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1. INTRODUCTION R), (1.1)

LANY-PHONON processes are customarily defined
in solid state theory as quantum transitions in which
the energy of the lattice is changed during one act by
an amount which exceeds by many times (as many as
several dozen) the energy of the vibrational quantum.

In optical many-phonon processes the absorption
(emission) of a light quantum is accompanied by pho-
non production, which leads to the appearance of broad
light-absorption bands (luminescence). Many-phonon
processes of the optical type arise also in interactions
between nuclear radiations (neutrons or gamma quanta)
and crystals.

In nonradiative (thermal) many-phonon transitions,
the electron excitation energy is transferred directly
to the lattice (or vice versa) . A study of the kinetics
of luminescence and photoconductivity shows that non-
radiative transitions frequently have high probability
and are capable of competing with optical transitions.
Nonradiative transitions include also recombination
of electrons with local centers and holes, inelastic
scattering of electrons by local centers, etc.

By defining a phonon as an elementary excitation
corresponding to small oscillations of the nuclei near
the sites of the crystal lattice, we assume by the same
token that these small oscillations and the electron
motion can be regarded as weakly-interacting sub-
systems. In some problems of solid-state physics
(for example, in the theory of electric conductivity of
atomic semiconductors), the above-mentioned weak
interaction is regarded as a small perturbation that
causes transitions between the electron states. In this
case, however, many-phonon transitions can arise only
in the higher-order approximations of perturbation
theory and accordingly have very low probabilities, in
contradiction to the experimental facts presented above.

An alternate approach to the problem is the adia-
batic approximation. Let us consider a crystal whose
lattice contains defects (impurity atoms or ions, vacant
sites, dislocations) and let us assume that the electrons
localized near the defects are more weakly bound than
the crystal electrons proper. The latter can be r e -
garded as a "fast" subsystem of the adiabatic approx-
imation, and the role of the "slow" subsystem is a s -
sumed by the weakly bound electrons and atomic nu-
clei M .

Confining ourselves to transitions in which the state
of strongly bound electrons does not change, we arrive
at the Hamiltonian

where H e ( r ) and Hn(R) depend only on the dynamic
variables of the weakly bound electrons ( r ) and nuclei
(R) respectively; V includes all terms of the interac-
tion between the weakly bound electrons and the nuclei,
and also the energy of the fast subsystem (crystal 's
own electrons) for a fixed configuration (r, R) of the
slow subsystem.

We assume further that the position vector of any
nucleus is

R = R0 + u, (1.2)

where RQ is a fixed vector corresponding to a definite
lattice site and u is a small displacement. Expanding
Hn(R) in the displacements u and introducing suitable
normal coordinates . . . qK...[2], we obtain in the har-
monic approximation

where the summation extends over all modes of the
crystal vibrations and the local vibrations ^ due to
disturbances to the ideal structure of the lattice.

As a rule, only the linear terms are retained in the
corresponding expansion of the interaction energy V,
and then

V(r, R) = V0(r)+ (1.4)

where V(r ) = V(r , Ro) includes the periodic potential
energy of interaction between the electrons and the
"frozen" ideal lattice, and the potential energy of the
electrons in the nonperiodic field produced by the lat-
tice defects.*

Choosing Hn(Rfl) as the zero energy level, we ob-
tain

where

(1.5)

(1.6)

The electron-phonon interaction term in (1.5) cannot
be responsible for the many-phonon transitions in the
first approximation of perturbation theory. We there-
fore apply again the adiabatic approximation to the

*The nonperiodic part Vo includes also the interaction between
the electrons and the lattice deformations which they produce
(polaron effect).
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Hamiltonian (1.5), taking this time the weakly bound
electrons as the fast subsystem [ 4 ] . It is assumed that
the minimum excitation energy of the latter is large
compared with the Debye phonon energy. The approx-
imate eigenfunction of the Hamiltonian (1.5) is sought
in the form

Ψ(Γ, ϊ ) = ψ(Γ, q) Φ (9), (1.7)

w h e r e t h e e l e c t r o n ^ - f u n c t i o n s a t i s f i e s t h e S c h r S d i n g e r

e q u a t i o n

<?χ] '·. 9)· (1-8)

If we neglect in the zeroth approximation the so-called
non-adiabaticity operator

then

where Η —approximate eigenvalue of the total Hamil-
tonian (1.5).

The electron equation (1.8) is solved by perturba-
tion theory, with a perturbation operator

w— Σ (1.11)

w h e r e qKS a r e t h e n o r m a l c o o r d i n a t e s qK f o r w h i c h

t h e a d i a b a t i c p o t e n t i a l o f ( 1 . 1 0 ) h a s a m i n i m u m . T h e

i n d e x s p e r t a i n s t o t h e z e r o t h - a p p r o x i m a t i o n e l e c t r o n

s t a t e , w h i c h i s d e t e r m i n e d f r o m t h e e q u a t i o n

\He (r) + 2 Ax (r) qxs] ψϋ = /?;ψ2. (1.12)
κ

T h e l e v e l E g i s a s s u m e d n o n d e g e n e r a t e , a n d c o n -

s e q u e n t l y

Σ (1.13)

(1.14)

where

VAx(r)Ysdr. ( 1 . 1 5 )

I n f o r m u l a s ( 1 . 1 3 ) — ( 1 . 1 5 ) t h e i n d e x s ' n u m b e r s t h e

e i g e n v a l u e s a n d t h e e i g e n f u n c t i o n s o f ( 1 . 1 2 ) f o r a f i x e d

potential energy Σ Α Κ ( Γ ^ Κ 8 . These solutions are

customarily called "non-self-consistent," to distin-
guish them from the "self-consistent" state ^ s . If
we assume

9xs — i , (l.lo)
Λωκ

t h e n t h e a d i a b a t i c p o t e n t i a l o f ( 1 . 1 0 ) a s s u m e s a f t e r t h e

s u b s t i t u t i o n ( 1 . 1 4 ) t h e f o r m

where

ft ω,.

(1.17)

(1.18)

(1.19)

The most significant results in the theory of many-
phonon transitions were obtained neglecting the second-
order correction to the energy in (1.14), and accord-
ingly, the nondiagonal terms of the quadratic form
(1.17). In this approximation, the adiabatic wave func-
tions (1.7) assume the form

,,η (r,q) = i|)s (r,q) \] Φ (qK - gxs), (1.20)

where ΦΠ κ is the wave function of the one-dimensional
harmonic oscillator.

The eigenvalues of (1.10) are accordingly

(1.21)

T h e w a v e f u n c t i o n s ( 1 . 2 0 ) f o r m a c o m p l e t e o r t h o -

n o r m a l s y s t e m . I t m u s t b e e m p h a s i z e d , h o w e v e r , t h a t

t h e o r t h o g o n a l i t y o f t h e w a v e f u n c t i o n s ( 1 . 2 0 ) , w h i c h

b e l o n g t o d i f f e r e n t e l e c t r o n s t a t e s , i s d u e t o t h e e l e c -

t r o n i c c o m p o n e n t s . T h e c o r r e s p o n d i n g p h o n o n f u n c -

t i o n s a r e n o t o r t h o g o n a l , o w i n g t o t h e d e p e n d e n c e o f

t h e d i s p l a c e m e n t s qKS o n t h e e l e c t r o n s t a t e s . T h i s

m a k e s m a n y - p h o n o n t r a n s i t i o n s p o s s i b l e e v e n i n t h e

f i r s t a p p r o x i m a t i o n o f p e r t u r b a t i o n t h e o r y , a s f i r s t

n o t e d b y F r e n k e l [ 5 ] .

P r o c e e d i n g t o a d i s c u s s i o n o f t h e r o l e o f t h e n o n -

d i a g o n a l t e r m s o f t h e a d i a b a t i c p o t e n t i a l ( 1 . 1 7 ) , w e

w r i t e t h e p h o n o n H a m i l t o n i a n ( 1 . 1 0 ) i n t h e f o r m

1 V
κ.λ

w h e r e

( 1 . 2 3 )

Ω ^ 2 = ω£§κλ + __V γ(ύκ(ϋ\ . (1.24)

The potential energy in (1.22) is a positive definite
quadratic form in the variables x£ s \ and consequently
there exists a unitary transformation

_(»)
χ ( 1 . 2 5 )

which reduces the matrix Ω ^ ; to the diagonal form
ω^2δ , . After making the substitution

( 1 . 2 6 )
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the Hamiltonian (1.22) is reduced to the Hamiltonian of
a system of independent oscillators

d.26'

which differs from the initial phonon Hamiltonian (1.3)
in a redefinition of the normal coordinates

'» Σ d.27)

and a renormalization of the phonon frequencies (ωκ

— ω{^)), which turn out to be different in different
electron states. This effect (henceforth called the
"frequency effect") can, along with the displacement
of the normal coordinates, serve as a cause of the
many -phonon transitions. *

The general mathematical theory of diagonalization
of quadratic forms of the type (1.17) was developed by
Bogolyubov[7H (see also M ) . In the present review
we consider only the simplest case, when the matrix
S can be obtained in final form by perturbation-theory
methods'-2-'. The problem reduces to a solution of the
system of equations

under the additional unitarity condition

(1.28)

d.29)

We assume that: a) the unperturbed spectrum of the
phonon frequencies of the crystal is not degenerate;
b) there exists a small parameter e such that AKS'S

~ e° and BJ^ ~ e2. In this case the use of standard
perturbation theory yields (accurate to terms ~ e3)

• . . < » > = ,

2ft

c(.) Λ

(1.30)

(1.31)

An account of the frequency effect gives rise in the
theory of many-quantum transitions to certain mathe-
matical difficulties, connected with the fact that the
matrices Ω ( ι * ) 2 and Ω (**) 2, which pertain to different
electron states, cannot be diagonalized by a single uni-
tary transformation. In other words, there is no sys-
tem of normal lattice coordinates common to two dif-
ferent electron states. Methods of taking the frequency
effect into account will be considered in Sees. 5—7. In
Sees. 3 and 4 we consider the main results of the the-
ory, obtained neglecting the frequency effect.

In the literature on many-phonon transitions there
are encountered variants of the adiabatic approxima-
tion which differ somewhat from that given above. Some

authors take the perturbation of (1.8) to be not the ex-
pression given by (1.11), but the entire interaction
term ^ . Generally speaking, the criterion of applica-
bility of the adiabatic approximation to the electron of
the local center can be satisfied also in the case of
weak electron-phonon interaction*. By virtue of the
linearity of the operator (1.11), both variants of the
solution of (1.8) lead to expressions of the same type,
which differ only in the choice of the zeroth-approxi-
mation electron ψ-functions. However, as will be ex-
plained later on, the parameters that characterize the
"many-phonon nature" of the process, depend quadrat -
ically on the electron-phonon coupling constant, and
are thus small in the case of a weak interaction.

A systematic expansion in a small parameter (λ),
first proposed in molecular theory by Born and Oppen-
heimer'-9^, is sometimes used in adiabatic perturbation
theory. The small parameter λ is introduced in such
a way that the nuclear kinetic energy operator is pro-
portional to λ4, while the displacements qK — qKS of
the normal oscillators are proportional to λ (a de-
tailed development of the method is found in [2-' and
a generalization to include the case of the polaron is
given in [ 7 ] ) . It must be borne in mind that the formal
parameter λ does not coincide with the parameter e
introduced for the derivation of (1.30) and (1.31).t
Therefore, in particular, in the "e method" the fre-
quency effect arises in the next higher perturbation
theory approximation compared with the displacement
effect, whereas in the "λ method" both effects are of
equal weight.

We note, finally, that the appearance of many-phonon
transitions in the interaction between neutrons or y-
photons and the crystal lattice is generally speaking
not connected with the use of the adiabatic approxima-
tion. In both indicated cases, the perturbation operator
contains a factor exp(ik'UN), where UN is the vector
of the displacement of the nucleus from the N-th lattice
site and k the wave vector of the neutron (γ-quantum).
If k is large the phonon matrix elements correspond-
ing to many-phonon transitions can no longer be r e -
garded as small. A consistent theory of this type of
many-phonon transitions was developed by Lamb'-10-'
even before the war. The theory of the Mbssbauer
effect is presently developing along the same lines
(see, for example, ^ 1 1 ] ) . The mathematical methods
of the theory of optical and nonradiative transitions in
local centers of crystals, to which the present article
is devoted, are identical with the methods of the theory
of many-phonon interactions between nuclear radiation
and crystals.

•Nonradiative transitions in the local center of the semiconductor
are considered in L'L Many-phonon behavior is obtained as a result
of the frequency effect, if the displacement effect is neglected.

*This remark does not pertain to the polaron. The adiabatic
theory of polarons presupposes a strong interaction['].

t i t is easy to note that c2 ~ ί ι ω / Δ Ε |, where ω — maximum
phonon frequency and ΔΕ - energy gap between the level Eg and
the nearest level E°s..
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2. PROBABILITIES OF MANY-PHONON TRANSITIONS

We consider optical and nonradiative transitions be-
tween moving discrete electron levels of a local center.
These levels and all the quantities pertaining to them
are designated by the indices g (ground state) and u
(excited state). The phonon occupation numbers are
denoted by . . . nK . . . or (η) and . . . n^ . . . (n ') for the
initial and final states, respectively.

The formulas presented below are not connected
with any specific models of the local centers or with
the applicability of the effective-mass method. It is
merely assumed that E u — Eg » Κω and the criterion
for the adiabatic approximation is consequently satis-
fied.

The probabilities for the absorption and emission
of light in the transitions g = u are calculated by the
method of quasiclassical radiation theory, which in-
terprets the field of a light wave as being an external
spatially homogeneous electric field g, which varies
in time with cyclic frequency Ω . [ 1 2 ^ The perturbation
operator is chosen in the form — (M(r), %), where
M(r) is the effective dipole moment of the absorbing
center, which takes into account the additional inter-
action of the localized electrons with the crystal, r e -
sulting from the inertialess polarization of the strongly
bound electrons by the light-wave field'-4-'.

The probability (per second) of absorption of a light
quantum is

£ & ^ , (2.D

where the transition frequency is

(2.2)

S ( Ω ) is the spectral density of the flux incident on the
radiation center [in (2.1) averaging is carried out over
this radiation); η(Ω) is the refractive index and c the
velocity of light in vacuum.

The absorption coefficient is

τ(Ω) =
Ν ghQwg,n

JjQ)
^\(u,n'\M\g,n)\ ( 2 . 3 )

w h e r e N g i s t h e c o n c e n t r a t i o n o f t h e a b s o r b i n g c e n t e r s .

F o r c o m p a r i s o n w i t h e x p e r i m e n t , t h e v a l u e o f ( 2 . 3 )

m u s t b e a v e r a g e d o v e r t h e p h o n o n o c c u p a t i o n n u m b e r s

i n t h e i n i t i a l s t a t e a n d s u m m e d o v e r a l l t h e f i n a l s t a t e s

o f t h e s e n u m b e r s c o m p a t i b l e w i t h t h e e n e r g y c o n s e r -

v a t i o n l a w ( 2 . 2 ) . I t i s t h u s n e c e s s a r y t o c a l c u l a t e

( 2 . 4 )

(η')

where Αν (η) denotes the aforementioned averaging. It
is carried out under the assumption that the initial dis-
tribution of the phonon occupation number is in statis-
tical equilibrium. The symbol * in (2.4) indicates that
the summation must be carried out under the additional
condition (2.2).

The calculation of the matrix element contained in

(2.3) is a difficult task, since the electron wave func-
tions of the local center, as well as the effective dipole
moment M, are usually not well known. It turns out,
however, that under certain simplifying assumptions,
the most important information concerning the form
of the absorption bands can be extracted from the
"phonon" part of the matrix element. In particular,
if a) we neglect the frequency effect and b) we confine
ourselves to the electron wave functions of the zeroth
approximation in (13) (the so-called Condon approxi-
mation), then

(u,n' | Μ | g,n) = MuS\] (η'κ

where

(2.5)

(2.6)

(2.7)

The absorption band is usually a bell-shaped curve.
The factor Ω/η(Ω) in (2.3) remains practically con-
stant within the half-width of this curve, and it can be

taken outside the Av(n)£/ · · · sign at the value cor-
№')

responding to the maximum of the band. Then the prob-
lem reduces to the calculation of

Iug (Ω) = | Mue |
2 Αν (η) Ι] Π Ι («'χ [ «χ > I2·

(η') κ

( 2 . 8 )

E x p r e s s i o n ( 2 . 8 ) w a s f i r s t e v a l u a t e d b y P e k a r ^ 1 3 ]

a n d a l m o s t s i m u l t a n e o u s l y a n d i n d e p e n d e n t l y b y H u a n g

K u n a n d R h y s f o r t h e p a r t i c u l a r c a s e o f a n " E i n s t e i n

c r y s t a l , " t h a t i s , n e g l e c t i n g t h e d i s p e r s i o n o f t h e p h o -

n o n f r e q u e n c i e s . I n [ 1 3 > 1 4 ] t h e t r a n s i t i o n p r o b a b i l i t i e s

a r e e v a l u a t e d b y a d i r e c t c o m b i n a t o r i a l m e t h o d , i n

w h i c h a n u m b e r o f p h o n o n s ( s p e c i f i e d b y t h e e n e r g y

c o n s e r v a t i o n l a w ) i s g e n e r a t e d . A d e t a i l e d e x p o s i t i o n

o f t h e d i r e c t s u m m a t i o n m e t h o d c a n b e f o u n d i n P e k a r ' s

b o o k [ 1 ] . T h e m a i n r e s u l t s w i l l b e d e r i v e d i n S e c . 3 a s

a p a r t i c u l a r c a s e o f m o r e g e n e r a l f o r m u l a s w h i c h t a k e

i n t o a c c o u n t t h e d i s p e r s i o n o f t h e n o r m a l o s c i l l a t i o n s

o f t h e c r y s t a l .

By generalizing Einstein's known concepts to in-
clude the case of the electromagnetic field in the crys-
tal, we can easily obtain for the probability (per sec-
ond ) of the spontaneous optical transition u, η — g, n'
a formula [ 4 ]

in (Ω) Ω3

{g,n'\M\u,n)\\

where

(2.9)

(2.10)

Expression (2.9) must again be averaged over the ini-
tial distribution (n) and summed over the final values
(n') of the occupation numbers:

wai = Αυ (ή) 21 wu

(n-)
(2.11)
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It must be borne in mind, however, that if the local
center has gone over into the excited state after the
absorption of the photon, then the equilibrium of the
phonon system is disturbed by the heat release (phonon
generation). Therefore, in applying (2.11) to the band
theory of impurity photoluminescence, we must assume
that the lifetime of the excited center relative to spon-
taneous emission of light is large compared with the
phonon relaxation time. If this condition is not satis-
fied, then the impurity photoluminescence act rep-
resents resonance scattering of the photon, and the
excited electron-vibrational state of the system is
virtual11153.

In most papers on the theory of many-phonon non-
radiative transitions it is assumed, following an idea
first advanced by Adirovich [ 1 6^, that the perturbation
is the non-adiabaticity operator (1.9).

The electron matrix element of this operator, cal-
culated with the aid of the zeroth-approximation wave
function (1.13) for the final state and the first-approx-
imation wave function for the initial state, is of the
form

(2.12)2 4 ^ V f ifSNfr

(2.12) can be regarded as a perturbation operator act-
ing in the phonon subsystem. Further simplification
of (2.12) can be obtained by assuming orthogonality of
the zeroth-approximation electron wave functions ^ u

and 0g, and by taking the energy difference E g - E | ' ,
for some average value ΔΕ™, outside the sign of
summation with respect to g'. Substituting in ex-
plicit form AKgv from (1.15) and using the com-
pleteness condition

we get

) nwX Λ

If we put

( 2 . 1 3 )

( 2 . 1 4 )

( 2 . 1 5 )

( 2 . 1 6 )

t h e n t h e o p e r a t o r s o f t h e d i r e c t a n d i n v e r s e t r a n s i -

t i o n s a r e r e l a t e d b y

</>* — <f (n 1 7 \
tJL/ug oO gu· \ ^ · - ^ - · /

T h e p r o b a b i l i t y o f n o n r a d i a t i v e t r a n s i t i o n i s c a l c u -

l a t e d f r o m t h e f o r m u l a

p u g = ^ A v ( n ) y i \ ( n ' \ X g u \ n ) \ 2 8 ( H g , n - H u , „ - ) . ( 2 . 1 8 )

T h e p r o b a b i l i t y o f n o n r a d i a t i v e t r a n s i t i o n w a s c a l c u - ·

l a t e d i n t h e a b s e n c e o f d i s p e r s i o n o f t h e p h o n o n f r e -

q u e n c i e s i n a c c o r d a n c e w i t h ( 2 . 1 8 ) i n [ u ] b y t h e d i r e c t

s u m m a t i o n m e t h o d . A d e t a i l e d d e s c r i p t i o n o f t h i s

m e t h o d ( a s a p p l i e d t o n o n r a d i a t i v e t r a n s i t i o n s ) i s

c o n t a i n e d i n [ 1 7 3 . T h e c o r r e s p o n d i n g r e s u l t s w i l l b e

g i v e n i n S e c . 3 .

M a n y - p h o n o n n o n r a d i a t i v e t r a n s i t i o n s a r e n o t n e c -

e s s a r i l y c o n n e c t e d w i t h t h e n o n - a d i a b a t i c i t y o f t h e

e l e c t r o n m o t i o n . I n i o n i c c r y s t a l s t h e l o c a l i z e d e l e c -

t r o n u s u a l l y i n t e r a c t s s t r o n g l y w i t h t h e o p t i c a l v i b r a -

t i o n s o f t h e l a t t i c e . I n t h i s c a s e w e a k i n t e r a c t i o n w i t h

t h e a c o u s t i c v i b r a t i o n s c a n c a u s e n o n r a d i a t i v e t r a n s i -

t i o n s i n w h i c h o n e a c o u s t i c p h o n o n a n d m a n y o p t i c a l

p h o n o n s p a r t i c i p a t e [ 1 8 ^ . M e t h o d s o f c a l c u l a t i n g t h e

p r o b a b i l i t i e s o f s u c h t r a n s i t i o n s d o n o t d i f f e r e s s e n -

t i a l l y f r o m t h e c o r r e s p o n d i n g m e t h o d s o f p h o t o t r a n -

s i t i o n t h e o r y .

3 . M E T H O D O F G E N E R A T I N G P O L Y N O M I A L S

T h e f i r s t t h e o r y o f i m p u r i t y a b s o r p t i o n a n d l u m i -

n e s c e n c e b a n d s w i t h a c c o u n t o f t h e d i s p e r s i o n o f t h e

c r y s t a l p h o n o n f r e q u e n c i e s w a s c o n s t r u c t e d i n t h e

b a s i c p a p e r o f P e k a r a n d K r i v o g l a z [ 1 9 3 , w h o c a l c u -

l a t e d t h e v a l u e o f I u g ( 2 . 8 ) b y a m e t h o d s i m i l a r t o t h e

D a r w i n - F o w l e r m e t h o d o f c a l c u l a t i n g t h e r m o d y n a m i c

q u a n t i t i e s i n s t a t i s t i c a l p h y s i c s [ 2 0 ] .

I n t r o d u c i n g t h e f r e q u e n c y o f t h e " p u r e e l e c t r o n i c "

t r a n s i t i o n

Q ^ J ^ z l A . ( 3 . 1 )

a n d n e g l e c t i n g t h e f r e q u e n c y e f f e c t , w e w r i t e t h e e n -

e r g y c o n s e r v a t i o n c o n d i t i o n ( 2 . 2 ) i n t h e f o r m

Σ ω κ ("κ — Wx) = Ω - Qug. (3.2)

I m p o s i n g o n t h e l a t t i c e w a v e s t h e c o n d i t i o n t h a t t h e y

b e c y c l i c i n t h e v o l u m e L 3 , w e c a n c h o o s e t h e u n i t f o r

the frequency ω such that all the frequencies ωκ are
expressed by integers. In this case we retain for the
frequencies ωκ the previous notation and put

Ω — Qug = pa>. (3.3)

We consider, further, the product of the polynomials

Ρ (ζ) = Π Ρχ (*) = Π (I <«i I w-> | 2 + | ( ηκ + 1 | ηχ) |V°

| ηκ) 12ζ2ω" + • •.+\(ηχ-ί\ηκ) Η-°

(3.4)

It is easy to note that if the product is expanded, the
coefficient of zP is found to equal

t n
(Ό χ

( 3 . 5 )

w h e r e * d e n o t e s t h a t t h e s u m m a t i o n m u s t b e c a r r i e d

o u t u n d e r t h e a d d i t i o n a l c o n d i t i o n ( 3 . 2 ) . E x p r e s s i o n

( 3 . 5 ) i s d i r e c t l y c o n t a i n e d i n ( 2 . 8 ) . T h e r e f o r e , e m -

p l o y i n g t h e C a u c h y t h e o r e m , w e o b t a i n i m m e d i a t e l y

Ρ (ζ) dz

- P + l
( 3 . 6 )

where the integration contour encircles the point ζ = 0.
The remainder of the problem consists of calculat-

ing P ( z ) , which assumes the role of a generating func-
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tion for the transition probability. We note immedi-
ately that the idea of calculating the generating function
(in place of directly calculating the transition proba-
bility) turned out to be quite fruitful and was used sub-
sequently by many authors.

If we disregard local oscillations, then we can cal-
culate the function (3.4) by using the fact that

Λ

Λ — n n _ * Λ7-—1/2 / o 7 \
a-*=<lm — ?x g — Jsji—7V ' №·<)

where Ν is the number of factors in (3.4), equal to the
number of vibrational degrees of freedom of the crys-
tal. Since we intend to take the limit as Ν —• °° in the
final result, it is sufficient to retain in P K ( z ) terms
up to order N" 1 inclusive. In this approximation, the
"Condon" integrals (2.7) can be readily calculated by
expansion in powers of AK, and we obtain

(3.8)

- - τ . . . · j

w h e r e ( n K + r | n K ) t e n d s t o z e r o m o r e r a p i d l y t h a n

N " 1 f o r | r | > 1 . I n o t h e r w o r d s , t h e t r a n s i t i o n s f o r

w h i c h o n e o f t h e p h o n o n o c c u p a t i o n n u m b e r s c h a n g e s

b y m o r e t h a n u n i t y m a k e n o c o n t r i b u t i o n t o t h e g e n e r -

a t i n g f u n c t i o n . S u b s t i t u t i o n o f ( 3 . 8 ) i n ( 3 . 4 ) y i e l d s

.P(sO=exp{—i

(3.9)

B y v i r t u e o f ( 3 . 7 ) , t h e g e n e r a t i n g f u n c t i o n ( 3 . 9 ) c a n b e

r e p r e s e n t e d b y a p r o d u c t o f s t a t i s t i c a l l y i n d e p e n d e n t

f a c t o r s , w h i c h d e p e n d l i n e a r l y o n n K . T h e r e f o r e t h e

averaging operation reduces to replacing η by their
averaged equilibrium values

"* = ̂  · (3.10)

After substituting (3.9) in (3.6) and making a change
of variable ζ = e w we get

/««(«)=- 2ni

[Φ (3.11)

where
,_ C , βκ Λc h ^ + f j

β

( 3 . 1 2 ) *

(3.13)

T h e i n t e g r a t i o n c o n t o u r i n ( 3 . 1 1 ) i s s h o w n i n F i g . 1 .

In the complex ζ plane it corresponds to a unit circle
with center at the origin and a cut along the negative
part of the real axis.

*ch = cosh; sh = sinh, cth = coth.

m

FIG. 1. Contour of integration in (3.11).

-Λτ

If AK * 0, exact integration in (3.11) is possible
only when the dispersion of the phonon frequencies
can be neglected, by putting (in the conventional unit)
ω κ = ω = ω. The change of variable w = it yields for
non-integer ρ

lfp(w)]

2 π
at

x exp -
2 s h 2

I t-lS-

w h e r e

( 3 . 1 4 )

( 3 . 1 5 )

I n t h e d e r i v a t i o n o f ( 3 . 1 4 ) w e t o o k a c c o u n t o f t h e

f a c t t h a t t h e c o n t r i b u t i o n s o f t h e h o r i z o n t a l l i n e s o f

Fig. 1 to the integral (3.11) cancel out exactly if ρ is
an integer. For the same reason, it is possible to
make in the integral (3.14) the substitution t— i/3/2
— t, without changing the integration limits. Taking
account of the well-known definition of the modified
Bessel function

we get

2 s h f

( 3 - 1 6 )

(3.17)

Formula (3.17) (first derived in [ 1 3 ] by direct sum-
mation, as already pointed out) determines the de-
pendence of the coefficient of impurity absorption of
light (2.4) on the frequency. For integer p, (3.17)
corresponds to a set of equidistant absorption lines
(Fig. 2) separated from one another by the limiting
phonon frequency ω. These absorption lines have a
"natura l " width γ (see Sec. 4), but usually γ is
small compared with ω. At the same time, experi-
ment shows that as a rule the impurity absorption
bands are not resolved into individual (phonon) lines.
The reason why the lines of Fig. 2 broaden and merge
into a continuous band is the dispersion of the phonon
frequencies, which is not considered in the derivation
of (3.17). It is assumed that when account is taken of
the dispersion, the form of the absorption band must
be described by (3.17) with a continuously varying pa-
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lines Imw = ±ir. The direction of this segment coin-
cides with the direction of the "steepest descent." In
fact in the vicinity of the extremal point

φ ρ (W) = φρ(wo) + - <PP (BV0) ·

where

ch
FIG. 2. Spectrum of impurity absorption of light without account of

the dispersion of the phonon frequency and of the "natural" line width.

rameter p. A detailed analysis of the absorption bands
has been made under this assumption in ^ . We con-
fine ourselves only to a brief summary of the results.

According to (3.17), the absorption band is repre-
sented by a bell-shaped but not completely symmet-
rical curve with a maximum at ρ = a/2, that is,

(3.26)

(3.27)

(3.18)

At high temperatures, when the inequalities

fJ<l , a » 2 s h f - (3.19)

are satisfied, the absorption curve has a Gaussian
form

- ΐ ext. Γ
—

with half-width

(3.20)

(3.21)

At low temperatures, when

a « 2 s h | , (3.22)

the form of the band is determined by the relation

τ(Ω) = const - ^ ^ .

The half-width of (3.23) is

6Ω0 = 2ω Valn2.

(3.23)

(3.24)

Detailed experimental investigations of the form of the
F absorption band in colored alkali-halide crystals at
low temperatures shows that the asymmetrical curve
(3.23) is in good agreement with experiment ^ 2 1 3.

If we take account of the dispersion of the normal
frequencies from the very outset, then the integration
in (3.11) can be carried out only approximately. The
saddle-point method was found to be quite useful here
t 1 9 ] . The extremal points of the function <pp(w) (3.12)
satisfy the equation

= />. (3.25)

which, by virtue of the monotonicity of the left half,
has one real root w0. Neglecting the contribution of
the complex roots of (3.25) (see below) we replace
the integration contour of Fig. 1 by a vertical line
passing through the point WQ between the horizontal

If the criterion of the saddle-point method is satisfied,
then

lug (Ω) m I
exp [<pp

η - φ ρ (ιο0:

2rt
dv

2π
e x p [ < p p ( t w o ) ] . (3.28)

Going over to a discussion of the frequency dependence
of (3.28), we note that the function wo(p) is specified
by (3.25). Therefore

dp ~dp= — Wo, (3.29)

and consequently <pp(w0) has as a function of ρ a
maximum at w0 = 0, that is, when

(3.30)

Expansion in the vicinity of this maximum is of the
form

<PP (wo) = — -
(0)

(3.31)

If we can confine ourselves in (3.31) to the quadratic
term only, then the absorption curve will have a
Gaussian form

2φ:
-Pm)2"|
p(0) J

with half-width

6Ω = 2 Vl In 2φ ρ (0) ω2 ,

where

(3.32)

(3.33)

(3.34)

We note that if we neglect dispersion at this stage of
the calculation, then (3.30) goes over into (3.18) while
(3.21) and (3.24) are obtained from (3.32) and (3.34) at
high and low temperatures, respectively.

Formula (3.28) is valid if

(j>p(tt)o) > 1 (3.35)

and consequently, the integrand decreases rapidly to
zero on both sides of the saddle point Wj. In order to
clarify the physical meaning of the inequality (3.35),
it is simplest to replace the normal frequencies ωκ
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in (3.25) and (3.27) by some average value ω, choosing
the latter as the unit of frequency. Then, as can be
readily verified, the inequality (3.35) is satisfied for
all temperatures if ρ » 1. ρ is the average number
of phonons generated in the phototransition, and there-
fore the formulas presented above pertain to the case
of a large heat release. Inasmuch as p m (3.30) is the
most probable value of p, the criterion for large heat
release is the inequality

4 2 Δ«ωκ > 1· (3.36)

It is easy to verify that if inequality (3.35) is satisfied
then, within the limits of the half-width of the absorp-
tion band, the cubic term in (3.31) becomes small and
consequently the Gaussian curve (3.33) is a good ap-
proximation. The cubic term in (3.31), which charac-
terizes the asymmetry of the absorption band*, r e -
mains small at high temperatures even outside the in-
dicated limits, so that (3.32) describes well in this
case practically the entire absorption band. It will be
shown below (Sec. 6) that (3.32) corresponds to the
quasi-classical description of the lattice vibrations.
At low temperatures, the asymmetry of the absorption
band becomes noticeable: τ decreases more rapidly
on the red side than on the violet side. A detailed in-
vestigation [ 1 9 ] shows that when the integral of (3.11)
is calculated by the saddle-point method the contribu-
tion of the complex roots of (3.25) adds to (3.28) a
rapidly oscillating factor, along with the term
exp [ ψρ (w 0)]. In the limiting case when there is no
dispersion, this factor becomes equal to unity for
integer ρ and zero for non-integer p. As a result,
the continuous band is converted into the system of
equidistant lines shown in Fig. 2. With increasing
dispersion, these lines broaden and the indicated fac-
tor tends to unity. Thus, (3.28) and all the following
formulas are valid for not too small a dispersion of
the phonon frequencies.

In [19-' there is also considered the case of "small
heat re lease," when the inverse of (3.35) is satisfied.
The results obtained in this limiting case are given in
the review t2 2^ and will not be discussed here.

The luminescence intensity (the energy radiated by
the excited centers in a unit volume per second) is

Γ τ (Ω) η (Ω) Ί - ^ Ζ ί Γ Β (Ω) (3.38)

R (Ω) = Nu%Qwug = Igu (Ω), (3.37)

w h e r e N u — c o n c e n t r a t i o n of t h e e x c i t e d l u m i n e s c e n c e

c e n t e r s , a n d , a s c a n b e r e a d i l y s e e n , Igu d i f f e r s f r o m

IUg (3.11) only in the sign of ρ in the characteristic
function ^ ( )

Ing (ΩΗΒ + ρω) = Igu (Qug — ρω).

F r o m t h e l a s t r e l a t i o n a n d f r o m (2.3), (2 .4) , and (3.37)

i t f o l l o w s i m m e d i a t e l y t h a t

R e l a t i o n (3 .38) , f i r s t d e r i v e d i n L 4J, e x p r e s s e s t h e l a w

of m i r r o r s y m m e t r y of t h e i m p u r i t y a b s o r p t i o n a n d l u -

m i n e s c e n c e b a n d s w i t h r e s p e c t t o t h e l i n e of " p u r e

electronic" transition Ω , ^ . From (3.38) and (3.30) it
follows that the Stokes shift of the maxima of the ab-
sorption and luminescence bands is

ΑΠ Ο (abs) ο ( r a d ) V 1 Λ ^,.Λ /Q QQ\

κ

A t h e o r e t i c a l c a l c u l a t i o n o f ( 3 . 3 9 ) i s p o s s i b l e o n l y i n

t h e r a r e c a s e w h e n t h e e l e c t r o n w a v e f u n c t i o n s o f t h e

l o c a l c e n t e r a r e k n o w n a l o n g w i t h t h e l a w o f d i s p e r s i o n

o f t h e p h o n o n f r e q u e n c i e s ( f o r e x a m p l e , i n t h e c o n -

t i n u a l F - c e n t e r t h e o r y 1- 1 ] ). N o n e t h e l e s s , i t i s s o m e -

t i m e s p o s s i b l e t o c o m p a r e t h e t h e o r y o f i m p u r i t y a b -

s o r p t i o n a n d l u m i n e s c e n c e w i t h t h e e x p e r i m e n t , b y

regarding the quantity ΔΩ as a parameter of the the-
ory. This pertains, first of all, to the case when there
is no dispersion (or when it is negligibly small), and
ΔΩ = au. The parameter a, determined from the
Stokes shift, can then be substituted in (3.21) or (3.24),
and the calculated half-width of the band can be com-
pared with the experimental value. Further, in the
case of high temperatures, when βκ < 1, the quantity
(3.34), which determines the half-width of the band
(3.33), is found to be equal to

ί^ΔΩ. (3.40)

A review of the experimental facts pertaining to the
law of mirror symmetry of (3.38) can be found in C22^.
We point out in addition that the position of the maxima
of the infrared luminescence bands of the alkali-halide
crystal F-centers was predicted on the basis of (3.39)
in [ 4 ] . This prediction of the theory was subsequently
confirmed with high accuracy by experiment t 2 3 ] .

Summarizing the foregoing, we can state that the
method of generating polynomials'^19-' turned out to be
quite fruitful in the theory of optical many-phonon tran-
sitions and made it possible to establish many funda-
mental physical laws. At the same time, the applicabil-
ity of the method is limited by a) account of only the
crystal oscillations (expansion in powers of N"1 in the
calculation of the generating function) and b) the use of
multiplicative phonon functions (1.20), that is, the neg-
lect of the frequency effect.

The first of the foregoing limitations is insignifi-
cant: by exact calculation of the Condon integrals
(n'K | nK) it can be shown [ 2 4 ] that (3.11) holds true also
for local oscillations (of course, neglecting the fre-
quency effect).* As to the second limitation, it must
be borne in mind that although the frequency effect
usually leads to small corrections to the formulas of
the absorption and emission theory, nevertheless these

*The so-called third moment of the spectrum, see Sec. 5. •These results will be obtained in Sec. 5 by a different method.
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corrections correspond to observable physical effects,
viz: the temperature shift of the maxima of the optical
bands and violation of the mirror symmetry law (3.38).
These effects were not considered within the frame-
work of the method of generating polynomials.

Krivoglaz [ 2 4 ] used the method of generating poly-
nomials to calculate the probability of nonradiative
transitions with non-adiabaticity operator (2.14) as
the perturbation. Assuming that the band of vibra-
tional levels adjacent to the "e lectron" level Jg of
the final state forms a quasicontinuous spectrum, we
can, as usual, replace the δ-function in (2.18) by the
level density [in this case (tuJ)" 1 ] and carry out the
summation with account of the energy conservation
law:

2 ω χ (η*. — ηχ) — ®ug = (3.41)

T h e p r o b a b i l i t y of t h e n o n r a d i a t i v e t r a n s i t i o n u —• g

( p e r s e c o n d ) c a n n o w b e w r i t t e n i n t h e f o r m

(ιι·) κ
Κ«κ Ι «χ>

2 22 < η κ | (.ηχ Ι η λ

w h e r e

(«κ " χ > =

( 3 . 4 2 )

( 3 . 4 3 )

T h e i n t e g r a l ( 3 . 4 3 ) i s a g a i n c a l c u l a t e d b y e x p a n s i o n i n

powers of ΔΚ. A contribution that does not vanish as
Ν — °° is made to the transition probability by the
matrix elements

(3.44)

In place of the generating function (3,4) we now must
introduce

\ Λ χ

\ « x -

\Πχ·

d

f 1

- 1

η Χ -

a

a

ny

Πχ

\ _

/ =

x ( » x + -

| / " x + l
V 2

V 2 " + ·

where, alongside the polynomials P K ( z ) from (3.4),
we introduce new polynomials

( ζ ) =

< η χ

\
nK

a

a

« κ /

+

2 + (r

< « x + 2

/ ( « X

x + 1

+

η

ί η Χ

% 2 ω χ

κ >

( 3 . 4 6 )

I n t o t a l a n a l o g y w i t h ( 3 . 6 ) , w e g e t

( 3 . 4 7 )

W i t h t h e a i d o f ( 3 . 8 ) a n d ( 3 . 4 4 ) w e c a l c u l a t e t h e g e n e r -

a t i n g f u n c t i o n d i r e c t l y , a n d o b t a i n

Pu.e = - 1 , (f F (a;) βφ-Ρο <») tfm, (3.48)

where the integration contour is shown in Fig. 1,
(p_po(w) coincides with (3.12) when ρ = - p 0 , and,
finally,

c h

(3.49)

As in the case of the optical transitions, the exact in-
tegration in (3.48) can be carried out by neglecting the
dispersion of the normal frequencies (p 0 must then
be regarded as an integer). We obtain

x e x p [ - | c t h | ~ p . 4 ] j
j | 2 s h |

2 s h l

Po+1

+ — (3.50)

where we have introduced new parameters

bug = ZJ Ay.Ug(q Ixg), I
(3.51)

Formula (3.50) (apart from the factor 2π) was first
derived in ^14^. A detailed analysis of this formula
and its application to nonradiative transitions in the
discrete F-center spectrum are given in [ 1 7^ and [

We confine ourselves here only to a brief discussion.
We note, first, that the probability of the inverse t ran-
sition (g — u) is obtained by reversing the sign of p 0

in (3.48). As applied to (3.50) (bearing in mind that the
Bessel functions are even in the integer index) this
yields

pUg

Pgu = Pug exp (̂

tends to a finite limit as Τ

(3.52)

0 and (3.52) gives
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the temperature dependence of the probability of ther-
mal excitation of the local center. At high tempera-
tures [in the sense of inequality (3.19)] (3.52) reduces
to

(3.53)

where the "frequency multiplier" Κ depends weakly
on the temperature, and the activation energy is

responding generalization of the theory can be obtained
by considering the spontaneous optical transition u, η
— g, n' by the methods of quantum electrodynamics.
If the radiation field is included in the ζeroth-approx-
imation Hamiltonian, then the solution of the time-
dependent SchrSdinger equation can be sought in the
f b n n M

= «Η» (0 X«n exp (

(4.1)

Thus, the popular formula (3.53) m u s t be used with
grea t caution, s ince the frequency mult ip l ier and the
activat ion energy a r e far from constant over a wide
temperature interval. In particular, Κ » Pug|T=o-

When dispersion is taken into account for the case
when condition (3.36) is satisfied, the integral in (3.48)
can be estimated by the saddle-point method. Then

(3.55)

where wj is the root of (3.25) with Ω = 0 (that is,
Ρ = -Po)· Further, if Po ~Pm i s n o t t°° large, we can
use (3.31) (putting ρ = p 0 ) and confine ourselves to the
quadratic term. It is easy to verify that this approxi-
mation is valid in the case of high temperatures, when
(3.40) holds. In this case the probability of nonradia-
tive transition is again expressed by the exponential
formula (3.53), where Κ is equal to the pre-exponential
factor in (3.55). For the transition u — g the activa-
tion energy is

*Ωκ8

ΔΩ

With the aid of (3.52) we obtain the activation energy
for the inverse transition (g—» u)

Formula (3.54) is a particular case of this relation.
Thus, even in the general case the Stokes shift ΔΩ is
an essential parameter of the theory of nonradiative
transitions.

We note in conclusion that (3.55) remains in force
when local oscillations are taken into account, but the
pre-exponential factor F(w) differs from (3.49) by an
additional term, which converges to zero like N" 1 as
Ν °o for crystal frequencies (see Sees. 5 and 6).

4. ACCOUNT OF THE NATURAL LEVEL WIDTH

The excited electron-vibrational states of the crys-
tal with local center have a nonzero width because of
the spontaneous optical and nonradiative transitions to
the ground state of the system. Formulas (2.3) and
(2.9), obtained from the semiclassical radiation theory,
do not take this circumstance into account. The cor-

where x u n are the electron-vibrational wave functions
(1.20) multiplied by the amplitudes of the quantized
electromagnetic field. The initial state of the system
corresponds to the vacuum of this field, and a photon
ΗΩ is present in the final state. If we neglect non-
radiative transitions, then the functions χ can be r e -
garded as exact ζ eroth-approximation functions, and
then the coefficients c satisfy the system of equations

("') (B)

ih
dca

• ^ f = 2 2 c g n . < i m | W | g » ' > e x p [ i ( ^ n - Z r i n . - J i Q ) ^ - ] ,

( 4 . 2 )

W7 | un) exp Γ — i (Hun — Hgn· — hQ) -|- Ί .

(4.3)

Neglecting the frequency effect, the m a t r i x e lement of
the e lectron-photon interact ion o p e r a t o r i s of the form

where, for the c a s e of the radiat ion field in the c rys ta l ,
the e lec t ron m a t r i x e lement i s

W,• _ -Μ ΐί 2 π

κ« lMug \f L3n;
2πίιΩ

(ΩΓ (4.5)

M u g is the projection of the matrix element of the ef-
fective dipole moment Μ on the photon polarization
direction.

If the local center is excited at the initial instant
of time (t = 0), then (4.2) in (4.3) must be integrated
under initial conditions

cM(0) = l, Cgn.(0) = 0. (4.6)

Putting (see [ 2 6 ] —the Wigner-Weisskopf method)

^ ) , (4.7)

we obtain after integrating (4.3)

· (t) = " (.gn' \W\ un)
(Hun—Hgn—%Q) g-

X^exp — ^ — 4 r l

Substitution of (4.8) and (4.7) in (4.2) yields

(4.8)
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l-exp [ ^ + |-(H t t n-ff g n._

(η-) Ω (Hun Hgn- ΚΩ) — 2 (4.9)

In first approximation in the small parameter γ, we
put y = 0 in the right half of (4.9) and use the rela-
tion [ 2 6 3

lim-
1 — β 1 1

(4.10)

where &/ω —principal value of ω ί. The imaginary
part of y yields a small shift of the electron-vibra-
tional level, which is of no great interest to us. We
therefore take γ to mean henceforth the second term
of (4.10). Substituting (4.10) in (4.9) and replacing £/

Ω
by integration over the frequencies and the radiation
direction, viz:

we get

where

Y = - (4.11)
(η")

Ω = Qu g — 2 ωκ («κ — ηκ).

The value of y depends thus on the initial phonon o c -
cupation n u m b e r s . . . n K . . . . To simplify further c a l -
culat ions, th i s quantity is bes t rep laced by the m e a n
sta t i s t ica l value

Ϋ = Αυ (η) ν = Αν (η) 2 &η (Q) Π Ι <»« Ι »«> Ι1· <4· 13>
(η·)

w h e r e t h e s u m m a t i o n o v e r n ' m u s t b e c a r r i e d o u t

w i t h o u t a n y l i m i t a t i o n s . W e i m a g i n e t h a t t h e s u m m a -

t i o n i s c a r r i e d o u t i n t w o s t a g e s : f i r s t u n d e r t h e s u p -

p l e m e n t a r y c o n d i t i o n

Σ ω* («χ - ηχ) = Ρω. (4.14)
κ

t h a t i s , w i t h s p e c i f i e d a v e r a g e h e a t r e l e a s e p , a n d

t h e n o v e r a l l p o s s i b l e v a l u e s o f p . T h e n w e o b t a i n

d u r i n g t h e f i r s t s t a g e o f t h e c a l c u l a t i o n [ s e e ( 2 . 9 ) a n d

( 2 . 1 1 ) ] t h e p r o b a b i l i t y W U g o f t h e s p o n t a n e o u s o p t i c a l

transition with a given heat release, and thus γ is the
total probability (per second) of all the spontaneous op-
tical transitions from the given initial electron state.
The approximate expression for y can be obtained by
putting in (4.11) a slowly varying function Ω3η(Ω ),
equal to its value at the maximum of the absorption
band. Taking into consideration the fact that

ΣΠ
(η') κ

we obtain

( 4 . 1 5 )

( 4 . 1 6 )

Formula (4.16) can be used for the calculation of the
optical lifetime of the local centers.

The form of the radiation spectrum is determined
by the quantity

Ω - Ω Κ ί

(4.17)

T o c a l c u l a t e t h i s q u a n t i t y w e c a n , f o l l o w i n g D a v y d o v

C 2 7 ] , e m p l o y t h e m e t h o d o f [ 1 0 ^ * , w h i c h s t a r t s f r o m

t h e i d e n t i t y

( 4 . 1 8 )

I f w e t a k e t h e f u n c t i o n | W g u | 2 o u t s i d e t h e s u m m a t i o n

s i g n i n ( 4 . 1 7 ) , t h e n t h e c a l c u l a t i o n r e d u c e s t o t h e e v a l -

u a t i o n o f t h e f u n c t i o n

(4.12) Jgli (Ω) = -1 Re Αν (η) £ $ dt [ Π β1""""»-"*' | (ηκ | ηκ> |» J
(η') 0 κ

(4.19)

If, a s in Sec. 3, we confine ourse lves only to the c r y s t a l
v ibrat ions then, by v i r tue of (3.8), a nonvanishing con-
tr ibut ion to 2D i s m a d e only by the t e r m s in which

( n ' )
n « = n /o η κ ± •*• an<^ the summation in (4.19) i s c a r r i e d
out directly. The integral over the variable ρ is easy
to calculate by the residue theory, and we obtain

Jug (Ω) = JL Re \ dt e

The radiation intensity is

R (Ω) = yNu%Q

(4.20)

\ sinftdftAv (n) ^ I
Ό (»•)

· (oo) \*

(4.21)

C o m p a r i s o n o f t h i s f o r m u l a w i t h ( 3 . 3 7 ) s h o w s t h a t

( 4 . 2 0 ) d i f f e r s f r o m t h e c h a r a c t e r i s t i c f u n c t i o n ^

( S e c . 3 ) o n l y b y a c o n s t a n t f a c t o r . I n t h e l i m i t i n g c a s e

where the displacement is negligibly small (ΔΚ — 0)
we have

*A complete exposition of the method as applied to the absorp-
tion of neutrons is given in the bookl3*!.
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ι
gu (Ω) = - (4.22)

(4.26)

a n d (4.21) g o e s o v e r i n t o t h e w e l l - k n o w n f o r m u l a f o r

a t o m i c e m i s s i o n [ 2 6 ] .

E x a c t i n t e g r a t i o n i n (4.20) c a n b e c a r r i e d o u t f o r

n e g l i g i b l y s m a l l d i s p e r s i o n , w h e n

[ φ - Ρ ] = exp — -|-cth-jf--

2 * 1

= exp ipt — y ctn y J

cos ( t

n-f-m

0 - 4 ) ]

§)(»-«·>

Substituting this result in (4.20) we get, after integrat-
ing and interchanging indices,

/ a \h+2m

exp(-ycthf-) - e x p ( f )
' * . ( f l ) = Ί ϊ Σ m! (

The second sum coincides with the well-known
power expansion of the modified Bessel function, so
that finally

Jgu (Ω) = -exp — Ύ ctn -ij-

k&\

v2
"Ιω2"

. (4.23)

Formula (4.23) makes somewhat more precise the pic-
ture of the electron-vibrational spectrum given in Fig. 2.
Each phonon line is now converted into a Lorentz curve
which has a " n a t u r a l " half-width γ.*

With account of dispersion, the approximate inte-
gration in (4.20) has been carried out in [ 2 7 3 by ex-
panding the characteristic function φ _ρ in powers of
t. In the notation of Sec. 3, this expansion is of the
form

&φ _ ρ (ii) = φ (0) + it (p - Pm) - y φ " (0) + . . .

Substitution in (4.20) y ie lds

(4.24)

γ ω V φ"(0)
exp

=
2ω2φ"(0)

L \ ω|/2φ"(0) / J '
(4.25)

w h e r e

*The difference between γ and the corresponding expression in

vacuum can be seen from (4.6). It must be borne in mind, in addition,

that an account of nonradiative transition u — g leads, as can be

readily shown, to γ = y r a ( j + y n Onrad· The first term coincides with

(4.6) and the second is equal to the nonradiative transition probabil-

ity (per second).

If γ « ωVψ"(0) and | Ω — Ωΐη Ι ^ ω V2<ρ"(0) , then
(4.25) goes over into the Gaussian function

Jgli (Ω) = ± e x p
) y

L 2ω2φ"2ω2φ" (0)
(4.27)

A f t e r s u b s t i t u t i o n i n (4.21), w e o b t a i n f o r t h e I n t e n s i t y

i n t h e r a d i a t i o n s p e c t r u m

Λ(Ω)=-
^η (Ω) Ω* I Mue 2ω2φ"(0) ( 4 . 2 8 )

o ]/"2ηφ" (0)

T h i s r e s u l t c o r r e s p o n d s e x a c t l y t o f o r m u l a ( 3 . 3 2 ) f o r

t h e a b s o r p t i o n c o e f f i c i e n t , a n d c a n b e r e a d i l y o b t a i n e d

f r o m ( 3 . 3 7 ) a n d ( 3 . 2 8 ) . T h e c r i t e r i o n o f s t r o n g h e a t r e -

l e a s e ( 3 . 3 6 ) a s s u m e s i n t h i s c a s e t h e r o l e o f t h e c r i t e -

r i o n f o r r e p l a c i n g < p _ p ( i t ) b y t h e e x p a n s i o n ( 4 . 2 4 ) .

D e t a i l s o f t h e f o r e g o i n g m e t h o d f o r c a l c u l a t i n g t h e

e m i s s i o n b a n d s ( a n d a b s o r p t i o n b a n d s ) o f l i g h t c a n b e

f o u n d i n [ 2 9 ] , w h e r e t h e c o r r e c t i o n s c o n n e c t e d w i t h t h e

n e x t t e r m s o f t h e e x p a n s i o n ( 4 . 2 4 ) a n d w i t h t h e " n o n -

C o n d o n " t e r m s i n t h e e l e c t r o n w a v e f u n c t i o n ( 1 . 1 3 ) a r e

t a k e n i n t o a c c o u n t . I n ^ 2 9 ] t h e r e i s a l s o o b t a i n e d a

s m a l l t e m p e r a t u r e c o r r e c t i o n t o t h e e x p r e s s i o n ( 4 . 1 6 )

for γ. The account of the frequency effect is taken in
t 2 8 ] by introducing electron indices (u or g) for the
frequencies ωκ, which are contained in Him and Hgn',
respectively. An analysis of this type cannot be r e -
garded as consistent, for when the frequency effect is
taken into account the matrix element (4.4) can no
longer be represented by a product of independent pho-
non factors.

The remark made in Sec. 3 concerning the limita-
tions connected with the method of generating polyno-
mials applies also to the Lamb method considered
above C1 0 ].

Nonradiative transitions connected with the non-
adiabaticity operator have been considered in ^ 3 0 ] by
the method of ^ 2 7 ] . The form of the electron wave
function is not detailed in [ 3 0 ] , and, in particular, for-
mula (1.13) is not used. The contribution to the prob-
ability of the transition of both terms of the non-
adiabaticity operator (1.9) is taken into account, and
this leads to the appearance of additional terms in the
function F(w) of (3.55).

5. FEYNMAN OPERATOR CALCULUS IN THE
THEORY OF MANY-PHONON PROCESSES.
THE METHOD OF MOMENTS

The operator calculus developed in the well-known
paper by FeynmanC31J turns out to be quite fruitful not
only in quantum electrodynamics, but also in the theory
of many-phonon transitions. Let us consider by way of
illustration formula (4.13) for the total probability (per
second) of the spontaneous optical transition u — g of
an excited local center to the ground state. Recogniz-
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ing that in the general case M u g is an operator that
acts on the variables of the phonon field, we rewrite
(4.13) in the form

She-
Αν (η) 3/ι (Ω) «' | Mug \n)\*

(5.1)

In (5.1) we took the relation (4.12) into account with the
aid of the δ-function. The matrix element of the t ran-
sition is written in general form, without assuming the
possibility of representing the phonon wave functions
in the form of a product of wave functions of the inde-
pendent harmonic oscillators.

Going over in (5.1) to the integral representation of
the δ-function, we obtain

where

= - 4 \ (5.3)

I g l L ( t ) = A v ( n ) 2 J e x p [

i { H g n . - H u n ) t

(•"•)

J | (n | Mg u \n) |2. (5.4)

A f t e r s i m p l e m a t r i x t r a n s f o r m a t i o n s , t h e l a s t e x p r e s -

s i o n a s s u m e s t h e f o r m

iHat iH,.t

Igu(t) = Αν (η) {η M g l l e \n), (5.5)

w h e r e Hg, H u — p h o n o n H a m i l t o n i a n s , f o r w h i c h H g n ' ,

H u n , a n d I n ' >, | n ) a r e r e s p e c t i v e l y t h e e x a c t e i g e n -

v a l u e s a n d e i g e n f u n c t i o n s . F o r m u l a (5.5) ( f i r s t o b -

t a i n e d b y M. L a x [ 3 2 ] ) i s q u i t e g e n e r a l i n c h a r a c t e r ,

i n c l u d i n g only t h e a d i a b a t i c - a p p r o x i m a t i o n w a v e f u n c -

t i o n (1.7) [ w i t h o u t d e t a i l s of t h e s o l u t i o n of t h e e l e c -

t r o n e q u a t i o n (1.8) a n d t h e p h o n o n H a m i l t o n i a n (1 .10)] .

L e t u s c o n s i d e r f i r s t t h e s i m p l e s t c a s e , w h e n w e

c a n a s s u m e t h a t M g u i s a c - n u m b e r a n d n e g l e c t t h e

f r e q u e n c y ef fect .

W e i n t r o d u c e t h e o p e r a t o r

AH=Hg-Hu=-hQug τ τ

(5.6)

a n d m a k e u s e of t h e F e y n m a n f o r m u l a f o r t h e " d i s e n -

t a n g l i n g " of t h e e x p o n e n t i a l o p e r a t o r f a c t o r [ 3 1 3

where

iBus

(5.7)

(5.8)

and Τ is the operator of chronological ordering in the
index s. By definition

A B for s> s .

After substituting (5.7) in (5.5) we get

ί

. (0 = 1 Msu fAv{n){n Τ exp \j- jj AH (s) ds ]n)

Mgu |2 exp [ it ( - Qug + -[ Σ ω*Δ-

J ( Γ exp [ΐω,Α, *̂ gx (s) ds J ) . (5.9)

^ t h e m a t r i x element (n J . . . | nK) we have made the

s u b s t i tu t ion q - qu — q. We introduced the abbreviated
notation

At;(raK) ( ra,, ) = <...). (5.10)

In £ 3 23 f o r m u l a (5.9) i s f u r t h e r t r a n s f o r m e d u n d e r t h e

a s s u m p t i o n t h a t t h e l o c a l i z e d e l e c t r o n i n t e r a c t s only

w i t h t h e c r y s t a l v i b r a t i o n s , s o t h a t i n t h i s c a s e

t t

Τ exp Γ ίωκΔκ [ qx (s) ds \ = 1 + ;ωκΔκ ί qH (s) ds

(5.11)

We introduce the phonon creation and annihilation op-
erators Qt and Q,, with the aid of the relations

with

(5.12)

(5.13)

In this representation | nK) is the eigenfunction of the
Hamiltonian

a n d

' Qy?

(5.14)

(5.15)

Differentiating (5.15) with respect to s, we readily ob-
tain with the aid of (5.14) and (5.15)

The averaging of (5.11) is with the aid of the obvious
relations

(5.17)

After the averaging, the integration in (5.11) [with ac-
count of (5.16)] is elementary and we obtain

I gu (t) - | Mga | 2 e x p { - iQuf,t-\

(5.18)
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so that

7gu (Ω) = \ Λ exp [ φ . , (if)], (5.19)

where φ is again determined from (3.12). IgU differs
from the I g u in (3.11) in the choice of the integration
contour. This difference is connected with the fact that
the meanings of the compared quantities are not quite
identical. We shall return to this question later.

Formula (5.18) can be obtained E33H without the use
of (5.11). To this end, we examine the factor contained
in (5.9)

(5.20)

We substitute in (5.20) Q+(s) from (5.16) and use
again Feynman's formula (5.17) for "disentangling"
the factor exp[XK(t)Q£], where

Now

where

&« (s) exp (i

(5.21)

>. (5.22)

Differentiating (5.23) with respect to s, we can readily
obtain a formula which is widely used in operator cal-
culus

Qx =

Analogously

(5.24)

(5.24a)

Substitution of (5.21) and (5.24) in (5.22) yields

Jx(t) = exp

(5.25)

We use furthermore the properties of the second-
quantization operators

Ι«> №ί)"Ί0> <»|
}/~nx[ " ' " y'nK\

and relations that follow from (5.24)

(5.26)

(5.27)

Recognizing also that

we can rewrite the diagonal matrix element from (5.25)
in the form

{n | ... | n) = -i- (01 (Q + λ)" (<?* - λ*)" | 0) = n\ 2 (^T^ff2"

(5.28)r=0

The statistical averaging of this expression is easily
carried out with the aid of the Boltzmann weight factor
for the harmonic oscillator

fx- kT · (5.29)

Thus

J* (i) = exp

n=0
(5.30)

It is easy to verify that substitution of (5.30) in (5.9)
again results in (5.18), which is consequently valid not
only for crystal but also for local oscillations.

Returning to the comparison of (5.19) with (3.11),
we break up the region of integration with respect to
t into sections of length 2π. Then

d<exp[q>_p(ii)I 2 exp(2nipn). (5.31)ZJtOJ
(5.23) Q n t h e Q t h e r nand[32]

e x p ( 2 m » = (5.32)

so that ρ in (5.31) must be taken to be an integer. But
in this case the integral in (5.31) can be readily t rans-
formed to the form (3.11): when ρ is integer, the con-
tributions of the horizontal lines of the contour of Fig. 1
cancel each other exactly. Thus,

co
7gu (Ω) = ω"1/^(Ω) 2 δ (ρ —Α). (5.33)

ft = -co

Substituting (5.33) in (5.2) and changing over to inte-
gration with respect to dp = άΩ/ω, we obtain for the
integral probability of the radiation

oo
^=-3^3- 2 n(Qp)Q%Igu(Qp), (5.34)

P>-PO

where the summation is over integer values of ρ; Ωρ
is connected with ρ by the relation

ρω — Ωρ—ΩΙΙ£ = Ω Ρ — ροω· (5.35)

Each term in the sum of (5.34) corresponds to the t ran-
sition probability with given average heat release p.
The frequency interval άΩ corresponds to άΩ/ω terms
of the sum (5.34), so that we again arrive at formula
(3.37) for the spectral intensity distribution. The tran-
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sition from summation in (5.34) to integration

· • • ~ ω ~ ' J . . . dQ) brings us back to (5.2), but now

~ω~ι IgU appears instead of IgU. Thus, both expressions
are equivalent under the integral sign.

As already indicated, Eq. (5.5) makes it possible to
take the theory of many-phonon processes outside the
framework of the limitations (Condon approximation,
neglect of the frequency effect), under which all the
results considered in Sees. 3—4 have been obtained.
We note, however, that the characteristic function
(3.11) (derived under the foregoing limitations) is
quite complicated and, as already seen, an analytic
expression admitting of comparison with experiment
can be obtained for the shape of the band only in a few
limiting cases. The account of the frequency effect
etc. leads to even further complication of the charac-
teristic function, and information concerning the form
of the bands, necessary for comparison between theory
and experiment, is obtained with the aid of the method
of moments.

We define the k-th moment of a spectrum by the
relation

Nh =

a n d i n t r o d u c e t h e q u a n t i t i e s

Ω = 4

_ °
(5.39)

We assume that the spectral distribution is charac-
terized by a Gaussian curve

gu (Ω) = const · exp Γ --41η2(Ω-ΩΜ)2

(5.40)

with maximum at the point fim and with half-width όΩ.
Then, as can be readily verified,

β - (5.41)

(5.42)

Thus, the generating function (the Fourier transform)
for the transition probability (5.5) can be used for a
direct calculation of the moments of the spectrum. In
particular*

N, = n-1 {M+

guMguHu - M*guHgMgu.),
N2 = ft"2 (M+uHgMgu -, 2M+uHgMgliHu

(5.43)

T h e f o r m u l a s i n ( 5 . 4 3 ) e n a b l e u s t o e s t i m a t e t h e c o r -

r e c t i o n s t h a t m u s t b e i n t r o d u c e d i n t o t h e t h e o r y o f a b -

s o r p t i o n a n d l u m i n e s c e n c e s p e c t r a t o a c c o u n t f o r t h e

f r e q u e n c y e f f e c t . I n t h e C o n d o n a p p r o x i m a t i o n ( M g U

i s a c - n u m b e r )

( 5 . 4 4 )

W e a s s u m e f u r t h e r t h a t t h e H a m i l t o n i a n s H u a n d

H g h a v e b e e n r e d u c e d b y t w o d i f f e r e n t t r a n s f o r m a -

t i o n s o f t h e t y p e o f ( 1 . 2 7 ) t o t h e f o r m ( 1 . 2 6 ) , s o t h a t

( 5 . 4 5 )

(5.36) a follows from (1.27) that

(5.37)

:, (5.38)

λ, μ

This general relation simplifies if we use the results
of diagonalization by the perturbation method from
Sec. 1 [formulas (1.30) and (1.31)]:

With the same accuracy we obtain from (5.45) and
(5.44)

-cth-̂ -, (5.48)

O n t h e o t h e r h a n d , if t h e s p e c t r a l c u r v e i s c l o s e t o

G a u s s i a n , t h e n t h e a v e r a g e f r e q u e n c y c h a r a c t e r i z e s

a p p r o x i m a t e l y t h e p o s i t i o n of t h e m a x i m u m , t h e d i s -

p e r s i o n (5.38) c h a r a c t e r i z e s t h e h a l f - w i d t h , a n d , f ina l ly ,

(5.39) c h a r a c t e r i z e s t h e a s y m m e t r y of t h e c u r v e . F o r

a q u a n t i t a t i v e c o m p a r i s o n of t h e o r y w i t h e x p e r i m e n t i t

i s n e c e s s a r y i n t h i s c a s e t o c a l c u l a t e t h e c o r r e s p o n d -

i n g m o m e n t (5.36) b y n u m e r i c a l l y i n t e g r a t i n g t h e e x -

p e r i m e n t a l c u r v e .

T a k i n g t h e i n v e r s e F o u r i e r t r a n s f o r m of (5.3), w e

e a s i l y o b t a i n

(5.49)

Formulas (5.48) and (5.49) have been derived for the
u —- g transition (emission). The corresponding for-
mulas for the absorption can be readily written, by
interchanging the indices u and g and reversing the
signs in front of the sums in (5.48). We then observe
that the physical consequence of the frequency effect
is violation of the law of mirror symmetry of the ab-
sorption and luminescence bands, viz: the maxima of
these bands are asymmetrically located relative to
nug, and the half widths are not equal. We emphasize,
however, that within the framework of our approxima-

* A n o t h e r d e r i v a t i o n of ( 5 . 4 3 ) i s g i v e n i n M .
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tion, the corrections to the mirror-symmetry law are
small (~ e 2 ) .

Another consequence of the frequency effect is the
temperature shift of the maxima of the bands [ third
term of (5.48)]. Such a shift is actually observed for
F-centers: the maximum of the F-absorption band
shifts upon heating to the red side. If ω(£) > ω ^
(a natural assumption), then (5.48) gives the correct
sign of the temperature shift. There exist, however,
other possible causes of this effect: the dependence of
the crystal parameters on the temperature Μ and cor-
rections to the Condon approximation (see below).

Formulas (5.48) and (5.49) become exact if the non-
diagonal elements BK\ vanish. This case is realized
in the one-oscillator model (also called the model of
configuration curves) * [ 3 5 ^, in which account is taken
of the interaction between the localized electron and
a single normal oscillation. Although this model is
most frequently only illustrative, it is highly popular
because a small number of parameters is left in (5.48)
and (5.49). By choosing these parameters it is pos-
sible, in particular, to reconcile the theory with the
noticeable deviations from the mirror-symmetry law,
which are observed in alkali-halide crystal phosphors

[ 3 7 3 . The greatest interest from this point of view is
attached to work in which the parameters of the oscil-
lator model (flUg, wu, wg, Δ) are calculated quantum -
mechanically (see, for example, the article by Kris-
tofel' [ 3 8 ] , devoted to a quantum mechanical calculation
of the luminescence center in KC1-T1).

Let us consider further the corrections to the spec-
trum moments, arising because of the dependence of
the matrix element MUg on the normal coordinates of
the lattice. With the aid of (1.13), carrying out t rans-
formations analogous to those used in the derivation
of (2.15), we easily obtain

fug (?) = M°ug [1 + 2 ϊ*Δ κ (qK - qw) + . . . ] , ]
κ I (5.50)

'* — AEug- )
Substituting (5.50) in (5.43) and neglecting the frequency
effect, we obtain after simple but somewhat tedious
calculations,

Ω =s Qm - y, γκωκΔκ cth ht,

(Ω - Ω) 2 si \ * c t h "Τ" + Σ

(5.51)

( 5 · 5 2 )

In these formulas the terms proportional to γ2 have
been left out. Comparison of (5.51) with (5.48) shows
that both corrections (frequency and "non-Condon")
to the frequency of the maximum of the band have the
same temperature dependence, the same sign, and
finally the same order in the parameter e. Formula
(5.52) contains a new result: the appearance of a

*A detailed description of the configuration curve method can be
found in the book by D. Curiet36].

temperature-independent correction to the half width
of the spectral band.

Expressions (5.51)—(5.52) (neglecting the dispersion
of the phonon frequency) were obtained by Meyer [ 3 9 ] in
the form

(5.53)
- c t h | -

The parameters Β and C were determined from a
comparison with the experimental data on the absorp-
tion F bands. This yielded C « 10, corresponding to
γ « 0.1. It is difficult to understand this result, since
it follows from (5.50) that γ « 0.01 for F-centers.

The mathematical techniques connected with the
Feynman operator calculus were used many times in
work on many-phonon nonradiative transitions [ 3 3 > 4 0 > 4 2 ] .

In view of the fact that the summation method,
which is not connected with the expansion in N" 1 , leads
to additional terms in the formula for the probability
of "non-adiabatic" nonradiative transition, we should
examine the derivation of this formula. We write
(2.18) in the form

CO
Pag = X \ Kgu(l)dt, (5.54)

where it is convenient to express <S?gU in terms of the
creation and annihilation operators

u— /-- Si *£V. (5.56)

The generating function (5.55) assumes upon substitu-
tion of (5.56) the form

(Q*-Ql)e

μ,φχ

κ, λ Φ y.

(Qx-Qt)e Π /μ(<),) Π
μ =f= κ, Λ

( 5 . 5 7 )

where -Ιμ is given by (5.30).
We consider, for example, one of the factors in

(5.57):

From (5.16) we get the commutation relations

~Qi,

Qx,

(5.58)

(5.59)
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which enable us to combine the exponential factors in
(5.58) and use the previously obtained result [see the
derivation of (5.25)]

e n e "

Λ(i) Q V" exp [ ^

A second application of (5.59) allows us to place the
factors exp (±iH U ( <t/h) on t h e outer s ides of t h e prod
uct in (5.58) and consequently leave them out. Thus

M (t) = exp

It r e m a i n s to " d i s e n t a n g l e " this express ion (that i s ,
to p lace the creat ion o p e r a t o r s ahead of the annihi la-
tion o p e r a t o r s ) with the aid of the commutat ion r e l a -
t ions (5.24) and (5.13). Now

Ai» (t) = exp + ^ 1)]

+ λχ (eW*Qie-№*) _ XJ ( Λ ^ , , β - ^ Η ) ] . (5.60)

All the averages contained h e r e can be readi ly ca lcu-
lated by suitable differentiation of (5.30) with r e s p e c t

to the parameters λκ
and λ*.. We ultimately get

(t) = [(nx + 1) - 1 λκ (f) I2 (nx +1)2] /„ (t). (5.61)

We can calculate by the same method all the remaining
elements of (5.57). These calculations yield

Kgu (t) = ω-ψχ (it) exp [ φ _ Ρ 0 (it)),

w h e r e

ch&-ch

(5.62)

, ( 5 . 6 3 )

with F ( w ) coinciding with (3.49). If we neglect local
osci l lat ions, the additional t e r m of (5.63) tends to z e r o
like N " 1 . Therefore the summation in this t e r m can
be c a r r i e d out only over the local osci l lat ions. After
substitution of (5.62) in (5.54) we get, obviously, a s i n -
gulari ty of the type (5.33), connected with the fact that
the initial formula (2.18) contains a δ-function. Ex-
pression (5.54) must be integrated over a continuous
parameter of the final state. If we choose this param-
eter to be Po and again introduce the density ω"1, we
obtain a formula of the type of (3.48).

In analogy with the optical transitions, the approx-
imation in which we use (5.56) as the perturbation op-
erator for the nonradiative transition is customarily
called the "Condon approximation." However, where-
as, as we have seen, in the theory of optical transitions
the "non-Condon" corrections are small, in the theory
of nonradiative transitions they are apparently appre-
ciable.

T h e n o n r a d i a t i v e t r a n s i t i o n o c c u r s n e a r t h e l i n e o f

i n t e r s e c t i o n o f t h e s u r f a c e s U u ( q ) a n d U g ( q ) o f t h e

c o n f i g u r a t i o n s p a c e ( . . . q K . . . ) , w h e r e q - q s i s g e n -

e r a l l y s p e a k i n g n o t s m a l l a n d t h e l i n e a r a p p r o x i m a t i o n

( 1 . 1 3 ) f o r t h e e l e c t r o n w a v e f u n c t i o n b e c o m e s i n a c c u -

r a t e . K o v a r s k n [ 4 2 ] o b t a i n e d , b y a p p r o x i m a t e s u m m a -

t i o n o f t h e e n t i r e p e r t u r b a t i o n - t h e o r y s e r i e s i n ( 1 . 8 ) ,

t h e a n a l y t i c a l d e p e n d e n c e o f t h e e l e c t r o n w a v e f u n c t i o n

o n t h e n o r m a l c o o r d i n a t e s . T h e c a l c u l a t i o n o f t h e g e n -

e r a t i n g f u n c t i o n ( 5 . 5 5 ) i n t h i s a p p r o x i m a t i o n l e a d s t o

t h e a p p e a r a n c e o f a n a d d i t i o n a l f a c t o r i n ( 5 . 6 2 ) . C a s e s

w h e n t h i s f a c t o r i n c r e a s e s t h e t r a n s i t i o n p r o b a b i l i t y

b y o n e o r t w o o r d e r s o f m a g n i t u d e a r e i n d i c a t e d i n [ 4 2 3 .

T h e t e c h n i q u e f o r " d i s e n t a n g l i n g " t h e o p e r a t o r e x -

p o n e n t i a l s , c o n s i d e r e d i n t h e p r e s e n t s e c t i o n , i s u s e d

a l s o i n t h e c a l c u l a t i o n o f t h e r m o d y n a m i c f u n c t i o n s o f

c r y s t a l s w i t h a l l o w a n c e f o r t h e e l e c t r o n - p h o n o n i n t e r -

a c t i o n . I n t h i s c o n n e c t i o n , m e n t i o n s h o u l d b e m a d e o f

t h e w o r k o f P e k a r a n d K r i v o g l a z [ 4 3 ^ o n p o l a r o n t h e o r y

a n d o f D y k m a n [ 4 4 ] o n e x c i t o n t h e o r y . A d e t a i l e d e x -

p o s i t i o n o f t h e s e i n v e s t i g a t i o n s i s o u t s i d e t h e s c o p e

of o u r p a p e r .

6 . D E N S I T Y M A T R I X

W e i n t r o d u c e a d e n s i t y o p e r a t o r ( m a t r i x ) f o r a

s y s t e m w i t h H a m i l t o n i a n H u :

Qu(X)-=e~ «, λ = -£=·. (6.1)

Then the generat ing function (5.5) of the many-phonon
trans i t ion can be wr i t ten in the form

(6.2)

If we neglect the corrections connected with the
changes in the phonon frequencies and the deviation
from the Condon approximation, then (6.2) breaks up
into a product of traces pertaining to the normal os-
cillators, and assumes the form

(λ)]

w h e r e

( 6 . 3 )

( 6 . 4 )

O ' R o u r k e [ 4 S ] , i n a t h e o r y o f o p t i c a l t r a n s i t i o n s , a n d

K u b o [ 6 ^ , i n a t h e o r y o f t h e r m a l i o n i z a t i o n o f a l o c a l

c e n t e r , c a l l e d a t t e n t i o n t o t h e f a c t t h a t t h e c a l c u l a t i o n

b y m e a n s o f ( 6 . 3 ) i s b e s t c a r r i e d o u t i n t h e c o o r d i n a t e

r e p r e s e n t a t i o n , w h e r e t h e d e n s i t y m a t r i x o f t h e h a r -

m o n i c o s c i l l a t o r r e d u c e s t o t h e k n o w n e x p r e s s i o n f o r

t h e S l a t e r s u m

*th = tanh
( 6 . 5 )
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where Φη —wave functions of the harmonic oscilla-
t o r . H e r e

Sp [Q (<?,?! β)] = \ Q ( ? . ? |

s o t h a t (6.3) a s s u m e s t h e f o r m

V
2 s h | -

( 6 ' 6 )

en
(t) = e-iaugf | Mgu |2 J] 2 sh k J J Q (<?* - ?1<ί, ^ - ϊ χ β | _ ΐωΒί)

κ —oo

9 x . ( 6 . 7 )

After substitution of (6.5), the integration in (6.7) is
readily effected by transforming the quadratic form

F (q, q) = - {q + qf th l-f - (q - qf cth '-f

(6.8)

u s i n g t h e l i n e a r s u b s t i t u t i o n

sh

— s > Q = g-g

t o t h e d i a g o n a l f o r m

F{Q,Q)~ ίωί+β iast ίωί + ρ
' T S l 1 2 ~

ch
+ 2Λ2 c t h i —

β "\ ~|

(6.8a)

After integrating over the variables Q and Q, we again
obtain the generating function (5.19).

In the coordinate representation, the generating
function (5.57) of the nonradiative transition assumes
the form

eu (t)

κ, Κ φ κ

μ Μ=κ, λ

( 6 . 9 )

w h e r e f o r b r e v i t y pgK a n d p u / c d e n o t e r e s p e c t i v e l y t h e

i n t e g r a n d f a c t o r s o f ( 6 . 7 ) , a n d

(6.10)= 2sh-^-\)\j QgμQuμ dq»

i s t h e a l r e a d y c a l c u l a t e d f a c t o r u n d e r t h e p r o d u c t s i g n

i n ( 6 . 3 ) a n d ( 6 . 7 ) . T h i s q u a n t i t y c o i n c i d e s , a p a r t f o r a

factor exp (ίωμίΔμ/2) with expression (5.20) calcu-
lated in the preceding section by the "disentangling"
method.

I n t e g r a t i o n w i t h t h e a i d of (6.8a) a g a i n b r i n g s u s t o

(5 .62) .

A s w a s a l r e a d y i n d i c a t e d , s u m m a t i o n i n a c c o r d a n c e

w i t h (6.5) w a s f i r s t a p p l i e d t o n o n r a d i a t i v e t r a n s i t i o n s

in Ε'],, where, however, only local oscillations were
considered (three degrees of freedom of the impurity
atom), and the shift of the normal coordinates was not
taken into account at all. For crystal oscillations, the
foregoing method was first used in ^4e^, which contains
an er ror consisting in the omission of the second term
of the square bracket of (6.9). This error was noted
and corrected in [ 4 7 ] .

The density matrix method was used also by the
author [ 4 8 ^, who developed a theory for thermal ionl-
zation of an F-center with production of a polaron. *

In [ 4 5^ and [ 4 6 ] an attempt was made to account for
the frequency effect by introducing electron indices
(u and g) for the frequencies ωΚ in the Hamiltonians
HU K and HgK. That this approach is inconsistent has
already been noted at the end of Sec. 4. In the basic
paper by Kubo and Toyozawa^49] it is shown that the
density matrix method admits of a generalization that
takes consistent account of the frequency effect. To
this end it is necessary to write the phonon Hamil-
tonian of the adiabatic approximation (1.22) in tensor
form

(6.11)

where χ is an N-dimensional vector with components
(1.23), Β = 1, and £2U a second-rank tensor whose ele-
ments are defined by (1.24). Let χ = Sy, where S is a
unitary operator that transforms (6.11) to the diagonal
form

(6.12)

where o>u = S l i2uS is a diagonal matrix. The density
matrix for the system of oscillators (6.12) can be writ-
ten with the aid of (6.5). If we take into account the
change in the normalization conditions of the wave
functions Φη(3) connected with the transition to the
dimensional variables x^, then

K,

βκ ) =

χ ω κ th | (6.13)

T h e c e n t r a l i d e a of t h e c a l c u l a t i o n t h a t f o l l o w s i s

t h a t e x p r e s s i o n (6.13) c a n b e r e a d i l y r e c a s t i n a f o r m

t h a t i s i n v a r i a n t w i t h r e s p e c t t o t h e u n i t a r y t r a n s f o r -

m a t i o n S. T h i s e n a b l e s u s t o o b t a i n d i r e c t l y f o r t h e

d e n s i t y m a t r i x t h e e x p r e s s i o n

ρ (χ, χ | p u) = [de ^ sh β,,)]-1/* exp j - i [ (x + x)

( x - x ) Q u c t h | ( x - » ) ] } , (6.14)

•Unlike ["] and [4 6], where it is assumed that a band electron is
produced following thermal decay of the F-center.
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w h e r e j3u s tands for the t e n s o r O U A T , and the a n a -
lytic functions of the m a t r i c e s a r e defined in usual
fashion in t e r m s of power s e r i e s .

F o r m u l a (6.7) i s accordingly genera l ized into

/ g u ( = | Afgu l^-^ugt det

+ &J) ρ (x — xg, χ — xe \ — iiigt), (6.15)

where dx stands for multidimensional integration. The
latter can be readily carried out with the aid of the
formula

i, h
= [det ( 0 ] ~ V 2 • (6.16)

The problem thus r e d u c e s to the el imination of l inear
t e r m s from the quadrat ic form obtained by substituting
(6.14) in (6.15):

F(x, x ) = 4 -

w h e r e

We introduce the notation

' 8 g i

tt = sin til - 2 ' "S ··« t n ~2~ '

(6.17)

(6.18)

(6.19)

Elimination of the l inear t e r m s from (6.17) i s a c c o m -
plished by making the substitution

1e uA, x - x = 2 Q ,

the Jacobian of which i s equal to d e t ( 2 ) . After i n t e -
grat ion a s in (6.16), the expres s ion (6.15) for the g e n -
erat ing function i s t rans formed into

/ g u ( i ) = | M g u | 2 e x p [ - / ( i ) l . (6.20)

w h e r e

/ (t) = iQust +

The las t t e r m of (6.21) i s the r e s u l t of applying the r e -
lation

det A = exp [Sp In A]. (6.22)

F o r m u l a s (6.20) and (6.21) consti tute an exact e x p r e s -
sion for the generat ing function (of c o u r s e , within the
framework of the Condon approximation and the h a r -
monic m o d e l ) , but a d i r e c t analys i s of the form of the
absorption curves and emiss ion curves i s very diffi-

cult in th i s c a s e , owing to the complicated n a t u r e of
f ( t ) in (6.21). However, if we a s s u m e that t h e s e
curves have a near ly Gaussian form, then theory and
exper iment can be compared by calculating the aver-
age frequency (5.37) and the average d i spers ion (5.38) of the
s p e c t r a l distr ibution. Combining (5.37) and (5.38) with
(5.42) we can readi ly verify that t h e s e quantit ies c o -
incide (apar t from a factor) with the corresponding
der ivat ives of f ( t ) when t = 0. After s imple but
r a t h e r c u m b e r s o m e t rans format ions , we get

Q=-ij (0) = Qag - γ ΰ' + -j- Sp [ Ωϋ1 cth h (Q« _ QJ) ] ,

(6.23)

(Ω - Ω) 2 = / (0) = y ΔΩ§Ωΰ2 cth f Ω|Α

(6.24)

We emphasize once more that the accuracy of these
formulas is limited only by the choice of the initial
phonon Hamiltonian (6.11) and by the Condon approx-
imation. The frequency effect is taken into account
here in the most rigorous and general form. On the
other hand, the calculation of the tensor expressions
contained in (6.23) and (6.24) is hardly possible without
a concrete model of the center and without suitable
approximations. In the particular case when the cr i-
teria for the diagonalization of the adiabatic potential
by the perturbation theory method are satisfied, (5.48)
and (5.49) follow directly from (6.23) and (6.24).

A generalization of the density matrix method in
the "non-Condon" case, when

Mgu (x) =>= M'gi + MgvX, (6.25)

is obtained [ 4 9 ̂  by means of the substitution

w δ w dk< (6.26)

which makes it possible to carry through to conclusion
the formal integration and to obtain an expression for
the generating function, differing from (6.20) by an ad-
ditional factor.

In [ 4 9 ] are also considered nonradiative transitions
in which the role of the perturbation is played by the
non-adiabaticity operator, written in tensor form

* « - - * £ . (6.27)

We do not present the rather cumbersome resultant
formula for the generating function, since it apparently
does not lend itself readily to investigation. In partic-
ular, in the analysis of the nonradiative transitions in
C*9], the frequency effect was not taken into account
and consequently the generating function of the non-
radiative transition was reduced to expression (5.9).

The density matrix method gives very lucid results
in the "semiclassical" approximation, that is, in the
case when the phonon wave function of the initial state
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| n) is quasiclassical. In this case* it is possible to
replace the phonon Hamiltonians H u and H g under the
trace sign in (5.5) by the corresponding Hamiltonians
of the classical system and to neglect their non-com-
mutativity. The generating function (6.2) assumes the
form

it(Ug-Uu)

(6.28)
Sp |ρα(λ)βχρ [• •]}

Sp [QU Ml
N e g l e c t i n g t h e f r e q u e n c y e f f e c t a n d g o i n g o v e r i n ( 6 . 2 8 )

t o t h e c o o r d i n a t e r e p r e s e n t a t i o n , w e g e t

Igu (t) = | Mgu I2 exp [ it ( - Qug + 1 ^ ωχΔ£) ]
κ

O3

^ jj Q(qx, 9 x | βκ) exp (ίω^,Λ,) d9>t. (6.29)
κ - c o

After substitution of the diagonal matrix element from
(6.5), the integration in (6.29) is elementary and we get

· ( 6 · 3 0 )

It is easy to verify that substitution of (6.30) in (5.3)
results in exactly a Gaussian curve for the emission
(and accordingly absorption) band [ see, for example,
(4.27) and (4.28)].

Applying the method of ^49], we can generalize (6.29)
to include the case when the phonon frequencies change
by electronic transition. At high temperatures, when
tanh (/3u/2) a /3u/2, we obtain with the aid of (6.11)
and formula (6.14) for the density matrix

y e x p [ — i

1 exp (— iQugt) V dx

Sx + - | (χ + Δ) Ω|(χ .(6.31)

From this formula we can obtain the classical mo-
ments of the spectrum by the same method as used
to derive (6.23) —(6.24). A somewhat different anal-
ysis of the generating function (6.31) is given by Ratner
and Zil'berman[-5 0 ]. The matrices n u and Ω | of two
positive definite quadratic forms can be diagonalized
by one linear (but not unitary) transformation, as a
result of which the integral in (6.31) breaks up into a
product of elementary integrals. Integration with r e -
spect to t in (5.3) is then carried out by expanding the
logarithm of the generating function in powers of t/λ
£ kT/όΩ. The latter quantity is as a rule small even
at high temperatures. Expansion up to terms propor-
tional to t 3 gives respectively the first three moments
of the emission (absorption) band. In ttl] the same
method of calculating the moments is applied to a quan-
tum generating function of the type (6.15). The case is
considered when the electron of a local center inter-
acts only with a small number of neighboring atoms

(ions) of the lattice. The elastic constants of this in-
teraction (the frequency parameters of the adiabatic
potentials) are determined by comparing the theoretical
expressions and the experimental values of Ω and
(Ω — Ω ) 2 for the absorption and luminescence bands.*
With the aid of these parameters it is then possible to
calculate and compare with experiment the activation
energy of the nonradiative transition. Good agreement
was obtained in this way between theory and experiment
in the case of KC1-T1. Nonradiative transitions are
also considered in '-51].

7. GREEN'S FUNCTION IN THE THEORY OF MANY-

PHONON TRANSITIONS

Confining ourselves to the "Condon" case in the
theory of optical transitions, we write the generating
function (4.14) in the form

(7.1)

where Τ is the operator of chronological ordering in
the parameter s.

Expressions similar to (7.1) are encountered in
quantum field theory. The difference lies in the fact
that the vacuum averaging in (7.1) is replaced by aver-
aging over a canonical ensemble, and the S matrix is
replaced by the evolution operator. In this respect,
our problem is perfectly analogous to problems of
quantum statistics and the field methods employed in
it (see, for example, [52>533) can be extended to the
theory of many-phonon transitions.

Tyablikov and Moskalenko [ 5 4 ] have shown that under
rather general assumptions with respect to the oper-
ator ΔΗ the calculation of the generating functions
reduces to a solution of a system of equations for the
temperature-time Green's functions.

We choose a representation in which the phonon
Hamiltonian H u is diagonal

(7.2)

In the same representation (with account of the fre-
quency effect) we have

AH
ΊΓ~~

Σ

(7.3)

(7.4)

Assuming that the unitary transformation which r e -
duces the Hamiltonian Hu (6.11) to the diagonal form
(7.2) is known, we can assume that the coefficients of
the operator (7.4) are also known.

*We confine ourselves to the Condon approximation.
*If the symmetry of the system makes it possible to reduce the

number of parameters of the theory to four.
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W e i n t r o d u c e a f o r m a l p a r a m e t e r a a n d t h e q u a n -

t i t i e s

ta^ V(s) ds~]
ο

and

(7.5)

(7.6)

Differentiating (7.6) with respect to the parameter a,
we can show [ S 2 ^ that

In Igu (t) — In | Mgu |2 + iQug t = —/(*) + i^g

(7.7)

ό ο

After substituting V from (7.4), we get

1 <
/ (i) = iQugi - i ξ da ^ds { ^ ΙΤκφΐχ (s) + «̂Pax (s)]

0 0 κ

iK>.(s, s)

κ, λ

+ y f i * * . D ^ ( s · s ) ] } , ( 7 . 8 )

w h e r e w e h a v e i n t r o d u c e d t h e G r e e n ' s f u n c t i o n s

ί (β) (7.10)

The function <p2 differs from φ 1 in the substitution
QK —• Qj£, while the functions D2 and D3 differ in that
QKQX is replaced by QKQ\ and QjjQ\, respectively.
The functions φ and D depend on t and a as param-
eters. The dependence of the creation and annihilation
operators on the time-dependent parameter s ( s ' ) is
given by (5.16).

We note that when t = 0

DM |(=0 = £>°χλ (s, s') = (T[<& (s) ρλ (s')]>

= δχλβ
ίω«)(8'-3) [rex6 (s - s') + (n x + 1) θ (s' - s)], (7.11)

where θ is the unit step function

1 s > 0 ,
θ(*) =

0 s < 0 .

Express ion (7.11) i s the G r e e n ' s function of the free

phonon field.

Equations for the functions φ and D can be de-
rived in the following manner. After expanding U a ( t )
in a power series we get

A c c o r d i n g t o t h e s o - c a l l e d g e n e r a l i z e d W i c k ' s t h e o -

r e m E 5 5 ] , t h e a v e r a g e o f t h e T - p r o d u c t i n ( 7 . 1 2 ) i s e q u a l

to the sum of η terms of the form

[<?« («) V («,) F («,)... F («,,)]>, (7.13)

which differ from each other in the permutation of the
indices s^ . . . , s n . In the statistical variant of Wick's
theorem [ 5 3 3 the symbol — for chronological pairing
denotes

QK(s)A(s') = (T[QK(s)A(s')]), (7.14)

if A is an operator that depends linearly on the crea-
tion and annihilation operators. Pairing with a non-
linear operator [for example V(si) in (7.13)] denotes,
by definition, the sum of pairings with all linear oper-
ators contained in V(s t ) . Using the right to rename
the integration variables S j , . . . , s n in (7.12), we can
readily show that the sum of the expressions (7.13)
can be replaced by multiplication of (7.12) by n, and
thus

( 7 . 1 5 )

where according to the foregoing definition

Qx(s)V(s') = D'MK(s, s') {F x + 2 [Ay.xQx (S') + B*HKQI{S')]\.
λ (7.16)

In the derivation of (7.16) we used (7.11) and the obvi-
ous relations

I n ( 7 . 1 6 )

A f t e r s u b s t i t u t i n g ( 7 . 1 6 ) i n ( 7 . 1 5 ) w e g e t

<Pix(s)= ia ^ ds'DlK (s, s') JF* +^
ο λ

(7.17)

(7.18)

(7.19)

A similar equation for φ 2 can be written readily by
replacing φ χ by φ 2 in (7.19), as well as v£ and Β*χ
b y VK, Β κ λ . If we put Α κ λ = Βκχ = Β* λ = 0, then (7.19)
can be solved in elementary fashion. It is easy to note
that in this case (that is, neglecting the frequency ef-
fect), we return to the Pekar-Krivoglaz generating
function, which has already been mentioned several
times.

Proceeding to a derivation of the equations for the
doubletime Green's functions, we use again the gener-
alized Wick's theorem

DlKK (*, s') = - ^ {(T IQ* (s) Qx («') Ua (t)])

( 7 . 1 2 )

( 7 . 2 0 )

T h e f i r s t o f t h e p a i r i n g s c o n t a i n e d h e r e g i v e s t h e f r e e
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Green's function, while for the second we obtain, in
complete analogy with the derivation of (7.15)

t
<?; 0) Ua (t) = ia ξ ds"(T № (*) V (s") U* (t)]). (7.21)

υ

A f t e r s u b s t i t u t i n g V f r o m ( 7 . 4 ) a n d c a l c u l a t i n g p a i r -

i n g s o f t h e t y p e ( 7 . 1 6 ) , w e g e t

t

Dlxl (s, s') = £>°κλ (s, s') + ia ξ ds'D"KK (s, s") {v*<plK (s')

(s", s') + ΒμκΩ2ιιλ (s", s')]} · (7.21a)

Analogously

(s, (s, s")

«', s") (s\ (7.21b)

The equation for D3 is obtained from (7.21b) by r e -
placing D2, <pu V*, and Β* μ by D3, <p2, VK, and Βκμ,
respectively.

As is well known, equations for Green's functions
usually form an infinite chain, which contains functions
with increasing number of arguments [ 5 2 ] . Equations
(7.21) have the important advantage that they form [in
conjunction with (7.19)] a closed system. This system
can be solved by iteration. We recall (see Sec. 6)
that the average frequency, the average dispersion,
etc. of the emission (absorption) spectrum are deter-
mined by the corresponding derivatives of f(t) with
t = 0. To calculate the foregoing quantities (normal-
ized moments) we can assume therefore the variable
t to be a small parameter of the iteration. This method
was used in E54] to obtain the formulas

(7.22)

κ, λ

( 7 . 2 3 )

(Ω-Ω)2=

w h i c h a r e e q u i v a l e n t t o ( 6 . 2 3 ) — ( 6 . 2 4 ) o b t a i n e d i n

I n [ 5 6 ^ t h e r e w a s c o n s i d e r e d a v a r i a n t o f t h e m e t h o d

o f [ 5 4 ] , w h e r e i t w a s p o s s i b l e , b y r e d e f i n i t i o n o f t h e

c o m p l e x n o r m a l c o o r d i n a t e s , t o r e d u c e b o t h f u n c t i o n s

φι and φ 2 to a single function φ and the three func-
tions D l f D2, and D3 to a single function D. The num-
ber of parameters of the formula (7.23) was accordingly
reduced (the parameter Βκχ disappeared). A paper
delivered by the authors of t54>563 at the Fifth Confer-
ence on Semiconductor Theory (Baku, 1962) contains
approximate estimates of the correction terms in (7.22)
and (7.23), due to the frequency effect, for the KBr cen-
ter. As expected, the corrections turned out to be
small. In particular, the difference in the half-widths

of the absorption and luminescence F bands at Τ
= 77°K was found to be ~ 0.002 eV, amounting to ~ 1%
of the half-width and being one order of magnitude
smaller than the observed effect [ 2 3 3 . At room tem-
perature, the frequency correction to the half-width
is approximately 3%.

Along with the Condon approximation, a more gen-
eral case is considered in C5*], where

Mgu = 2 {M*.Qx. + MxQt). (7.24)

It turns out that in this case the transition probability
[ in particular, the probability of nonradiative transi-
tion with perturbation operator (5.56)] is expressed
in terms of the Green's functions (7.9) and (7.11).

8. CONCLUSION

During the last 13—14 years the theory of many-
phonon transitions and local centers has made great
strides. Starting from the adiabatic model of the local
center, the theory has made it possible to establish
even during the first stage of this development the
fundamental physical properties of the impurity ab-
sorption and luminescence bands, properties connected
with the electron-phonon interaction, such as the shift
of the maxima of the bands relative to the frequency of
the "pure electronic" transition, the presence of broad
spectral bands and the dependence of the half-widths of
these bands on the heat-release constant and the tem-
perature, and the law of mirror symmetry of the ab-
sorption and emission bands. At the present stage,
more general methods have been developed, which
account for the subtle corrections connected with the
frequency effect, the inaccuracy of the Condon approx-
imation, etc. Under these conditions, the problem
coming to the foreground is that of comparing theory
with experiment, which can be done only by a joint
effort of theoreticians and experimenters. Without
pretending to set up a program for these joint inves-
tigations, we wish to mention some problems which
in our opinion are of interest.

1) Theoretical and experimental study of the phonon
spectrum of impurity crystals, including local oscilla-
tions. The error in the estimate of the parameters of
the many-phonon transitions, due to the neglect of dis-
persion, can hardly be smaller than the e r r o r s con-
nected with the aforementioned subtle effects. In the
determination of the law of dispersion of the normal
frequencies, a decisive role should apparently be played
by experimental methods (in particular, neutron scat-
tering, the M8ssbauer effect, etc.), for the theoretical
calculations of the natural oscillations offer serious
mathematical difficulties even for ideal (impurity-free)
crys ta l s [ 5 T ] .

2) Further study of cases in which the law of mirror
symmetry is violated. The authors of an overwhelm-
ing majority of theoretical and experimental papers on
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impurity luminescence spectra unanimously attribute
these violations to the frequency effect. However, it
can be seen with the F centers as an example that the
contribution of the crystal oscillations to the frequency
effect is small and apparently lies within the limits of
experimental error .* Judging from E3 8 ], local oscilla-
tions make a large contribution to the frequency effect,
but it is far from obvious that even in the case of local
states of "small radius" it is possible to neglect the
interaction between the electron and the crystal vibra-
tions in the calculation of the parameters. It is nec-
essary to develop local-center models that can take
into account all the essential interactions with the
phonons.

At the same time it is necessary to investigate other
possible causes of deviations from the mirror sym-
metry law, viz: the transfer of excitation also to
closely located electron levels, the incomplete relax-
ation of the phonon distribution, etc.

3) Clarification of the role of the anharmonicities
of the oscillating subsystem. We refer here not only
to the determination of some new small corrections
to the moments of the spectrum, but to the utterly un-
investigated problem of the relaxation time in the
phonon subsystem.

4) Particular attention should be paid to the theory
of nonradiative transitions, the state of which deter-
mines the reliability of the theoretical calculations of
the luminescence and photoeffect quantum yields, the
capture and recombination cross sections, and other
important parameters. A very important role is played
by nonradiative transitions in laser theory. It is nec-
essary to study, along with the non-adiabaticity of the
electron motion, also other interactions which give r ise
to thermal transitions. It is possible that a new ap-
proach will be found to the problem of nonradiative
transition on the basis of modern theory of fluctuations
(thermodynamics of irreversible processes).
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