4 to v; ;.

(38)
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FIG.7. Relative intensities of NSR lines in urea (resonance of
N** nucleus).

1
g 44

a) Hy L Ho; b) Hy || Ho.

In (b) are shown the calculated results for parallel
fields, when H; | Hy. In this case line 1 is excited if
Hy I X and corresponds to the transition v, 4. Analo-
gously, when Hy il Y line 2 is excited (transition v, ),
and when Hy Il Z —line 3 (transition v, ;).

We note that if we exclude the hyperfine structure
in the electron paramagnetic resonance spectrum,
then the Hamiltonian (10), with suitable constants, co-
incides with the spin Hamiltonian (41

Soor= 2 (38— S (S+ )]+ 5 ($2+8) —gbHS,  (39)
where D — spin Hamiltonian constant describing the
level splitting in a zero magnetic field Hy in the ab-
sence of nuclear interaction, § —electron spin oper-
ator, E — spin Hamiltonian constant, which deter-
mines the deviation from the trigonal or tetragonal
crystal field towards lower symmetry, ge — gyro-
magnetic factor of the electron, and g, — Bohr mag-
neton,

If we put

eQqzz

_3 _eQg
D= = wWes—y

%5251 and £ =

then the formulas obtained can be readily rewritten
for the case of electron paramagnetic resonance. In
place of R we simply put
3goBeH
R= e,

where S is the effective electron spin, and n = 3E/D.
In this case the electron paramagnetic resonance lev-
els will be expressed in units of % DS(28 ~1).

The results of the analytical calculations for spin
%, are listed in Table II. This table is illustrated with
figures 8—10. Figure 8 shows the dependence of the
NSR line intensity of Na® in Na,S,0;+5H,0 on R




calculated for the case when the constant magnetic
field is oriented along Z, while the axis of the
radio-frequency coil is oriented along X, Y, or Z
(Figs. 8a, b, and ¢, respectively). Strong interference
of the intensities is observed at R = 1.5. In the case
of Fig. 8a, the intensity of the line vy14 reaches in
this region a maximum value, while the integral in-
tensity of the line v, 4 drops to zero. In the case of
Fig. 8b, on the other hand, it is the intensity of Vit
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Table II. Spin %,
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which drops to zero, while v, ; has a maximum inten-
sity. Another case of interest is that of parallel fields
Hy I Hy I Z (see Fig. 8c),
in the intensity of the transition V2,1 is observed (the

absorption increases by a factor of approximately 30).
This feature of the spectrum is manifest in the region
of the ‘‘gap’’ between the energy levels, which may be

of interest for acoustic resonance (811,
the maximum of the intensity of the v, ; transition

where a sharp maximum

The position of
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Table II. (continued)
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FIG. 8. Relative intensity of NSR lines in thiosulfate (reso-
nance of N?*, Ho || 2).

a) Hy ||x; ») Hy 1y, o Hy || 2

does not depend on 7, and the maximum ocecurs for
all substances (spin J = %) at R =%, Then

4pH, 3
€Qqzz

and it is possible to determine the quadrupole cou-

pling constant from the value of the field Hy at which
the maximum intensity occurs. On the other hand, the

width of the maximum at half the intensity is rigo-

a7 7 2 .7 R
)

FIG. 9. Relative intensities of NSR lines in sodium thiosul-
fate (Ho || X).

a Hy |l x; BH Y oHy 2
rously equal to V3 1. Figure 9 shows the line inten-
sity in the case when the constant magnetic field is
parallel to X, and the linearly polarized field H; is
parallel to X, Y, or Z (see Figs. 9a, b, and ¢, re-
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VZ,
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<)
FIG. 10. Relative intensity of NSR lines in Na3S503.5H,0 (H, || Y).
a) Hi [l X; BHy || 2z oH, || Y.

spectively ). In the case when H, | Hy, four transitions
are also observed, and when H, Il H;, the intensity of
the two other transitions differs from zero.

An analogous situation occurs when H, is parallel
to Y (Fig. 10).

4. Relative Intensities of NSR Lines for Spin ¥%,

The relative intensities of the NSR lines for spin
%, in spodumene were calculated in (%], Two cases
were considered:

577

tion. In this case, therefore, the only effective compo-
nent of Hy is the one rotating in the same direction as
the Larmor precession of the nuclei. On the other
hand, in weak fields, both circularly polarized compo-
nents of H; are important. The authors of [45] have
therefore calculated the doubled eigenvalues of the
operators. We note that this is not essential in prin-
ciple, since it is the relative integral line intensities
that are calculated, The results of the calculations
for spodumene are shown in Fig. 11. A strong inter-
ference in the intensities of transitions v, and vy is
observed near R = 0.8.
Analogous results for Hy= 0 are shown in Table III.
The levels are numbered here in order of increas-
ing energy, and the corresponding transition frequen-
cies are
v2==vs=0,789 Mc (W,.,),
vi=v;=0.758 Mc (W,.,),
ve=vy=1.547 Mc (W ..,).

We note that the energy levels at Hy = 0 are doubly
degenerate, so that both direct and crossing transi-
tions are included in the transition probability calcu-
lations. As is seen from Table III, the line intensities
are approximately double in single crystals than in
powders (Hy = 0). Numerical calculations for J =%,
in zero magnetic field are usually not too complicated,
and in addition tables have been prepared for this
purpose[?%] and can be used for rough estimates of
the intensities at different values of the asymmetry
parameter. The probability of the ‘‘forbidden’’ tran-
sition increases with increasing n [25:461,

w w
1) H; is linearly polarized along the X axis for
arbitrary value of H, directed along the Z axis; nr :-?
2) H, is linearly polarized along an arbitrary di- vf
rection relative to the principal axes for the case v
Hy = 0. Sk ¢
The linearly polarized field H; can be resolved vy
into two circularly polarized fields that rotate in op- m/
posite directions [39], 1 the case of sufficiently large 0 08 16 24 az 40R O 08 16 24 42 40 F
values of Hy, magnetic interactions predominate, and
the quadrupole interaction is only a small perturba- FIG. 11. Relative intensities of Al*’ lines in spodumene,
Table III
Crystal |Relative Crystal |Relative
orientation | Intensi~ w w w orientation | Intensi- w w w
relative to ties [(152)|@e T 1<z )| relative to| ties |12 ETHULE)
Hy Hl
H X P 7.2 | 7.5 | 0.33 | Hl{Z s 0.5 | 2.6 | 0,18
H Y Q 2.8 0.6 (049| Poly- 1/3 3.5 | 3.6 |0.23
crystal (P+
+Q+
+5)
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IV. TEMPERATURE DEPENDENCE OF THE AB-
SORPTION FREQUENCIES AND THEORY OF
NUCLEAR SPIN-LATTICE RELAXATION

The first theory of the temperature dependence of
the quadrupole coupling constants was developed by
Bayer (%71, who took into account the rotational nu-
clear swings that lead to averaging of the electric
field gradient. Bayer, however, took into account only
one axis of the rotational swings of the molecules in
the crystal. Skripov (%] constructed a more general
theory for the temperature dependence of the NQR
frequencies:

1) Since Bayer considered only one particular case
of the rotational swing axis OA perpendicular to the
electric field symmetry axis OX, more general for-
mulas were obtained, suitable for any direction of OA,
and also for the case when the molecule participates
simultaneously in several vibrational motions.

2) The calculations were extended to include also
small deviations from axial symmetry of the electric
field near the nucleus.

3) An approximate calculation was made of the ef-
fect of anharmonicity of the rotational swings on the
magnitude of the temperature variation.

4) It has been shown that the acoustic vibrations
introduce a noticeable contribution to the temperature
dependence of the quadrupole resonance frequencies,
which for transverse waves can approximately be ex-
pressed by the formula

4 k4 03

8 N\
V(T) = vo= — 5 55 Vagir D (,‘

T /‘ > (40)

where v, — NQR frequency at 0°K, vQ — NQR fre-
quency in the absence of lattice vibrations, p — crys-
tal density, C; — speed of transverse acoustic waves,
h — Planck’s constant, k — Boltzmann’s constant, T
— absolute temperature, 8 — characteristic Debye
temperature, D — Debye function.

It is seen from (40) that the NQR frequency de-
creases with rising temperature. This is essentially
true for molecular crystals, but for other compounds
the temperature coefficient frequently has the oppo-
site sign, i.e., the resonance frequency increases with
rising temperature. Bayer’s theory, which does not
take volume effects into account, is incapable of ex-
plaining the positive temperature coefficient. An ac-
count of volume effects was given in [59],

An example of a positive temperature coefficient
is afforded by the dependence of the quadrupole cou-
pling constant of A%’ on the temperature in four
alums, taken from (831 (Fig. 12). In nuclear reso-
nance it is customary to consider two relaxation
times —transverse and longitudinal. The transverse
relaxation time T, is a measure of the line width,
while the longitudinal or spin-lattice relaxation time
T, characterizes the rate of establishment of Boltz-
mann equilibrium. These main characteristics of

a6
Mc Rb
a5l n

45

a3

1 L
Jg 4
Temperature °C

! 1 1 Il
a—%‘ﬂﬂ 60 180 -60 40

FIG. 12. Temperature dependence of eQq,, of Al* nuclei in
single crystals of MA1(SO,4),. 12H,0, where M = K, NHg4, Tl, Rb.

spin-lattice and spin-spin relaxation appear also in
the presence of the quadrupole relaxation mechanism.
The first proof of the reality of the quadrupole mech-
anism in many crystals was presented by Pound {1,
He has shown qualitatively that T; for the resonance
of ' in KI is much smaller than T, for the reso-
nance of Na? in NaNO;, which in turn is much
smaller than T; for the Li’ resonance in LiNO;. The
reason is that the quadrupole moment of 1?7 is con-
siderably larger than that of Li’ whereas that of Na%
has an intermediate value.

Further proof was provided by experiments with
NaBr crystals. Na?, Br™, and Br®! have spin ¥;
the magnetic moments of these nuclei are almost iden-
tical; consequently, any relaxation mechanism due to
magnetic interaction should yield approximately the
same relaxation time. Actually, however, the relaxa-
tion time for Na® turns out to be almost double that
for Bré!,

In our measurements, the intensity of the Na?3
NMR signalis, inthis crystal, approximately triple the
intensity of the Br® signal. Therefore a study of the
relaxation processes for Br® entails some difficul-
ties. As already noted, these experiments were made
in strong magnetic fields.

A theory of nuclear quadrupole spin-lattice relax-
ation for spin % in zero magnetic field was con-
structed by Bayer[%"], who took account of the influ-
ence of the rotational swings on the time T,. Bayer’s
formulas were generalized in (891 to include the case
of resonating nuclei with spin 1 or %. If the time T,
is measured, then the order of magnitude of the aver-
age lifetime of a quantum of the rotational swings can
be estimated [81,62],

However, Bayer’s theory is not applicable to ionic
crystals or when a strong magnetic field is applied.
The temperature dependence of the spin-lattice relax-~
ation time for ionic crystals was elucidated by Van
Kranendonk (%3] and Chang[®J]. Van Kranendonk’s
theory deals with nuclei that relax by interaction be-
tween the nuclear quadrupole moments and the time-
dependent gradient of the electric field. This time
dependence is due to the thermal lattice vibrations in
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FIG. 13. Dependence of T of deuterons on the orientation of
single~crystal KD,POy in a magnetic field.

the crystal. Van Kranendonk’s theory is constructed
for nuclei in a crystalline electric field with cubic
symmetry. It is therefore directly applicable to the
case of strong magnetic fields. As reported in (43,
Chang’s theory is more general. In both the Van
Kranendonk and Chang theories the relaxation is due
to two-phonon processes (for T > 1°K). Both authors
have used the Debye distribution for the lattice waves,
which is apparently valid only for ionic crystals.

The quadrupole interaction Hamiltonian jq de-
pends on the distances between the given nucleus and
the other ions which contribute to the electric field
gradient. Therefore, in the presence of lattice oscil-
lations g can be represented as a function of the
small displacements of the ions in the lattice:

Ha= G+ HE+ HP+ ..., (@1)

where 3 does not include the displacements of the
ions and is the Hamiltonian of the perturbation of the
Zeeman levels in the external magnetic field, while
an) includes only those ion displacements whose fre-
quencies lie near the nuclear Larmor precession fre-
quency wgy; on the other hand I}Cg) includes the dis-
placements whose difference gives w;, and pertains
to the so-called ‘‘indirect’’ relaxation process, which
usually predominates. If a Debye distribution with
characteristic temperature 6 is used for the lattice
vibrations, then the temperature dependence of the
nuclear spin-lattice relaxation time is

I YA T>Lp

7 T (a T2> for >59, ‘ )
TLNW for T <0.026,
1

where a and b are constants.
Some experimental data on the relaxation time are
listed in Table IV, which is taken from [6:651,
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Table IV
Crystal |Nucleus | Ty, sec
LiBr Br?? 0.028
AgBr Br79 0.016
T1Br Br7® 0,26
KI 1827 0.039

However, theoretical estimates of the absolute
values of T, are difficult. Van Kranendonk consid-
ered only the contribution to the electric field gradient
from the nearest ions. For this case he obtained a
value of Ty which was four or six orders of magnitude
higher than observed in experiment. Somewhat better
agreement with experiment was obtained in (68,601,

In [%8] Kondo and Yamashita took into account the in-
fluence of the overlap of the atomic wave functions of
neighboring ions in alkali-halide crystals. It is known
that the overlap integral depends on the distance be-
tween ions. In the presence of thermal vibrations of
the lattice ions, the degree of wave function overlap
will change. Kondo and Yamashita calculated the ratio
of the quadrupole relaxation time of the metal nuclei
and of the halogen nuclei in the same crystal. The
overlap model has yielded satisfactory agreement
with the experimental data. An account of the overlap
of the wave functions in the crystals has also yielded
satisfactory estimates for the chemical shifts, i.e.,
the difference between resonance frequencies for the
given nucleus in the crystal and in the agueous solu-
tion of the same compound.

It is shown in [%%] that if the spin dependence of T,
is separated, then the ratio of the quadrupole relaxa-
tion time T; of two isotopes with different spins will
be

Ty

Q2\2 [ (Jy)
T1{J3) )

Qr/ fU9

(43)

where Q; and Q, are the quadrupole moments of dif-
ferent isotopes of the same nucleus. Since the func-
tion £(J) was found to be of the form (2J +3)/J%(2J - 1),
a comparison was made with experiment. In particu-
lar, the result for the RbCl crystal was

Q (BB 12 16
[ S | =428 —L88 ~o0.2, \ »
7 (Rb87) . T, (Rb¥7)
’T:(W)‘ =1.027 theor., mg—s) =1.23 expt. l

The same paper gives measured values of T; of 1'%
in crystalline KI between 77 and 800°K. The experi-
mental points fit better the theoretical curve T; ~ T2
obtained by considering the two-phonon reiaxation
process, than the curve T ~ T4 predicted by consid-
ering the four-phonon process proposed by Khutsi-
shvili L7101,

Recently Hebel and Slichter ['1] obtained a relation
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between the relaxation time and the probability of the
relaxation transition

1 _izm, p,(Em_Em+u.)2W(my m—p)

T2 Enbh W

where W (m, m+u) is the probability of transition of
the nucleus from the state m to the state m+yu, while
Em and Em,, are the energy levels for these states.
If we substitute for W the expression obtained by
Van Kranendonk (%3], we find that T, should be iso-
tropic with respect to rotation of the crystal in an ex-
ternal magnetic field. This was experimentally con-
firmed in [¥7] and [™], An isotropic value of T, of
the order of 0.80 + 0.05 sec was obtained in an InSb
single crystal¥7], The same was approximately ob-

tained for several crystals of CsBr, Csi, and CsC1[%1,

For example, the results obtained for CsBr were
T4(Cs) = 1050 + 40 sec and Ty(Br) = 0.105 + 0.020
sec.

On the other hand, since the probability of relax-
ation transition has a strong angular dependence, the
relaxation times obviously depend on the orientation
of the crystal in the external magnetic field. It is
possible that all depends on the magnitude of the ex-
ternal magnetic field and on the nucleus used in the
experiment (order of magnitude of the quadrupole
coupling constant in the given substance). If the ex-
periments are carried out in strong magnetic fields
and in substances with large eQqy,, then the transi-
tion probability, and consequently also the relaxation
time, indeed depend little on the crystal orientation
(see Figs. 7—11). On the other hand, if the experi-
ments are made in intermediate fields and with nuclei
having small eQqgzz, then isotropy of the spin-lattice
relaxation time T, should be observed. Such isotropy
was indeed observed[1®], A series of papers[73-"]
on spin-lattice relaxation in imperfect cubic and non-
cubic crystals was published by the Andrew group.

In [™J a method is given for determining the spin-
lattice relaxation mechanism of nuclei. Pound[!] has
already shown that if one of the NMR spectral lines is
saturated by a strong radio field, then the signals of
the other lines in the spectrum change noticeably when
the dominant relaxation mechanism is quadrupole, and
do not change when the dominant mechanism is mag-
netic. The two-coil method of distinguishing between
the two mechanisms is not always convenient or
suitable, and it is therefore shown in ["3] that a dif-
ferentiation can be obtained by studying the behavior
of the lines for saturation with the single-coil method.
Kinetic equations were set up for the energy-level
populations of nuclei (J >¥%,) acted upon by strong
constant and radio-frequency magnetic fields. For
the case of the stationary state, the solution obtained
for the system of kinetic equations is

Np—=Np =22

1+%p;’ (46)
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where the index i pertains to the different excited
lines of the spectrum. Here Ny, is the population of
the level m, n, the difference between the level popu-
lations in spin-lattice equilibrium, pj is proportional
to the square of the amplitude of the radio-frequency
field, and «; is a constant.

In the case of the magnetic relaxation mechanism,
the value of x; was found to be unity for all transi-
tions. On the other hand, for quadrupole relaxation,
ki had different values for different transitions, as
listed in Table I of [74],

The saturation factor (1 + kjpj)~! also differs for
each spectral line in the case of the quadrupole relax-
ation mechanism. Consequently, different radio-fre-
quency power levels are necessary to produce an iden-
tical degree of saturation of the different lines. This
method served as the basis for the determination of
the spin-lattice relaxation mechanism in various
single crystals.

Let us present briefly the results obtained in Cndl,
A quadrupole spin-lattice relaxation mechanism was
found for Na® in synthetic single crystals of NaNOs,
Na,S,03+ 5H,0, and NaClO; in a magnetic field of
6040 Oe at room temperature. The relaxation of Li'
and Al?" in single crystals of the natural mineral
spodumene and the relaxation of Al%’ in the crystal
of the euclase mineral were found to be magnetic. It
was also observed that the relaxation of B!! ina pure
synthetic crystal of borax was also magnetic.

It is not surprising that the relaxation mechanism
is magnetic in natural single crystals, since they con-
tain a noticeable amount of paramagnetic impurities.
Indeed, an estimate of the spin-lattice relaxation time
due to these impurities, in accordance with [703, yields
values corresponding to the presence of the same
amount of impurities as obtained by a different inde-
pendent method.

It is indicated in [7J that the efficiency of the quad-
rupole relaxation mechanism in ionic crystals is de-
termined, in order of magnitude, by the value of
Q*(1-v,)%, where Q is the quadrupole moment of
the nucleus and vy, is the antiscreening factor.*

The value of Q*(1 —v«)? is several hundred times
smaller in B!! than in Na®, so that the magnetic re-
laxation mechanism for the B!! nuclei predominates
in the borax crystal.

Some additional information on nuclear spin-lattice
relaxation time was obtained by the method of ultra-
sonic saturation of the levels. Proctor and Robinson
['%,78] yged ultrasonic irradiation, at a frequency wg,
of an NaCl crystal placed in a magnetic field. The

*The antiscreening factor y., takes into account the distortion
of the inner electron shells of the atoms due to the interaction
with the quadrupole moment of the nucleus. The antiscreening in-
creases the contribution to the electric field gradient from the
charges of the neighboring ions.
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difference in the populations between the levels m
=%, and m = -, of Na® was measured against the
amplitude of the nuclear induction signal, which fol-
lowed a short pulse of radio-frequency field of fre-
quency wq equal to the Larmor precession frequency
of Na®®, When wg = 2w, the ultrasound excited
nuclear transitions and the level population difference
decreased. Analogous experiments in zero magnetic
field were carried out with NaClO3 by Proctor and
Tanttila[™], who investigated the direct relaxation
process. The theory of resonant absorption of ultra-
sound by paramagnets was first developed by Al’tshu-
ler [(89-823 This procedure has been named acoustic
resonance.

It should be noted that the prediction of this phe-
nomenon by Soviet scientists S. A. Al’tshuler and
E. K. Zavoiskil has played a decisive role in its study.
The calculation of the paramagnetic sound absorption
coefficient is analogous to the calculation of the para-
magnetic lattice relaxation time at helium tempera-
tures. On the other hand, the exchange of energy be-
tween the spin system and the lattice vibrations is
essentially effected, down to helium temperatures,
by combination scattering of the phonons. One-phonon
processes become essential only at the lowest tem-
peratures.

The development of the acoustic resonance method
has opened up new possibilities for the study of spin-
lattice relaxation in crystals.

In [83] the concept of crossing relaxation was in-
troduced. For exactly equidistant levels the Boltz-
mann distribution over the different spin states is
established within a time of the order of T;. For non-
equidistant levels, the ions in the different states reach
equilibrium with the lattice after a time T;. When
overlap of the resonance lines is possible for approx-
imately equidistant levels, equilibrium is established
in some intermediate time, called the crossing relax-
ation time T, ;. The method of Bloembergen and co-
workers (83 consists in taking account of the non-
diagonal elements of the spin-spin interaction opera-
tor. We note that as R varies it is possible to observe
in NSR several regions of crossing relaxation, for ex-
ample near the points where the levels cross.

V. EXPERIMENTAL PROCEDURE

The experimental procedure in NSR differs some-

what from that used in nuclear magnetic resonance [7,8],

In NMR the generator-detector frequency is usually not
varied over a wide range, since the resonant conditions
can be satisfied there by varying the constant magnetic
field.

In NSR experiments with a wide range of magnetic
fields, it is also necessary to tune the generator fre-
quency. In this sense, the NSR apparatus is similar
to the apparatus used in NQR[3-%), In NQR, however,
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frequency modulation is necessary to observe the
spectrum (it is possible to use pulsed Zeeman modu-
lation for polycrystalst4»48]), In NSR, like in NMR,
magnetic modulation is used. The use of magnetic
modulation easily eliminates all the difficulties con-
nected with parasitic amplitude modulation when the
frequency of the generator-detector deviates.

Inasmuch as NSR lines are usually weak, an auto-
matic recorder is usually employed to register the
spectrum [4%], along with a phase detector [%%%11, Block
diagrams of installations of this type have been fre-
quently described in the literature. We note only that
in NSR it is possible to employ either the absorption
method [%2-%1 or the nuclear induction method 0],
Robinson notes {107 that the nuclear induction method
has made it possible to obtain better sensitivity than
the absorption method. Robinson’s setup is shown in
Fig. 14a.
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specimen | 220 220
N L4
17====—=--=1 7
to amplifier K D WO oF WPF/T
/
__________ J

FIG. 14b. Apparatus for observation of NQR.



582

FIG. 14c. Apparatus for observation of NSR.

Since the use of a radio-frequency bridge decreased
the sensitivity by a factor of 5, the nuclear induction
method was used. The generator coils had 100 turns
each and were wound on a Plexiglas form; the coil in-
ductance was of the order of 250 uh. Every precau-
tion was exercised to make both halves of the gener-
ator coil identical. The specimen was placed in the
receiving coil. The crossed coils were then placed
in a special copper screen. The magnetic field was
modulated with a 225 cps voltage.

Since the experiments were carried out at rela-
tively low frequencies, a sufficient signal/noise ratio
could be obtained by using rather large single crys-
tals. Spodumene single crystals weighing 5 and 10 g
were used in [19), A gpecial device made it possible
to rotate the crystal inside the receiving coil. Speci-
mens 2.8 cm? in volume were also used in [%3), and
optimum signal amplitude obtained with a radio-fre-
quency coil voltage of 2V.

A detailed theoretical analysis of the Franklin os-
cillator circuit (Fig. 15) used in NSR experiments was
made by I. M. Ovchinnikov [%5], who showed that its
circuit is described by fourth-order differential equa-
tion and the condition for the self excitation of un-
damped oscillations in this circuit has the form

2 . -
BoCoS (Co+ )<L,

(47

where C; is the coupling capacitance between the plate
and the grid, C the tank~-circuit capacitance, S the
average tube transconductance and Ry, the plate load.
The apparatus used in NSR must meet stringent sen-
sitivity requirements. It is sufficient to state that
NSR signals of N in (CH,)(N, (Fig. 16a) in a zero
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FIG. 15. Diagram of Franklin oscillator,

FIG. 16. a) NSR signal of N** in urotropine; b) Na?® signal in
NaCl; ¢) Na*® in Nal.

magnetic field[53] are approximately ¥, as weak as
the NMR signals on protons in a magnetic field on the
order to 2000 Oe in the same compound. In NSR the correct
choice of the radio-frequency field level is very im-
portant, since it governs the resultant signal/noise
ratio. The constant magnetic field is usually produced
with electromagnets. Relatively low resolution of the
apparatus (on the order of 107%) is sufficient for this
purpose. Rotating magnets of the type described in
(52] are very convenient. A convenient magnet gap
construction is described in [56], Although no theory
has yet been produced for the NSR line shapes, a study
of the line shape becomes essential near the points of
level crossing. Consequently superregenerators are
not used as a rule for the observation of the signals.
In this frequency band the superregenerator distorts
the line shape without affording any gain in sensitivity.

VI. EXPERIMENTAL VALUES OF THE QUADRUPOLE
INTERACTION CONSTANTS*

Table V lists the experimental values of the quad-
rupole interaction constants and the asymmetry pa-

*Principal attention is paid to papers published after the re-
. 4,6 . 3,5
views [*] and not referred to in [*].
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cleus Compound T, °K
Al27 | ALO; 293
AlBrj 296
77
LiAL(Si0y), 293
spodumene
BeAl,O, 293
chrysoberyl
Be3gAlx(5103)g 293
beryl
HBeAl(Si0;) 293
v enclase
NaAlSizOg albite 293
MgAlL,O, spinel 293
HAL(SO,),- 12H,0 293
NH,ALSO,),- 12H,0 | 293
RbA1(S0,),-12H,0 293
T1AYSO,).- 12H,0 293
B B 208
B.03 296
B,03-3H,0 296
B,C 296
TiB, 296
Z1nB, 296
BN 296
Cl3H3BsN3 296
NaBF, 296
KBF, 296
NH,BE, 296
K3B30s 296
CaB;0, 296
Bu BH,CO 298
B! B(CHg)s 1 83
B10 B(CHg);31 83
BiL B(CHg)s IT 83
Blo B(CHgs IT 83
Bu B(C.Hs)s 83
Bl B(C.H;)3 83
Bu NayB,07-411,0 293
kernite
But Mg,Bg0y1-15H,0 293

inderite

3.017
3.8326
3,0319

2.695

4845
L5536
5890
5016
5554
L0740
6068
286

287

el e T IR

Table V

ehg, .. \ ‘ Literature source Nu-~ o Fre- Q0 50 Literature source
Mc ‘ n } and remarks cleus Compound e qu:;[récy’ Mclz K and remarks
l ! ‘
2.393 | 0 1; transitions Bll | CaB30,(OH);-H,0 | 293 0.436 | 0.487 | %
’ 41/, ifr_l;_:i/‘h (colemanite) 0,309 0.825
‘ 8, 5/, 2,541 0.059 ferroelectric
13.57 0747 s BT TR Bef | Be 0.048 | 0 100
13.858 (.7985 B93A12(81i03)6 293 0. 504 0.090 {19
bery.
9,960 0.93 9, 10, 15 BeAl,0, 293 0.480 0 101
chrysobery! I r
85 o Cs138 | Cs,Mg(S0y)e-6H,0 | 293 1.3 102
ﬁ.ﬁzg 8 7)3 8 Cuss | Cu,0 301 [26.020 | 51.956 103 |
3.003 | 0 19, 86 Cuss | Cu,0 301 (24.079 | 48.065 | 0.0012 |
Cuﬁz KCu(CN), 289 133.479 68.322 105 !
5 18 Cus® KCu(CN), 289 (30.984 60.422
5.173 | 0.6% Cuts | KfCu(CN.) 293 i3 | o 108 (
. 127 Cubs s Cu(CN),] 293 1.0
3‘3’3 8’634 128 pz | DCN 0,290 0 106 [
0.400 0 87, 87a DG, Cl 0.175 0 106 !
0,447 0 87, 87a ND3 0.200 0 107 f
See 87a Lizsoz, -Dy0 148 0.237 0.14 108 ;
Fig.15 87a 293 0.123 0.80 !
5.39 | 89, 90 KD,PO, 293 0.1195 | 0.049 | 109 ferroelectric |
2.76 0 | 9 with Curie tempera-
2.56 {95 ture T =213°K
09-0,7 0© 97 K3 | KCIO; 203 1.058 m
13301] 0 K& | KClO; 293 1.292
5,58 0 Li7 | Li, 0.049 , 114, 115
0.360 0 98 LiH 0.346 | 115
0.118 0 98 LiOH 293 | 0.5265 0.110 0 | 112
2.96 0 e LiOH-H;0 293 | 0.6392 |~0.084 |~0.3 j 112 |
0.80 ;98 | | "~ denctes that the|
0.104 0 98 values are accu-
0.110— 98 ! . rate to 10 percent
0.290 . L}NO3 293 0.0392 | 0O 112
0.110— 98 i LiNO3-3H,0 293 0.039% | 0 112
0.220 LilOs 293 0.0452 | O 112 !
0.95 | o8 Li,PO4 293 ~0.0916 |~0.42 | 112 w
0.81 i 98 Li;T'i04 293 ~0.0704 |~0,29 112
1.55 | 89, 91 Li,Zn0g 293 0.108 | 0 {112
4.873 | 89, 92 A 0,0656 0 112
| %o, oo Li»CO5 293 0,060 1
| tain to tw cryatal- L1,804 11,0 293 0.045 #0 |12
© line modificatli,ons LlAl(SldO3)2 293 0.0757 | 0.79 15, 51, 101
. e s M spodumene y
i L;klmgos; transition at Li¢ LiAl(SiOg), 293 0.00218 116 |
i N4 NHj 77 | 2.6779 3.5705 117
4.969 " 89, 92 NDg 77 | 2.4231 3.2308 117
8o, 02 (CH)sN 77 | 3.8954 | 5.1939 117
(CH,)oN, 77 | 3.4076 | 4.5435 | 0 a7
5.003 92, 93 CO(NHg)2 77 | 2.347
o 93 29137 | 3.507 | 0.323 | s
2,674 |, 31910 | 0.264 |11y 12,3 -three
3.1902 } CI;{lstallograghb |
= = cally nonequiva-
8(53;; 833 17, 89 lent positions of
2.:563 0“163 the nitrogen atoms
: : P-(NHp)CeH, 77 12.690
2.567 | 0.116 3.2109}2
0,355 | 0,51 |9 2.694
0.517 | 0.76 : 3-2129}
9.546 0.086 p-C1CgH,NH, 77 | 2.837
3.3382 4,147 0.243 us
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Table V. (continued)
Nu- Compound T,°K qul:::;-y €Qa,,. n Literature source
cleus Me ‘Mc and remarks
p-BrCgH,NH, 77 | 2.860
3.3417 | 4.135 | 0.231 |us
Nt | HCN 195 | 2.9178 | 3.8904 | O 121
77 | 3.0052 | 4.0183 | 0.0085 | 121
3.0223
CICN 77 | 2.400
2498 3.219 | 0.0137 | we
BrCN 77 | 2.5109
5 5903 | 3-3542 | 0.006 |47, ue
ICN 199 | 2.5424 | 3.4016 | 0 4
CHZCN, a-form 77127992 | 3.7380 | 0.0046 | 120, 129
CH4CN, fB-form 77 %‘57;?(5)3 3.7375 | 0,0082 | 120, 129
CeHy;CN 77 é ggé 3.7756 | 0.0208 | 120, 121, 120
CH,(CN) 77 | 2.8670
ol 50154 | 3:9216 | 0.0757 | 120
CCI4CN 77 | 3.0337
3 3 oaas | 20521 0.0053 ! 122
4-CsH,N(CN) i SO0I8 1 3.8051 | 0.014% | 12
2-C;H,N(CN) 77 | 2,8978 122
5 hN) i 3_0336 3.9583 | 0.0716
H;(C ,8098 g 122
6 Hs 30183 | 38854 | 0.1073
(CNCl), 77 | 3.0445
3.0799 | 4.083 | 0.017 |12
Na2 | NaNOj 293 0.334 0 1, 130; phase transition|
at 549°K
NaClOg 209 | 0.3960 | 0.801 | © 124
NaBrOj 293 0.864 | 0 124
NayS;03-5H,0 293 2.258 | 0.334 |16
0.830 | 0.409
NaH,P0,-2H,0 293 1.179 | 0.467 | 125
NaBF 296 1.09 0 98
NaAlSig0; albite | 293 2.62 0,25 | 127
. NaNO, 293 1.1003 | 0.1092 i;g 151,
Nb% | KNbOg I 208 ggég é I—orthorhombxc'
. crystal structure
2.52131 2.3120| 0.806 | nonbohedral;
. 1, 2, 3, 4, denote
KNbO3 IT 77 %ggz é: thegtran7siti_ons
11335 3 (z.3) (3.
0.68 ? s ) 7 5 >
2/’ (12 T2
5
(z:3) |
respectwely, 1,
2', 3’ denote the
transitions
(z3):
(z 2) (
respectwely
Rb87 | Rb,Mg(S0O,),-6H,0 | 293 3.441 | 0.47
rameters for several crystals. Only substances in interaction constant is decisive in the analysis of the
which NSR can be observed are included. The value spectrum and the determination of the frequency re-
of e€Qq,, is chosen such as to make the parameter gion and magnetic fields in which this spectrum should
R = 4uH,/eQqy, not too large for the practically at- be sought.
tainable magnetic fields (10—20 kOe). For this pur- 1) A% (J =5/, u®" =3.6408 pupye). The first to

pose it is usually sufficient to have eQqy, of the order
of several Mc. In the case of substances with large
nuclear magnetic moments (Nb®3, Cu®®, Cu®®), quad-
rupole coupling constants on the order of several times
10 Mc are also suitable for NSR. We shall discuss
briefly the experimental results pertaining to the nu-
clei listed in Table V.

We consider here only questions connected with the
NSR energy levels, since knowledge of the quadrupole

measure the quadrupole coupling constants in alumi-
num compounds, using the quadrupole splittings of

the NMR spectrum, was Pound (1], The measurements
were made both for powder and for the natural corun-
dum crystal Al,O0;. The spectrum in a field of 2400
Oe was observed near 3 Mc. The crystal was also ro-
tated and the frequency shift and relative line intensi-
ties subsequently measured. However, the small
signal/noise ratio did not allow any conclusions to be
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drawn concerning the character of the dependence of
the intensities on the crystal orientation and the mag-
nitude of the magnetic field. At the present time a
systematic study is under way [15:18-20] of minerals
like beryl, chrysoberyl, spodumene, euclase, etc. A
detailed study was made 1% of the resonance of Al1%7
at 660 kcs with 6 = 0° (Fig. 17a) and 800 kcs with @
= 5° (Fig. 17b). Figure 17c shows the increase in the
splitting of the frequencies v, 3 and vy 4 at 800 kes
as the angle 0 is increased from 0 to 5°. The de-
crease in the signal amplitude in case (c) is due to
the fact that the modulation amplitude is smaller. In
cases (a) and (b) the magnetic field is 326 Oe, and in
case (c)— 369 Oe. Figure 18 shows the experimental
and theoretical data. The theoretical continuous
curves are in good agreement with the experimental
data (see [45]), Deviation from theory is found only
for the point of level crossing. For R = 1.4, a thor-
ough study of the behavior of the lines has shown that
a doublet, not predicted by the theory for 6 = 0°, is
observed. According to the theory[?®] the levels should
cross at this point. Experiment, on the other hand,

shows that there is actually no such crossing (see Fig.

17¢c). The author suggests that this fact can be con-
nected with some weak interaction (which was not
taken into account in the calculation of the levels),

Jw,
6=0° 800 kes
g=7° 800 kes
Y24 Yoz
&=5° ﬁﬂﬂkcs G=5° ﬂﬂﬂkcs

C

FIG. 17. NSR signals of Al*’ in spodumene,
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FIG. 18. Comparison of expérimental and theoretical results for
spodumene. (Resonance of Al*").

leading to the appearance of non-diagonal terms in the
Hamiltonian., Such non-diagonal matrix elements can
cause changes in the character of the mixing of the
wave functions, so that the levels can no longer cross.

It is possible that these are crossing interactions.
On the other hand, at R = 14 a doublet with a splitting
on the order of 5 Oe can always be observed in experi-
ment. This doublet could be observed directly at the
proposed level crossing point. The observed splitting
could be attributed to the fact that the Z axis and the
H, direction did not coincide, and 0 = 0.5°. However,
# was varied in steps of 0.25° and still no point was
found at which the doublet would change into a singlet.

2) B (5 =3, u!=1.8004) B! (=3, ut
= 2.6886). Petch and co-workers [%:%1 jnvestigated
borates (colemanite, inderite, etc). In [%] the Vol-
koff method was used to study resonance in the single
crystal of inderite MgyB,0y4 ¢+ 156H,0. The measure-
ments were carried out in a field of 7187 Oe at room
temperature. By studying the spectrum obtained with
the crystal rotated alternately around three mutually
perpendicular axes it was concluded that there were
three non-equivalent positions in a unit cell with six
B nuclei. The quadrupole coupling constants and the
asymmetry parameters were determined (see
Table V), as well as the orientations of the principal
axes of the electric field gradient tensor for the three
indicated positions of the B!! nuclei. A comparison
was made with the data obtained in [%*] for colemanite
CaB30,(OH); - HyO. Different organic boron compounds
have quadrupole coupling constants on the order of
1-5 Mec, i.e., they are suited for investigations in the
NSR region. The asymmetry parameters of these com-
pounds are not listed in Table V, since they were in-
vestigated [8%:9] without application of a constant mag-
netic field. Silver and Bray[*¢-%] published several
papers on the investigation of resonance of P!! in dif-
ferent compounds at room temperature. Investigations
of ByO3 additives in glasses, in a field of 5250 Oe, are
reported in (%], The dependence of the B!! line inten-
sity on the concentrations of these additives was stud-
ied. Three nonequivalent positions of B! in the unit
cell of the single crystal CB, were observed in (973,
The upper and lower limits of the quadrupole coupling
constants were estimated for two positions of B, and
a value eQqy, = 5.58 Mc was determined for the third.
The asymmetry parameters were found to be equal to
zero.

3. Be® (J =%, u’=1.1774). The quadrupole cou-
pling constant in metallic beryllium was estimated by
Knight 1191 Using as an example the beryl crystal
BejAl, (8iOg)g, Brown and williams (1] developed their
already mentioned method of finding the principal axes
of the electric field gradient tensor. They plotted the
spectra of the beryl single crystal rotated about the
principal axes in a field of 7800 Oe at 300°K. The val-
ues of the quadrupole coupling constants and asymme-
try parameters of the nuclei Be® and Al?¥Y were found
with high accuracy.
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4. Cs¥ (J =%, ul® =2,5771). An estimate of the
quadrupole coupling constant was obtained [1%2] for only
one compound, Tutton’s salt Cs,Mg(SO,),* 6H,O.

5. Cu® (J =%, u® =2.2262), Cu® (J=9, ub
= 2.3845). Inasmuch as the magnetic moment of cop~
per nuclei is relatively large, even substances with
large quadrupole coupling constants (10—100 Mc)
turn out to be suitable for investigation in the NSR re-
gion, Examples are single crystals of cuprous oxide
Cu,0, recently investigated by Cox and Williams [193],
Earlier measurements with powder have shown that
the spectrum lies in the region of 26 Mc for Cu® and
24 Mc for Cu®®, On the other hand, work with single
crystals has made it possible not only to find with high
accuracy the quadrupole coupling constants for the two
isotopes (see Table V), but also to determine the di-
rections of the principal axes of the electric field
gradient tensor and to estimate the asymmetry pa-
rameter. Measurements were also made of the line
intensities for different crystal orientations. In a
study of single-quantum transitions in fields of 500
and 3000 Oe, it was found that these lines are usually
weaker in the stronger fields. On the other hand, the
intensity of the line pertaining to the two-quantum
transitions increased with increasing H,. The behav-
ior of the lines pertaining to the two-quantum transi-
tions was investigated in a field of 2000 Oe as a func-
tion of the angle 4. These lines were lost in the noise
as 0 approached 0°. The spectrum observed near 6
= 90° has several interesting features. As 8 ap-
proached 90°, the one-quantum and two-quantum lines
merged into a single line in a field of 2000 Oe. An-
other interesting feature was that the line intensities
increased more rapidly than expected for ¢ — 90°.

6. D (J =1, u? = 0.857348). Recently an investiga-
tion was started [197-110] of the quadrupole interactions
of deuterium nuclei. Of particular interest in this re-
spect is [1%], where single-crystal KD,PO, was in-
vestigated. The Volkoff method was used to deter-
mine the asymmetry parameters and the quadrupole
coupling constant (see Table V). No temperature
variations were noted at all in the electric field gradi-
ent tensor on going through the ferroelectric Curie
point. Neither the quadrupole coupling constant nor
the asymmetry parameter changed.

7. K% (I =%, u%® =0.391), K (J =9, put
= 0.215). The determination of the quadrupole cou-
pling constants of K in potassium chloride is re-
ported by Kaplan and Hahn (1111,

8. Li® (J =1, p¥=10.82189), Li' (J =%, ul
= 3.2559). Measurements of the quadrupole coupling
constants and of the asymmetry parameters of Li! in
many compounds were dealt with by Hon and Bray[112],
The measurements were carried out at room temper-
ature, and eQq,, and 7 were determined from the line
splitting in strong magnetic fields.

The spodumene single crystal LiAl(8iOg), was in-
vestigated by Volkoff’s group 1533, It has turned out
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that the Y axis of the electric field gradient tensor
coincides with the crystallographic b axis (the spodu-
mene single crystal has a monoclinic structure). The
other two principal axes lie in the ac plane, and the

Z axis, which lies between a and ¢, makes an angle
of 48° + 2° with the C axis of the crystal.

9. N4 (J =1, u! = 0.40365). The nitrogen nuclei
are the most convenient for research in the NSR re-
gion, since the quadrupole-coupling constants lie in
the 2—~4 Mc range. Although the magnetic moment of
N is relatively small, nevertheless at such values
of eQgy, it is possible to obtain R ~ 1 in the feasible
fields.

The first successful experiments on NQR in nitro-
gen were made by Watkins and Pound (4] as long ago
as in 1952. Minematsu[!®] investigated by the Zee-
man modulation method single crystals of parabromo-
aniline, parachloroaniline, parapenylenediamine, and
urea. The quadrupole coupling constants and asym-
metry parameters which she determined are listed in
Table V. The directions of the principal axes of the
electric field gradient tensor in the single crystal
p-BrCgHNH, were also determined. A group headed
by Bray [110-112] gtudied systematically the resonances
of nitrogen-containing compounds. The structure of
these compounds was investigated by a purely quad-
rupole resonance method.

No NSR experiments have beencarriedoutas yeton
N, so that the calculations in [3%38] are useful in
this respect.

10. Na® (J =%, u® =2.2171). The first measure-
ments of the quadrupole coupling constant and the
asymmetry parameter were made by Pound (], The
Itoha method was used in (] to obtain the structure
of sodium thiosulfate. Two non-equivalent positions
of Na? were observed, and eQq,, and 7 were deter-
mined for each. In [3%38] there is a detailed quantum-
mechanical calculation of the energy levels and of the
relative intensities of the transitions in this single
crystal (for the largest quadrupole coupling).

Recently Weiss[126] experimented with single-
crystal NaNO, using the Volkoff method. eQq,, and
n were determined with high accuracy at room tem-
perature.

It was established that the principal axes of the
electric field gradient tensor coincided with the ortho-
rhombic crystal axes. The c¢ axis was found to coin-
cide with the direction of the maximum field gradient
(i.e., the Z axis). A connection was established be-
tween the mosaic structure of the crystal and the width
of the nuclear resonance lines with varying angle be-
tween the magnetic field H, and the principal axes of
the electric field gradient tensor of the crystal.

11. Nb® (J =%, u® =6.166). Cotts and Knight [12%]
investigated the nuclear resonance of Nb® in single-
crystal KNbO; in magnetic fields of the order of 100—
5000 Oe and in zero field at temperatures from 77 to
733°K. Phase transitions were detected (from the
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changes in the quadrupole splittings of the resonance
lines) in strong magnetic fields near 223 and 493°K.
KNbO; is a ferroelectric with non-cubic crystal struc-
ture below the Curie temperature (703°K), becoming
cubic above 703°K, with one resonance line observed.

Four lines were observed in zero field at 293°K,
and the quadrupole coupling constants and the asym-
metry parameter were estimated. The value of the
gquadrupole coupling constant is compatible with the
presence of a strong covalent chemical bond for Nb.
The absorption lines were identified and the direc-
tions of the principal axes of the electric field gradi-
ent tensor of the crystal were determined with the
aid of the Zeeman effect in a field of the order of 100
Oe. A recent paper [131] reports measurements in the
temperature region from 4.2 to 693°K and the temper-
ature variations of eQqg,, and 7 are discussed in
detail.

12. Rb® (J =%, ¥ = 2.7501). The quadrupole
coupling constant and the asymmetry parameter were
measured 1021 for only one compound (Tutton’s salt).

We note in conclusion that Table V does not con-
tain many compounds of chlorine, bromine, and iodine,
since the quadrupole coupling constants of these nuclei
are too large, and therefore the NSR region of interest
cannot be obtained in presently feasible magnetic
fields*. In addition, these data can be found in [%7,

The NSR method is used successfully for the study
of single crystals. Many important results have been
obtained for minerals. All this has made it possible
to conclude that NSR is a good supplement to the
classical method of structural analysis. The partic-
ular value of the spin resonance lies in the new pos-
sibilities which it uncovers. In particular, it is easy
to observe cross relaxation in intermediate fields.
Therefore, by equalizing the frequencies for the dif-
ferent groups of nuclei, it is possible to observe sig-
nals which are too weak to be experimentally detected
under ordinary conditions because the time T, is very
long. We note that it is frequently impossible to re-
duce T; by other means, since the paramagnetic im-
purities used for this purpose do not form a solid so~
lution in the specified substance. This is particularly
characteristic of aromatic compounds.

Interesting phenomena can be observed in inter-
mediate fields by acoustic resonance, since the tran-
sition probabilities in this region depend strongly on
the field, often in resonant fashion, As already noted,
nuclear spin resonance is a low-frequency model of
electron paramagnetic resonance, since the spin
Hamiltonians are the same in both cases. Conse-
quently, many phenomena connected with the development
of methods for the control of relaxation are easier to
study with NSR than with EPR, since broadband os-

*Although fields of the order of 10° Oe have already been at-
tained, for the observation of NSR it is necessary that such fields
be produced in considerable volumes.
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cillators are easier to construct for the radio-fre-
quency band. The NSR method is particularly promis-
ing in connection with the development of quantum
radiophysics, primarily because of its simplicity. The
possibility of refining the spin-Hamiltonian constants
by checking against the energy level crossing points
in intermediate fields is also of considerable interest.
Further development of this promising procedure will
help solve many problems of scientific and applied
character.
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